
Single Node Optimisation
Profiling

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

https://creativecommons.org/licenses/by-nc-sa/4.0/

This means you are free to copy and redistribute the material and adapt and build on the material under the
following terms: You must give appropriate credit, provide a link to the license and indicate if changes were made. If

you adapt or build on the material you must distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission before reusing these
images.

https://creativecommons.org/licenses/by-nc-sa/4.0/

What is profiling?

• Analysing your code to find out the proportion of execution time
spent in different routines.

• Essential to know this if we are going to target optimisation.

• No point optimising routines that don’t significantly contribute to the
overall execution time.
• can just make your code less readable/maintainable

Code profiling

• Code profiling is the first step for anyone interested in performance
optimisation

• Profiling works by instrumenting code at compile time
• Thus it’s (usually) controlled by compiler flags

• Can reduce performance

• Standard profiles return data on:
• Number of function calls

• Amount of time spent in sections of code

• Also tools that will return hardware specific data
• Cache misses, TLB misses, cache re-use, flop rate, etc…

• Useful for in-depth performance optimisation

Sampling and tracing

• Many profilers work by sampling the program counter at regular
intervals (normally 100 times per second).
• low overhead, little effect on execution time

• Builds a statistical picture of which routines the code is spending time
in.
• if the run time is too small (< ~10 seconds) there aren’t enough samples for

good statistics

• Tracing can get more detailed information by recording some data
(e.g. time stamp) at entry/exit to functions
• higher overhead, more effect on runtime

• unrestrained use can result in huge output files

Standard Unix profilers

• Standard Unix profilers are prof and gprof

• Many other profiling tools use same formats

• Usual compiler flags are -p and -pg:
• ftn -p mycode.F90 -o myprog for prof

• cc -pg mycode.c -o myprog for gprof

• When code is run it produces instrumentation log
• mon.out for prof

• gmon.out for gprof

• Then run prof/gprof on your executable program
• eg. gprof myprog (not gprof gmon.out)

Standard profilers

• prof myprog reads mon.out and produces this:
%Time Seconds Cumsecs #Calls msec/call Name

32.4 0.71 0.71 14 50.7 relax_

28.3 0.62 1.33 14 44.3 resid_

11.4 0.25 1.58 3 83. __f90_close

5.9 0.13 1.71 1629419 0.0001 _mcount

5.0 0.11 1.82 339044 0.0003 __f90_slr_i4

5.0 0.11 1.93 167045 0.0007 __inrange_single

2.7 0.06 1.99 507 0.12 _read

2.7 0.06 2.05 1 60. MAIN_

Standard profilers

• gprof myprog reads gmon.out and produces something very
similar

• gprof also produces a program calltree sorted by inclusive times

• Both profilers list all routines, including obscure system ones
• Of note: mcount(), _mcount(), moncontrol(), _moncontrol()
monitor() and _monitor() are all overheads of the profiling
implementation itself

• _mcount() is called every time your code calls a function; if it’s high in the
profile, it can indicate high function-call overhead

• gprof assumes calls to a routine from different parents take the same
amount of time – may not be true

The Golden Rules of profiling

• Profile your code
• The compiler/runtime will NOT do all the optimisation for you.

• Profile your code yourself
• Don't believe what anyone tells you. They're wrong.

• Profile on the hardware you want to run on
• Don't profile on your laptop if you plan to run on ARCHER2.

• Profile your code running the full-sized problem
• The profile will almost certainly be qualitatively different for a test case.

• Keep profiling your code as you optimise
• Concentrate your efforts on the thing that slows your code down.
• This will change as you optimise.
• So keep on profiling.

CrayPAT

• Can do both statistic sampling and function/loop level tracing.

