
Fundamentals of
Deep Learning
for Multi-GPUs
February 10, 2022

Until now, we have been doing all the programming
tasks on Jupyter notebooks. But how the same DL code
can be parallelized on a supercomputer?

https://torres.ai/
https://torres.ai/about-me-en-jordi-torres/
https://torres.ai/docencia/
https://torres.ai/researcher/
https://torres.ai/publicaciones-investigacion/
https://torres.ai/escritor/
https://torres.ai/blog/
https://torres.ai/fundamentals-of-deep-learning-for-multi-gpus-2022/#

Content [hide]

PART 1: Using Supercomputers for Training Deep
Learning Models
1 — BSC’s CTE-POWER Cluster
2 —  Warm-up example: MNIST classification
3 —  Software stack required for deep learning
applications
4 — How to allocate computing resources with SLURM
5 — Case Study

5.1 Dataset: CIFAR10
5.2 Neural Networks architecture: ResNet

6—How to use a GPU to accelerate the training
6.1 Python code
6.2 SLURM script
6.3 Using a GPU for training
6.4 Improving the Accuracy

PART 2: Accelerate the Learning with Parallel Training
using a Multi-GPU Parallel Server
7 — Overview of a Parallel Training with TensorFlow

7.1 Basics Concepts
7.2 TensorFlow for multiple GPUs

8—Parallelization of the Case Study
8.1 Parallel code for ResNet50 neural network
8.2 Choose the Batch Size and Learning Rate
8.3 SLURM script

9—Analysis of the results
10—Conclusions

PART 1: Using
Supercomputers for
Training Deep Learning
Models

1 — BSC’s CTE-POWER
Cluster

https://torres.ai/fundamentals-of-deep-learning-for-multi-gpus-2022/#

This hands-on exercise uses the BSC’s CTE-POWER
cluster. Let’s briefly review its characteristics. CTE-
POWER is a cluster-based on IBM Power9 processors,
with a Linux Operating System and an Infiniband
interconnection network. CTE-POWER has 54 compute
servers, each of them:

2 x IBM Power9 8335-GTG @ 3.00GHz (20 cores
and 4 threads/core, total 160 threads per node)
512GB of main memory distributed in 16 DIMMs x
32GB @ 2666MHz
2 x SSD 1.9TB as local storage
2 x 3.2TB NVME
4 x GPU NVIDIA V100 (Volta) with 16GB HBM2.
Single Port Mellanox EDR
GPFS via one fiber link 10 GBit
The operating system is Red Hat Enterprise Linux
Server 7.4.

One CTE-POWER computer server (Image from bsc.es)

https://www.bsc.es/user-support/power.php
https://www.bsc.es/user-support/power.php
https://www.bsc.es/news/bsc-news/marenostrum-4-power9-racks-begin-operation-high-expectation-ai-based-research

More details of its characteristics can be found in the
CTE-POWER user’s guide and also in the information of
the manufacturer of the AC922 servers.

The allocation of resources from the cluster for the
execution of our code will start with a ssh login in the
cluster using one of the login nodes using your
account:

ssh -X nct01xxx@plogin1.bsc.es

Task 1:

Once you have a login username and its associated
password, you can get into the CTE-POWER cluster
(login node). Check that you have access to your home
page.

2 —  Warm-up example:
MNIST classification
For convenience, we will consider the same neural
network that we used to classify MNIST digits in the
previous part programmed in the Jupyter notebook.

The code used in this post is
based on the GitHub
https://github.com/jorditorresBCN
/Fundamentals-DL-CTE-POWER

https://www.redbooks.ibm.com/redpapers/pdfs/redp5472.pdf
https://github.com/jorditorresBCN/Fundamentals-DL-CTE-POWER

In the following lines, there is the code of the
TensorFlow version of the MNIST classifier described in
class.

import tensorflow as tf
from tensorflow import keras

import numpy as np
import matplotlib.pyplot as plt
print(tf.__version__)

from tensorflow.keras import Sequential
from tensorflow.keras.layers import Conv2
D
from tensorflow.keras.layers import MaxPo
oling2D
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import Flatt
en

Note: For the following code lines,
beware at COPY&PASTE!. Some
symbols are “converted” by the
HTML tranlator into non-standard. If
a command does not work properly,
repeat it by typing it.

