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What is profiling? 

• Analysing your code to find out the proportion of execution time 
spent in different routines.

• Essential to know this if we are going to target optimisation.

• No point optimising routines that don’t significantly contribute to the 
overall execution time.
• can just make your code less readable/maintainable



Code profiling

• Code profiling is the first step for anyone interested in performance 
optimisation

• Profiling works by instrumenting code at compile time
• Thus it’s (usually) controlled by compiler flags

• Can reduce performance

• Standard profiles return data on:
• Number of function calls

• Amount of time spent in sections of code

• Also tools that will return hardware specific data
• Cache misses, TLB misses, cache re-use, flop rate, etc…

• Useful for in-depth performance optimisation



Sampling and tracing

• Many profilers work by sampling the program counter at regular 
intervals (normally 100 times per second).
• low overhead, little effect on execution time

• Builds a statistical picture of which routines the code is spending time 
in.
• if the run time is too small (< ~10 seconds) there aren’t enough samples for 

good statistics

• Tracing can get more detailed information by recording some data 
(e.g. time stamp) at entry/exit to functions
• higher overhead, more effect on runtime

• unrestrained use can result in huge output files 



Standard Unix profilers

• Standard Unix profilers are prof and gprof

• Many other profiling tools use same formats

• Usual compiler flags are -p and -pg:
• ftn -p mycode.F90 -o myprog for prof

• cc -pg mycode.c -o myprog for gprof

• When code is run it produces instrumentation log
• mon.out for prof

• gmon.out for gprof

• Then run prof/gprof on your executable program
• eg. gprof myprog (not gprof gmon.out)



Standard profilers

• prof myprog reads mon.out and produces this:
%Time Seconds Cumsecs #Calls   msec/call  Name

32.4    0.71    0.71      14     50.7     relax_

28.3    0.62    1.33      14     44.3     resid_

11.4    0.25    1.58       3     83.      __f90_close

5.9    0.13    1.71 1629419      0.0001  _mcount

5.0    0.11    1.82  339044      0.0003  __f90_slr_i4

5.0    0.11    1.93  167045      0.0007  __inrange_single

2.7    0.06    1.99     507      0.12    _read

2.7    0.06    2.05       1     60.      MAIN_



Standard profilers

• gprof myprog reads gmon.out and produces something very 
similar

• gprof also produces a program calltree sorted by inclusive times

• Both profilers list all routines, including obscure system ones
• Of note: mcount(), _mcount(), moncontrol(), _moncontrol() 
monitor() and _monitor() are all overheads of the profiling 
implementation itself

• _mcount() is called every time your code calls a function; if it’s high in the 
profile, it can indicate high function-call overhead

• gprof assumes calls to a routine from different parents take the same 
amount of time – may not be true



The Golden Rules of profiling

• Profile your code
• The compiler/runtime will NOT do all the optimisation for you.

• Profile your code yourself
• Don't believe what anyone tells you. They're wrong.

• Profile on the hardware you want to run on
• Don't profile on your laptop if you plan to run on ARCHER2.

• Profile your code running the full-sized problem
• The profile will almost certainly be qualitatively different for a test case.

• Keep profiling your code as you optimise
• Concentrate your efforts on the thing that slows your code down.
• This will change as you optimise.
• So keep on profiling.



CrayPAT

• Can do both statistic sampling and function/loop level tracing.

Recommended usage: 

1. Build and instrument code 

2. Run code and get statistic profile

3. Re-instrument based on profile

4. Re-run code to get more detailed tracing



Example with CrayPAT

• Load performance tools software
module load perftools-base (automatically loaded on ARCHER2)

module load perftools-lite

• Re-build application (keep .o files)
make clean
make

• Application automatically instrumented for you

• Run the instrumented application to get top time consuming routines
• You should get performance profiling in your Slurm output file
• You should get a performance file <executable_name+93500-1088s>



Example with CrayPAT
CrayPat/X:  Version 20.10.0 Revision 7ec62de47  09/16/20 16:57:54
Experiment:                  lite  lite-samples
……

……

Program invocation:
/lus/cls01095/work/z19/z19/adrianj/DistributedStream/src/./distributed_streams

For a complete report with expanded tables and notes, run:
pat_report /lus/cls01095/work/z19/z19/adrianj/DistributedStream/src/distributed_streams+93500-1088s

For help identifying callers of particular functions:
pat_report -O callers+src /lus/cls01095/work/z19/z19/adrianj/DistributedStream/src/distributed_streams+93500-1088s

To see the entire call tree:
pat_report -O calltree+src /lus/cls01095/work/z19/z19/adrianj/DistributedStream/src/distributed_streams+93500-1088s

For interactive, graphical performance analysis, run:
app2 /lus/cls01095/work/z19/z19/adrianj/DistributedStream/src/distributed_streams+93500-1088s



