
Radim Vavřík

INTRODUCTION TO
HIGH PERFORMANCE
COMPUTING

PERFORMANCE ANALYSIS BASICS

Performance analysis and optimisation
§ Motivation
§ Hardware aspects
§ Development process
§ Best-practices

Performance tools and methodology
§ Performance metrics
§ CPU/GPU tools
§ Live examples

POP CoE

OUTLINE

Cray-1 supercomputer (source: wikipedia.org)

§ All presented examples/tools can be accessed and reproduced anytime at
IT4I clusters

§ Please, setup your VNC session on a Karolina login node (strongly
recommended!) or log in with X-Window system enabled

§ VNC session usually offer better UX For GUI tools than X11
§ https://docs.it4i.cz/general/accessing-the-clusters/graphical-user-interface/vnc/
§ RealVNC Viewer https://www.realvnc.com/en/connect/download/viewer/

§ Most of the presented tools provide a remote profiling, e.g., generate
output remotely from CLI while analysis can be done locally in GUI

§ Not covered today

TECHNICAL NOTES

https://docs.it4i.cz/general/accessing-the-clusters/graphical-user-interface/vnc/
https://www.realvnc.com/en/connect/download/viewer/

Who has any experience with a performance analysis tool?
§ What was the tool?

Objectives today?
§ Not to become an expert analyst
§ Not to reach an incredible performance improvement of the example codes

§ Rather to get idea about the domain and introduce some tools

PERFORMANCE ANALYSIS

What does it mean?
§ To get the most performance out of your hardware
§ The process is called Performance Optimisation

Why should I care about performance?
§ Industry – achieve goals faster and cheaper
§ Academia – do more science

§ The trend in grant competition (resource allocation) is to prove performance, scalability, etc.

EFFICIENT USE OF HPC

Know your application
§ What does it compute? (domain, methods, algorithms)
§ How is it parallelized? (programming models)
§ What final performance is expected? (HW limits)

Know your hardware
§ What are the target machines and how many? (laptop, workstation, cluster)
§ Machine-specific optimisations?

Know your tools
§ Strengths and weaknesses of each tool? (easy-to-use vs detailed information)
§ Learn how to use them (examples with problems/patterns)

Know your process
§ Constant learning

Apply the knowledge!

KEY INGREDIENTS

Filesystem
§ I/O operations

Network
§ internode communication

Memory subsystem
§ NUMA effect

CPU cores
§ thread/process affinity, pinning, caches

Vector registers
§ vectorization, vector instructions

Accelerators
§ GPU/MIC utilization, host-device data transfers

HARDWARE ASPECTS OF PERFORMANCE

Useful to get familiar with the machine
| cat /proc/cpuinfo

§ processor : 71 -> 72 logical processors per node
§ cpu cores : 18 -> 18 physical cores per socket
§ siblings : 36 -> 36 logical processors per socket
§ -> 2 hyperthreads per core
§ -> 2 sockets per node

| cpuinfo # Intel MPI utility

| cat /proc/meminfo
§ MemTotal: 196510848 kB -> 187 GB

BASIC TOOLS

Use HTOP tool for interactive jobs
| htop –d 5 # delay 0.5s

§ Configurable (e.g. core id, threads, process tree)

BASIC TOOLS

1. Develop correct functionality (testing helps)
2. Identify bottlenecks (performance limiters) using performance tools
3. Optimise bottlenecks until satisfied

1. Build a hypothesis (ask a question)
2. Explain the behavior (answer the question)
3. Change the code (double-check correct functionality)
4. Verify optimisations using profiling tools

4. Repeat until job done

PERFORMANCE-AWARE DEVELOPMENT
PROCESS

§ Do not optimise your code prematurely!
§ Focus on main computational time-consuming phases (hotspots), omit

preprocessing/postprocessing phases
§ The 80/20 rule:

§ Programs typically spend 80% of their time in 20% of the code
§ Programmers typically spend 20% of their effort to get 80% of the total speedup possible

for the application

§ Keep track of your optimisation progress over time
§ Always use compute nodes for profiling (not login nodes - shared)
§ Use SW libraries

OPTIMISATION TIPS

General-purpose math libraries
§ BLAS (MKL, OpenBLAS, ATLAS, cuBLAS, ...)
§ LAPACK (MKL, OpenBLAS, ATLAS, cuSolver, ...)
§ FFT (MKL, cuFFT, ...)
§ ...

