
Advanced Fortran

Topics

Reinhold Bader

Gilbert Brietzke

Nisarg Patel

Leibniz Supercomputing Centre Munich

Fortran features under consideration

Continuing Standardization process:

Focus of this course is on and

some features will be also covered

© 2009-22 LRZ Advanced Fortran Topics 2

Fortran 66 ancient

Fortran 77 (1980) traditional

Fortran 90 (1991) large revision

Fortran 95 (1997) small revision

Fortran 2003 (2004) large revision

Fortran 2008 (2010) mid-size revision

TS 29113 (2012) extends C interop

TS 18508 (2015) extends parallelism

Fortran 2018 (2018) current standard

integrated in

Overview of covered features

Day 1:

the environment problem; object-based and object-oriented programming.

Day 2:

further object-oriented features, advanced I/O topics, parameterized
derived types

Day 3:

interoperation with C, basics of Coarray programming

Day 4:

Advanced coarray programming

Exercises: interspersed with talks – see printed schedule

Prerequisites:

good knowledge of

as covered e.g., in the winter event „Programming with Fortran“ (and some
own experience, if possible)

some knowledge of OpenMP (shared memory parallelism)

© 2009-22 LRZ Advanced Fortran Topics 3

Social Event and Guided Tour

Note:

due to the remote participation, no social event is planned for this

edition of the course

If desired by participants:

joint dinner (self-funded) in the centre of Garching (Neuwirt)

on Monday evening at 19:00

Guided Tour through the computer rooms at LRZ

on Wednesday starting 18:00, approximately 60 minutes

© 2009-22 LRZ Advanced Fortran Topics 4

Conventions and Flags used in these talks

Implementation

dependencies

Processor dependent

behaviour (may be

unportable)

Performance

language feature for

performance

Standards conformance

Recommended practice

Standard conforming, but

considered questionable

style

Dangerous practice, likely to

introduce bugs and/or non-

conforming behaviour

Gotcha! Non-conforming

and/or definitely buggy

© 2009-22 LRZ Advanced Fortran Topics 5

Some references

Modern Fortran explained (8th edition)

Michael Metcalf, John Reid, Malcolm Cohen, OUP, 2018

The Fortran 2003 Handbook

J. Adams, W. Brainerd, R. Hendrickson, R. Maine, J. Martin, B. Smith.

Springer, 2008

Guide to Fortran 2008 programming (introductory text)

W. Brainerd. Springer, 2015

Modern Fortran – Style and Usage (best practices guide)

N. Clerman, W. Spector. Cambridge University Press, 2012

Scientific Software Design – The Object-Oriented Way

(1st edition)

Damian Rouson, Jim Xia, Xiaofeng Xu, Cambridge, 2011

© 2009-22 LRZ Advanced Fortran Topics 6

References cont'd

Design Patterns – Elements of Reusable Object-oriented

Software

E. Gamma, R. Helm, R. Johnson, J. Vlissides. Addison-Wesley, 1994

Modern Fortran in Practice

Arjen Markus, Cambridge University Press, 2012

Introduction to High Performance Computing for Scientists

and Engineers

G. Hager and G. Wellein

Download of (updated) PDFs of the slides and exercise

archive

freely available under a creative commons license

https://doku.lrz.de/display/PUBLIC/PRACE+Course%3A+Advanced+Fortran+Topics

© 2009-22 LRZ Advanced Fortran Topics 7

https://doku.lrz.de/display/PUBLIC/PRACE+Course%3A+Advanced+Fortran+Topics

The environment problem
and

some features from Fortran 2003

Recap: Module program unit

A program unit that permits packaging of

procedure interfaces

global variables

named constants

type definitions (recall derived types)

named interfaces

procedure implementations

for reuse, as well as supporting

information hiding

(limited) namespace management

Other program units access a module´s public entities

use association

© 2009-22 LRZ Advanced Fortran Topics 9

also known as encapsulation

Some extensions for handling of globals

Example: Define entities which exist only once

e.g. large arrays

„Singleton“ programming pattern

© 2009-22 LRZ Advanced Fortran Topics 10

MODULE mod_ptype
IMPLICIT none
PRIVATE
INTEGER, PARAMETER :: pdim = 100
TYPE, PRIVATE :: ptype

REAL, PUBLIC :: field (pdim, pdim)
END TYPE

TYPE (ptype), PUBLIC :: o_ptype
END MODULE

type definition itself is only
visible inside module

type components are
accessible wherever an object is

object (a global variable) is
accessible from program units

that use the module

Using the Singleton

Main program as example client:

client cannot create an object of the private type,

but can access the (only) created object of that type

© 2009-22 LRZ Advanced Fortran Topics 11

PROGRAM process_array
USE mod_ptype
...
TYPE(ptype) :: o2

o_ptype % field(i, j) = 4
...
x(:,:) = o_ptype % field(low:high,low:high)

mod_ptype

o_ptype process_arrayu

use statement

type is private
→ will not compile

access to o_ptype
by use association

See examples/singleton

Global entities: Threading issues

Typical threading model used in HPC applications

OpenMP, a directive based method for shared memory parallelism

What happens if global variables need to be accessed from

threaded parts of the code?

How can „thread-safeness“ be achieved?

1. Shared variables

→ use mutual exclusion to avoid data races, or

→ process arrays with work-sharing regions

2. Threadprivate variables if needed for semantic reasons→ may be

problematic to use, especially across multiple parallel regions

Recommendation:

avoid indiscriminate use of globals

© 2009-22 LRZ Advanced Fortran Topics 12

The environment problem: setting the stage

Calculation of

where

f(x,p) is a real-valued function of a real variable x and a variable p of some

undetermined type

a, b are real values

Tasks to be done:

procedure with algorithm for establishing the integral → depends on the

properties of f(x,p) (does it have singularities? etc.)

function that evaluates f(x,p)

Case study provides a simple example of very common

programming tasks with similar structure in scientific computing.

© 2009-22 LRZ Advanced Fortran Topics 13

𝐼 = න
𝑎

𝑏

𝑓 𝑥, 𝑝 𝑑𝑥

𝐼 ≈ ෍

𝑖=1

𝑛

𝑤𝑖𝑓(𝑥𝑖 , 𝑝)

Using a canned routine: D01AHF
(Patterson algorithm in NAG library)

Interface:

uses a function argument

(user-provided function)

Invocation:

Mass-production of integrals

may want to parallelize

need to check library

documentation: thread-safeness

of d01ahf

© 2009-22 LRZ Advanced Fortran Topics 14

DOUBLE PRECISION FUNCTION d01ahf (a, b, epsr, npts, relerr, f, nlimit, ifail)
INTEGER :: npts, nlimit, ifail
DOUBLE PRECISION :: a, b, epsr, relerr, f
EXTERNAL :: F

DOUBLE PRECISION FUNCTION f (x)
DOUBLE PRECISION :: x

requested precision

:
res = d01ahf(a, b, 1.0e-11, &
npts, relerr, my_fun, -1, is)

define a, b

!$omp parallel do
DO i=istart, iend
: ! prepare
res(i) = d01ahf(…, my_fun, …)

END DO
!$omp end parallel do

Mismatch of user procedure implementation

User function may look like this:

parameter „p“ is actually the tuple (n, a) → no language mechanism available for this

or like this

Neither can be used as an actual argument in an invocation of
d01ahf

© 2009-22 LRZ Advanced Fortran Topics 15

SUBROUTINE user_proc(x, n, a, result)
REAL(dk), INTENT(in) :: x, a
INTEGER, INTENT(in) :: n
REAL(dk), INTENT(out) :: result

END SUBROUTINE

REAL(dk) FUNCTION user_fun(x, p)
REAL(dk), intent(in) :: x
TYPE(p_type), intent(in) :: p

END FUNCTION

Compiler would accept
this one due to the

implicit interface for it,
but it is likely to bomb at run-time

dk has the value
kind(1.0D0)

do you remember

what „INTENT“

means?