This will be the code MNIST.py
(available at GitHub), which we will
use as a first case study to show
how to launch programs in the CTE-
POWER supercomputing.

model = Sequential()
model.add(Conv2D(32, (5, 5), activation=’
relu’,
 input_shape=(28, 28, 1)))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (5, 5), activation=’
relu’))
model.add(MaxPooling2D((2, 2)))
model.add(Flatten())
model.add(Dense(10, activation=’softmax’)
)
model.summary()

from keras.utils import to_categorical
mnist = tf.keras.datasets.mnist

(train_images, train_labels), (test_image
s, test_labels) = mnist.load_data(path=’/
gpfs/projects/nct00/nct00002/basics-utils
/mnist.npz’)

train_images = train_images.reshape((6000
0, 28, 28, 1))
train_images = train_images.astype(‘float
32’) / 255

test_images = test_images.reshape((10000,
 28, 28, 1))
test_images = test_images.astype(‘float32
’) / 255

train_labels = to_categorical(train_label
s)
test_labels = to_categorical(test_labels)

model.compile(loss=’categorical_crossentr
opy’,

optimizer=’sgd’,
metrics=[‘accuracy’])

model.fit(train_images, train_labels, bat
ch_size=100,

epochs=5, verbose=1)

test_loss, test_acc = model.evaluate(test
_images, test_labels)

print(‘Test accuracy:’, test_acc)

3 —  Software stack
required for deep learning
applications
It is important to know that before executing a DL
application on a computer, it is required to load all the
packages that build the application’s software stack
environment. At CTE-POWER supercomputer, it is
done though modules , that can be done with the

command module load before running the
corresponding .py code.

In our case study, we need the following modules that
include the required libraries:

How to execute our .py code in the login node?

python MNIST.py

If we want to detach the standard outputs and the
standard error messages, we can add this argument
2>err.txt:

python MNIST.py 2>err.txt

Redirecting the standard error allows us to see the
result of the training that gives us the Keras by the
standard output without the information related to the
execution environment:

Epoch 1/5
600/600 [======] - 2s 3ms/step - loss: 0.
9553 - accuracy: 0.7612
Epoch 2/5
600/600 [======] - 1s 2ms/step - loss: 0.
2631 - accuracy: 0.9235
Epoch 3/5

module load gcc/8.3.0 cuda/10.2 cudnn/7.6
.4 nccl/2.4.8 tensorrt/6.0.1 openmpi/4.0.
1 atlas/3.10.3 scalapack/2.0.2 fftw/3.3.8
 szip/2.1.1 ffmpeg/4.2.1 opencv/4.1.1 python/3.7.4_ML

600/600 [======] - 2s 3ms/step - loss: 0.
1904 - accuracy: 0.9446
.
.
.

Test accuracy: 0.9671000242233276

Task 2:

Launch your MNIST.py sequential program in the CTE-
POWER supercomputer.

Well, our code is executed in the login node shared
with other jobs from other users, but what we really
need is to allocate resources for our parallel code. How
can we do it?

4 — How to allocate

Because our code is executed in the
login node devoted to offering
access to the users, not executing
codes, the system probably will
cancel the program before finishing
due we are using too many
resources. In this case, we could
observe Killed in the standard
output provoked by the execution
environment system.

computing resources
with SLURM
Then, for executing a parallel code, the first thing to do
is to allocate resources (in our case a node). At the CTE-
POWER cluster, we use the SLURM workload manager.
An excellent Quick Start User Guide can be found here.

The method for submitting jobs that we will center our
today hands-on exercise will be using the SLURM
sbatchcommand directly. sbatch submits a batch script
to SLURM. The batch script may be given sbatch
through a file name on the command line (.sh file). The
batch script may contain options preceded with
#SBATCH before any executable commands in the script.
sbatch will stop processing further #SBATCH directives
once the first non-comment or non-whitespace line
has been reached in the script.

sbatch exits immediately after the script is successfully
transferred to the SLURM controller and assigned a
SLURM job ID. The batch script is not necessarily
granted resources immediately, it may sit in the queue
of pending jobs for some time before its required
resources become available.

By default, both standard output and standard error
are directed to the files indicated by --output and --
error respectivelly:

#SBATCH --output=MNIST_%j.out
#SBATCH --error=MNIST_%j.err

where the “%j” is replaced by SLURM manager with the
job allocation number. The file will be generated on the
first node of the job allocation. When the job allocation
is finally granted for the batch script, SLURM runs a
single copy of the batch script on the first node in the

https://slurm.schedmd.com/
https://slurm.schedmd.com/quickstart.html

set of allocated nodes (in today’s hands-on we will use
only one node).

An example of a job script that allocates a node with 1
GPU for our case study looks like this (MNIST.sh file
from github):

#!/bin/bash
#SBATCH --job-name="MNIST"
#SBATCH -D .
#SBATCH --output=MNIST_%j.out
#SBATCH --error=MNIST_%j.err
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=40
#SBATCH --gres=gpu:1
#SBATCH --time=00:10:00

python MNIST.py

You can consult this official page documentation to
know all the options we can use in the batch script
preceded with#SBATCH.

