

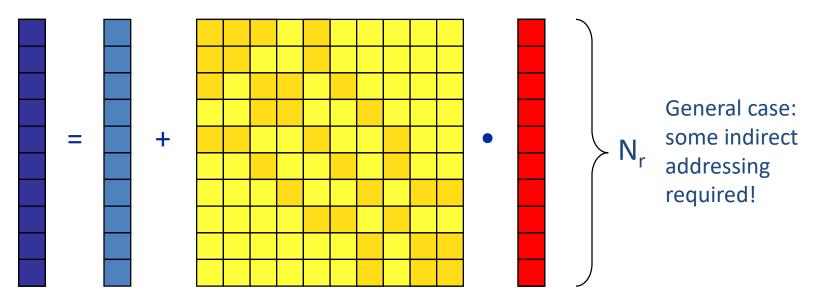
Friedrich-Alexander-Universität Erlangen-Nürnberg

Case study: Sparse Matrix-Vector Multiplication



Sparse Matrix Vector Multiplication (SpMV)

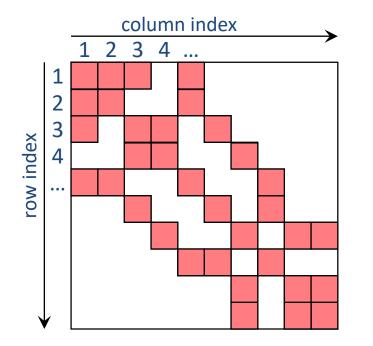
- Key ingredient in some matrix diagonalization algorithms
 - Lanczos, Davidson, Jacobi-Davidson
- Store only N_{nz} nonzero elements of matrix and RHS, LHS vectors with N_r (number of matrix rows) entries
- "Sparse": N_{nz} ~ N_r
- Average number of nonzeros per row: N_{nzr} = N_{nz}/N_r



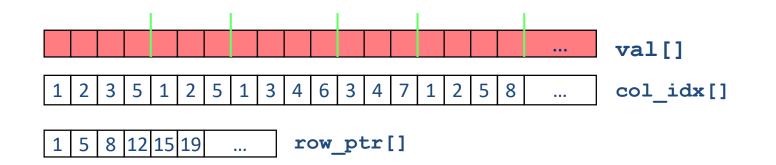
SpMVM characteristics

- For large problems, SpMV is inevitably memory-bound
 - Intra-socket saturation effect on modern multicores
- SpMV is easily parallelizable in shared and distributed memory
 - Load balancing
 - Communication overhead
- Data storage format is crucial for performance properties
 - Most useful general format on CPUs: Compressed Row Storage (CRS)
 - Depending on compute architecture

CRS matrix storage scheme



- val[] stores all the nonzeros (length N_{nz})
- col_idx[] stores the column index of each nonzero (length N_{nz})
- row_ptr[] stores the starting index of each new row in val[] (length: N_r)



Case study: Sparse matrix-vector multiply

- Strongly memory-bound for large data sets
 - Streaming, with partially indirect access:

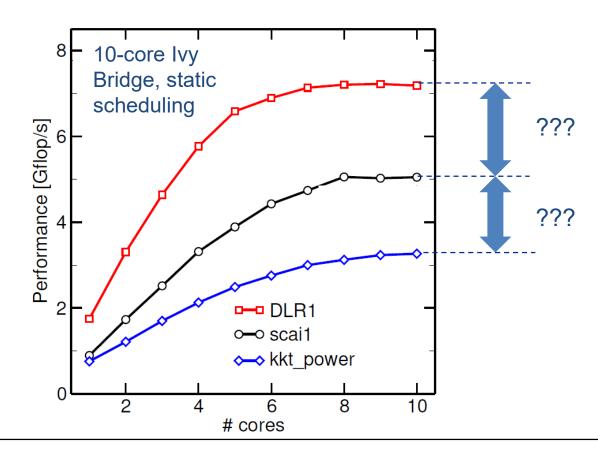
```
!$OMP parallel do schedule(???)
do i = 1,Nr
  do j = row_ptr(i), row_ptr(i+1) - 1
    C(i) = C(i) + val(j) * B(col_idx(j))
  enddo
enddo
!$OMP end parallel do
```

- Usually many spMVMs required to solve a problem
- Now let's look at some performance measurements...

