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Vector Instructions (Vectorisation)

• Modern CPUs can perform multiple operations each cycle
• Use special SIMD (Single Instruction Multiple Data) instructions

• e.g. SSE, AVX

• Operate on a "vector" of data 
• typically 2 or 4 double precision floats (on AMD Rome)

• But can be up to 8 per FPU

• Potentially gives speedup in floating point operations

• Usually only one loop is vectorisable in loop nest
• And most compilers only consider inner loop



Vectorisation
• Same operation on multiple data items

• Wide registers

• SIMD needed to approach FLOP peak performance, but your 
code must be capable of vectorisation

• x86 SIMD instruction sets: 
• SSE: register width = 128 Bit 

• 2 double precision floating point operands 

• AVX: register width = 256 Bit
• 4 double precision floating point operands 
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for(i=0;i<N;i++){

a[i] = b[i] + c[i];

}

do i=1,N

a(i) = b(i) + c(i)

end do



AVX2/AVX256
5

256-bit

32-bit

64-bit

• Rome processor has AVX256 vector units per core
• Symmetrical units

• Only one supports some of the legacy stuff (x87, MMX, some of the SSE 
stuff)

• Vector instructions have a latency of 6 cycles



• Optimising compilers will use vector instructions
• Relies on code being vectorisable

• ...or in a form that the compiler can convert to be vectorisable

• Some compilers are better at this than others

• But there are some general guidelines about what is likely to work...



When does the compiler vectorize
• What can be vectorized

• Only loops

• Usually only one loop is vectorisable in loopnest
• And most compilers only consider inner loop

• Optimising compilers will use vector instructions
• Relies on code being vectorisable
• Or in a form that the compiler can convert to be vectorisable
• Some compilers are better at this than others

• Check the compiler output listing and/or assembler listing
• Look for packed AVX/AVX2/AVX512 instructions

i.e. Instructions using registers zmm0-zmm31 (512-bit) ymm0-ymm31 (256-bit) xmm0-
xmm31 (128-bit)
Instructions like vaddps, vmulps, etc…



Requirements for vectorisation

• Loops must have determinable (at run time) trip count
• rules out most while loops

• Loops must not contain function/subroutine calls
• unless the call can be inlined by the compiler

• maths library functions usually OK 

• Loops must not contain branches or jumps
• guarded assignments may be OK

• e.g.  if (a[i] != 0.0) b[i] = c * a[i];

• Loop trip counts needs to be long, or else a multiple of the vector length



• Loops must no have dependencies between iterations
• reductions usually OK, e.g.  sum += a[i];

• avoid induction variables e.g. indx += 3;

• use restrict

• may need to tell the compiler if it can’t work it out for itself

• Aligned data is best 
• e.g. AVX vector loads/stores operate most effectively on 32-bytes aligned 

address  

• need to either let the compiler align the data....

• ..or tell it what the alignment is

• Unit stride through memory is best 



Compilers

• Cray (C) and AMD compilers requires
• Optimisation enabled (generally is by default)

• -O2

• To know what hardware it’s compiling for
• -march=znver2

• This is added automatically for you on ARCHER2

• Can disable vectorisation
• -fno-vectorize

• Useful for checking performance

• Cray compiler will provide vectorisation information
• -Rpass-missed=loop-vectorize -Rpass-analysis=loop-
vectorize

• Other compilers information
• Cray Fortran: -hlist=a
• GNU: -fdump-tree-vect-all=<filename>



Did my loop get vectorised?

• Always check the compiler output  to see what it did
• CCE: -hlist=a

• GNU: -fdump-tree-vect-all=<filename>

• AMD: -Rpass-missed=loop-vectorize -Rpass-analysis=loop-vectorize

• or (for the hard core) check the assembler generated
• Look to see which registers are in use.

• Clues from CrayPAT's HWPC measurements
• export PAT_RT_HWPC=13 or 14 # Floating point operations SP,DP

• Complicated, but look for ratio of operations/instructions > 1
• expect 4 for pure AVX with double precision floats



Did my loop get vectorised?

• GNU offers other options for checking:

• -fopt-info

• -fopt-info-all

• -O3 -fopt-info-missed=missed.all

• -O2 -ftree-vectorize -fopt-info-vec-missed

• -fopt-info-loop-optimized



Helping vectorisation

• Does the loop have dependencies?
• information carried between iterations

• e.g. counter: total = total + a(i)

• No:
• Tell the compiler that it is safe to vectorise

• Yes:
• Rewrite code to use algorithm without dependencies, e.g.

• promote loop scalars to vectors (single dimension array)
• use calculated values (based on loop index) rather than iterated counters, e.g.

• Replace: count = count + 2; a(count) = ...

• By: a(2*i) = ...