These are the basic directives to submit and monitor
jobs with SLURM that we will use in our case study:

sbatch <job_script> submits a job script to the
queue system.
squeue shows all the submitted jobs with their

module load gcc/8.3.0 cuda/10.2 cudnn/7.6
.4 nccl/2.4.8 tensorrt/6.0.1 openmpi/4.0.
1 atlas/3.10.3 scalapack/2.0.2 fftw/3.3.8
 szip/2.1.1 ffmpeg/4.2.1 opencv/4.1.1 python/3.7.4_ML

https://slurm.schedmd.com/sbatch.html

<job_id>.
scancel <job_id> remove the job from the
queue system, cancelling the execution of the
processes, if they were still running.

In summary, this can be an example of a sequence of
command lines, and the expected output of their
execution will be:

[CTE-login-node ~]$ sbatch MNIST.sh
Submitted batch job 4910352

[CTE-login-node ~]$ squeue
JOBID PARTITION NAME USER ST TI
ME NODES NODELIST
4910352 main MNIST userid R 0:
01 1 p9r1n16

[CTE-login-node ~]$ ls
MNIST.py
MNIST.sh
MNIST_4910352.err
MNIST_4910352.out

The standard output and standard error are directed to
the files MNIST_4910355.out and MNIST_4910355.err,
respectively. Here, the number 4910352indicates the job
id assigned to the job by SLURM.

BSC has made a special reservation of supercomputer
nodes to be used by this PATC course. For using the
reservations, you must add this line in the SLURM
script:

#SBATCH --reservation=<ReservationName>

Task 3:

Execute your MNIST.py program with the SLURM
workload manager system using a job script that
allocates a node with 1 GPU in CTE-POWER. Inspect the
.out and .err files obtained.

5 — Case Study
As we explained earlier, Deep Learning is a very mature
area that offers many public datasets for beginners.
Also, thanks to Transfer Learning techniques, we can
use many well-known neural networks. We will use
CIFAR10 as a dataset and a ResNet50 as a neural
network in today’s hands-on.

5.1 Dataset: CIFAR10

CIFAR-10 is an established computer-vision dataset
used for object recognition. It is a subset of the 80
million tiny images dataset and consists of 60,000
32×32 colour images containing 10 object classes, with
6000 images per class. It was collected by Alex
Krizhevsky, Vinod Nair, and Geoffrey Hinton. There are
50,000 training images and 10,000 test images
(Learning Multiple Layers of Features from Tiny Images,
Alex Krizhevsky, 2009).

http://groups.csail.mit.edu/vision/TinyImages/
http://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

We have preloaded the CIFAR-10 dataset at CTE-
POWER supercomputer in the directory
/gpfs/projects/nct00/nct00002/cifar-utils/cifar-
10-batches-py downloaded from
http://www.cs.toronto.edu/~kriz/cifar.html.

For academic purposes, to make the training even
harder and to be able to see larger training times for
better comparison, we have applied a resize operation
to make the images of 128×128 size. We created a
custom load_data function
(/gpfs/projects/nct00/nct00002/cifar-
utils/load_cifar.py) that applies this resize operation
and splits the data into training and test sets. We can
use it as:

sys.path.append(‘/gpfs/projects/nct00/nct
00002/cifar-utils’)

from cifar import load_cifar

http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html

load_cifar.py can be obtained from GitHub for
students that want to review it (for the students of this
course it is not necessary to download and review it).

5.2 Neural Networks architecture:
ResNet

Now we are going to use a neural network that has a
specific architecture known as ResNet. In this scientific
community, we find many networks with their own
name. For instance, AlexNet, by Alex Krizhevsky, is the
neural network architecture that won the ImageNet
2012 competition. GoogleLeNet, which with its
inception module drastically reduces the parameters of
the network (15 times less than AlexNet). Others, such
as the VGGnet, helped to demonstrate that the depth
of the network is a critical component for good results.
The interesting thing about many of these networks is
that we can find them already preloaded in most of the
Deep Learning frameworks.

Keras Applications are prebuilt deep learning models
that are made available. These models differ in
architecture and the number of parameters; you can
try some of them to see how the larger models train
slower than the smaller ones and achieve different
accuracy.

A list of all available models can be found here (the top-
1 and top-5 accuracy refers to the model’s performance
on the ImageNet validation dataset.). For this hands-on,
we will consider one architecture from the family of
ResNet as a case study: ResNet50v2. ResNet is a family
of extremely deep neural network architectures
showing compelling accuracy and nice convergence
behaviors, introduced by He et al. in their 2015 paper,
Deep Residual Learning for Image Recognition. A few
months later, the same authors published a new paper,
Identity Mapping in Deep Residual Network, with a

https://keras.io/api/applications/
https://keras.io/api/applications/
https://keras.io/api/applications/resnet/#resnet50v2-function
https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1603.05027.pdf

new proposal for the basic component, the residual
unit, which makes training easier and improves
generalization. And this lets the V2 versions:

tf.keras.applications.ResNet50V2ResNet50V2(
 include_top=True,
 weights="imagenet",
 input_tensor=None,
 input_shape=None,
 pooling=None,
 classes=1000,
 classifier_activation="softmax",
)

