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Introduction

• Unless we write assembly code, we are always using a 
compiler.

• Modern compilers are (quite) good at optimisation
• memory optimisations are an exception

• Usually much better to get the compiler to do the 
optimisation.
• avoids machine-specific coding

• compilers break codes much less often than humans

• Even modifying code can be thought of as “helping the 
compiler”.



Compiler flags

• Typical compiler has hundreds of flags/options.
• most are never used

• many are not related to optimisation

• Most compilers have flags for different levels of general optimisation.
• -O1, -O2, -O3,....

• When first porting code, switch optimisation off.
• only when you are satisfied that the code works, turn optimisation on, and 

test again.

• but don’t forget to use them!

• also don’t forget to turn off debugging, bounds checking and profiling flags... 



Compiler flags (cont.)

• Note that highest levels of optimisation may
• break your code.

• give different answers, by bending standards.

• make your code go slower.

• Always read documentation carefully.

• Isolate routines and flags which cause the problem.
• binary chop

• one routine per file may help



Compiler flags (cont.)

• Many compilers are designed for an instruction set architecture, not 
one machine.
• flags to target ISA versions, processor versions, cache configurations

• defaults may not be optimal, especially if cross-compiling

• Some optimisation flags may not be part of -On
• check documentation

• use sparingly (may only be beneficial in some cases)



Compiler hints

• A mechanism for giving additional information to the compiler, e.g.
• values of variables (e.g. loop trip counts)

• independence of loop iterations

• independence of index array elements

• aliasing properties

• Appear as comments (Fortran), or pre-processor pragmas (C)
• don’t affect portability  



Incremental compilation

• Compilers can only work with the limited information available to 
them. 

• Most compilers compile code in an incremental fashion
• Each source file is compiled independently of each other.

• Most compilers ignore all source files other than those specified on the command line 
(or implicitly referenced via search paths, e.g. include files)

• Routines from other source files treated as “black-boxes”
• Make worst case assumptions based on routine prototype.

• You can help by providing more information
• Information in routine prototypes

• INTENT, PURE, const, etc.

• Compiler hints
• Command line flags 



Code modification

• When flags and hints don’t solve the problem, we will have to resort to 
code modification. 

• Be aware that this may
• introduce bugs.
• make the code harder to read/maintain.
• only be effective on certain architectures and compiler versions.

• Try to think about
• what optimisation the compiler is failing to do
• what additional information can be provided to compiler
• how can rewriting help



• How can we work out what the compiler has done? 
• eyeball assembly code 

• use diagnostics flags

• Increasingly difficult to work out what actually occurred in the 
processor.
• superscalar, out-of-order, speculative execution

• Can estimate expected performance
• count flops, load/stores, estimate cache misses

• compare actual performance with expectations



Locals and globals

• Compiler analysis is more effective with local variables

• Has to make worst case assumptions about global variables

• Globals could be modified by any called procedure (or by another 
thread).

• Use local variables where possible

• Automatic variables are stack allocated: allocation is essentially free.

• In C, use file scope globals in preference to externals



Conditionals

• Even with sophisticated branch prediction hardware, branches are 
bad for performance.

• Try to avoid branches in innermost loops.
• if you can’t eliminate them, at least try to get them out of the critical loops.

do i=1,k

if (n .eq. 0) then

a(i) = b(i) + c

else

a(i) = 0.

endif

end do 

if (n .eq. 0) then

do i=1,k

a(i) = b(i) + c

end do

else

do i=1,k

a(i) = 0.

end do

endif



• A little harder for the compiler.....

do i=1,k

if (i .le. j) then

a(i) = b(i) + c

else

a(i) = 0.

endif

end do 

do i=1,j

a(i) = b(i) + c

end do 

do i = j+1,k

a(i) = 0.

end do 



Data types

• Performance can be affected by choice of data types
• often a difference between 32-bit and 64-bit arithmetic (integer and floating 

point).

