LG

Case Study:
Dense Matrix-Vector Multiplication

Dense matrix-vector multiplication in DP

doc =1, NC
dor =1 , NR
y(r)=y(r) + A(r,c)* x(c)

enddo

enddo \

do c =1 , NC

tmp=x(c)
dor =1 , NR

y(r)=y(r) + A(r,c)* tmp
enddo

enddo

Dense MVM analysis (c) RRZE 2020

dMVM scaling w/ OpenMP

1$Somp parallel do reduction(+:y)
doc=1, NC

dor=1.NR NR=40,000; NC=10,000
— ! | | | ! | |
y(r) = y(r) + A(r,c) * x(c) sopplROtine timit
enddo ; enddo B. = 4 Byte/Flop

1$omp end parallel do -bs = 32 GB/s
6000

ME/s

4000 - Single-core Roofline limit

,'71 __________ B. = 4 Byte/Flop

bs (1core) = 14.3 GB/s
2000

| | | | | | |
0= 2 3 4 5 6 7

#cores

Intel Xeon E5 2695 v3 (Haswell-EP), 2.3 GHz, CoD mode, Core P,,,,=18.4 GF/s,
Caches: 32 KB / 256 KB / 35 MB, PageSize: 2 MB; ifort V15.0.1.133; bg = 32 Gbyte/s

Dense MVM analysis (c) RRZE 2020

DMVM (DP) — Reminder on AVX vectorization

= Vectorization strategy: 4-way inner loop unrolling
= One register holds tmp in each of its 4 entries (“broadcast”)

do ¢ = 1,NC
tmp=x(c)

do r = 1,NR,4 1 R is multiple of 4

y(r) =y() + A(r,c) * tmp
y(r+l) = y(r+1) + A(r+1l,c)* tmp
y(r+2) = y(r+2) + A(r+2,c)* tmp
y(r+3) = y(r+3) + A(r+3,c)* tmp
enddo
enddo

= Loop kernel requires/consumes 3 AVX registers
= Extra 3-way unrolling required to overcome ADD pipeline stalls

Dense MVM analysis (c) RRZE 2020

DMVM (DP) — Single core performance vs. column height

i] o Performance drops as
4000~ Single-core Roofline limit (B = 4 B/F) 7 number of rows (inner loop
______________________________ _ — .
i length) increases.
3000~ 1 . | Does computational
| \\ . 4 intensity change?
2000 s
-
1000 |- .
u C=lO4 . NC=104
0 L] Lo] I B |
10° 10* 10°
R NR

Intel Xeon E5 2695 v3 (Haswell-EP), 2.3 GHz, CoD mode, Core P,,,,=18.4 GF/s,
Caches: 32 KB / 256 KB / 35 MB, PageSize: 2 MB; ifort V15.0.1.133; bg = 32 Gbyte/s

Dense MVM analysis (c) RRZE 2020

DMVM data traffic analysis

doc =1, NC
tmp=x(c)
dor =1, NR
y(r)=y(r) + A(r,c)* tmp
enddo
enddo

A(r,c)

> NR

I | I |
\

tmp stays in a register during inner loop
A(:,:) isloaded from memory — no data reuse

y(:) isloaded and stored in each outer iteration
—> for c>1 update y(:) incache

y(:) may not fit in innermost cache - more
traffic from lower level caches for larger NR

Analysis: Distinguish code balance in memory
(BZ**™) from code balance in relevant cache
level(s) (B:3, BE2,...)!

Dense MVM analysis

(c) RRZE 2020

Code balance, reloaded!

Code balance can be defined for any data path:

V; = data volume over data path i
W = amount of work done with the data

In principle, the Roofline model can be expressed for those multiple bottlenecks:

[
P = min (Pmax, min; [bS/Bi])
C

However, the perfect overlap condition is invalid for the single-core cache hierarchy
= But code balance is still useful for qualitative analysis...

Registers

Dense MVM analysis

(c) RRZE 2020

DMVM (DP) — Single core data traffic analysis

. —+} size(y(1:NR))

]

4000|- |
£3000 N
= 2000
1000{-
0 | | Y Exceeding inner cache size: |

o (R
o0 N N
1T 1 | 1T 1 | T 1 | 1

-

Data traffic [B/Iteration]

size(Y(1:NR))
=160 kB

- (8+8) Byte for RD + WR ony

/

BE* = 24B/2F

BL3 = 24B/2F |

..