Domain-specific libraries
§ Chemistry, Bio, Geo, Physics, CAE, Big data, ML/DL

HW-specific libraries
§ GPU/MIC, Intel/AMD/IBM

Optimized implementation
§ Usually much better performance than a custom code
§ Do NOT reinvent a wheel!
§ (But avoid overkill)

SOFTWARE LIBRARIES

Execution time (time, time.h, ...)
§ real 0m10.245s (elapsed real time)
§ user 0m19.890s (user CPU time using OMP_NUM_THREADS=2)
§ sys 0m0.285s (system CPU time)

Processor speed (flop/s) and Memory throughput (GB/s)
§ Calculated operations per time (e.g. c = a + b + c -> 2 operations)
§ Transferred bytes per time (e.g. c = a + b + c -> 3 RD + 1 WR * 8 bytes)

Speedup and Efficiency
§ SP = T1 / TP

§ EP = SP / P

Scalability
§ Strong vs weak scaling

Others: portability, programming ability, etc.

PERFORMANCE METRICS

§ The theoretical HW limits, e.g. AMD EPYC 7H12 (Rome)
Processor speed:

§ Number of compute nodes (Karolina-size machine) 720
§ Number of sockets (CPUs) per node 2
§ Frequency 2.6 GHz
§ Number of cores per socket 64
§ FMA instructions (a * b + c) 2
§ FMA units per core 2
§ SIMD (AVX2 256b) = 4x double precision 4

3 833 856 Gflop/s
3.8 Pflop/s

(2.6 Tflop/s per socket)

PEAK PERFORMANCE EXAMPLE

Memory bandwidth:
§ Number of compute nodes (Karolina-size machine) 720
§ Number of sockets (CPUs) per node 2
§ # channels per socket 8
§ DDR4 bus width 8 B
§ Frequency 3200 MT/s

294 912 000 MB/s
294 TB/s

(204 GB/s per socket)

PEAK PERFORMANCE EXAMPLE

§ Assume the perfect speedup SP = P, perfect efficiency EP = 1 (100%)
Strong scaling

Weak scaling

§ Perfect E = 6.25 % ? Not very intuitive, alternative:

§ “Perfect speedup” SP = 1

SPEEDUP EXAMPLE

SP = T1 / TP S16 = T1 / T16 = 32 / 2 = 16

SP = T1 / TP S16 = T1 / T16 = 32 / 32 = 1

EP = T1 / TP E16 = T1 / T16 = 32 / 32 = 1

EP = SP / P E16 = S16 / 16 = 16 / 16 = 1

EP = SP / P E16 = S16 / 16 = 1 / 16 = 0.0625

SP = 1 / EP = TP / T1 S16 = T16 / T1 = 32 / 32 = 1

§ There are many tools that can be classified by the implemented approach
Data collecting mechanism

§ Sampling - automatically collect data per time unit
§ Instrumentation - manually/automatically add instructions to the source code to

collect data - intrusive

Form of data presentation
§ Reports - general overview of the whole application
§ Profiling - accumulated characteristics of metrics
§ Tracing - details about selected events - intrusive

Analysis of the collected data
§ Online - during the execution - rare
§ Post mortem - after the execution

Modeling - simulate state, ideal network, HW failure, etc.

CLASSIFICATION OF PERFORMANCE TOOLS

Example of a trace, source: tools.bsc.es

https://tools.bsc.es/paraver

Hotspot
§ One function corresponds to more 80% of the runtime
§ Large speed-up potential
§ Best optimisation scenario

Spike
§ The application spends most of the time in a few functions
§ Speed-up potential depends on the aggregated time
§ Variable optimisation time

Flat
§ Runtime split evenly among many functions, each one with a very small runtime
§ Little speed-up potential without algorithmic changes
§ Worst optimisation scenario

TYPES OF PROFILES

§ Single-node/parallel, architecture, language, programming model, focus
(instrumentation, correctness checking, etc.)

Proprietary tools – licenses usually available on clusters
§ ARM (Allinea) Performance Report
§ ARM (Allinea) MAP
§ Intel Application Performance Snapshot
§ Intel Vtune
§ AMD µProf
§ Vampir

Open-source tools (VI-HPS)
§ Extrae/Paraver
§ Score-P/Scalasca/Cube
§ MAQAO
§ https://www.vi-hps.org/tools/tools.html (guide)

PERFORMANCE TOOLS - CPU

https://www.vi-hps.org/tools/tools.html

GUI tools
§ NVIDIA Visual Profiler - deprecated
§ NVIDIA Nsight Systems – system-level profiling
§ NVIDIA Nsight Compute – CUDA kernel-level profiling

Command-line tools – useful if you cannot use GUI (e.g. batch job)
§ NVIDIA nvprof - deprecated
§ NVIDIA nsys
§ AMD ROC-profiler – analogous to nvprof (Chrome for visualization)

PERFORMANCE TOOLS – GPU

Submit an interactive job
| qsub -q R1221596 -l select=1:mpiprocs=16 -IX # use -q qnvidia later

| qsub -q R1221596 -l select=1:mpiprocs=32:ngpus=2 -IX # if there
are enough GPUs