Solution 1: Wrapper with global variables

Usage:

© 2009-22 LRZ Advanced Fortran Topics 16

MODULE mod_user_fun

REAL(dk) :: par

INTEGER :: n

contains

FUNCTION arg_fun(x) result(r)

REAL(dk) :: r, x

CALL user_proc(x, n, par, r)

END FUNCTION arg_fun

:

END MODULE mod_user_fun

has suitable
interface for use

with d01ahf

further procedures, e.g. user_proc itself

USE mod_user_fun

par = … ; n = …
res = d01ahf(…, arg_fun, …)

global variables
(implies SAVE attribute)

supply values
for global variables

Disadvantages of Solution 1

Additional function call overhead

is usually not a big issue (nowaday‘s implementations are quite efficient,

especially if no stack-resident variables must be created).

Solution not thread-safe (even if d01ahf itself is)

expect differing values for par and n in concurrent calls:

results in unsynchronized access to the shared variables par and n from

different threads → race condition → does not conform to the OpenMP

standard → wrong results

© 2009-22 LRZ Advanced Fortran Topics 17

!$omp parallel do
DO i=istart, iend
par = …; n = …
res(i) = d01ahf(…, arg_fun, …)

END DO
!$omp end parallel do

ti
m

e

fork:

T0 T1
par

join

shared

par

Making Solution 1 thread-safe

Threadprivate storage

Usage may require additional care as well

© 2009-22 LRZ Advanced Fortran Topics 18

MODULE mod_user_fun

REAL(dk) :: par

INTEGER :: n

!$omp threadprivate (par, n)

…

par = …
!$omp parallel do copyin(par)
DO i = istart, iend

n = …
… = d01ahf(…, arg_fun, …)
IF (…) par = …

END DO
!$omp end parallel do

broadcast from master copy
needed for par

thread-individual copies
are created in parallel regions

A bit cumbersome:
non-local programming
style required

ti
m

e

fork: T0 T1

par

join

par par

T0 reads par

T1 reads
and then
writes par

master writes par

Solution 2: Reverse communication

Change design of integration interface:

instead of a function interface, provider requests a function value

provider provides an argument for evaluation, and an exit condition

© 2009-22 LRZ Advanced Fortran Topics 19

preparation step:
set baseline

parameters (a, b, p)
produce first argument x

calculate f(x,p)
for requested x

solution iteration step:
feed in function value

obtain intermediate result,
next argument x, and state

check
state complete

done

unfinished

Solution 2: Typical example interface

Uses two routines:

first is called once to initialize an integration process

second will be called repeatedly, asking the client to perform further function

evaluations

final result may be taken once stat has the value stat_continue

© 2009-22 LRZ Advanced Fortran Topics 20

SUBROUTINE initialize_integration(a, b, eps, x)
REAL(dk), INTENT(in) :: a, b, eps
REAL(dk), INTENT(out) :: x

END SUBROUTINE
SUBROUTINE integrate(fval, x, result, stat)
REAL(dk), INTENT(in) :: fval
REAL(dk), INTENT(out) :: x
REAL(dk), INTENT(inout) :: result
INTEGER, INTENT(out) :: stat

END SUBROUTINE

shall not be modified by caller
while calculation iterates

Solution 2: Using the reverse

communication interface

avoids the need for interface adaptation and global variables

some possible issues will be discussed in an exercise

© 2009-22 LRZ Advanced Fortran Topics 21

PROGRAM integrate
:
REAL(dk), PARAMETER :: a = 0.0_dk, b = 1.0_dk, eps = 1.0e-6_dk
REAL(dk) :: x, result, fval, par
INTEGER :: n, stat
n = …; par = …
CALL initialize_integration(a, b, eps, x)
DO
CALL user_proc(x, n, par, fval)
CALL integrate(fval, x, result, stat)
IF (stat /= stat_continue) EXIT

END DO
WRITE(*, '(''Result: '',E13.5,'' Status: '',I0)') result, stat

CONTAINS
SUBROUTINE user_proc(…)
:

END SUBROUTINE user_proc
END PROGRAM

Dynamic memory

and features for

object-based programming

Recapitulation: dynamic objects

Add a suitable attribute to an entity:

Typical life cycle management:

Status checking: (hints at semantic differences!)

© 2009-22 LRZ Advanced Fortran Topics 23

REAL, ALLOCATABLE :: x(:) REAL, POINTER :: p(:) => null()

initial state is „unallocated“ initial state is "unassociated"

create
ALLOCATE(x(2:n), p(3), stat=my_status)

use

x(:) = ...

p(:) = ...

destroy
DEALLOCATE(x, p)

definitions and references

IF (allocated(x)) THEN; ... IF (associated(p)) THEN; ...

logical functions

non-default lower bounds are possible
(use LBOUND and UBOUND intrinsics)

use of
heap

memory

deferred shape

ALLOCATABLE vs. POINTER

An allocated allocatable entity

is an object in its own right

becomes auto-deallocated once going out of scope

An associated pointer entity

is an alias for another object, its target

all definitions and references are to the target

undefined (third) state should be avoided

© 2009-22 LRZ Advanced Fortran Topics 24

except if object has the SAVE attribute
e.g., because it is global

create ALLOCATE(p(3), stat=my_status)

use p(:) = ...

destroy DEALLOCATE(p)

assoc p => tg; p(2) = 2.0

nullify NULLIFY(p) or p => null()

REAL, TARGET :: tg(3) = 0.0

p

target is anonymous

p tg 2.0

essential, otherwise an
orphaned target can remain

p 

disassociated
(this is not undefined!)

p 

explicit pointer assignment

Implications of POINTER aliasing

anonymous
target

p1

p2

p3

Multiple pointers may point

to the same target

Avoid dangling pointers

© 2009-22 LRZ Advanced Fortran Topics 25

ALLOCATE(p1(n))
p2 => p1; p3 => p2

DEALLOCATE(p2)
NULLIFY(p1, p3)

p2 is associated with
all of the target.

p1 and p3 become undefined

Not permitted: deallocation of allocatable target via a pointer

REAL, ALLOCATABLE, TARGET :: t(:)
REAL, POINTER :: p(:)

ALLOCATE(t(n)); p => t
DEALLOCATE(p)

Features added in

Allocatable entities

Scalars permitted:

LHS auto-(re)allocation on

assignment:

The MOVE_ALLOC intrinsic:

Pointer entities

rank changing „=>“:

bounds changing „=>“:

© 2009-22 LRZ Advanced Fortran Topics 26

Deferred-length strings:

REAL, ALLOCATABLE :: s

x = p(2:m-2)
conformance LHS/RHS guaranteed

CALL move_alloc(from, to)

avoid data movement

CHARACTER(len=:), ALLOCATABLE :: var_string

var_string = ꞌString of any lengthꞌ

POINTER also permitted, but
subsequent use is then different

LHS is (re)allocated to correct length

REAL, TARGET :: m(n)
REAL, POINTER :: p(:,:)
p(1:k1,1:k2) => m

rank of target must be 1

p(4:) => m

bounds remapped via
lower bounds spec

POINTER type components

a „reference“ container

Container types

Allocatable type components

a „value“ container

© 2009-22 LRZ Advanced Fortran Topics 27

TYPE :: polynomial
PRIVATE

REAL, ALLOCATABLE :: f(:)
END TYPE

TYPE :: cont_t
PRIVATE

REAL, POINTER ::
item(:) => null()