Recommended usage:

1. Build and instrument code

2. Run code and get statistic profile

3. Re-instrument based on profile

4. Re-run code to get more detailed tracing

Example with CrayPAT

• Load performance tools software
module load perftools-base (automatically loaded on ARCHER2)

module load perftools-lite

• Re-build application (keep .o files)
make clean
make

• Application automatically instrumented for you

• Run the instrumented application to get top time consuming routines
• You should get performance profiling in your Slurm output file
• You should get a performance file <executable_name+93500-1088s>

Example with CrayPAT
CrayPat/X: Version 20.10.0 Revision 7ec62de47 09/16/20 16:57:54
Experiment: lite lite-samples
……

……

Program invocation:
/lus/cls01095/work/z19/z19/adrianj/DistributedStream/src/./distributed_streams

For a complete report with expanded tables and notes, run:
pat_report /lus/cls01095/work/z19/z19/adrianj/DistributedStream/src/distributed_streams+93500-1088s

For help identifying callers of particular functions:
pat_report -O callers+src /lus/cls01095/work/z19/z19/adrianj/DistributedStream/src/distributed_streams+93500-1088s

To see the entire call tree:
pat_report -O calltree+src /lus/cls01095/work/z19/z19/adrianj/DistributedStream/src/distributed_streams+93500-1088s

For interactive, graphical performance analysis, run:
app2 /lus/cls01095/work/z19/z19/adrianj/DistributedStream/src/distributed_streams+93500-1088s

Example with CrayPAT

• Load performance tools software
module load perftools-base (automatically loaded on ARCHER2)
module load perftools

• Re-build application (keep .o files)
make clean
make

• Instrument application for automatic profiling analysis
• You should get an instrumented program a.out+pat

pat_build –O apa a.out

• Run the instrumented application (...+pat) to get top time consuming routines
• You should get a performance file (“<sdatafile>.xf”) or multiple files in a directory

<sdatadir>

Example with CrayPAT (2/2)

• Generate text report and an .apa instrumentation file
pat_report [<sdatafile>.xf | <sdatadir>]

• Inspect the .apa file and sampling report whether additional instrumentation is
needed

• See especially sites “Libraries to trace” and “HWPC group to collect”

• Instrument application for further analysis (a.out+apa)
pat_build –O <apafile>.apa

• Run application (...+apa)

• Generate text report and visualization file (.ap2)
pat_report –o my_text_report.txt <data>

• View report in text and/or with Cray Apprentice2

app2 <datafile>.ap2

Finding single-core hotspots

• Remember: pay attention only to user routines that consume
significant portion of the total time

• View the key hardware counters, for example
• L1 and L2 cache metrics
• use of vector (SSE/AVX) instructions

• CrayPAT has mechanisms for finding “the” hotspot in a routine (e.g. in
case the routine contains several and/or long loops)
• CrayPAT API
• Possibility to give labels to “PAT regions”

• Loop statistics (works only with Cray compiler)
• Compile & link with CCE using -h profile_generate

• pat_report will generate loop statistics if the flag is enabled

USER / remap_
--
Time% 25.2%
Time 15.801180 secs
Imb. Time 2.582609 secs
Imb. Time% 14.7%
Calls 0.026M/sec 460,800.0 calls
CPU_CLK_UNHALTED:THREAD_P 77,964,376,624
CPU_CLK_UNHALTED:REF_P 2,689,572,161
DTLB_LOAD_MISSES:MISS_CAUSES_A_WALK 20,626,569
DTLB_STORE_MISSES:MISS_CAUSES_A_WALK 17,745,058
L1D:REPLACEMENT 2,753,483,367
L2_RQSTS:ALL_DEMAND_DATA_RD 1,912,839,218
L2_RQSTS:DEMAND_DATA_RD_HIT 1,757,495,428
FP_COMP_OPS_EXE:SSE_SCALAR_DOUBLE 1,597
FP_COMP_OPS_EXE:SSE_FP_SCALAR_SINGLE 1,556,036,610
FP_COMP_OPS_EXE:X87 1,878,388,524
FP_COMP_OPS_EXE:SSE_PACKED_SINGLE 302,976,589
SIMD_FP_256:PACKED_SINGLE 5,003,127,724
User time (approx) 17.476 secs 47,202,147,918 cycles 100.0% Time
CPU_CLK 2.90GHz
HW FP Ops / User time 2,556.183M/sec 44,671,354,883 ops 11.8%peak(DP)
Total SP ops 2,448.698M/sec 42,792,964,761 ops
Total DP ops 107.485M/sec 1,878,390,122 ops
MFLOPS (aggregate) 61,348.39M/sec
D2 cache hit,miss ratio 94.4% hits 5.6% misses
D2 to D1 bandwidth 6,680.690MiB/sec 122,421,709,963 bytes
Average Time per Call 0.000034 secs
CrayPat Overhead : Time 11.4%