• complicated by trade-offs with memory usage and cache hit rates

• Avoid unnecessary type conversions
• e.g. int to long, float to double

• N.B. some type conversions are implicit

• However sometimes better than the alternative e.g.
• Use DP reduction variable rather than increase array precision.



CSE

• Compilers are generally good at Common Subexpression Elimination.

• A couple of cases where they might have trouble:

Different order of operands

Function calls

d = a + c

e = a + b + c

d = a + func(c)

e = b + func(c)



CSE including function calls.

• To extract a CSE containing a function call the compiler has to be sure 
of various things:
• The function always returns the same value for the same input.

• The function does not cause any side effects that would be effected by 
changing the number of times the function is called:
• Modifying its inputs.

• Changing global data.

• Need to be very careful with function prototypes to allow compiler to 
know this.



Register use

• Most compilers make a reasonable job of register allocation.
• But only limited number available.

• Can have problems in some cases:
• loops with large numbers of temporary variables

• such loops may be produced by inlining or unrolling

• array elements with complex index expressions

• can help compiler by introducing explicit scalar temporaries, most compilers 
will use a register for an explicit scalar in preference to an implicit CSE.



for (i=0;i<n;i++){

b[i] += a[c[i]]; 

c[i+1] = 2*i; 

}

tmp = c[0];

for (i=0;i<n;i++){

b[i] += a[tmp];

tmp = 2*i; 

c[i+1] = tmp; 

}



Spilling

• If compiler runs out of registers it will generate spill code.
• store a value and then reload it later on

• Examine your source code and count how many loads/stores are 
required

• Compare with assembly code

• May need to distribute loops



Loop unrolling

• Loop unrolling and software pipelining are two of the most important 
optimisations for scientific codes on modern RISC processors. 

• Compilers generally good at this. 

• If compiler fails, usually better to try and remove the impediment, 
rather than unroll by hand. 
• cleaner, more portable, better performance

• Compiler has to determine independence of iterations



Loop unrolling

• Loops with small bodies generate small basic blocks of assembly code
• lot of dependencies between instructions

• high branch frequency

• little scope for good instruction scheduling

• Loop unrolling is a technique for increasing the size of the loop body
• gives more scope for better schedules

• reduces branch frequency

• make more independent instructions available for multiple issue.



Loop unrolling

• Replace loop body by multiple copies of the body

• Modify loop control
• take care of arbitrary loop bounds

• Number of copies is called unroll factor

Example:

do i=1,n

a(i)=b(i)+d*c(i)

end do

do i=1,n-3,4

a(i)=b(i)+d*c(i)

a(i+1)=b(i+1)+d*c(i+1)

a(i+2)=b(i+2)+d*c(i+2)

a(i+3)=b(i+3)+d*c(i+3)

end do

do j = i,n

a(j)=b(j)+d*c(j)

end do



• Remember that this is in fact done by the compiler at the IR or 
assembly code level.

• If the loop iterations are independent, then we end up with a larger 
basic block with relatively few dependencies, and more scope for 
scheduling.
• also reduce no. of compare and branch instructions

• Choice of unroll factor is important (usually 2,4,8)
• if factor is too large, can run out of registers

• Cannot unroll loops with complex flow control 
• hard to generate code to jump out of the unrolled version at the right place  



Outer loop unrolling

• If we have a loop nest, then it is possible to unroll one of the outer 
loops instead of the innermost one. 

• Can improve locality.
do i=1,n,4

do j=1,m

a(i,j)=c*d(j) 

a(i+1,j)=c*d(j) 

a(i+2,j)=c*d(j) 

a(i+3,j)=c*d(j)

end do 

end do

do i=1,n

do j=1,m

a(i,j)=c*d(j)

end do 

end do

2 loads for 1 flop 5 loads for 4 flops



Variable expansion

• Variable expansion can help break dependencies in unrolled loops
• improves scheduling opportunities

• Close connection to reduction variables in parallel loops



for (i=0,i<n,i+=2){

b1+=a[i];

b2+=a[i+1];

}

b=b1+b2;

for (i=0,i<n,i+=2){

b+=a[i];

b+=a[i+1];

}

for (i=0,i<n,i++){

b+=a[i];

}

unroll

expand b



Register renaming

• Registers may be reused within a basic block introducing unnecessary 
dependencies.