END TYPE

polynomial

f(:)

default (initial) value is
not allocated

default value is
disassociated

cont_t

Not a Fortran term

item(:)

Container types (2):
Object declaration and assignment semantics

Allocatable type components

assignment statement is

equivalent to

„deep copy“

POINTER type components

assignment statement is

equivalent to

„shallow copy“

© 2009-22 LRZ Advanced Fortran Topics 28

TYPE(polynomial) :: p1, p2

:

p2 = p1

IF (ALLOCATED(p2%f)) &
DEALLOCATE(p2%f)

ALLOCATE (p2%f(size(p1%f)))
p2%f(:) = p1%f

define p1
(see e.g. next slide)

TYPE(cont_t) :: s1, s2

:

s2 = s1

s2%item => s1%item

a reference,
not a copy

define s1

Container types (3):

Structure constructor

Allocatable type components

dynamically allocates p1%f to

become a size 2 array with

elements 1.0 and 2.0

When object becomes

undefined

allocatable components are

automatically deallocated

POINTER type components

explicit target:

not permitted:

→ e.g., overload constructor to avoid

this situation (create argument copy)

© 2009-22 LRZ Advanced Fortran Topics 29

TYPE(polynomial) :: p1

p1 = polynomial([1.0, 2.0])

TYPE(cont_t) :: s1
REAL, TARGET :: t1(ndim)
REAL, PARAMETER :: t2(ndim) = …

s1 = cont_t(null())

s1 = cont_t(t2)

s1 = cont_t(t1)

a constant cannot be a target

usually will not happen for POINTER components

could be omitted (default initialized component)

Container types (4): Storage layout

Irregularity:

each array element might have a component of different length

or an array element might be unallocated (or disassociated)

Applies for both allocatable and POINTER components

a subobject designator like p_arr(:)%f(2) is not permitted

© 2009-22 LRZ Advanced Fortran Topics 30

TYPE(polynomial) :: p_arr(4)

p_arr(1) = polynomial([1.0])
p_arr(3) = polynomial([1.0, 2.0])
p_arr(4) = polynomial([1.0, 2.0, 3.1, -2.1])

p_arr(1)

p_arr(2)

p_arr(3)

p_arr(4)



p_arr(4)%f

type component of array element
is a descriptor that references
a memory area “elsewhere”

Allocatable and POINTER dummy arguments
(explicit interface required)

Allocatable dummy argument

useful for implementation of „factory procedures“ (e.g. by reading data from a file)

POINTER dummy argument

example: handling of a „reference container“

Actual argument must have matching attribute

Advanced Fortran Topics 31

SUBROUTINE read_simulation_data(simulation_field, file_name)
REAL, ALLOCATABLE, INTENT(OUT) :: simulation_field(:,:,:)
CHARACTER(LEN=*), INTENT(IN) :: file_name
:

END SUBROUTINE read_simulation_data

deferred-shape

© 2009-22 LRZ

implementation allocates storage
after determining its size

SUBROUTINE add_reference(a_container, item)
TYPE(cont_t) :: a_container
REAL, POINTER, INTENT(IN) :: item(:)
IF (associated(item)) a_container%item => item

END SUBROUTINE add_reference

a private pointer type component

an exception to this exists
- stay tuned

INTENT semantics for dynamic objects

„Becoming undefined“ for objects of derived type:

type components become undefined if they are not default initialized

otherwise they get the default value from the type definition

allocatable type components become deallocated

© 2009-22 LRZ Advanced Fortran Topics 32

specified intent allocatable dummy object pointer dummy object

in
procedure must not modify

argument or change its allocation

status

procedure must not change

association status of object

out

argument becomes deallocated

on entry pointer becomes undefined on

entry

inout
retains allocation and definition

status on entry

retains association and definition

status on entry

auto-deallocation of
simulation_field

on previous slide!

INTENT(in) pointers and auto-targetting

Valid calls of add_reference:

1. Actual argument has the POINTER attribute

2. Actual argument has the TARGET attribute

Both cases require being aware of my_item‘s lifetime

case 2 permits compile-time enforcement of actual argument‘s contiguity by

adding the CONTIGUOUS attribute to the dummy argument

© 2009-22 LRZ Advanced Fortran Topics 33

TYPE(cont_t) :: my_container
REAL, POINTER :: my_item(:)
...
ALLOCATE (my_item(n))
...
CALL add_reference(my_container, my_item)

TYPE(cont_t) :: my_container
REAL, TARGET :: my_item(n)
...
CALL add_reference(my_container, my_item)

dummy argument is
pointer associated with

actual argument
(“auto-targeting”)

INTENT(OUT) and default initialized types

Suppose that a derived type person has default initialization:

then, after invocation of

the actual argument would have the value person('Dietrich',0),

i.e. components not defined inside the subprogram will be set to their

default value

© 2009-22 LRZ Advanced Fortran Topics 34

TYPE :: person

CHARACTER(LEN=32) :: name = 'no_one'

INTEGER :: age = 0

END TYPE

SUBROUTINE modify_person(this)
TYPE(person), INTENT(OUT) :: this
:
this%name = 'Dietrich'
! this%age is not defined

END SUBROUTINE

Quiz: what happens with a POINTER component in this situation?

Bounds of deferred-shape objects

Bounds are preserved across procedure invocations and pointer

assignments

Example:

What arrives inside add_reference?

this is different from assumed-shape, where bounds are remapped

it applies for both POINTER and ALLOCATABLE objects

Explicit remapping of lower bounds is possible for POINTERs:

© 2009-22 LRZ Advanced Fortran Topics 35

REAL, POINTER :: my_item(:) => null

TYPE(cont_t) :: my_container(ndim)

ALLOCATE (my_item(-3:8))

CALL add_reference(my_container(j), my_item)

SUBROUTINE add_reference(…)
:
IF (associated(item)) a_container%item => item

lbound(item) hat the value [-3]

ubound(item) has the value [8]

same applies for a_container%item

IF (associated(item)) a_container % item(1:) => item

bounds are remapped for a_container % item

Allocatable function results
(explicit interface required)

Scenario:

size of function result cannot be

determined at invocation

example: remove duplicates from

array

Possible invocations:

efficient (uses auto-allocation on

assignment):

less efficient (two function calls

needed):

function result is auto-deallocated

after completion of invocation

© 2009-22 LRZ Advanced Fortran Topics 36

FUNCTION deduplicate(x) result(r)

INTEGER, INTENT(IN) :: x(:)

INTEGER, ALLOCATABLE :: r(:)
INTEGER :: idr
:
ALLOCATE (r(idr))
:
DO i = 1, idr
r(i) = x(…)

END DO
END FUNCTION deduplicate

INTEGER, ALLOCATABLE :: res(:)

res = deduplicate(array)

find number idr
of distinct values

INTEGER :: res(ndim)

res(:size(deduplicate(array))) &
= deduplicate(array)

large enough?