- Strongly memory-bound for large data sets → saturating performance across cores on the chip
- Performance seems to depend on the matrix
- Can we explain this?

 Is there a "light speed" for SpMV?

Optimization?



SpMV node performance model – CRS (1)

Min. load traffic [B]:
$$(8 + 4) N_{nz} + (4 + 8)N_r + 8 N_c$$

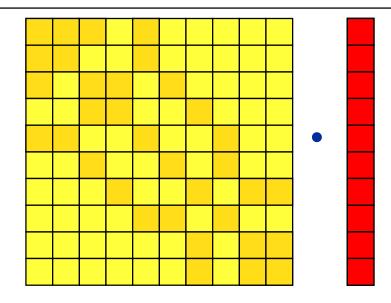
Min. store traffic [B]: $8 N_r$
Total FLOP count [F]: $2 N_{nz}$

$$B_{C,min} = \frac{12 N_{nz} + 20 N_r + 8 N_c}{2 N_{nz}} \frac{B}{F} = \frac{12 + 20/N_{nzr} + 8/N_{nzc}}{2} \frac{B}{F}$$
Nonzeros per row $(N_{nzr} = N_{nz}/N_r)$ or column $(N_{nzc} = N_{nz}/N_c)$
Lower bound for code balance: $B_{C,min} \ge 6 \frac{B}{F} \rightarrow I_{max} \le \frac{1}{6} \frac{F}{B}$

SpMV node performance model – CRS (2)

$$B_{C,min} = \frac{12 + 20/N_{nzr} + 8/N_{nzc}}{2} \frac{B}{F}$$
$$B_{C}(\alpha) = \frac{12 + 20/N_{nzr} + 8\alpha}{2} \frac{B}{F}$$

Consider square matrices: $N_{nzc} = N_{nzr}$ and $N_c = N_r$ Note: $B_C (1/N_{nzr}) = B_{C,min}$



Parameter (α) quantifies additional traffic for **B(:)** (irregular access):

$$\alpha \ge \frac{1}{N_{nzc}}$$

$$\alpha N_{nzc} \geq 1$$

The " α effect"

- DP CRS code balance
- α quantifies the traffic for loading the RHS
 - $\alpha = 0 \rightarrow \text{RHS}$ is in cache
 - $\alpha = 1/N_{nzr}$ \rightarrow RHS loaded once
 - $\alpha = 1 \rightarrow \text{no cache}$
 - $\alpha > 1 \rightarrow$ Houston, we have a problem!
- "Target" performance = b_S/B_c
- Caveat: Maximum memory BW may not be achieved with spMVM (see later)
- Can we predict α ?
- Not in general
- Simple cases (banded, block-structured): Similar to layer condition analysis

 \rightarrow Determine α by measuring the actual memory traffic (\rightarrow measured code balance B_C^{meas})

 $B_{C}(\alpha) = \frac{12 + 20/N_{nzr} + 8\alpha}{2} \frac{B}{F}$ $= \left(6 + 4\alpha + \frac{10}{N_{nzr}}\right) \frac{B}{F}$

Determine α (RHS traffic quantification)

$$B_C(\alpha) = \left(6 + 4\alpha + \frac{10}{N_{nzr}}\right) \frac{B}{F} = \frac{V_{meas}}{N_{nz} \cdot 2F} \quad (= B_C^{meas})$$

- V_{meas} is the measured overall memory data traffic (using, e.g., likwid-perfctr)
- Solve for α:

$$\alpha = \frac{1}{4} \left(\frac{V_{meas}}{N_{nz} \cdot 2 \text{ bytes}} - 6 - \frac{10}{N_{nzr}} \right)$$

