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Motivation

• Why is memory structure important?
• With current hardware memory access has become the most significant 

resource impacting program performance.
• Changing memory structures can have a big impact on code performance.

• Memory structures are frequently global to the program
• Different code sections communicate via memory structures.

• The programming cost of changing a memory structure can be very high.



Programmer’s perspective:

• Memory structures are the programmers responsibility
• At best the compiler can add small amounts of padding in limited 

circumstances.

• Compilers can (and hopefully will) try to make best use of the memory 
structures that you specify (e.g. uni-modular transformations)

• Changing the memory structures you specify may allow the compiler 
to generate better code.



Types of data structure

• Arrays

• Pointer arrays

• records/structures

• Trees and lists

• Objects



Arrays

• Arrays are large blocks of memory indexed by integer index

• Probably the most common data structure used in HPC codes

• Good for representing regularly discretised versions of dense 
continuous data
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Arrays

• Multi dimensional arrays use multiple indexes (shorthand)

REAL  A(100,100,100) REAL A(1000000)

A (i,j,k) =  7.0 A(i+100*j+10000*k) = 7.0

float A[100][100][100]; float A[1000000];

A [i][j][k] =  7.0 A[k+100*j+10000*i] = 7.0

• Address calculation requires computation but still relatively cheap.

• Compilers have better chance to optimise where dimension sizes are 
known at compile time.



Arrays

• Many codes loop over array elements
• Data access pattern is regular and easy to predict

• Good spatial locality achieved by accessing neighbouring elements on 
consecutive iterations of the innermost loop.

• Unless loop nest order and array index order match the access 
pattern may not be optimal for cache re-use.
• Compiler can potentially address these problems by transforming the loops.

• But often can do a better job when provided with a more cache-friendly index 
order.



do i=1,n

do j=1,m

a(i,j)=a(i,j)+b(i,j)

end do

end do

do j=1,m

do i=1,m

a(i,j)=a(i,j)+b(i,j)

end do

end do

for(i=0;i<N;i++){

for(j=0;j<M;j++){

a[i][j]+=b[i][j];

}

} 

for(j=0;j<M;j++){

for(i=0;i<N;i++){

a[i][j]+=b[i][j];

}

} 

Bad spatial locality                                          Good spatial locality



Dynamic sized arrays (Fortran)

• Not always possible/desirable to fix array sizes at compile time 
• Fortran allows arrays to be dynamically sized based on subroutine arguments.

• Address calculation can still be optimised using CSE.

• Size of slowest moving index is not needed in address computation.
• Fortran actually allows this dimension to be unspecified in subroutine 

arguments (assumed size arrays)



Dynamic sized arrays (C)

• C requires array dimensions to be known at compile time.

• However can make slowest dimension variable with pointers and 
typedef

typedef float Mat[2][2];

Mat *data =(Mat *) malloc(n*sizeof(Mat));

for(i=0;i<n;i++){

for(j=0;j<2;j++){

for(k=0;k<2;k++){

data[i][j][k] = 12.0;

}

}

} 



Pointer arrays

• Alternative to multi-dimensional arrays
• Pointer to: array of pointers to: array of pointers to: …. Data

• Note reverse index order to previous example!

float ***data;

data = (float ***) malloc(2*sizeof(float **));

for(i=0;i<2;i++){

data[i]=(float **) malloc(2*sizeof(float *));

for(j=0;j<2;j++){

data[i][j] = (float *) malloc(n*sizeof(float));

for(k=0;k<n;k++){

data[i][j][k] = 12.0;

}

}

}



Pointer arrays II

• In C the use-syntax is the same as for arrays
• a[i][j][k] = 7.0;

• But actually equivalent to
• p1 = a[i];

• P2 = p1[j];

• p2[k] = 7.0;

• Advantage
• The “columns” are allocated separately and need not be the same length

• Disadvantages
• Need multiple memory accesses per element access.
• Need more memory to store all the pointers
• Less regular access pattern
• Messy to create/destroy



Records/structures

• Collection of values (of varying types)
• C structs

• F90 user defined types

• Good for representing multi-valued data or sparse/scattered data.

