
Improved metrics
collection and correlation
for the CERN cloud
storage test framework

September 2013

Author:
Carolina Lindqvist

Supervisors:
Maitane Zotes
Seppo Heikkila

CERN openlab Summer Student Report 2013

Abstract

Storage space is one of the most important ingredients that the European Organization for
Nuclear Research (CERN) needs for its experiments and operation. Part of the Data &
Storage Services (IT-DSS) group’s work at CERN is focused on testing and evaluating
the cloud storage system that is provided by the openlab partner Huawei, Huawei
Universal Disk Storage System (UDS). As a whole, the system consists of both software
and hardware.

The objective of the Huawei-CERN partnership is to investigate the performance of the
cloud storage system. Among the interesting questions are the system’s scalability,
reliability and ability to store and retrieve files. During the tests, possible bugs and
malfunctions can be discovered and corrected. Different versions of the storage software
that runs inside the storage system can also be compared to each other.

The nature of testing and benchmarking a storage system gives rise to several small tasks
that can be done during a short summer internship. In order to test the storage system a
test framework developed by the DSS group is used. The framework consists of various
types of file transfer tests, client and server monitoring programs and log file analysis
programs. Part of the work done was additions to the existing framework and part was
developing new tools. Metrics collection was the central theme. Metrics are to be
understood as system statistics, such as memory consumption or processor usage.

Memory usage and disk reads/writes were added to the existing client real-time
monitoring framework. CPU and memory usage, network traffic (bytes received/sent)
and the number of processes running are collected from a client computer before and
after a daily test. Two other additions are visualization for storage system log files, as
well as a new monitoring tool for the storage system. This report is divided into parts
describing each part of the framework that was improved or added, the problem and the
final solution. A short description of the code and the architecture are also included.

Table of Contents
Abstract ... 2

1 Introduction .. 4

2 Metrics collection for the morning test .. 5

3 Additional metrics for client monitoring ... 6

4 Visualizing log files ... 7

5 Server side monitoring ... 9

6 Conclusions and future work .. 11

7 References ... 12

8 Appendix 1 ... 13

9 Appendix 2 ... 14

1 Introduction
The complete Huawei Universal Disk Storage (UDS) system occupies less than three
server racks. It has 768 TB of storage space that is divided over 384 storage nodes (SD)
and controlled by seven controller nodes as pictured in Fig. 1. Both software and
hardware are part of this storage system.

Testing is done by uploading and downloading files of different sizes to the storage
system in order to stress it. Small file sizes can be used to test how the system handles
metadata. The upload and download tests are performed from several client machines that
stress the storage system with as many file transfers as possible. The client machines are
running Scientific Linux CERN 6 (SLC6). Scalability is tested by having multiple threads
performing file transfers.

During the tests the clients are also monitored to ensure that they themselves are not a
bottleneck, but instead stressing the storage system to perform at its full capability. After
the tests, log files are collected from the storage system and analysed in order to
understand the behaviour of the storage system.

The main results of my work are added metrics to the client side monitoring, a visual
representation of the server side logs as graphs, as well as an implementation of storage
node monitoring. In the following, each of these topics are described separately by
presenting the wished feature and the outcome of the work.

Figure 1. The Huawei UDS storage system.

4 | P a g e

2 Metrics collection for the morning test

The morning test consists of a single client machine that downloads files from the storage
system using a single thread and then 100 threads. A download is done five times during
one test run and an average is calculated. This whole test is performed each day as a cron
job in order to ensure that the storage system works properly. At the end of the test, a
report containing the results is automatically dispatched by e-mail. This report previously
only contained the amount of time the downloads needed to finish, the average time, the
amount of threads and a timestamp. The additions are shown in Fig. 2.

In order to improve the test, the following metrics were added (measured from the client):

• CPU and memory usage in percentage.
• The amount of processes running.
• The amount of data (measured in bytes) that the client sends and receives during

an interval of ten seconds.
• The IP network route from the client to the management node.

The route from the client to a management node was added to display any significant
changes to the network. This is collected from the traceroute program. These additional
metrics are measured before and after the whole test run. In this way, it is possible to
detect whether major differences in the storage system performance can be explained by
external load on the client or disturbances in the network, that has caused the client not to
stress the storage system enough.

Figure 2. An excerpt with metrics from a sample morning test report.