Example: kkt_power matrix from the UoF collection on one Intel SNB socket

•
$$N_{nz} = 14.6 \cdot 10^6$$
, $N_{nzr} = 7.1$

• $V_{meas} \approx 258 \text{ MB}$

$$\rightarrow \alpha = 0.36, \, \alpha N_{nzr} = 2.5$$

 \rightarrow RHS is loaded 2.5 times from memory

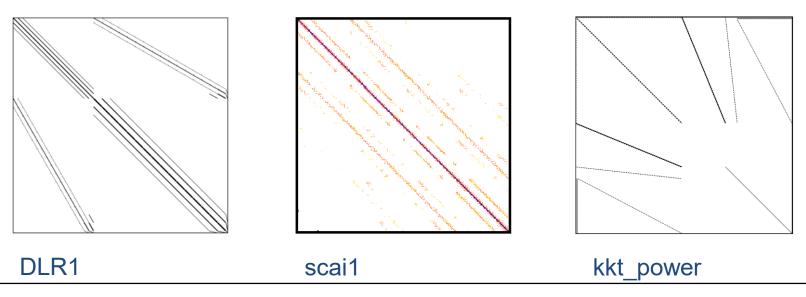
$$\frac{B_C(\alpha)}{B_{C,min}} = 1.11$$
11% extra traffic \rightarrow
optimization potential!

Three different sparse matrices

Benchmark system: Intel Xeon Ivy Bridge E5-2660v2, 2.2 GHz, $b_S = 46.6 \text{ GB/s}$

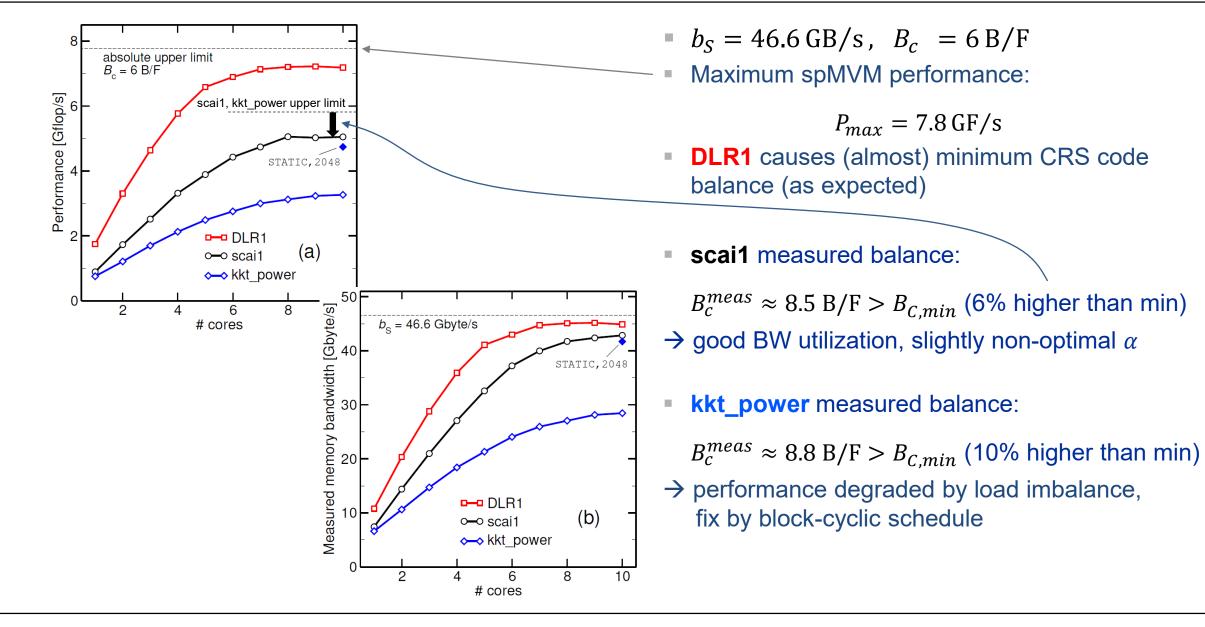
→ Roofline: $P_{opt} = {}^{b_S} / {}_{B_{C,min}}$

Matrix	Ν	N _{nzr}	<i>B_{C,min}</i> [B/F]	P_{opt} [GF/s]
DLR1	278,502	143	6.1	7.64
scai1	3,405,035	7.0	8.0	5.83
kkt_power	2,063,494	7.08	8.0	5.83