It is not permitted to do
CALL move_alloc(deduplicate(array), res)

POINTER function results
(explicit interface required)

The POINTER attribute

for a function result is permitted

it is more difficult to handle on both

the provider and the client side
(need to avoid dangling pointers and

potential memory leaks)

A reasonably safe example:

extract section from container

no anonymous target creation

involved in this case!

invocation:

note the pointer assignment

it is essential for implementing

correct semantics and sometimes

also to avoid memory leaks

© 2009-22 LRZ Advanced Fortran Topics 37

FUNCTION get_section(c, s) result(r)

TYPE(cont_t), INTENT(IN) :: c
INTEGER, INTENT(IN) :: s(:)
REAL, POINTER :: r(:)
r => null()
IF (associated(c%item)) &

r => c%item(s(1):s(2):s(3))
END FUNCTION get_section

TYPE(cont_t) :: a_container
REAL, POINTER :: section(:)
:

section => get_section(&
a_container, [start,end,stride])

IF (associated(section)) THEN
:

END IF

set up a_container

do work on section

checks on s omitted

Using POINTER functions

in a variable definition context

Additional permissible function invocations are:

and

After evaluation of the function, assignment operation is

performed on the result

programmer needs to guarantee an associated pointer is returned

Other usage scenario: implement dictionary semantics

© 2009-22 LRZ Advanced Fortran Topics 38

get_section(a_container, [start,end,stride]) = x(i:j)

CALL array_operation(..., &
get_section(a_container, [start,end,stride], ...)

corresponding dummy argument
is e.g. an INTENT(inout)

data argument

val(weather_data, ′temperature′) = 52.8
val(weather_data, ′humidity′) = 74

Opinionated recommendations

Dynamic entities should be used, but sparingly and systematically

performance impact, avoid fragmentation of memory → allocate all needed

storage at the beginning, and deallocate at the end of your program; keep

allocations and deallocations properly ordered.

If possible, ALLOCATABLE entities should be used rather than

POINTER entities

avoid memory management issues (dangling pointers and leaks)

avoid using functions with pointer result

aliasing via pointers often has negative performance impact

A few scenarios where pointers may not be avoidable:

information structures → program these in an encapsulated manner.

The user of the facilities should normally not see a pointer at all.

subobject referencing (arrays and derived types) → performance impact (loss

of spatial locality, suppression of vectorization)!

© 2009-22 LRZ Advanced Fortran Topics 39

Recapitulation: Generic procedures

Named interfaces

signatures of any two specifics must

be sufficiently different

(compile-time resolution)

Potential restrictions on signa-

tures of specific procedures

binary operators: functions with two arguments

unary operators: functions with a single argument

assignment: subroutine with two arguments

overloaded structure constructor: function with type name as result

user-defined derived type I/O (treated later)

Operator overloading or

definition

© 2009-22 LRZ Advanced Fortran Topics 40

INTERFACE generic_name
PROCEDURE :: specific_1
PROCEDURE :: specific_2
…

END INTERFACE

INTERFACE OPERATOR (+)
PROCEDURE :: specific_1
PROCEDURE :: specific_2
…

END INTERFACE

INTERFACE OPERATOR (.user_op.)
PROCEDURE :: specific_1
PROCEDURE :: specific_2
…

END INTERFACE

Generalizing generic interface blocks

can be replaced by

with generalized functionality:

Referenced procedures can be

external procedures

dummy procedures

procedure pointers

Example:

is valid in

is non-conforming if a

MODULE PROCEDURE

statement is used

© 2009-22 LRZ Advanced Fortran Topics 41

INTERFACE foo_generic
MODULE PROCEDURE foo_1
MODULE PROCEDURE foo_2

END INTERFACE

INTERFACE foo_generic
PROCEDURE foo_1
PROCEDURE foo_2

END INTERFACE

INTERFACE foo_gen
! provide explicit interface
! for external procedure
SUBROUTINE foo(x,n)
REAL, INTENT(OUT) :: x
INTEGER, INTENT(IN) :: n

END SUBROUTINE foo
END INTERFACE
INTERFACE bar_gen
PROCEDURE foo

END INTERFACE

Case study - sparse matrix operations

What is a sparse matrix? → most entries are zero

Occupancy graph → non-zero elements represented by black dots

Example:

© 2009-22 LRZ Advanced Fortran Topics 42

next

Defining a suitable data type

Self-referential data type (linked list)

A scalar object of that type can effectively hold

a row of a sparse matrix:

e.g., assuming a matrix dimension of 200, the 3rd row might look like

© 2009-22 LRZ Advanced Fortran Topics 43

TYPE :: sparse
PRIVATE
INTEGER :: index
REAL :: value

TYPE (sparse), POINTER :: next => null()
END TYPE

3

∅

1.4

18

-0.2

97

0.22

131

0.04

197

-0.7

index

value

Case study - sparse matrix operations

Complete matrix

sa(i) is the i-th row of the

matrix

sa(i)%value is the non-zero

value of the sa(i)%index
column element

sa(i)%next is associated

with the next non-zero entry

© 2009-22 LRZ Advanced Fortran Topics 44

TYPE(sparse), ALLOCATABLE :: sa(:)

ar
ra

y
in

d
ex

Creating, copying and operations of such objects

topics for the next slides and the exercises

sa(i)

Overloading the structure constructor

Rationales:

default structure constructor not generally usable due to encapsulation of type

components

default structure constructor cannot by itself set up complete list or array structures

input data characteristics may not match requirements of default constructor

© 2009-22 LRZ Advanced Fortran Topics 45

MODULE mod_sparse

: ! previous type definition for sparse

INTERFACE sparse

PROCEDURE :: create_sparse

END INTERFACE

CONTAINS

FUNCTION create_sparse(colidx, values) result(r)

INTEGER, INTENT(IN) :: colidx(:)

REAL, INTENT(IN) :: values(:)

TYPE(sparse) :: r

:

END FUNCTION

END MODULE mod_sparse

more than one specific is possible

implementation dynamically allocates
the linked list for each row

must be a function with scalar result

generic has same name as the type

Notes on overloading the structure constructor

If a specific overloading function has the same argument

characteristics as the default structure constructor, the latter

becomes unavailable

advantage: for opaque types, object creation can also be done in use

association contexts

disadvantage: it is impossible to use the overload in constant expressions

© 2009-22 LRZ Advanced Fortran Topics 46

Of course, a specific may have a wildly different interface, corresponding to the
desired path of creation for the object (e.g., reading it in from a file)

When default assignment is inappropriate

For the overloaded constructor, ...

... would work fine if A(i) was not previ-

ously established)

However, for a "regular" assignment,

B effectively is not an object in its own right, but (except for the first array

element in each row) links into A.

Also, default assignment is unavailable between objects of

different derived types

© 2009-22 LRZ Advanced Fortran Topics 47

TYPE(sparse), ALLOCATABLE :: A(:)
:
A(i) = sparse(colidx, values)

TYPE(sparse), ALLOCATABLE :: A(:), B(:)
:
A(i) = sparse(colidx, values)

:
B = A

A(i) sparse(…)=

anonymous target of

next

function result is discarded after
assignment, but not the allocated

component memory

RHS persists after the assignment

allocate A

Overloading the assignment operator

Uses a restricted named

interface:

create a clone of the RHS

Further rules:

first argument: intent(out)
or intent(inout)

second argument:
intent(in)

assignment cannot be

overloaded for intrinsic types

overload usually wins out vs.

intrinsic assignment.
Exception: implicitly assigned

aggregating type‘s components →

aggregating type must also overload

the assignment

© 2009-22 LRZ Advanced Fortran Topics 48

MODULE mod_sparse

: ! type definition of sparse

INTERFACE assignment(=)

PROCEDURE assign_sparse

END INTERFACE

CONTAINS

SUBROUTINE assign_sparse(res, src)

TYPE(sparse), INTENT(OUT) :: res

TYPE(sparse), INTENT(IN) :: src

:

END SUBROUTINE

END MODULE

implement a deep copy

exactly two arguments

Quiz: what might be missing
in the procedure definition?

