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A common scenario.....

“So I wrote my OpenMP program, and I checked it gave the right answers, so I 
ran some timing tests, and the speedup was, well, a bit disappointing really. 
Now what?”.

Most of us have probably been here. 

Where did my performance go? 

It disappeared into overheads.....



The six (and a half) evils...

• There are six main sources of overhead in OpenMP programs:

• sequential code 
• idle threads
• synchronisation
• scheduling
• communication
• hardware resource contention

• and another minor one:
• compiler (non-)optimisation

• Let’s take a look at each of them and discuss ways of avoiding them. 



Sequential code

• In OpenMP, all code outside parallel regions, or inside MASTER and 
SINGLE directives is sequential.

• Time spent in sequential code will limit performance (that’s Amdahl’s 
Law). 

• If 20% of the original execution time is not parallelised, I can never get 
more that 5x speedup. 

• Need to find ways of parallelising it!



Idle threads

• Some threads finish a piece of computation before others, and have to wait for 
others to catch up.

• e.g. threads sit idle in a barrier at the end of a parallel loop or parallel region. 

Time 



Avoiding load imbalance

• It’s a parallel loop, experiment with different schedule kinds and chunksizes
• can use SCHEDULE(RUNTIME) to avoid recompilation.

• For more irregular computations, using tasks can be helpful
• runtime takes care of the load balancing 

• Note that it’s not always safe to assume that two threads doing the same number of 
computations will take the same time.
• the time taken to load/store data may be different, depending on if/where it’s cached.



Critical sections

• Threads can be idle waiting to access a critical section
• In OpenMP, critical regions, atomics or lock routines

Time 



Avoiding waiting

• Minimise the time spent in the critical section

• OpenMP critical regions are a global lock
• but can use critical directives with different names

• Use atomics if possible
• allows more optimisation, e.g. concurrent updates to different array elements

• ... or use multiple locks



Synchronisation

• Every time we synchronise threads, there is some overhead, even if the 
threads are never idle.
• threads must communicate somehow.....

• Many OpenMP codes are full of (implicit) barriers
• end of parallel regions, parallel loops

• Barriers can be very expensive 
• depends on no. of threads, runtime, hardware, but typically 1000s to 10000s of 

clock cycles.

• Criticals, atomics and locks are not free either.

• ...nor is creating or executing a task



Avoiding synchronisation overheads

• Parallelise at the outermost level possible. 
• Minimise the frequency of barriers

• May require reordering of loops and/or array indices.

• Careful use of NOWAIT clauses.
• easy to introduce race conditions by removing barriers that are required for 

correctness

•Atomics may have less overhead that critical or locks
• quality of implementation problem



Scheduling

• If we create computational tasks, and rely on the runtime to assign these to 
threads, then we incur some overheads
- some of this is actually internal synchronisation in the runtime

• Examples: non-static loop schedules, task constructs

•Need to get granularity of tasks right
• too big may result in idle threads

• too small results in scheduling overheads

#pragma omp parallel for schedule(dynamic,1) 

for (i=0;i<10000000;i++){

.......

} 



Communication

• On shared memory systems, communication is “disguised” as increased 
memory access costs - it takes longer to access data in main memory or 
another processors cache than it does from local cache. 

• Memory accesses are expensive! ( O(100) cycles for a main memory 
access compared to 1-3 cycles for a flop). 

• Communication between processors takes place via the cache coherency 
mechanism. 

• Unlike in message-passing, communication is fine–grained and spread 
throughout the program
• much harder to analyse or monitor. 



Cache coherency in a nutshell

• If a thread writes a data item, it gets an exclusive copy of the data in its local cache

• Any copies of the data item in other caches get invalidated to avoid reading of out-of-
date values.

• Subsequent accesses to the data item by other threads must get the data from the 
exclusive copy
• this takes time as it requires moving data from one cache to another 

(Caveat : this is a highly simplified description! )



Data affinity

• Data will be cached on the processors which are accessing it, so we must 
reuse cached data as much as possible. 

• Need to write code with good data affinity - ensure that the same thread 
accesses the same subset of program data as much as possible. 

• Try to make these subsets large, contiguous chunks of data

• Also important to prevent threads migrating between cores while the code 
is running.
• use export OMP_PROC_BIND=true



Data affinity example 1

#pragma omp parallel for schedule(static) 

for (i=0;i<n;i++){

for (j=0; j<n; j++){ 

a[i][j] = i+j;

}

} 

#pragma omp parallel for schedule(static,16) 

for (i=0;i<n;i++){

for (j=0; j<i; j++){ 

b[j] += a[i][j];

}

}

Different access patterns 

for a will result in extra 

communication

Balanced loop

Unbalanced loop



Data affinity example 2

#pragma omp parallel for

for (i=0;i<n;i++){

... = a[i];

}

for (i=0;i<n;i++){

a[i] = 23;

}

#pragma omp parallel for

for (i=0;i<n;i++){

... = a[i];

}

a will be spread across 

multiple caches

Sequential code! 

a will be gathered into 

one cache

a will be spread across 

multiple caches again 



Data affinity (cont.) 