• Using two (or more) different registers can preserve program 
correctness, but allow more scheduling flexibility
• Some CPUs perform register rename and reschedule in hardware, this can 

utilise additional registers not visible to compiler.

add %f2,1,%f1

st [%o1],f1

add %f3,2,%f1

st [%o2],f1

add %f2,1,%f1

st [%o1],f1

add %f3,2,%f27

st [%o2],f27

add %f2,1,%f1

add %f3,2,%f27

st [%o1],f1

st [%o2],f27

rename reschedule



Software pipelining

• Problem with scheduling small loop bodies is that there are 
dependencies between instructions in the basic block.

• Potentially possible to start executing instructions from the next 
iteration before current one is finished. 

• Idea of software pipelining is to construct a basic block that contains 
instructions from different loop iterations.
• fewer dependencies between instructions in block

• needs additional code at start and end of loop



Software pipelining

for (i=0;i<n;i++){

t1  = a(i);    //L i

t2  = b + t1;  //A i

a(i) = t2;     //S i

}

for (i=0;i<n;i++){

a(i) += b;

}

//prologue

t1 = a(0);     //L 0

t2 = b + t1;   //A 0

t1 = a(1);     //L 1 

for (i=0;i<n-2;i++){

a(i) = t2;     //S i

t2 = b + t1;   //A i+1

t1  = a(i+2);  //L i+2

}

//epilogue

a(n-2) = t2;     //S n-2

t2 = b + t1;     //A n-1

a(n-1) = t2;     //S n-1



Instruction level

L: ld [%r1],%f0

fadd f0,f1,f2

st [%r1],f2

add   %r1,4,%r1

cmp %r1,%r3

bg L

nop

ld [%r1],%f0

fadd f0,f1,f2

ld [%r1+4],%f0

L: st [%r1],f2

fadd f0,f1,f2

ld [%r1+8],%f0

cmp %r1,%r3-8

bg L

add   %r1,4,%r1

st [%r1],f2

add   %r1,4,%r1

fadd f0,f1,f2

st [%r1],f2

st must wait for fadd

to complete: pipeline stall 

for data hazard



Impediments to unrolling

• Function calls 
• except in presence of good interprocedural analysis and inlining

• Conditionals
• especially control transfer out of the loop

• lose most of the benefit anyway as they break up the basic block.

• Pointer/array aliasing
• compiler can’t be sure different values don’t overlap in memory



Example

• Compiler doesn’t know that a[indx[i]] and a[ip] don’t overlap

• Could try hints
• tell compiler that indx is a permutation

• tell compiler that it is OK to unroll

• Or could rewrite:

for (i=0;i<ip;i++){

a[indx[i]] += c[i] * a[ip];  

}

tmp = a[ip];

for (i=0;i<ip;i++){

a[indx[i]] += c[i] * tmp;  

}



Inlining

• Compilers very variable in their abilities

• Hand inlining possible 
• very ugly (slightly less so if done via pre-processor macros)
• causes code replication

• Compiler has to know where the source of candidate routines is.
• sometimes done by compiler flags
• easier for routines in the same file
• try compiling multiple files at the same time

• Very important for OO code 
• OO design encourages methods with very small bodies
• inline keyword in C++ can be used as a hint



Multiple Optimisation steps

• Sometimes multiple optimisation steps are required.
• Multiple levels of in-lining.

• In-lining followed by loop un-rolling followed by CSE.

• The compiler may not be able to perform all steps at the same time
• You may be able to help the compiler by performing some of the steps by 

hand.

• Look for the least damaging code change that allows the compiler to 
complete the rest of the necessary changes.

• Ideally try each step in isolation before attempting to combine hand-
optimisations.