• Related variables are stored close together may help cache use.
• If a code section only uses a subset of the values cache use may suffer.

• Easy to add/re-order members without breaking code as members 
are referenced by name not position.
• much harder to remove them. 



Structures and the compiler

• Programmer only specifies what a structure contains.

• Compiler chooses layout within the structure.

• In C the compiler usually preserves the order of members but inserts 
padding between members if needed to meet alignment constraints
• i.e.  Doubles must be aligned on double-word boundaries.

• Padding reduces cache-line utilisation so order members to reduce padding.

• Similarly in Fortran but can use SEQUENCE keyword to force 
deterministic layout.



Arrays of structs or structs of arrays?

Array of structs

struct Part{ 

double x; 

double y; 

double z; 

int index;

double mass;

} 

Part data[numParts];   

struct AllParts{ 

double x[numParts]; 

double y[numParts]; 

double z[numParts]; 

int index[numParts];

double mass[numParts];

} 

AllParts data;   

or

Struct of arrays



Array of structs:
• May have good temporal locality if there is lots of computation on each struct

• May have poor spatial locality if computations don’t

• Unfavourable for vector loads/stores

• Natural for OO design

Struct of arrays
• May have better spatial locality (use all data on cache line), but worse 

temporal locality

• More favourable for vector loads/stores

• Less natural for OO design



Arrays of structs of (short) arrays

• Vector friendly without compromising temporal locality too much? 

• Not at all natural from a design perspective! 

struct FourVecParts{ 

double x[4]; 

double y[4]; 

double z[4]; 

int index[4];

double mass[4];

} 

FourVecParts data[(numParts+3)/4];   



Objects

• Usually implemented much the same as structures

• But objects are opaque 
• Language restricts access to the internal data.

• Usually need to use special access functions.

• Much easier to change underlying data structure as this is only visible 
to small fraction of the program

• Access functions introduce additional overhead
• Function calls

• Memory copies

• Really only a problem for small low-level objects



Trees/lists

• Structures/Objects can contain pointers to other structures.
• Can construct trees and lists etc.

• Very flexible and can grow dynamically
• Same problems as pointer arrays.

• Additional memory accesses to navigate data

• Additional storage to store pointers

• Access pattern is very hard to predict. 

• Limited navigation
• Can only follow access pattern supported by pointer structure

• e.g. cannot jump to middle of a list without traversing half the nodes.



High level data structures

• Many modern languages have built in-support for high level data 
structures such as
• Lists

• Trees

• Sets

• Maps

• Etc.

• May be available either as built-in data-types or as standard libraries.
• Have the same intrinsic advantages/disadvantages as home made equivalents 

but typically better tested and optimised.



What can go wrong

• Poor cache/page use
• Lack of spatial locality

• Lack of temporal locality

• Unnecessary memory accesses
• pointer chasing

• array temporaries

• Aliasing problems
• Use of pointers can inhibit code optimisation



Reducing memory accesses

• Memory accesses are often the most important limiting factor for 
code performance.
• Many older codes were written when memory access was relatively cheap.

• Things to look for:
• Unnecessary pointer chasing

• pointer arrays that could be simple arrays

• linked lists that could be arrays.

• Unnecessary temporary arrays.

• Tables of values that would be cheap to re-calculate.



Utilizing caches

• Want to avoid cache conflicts
• This happens when too much related data maps to the same cache set.

• Arrays or array dimensions proportional to (cache-size/set-size) can cause 
this.

• Rarely a problem with 8- and 16-way associative caches modern processors

• Lots of accesses in a loop to arrays with power-of-2 dimensions might still be 
bad 

• Can pad arrays to avoid this.



Utilizing caches II

• Want to use all of the data in a cache line
• loading unwanted values is a waste of memory bandwidth.

• structures are good for this

• Or loop fastest over the corresponding index of an array.

• Place variables that are used together close together
• Also have to worry about alignment with cache block boundaries.

• Avoid “gaps” in structures
• In C structures may contain gaps to ensure the address of each variable is 

aligned with its size. 