GET READY

§ Global high-level overview of the application
§ No source code or recompilation required
§ Run: perf-report mpirun -n <#procs> <app>
§ Auto-generated text and HTML output
§ Report summary (Compute, MPI, Input/Output)
§ CPU, MPI, I/O, OpenMP, Memory, Energy,

Accelerator breakdown sections
§ Advanced configuration through command line

flags possible

ARM PERFORMANCE REPORTS

| ml Forge/21.1.3 impi/2019.9.304-iccifort-2020.4.304

| ml show Forge

| cp -r /apps/all/Forge/21.1.3/examples ~/forge_examples

| cd ~/forge_examples

| make

| mpirun -n 16 ./wave_c 10

| mkdir perf_reports && cd perf_reports

| perf-report mpirun -n 16 ../wave_c 10

| firefox wave_c_16p_1n_YYYY-MM-DD_hh-mm.html & # on login node
| OMP_NUM_THREADS=8 perf-report mpirun -n 2 ../wave_openmp 10

| firefox wave_openmp_2p_1n_8t_YYYY-MM-DD_hh-mm.html &

ARM PERFORMANCE REPORTS - EXAMPLE

§ Low overhead sampling profiler for localisation of bottlenecks
§ No recompilation required, only debugging symbols are useful (-g)
1. Metrics view (CPU, MPI, I/O, memory, vectorization)
2. Source code viewer
3. Selected lines view
4. Output, files, callpaths
5. Sparkline charts
| map

| map mpirun -n <#procs> <app> [args]
| map --profile mpirun -n <#procs> …
| map <profile.map>

| perf-report <profile.map>

ARM MAP

§ All charts are timelines
§ Horizontal axis time

§ Vertical axis are processes
§ Useful code is green
§ MPI is blue
§ breakout recalculated
when zooming
§ Multiple presets available

§ CPU
§ MPI
§ I/O
§ memory
§ …

ARM MAP

| ml Forge/21.1.3 impi/2019.9.304-
iccifort-2020.4.304

| mkdir ~/forge_examples/map && cd
~/forge_examples/map

| OMP_NUM_THREADS=8 map mpirun -n 2
../wave_openmp 10

§ Optionally limit duration
§ Optionally adapt metrics
§ Click Run

ARM MAP - EXAMPLE

§ Shows the performance of an algorithm (application) with respect to the
HW limits of the architecture

§ Identify if an algorithm is compute bound or memory bound
§ Based on Operational intensity - a ratio of FLOPS (arithmetic operations)

performed with required amount of data (operands)

ROOFLINE MODEL

§ Primarily to support vectorization of codes
§ Performs dynamic analysis of codes
§ Identify data access patterns
§ But also computes Operational intensity vs. Performance (flops)
§ It helps to identify what loops to focus on (Big red dots first)
§ Ideally, during optimisations the dot moves top right

INTEL ADVISOR

| mkdir ~/forge_examples/advisor

| ml Advisor

§ To analyse MPI application:
| mpirun -n 2 advixe-cl --collect survey --project-dir
advisor/wave_c/ -- ./wave_c 10

| mpirun -n 2 advixe-cl --collect tripcounts --project-dir
advisor/wave_c/ --flop --no-trip-counts -- ./wave_c 10

| advixe-gui advisor/wave_c/

§ Show my results -> Summary -> Survey & Roofline

INTEL ADVISOR - EXAMPLE

Scalable system-wide performance analysis tool
§ Low-overhead multi-node, multi-GPU profiling
§ Assess on timeline to narrow down frames/areas of the app to focus
§ Locate optimization opportunities
§ Determine CPU vs. GPU bottlenecks, idle time
§ Visualize millions of events on a very fast GUI timeline
§ Or gaps of unused CPU and GPU time
§ Balance your workload across multiple CPUs and GPUs
§ Expert system GPU utilization analysis
§ Detailed information, documentation, free download

https://developer.nvidia.com/nsight-systems

NVIDIA NSIGHT SYSTEMS

https://developer.nvidia.com/nsight-systems

Multi-level information
§ CPU cores utilization
§ MPI calls
§ Threading
§ OS runtime calls
§ NVTX
§ CUDA API calls
§ HtD / DtH data transfers
§ CUDA kernels / OpenACC
§ CUDA streams
§ CUDA libraries (cuBLAS, …), GPU HW metrics, UCX, NIC, …

NVIDIA NSIGHT SYSTEMS

NVIDIA NSIGHT SYSTEMS

GUI profiling and analysis
| nsight-sys

§ File -> New Project
§ Select target for profiling… -> acnXX.karolina.it4i.cz (your allocated GPU node)
§ Enter Command line and Working directory (absolute path to the binary required)
§ Select tracing modules (CPU, OS, CUDA, GPU, …)
§ Start