The existing morning test script is written in Python and was extended using two external
python modules. The psutil v.1.0.1 module1 was used for metrics collection. The pexpect
v.2.3 module2 is used to spawn a process that performs the traceroute. The script is

1 http://code.google.com/p/psutil/

2 http://www.noah.org/wiki/pexpect

5 | P a g e

http://code.google.com/p/psutil/
http://www.noah.org/wiki/pexpect

intended to run on SLC6 using Python v. 2.6. Lastly, these metrics measurements were
added to an existing bash script that starts the test and sends the final report mail. In
addition to the mail, all measurements are stored in a log file.

3 Additional metrics for client monitoring

The client monitoring is done using a previously developed software that measures the
CPU and network usage. The software reads files from the /proc file system that can be
found in a Linux file system. These files contain information about the operation system,
for example, network statistics can be found from the file /proc/net/dev. This monitoring
software was developed in C++. The ROOT software was used for drawing graphs and
histograms of the measurement data. All measurements are done in near real-time. This
software consists of clients that are executed on the monitored computers and a master
node that collects measurements that are sent from each client and finally assembles a
ROOT file that contains the readings and histograms.

Measured metrics are configurable in a bash script. One test run can contain file uploads
and downloads, done using different amounts of threads. The client C++ code uses a
python wrapper to run the actual test code that is written in Python.

The additional metrics that were added to the client monitoring were the memory usage
in percent and disk IO metrics. A screenshot from the monitoring during a test can be
found below in Fig. 3. These metrics can reveal any significant changes in the clients
during file upload and download. The CPU and memory metrics measured from the client
should stay as stable as possible. The measured disk reads and writes as well as the
network traffic should correspond to the traffic that the test run generates, for example
file downloads.

Figure 3. Screenshot from the metrics added to the monitoring software.

6 | P a g e

4 Visualizing log files

Log files are continuously collected inside the storage system. The log files contain
timestamped entries of the file operations, errors or status messages that the storage
software has produced. These log files can then be parsed into more readable results and
reports. Analyzing these log files is an important part of understanding the behavior of
the storage system.

Two different types of log files are collected on the storage system servers ; access logs
and logs from the storage software. The access log files contain information about the file
operations that have been performed inside the storage system, for example a GET
request or a DELETE request for a file. Each operation is logged with the precision of a
millisecond. The information contained in these logs can be correlated with the tests that
are run against the storage system, ie. in order to verify that an attempt to download files
from the storage system creates GET requests.

The log file parsing that previously existed enabled the user to choose an interval during
which certain file operations were extracted from the log files and the amount of each
operation that had been registered were presented in a table. A sample excerpt from this
table is illustrated in Fig. 4.

Figure 4. Previously existing log file parsing.

The second kind of log files contains entries from the storage system software. Any kind
of error or event that is logged can be found in these files. When the requested range to
be analysed is longer than the contents of the most recent log file, the parser appends log
files that are older as needed. Before, appending was only done for access log files. The
first improvement was to add the ability to append old log files also from the storage
system software logs. In Fig. 5 the appending and analysis of software logs is visible.

Figure 5. Appending and analysing log files from the storage system software.

7 | P a g e

The main new feature that was added is the possibility to draw a graph that shows the
distibution of a chosen file operation during the given interval based on log file entries.
The graph can be plotted separetely for each frontend node or as a sum of all nodes. An
example can be found as Fig. 6. Unit tests were also added in order to ensure that the
correct entries are read from the log files.

.

Figure 6. A graph drawn based on logfile entries.

In Fig. 6 a sample analyzed log file is presented. Each graph represents a frontend node
that handles the requested file operations, for example a DELETE request that removes a
file. The operation is shown as the title of the graph with the requested interval that is
inspected below it. On the y-axis the amount of events that have occured are presented.
Each peak on the curve represents the amount of file operations that have been binned
into wanted intervals, such as one second.

Inspected event

Frontend nodes

Quite even
distribution
of events
 = nice

Number of events

Timestamps

Idle time

Inspected interval

8 | P a g e

The visualization can assist in detecting malfunctions, for example the large gap that is
seen in Fig. 6 can be attributed to an interval between test runs. If this gap had not been
expected, it would have been fairly easy to spot that something had happened inside the
storage system. It can also be seen that the load on the frontend nodes is distributed quite
evenly. If one of the nodes would have registered few events in its log, while another
node would have exceptionally many log entries, this could easily be spotted in a graph.