• move if statements outside the inner loop
• may need temporary vectors to do this (otherwise use masking operations)

• Is there a good reason for this? 
• There is an overhead in setting up vectorisation; maybe it's not worth it

• Could you unroll inner (or outer) loop to provide more work?



Vectorisation example

• Compiler cannot easily vectorise:
• Loops with pointers
• Non-unit stride loops
• Funny memory patterns
• Unaligned data accesses
• Conditionals/Function calls in loops
• Data dependencies between loop iterations
• ….

int *loop_size;

void problem_function(float *data1, float *data2, float *data3, int *index){

int i,j;

for(i=0;i<*loop_size;i++){

j = index[i];

data1[j] = data2[i] * data3[i];

}

} 



Vectorisation example
• Can help compiler

• Tell it loops are independent
• #pragma clang loop vectorize(enable) 

• -Menable-vectorize-pragmas  !dir$ ivdep

• Tell it that variables or arrays are unique
• restrict

• Align arrays to cache line boundaries
• Tell the compiler the arrays are aligned
• Make loop sizes explicit to the compiler

• Ensure loops are big enough to vectorise

int *loop_size;

void problem_function(float * restrict data1, float * restrict data2, float * restrict data3, int
* restrict index){

int i,j,n;

n = *loop_size;

#pragma ivdep

for(i=0;i<n;i++){

j = index[i];

data1[j] = data2[i] * data3[i];

}

} 



Vectorisation example
• This loop doesn’t vectorise either:
do j = 1,N

x = xinit

do i = 1,N

x = x + vexpr(i,j)

y(i) = y(i) + x

end do

end do

• Compiler will vectorise inner loop by default
• Dependency on x between loop iterations

do j = 1,N

x(j) = xinit

end do

do j = 1,N

do i = 1,N

x(j) = x(j) + vexpr(i,j)

y(i) = y(i) + x(j)

end do

end do



Example

16.  + 1-------<   do j = 1,N

17.    1 x = xinit

18.  + 1 r4----<     do i = 1,N

19.    1 r4 x = x + vexpr(i,j)

20.    1 r4 y(i) = y(i) + x

21.    1 r4---->     end do

22.    1------->   end do

ftn-6254 ftn: VECTOR File = bufpack.F90, Line = 16 

A loop starting at line 16 was not vectorized because a recurrence was found on "y" at line 20.

ftn-6005 ftn: SCALAR File = bufpack.F90, Line = 18 

A loop starting at line 18 was unrolled 4 times.

ftn-6254 ftn: VECTOR File = bufpack.F90, Line = 18

A loop starting at line 18 was not vectorized because a recurrence was found on "x" at line 19.

1.497ms 



38.    Vf------<   do j = 1,N

39.    Vf x(j) = xinit

40.    Vf------>   end do

41.              

42.    ir4-----<   do j = 1,N

43.    ir4 if--<     do i = 1,N

44.    ir4 if x(j) = x(j) + vexpr(i,j)

45.    ir4 if y(i) = y(i) + x(j)

46.    ir4 if-->     end do

47.    ir4----->   end do

ftn-6007 ftn: SCALAR File = bufpack.F90, Line = 42 

A loop starting at line 42 was interchanged with the loop starting at line 43.

ftn-6004 ftn: SCALAR File = bufpack.F90, Line = 43 

A loop starting at line 43 was fused with the loop starting at line 38.

ftn-6204 ftn: VECTOR File = bufpack.F90, Line = 38 

A loop starting at line 38 was vectorized.

ftn-6208 ftn: VECTOR File = bufpack.F90, Line = 42 

A loop starting at line 42 was vectorized as part of the loop starting at line 38.

ftn-6005 ftn: SCALAR File = bufpack.F90, Line = 42 

A loop starting at line 42 was unrolled 4 times.

1.089ms 

-37%

x promoted to vector:
trade slightly more memory
for better performance



Data alignment

• When vectorising data aligned data is essential for performance

• Unaligned data
• May require multiple data loads, multiple cache lines, multiple instructions
• Will generate 3 different versions of a loop: peel, kernel, remainder

• Aligned data
• Minimum number of data loads/cache lines/instructions
• Will generate 2 different versions of a loop: 
kernel and remainder

Cache line

a[0] a[1] a[2] a[3]

Vector register



Aligned data

• Aligned data is best 
• e.g. AVX vector loads/stores operate most effectively on 32-bytes aligned 

address  

• need to either let the compiler align the data....