Cmd line profiling + GUI analysis
| nsys profile -t cuda,osrt --stats=true -o simpleMultiGPU
./simpleMultiGPU

| nsight-sys
§ File -> Open -> Select simpleMultiGPU.nsys-rep

PROFILING WITH NSIGHT SYSTEMS

| git clone https://github.com/NVIDIA/cuda-samples.git

| ml CUDAcore/11.6.0 Qt5/5.14.2-GCCcore-10.2.0

| cd cuda-samples/Samples/0_Introduction/concurrentKernels/

| make SMS=70

§ Perform profiling of concurrentKernels example with:
§ CPU context switch
§ OS runtime libraries
§ CUDA
§ GPU metrics

§ An extra example:
| cd cuda-samples/Samples/0_Introduction/simpleMultiGPU/
simpleMultiGPU # at least 2 GPUs required

| make SMS=70

NVIDIA NSIGHT SYSTEMS - EXAMPLE

https://github.com/NVIDIA/cuda-samples.git

An EU H2020 Centre of Excellence (CoE)
§ On Performance Optimisation and Productivity
§ Promoting best practices in parallel programming

Providing FREE Services
§ Precise understanding of application and system behaviour
§ Suggestion/support on how to refactor code in the most

productive way

Horizontal
§ Transversal across application areas, platforms, scales

For EU academic AND industrial codes and users

POP COE

www.pop-coe.eu pop@bsc.es @POP_HPC youtube.com/POPHPC

http://www.pop-coe.eu/
mailto:pop@bsc.es

Performance Assessment
§ Primary service
§ Identifies performance issues of customer code
§ If needed, identifies the root causes of the issues found and qualifies and quantifies

approaches to address them (recommendations)
§ Medium effort (1-3 months)
§ Performance report

Proof-of-Concept
§ Follow-up service
§ Experiments and mock-up tests for customer codes
§ Kernel extraction, parallelisation, mini-apps experiments to show effect of

proposed optimisations
§ Larger effort (3-6 months)
Note: Effort shared between our analysts and customer

POP COE

VI-HPS – Association of institutions developing tools and providing training
§ Overview of the tools with a description: https://www.vi-hps.org/cms/upload/material/general/ToolsGuide.pdf

Intel performance tools: VTune and Advisor
§ Running VTune on IT4I systems requires loading of special kernel modules, see the docs

Nvidia tools for GPUs: Nsight Systems and Nsight Compute
Database of code patterns and best practices developed in POP: co-design
Further reading:

§ https://software.intel.com/content/www/us/en/develop/articles/predicting-and-measuring-
parallel-performance.html

§ https://developer.arm.com/documentation/101136/2020/Performance-Reports?lang=en
§ https://developer.arm.com/documentation/101136/2020/MAP?lang=en
§ https://software.intel.com/content/www/us/en/develop/articles/intel-advisor-roofline.html
§ https://scc.ustc.edu.cn/zlsc/tc4600/intel/2018.1.163/advisor/welcomepage/get_started.htm
§ https://llvm.org/docs/Benchmarking.html

USEFUL LINKS

https://www.vi-hps.org/
https://www.vi-hps.org/cms/upload/material/general/ToolsGuide.pdf
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/advisor.html
https://docs.it4i.cz/software/debuggers/intel-vtune-profiler
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-compute
https://co-design.pop-coe.eu/
https://software.intel.com/content/www/us/en/develop/articles/predicting-and-measuring-parallel-performance.html
https://developer.arm.com/documentation/101136/2020/Performance-Reports?lang=en
https://developer.arm.com/documentation/101136/2020/MAP?lang=en
https://software.intel.com/content/www/us/en/develop/articles/intel-advisor-roofline.html
https://scc.ustc.edu.cn/zlsc/tc4600/intel/2018.1.163/advisor/welcomepage/get_started.htm
https://llvm.org/docs/Benchmarking.html

Radim Vavřík
radim.vavrik@vsb.cz

IT4Innovations National Supercomputing Center
VSB – Technical University of Ostrava
Studentská 6231/1B
708 00 Ostrava-Poruba, Czech Republic
www.it4i.cz

http://www.it4i.cz/

ANALYSIS WITH NSIGHT SYSTEMS
Only small portion of application accelerated

GPU idle or low utilization level of details (because of pthread creation)

ANALYSIS WITH NSIGHT SYSTEMS

Fusion opportunities: CPU launch cost + small GPU work size ~ GPU idle

ANALYSIS WITH NSIGHT SYSTEMS

cudaMemcpyAsync behaving synchronous – DtH pageable memory ->
Mitigate with pinned memory

ANALYSIS WITH NSIGHT SYSTEMS

GPU idle caused by stream synchronization

ANALYSIS WITH NSIGHT SYSTEMS