The “50” stand for the number of weight layers in the
network. The arguments for the network are:

include_top: whether to include the fully-
connected layer at the top of the network.
weights: one of None (random initialization),
‘imagenet’ (pre-training on ImageNet), or the
path to the weights file to be loaded.
input_tensor: optional Keras tensor (i.e. output of
layers.Input()) to use as image input for the
model.
input_shape: optional shape tuple, only to be
specified if include_top is False (otherwise the
input shape has to be (224, 224, 3) (with
'channels_last' data format) or (3, 224, 224)
(with 'channels_first' data format). It should
have exactly 3 inputs channels, and width and
height should be no smaller than 32. E.g. (200,
200, 3)would be one valid value.
pooling: Optional pooling mode for feature
extraction when include_top is False. (a)None
means that the output of the model will be the
4D tensor output of the last convolutional block.
(b) avg means that global average pooling will be
applied to the output of the last convolutional

block, and thus the output of the model will be a
2D tensor. (c)max means that global max pooling
will be applied.
classes: optional number of classes to classify
images into, only to be specified if include_topis
True, and if no weights argument is specified.
classifier_activation: A str or callable. The
activation function to use on the “top” layer.
Ignored unless include_top=True. Set
classifier_activation=None to return the logits
of the “top” layer.

Task 4:

Have a look at the ResNet50v2 and ResNET152V2 neural
networks and glimpse the main differences.

6—How to use a GPU to
accelerate the training
Before showing how to train a neural network in
parallel, let’s start with a sequential version using only

Note that if weights="imagenet",
Tensorflow middleware requires a
connection to the internet to
download the imagenet weights
(pre-training on ImageNet). Due we
are not centering our interest in
Accuracy, we didn’t download the
file with the imagenet weights;
therefore, it must be used
weights=None.

https://keras.io/api/applications/resnet/

one GPU in order to get familiarized with the neural
network classifier.

6.1 Python code

The sequential code to train the previously described
problem of classification of the CIFAR10 dataset using a
ResNet50 neural network could be the following (we
will refer to it as ResNet50_seq.py):

import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras import models

import numpy as np
import argparse
import time
import sys

sys.path.append(‘/gpfs/projects/nct00/nct
00002/cifar-utils’)
from cifar import load_cifar

parser = argparse.ArgumentParser()
parser.add_argument(‘ — epochs’, type=int
, default=5)
parser.add_argument(‘ — batch_size’, type
=int, default=2048)

args = parser.parse_args()
batch_size = args.batch_size

epochs = args.epochs

model = tf.keras.applications.resnet_v2.R
esNet50V2(

include_top=True,
weights=None,
input_shape=(128, 128, 3),
classes=10)

opt = tf.keras.optimizers.SGD(0.01)

model.compile(loss=’sparse_categorical_cr
ossentropy’,

optimizer=opt,
metrics=[‘accuracy’])

model.fit(train_ds, epochs=epochs, verbos
e=2)

train_ds, test_ds = load_cifar(batch_size)

ResNet50_seq.py file can be
downloaded from the course
repository GitHub.

6.2 SLURM script

To run this python code using the SLURM system, as
you know, it can be done using the following SLURM
script (we will refer to it as ResNet50_seq.sh):

#!/bin/bash
#SBATCH --job-name="ResNet50_seq"
#SBATCH -D .
#SBATCH --output=RESNET50_seq_%j.out
#SBATCH --error=RESNET50_seq_%j.err
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=160
#SBATCH --time=00:05:00

python ResNet50_seq.py --epochs 5 --batch
_size 256

Task 5:

module load gcc/8.3.0 cuda/10.2 cudnn/7.6
.4 nccl/2.4.8 tensorrt/6.0.1 openmpi/4.0.
1 atlas/3.10.3 scalapack/2.0.2 fftw/3.3.8
 szip/2.1.1 ffmpeg/4.2.1 opencv/4.1.1 python/3.7.4_ML

ResNet50_seq.sh is not included in
the course repository GitHub. Create
 your ResNet50_seq.sh script based in
the previous explanation.

Write your ResNet50_seq.py program and execute it
with 5 epochs in CTE-POWER with the SLURM
workload manager system using the job script
ResNet50_seq.sh presented in this section (with 5
minutes as a maximum time) What is the result?
(Review the relevant part of the .out and .err files).

As a hint, in my executions appeared the following
error:

slurmstepd: error: *** JOB <job_id> ON p9
r2n12 CANCELLED AT 202X-11-19T09:48:59 DU
E TO TIME LIMIT ***

It means that we exhausted the time indicated in the
SLURM time flag --time.