• ..or tell it what the alignment is

• Unit stride through memory is best 



Align data
• Align on allocate/create (dynamic)

• _mm_malloc, _mm_free
float *a = _mm_malloc(1024*sizeof(float),64);

• align attribute (at definition, not allocation)
real, allocatable :: A(1024)

!dir$ attributes align : 64 :: a

• Align on definition (static)

float a[1024] __attribute__((aligned(64)));

real :: A(1024)

!dir$ attributes align : 64 :: a

• Common blocks in Fortran
• It’s not possible to use directives to align data inside a common block
• Can align the start of a common block

!DIR$ ATTRIBUTES ALIGN : 64 :: /common_name/

• Up to you to pad elements inside common block 

• Derived types
• May need to use SEQUENCE keyword and manually pad to get correct alignment



Multi-dimensional alignment

• Need to be careful with multi-dimensional arrays and alignment
• If you _mm_malloc each dimension then it should be fine

• If you do a single dimension _mm_malloc there may be issues:

float* a = _mm_malloc(16*15(sizeof(float), 64);

for(i=0;i<16;i++){

#pragma clang loop vectorize(enable) 

for(j=0;j<15;j++){

a[i*15+j]++;

}

}



Inform on alignment
• For non-static data, as well as aligning data, need to tell compiler it is aligned

• Number of different ways to do this

• Alignment of data inside a loop
• Specify all data in the loop is aligned

#pragma vector aligned

!dir$ vector aligned

• Alignment of an array
• Specify, for code after the alignment statement, a specific array is aligned

__assume_aligned(a, 64);

!dir$ assume_aligned a: 64

• May also need to define to properties of loop scalars
__assume(n1%16==0);

for(i=0;i<n;i++){

x[i] = a[i] + a[i-n1] + a[i+n1];

}

!dir$ assume(mod(n1,16).eq.0)

• Also can use OpenMP simd clause
• Specify array is aligned for simd loop

#pragma omp simd aligned(a:64)

!omp$ simd aligned(a:64)



Fortran data

• Different ways of passing data to subroutines can affect performance

• Explicit arrays
subroutine vec_add_mult(A, B, C)

real, intent(inout), dimension(1024) :: A

real, intent(in), dimension(1024) :: B, C

• Compiler generates subroutine code based on contiguous data
• Packing/unpacking required to do this is done by the compiler at caller level

• May be overhead associated with this

• Need to tell the compiler the arrays are aligned (i.e. !dir$ 
assume_aligned or !dir$ vector aligned)

• Same for arrays where array size is passed as an argument to the routine



Fortran data

• Assumed size arrays
subroutine vec_add_mult(A, B, C)

real, intent(inout), dimension(:) :: A

real, intent(in), dimension(:) :: B, C

• Compiler will generate different versions of the code, with and without 
contiguous functionality
• Different versions may show up in the vector reports from the compiler

• If there are too many different potential versions not all of them will necessarily be 
generated
• The fall back version (none unit stride, not vectorised) will be used in this case for inputs that 

don’t match any of the other versions

• Choice which is used made at runtime

• Still need to tell the compiler the arrays are aligned



Fortran data

• Assumed shape arrays
subroutine vec_add_mult(A, B, C)

real, intent(inout), dimension(*) :: A

real, intent(in), dimension(*) :: B, C

• Compiler generates subroutine code based on contiguous data
• Packing/unpacking required to do this is done by the compiler at caller level

• May be overhead associated with this

• Still need to tell the compiler the arrays are aligned



Fortran Indirect addressing

• Indirect addressing code can have some strange affects on 
vectorisation
subroutine vec_add_mult(A, B, C, index)

real, intent(inout), dimension(1024) :: A

real, intent(in), dimension(1024) :: B, C

integer, intent(in), dimension(1024) :: index
integer :: I

• Following has flow dependency (needs ivdep directive)
do i=1,n

a(index(i)) = a(index(i)) + b(index(i)) * c(index(i))

end do

• Uses gather and scatter operations to pack/unpack indexed locations
• Following creates array temporary for right hand side evaluation

a(index(:)) = a(index(:)) + b(index(:)) * c(index(:))

• Ends up creating 2 loops
temp(:) = a(index(:)) + b(index(:)) * c(index(:))

a(index(:)) = temp(:)

• Uses gather/scatter in both loops



OpenMP 4.0 SIMD directives

• Many compilers support their own sets of directives to assist the 
compiler to vectorise loops.
• useful but not portable

• OpenMP 4.0 contains a standardised set of directives



Portable SIMD directives

• Use simd directive to indicate a loop should be vectorised

#pragma omp simd [clauses]

or

!$omp simd [clauses]

• Executes iterations of following loop in SIMD chunks  

• Loop is not divided across threads 

• SIMD chunk is set of iterations executed concurrently by  SIMD lanes 

• Not a hint! Programmer is asserting independence of iterations.



• Clauses control data environment, how loop is partitioned 
• safelen(length) limits the number of iterations in a SIMD chunk. 
• linear lists variables with a linear relationship to the iteration space 

(induction variables)
• aligned specifies byte alignments of a list of variables
• private, lastprivate, reduction and collapse have usual 

meanings.
• Also declare simd directive to generate SIMDised versions of 

functions.
• Can be combined with loop constructs (parallelise and vectorise)

• #pragma omp for simd