Flat profile data

HW counter
values

Derived
metrics

Hardware performance counters

• CrayPAT can interface with HWPCs
• Gives extra information on how hardware is behaving

• Very useful for understanding (& optimising) application performance

• Provides information on
• hardware features, e.g. caches, vectorisation and memory bandwidth

• Available on per-program and per-function basis
• Per-function information only available through tracing

• Number of simultaneous counters limited by hardware
• 2 counters available with AMD Rome processors

• If you need more, you'll need multiple runs

• Most counters accessed through the PAPI interface
• Either native counters or derived metrics constructed from these

Hardware counters selection
• HWPCs collected using CrayPAT

• Compile and instrument code for profiling as before

• Set PAT_RT_PERFCTR environment variable at runtime
• e.g. in the job script

• Hardware counter events are not collected by default (except with APA)

• export PAT_RT_PERFCTR=...
• either a list of named PAPI counters
• or <set number> = a pre-defined (and useful) set of counters

• recommended way to use HWPCs
• there are 8 groups to choose from

• To see them:
• pat_help -> counters -> rome –> groups
• man hwpc
• More
/opt/cray/pe/perftools/20.10.0/share/counters/CounterGroups.amd_fam23mod49

Technical term for
AMD Rome

Predefined AMD Rome HW Counter Groups

0: Summary with translation lookaside buffer activity

1: Summary with branch activity

default: mem_bw

default_samp: default

mem_bw: memory bandwidth

mem_bw_1: memory load bandwidth, stalls

mem_bw_2: memory load bandwidth, cycles

stalls: Dispatch stalls for load, store, fp

USER / sweepy_
--

Time% 14.6%
Time 8.738150 secs
Imb. Time 3.077320 secs
Imb. Time% 27.2%
Calls 11.547 /sec 100.0 calls
CPU_CLK_UNHALTED:THREAD_P 92,754,888,918
CPU_CLK_UNHALTED:REF_P 2,759,876,135
L1D:REPLACEMENT 1,813,741,166
L2_RQSTS:ALL_DEMAND_DATA_RD 1,891,459,700
L2_RQSTS:DEMAND_DATA_RD_HIT 1,644,133,800
LLC_MISSES 98,952,928
LLC_REFERENCES 690,626,471
User time (approx) 8.660 secs 23,390,899,520 cycles 100.0% Time
CPU_CLK 3.36GHz
D2 cache hit,miss ratio 86.4% hits 13.6% misses
L3 cache hit,miss ratio 85.7% hits 14.3% misses
D2 to D1 bandwidth 13,330.757MiB/sec 121,053,420,792 bytes
Average Time per Call 0.087381 secs
CrayPat Overhead : Time 0.0% ….

Example: mem_bw

Interpreting the performance numbers

• Performance numbers are an average over all ranks
• explains non-integer values

• This does not always make sense
• e.g. if ranks are not all doing the same thing:

• Leader-worker schemes

• MPMD apruns combining multiple, different programs

• Want them to only process data for certain ranks
• pat_report –sfilter_input='condition' ...