Overloaded assignment of function results:

Dealing with POINTER-related memory leaks

Scenario:

RHS may be an (overloaded)

constructor or some other

function value (e.g. an

expression involving a defined

operator)

Therapy:

add a finalizer to type

definition

references a module

procedure with a restricted

interface (usually, a single

scalar argument of the type to be

finalized)

© 2009-22 LRZ Advanced Fortran Topics 49

deep copy of
component

becomes orphaned
→ potential leak

TYPE :: sparse
:

CONTAINS
FINAL :: finalize_sparse

END TYPE

A(i) = sparse(...)

next next
see earlier definition

Finalizing procedure implementation

Implicit execution of finalizer when ...

object becomes undefined (e.g., goes out of scope),

is deallocated,

is passed to an intent(out) dummy argument, or

appears on the left hand side of an intrinsic assignment

© 2009-22 LRZ Advanced Fortran Topics 50

ELEMENTAL RECURSIVE SUBROUTINE finalize_sparse(this)
TYPE(sparse), INTENT(INOUT) :: this
IF (associated(this%next)) THEN

DEALLOCATE (this%next)
END IF

END SUBROUTINE

applicability to
array objects

Quiz: what happens in the assignment
A(i) = sparse(...)
if a finalizer is defined, but the assignment is not overloaded?

assumes that all targets
have been dynamically

allocated

Notes on finalizers

Feature with significant performance impact

potentially large numbers of invocations:

array elements, list members

finalizer invoked twice in assignments with a function value as RHS

Finalizers of types with pointer components:

may need to consider reference counting to avoid undefined pointers

Non-allocatable variables in main program

have the implicit SAVE attribute→ are not finalized

Further comments on finalizers will be added later

© 2009-22 LRZ Advanced Fortran Topics 51

An alternative aliasing mechanism

Alternative: association block

combine aliasing with a block

construct to avoid pointer-

related performance problems

Association syntax fragment:

allows to use the associate

name as an alias for the

selector inside the subsequent

block

Very useful for

heavily reused complex

expressions (especially

function values)

references into deeply nested

types

Selector:

may be a variable →

associate name is definable

may be an expression → is

pre-evaluated before aliasing

to associate name, which may

not be assigned to

Inherited properties:

type, array rank and shape,

polymorphism (discussed later)

asynchronous, target and

volatile attributes

Not inherited:

pointer, allocatable and

optional attributes

© 2009-22 LRZ Advanced Fortran Topics 52

(<associate name> => <selector>)

Block construct ASSOCIATE

Example:

given the type definitions and

object declaration:

the following block construct

can be established

Notes:

more than one selector can be

aliased for a single block

the associate is auto-typed (an

existing declaration in surrounding

scope becomes unavailable)

writing this out in full would be

very lengthy and much less

readable

© 2009-22 LRZ Advanced Fortran Topics 53

TYPE :: vec_3d
REAL :: x, y, z

END TYPE
TYPE :: system
TYPE(vec_3d) :: vec

END TYPE
TYPE :: all
TYPE(system) :: sys
real :: q(3)

END TYPE
TYPE(all) :: w

ASSOCIATE(v => w%sys%vec, &
q => sqrt(w%q))

v%x = v%x + q(1)**3
v%y = v%y + q(2)**3
v%z = v%z + q(3)**3

END ASSOCIATE

q must not be defined

associate name selector

following now: Exercise session 1

Object-oriented programming (I)

Type extension and polymorphism

© 2009-22 LRZ Advanced Fortran Topics 55

Characterization

Terminology

terms and their meaning vary between languages → danger of

misunderstandings

will use Fortran-specific nomenclature (some commonly used terms may

appear)

Aims of OO paradigm: improvements in

re-using of existing software infrastructure

abstraction

moving from procedural to data-centric programming

reducing software development effort, improving productivity

Indiscriminate usage of OO however can be

counterproductive

identify “software patterns” which have proven useful

© 2009-22 LRZ Advanced Fortran Topics 56

Scope of OO within Fortran

Fortran 95 supported object-based programming

Today's Fortran supports object-oriented programming

type extension and polymorphism (single inheritance)

type-bound and object-bound procedures, finalizers and type-bound

generics

extensions to the interface concept

Specific intentions of Fortran object model:

backward compatibility with Fortran 95

allow extensive correctness and consistency checking by the compiler

module remains the unit of encapsulation, but encapsulation becomes

more fine-grained

design based on Simula object model

© 2009-22 LRZ Advanced Fortran Topics 57

Type extension (1): Defining an extension

Type definitions

idea: re-use date definition

datetime a specialization (or

subclass) of date

date more general than

datetime

Fortran type extension

single inheritance only

Prerequisite:

parent type must be extensible

i.e., be a derived type that has

neither the SEQUENCE nor the

BIND(C) attribute

TYPE :: date
PRIVATE
INTEGER :: year = 0
INTEGER :: mon = 0, day = 0

END TYPE
TYPE, EXTENDS(date) :: datetime
PRIVATE
INTEGER :: hr = 0, min = 0, &

sec = 0
END TYPE

mod_date

date datetime

year,mon,
day hr,min,sec

© 2009-22 LRZ Advanced Fortran Topics 58

Type extension (2):

Declaring an object of extended type

If type definition is public

an object of the extended type

can be declared in the host, or

in a program unit which use

associates the defining module

Accessing component data

inherited components:

o_dt%day o_dt%mon o_dt%yr

additional components

o_dt%hr o_dt%min o_dt%sec

Parent component

o_dt % date

is an object of parent type

is a subobject of o_dt

recursive references possible:

o_dt % date % day

parent components are

themselves inherited to further

extensions

Note:

encapsulation may limit

accessibility for all component

variants

USE mod_date
:
TYPE(datetime) :: o_dt

© 2009-22 LRZ Advanced Fortran Topics 59

Type extension (3): General form of inheritance tree

A directed acyclical graph (DAG)

this is a consequence of supporting single inheritance only

Variants:

flat inheritance tree (typically only

one level)

base type is provided, which

everyone else extends

very often with an abstract type

(discussed later) as base type

deep inheritance tree

requires care with design (which

procedures are provided?) and

further extension

requires thorough documentation

date („base type“)

datetime

datetime_hires

date_calendar
(i.e. Mayan, etc.)

datetime_zone

etc.

© 2009-22 LRZ Advanced Fortran Topics 60

Type extension (4): Further notes

Extension can have zero

additional components

use for type differentiation:

o_mydate cannot be used

in places where an object of

type(date) is required

or to define type-bound

procedures (discussed

later) not available to parent

type

Type parameters are

also inherited

see later slide for more

details

Inheritance and

scoping:

cannot have a new type

component or type

parameter in an extension

with the same name as an

inherited one

(name space of class 2

identifiers)

TYPE, EXTENDS(date) :: mydate
END TYPE
TYPE(mydate) :: o_mydate

© 2009-22 LRZ Advanced Fortran Topics 61

Type extension (5): Component accessibility issues

Example: A type extension defined via use association

Inheritance of

accessibility:

o_dth has six inherited

private components and one

public one

supports mixed accessibility of

type components!

mod_date

date datetime

mod_ext

datetime_hires

msec

MODULE mod_ext
USE mod_date
TYPE, EXTENDS(datetime) :: &

datetime_hires
PUBLIC
INTEGER :: msec

END TYPE
TYPE(datetime_hires) :: o_dth
END MODULE

Technical Problem (TP1) for

opaque types:

cannot use the structure

constructor for datetime_hires

reason: it is only available outside
the host of mod_date, hence

privateness applies

one solution: overload structure

constructor

u

© 2009-22 LRZ Advanced Fortran Topics 62

Explicit syntax for mixed component access

Example: a partially opaque derived type

any program unit may modify the %location component:

MODULE mod_person
TYPE :: person
PRIVATE
CHARACTER(len=strmx) :: name
INTEGER :: age
CHARACTER(len=tmx), PUBLIC :: location

END TYPE
: ! module procedures are not shown
END MODULE

USE mod_person, ONLY : person
TYPE(person) :: p
: ! initialize p via an accessor defined in mod_person
p%location = 'room E.2.24' ! update location

design decision: location
is not encapsulated. Why?