Example with CrayPAT

• Load performance tools software
module load perftools-base (automatically loaded on ARCHER2)
module load perftools

• Re-build application (keep .o files)
make clean
make

• Instrument application for automatic profiling analysis
• You should get an instrumented program a.out+pat

pat_build –O apa a.out

• Run the instrumented application (...+pat) to get top time consuming routines
• You should get a performance file (“<sdatafile>.xf”)  or multiple files in a directory 

<sdatadir>



Example with CrayPAT (2/2)

• Generate text report and an .apa instrumentation file
pat_report [<sdatafile>.xf | <sdatadir>]

• Inspect the .apa file and sampling report whether additional instrumentation is 
needed

• See especially sites “Libraries to trace” and “HWPC group to collect”

• Instrument application for further analysis (a.out+apa)
pat_build –O <apafile>.apa

• Run application (...+apa)

• Generate text report and visualization file (.ap2)
pat_report –o my_text_report.txt <data>

• View report in text and/or with Cray Apprentice2

app2 <datafile>.ap2



Finding single-core hotspots

• Remember: pay attention only to user routines that consume 
significant portion of the total time

• View the key hardware counters, for example
• L1 and L2 cache metrics
• use of vector (SSE/AVX) instructions



• CrayPAT has mechanisms for finding “the” hotspot in a routine (e.g. in 
case the routine contains several and/or long loops)
• CrayPAT API
• Possibility to give labels to “PAT regions”

• Loop statistics (works only with Cray compiler)
• Compile & link with CCE using -h profile_generate

• pat_report will generate loop statistics if the flag is enabled



USER / remap_
------------------------------------------------------------------------------
Time%                                                     25.2%
Time                                                  15.801180 secs
Imb. Time                                              2.582609 secs
Imb. Time%                                                14.7%
Calls                             0.026M/sec          460,800.0 calls
CPU_CLK_UNHALTED:THREAD_P                        77,964,376,624
CPU_CLK_UNHALTED:REF_P                            2,689,572,161
DTLB_LOAD_MISSES:MISS_CAUSES_A_WALK                  20,626,569
DTLB_STORE_MISSES:MISS_CAUSES_A_WALK                 17,745,058
L1D:REPLACEMENT                                   2,753,483,367
L2_RQSTS:ALL_DEMAND_DATA_RD                       1,912,839,218
L2_RQSTS:DEMAND_DATA_RD_HIT                       1,757,495,428
FP_COMP_OPS_EXE:SSE_SCALAR_DOUBLE                         1,597
FP_COMP_OPS_EXE:SSE_FP_SCALAR_SINGLE              1,556,036,610
FP_COMP_OPS_EXE:X87                               1,878,388,524
FP_COMP_OPS_EXE:SSE_PACKED_SINGLE                   302,976,589
SIMD_FP_256:PACKED_SINGLE                         5,003,127,724
User time (approx)               17.476 secs     47,202,147,918 cycles  100.0% Time
CPU_CLK                            2.90GHz
HW FP Ops / User time         2,556.183M/sec     44,671,354,883 ops   11.8%peak(DP)
Total SP ops                  2,448.698M/sec     42,792,964,761 ops
Total DP ops                    107.485M/sec      1,878,390,122 ops
MFLOPS (aggregate)            61,348.39M/sec
D2 cache hit,miss ratio           94.4% hits               5.6% misses
D2 to D1 bandwidth            6,680.690MiB/sec  122,421,709,963 bytes
Average Time per Call                                  0.000034 secs
CrayPat Overhead : Time           11.4%

Flat profile data

HW counter
values

Derived 
metrics



Hardware performance counters

• CrayPAT can interface with HWPCs
• Gives extra information on how hardware is behaving

• Very useful for understanding (& optimising) application performance

• Provides information on
• hardware features, e.g. caches, vectorisation and memory bandwidth

• Available on per-program and per-function basis
• Per-function information only available through tracing

• Number of simultaneous counters limited by hardware
• 2 counters available with AMD Rome processors

• If you need more, you'll need multiple runs

• Most counters accessed through the PAPI interface
• Either native counters or derived metrics constructed from these



Hardware counters selection
• HWPCs collected using CrayPAT

• Compile and instrument code for profiling as before

• Set PAT_RT_PERFCTR environment variable at runtime
• e.g. in the job script

• Hardware counter events are not collected by default (except with APA)

• export PAT_RT_PERFCTR=...
• either a list of named PAPI counters
• or <set number> = a pre-defined (and useful) set of counters

• recommended way to use HWPCs
• there are 8 groups to choose from

• To see them: 
• pat_help -> counters -> rome –> groups 
• man hwpc
• More 
/opt/cray/pe/perftools/20.10.0/share/counters/CounterGroups.amd_fam23mod49