General Cray Compiler Flags

• Optimisation Options
• -O2 optimal flags [enabled by default]
• -O3 aggressive optimization
• -O ipaN (ftn) or -hipaN (cc/CC) inlining, N=0-5 [default N=3]

• Create listing files with optimization info
• -ra (ftn) or -hlist=a (cc/CC) creates a listing file with all 

optimization info
• -rm (ftn) or -hlist=m (cc/CC) produces a source listing with 

loopmark information

• Parallelization Options
• -O omp (ftn) or -h omp (cc/CC) Recognize OpenMP directives 

[default]
• -O threadN (ftn) or control the compilation and 
• -h threadN (cc/CC) optimization of  OpenMP directives, 

N=0-3 [default N=2]
➔More info: man crayftn, man craycc, man crayCC



Recommended CCE Compilation Options

• Use default optimization levels
• It’s the equivalent of most other compilers -O3  or -fast
• It is also our most thoroughly tested configuration

• Use -O3,fp3 (or -O3 -hfp3, or some variation) if the application runs cleanly with 
these options
• -O3 only gives you slightly more than the default -O2
• Cray also test this thoroughly
• -hfp3 gives you a lot more floating point optimization (default is -hfp2)

• If an application is intolerant of floating point reordering, try a lower -hfp number
• Try -hfp1 first, only -hfp0 if absolutely necessary (-hfp4 is the maximum)
• Might be needed for tests that require strict IEEE conformance
• Or applications that have ‘validated’ results from a different compiler

• Do not use too aggressive optimizations , e.g. -hfp4
• Higher numbers are not always correlated with better performance



OpenMP

• OpenMP is ON by default
• This is the opposite default behavior that you get from GNU and AMD compilers

• Optimizations controlled by -OthreadN (ftn) or  -hthreadN (cc/CC), N=0-3 [default 
N=2]

• To shut off use -O/-h thread0 or -xomp (ftn) or -hnoomp

• Autothreading is NOT on by default
• -hautothread to turn on

• Interacts with OpenMP directives

• If you do not want to use OpenMP and have OMP directives in the code, 
make sure to shut off OpenMP at compile time



CCE – GNU – AMD compilers

• More or less all optimizations and features provided by CCE are available in AMD 
and GNU compilers

• GNU compiler serves a wide range of users & needs
• Default compiler with Linux, some people only test with GNU
• GNU defaults are conservative (e.g. -O1)

• -O3 includes vectorization and most inlining

• Performance users set additional options

• AMD compiler is typically more aggressive in the optimizations
• AMD defaults are more aggressive (e.g -O2), to give better performance “out-of-the-box”

• Includes vectorization; some loop transformations such as unrolling; inlining within source file

• Options to scale back optimizations for better floating-point reproducibility, easier debugging, etc.
• Additional options for optimizations less sure to benefit all applications

• CCE is even more aggressive in the optimizations by default

• Better inlining and vectorization
• Aggressive floating-point optimizations
• OpenMP enabled by default

• GNU users probably have to specify higher optimisation levels



Cray, AMD and GNU compiler flags

Feature Cray AMD GNU

Listing -hlist=a -ast-view -fdump-tree-all

Free format (ftn) -f free -Mfreeform -ffree-form

Vectorization By default at -O1 and 
above

By default at –O1 or 
above

By default at -O3 or using 
-ftree-vectorize

Inter-Procedural Optimization -hwp –hpl=tmp -flto (note: link-time optimization)

Floating-point optimizations -hfpN, N=0...4 -ffast-math -ffp-
contract=fast

-f[no-]fast-math or
-funsafe-math-optimizations

Suggested Optimization (default) (default) -O2 -mavx -ftree-vectorize
-ffast-math -funroll-loops

Aggressive Optimization -O3 -hfp3 -Ofast -Ofast
-funroll-loops 

OpenMP recognition (default) -fopenmp -fopenmp

Variables size (ftn) -s real64 
-s integer64

-r8, -fdefault-real-8 -freal-4-real-8
-finteger-4-integer-8



Summary

• Remember compiler is always there.

• Try to help compiler, rather than do its job for it. 

• Use flags and hints as much as possible

• Minimise code modifications 