6.3 Using a GPU for training

Unlike the MNIST problem, in general, we cannot train
a neural network with a single CPU. It is clear that we
need more computing power for training this problem.
In this case, we can add this line to the SLURM script to
use a GPU:

#SBATCH --gres=gpu:1

If you observe that SLURM
management system does not
control the time limit correctly
(sometimes it happens) , I propose
to cancel the job after 10 minutes.

and we need to adjust the cores too:

#SBATCH --cpus-per-task=40
#SBATCH --gres=gpu:1

Task 6:

Execute the same ResNet50_seq.py program using the
previous job script ResNet50_seq.sh , but now,
including the allocation of one GPU (and remember
to adjust the cpus-per-task flag). What is the result?
(Review the relevant part of the .out file to observe
that the time required for one Epoch is lower).

Remember that in the .out file we can see the result of
the output that gives us the Keras that specify the time
required for each epoch, and the loss value and de
accuracy achieved with this new epoch:

Epoch 1/5
196/196 - 41s - loss: 2.0176 - accuracy:
0.2584

Analyzing the .out file, what is the Accuracy obtained
for this problem in the execution in Task 6? What can
we do to improve the Accuracy?

6.4 Improving the Accuracy

From the results of Tasks 6, you can conclude that
within 5 minutes you can execute a few epochs, and
therefore, the Accuracy obtained is not good. What we
can do is to increase the number of Epochs, right?. In
this case, it is required to increase the time demanded

in the SLURM time flag --timeand indicate in the
program argument --epochs the desired number of
epochs.

Task A [optional]:

Execute the same ResNet50_seq.py program using the
previous job script ResNet50_seq.sh , but now
adjusting the program argument --epochs with the
proper value. But what is the appropriate value? What
is the obtained Accuracy?

Task B [optional]:

Compare the results of using ResNet50v2 vs
ResNET152V2 neural networks in terms of Accuracy
obtained and time required for executing one epoch.

In summary, we have seen that using one GPU can
accelerate the training process. But, how can we use a
distributed strategy in order to use more than one
GPU?

PART 2: Accelerate the
Learning with Parallel
Training using a Multi-
GPU Parallel Server

https://keras.io/api/applications/resnet/

7 — Overview of a Parallel
Training with TensorFlow
Deep Neural Networks (DNN) base their success on
building high learning capacity models with millions of
parameters that are tuned in a data-driven fashion.
These models are trained in parallel.

7.1 Basics Concepts

7.1.1 Performance metrics: Speedup,
Throughput, and Scalability

In order to make the training process faster, we are
going to need some performance metrics to measure
it. The term performance in these systems has a double
interpretation. On the one hand, it refers to the
predictive accuracy of the model. On the other, to the
computational speed of the process.

Accuracy is independent of the computational
resources, and it is the performance metric to compare
different DNN models.

In contrast, the computation speed depends on the
platform on which the model is deployed. We will
measure it by metrics such as Speedup, the ratio of
solution time for the sequential algorithms (using one
GPU in our hands-on exercises) versus its parallel
counterpart (using many GPUs). This is a prevalent
concept in our daily argot in the supercomputing
community.

Another important metric is Throughput. In general
terms, throughput is the rate of production or the rate
at which something is processed; for example, the
number of images per unit time that can be processed.
This can give us a good benchmark of performance

(although it depends on the neural network type).

Finally, a concept that we sometimes use is Scalability.
It is a more generic concept that refers to the ability of
a system to handle a growing amount of work
efficiently. These metrics will be highly dependent on
the computer cluster configuration, the type of
network used, or the framework’s efficiency using the
libraries and managing resources.

7.1.2 Parallel computer platforms

The parallel and distributed training approach is
broadly used by Deep Learning practitioners. This is
because DNNs are compute-intensive, making them
similar to traditional supercomputing (high-
performance computing, HPC) applications. Thus, large
learning workloads perform very well on accelerated
systems such as general-purpose graphics processing
units (GPU) that have been used in the
Supercomputing field.

The main idea behind this computing paradigm is to
run tasks in parallel instead of serially, as it would
happen in a single machine (or single GPU). Multiple
GPUs increase both memory and compute available for
training a DNN. In a nutshell, we have several choices,
given a minibatch of training data that we want to
classify. In the next subsection, we will go into an
introduction of the main options.

7.1.3 Types of parallelism

To achieve the distribution of the training step, there
are two principal implementations, and it will depend
on the needs of the application to know which one will
perform better, or even if a mix of both approaches can
increase the performance.

For example, different layers in a Deep Learning model
may be trained in parallel on different GPUs. This

training procedure is commonly known as Model
parallelism. Another approach is Data parallelism,
where we use the same model for every execution unit,
but train the model in each computing device using
different training samples.