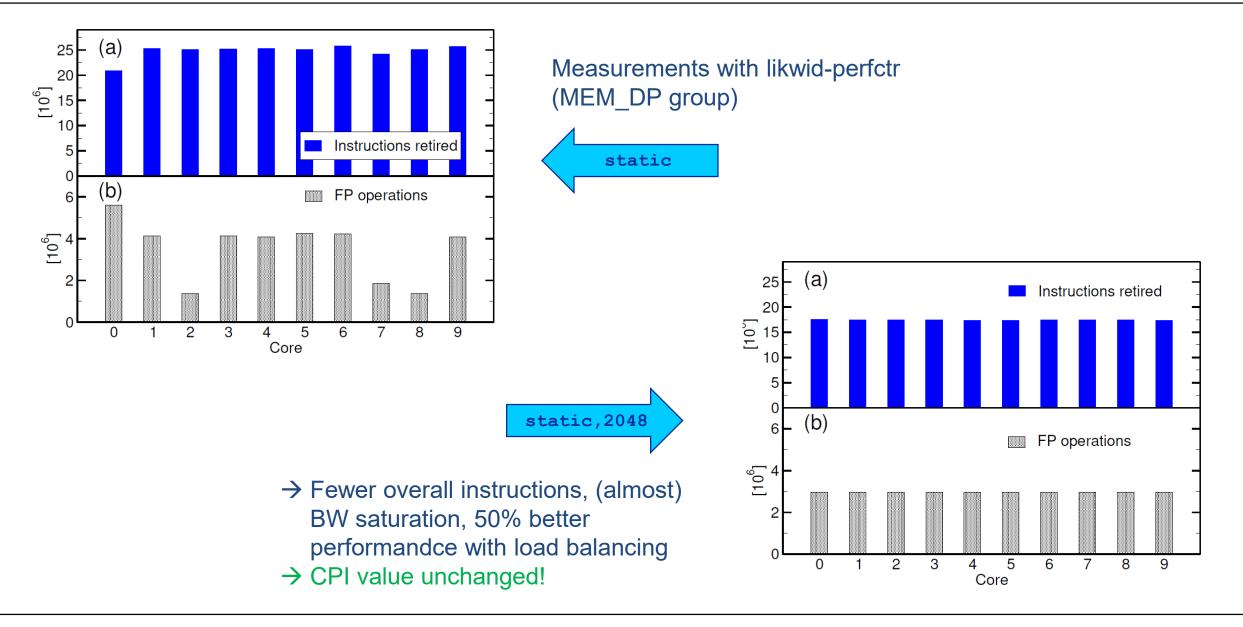


Roofline Case Studies | SpMV

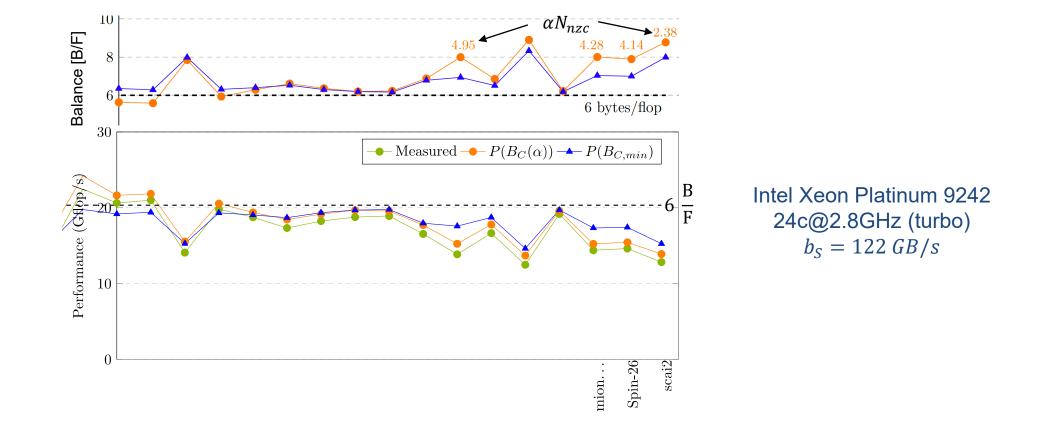
Now back to the start...