© 2009-22 LRZ Advanced Fortran Topics 63

Type extension (6): Structure constructor

Using keywords

example: inside the host of

mod_date, one can have

→ change component order

rules are as for procedure

keyword arguments

e.g., once keyword use starts,

it must be continued for all

remaining components

Using parent component

construction

example: inside the host of

mod_date, one can have

keyword notation required!

General restriction:

it is not allowed to write

overlapping definitions, or

definitions that result in an

incomplete object

TYPE(date) :: o_d

o_d = date (mon=9, day=12 &
year=2012)

TYPE(datetime) :: o_dt

o_dt = datetime (date=o_d, &
hr=11, min=22, sec=44)

© 2009-22 LRZ Advanced Fortran Topics 64

Further structure constructor features in

Omitting components in the structure constructor

this omission is only allowed for components that are

default-initialized in the type definition

example: in any program unit, one can have

because all other components will receive their default-

initialized value

also applies to POINTER and ALLOCATABLE components
(further details on day 3)

sometimes, this alleviates the TP1 from some slides earlier

USE mod_ext
TYPE (datetime_hires) :: o_hires

o_hires = datetime_hires(msec=711)

© 2009-22 LRZ Advanced Fortran Topics 65

Polymorphism (1): Polymorphic objects

Declaration with CLASS:

declared type is date

dynamic type may vary at run

time: may be declared type and

all its (known) extensions (type

compatibility)

direct access (i.e., references and

definitions) only possible to com-

ponents of declared type

(compile-time: compiler lacks

knowledge, run-time: semantic

problem and performance issues)

Data item can be

1. dummy data object

2. pointer or allocatable variable

3. both of the above

CLASS(date), ... :: o_poly_dt

interface polymorphism
possible additional attributes

loosening of strict typing rules

o_poly_dt%day = 12

o_poly_dt%hr = 7

invalid even if dynamic type
of o_poly_dt is datetime

data polymorphism →
a new kind of dynamic entity

© 2009-22 LRZ Advanced Fortran Topics 66

Polymorphism (2): Interface polymorphism

Example:

increment date object by a given

number of days

Inheritance mechanism:

actual argument ...

… can be of declared type of

dummy or an extension:

... can be polymorphic or non-

polymorphic

Argument association:

dynamic type of actual

argument is assumed by the

dummy argument

SUBROUTINE inc_date(this, days)
CLASS(date), INTENT(INOUT) :: this
REAL(RK), INTENT(IN) :: days
: ! implementation → exercise

END SUBROUTINE

TYPE(date) :: o1
TYPE(datetime) :: o2
: ! initialize both objects
CALL inc_date(o1,2._rk)
CALL inc_date(o2,2._rk)

could replace „TYPE(…)“ by

„CLASS(…)“ for both objects
(an additional attribute may be needed)

© 2009-22 LRZ Advanced Fortran Topics 67

Polymorphism (3): Interface polymorphism cont'd

Example continued:

account for fraction of a

day when incrementing a

datetime object

Restriction on use:

cannot take objects of declared

type date as actual argument:

reason: if o1 has dynamic

type date, then no sec
component exists that can

be incremented

Fortran term:

dummy argument must be

type compatible with

actual argument

(note that type compatibility,

in general, is not a

symmetric relation)

SUBROUTINE inc_datetime(this, days)
CLASS(datetime), &

INTENT(INOUT) :: this
REAL(rk), INTENT(IN) :: days
: ! implementation → exercise

END SUBROUTINE

CLASS(date) :: o1
CLASS(datetime) :: o2
: ! initialize both objects

CALL inc_datetime(o1,.03_rk)

CALL inc_datetime(o2,.03_rk)
invalid invocation –

will not compile
(this also applies if o1
is of non-polymorphic

type(date))

assume
dummy

arguments

© 2009-22 LRZ Advanced Fortran Topics 68

Polymorphism (4):

Data polymorphism / dynamic objects

Declaration:

unallocated / disassociated

entities: dynamic type is equal

to declared type

usual difference in semantics
(e.g., auto-deallocation for

allocatables)

Producing valid entities:

typed allocation to base type

or an extension

pointer association

CLASS(date), ALLOCATABLE :: ad

CLASS(date), ALLOCATABLE :: bd(:)

CLASS(date), POINTER :: &
cd => null()

: ! etc

polymorphic allocatable scalar

polymorphic allocatable array

polymorphic pointer to scalar

ALLOCATE(datetime :: ad, cd)

ALLOCATE(date :: bd(5))

becomes dynamic type

could omit since equal to base type

TYPE(datetime_zone), &
target :: t

…
! may need to deallocate cd

cd => t dynamic type of cd
is now datetime_zone

© 2009-22 LRZ Advanced Fortran Topics 69

Polymorphism (5): Arrays

A polymorphic object may

be an array

here: assumed-shape

(Note: using assumed-size or

explicit-shape is usually not a

good idea)

but type information applies

for all array elements

all array elements have the

same dynamic type

For per-element type

variation:

define an array of suitably

defined derived type:

ard(1)%p can have a dyna-

mic type different from that of
ard(2)%p

CLASS(date) :: ar_d(:)

TYPE :: date_container
CLASS(date), ALLOCATABLE :: p

END TYPE

TYPE(date_container) :: ard(10)

© 2009-22 LRZ Advanced Fortran Topics 70

Polymorphism (6): Further allocation mechanisms

Sourced allocation

produce a clone of a variable

or expression

allocated variable (ad) must be

type compatible with source

source can, but need not be

polymorphic

definition of dynamic type of

source may be inaccessible in

the executing program unit (!)

usual semantics: deep copy for

allocatable components, shallow

copy for pointer components

Sourced allocation of arrays

array bounds are also trans-

ferred in sourced allocation

Molded allocation

allocate an entity with the same

shape, type and type para-

meters as mold

mold need not have a defined

value (no data are transferred)

otherwise, comparable rules as

for sourced allocation

CLASS(datetime) :: src
: ! define src

ALLOCATE(ad, source=src)

CLASS(datetime) :: b

ALLOCATE(ad, mold=b)

object ad: declared two slides earlier

© 2009-22 LRZ Advanced Fortran Topics 71

Polymorphism (7): Type resolution

Example scenario:

a routine is needed that writes

a complete object of

CLASS(date) to a file

irrespective of its dynamic type

Problem:

how can extended type

components be accessed

within write_date?

New block construct:

SUBROUTINE write_date(this, fname)
CLASS(date), intent(in) :: this
CHARACTER(len=*) :: fname
: ! open file fname on unit
: ! see inset right

END SUBROUTINE

SELECT TYPE (this)
TYPE IS (date)
WRITE(unit,fmt='(“date“)')
WRITE(unit,…) this%day,…

TYPE IS (datetime)
WRITE(unit,fmt='(“datetime“)')
WRITE(unit,…) …,this%hr,…

: ! further type guards for
: ! other extensions
CLASS DEFAULT
STOP 'Type not recognized'

END SELECT

must be polymorphic

inside this type guard block:
● this is nonpolymorphic

● type of this is datetime

fall-through block:
● this is polymorphic

● typically used
for error processing

© 2009-22 LRZ Advanced Fortran Topics 72

Polymorphism (8):

Semantics and rules for SELECT TYPE

Execution sequence:

at most one block is executed

selection of block:

Access to components

in accordance with resolved

type (or class)

Resolved polymorphic object

must be type compatible with every

type/class guard (constraint on

guard!)