7.1.4 Scalable Deep Learning Frameworks

In distributed/parallel environments, there may be
multiple instances of stochastic gradient descent (SGD)
running independently. Thus, to parallelise the SGD
training algorithm, the overall algorithm must be
adapted and consider different model consistency or
parameters distribution issues. As you can imagine,
these are no easy tasks. But luckily there are software
libraries, known as DL frameworks, that facilitate this
parallelization or distribution. We can use frameworks
like TensorFlow to program multi-GPU training in
one server. Let’s see how we can take advantage of a
server with 4 GPUs.

7.2 TensorFlow for multiple GPUs

In this hands-on, we will focus on
the Data Parallelism approach.

If our server/node has more than one GPU, in
TensorFlow the GPU with the lowest ID will be selected
by default. However, TensorFlow does not place
operations into multiple GPUs automatically and we
need to add some code using a specific API.

tf.distribute.Strategy is a TensorFlow API to
distribute training across multiple GPU or TPUs with
minimal code changes (from the sequential version
presented in the previous section). This API can be used
with a high-level API like Keras, and can also be used to
distribute custom training loops.

tf.distribute.Strategy intends to cover a number of
distribution strategies use cases along different axes.
The official web page of this feature presents all the
currently supported combinations, however, in this
course we will focus our attention
on tf.distribute.MirroredStrategy one of the
strategies included in tf.distribute.Strategy.

 tf.distribute.MirroredStrategy supports the
training process on multiple GPUs (multiple devices)
on one server (single host). It creates one replica per
GPU device. Each variable in the model is mirrored
across all the replicas. These variables are kept in sync
with each other by applying identical updates.

Let’s assume we are on a single machine that has
multiple GPUs and we want to use more than one
GPUs for training. We can accomplish this by creating
our MirroredStrategy:

mirrored_strategy = tf.distribute.MirroredS
trategy()

This will create a MirroredStrategy instance that will
use all the GPUs visible to TensorFlow. It is possible to
see the list of available GPU devices doing the

https://www.tensorflow.org/api_docs/python/tf/distribute/Strategy
https://www.tensorflow.org/guide/keras
https://www.tensorflow.org/guide/distributed_training
https://www.tensorflow.org/api_docs/python/tf/distribute/MirroredStrategy
https://www.tensorflow.org/api_docs/python/tf/distribute/MirroredStrategy

following:

devices = tf.config.experimental.list_phy
sical_devices(“GPU”)

It is also possible to use a subset of the available GPUs
in the system by doing the following:

mirrored_strategy = tf.distribute.MirroredS
trategy(devices=["/gpu:0", "/gpu:1"])

We then need to declare our model architecture and
compile it within the scope of the MirroredStrategy. To
build the model and compile it inside the
MirroredStrategyscope we can do it in the following
way:

This allows us to create distributed variables instead of
regular variables: each variable is mirrored across all the
replicas and is kept in sync with each other by applying
identical updates. It is important during the coding
phase, that the creation of variables should be under
the strategy scope. In general, this is only during the
model construction step and the compile step. Training
can be done as usual outside the strategy scope with:

with mirrored_strategy.scope():
 model = tf.keras.applications.resnet_v2.ResNet50V2(

include_top=True, weights=None,
input_shape=(128, 128, 3), classes=10)

 opt = tf.keras.optimizers.SGD(learning_rate)

 model.compile(loss=’sparse_categorical_crossentropy’,
optimizer=opt, metrics=[‘accuracy’])

dataset = load_data(batch_size)
model.fit(dataset, epochs=5, verbose=2)

8—Parallelization of the
Case Study
In this section, we will show how we can parallelize the
training step on the CTE-POWER cluster using the
same case study that classifies the CIFAR10 dataset
using the ResNet50 neural network.

8.1 Parallel code for ResNet50
neural network

Following the steps presented in the above section on
how to apply MirroredStrategy, below we present the
resulting parallel code for the ResNet50:

import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras import models

import numpy as np
import argparse
import time
import sys

sys.path.append(‘/gpfs/projects/nct00/nct
00002/cifar-utils’)
from cifar import load_cifar

parser = argparse.ArgumentParser()
parser.add_argument(‘ -- epochs’, type=in
t, default=5)
parser.add_argument(‘ -- batch_size’, typ
e=int, default=2048)
parser.add_argument(‘ -- n_gpus’, type=in
t, default=1)

args = parser.parse_args()
batch_size = args.batch_size
epochs = args.epochs
n_gpus = args.n_gpus

device_type = ‘GPU’
devices = tf.config.experimental.list_phy
sical_devices(

device_type)
devices_names = [d.name.split(“e:”)[1] fo
r d in devices]

train_ds, test_ds = load_cifar(batch_size)

strategy = tf.distribute.MirroredStrategy
(

devices=devices_names[:n_gpus])

with strategy.scope():
 model = tf.keras.applications.resnet_v2.ResNet50V2(

include_top=True, weights=None,

model.fit(train_ds, epochs=epochs, verbos
e=2)

8.2 Choose the Batch Size and
Learning Rate

When training, it is required to allocate memory to
store samples for training the model and the model
itself. We have to keep in mind this in order to avoid an
out-of-memory error.