Investigating the load imbalance with kkt_power



SpMV node performance model – CPU

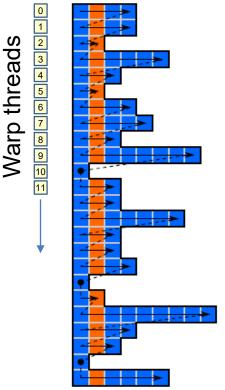


Matrices taken from: C. L. Alappat et al.: *ECM modeling and performance tuning of SpMV and Lattice QCD on A64FX.* In print. Preprint: <u>arXiv:2103.0301</u>

Roofline Case Studies | SpMV

What about GPUs?

- GPUs need
 - Enough work per kernel launch in order to leverage their parallelism
 - Coalesced access to memory (consecutive threads in a warp should access consecutive memory addresses)
- Plain CRS for SpMV on GPUs is not a good idea
 - 1. Short inner loop
 - 2. Different amount of work per thread
 - 3. Non-coalesced memory access
- Remedy: Use SIMD/SIMT-friendly storage format
 ELLPACK, SELL-C-σ, DIA, ESB,...

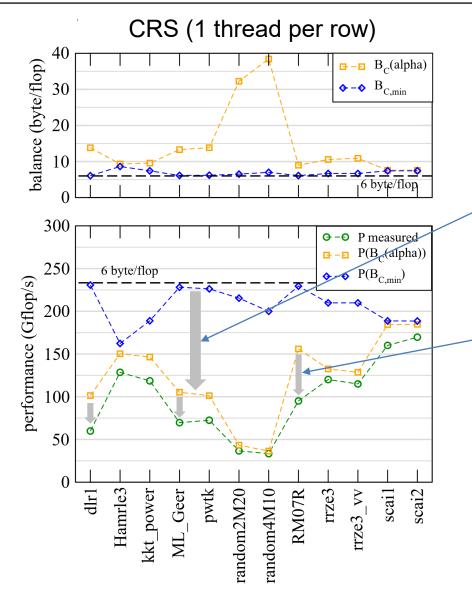


CRS SpMV in CUDA (y = Ax)

```
template <typename VT, typename IT>
global static void
spmv csr(const ST num rows,
          const IT * RESTRICT row_ptrs, const IT * RESTRICT col_idxs,
          const VT * RESTRICT values, const VT * RESTRICT x,
                                                   VT * RESTRICT \mathbf{v})
{
    ST row = threadIdx.x + blockDim.x * blockIdx.x; // 1 thread per row
    if (row < num rows) {</pre>
        VT sum{};
         for (IT j = row ptrs[row]; j < row ptrs[row + 1]; ++j) {</pre>
             sum += values[j] * x[col idxs[j]];
        y[row] = sum;
                                                           B_c(\alpha) = \left(6 + 4\alpha + \frac{6}{N_{max}}\right)\frac{B}{F}
```

No write-allocate on GPUs for consecutive stores

SpMV CRS performance on a GPU



NVIDIA Ampere A100 Memory bandwidth $b_S = 1400 \text{ GB/s}$

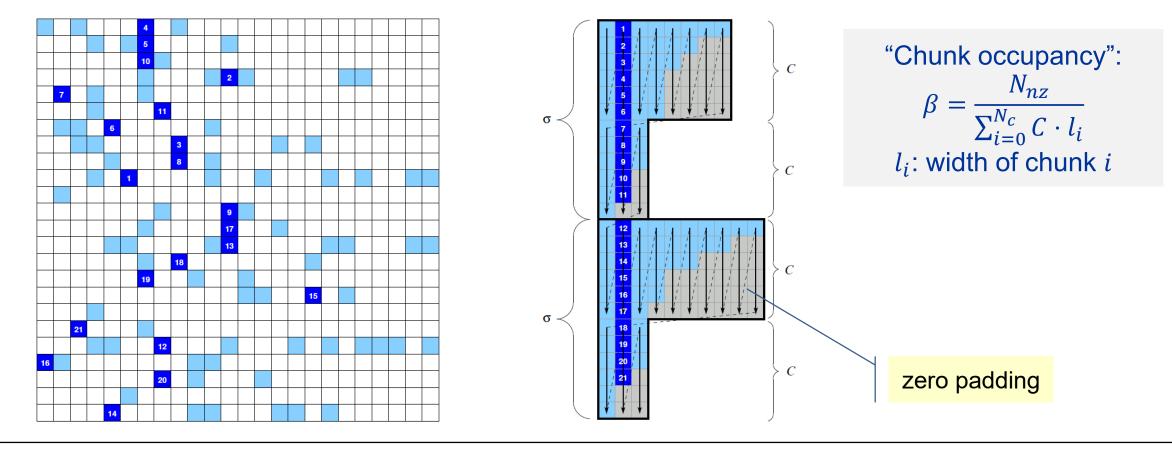
- Strong "α effect" large deviation from optimal α for many matrices
 - Many cache lines touched b/c every thread handles one row → bad cache usage
- Mediocre memory bandwidth usage (« 1400 GB/s) in many cases
 - Non-coalesced memory access
 - Imbalance across rows/threads of warps