Technical term for 
AMD Rome



Predefined AMD Rome HW Counter Groups

0: Summary with translation lookaside buffer activity

1: Summary with branch activity

default: mem_bw

default_samp: default

mem_bw: memory bandwidth

mem_bw_1: memory load bandwidth, stalls

mem_bw_2: memory load bandwidth, cycles

stalls: Dispatch stalls for load, store, fp



USER / sweepy_
------------------------------------------------------------------------------

Time%                                              14.6% 
Time                                            8.738150 secs
Imb. Time                                       3.077320 secs
Imb. Time%                                         27.2% 
Calls                   11.547 /sec                100.0 calls
CPU_CLK_UNHALTED:THREAD_P                 92,754,888,918 
CPU_CLK_UNHALTED:REF_P                     2,759,876,135 
L1D:REPLACEMENT                            1,813,741,166 
L2_RQSTS:ALL_DEMAND_DATA_RD                1,891,459,700 
L2_RQSTS:DEMAND_DATA_RD_HIT                1,644,133,800 
LLC_MISSES                                    98,952,928 
LLC_REFERENCES                               690,626,471 
User time (approx)       8.660 secs 23,390,899,520 cycles  100.0% Time
CPU_CLK                   3.36GHz                        
D2 cache hit,miss ratio  86.4% hits                13.6% misses
L3 cache hit,miss ratio  85.7% hits                14.3% misses
D2 to D1 bandwidth  13,330.757MiB/sec    121,053,420,792 bytes
Average Time per Call                           0.087381 secs
CrayPat Overhead : Time   0.0% ….

Example: mem_bw



Interpreting the performance numbers

• Performance numbers are an average over all ranks
• explains non-integer values

• This does not always make sense
• e.g. if ranks are not all doing the same thing:

• Leader-worker schemes

• MPMD apruns combining multiple, different programs

• Want them to only process data for certain ranks
• pat_report –sfilter_input='condition' ...

• condition should be an expression involving pe, e.g. 
• pe<1024 for the first 1024 ranks only

• pe%2==0 for every second rank



OpenMP data collection and reporting
• Give finer-grained profiling of threaded routines

• Measure overhead incurred entering and leaving
• Parallel regions

• #pragma omp parallel

• Work-sharing constructs within parallel regions
• #pragma omp for

• Timings and other data now shown per-thread
• rather than per-rank

• OpenMP tracing enabled with pat_build -gomp ...
• CCE: insert tracing points around parallel regions automatically
• AMD, Gnu: need to use CrayPAT API manually



OpenMP data collection and reporting

• Load imbalance for hybrid MPI/OpenMP programs
• now calculated across all threads in all ranks

• imbalances for MPI and OpenMP combined
• Can choose to see imbalance in each programming model separately

• See next slide for details

• Data displayed by default in pat_report
• no additional options needed

• Report focuses on where program is spending its time

• Assumes all requested resources should be used
• you may have reasons not to want to do this, of course



Memory usage

• Knowing how much memory each rank uses is important:
• What is the minimum number of cores I can run this problem on?

• given there is 256GB (~254GB usable) of memory per node (128 cores)

• Does memory usage scale well in the application?

• Is memory usage balanced across the ranks in the application?

• Is my application spending too much time allocating and freeing?



Heap statistics
Notes for table 5:

Table option:
-O heap_hiwater

Options implied by table option:
-d am@,ub,ta,ua,tf,nf,ac,ab -b pe=[mmm]

This table shows only lines with Tracked Heap HiWater MBytes > 0.

Table 5:  Heap Stats during Main Program

Tracked |  Total | Total | Tracked | Tracked |PE[mmm]
Heap | Allocs | Frees | Objects |  MBytes |

HiWater |        |       |     Not |     Not |
MBytes |        |       |   Freed |   Freed |

9.794 |    915 |   910 |       4 |   1.011 |Total
|-----------------------------------------------------
|   9.943 |   1170 |  1103 |      68 |   1.046 |pe.0
|   9.909 |    715 |   712 |       3 |   1.010 |pe.22
|   9.446 |   1278 |  1275 |       3 |   1.010 |pe.43
|=====================================================

Memory per rank
~254GB usable memory per node

Too many allocs/frees?
Would show up as ETC time in 
CrayPAT report

Memory leaks
Not usually a problem in HPC



Viewing data

• Apprentice 2 tool
• GUI for exploring code/data

• Insight summaries

• Can install desktop version

• /opt/cray/pe/perftools

/$(current_version)/share

/desktop_installers/



Summary

• Profiling is essential to identify performance bottlenecks
• even at single core level

• CrayPAT has some very useful extra features
• can pinpoint and characterise the hotspot loops (not just routines)

• hardware performance counters give extra insight into performance

• well-integrated view of hybrid programming models
• most commonly MPI/OpenMP

• also CAF, UPC, SHMEM, pthreads, OpenACC, CUDA

• information on memory usage

• And remember the Golden Rules
• including the one about not believing what anyone tells you
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