Remember that the batch_size is the number of
samples that the model will see at each training step,
and in general, we want to have this number as
biggest as possible (powers of 2). We can calculate it
by try and error approach testing different values until
an error related to the memory capacity appears:

python ResNet50.py -- epoch 1 -- batch_si
ze 16
python ResNet50.py -- epoch 1 -- batch_si
ze 32
python ResNet50.py -- epoch 1 -- batch_si
ze 64
.
.
.

 input_shape=(128, 128, 3), classes=10)
 opt = tf.keras.optimizers.SGD(0.01*n_gpus)
 model.compile(loss=’sparse_categorical_crossentropy’,
 optimizer=opt, metrics=[‘accuracy’])

Frim know on, you can assume that

When using MirroredStrategy with multiple GPUs, the
batch size indicated is divided by the number of
replicas. Therefore the batch_size that we should
specify to TensorFlow is equal to the maximum value
for one GPU multiplied by the number of GPUs we
are using. This is, in our example, use these flags in the
python program:

python ResNet50.py -- epochs 5 -- batch_s
ize 256 -- n_gpus 1
python ResNet50.py -- epochs 5 -- batch_s
ize 512 -- n_gpus 2
python ResNet50.py -- epochs 5 -- batch_s
ize 1024 -- n_gpus 4

Accordingly, with the batch_size, if we are using
MirroredStrategy with multiple GPUs, we change the
learning_rateto learning_rate*num_GPUs:

learning_rate = learning_rate_base*number
_of_gpus
opt = tf.keras.optimizers.SGD(learning_ra
te)

We do this update of the learning_rate, due to the
researchers say that because of a larger batch_size, we
can also take bigger steps in the direction of the
minimum to preserve the number of epochs to
converge.

8.3 SLURM script

in this case study the maximum
batch_sizeis 256

The SLURM script that allocates resources and executes
the model for different numbers of GPUs can be as the
following one (ResNet50.sh):

#!/bin/bash
#SBATCH --job-name=”ResNet50"
#SBATCH --D .
#SBATCH --output=ResNet50_%j.output
#SBATCH --error=ResNet50_%j.err
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=160
#SBATCH --gres=gpu:4
#SBATCH --time=00:30:00

module purge; module load gcc/8.3.0 cuda/
10.2 cudnn/7.6.4 nccl/2.4.8 tensorrt/6.0.
1 openmpi/4.0.1 atlas/3.10.3 scalapack/2.
0.2 fftw/3.3.8 szip/2.1.1 ffmpeg/4.2.1 op
encv/4.1.1 python/3.7.4_ML

python ResNet50.py -- epochs 5 -- batch_s
ize 256 -- n_gpus 1
python ResNet50.py -- epochs 5 -- batch_s
ize 512 -- n_gpus 2
python ResNet50.py -- epochs 5 -- batch_s
ize 1024 -- n_gpus 4

If we use the same SLURM script for all three
executions, pay attention to indicate the maximum
number of GPUs required with --gres=gpu:4 .

Once we run the script, in the file that has stored the
standard output we find the following execution times:

python ResNet50.py --epochs 5 --batch_siz
e 256 --n_gpus 1
Epoch 1/5
196/196 - 49s - loss: 2.0408 - accuracy:
0.2506
Epoch 2/5
196/196 - 45s - loss: 1.7626 - accuracy:
0.3536
Epoch 3/5
196/196 - 45s - loss: 1.5863 - accuracy:
0.4164
Epoch 4/5
196/196 - 45s - loss: 1.4550 - accuracy:
0.4668
Epoch 5/5
196/196 - 45s - loss: 1.3539 - accuracy:
0.5070

python ResNet50.py --epochs 5 --batch_siz
e 512 --n_gpus 2
Epoch 1/5
98/98 - 26s - loss: 2.0314 - accuracy: 0.
2498
Epoch 2/5
98/98 - 24s - loss: 1.7187 - accuracy: 0.
3641
Epoch 3/5
98/98 - 24s - loss: 1.5731 - accuracy: 0.
4207
Epoch 4/5
98/98 - 24s - loss: 1.4543 - accuracy: 0.
4686
Epoch 5/5
98/98 - 24s - loss: 1.3609 - accuracy: 0.
5049

python ResNet50.py --epochs 5 --batch_siz
e 1024 --n_gpus 4
Epoch 1/5
49/49 - 14s - loss: 2.0557 - accuracy: 0.
2409
Epoch 2/5
49/49 - 12s - loss: 1.7348 - accuracy: 0.
3577
Epoch 3/5
49/49 - 12s - loss: 1.5696 - accuracy: 0.
4180
Epoch 4/5
49/49 - 12s - loss: 1.4609 - accuracy: 0.
4625
Epoch 5/5
49/49 - 12s - loss: 1.3689 - accuracy: 0.
5010

It is important to note that we center our interest on
the computational speed of the process rather than
the model’s accuracy. For this reason, we will only
execute a few epochs during the training, due as we
can see, training times per epoch are constant
(approx.), and with 5 epochs for each experiment, we
achieve the same accuracy in all three cases. That
means that only 5 epochs allow comparing the three
options.