SELL-C- σ

Idea

M. Kreutzer et al.: A Unified Sparse Matrix Data Format For Efficient General Sparse Matrix-vector Multiplication On Modern Processors With Wide SIMD Units, SIAM SISC 2014, DOI: <u>10.1137/130930352</u>

- Sort rows according to length within sorting scope σ
- Store nonzeros column-major in zero-padded chunks of height C

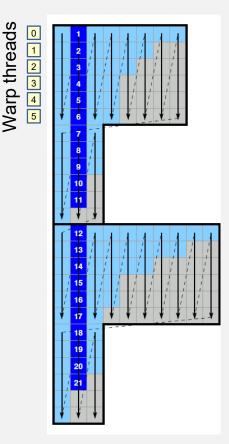


SELL-C- σ SpMV in CUDA (y=Ax)

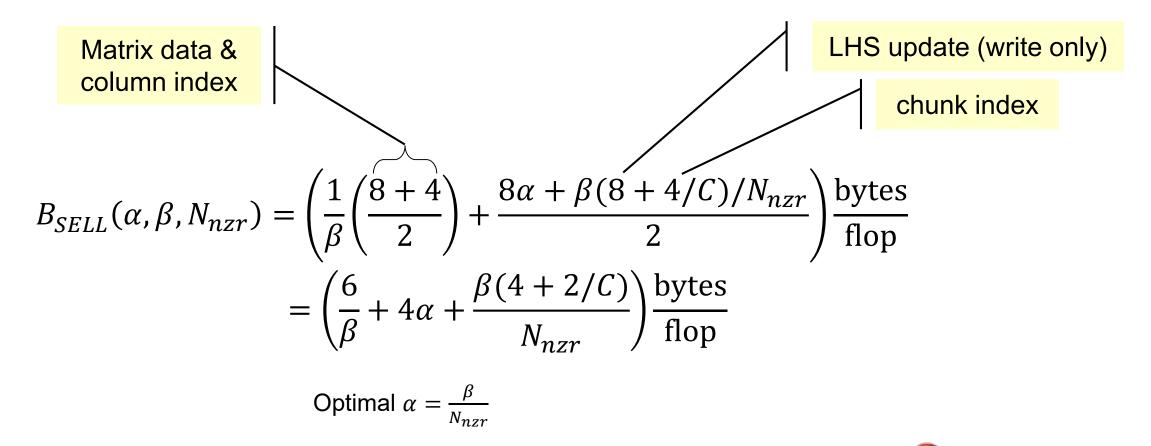
```
ST row = threadIdx.x + blockDim.x * blockIdx.x;
ST c = row / C; // the no. of the chunk
ST idx = row % C; // index inside the chunk
```

```
if (row < n_chunks * C) {
    VT tmp{};
    IT cs = chunk_ptrs[c]; // points to start indices of chunks</pre>
```

```
for (ST j = 0; j < chunk_lengths[c]; ++j) {
    tmp += values[cs + idx] * x[col_idxs[cs + idx]];
    cs += C;
}
y[row] = tmp;</pre>
```



Code balance of SELL-C- σ (y=Ax)



When measuring B_C^{meas} , take care to use the "useful" number of flops (excluding zero padding) for work

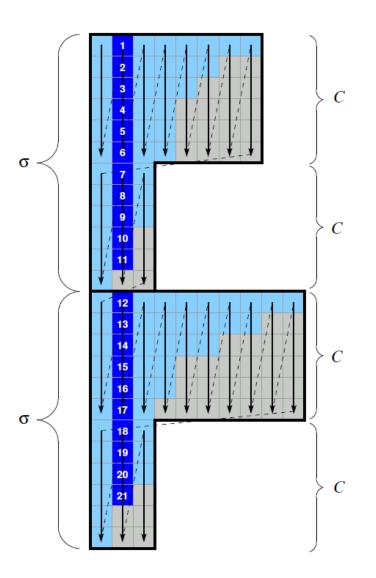
How to choose the parameters *C* and σ on GPUs?