Bad Cache Alignment
CrayPAT profiling with export PAT_RT_HWPC=2 (L1 and L2 metrics)

Time%                                       0.2%

Time                                    0.000003

Calls                                          1

PAPI_L1_DCA              455.433M/sec       1367 ops

DC_L2_REFILL_MOESI        49.641M/sec        149 ops

DC_SYS_REFILL_MOESI        0.666M/sec          2 ops

BU_L2_REQ_DC              74.628M/sec        224 req

User time                  0.000 secs 7804 cycles

Utilization rate                           97.9%

L1 Data cache misses      50.308M/sec        151 misses

LD & ST per D1 miss                         9.05 ops/miss

D1 cache hit ratio                         89.0%

LD & ST per D2 miss                       683.50 ops/miss

D2 cache hit ratio                         99.1%

L2 cache hit ratio                         98.7%

Memory to D1 refill        0.666M/sec          2 lines

Memory to D1 bandwidth    40.669MB/sec       128 bytes

L2 to Dcache bandwidth  3029.859MB/sec      9536 bytes



Good cache alignment
Time%                                       0.1%

Time                                    0.000002

Calls                                          1

PAPI_L1_DCA              689.986M/sec       1333 ops

DC_L2_REFILL_MOESI        33.645M/sec         65 ops

DC_SYS_REFILL_MOESI                            0 ops

BU_L2_REQ_DC              34.163M/sec         66 req

User time                  0.000 secs 5023 cycles

Utilization rate                           95.1%

L1 Data cache misses      33.645M/sec         65 misses

LD & ST per D1 miss                        20.51 ops/miss

D1 cache hit ratio                         95.1%

LD & ST per D2 miss                      1333.00 ops/miss

D2 cache hit ratio                        100.0%

L2 cache hit ratio                        100.0%

Memory to D1 refill                            0 lines

Memory to D1 bandwidth                         0 bytes

L2 to Dcache bandwidth  2053.542MB/sec      4160 bytes



Cache blocking

• A combination of:
• strip mining (also called loop blocking, loop tiling...)

• loop interchange

• Designed to increase data reuse:
• temporal reuse: reuse array elements already referenced

• spatial reuse: good use of cache lines

• Many ways to block any given loop nest
• Which loops should be blocked?

• What block size(s)  will work best?



• Analysis can reveal which ways are beneficial
• How big is your cache? 

• L1 is 512KB on AMD Rome.

• How many cache lines can it hold? 
• each line typically 64B, so 

• How many cache lines are needed per loop iteration?

• ...

• But trial-and-error is probably faster
• or auto-tuning of the code



Loop tiling

for (i=0;i<n;i++){

for (j=0;j<n;j++){

a[i][j]=b[j][i];

}

}

for (ii=0;ii<n;ii+=B){

for (jj=0;jj<n;jj+=B){

for (i=ii;i<ii+B;i++){

for (j=jj;j<jj+B;j++){

a[i][j]=b[j][i];

}

}

}

} j

i

j

i



Loop tiling for vectorisation

for (i=0;i<n;i++){

for (j=1;j<n-1;j++){

a[i][j]=(a[i][j-1] + a[i][j+1])/2.0 ;

}

}

for (ii=0;ii<n;ii+=B){

for (j=1;j<n-1;j++){    

for (i=ii;i<ii+B;i++){

a[j][i]=(a[j-1][i] + a[j+1][i])/2.0 ;

}

}

}

j loop won’t vectorise due to dependencies

i loop will vectorise
but note change of data layout



Further cache optimisations

• If multiple loop nests process a large array
• First element of array will be out of cache when second loop nest starts

• Improving cache use
• Consider fusing the loop nests

• Completely: just have one loop nest

• Partial: have one outer loop, containing multiple inner loops

• Beware that too much fusion can result in lots of temporaries and cause the 
compiler to run out of registers....