Technical problem (TP2):

access to all extension types' defi-

nitions is needed to completely

cover the inheritance tree

Type selection allows both

run time type identification (RTTI)

run time class identification (RTCI)

It is necessary to ensure type safety

and (reasonably) good performance

RTCI or mixed RTTI+RTCI are not

expected to occur very often

executing SELECT TYPE is an

expensive operation

1.find type guard („type is“) that exactly

matches the dynamic type

2.if none exists, select class guard („class

is“) which most closely matches dynamic

type and is still type compatible

→ at most one such guard exists

3.if none exists, execute block of class

default (if it exists)

© 2009-22 LRZ Advanced Fortran Topics 73

An RTCI scenario

„Lifting“ to an extended type

e.g., because a procedure must be executed which only works

(polymorphically or otherwise) for the extended type

remember invalid invocation of inc_datetime from earlier slide – we

can now write a viable version of this:

CLASS(date) :: o1
: ! initialize o1

SELECT TYPE (o1)

CLASS IS (datetime)
CALL inc_datetime(o1,.03_rk)

CLASS DEFAULT
WRITE(*,*) &

'Cannot invoke inc_datetime on o1'
END SELECT

inside „class is“ block:
● o1 is polymorphic

(this is what we want here!)
● declared type of o1 is datetime

date („base type“)

datetime

datetime_hires

date_calendar
(i.e. Mayan, etc.)

datetime_zone

etc.

part of inheritance tree
covered by class guard

© 2009-22 LRZ Advanced Fortran Topics 74

SELECT TYPE and association

Associated alias must be

used if the selector is not

a named variable

e.g., if it is a type component,

or an expression

Additional restrictions:

only one selector may appear

the selector must be

polymorphic

Example:

given the type definition

and an object o_p of that type, the

RTTI for o_p%birthday is

required to look like this:

TYPE :: person
CLASS(date), ALLOCATABLE :: birthday

END TYPE

SELECT TYPE (b => &
o_p%birthday)

CLASS IS (date)
WRITE(*,*) 'Birthday:', &

b%day, b%mon, b%year
CLASS IS (datetime)
…
WRITE(*,*) 'Birth hour:', b%hr

END SELECT

© 2009-22 LRZ Advanced Fortran Topics 75

Polymorphism (9): A universal base class

Denoted as „*“

„no declared type“

Refers to an object that is

of

1. intrinsic, or

2. extensible, or

3. non-extensible

dynamic type

Syntax:

an unlimited polymorphic

(UP) entity

usual restrictions: (POINTER eor

ALLOCATABLE) or a dummy

argument, or both

Conceptual inheritance tree:

CLASS(*), ... :: o_up

date
body

etc.

*

real

integer

intrinsic types

BIND(C) and
sequence types

all extensible „base“ types

© 2009-22 LRZ Advanced Fortran Topics 76

Polymorphism (10): UP pointer

An UP pointer can point to

anything:

However, dereferencing …

… is not allowed without a SELECT

TYPE block (no declared type → no

accessible components)

RTTI:

can also use an intrinsic type

guard in this context

analogous for UP dummy

arguments if access to data is

needed

CLASS(*), POINTER :: p_up
TYPE(datetime), TARGET :: o_dt
REAL, POINTER :: rval

p_up => o_dt
ALLOCATE(rval) ; rval = 3.0
p_up => rval

p_up => o_dt
WRITE(*, *) p_up % yr
! will not compile

TYPE(datetime), POINTER :: pt

SELECT TYPE (p_up)
TYPE IS (datetime)
WRITE(*, *) p_up % yr
pt => p_up

TYPE IS (real)
WRITE(*, '(f12.5)') p_up

CLASS DEFAULT
WRITE(*, *) 'unknown type'

END SELECT

© 2009-22 LRZ Advanced Fortran Topics 77

UP entities of non-extensible dynamic type

Use of this form of UP is not recommended

Reason: different from intrinsic and extensible types, no type information

is available via the object itself → SELECT TYPE always falls through to

„class default“

Loss of type safety:

syntactically, it is in this case allowed to have

use this feature only if you know what you‘re doing

(i.e. maintain type information separately and always check)

CLASS(*), TARGET :: o_up
TYPE(...), POINTER :: p_nonext

p_nonext => o_up

any BIND(C) or SEQUENCE type

See examples/day2/discriminated_union for a possible usage scenario

of arbitrary dynamic type

Polymorphism (11): Allocating an UP object

Applies to

unlimited polymorphic entities with the POINTER or

ALLOCATABLE attribute

Typed allocation:

any type may be specified, including intrinsic and non-

extensible types

Sourced or molded allocation

source or mold may be of any type (limitation to extensible type

does not apply)

the newly created object takes on the dynamic type of

source or mold (same as for „regular“ polymorphic objects)

© 2009-22 LRZ Advanced Fortran Topics 78

© 2009-22 LRZ Advanced Fortran Topics 79

Polymorphism (12): Type inquiry intrinsics

Compare dynamic types:

extends_type_of(a, mold)

same_type_as(a, b)

functions return a logical value

arguments must be entities of extensible (dynamic) type, which

can be polymorphic or non-polymorphic

Recommendation:

only use if type information is not available (most typically if at least

one of the arguments is UP), or if type information not relevant for the

executed algorithm

.TRUE. if mold is

type compatible with a

it may be implicitly available!

Object-oriented programming (II)

Binding of procedures

to Types and Objects

© 2009-22 LRZ Advanced Fortran Topics 81

Motivation

Remember inc_date and inc_datetime procedures:

programmer decides which of the two routines is invoked

for an object of dynamic type date, inc_datetime cannot

be invoked

Suppose there is a desire to

invoke incrementation depending on the dynamic type of

the object:

This concept is also known as dynamic (single) dispatch

via the object

cannot use style generics (polymorphism forces run-time decision)

date: o_d%increment(…) invokes inc_date

datetime: o_d%increment(…) invokes inc_datetime

CLASS(date), ALLOCATABLE :: o_d

not a Fortran term

© 2009-22 LRZ Advanced Fortran Topics 82

Prolegomenon: Pointers to procedures (1)

Declaration:

a named procedure pointer

with an explicit interface ...

… here it is:

Usage:

Notes:

pointing at a procedure that is

defined with a generic or ele-

mental interface is not allowed

no TARGET attribute is requi-

red for the procedure pointed

to

PROCEDURE(subr), POINTER :: &
pr => null()

INTERFACE
SUBROUTINE subr(x)

REAL, INTENT(INOUT) :: x
END SUBROUTINE

END INTERFACE

REAL :: x
:
pr => subr
x = 3.0
CALL pr(x) ! invokes "subr"

must associate
before invocation

© 2009-22 LRZ Advanced Fortran Topics 83

Pointers to procedures (2)

Functions are also allowed

in this context:

Usage:

this also illustrates that the

target can change throughout

execution (in this case to the

intrinsic sin)

some of the intrinsics get

dispensation for being used

like this despite being generic

INTERFACE
REAL FUNCTION fun(x)
REAL, INTENT(IN) :: x

END FUNCTION
END INTERFACE

PROCEDURE(fun), POINTER :: &
pfun => null()

pfun => fun

WRITE(*,*) pfun(3.5)

pfun => sin

WRITE(*,*) pfun(3.0)

returns fun(3.5)

returns sin(3.0)