• *C*

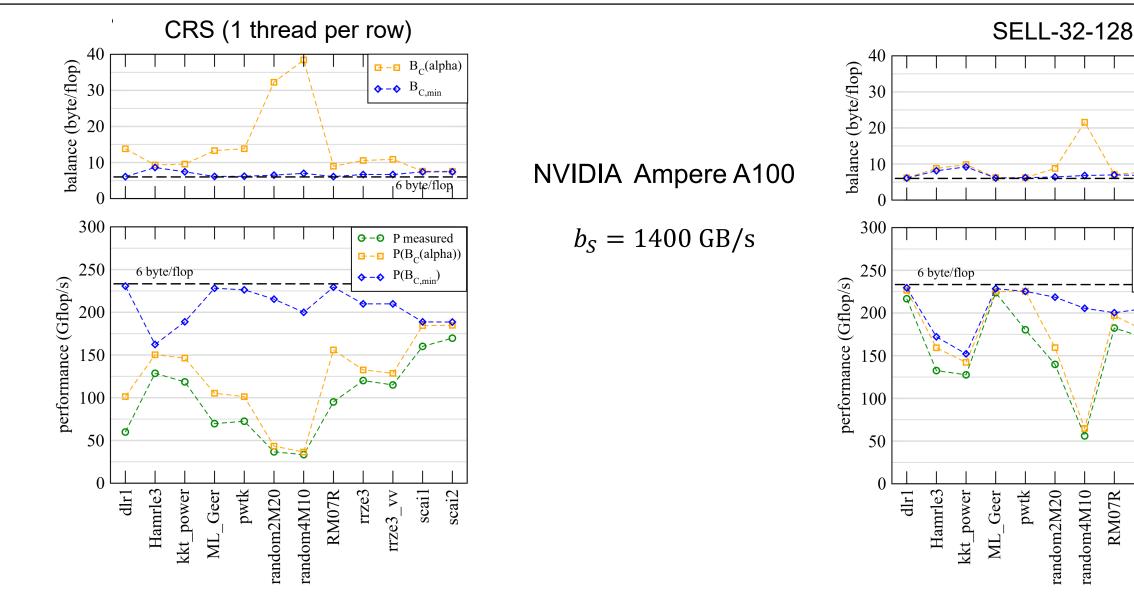
 n × warp size to allow good utilization of GPU threads and cache lines

• *o*

- As small as possible, as large as necessary
- Large σ reduces zero padding (brings β closer to 1)
- Sorting alters RHS access pattern $\rightarrow \alpha$ depends on σ



SpMV node performance model – GPU



 $\square - \square B_C(alpha)$

6 byte/flop

Θ-Θ P measured

♦ –♦ $P(B_{C,min})$

rrze3_vv

rrze3

scail

scai2

 $\square - \square P(B_C(alpha))$

♦-♦ B_{C.min}

Roofline analysis for spMVM

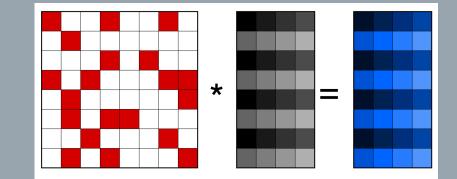
- Conclusion from the Roofline analysis
 - The roofline model does not "work" for spMVM due to the RHS traffic uncertainties
 - We have "turned the model around" and measured the actual memory traffic to determine the RHS overhead
 - Result indicates:
 - 1. how much actual traffic the RHS generates
 - 2. how efficient the RHS access is (compare BW with max. BW)
 - 3. how much optimization potential we have with matrix reordering
- Do not forget about load balancing!
- Sparse matrix times multiple vectors bears the potential of huge savings in data volume
- Consequence: Modeling is not always 100% predictive. It's all about *learning more* about performance properties!