Original code Complete fusion Partial fusing

do j = 1, Nj
do i = 1, Ni
a(i,j)=b(i,j)*2  
enddo
enddo

do j = 1, Nj
do i = 1, Ni
a(i,j)=a(i,j)+1  
enddo
enddo

do j = 1, Nj
do i = 1, Ni
a(i,j)=b(i,j)*2  
a(i,j)=a(i,j)+1  
enddo
enddo

do j = 1, Nj
do i = 1, Ni
a(i,j)=b(i,j)*2  
enddo
do i = 1, Ni
a(i,j)=a(i,j)+1  
enddo
enddo



Further cache optimisations

• Perhaps cache block before fusing
• Fuse one or more of the outer blocking loops

• If multiple subprograms process the array
• Remove one or more outer loops (or all loops) from subprograms

• Haul loop into parent routine, pass in index values instead

• Might want to ensure that compiler is inlining this routine

• This technique is very useful if you want to use OpenMP/OpenACC

• Beware of Fortran
• array syntax often bad

• a(:,:)=b(:,:)*2

• a(:,:)=a(:,:)+1

• compiler unlikely to fuse any loops



Original code

CALL sub1(a,b)
CALL sub2(a)

SUBROUTINE sub1(a)
do j=1,Nj
do i=1,Ni
a(i,j)=b(i,j)*2  
enddo
enddo
END SUBROUTINE sub1

After hauling

do j = 1, Nj
CALL sub1(a,b,j)
CALL sub2(a,j)
enddo

SUBROUTINE sub1(a,j)
do i=1,Ni
a(i,j)=b(i,j)*2  
enddo
END SUBROUTINE sub1



Optimising for TLB

• Aim to reuse data on a page
• i.e. treat similarly to a cache

• Standard-sized pages are 4kB
• But you can use larger "huge" pages

• 128kB, 512kB, 2MB,... 64MB

• Almost always benefit HPC applications
• regular data accesses

• huge pages give fewer TLB misses

• Huge pages can also help communication performance



• To use huge pages (see man intro_hugepages)
• Load chosen craype-hugepages* module

• See module avail craype-hugepages for list of available 
options

• 2M or 8M are usually most successful on Cray systems we’ve used

• Compile as before
• Make sure this module is also loaded in slurm jobscript

• quick cheat: can load a different-sized hugepages module at runtime
• compile-time module enables hugepages, runtime one determines actual size



Prefetch

• Some processors (including AMD Rome) prefetch automatically

• Regular access patterns are recognised and cache lines fetched in 
advance.
• Usually only works for contiguous sequence of cache misses.

• Processor has a set of stream buffers
• Each holds address of an active stream

• Loads to the current block causes the next block to be prefetched and the 
stream address to be updated.

• Streams are established by series of  cache misses to consecutive locations 



Using streams

• To utilize stream hardware use linear access patterns where possible
• Only the order of cache block accesses needs to be linear, not each word access.

• Most loops will require multiple streams
• If the loop requires more streams than are supported in hardware no prefetching 

will take place for some of the loads.

• Consider splitting the loop.

• Prefetching typically cannot cross OS page boundaries
• huge pages may help



Pointer aliasing

• Pointers are variables containing memory addresses.
• Pointers are useful but can seriously inhibit code performance.

• Compilers try very hard to reduce memory accesses.
• Only loading data from memory once.

• Keep variables in registers and only update memory copy when necessary.

• Pointers could point anywhere, so to be safe compiler will:
• Reload all values after write through pointer

• Synchronize all variables with memory before read through pointer 



Pointers and Fortran

• F77 had no pointers

• Arguments passed by reference (address)
• Subroutine arguments are effectively pointers

• But it is illegal Fortran if two arguments overlap

• F90/F95 has restricted pointers
• Pointers can only point at variables declared as a “target” or at the target of 

another pointer

• Compiler therefore knows more about possible aliasing problems

• Try to avoid F90 pointers for performance critical data structures.



Pointers and C

• In C pointers are unrestricted
• Can therefore seriously inhibit performance

• Almost impossible to do without pointers
• malloc requires the use of pointers.
• Pointers used for call by reference. Alternative is call by value where all data is 

copied!

• Use the C99 restrict keyword where possible

• ...or else use compiler flags
• CCE: -h restrict
• AMD:  -fstrict-aliasing (doesn’t restrict argument aliasing)
• GNU: -fstrict-aliasing -fargument-noalias -fargument-
noalias-global

• Explicit use of scalar temporaries may also reduce the problem