• condition should be an expression involving pe, e.g.
• pe<1024 for the first 1024 ranks only

• pe%2==0 for every second rank

OpenMP data collection and reporting
• Give finer-grained profiling of threaded routines

• Measure overhead incurred entering and leaving
• Parallel regions

• #pragma omp parallel

• Work-sharing constructs within parallel regions
• #pragma omp for

• Timings and other data now shown per-thread
• rather than per-rank

• OpenMP tracing enabled with pat_build -gomp ...
• CCE: insert tracing points around parallel regions automatically
• AMD, Gnu: need to use CrayPAT API manually

OpenMP data collection and reporting

• Load imbalance for hybrid MPI/OpenMP programs
• now calculated across all threads in all ranks

• imbalances for MPI and OpenMP combined
• Can choose to see imbalance in each programming model separately

• See next slide for details

• Data displayed by default in pat_report
• no additional options needed

• Report focuses on where program is spending its time

• Assumes all requested resources should be used
• you may have reasons not to want to do this, of course

Memory usage

• Knowing how much memory each rank uses is important:
• What is the minimum number of cores I can run this problem on?

• given there is 256GB (~254GB usable) of memory per node (128 cores)

• Does memory usage scale well in the application?

• Is memory usage balanced across the ranks in the application?

• Is my application spending too much time allocating and freeing?

Heap statistics
Notes for table 5:

Table option:
-O heap_hiwater

Options implied by table option:
-d am@,ub,ta,ua,tf,nf,ac,ab -b pe=[mmm]

This table shows only lines with Tracked Heap HiWater MBytes > 0.

Table 5: Heap Stats during Main Program

Tracked | Total | Total | Tracked | Tracked |PE[mmm]
Heap | Allocs | Frees | Objects | MBytes |

HiWater | | | Not | Not |
MBytes | | | Freed | Freed |

9.794 | 915 | 910 | 4 | 1.011 |Total
|---
| 9.943 | 1170 | 1103 | 68 | 1.046 |pe.0
| 9.909 | 715 | 712 | 3 | 1.010 |pe.22
| 9.446 | 1278 | 1275 | 3 | 1.010 |pe.43
|===

Memory per rank
~254GB usable memory per node

Too many allocs/frees?
Would show up as ETC time in
CrayPAT report

Memory leaks
Not usually a problem in HPC

Viewing data

• Apprentice 2 tool
• GUI for exploring code/data

• Insight summaries

• Can install desktop version

• /opt/cray/pe/perftools

/$(current_version)/share

/desktop_installers/

Summary

• Profiling is essential to identify performance bottlenecks
• even at single core level

• CrayPAT has some very useful extra features
• can pinpoint and characterise the hotspot loops (not just routines)

• hardware performance counters give extra insight into performance

• well-integrated view of hybrid programming models
• most commonly MPI/OpenMP

• also CAF, UPC, SHMEM, pthreads, OpenACC, CUDA

• information on memory usage

• And remember the Golden Rules
• including the one about not believing what anyone tells you

	Slide 1: Single Node Optimisation
	Slide 2: Reusing this material
	Slide 3: What is profiling?
	Slide 4: Code profiling
	Slide 5: Sampling and tracing
	Slide 6: Standard Unix profilers
	Slide 7: Standard profilers
	Slide 8: Standard profilers
	Slide 9: The Golden Rules of profiling
	Slide 10: CrayPAT
	Slide 11: Example with CrayPAT
	Slide 12: Example with CrayPAT
	Slide 13: Example with CrayPAT
	Slide 14: Example with CrayPAT (2/2)
	Slide 15: Finding single-core hotspots
	Slide 16
	Slide 17
	Slide 18: Hardware performance counters
	Slide 19: Hardware counters selection
	Slide 20: Predefined AMD Rome HW Counter Groups
	Slide 21: Example: mem_bw
	Slide 22: Interpreting the performance numbers
	Slide 23: OpenMP data collection and reporting
	Slide 24: OpenMP data collection and reporting
	Slide 25: Memory usage
	Slide 26: Heap statistics
	Slide 27: Viewing data
	Slide 28: Summary