Friedrich-Alexander-Universität Erlangen-Nürnberg

BACKUP

Friedrich-Alexander-Universität Erlangen-Nürnberg

Applying sparse matrix to multiple vectors (Sparse Matrix Multiple Vectors: SpMMV)





Multiple RHS vectors (SpMMV)

Unchanged matrix applied to multiple RHS (r) vectors to yield multiple LHS (r) vectors

do $s = 1, r$								
do $i = 1$, Nr		do $i = 1$, Nr						
do $j = row_ptr(i), row_ptr(i+1)-1$		do $j = row_ptr(i), row_ptr(i+1)-1$						
C(i,s) = C(i,s) + val(j) *		do $s = 1, :$	do $s = 1, r$					
B(col_idx(j),s)		C(i,s) = C(i,s) + val(j) *						
enddo		B(col_idx(j), <mark>s</mark>)						
enddo	B_c unchanged, no	enddo						
enddo	reuse of matrix data	enddo	Higher B_c due to max					
		enddo	reuse of matrix data					
	do j = row_ptr(i),r							
	do $s = 1, r$							
	C(s,i) = C(s,i) +							
B(s,col_idx(j))								
	enddo Cl -fri	endly data						
enddo		ure (row major)						
	enddo							

SpMMV code balance

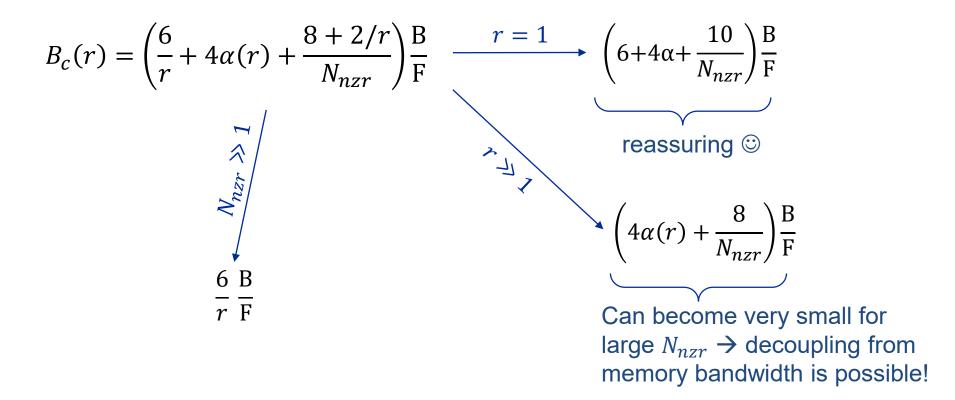
One complete inner (s) loop traversal:

- 2r flops
- 12 bytes from matrix data (value + index)
- $\frac{16r}{N_{nzr}}$ bytes from the *r* LHS updates
- $\frac{4}{N_{nzr}}$ bytes from the row pointer
- $8r\alpha(r)$ bytes from the *r* RHS reads

$$B_c(r) = \frac{1}{2r} \left(12 + 8r\alpha(r) + \frac{16r + 4}{N_{nzr}} \right) \frac{B}{F}$$
$$= \left(\frac{6}{r} + 4\alpha(r) + \frac{8 + 2/r}{N_{nzr}} \right) \frac{B}{F} \qquad \text{OK so what now???}$$

SpMMV code balance

Let's check some limits to see if this makes sense!



M. Kreutzer et al.: *Performance Engineering of the Kernel Polynomial Method on Large-Scale CPU-GPU Systems*. Proc. <u>IPDPS15</u>, <u>DOI: 10.1109/IPDPS.2015.76</u>

SELL-C- σ kernel on CPUs

Example C = 4 without further unrolling

```
for(i = 0; i < N/4; ++i)
ſ
  for(j = 0; j < cl[i]; ++j)</pre>
  ſ
    y[i*4+0] += val[cs[i]+j*4+0] *
              x[col[cs[i]+j*4+0]];
    y[i*4+1] += val[cs[i]+j*4+1] *
              x[col[cs[i]+j*4+1]];
                                        C = 4
    y[i*4+2] += val[cs[i]+j*4+2] *
              x[col[cs[i]+j*4+2]];
    y[i*4+3] += val[cs[i]+j*4+3] *
              x[col[cs[i]+j*4+3]];
```