5 Server side monitoring

To ensure that the storage nodes (SN) operate correctly, it would be interesting to
monitor their use of resources similarly as the clients are monitored during a test. Due to
the restrictions listed below it is not possible to use the same software that is used to
monitor the clients. The following limitations apply to the scenario of monitoring the 384
storage nodes. Nothing should be installed on the storage nodes; otherwise this could
conflict with the performance of the storage system. This excludes the reuse of the
monitoring software that is used with the clients, since it would require to be compiled
for the storage nodes. The nodes can only be accessed over a secure connection through
one of the management nodes. Information should be received in near real-time.

As a solution, since every SN runs a tailored Linux distribution, system statistics are only
read from the /proc filesystem and obtained from tools already available, for example
‘iostat’. The SNs are accessed from a desktop that is running the monitoring software, by
a bash script 1) that loads a bash script for monitoring into a variable, 2) sent through the
management node (MN) and 3) finally expanded and executed on the SN. This is done
over a secure connection. The monitoring script collects the requested data with
configurable intervals, for example one second. The SOD monitoring process is
illustrated in Fig. 7.

Figure 7. The concept of storage node monitoring.

Every reading is then sent back to the bash script 1) that stores the readings into
timestamped files named according to the SN’s IP-address. These log files can then be
plotted using a Python script that parses the values from the file and draws a plot using
the MatPlotLib python module. Currently only the CPU metric is available.

9 | P a g e

The script is configurable to monitor nodes listed in a configuration file. The duration of
the monitoring time is also configurable. A sample reading from SOD nodes is shown in
Fig. 8. A sample reading from the lxbsp nodes that are used as clients during upload and
download tests is shown in Fig. 9.

Figure 8. CPU usage in SOD nodes.

One can easily notice the difference in activity between nodes, for example the
lxbsp20b27 node that shows a higher activity than the other nodes in Fig. 9. As a
contrast, the SOD nodes show more fluctuations and a high activity in the sample reading
presented in Fig. 8.

10 | P a g e

Figure 9. CPU usage in lxbsp nodes.

6 Conclusions and future work

The results of this work are new metrics that have been made available and new tools that
can be used for analysing these metrics. For example, CPU and memory usage, the
number of processes running and network send/receive statistics (in bytes) are now
collected from a client before and after a daily test that it runs. These metrics can identify
the client as a possible bottleneck in the test setup. The visualisations of the server side
log files that have been made available are easier to read and help to understand the status
of the storage system at a certain point in time. Monitoring the storage nodes (SODs) was
not possible before, but now a new tool for this purpose exists. Currently, CPU and
memory usage, HDD read/writes and network traffic can be stored into logfiles and the
CPU metric can be drawn as a plot from such a log file.

In the future, the client monitoring system could still be extended to support additional
metrics, for example notifications when certain threshold values are reached. More unit
tests could be added to the test framework in general, in order to ensure that the code is
not broken during development. The plot functionality from the server side monitoring
could easily be extended to support multiple metrics, in addition to the CPU metric. The
original intention was also to plot the server side monitoring readings in real time,
similarily to what is done on the client side. This is also a possible extension to be done.

11 | P a g e

7 References
Python libraries :

Metrics collection: psutil-1.0.1 (http://code.google.com/p/psutil/)

Spawning processes: pexpect-2.3 (http://www.noah.org/wiki/pexpect)

12 | P a g e

8 Appendix 1
Sample bash script for executing another script remotely over SSH. It is used with the
suitable parameters to send a script through the MN to be executed at the SNs listed in a
file called ‘nodes.conf’ as described in Fig. 7.

Appendix 1

13 | P a g e

9 Appendix 2
Sample monitoring script that is executed on the SOD nodes to collect CPU, memory,
network usage and disk usage metrics. Additional metrics can be added to row 31.

Appendix 2. SOD monitoring script.

14 | P a g e

The script produces the following output for example, from which metrics can be parsed
and plotted. The output is stored in log files:

Appendix 2.1 Sample monitoring script output.

The script output depends on the hardware, for example network interface cards and hard
disk drives, all of which are listed.

15 | P a g e

	Improved metrics collection and correlation for the CERN cloud storage test framework
	September 2013
	Author:
	Carolina Lindqvist
	Supervisors:
	Maitane Zotes
	Seppo Heikkila
	CERN openlab Summer Student Report 2013

	Table of Contents
	1 Introduction
	2 Metrics collection for the morning test
	3 Additional metrics for client monitoring
	4 Visualizing log files
	5 Server side monitoring
	6 Conclusions and future work
	7 References
	8 Appendix 1
	9 Appendix 2