— Memory <--> L3

likwid-perfctr

— L3<-->1L2 N
—_— .2 <> 11 measurements i
c=10" BE* = 8B/2F BIme™ — gB/2F
| | | | | | | | [| | | | | | | l_
3 4 5
10 10 10
NR

Dense MVM analysis

(c) RRZE 2020

Reducing traffic by blocking

A(r,c)

il

doc =1, NC
tmp=x(c)
dor =1, NR
y(r)=y(r) + A(r,c)>* tmp
enddo
enddo

rb
min((rb+R,-1), NR)
doc =1, NC
do r = rbS , rbE
y(r)=y(r) + A(r,c)*x(c)
enddo
enddo
enddo

dorb=1, NR , R,
i

y(:) may not fit into some
cache - more traffic for
lower level

y(rbS:rbE) may fit into
some cache if R, is small
enough

—> traffic reduction

Dense MVM analysis

(c) RRZE 2020

Reducing traffic by blocking

i I

= LHS only updated once in some cache level if blocking is applied
= Price: RHS is loaded multiple times instead of once!

= How often? - Ni / R, times)

* RHS traffic: No X Ng /' R, ! Overall: Np X (R—(‘;) + 2+ NR) ~ Nj if N, R, » 1
= LHS traffic: 2 x Ng and N = Ng

= Matrix: Ni X N¢ J

= Without blocking: Njp X (% + 2N, + NR) ~ 3N5 if Ng,R, » 1 and N = Np
R

Dense MVM analysis (c) RRZE 2020

DMVM (DP) — Reducing traffic by inner loop blocking

4000 -

3000

MEF/s

2000

1000

L1 cache
blocking

L2 cache
blocking

NC=104 |

— Plain

—— 1D Blocking: R =10000 |
—— 1D Blocking: R, =2000

0 L
10°

10"
NR

10

= “1D blocking” for inner loop
= Blocking factor R, €-> cache level

do rb =1 , NR , R,

rbS rb
rbE min((rb+R,-1), NR)

doc =1, NC
do r = rbS , rbE
y(r)=y(r) + A(r,c)*x(c)
enddo
enddo

enddo

-> Fully reuse subset of y(rbS:rbE)
from L1/L2 cache

Dense MVM analysis

(c) RRZE 2020

DMVM (DP) — Validation of blocking optimization

4000
» 3000
= 2000
1000

0

()
o0 =
I I B B B

-

Data traffic [B/Iteration]
o

R,= 2000

w

— R, =2000: Memory <--> L3
— R, =2000: L3 <--> L2
— R, =2000: L2 <--> L1

10
NR

Dense MVM analysis

(c) RRZE 2020

DMVM (DP) — OpenMP parallelization

1$omp parallel do reduction(+:y)
doc =1, NC
dor =1 , NR
y(r) = y(r) + A(r,c) * x(c)
enddo ; enddo
ISomp end parallel do

1$5omp parallel do private(rbS,rbE)
do rb =1 , NR , R,
rbS rb
rbE min((rb+R,-1), NR)
doc =1, NC

do r = rbS , rbE

y(r) = y(r) + A(r,c) * x(c)

enddo ; enddo ; enddo
ISomp end parallel do

Dense MVM analysis

(c) RRZE 2020

DMVM (DP) — OpenMP parallelization & saturation

saturation influenced
by serial performance

Roofline limit
8000~ B. = 4 Byte/Flop e ——
bg = 32GB/s
6000 —
=
009 BV single-core RL
®—® Plain
2000 #—¢ 1D blocking: R, =2000; par. blocks
| |
N R R
#cores

Intel Xeon E5 2695 v3 (Haswell-EP) CoD
2.3 GHz base clock speed, bg = 32 GB/s

blocking good for
single thread
performance (reduced
in-cache traffic)

memory traffic
unchanged

—> saturation
unchanged!

So, is blocking
useless?
- NO (see later)

Can we do
anything to
improve B ¢M?
- NO, not here

Dense MVM analysis

(c) RRZE 2020

Conclusions from the dMVM example

We have found the reasons for the breakdown of single-core performance with
growing number of matrix rows

= LHS vector fitting in different levels of the cache hierarchy

= Validated theory by performance counter measurements

Inner loop blocking was employed to improve code balance in L3 and/or L2

= Validated by performance counter measurements

Blocking led to better single-threaded performance

Saturated performance unchanged (as predicted by Roofline)

= Because the problem is still small enough to fit the LHS at least into the L3 cache

Dense MVM analysis (c) RRZE 2020

	Case Study: �Dense Matrix-Vector Multiplication
	Dense matrix-vector multiplication in DP
	dMVM scaling w/ OpenMP
	DMVM (DP) – Reminder on AVX vectorization
	DMVM (DP) – Single core performance vs. column height
	DMVM data traffic analysis
	Code balance, reloaded!
	DMVM (DP) – Single core data traffic analysis
	Reducing traffic by blocking
	Reducing traffic by blocking
	DMVM (DP) – Reducing traffic by inner loop blocking
	DMVM (DP) – Validation of blocking optimization
	DMVM (DP) – OpenMP parallelization
	DMVM (DP) – OpenMP parallelization & saturation
	Conclusions from the dMVM example