• Sequential code will take longer with multiple threads 
than it does on one thread, due to the cache invalidations

• Second parallel region will scale badly due to additional 
cache misses

• May need to parallelise code which does not appear to 
take much time in the sequential program!  



Data affinity: NUMA effects

• Very evil! 

• On multi-socket systems, the location of data in main memory is 
important.
• Note: all current multi-socket x86 systems are NUMA!

• OpenMP has no support for controlling this. 

• Common default policy for the OS is to place data on the 
processor which first accesses it (first touch policy).

• For OpenMP programs this can be the worst possible option
• data is initialised in the master thread, so it is all allocated one socket

• having all threads accessing data on the same socket becomes a 
bottleneck



Avoiding NUMA effects

• In some OSs, there are options to control data placement
• e.g. in Linux, can use numactl change policy to round-robin  

• First touch policy can be used to control data placement indirectly by 
parallelising data initialisation
• even though this may not seem worthwhile in view of the insignificant time it takes in 

the sequential code

• Don’t have to get the distribution exactly right
• some distribution is usually much better than none at all. 

• Remember that the allocation is done on an OS page basis 
• typically 4KB to 16KB

• beware of using large pages! 



False sharing

• Very very evil! 

• The units of data on which the cache coherency operations are done 
(typically 64 or 128 bytes) are always bigger than a word (typically 4 or 8 
bytes). 

• Different threads writing to neighbouring words in memory may cause cache 
invalidations! 
• still a problem if one thread is writing and others reading



False sharing patterns

• Worst cases occur where different threads repeatedly write neighbouring array elements.

count[omp_get_thread_num()]++; 

#pragma omp parallel for schedule(static,1) 

for (i=0;i<n;i++){

for (j=0; j<i; j++){ 

b[i] += a[j][i];

}

} 



Hardware resource contention

• The design of shared memory hardware is often a cost vs. performance 
trade-off.

• There are shared resources which if all cores try to access at the same 
time, do not scale.
• or, put another way, an application running on a single core can access more than 

its fair share of the resources

• In particular, cores (and hence OpenMP threads) can contend for:
• memory bandwidth 

• cache capacity 

• functional units (if using SMT)



Memory bandwidth

• Codes which are very bandwidth-hungry will not scale linearly of most 
shared-memory hardware.

• Try to reduce bandwidth demands by improving locality, and hence the re-
use of data in caches
• will benefit the sequential performance as well. 



Memory bandwidth example

• AMD Rome processor
• 1 NUMA region - 16 cores

• L1 and L2 caches per core

• 16 MB shared L3 cache per 4 cores

• Cray compiler

#pragma omp parallel for reduction(+:sum)

for (i=0;i<n;i++){

sum += a[i];

} 

• Measure speedup for varying values of n and no. of threads
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Cache space contention

• On systems where cores share some level of cache (e.g. L3), codes may not 
appear to scale well because a single core can access the whole of the 
shared cache.

• Beware of tuning block sizes for a single thread, and then running 
multithreaded code
• each thread will try to utilise the whole cache



Hardware threads 

• When using hardware threads, OpenMP threads running on the same 
core contend for functional units as well as cache space and memory 
bandwidth. 

• Tends to benefit codes where threads are idle because they are waiting on 
memory references
• code with non-contiguous/random memory access patterns

• Codes which are bandwidth-hungry, or which saturate the floating point 
units (e.g. dense linear algebra) may not benefit from this
• may actually run slower



Oversubscription

• Running more threads than hardware execution units (cores or hardware 
threads) is generally a bad idea.

• OS tries to give each thread a fair share of execution units

• Cost of stopping one thread and starting another is high (1000s of clock 
cycles)

• Ruins data locality! 



Compiler (non-)optimisation

• Very rarely, the addition of OpenMP directives can inhibit the compiler from performing  
sequential optimisations. 

• Symptoms: 1-thread parallel code has longer execution time than sequential code. 

• Can be hard to find a workaround

• Can sometimes be cured by making shared data private, or making  local copies of 
variables. 



Minimising overheads
My code is giving poor speedup. I don’t know why. 

What do I do now?

1.   

• Say “OpenMP is a heap of junk”. 

• Give up. 

2. 

• Try to classify and localise the sources of overhead. 

• What type of problem is it, and where in the code does it occur?  

• Use any available tools to help you (e.g. timers, hardware counters, profiling tools). 

• Fix problems which are responsible for large overheads first.

• Iterate.



Profilers

• Standard profilers (gprof, IDE profilers) can be confusing 
• they typically accumulate the time spent in functions across all threads.

• You can get a lot out of using timers (omp_get_wtime())

• Add  timers round every parallel region, and round the whole code.
• work out which parallel regions have the worst speedup

• don’t assume the time spent outside parallel regions is independent of the number 
of threads.



Performance tools

• Vampir
• timeline traces can be very useful for visualising load balance

• Intel Vtune

• TAU

• Arm MAP

• CrayPAT

• Scalasca
• breaks down overheads into different categories

• ParaTools Threadspotter
• very good for finding cache/memory problems, including false sharing. 



Exercise

• Profile and optimise a not very efficient OpenMP version of the 
molecular dynamics (MD) code

• Separate source files:

MolDyn directory from SNO.tar