1 GPU: 45 seconds
2 GPU: 24 seconds
4 GPU: 12 seconds

In this hands-on exercise, we will
consider the epoch time as a
measure of the computation time
for training a Distributed Neural

Task 7:

Execute the parallel ResNet50.py program for 1,2, and 4
GPUs in CTE-POWER cluster using the SLURM job
script ResNet50.sh presented in GitHub. Inspect the
.out and .err files.

9—Analysis of the results
It is time to analyse the results obtained in Task 7. We
expect that on average the time required for doing one
epoch should be similar to the values shown in the
following plot (results of Task 7 done by the teacher):

Network (DNN). This approximated
measure in seconds, provided by
Keras by the .fit method, is
enough for the purpose of this
academic exercise. In our case, we
suggest discarding the first time
epoch as it includes creating and
initializing structures. Obviously, for
certain types of performance
studies, it is necessary to go into
more detail, differentiating the
loading data, feeds forward time,
loss function time, backpropagation
time, etc., but it falls outside the
scope of this academic case study
that we described in this hands-on
exercise.

https://arxiv.org/pdf/1909.02061.pdf

We can translate this to images per second (since we
know there are 50,000 images), which gives us the
throughput:

Finally, as we said, the speedup is a relevant metric:

It’s an almost linear speedup!. We refer to linear

speedup when the workload is equally divided
between the number of GPUs.

Task C (optional):

Obtain the data from your .out file and generate the
plots of epoch time, image/second, and speedup for
your ResNET50V2 classifier.

Now it’s your turn to get your hands really dirty and
reproduce the above results for the
ResNET152V2 classifier.

Task D (optional):

Create the new .py to do the experiments with this
ResNET152V2new classifier. Include the file .pyin the
answer to this Task.

Remember that the first step is to find the best
batch_size.

Task E (optional):

Determine the maximum batch_size that we can use
for training this classifier (following the approach
presented in section 3.2). Include in your answer the
relevant information from in the .err file.

Task F (optional):

Execute the parallel ResNET152V2.py program for 1,2,
and 4 GPUs in CTE-POWER cluster using your job script
ResNET152V2.sh based on the previously
 ResNet50.sh used. Inspect the .out and .err files.
 Include in the answer the codes ResNET152V2.py ,
ResNET152V2.shused and the relevant part of the
 .out and .err files that demonstrate your results.

(*) Warning with the learning_rate requirements
presented in the previous section.

Task G (optional):

Generate the plots of epoch time, image/second, and
Speedup and compare them with those presented in
the previous section. Include in the answer the relevant
part of the .out and .err files that justify your results
(if not included in Task 9).

As a hint, if you plot the results of both case studies
together, you should find results comparable to those
shown below:

A couple of relevant things are observed. The first is
that the time to run a ResNet152 epoch is much longer,
and therefore the throughput in images per second is
much lower than on the ResNet50 network. Why is this
happening? ResNet152 network is deeper, meaning
that it has more layers, therefore the training time will
be higher.

It can be seen that the speedup for the ResNet152 is no

longer linear; could you try to give a possible answer as
to why this is happening? Obviously, it depends on
many things and it is required a detailed analysis;
however, due to the biggest size of the network, it is
adding additional latency for synchronization.

10—Conclusions
As we can see in the results, the accuracy achieved by
our model is more or less constant independently of
the number of GPUs. In summary, using a distributed
strategy, our model can learn the same but faster,
thanks to parallelization!

Acknowledgement: Many thanks to Juan Luis
Domínguez and Oriol Aranda, who helped with the first
version of the codes that appear in this hands-on, and
to the support team at BSC Operations Department for
the essential support using the CTE-POWER cluster.
Also, many thanks to Alvaro Jover Alvarez, Miquel
Escobar Castells, and Raul Garcia Fuentes for their
contributions to the proofreading of previous versions
of this hands-on.

https://torres.ai/without-the-rise-of-supercomputers-there-will-be-no-progress-in-artificial-intelligence/
https://torres.ai/11-using-supercomputers-for-dl-training/
https://www.bsc.es/dominguez-bermudez-juan-luis
https://www.bsc.es/aranda-llorens-oriol
https://www.bsc.es/jover-alvarez-alvaro
https://www.bsc.es/escobar-castells-miquel
https://www.bsc.es/garcia-fuentes-raul