© 2009-22 LRZ Advanced Fortran Topics 84

Using an implicit interface

not recommended (no signature checking, many restrictions)

invocations:

Pointers to procedures (3)

PROCEDURE(), POINTER :: pi => null()
EXTERNAL :: targ_1, targ_2

! external, pointer :: pi => null()

PROCEDURE(), POINTER :: pfi
REAL :: pfi, targ_2

equivalent alternative

type declaration for pfi
indicates a function pointer

pi => targ_1
CALL pi(x, y, z) ! OK if consistent with interface

pi => pfun ! target has explicit interface

pfi => targ_2 ! OK if interface + function result
WRITE(*,*) pfi(x, y) ! consistent

not permitted

© 2009-22 LRZ Advanced Fortran Topics 85

Procedures as type components

Two variants are supported:

object-bound procedure (OBP) and type-bound procedure (TBP)

Syntax:

„standard“ type component

pointer to a procedure

Semantics:

each object's %send
component can be associated

with any procedure with the

same interface as send

TYPE :: data_send_container
CLASS(data), ALLOCATABLE :: d
PROCEDURE(send), &
POINTER :: send => null()

END TYPE

TYPE :: date
: ! previously defined comp.

CONTAINS
PROCEDURE :: &

increment => inc_date
END TYPE

Syntax:

component in contains part of

type definition

no POINTER attribute appears

Semantics:

each object's %increment
component is associated with

the procedure inc_date

existing procedure
good practice, but
not obligatory

© 2009-22 LRZ Advanced Fortran Topics 86

Restrictions on the procedure interface

... apply for both variants

First dummy argument:

declared type must be same type as the type (type of the object) the

procedure is bound to (the procedure pointer is a component of)

must be polymorphic if and only if type is extensible (→ assure inheritance

works with respect to any invocation)

must be a scalar

must not have the POINTER or ALLOCATABLE attribute

for the type-bound case, the procedure interface has already been specified on

an earlier slide

SUBROUTINE send(this, desc)
CLASS (data_send_container) :: this
CLASS (handle) :: desc
: ! implementation not shown

END SUBROUTINE object-bound case

This is the dummy that will usually become
argument associated with the object invoking the TBP

© 2009-22 LRZ Advanced Fortran Topics 87

Diagrammatic representation

Object-bound procedure Type-bound procedure (TBP)

implementation need not be

public

increment component is

public (even if type is opaque), un-

less explicitly declared private

mod_date

date

increment()

inc_date()

yr,mon,day

mod_send

data_send_container

send()

send()

data

© 2009-22 LRZ Advanced Fortran Topics 88

Invocation of procedure components

Syntax is the same for the

object-bound and type-

bound case

need to set up pointer

association for the object-

bound case before invocation

Notes:

the object is associated with the

first dummy of the invoked

procedure („passed object“)

inheritance:

(as things stand now) also invokes

inc_date, so we haven't yet gotten

what we wanted some slides earlier

TYPE (data_send_container) :: c
: ! set up desc
ALLOCATE (c%d, source = …)
IF (…) THEN
c%send => my_send1
ELSE
c%send => my_send2
END IF

CALL c%send(desc)
object-bound case

same interface
as send

TYPE (date) :: o_d
TYPE (datetime) :: o_dt

o_d = date(12, 'Dec', 2012)
: ! also make o_dt defined

CALL o_d%increment(12._rk)

assume first if branch is taken →

same as call my_send1(c, desc)

CALL o_dt%increment(2._rk)

same as call inc_date(o_d, 12._rk)

ty
p

e
-b

o
u

n
d

c
a

s
e

Invoking object: may be

polymorphic or not polym.

dynamic type is used to decide

which procedure is invoked

this procedure is unique: go up

the inheritance tree until a

binding is found (implicit RTCI)

type may be inaccessible in

invocation's scope!

© 2009-22 LRZ Advanced Fortran Topics 89

Overriding a type-bound procedure

In a type extension,

an existing accessible TBP

can be overridden:

with the binding above added,

invokes inc_datetime

Invoke by type component

a class 2 name → no name

space collisions between

differently typed objects (with or

without inheritance relation)

TYPE, EXTENDS(date) :: datetime
: ! as before

CONTAINS
PROCEDURE :: increment => &

inc_datetime
END TYPE

CALL o_dt%increment(.03_rk) datetime
date_calendar
(i.e. Mayan, etc.)

datetime_zone

etc.

date

datetime_hires

Assumption:

Bold-faced types
define or override
TBP increment

Others don't

© 2009-22 LRZ Advanced Fortran Topics 90

Restrictions on the interface of a procedure

used for overriding an existing TBP

Each must have same interface as the original TBP

even same argument keyword names!

if they (both!) are functions, the result characteristics must

be the same

Except the passed object dummy,

which must be declared class(<extended type>)

This guarantees that inheritance works correctly together

with dynamic dispatch

In the datetime example,

the procedure interface of inc_datetime (see earlier slide)

obeys these rules

© 2009-22 LRZ Advanced Fortran Topics 91

Comment on private type-bound procedures

These cannot be overridden outside their defining module

therefore p2 is not an overriding type-bound procedure, but a new

binding that applies to all entities of CLASS(t2)

p2 therefore needs not to have the same characteristics as p

MODULE m1
TYPE :: t1
CONTAINS

PROCEDURE, PRIVATE :: p
END TYPE

CONTAINS
SUBROUTINE p(this)
CLASS(t1) :: this
:

END SUBROUTINE
END MODULE

MODULE m2
USE m1
TYPE, EXTENDS(t1) :: t2
CONTAINS
PROCEDURE :: p => p2

END TYPE
CONTAINS
SUBROUTINE p2(this, i)
CLASS(t2) :: this
INTEGER :: i
:

END SUBROUTINE
END MODULE

u

Note: compilers might get dynamic dispatch wrong in this situation,
and don't handle differing interfaces (check recent releases)

A
Corrigendum

© 2009-22 LRZ Advanced Fortran Topics 92

Suppress overriding in extension types

The NON_OVERRIDABLE attribute can be used in any

binding

For example, if write_date (see earlier slide) is bound to date
as follows:

then it is not possible to override the write TBP in any extension

this makes sense here because it is intended that the complete

inheritance tree is dealt with inside the implementation of the procedure

(other rationales may exist in other scenarios)

TYPE :: date
: ! previously defined comp.

CONTAINS
PROCEDURE :: increment => inc_date
PROCEDURE, NON_OVERRIDABLE :: write => write_date

END TYPE

© 2009-22 LRZ Advanced Fortran Topics 93

Diagrammatic representation for overriding TBPs

Non-overridden procedures are inherited

mod_date

date

write()

increment()

datetime

increment()

inc_date() inc_datetime()

yr,mon,day hr,min,sec

write_date()

© 2009-22 LRZ Advanced Fortran Topics 94

On „SELECT TYPE“ vs. „overriding TBP”

Dynamic dispatch by TBP

TBP's should behave consis-

tently whether handed an entity

of base type or any of its exten-

sions (Liskov substitution principle)

example: “incrementation by

(fractional) days“ obeys the

substitution principle

some attention is needed to

avoid violations:

client extends a type

programmer using the interface

may misinterpret intended

semantics (→ documentation

issue!)

avoid bad design of extensions

(analogous to side effects in

functions)

Example: derive square from

rectangle (exercise)

Isolate RTTI

to the few places where needed

creation of objects, I/O

since it is all too easy to forget

covering all parts of the

inheritance tree

RTCI rarely used, because

TBPs fill that role

Overriding does not lose

functionality

parent type invocation (see left)
TYPE(datetime) :: dtt
CALL dtt%date%increment(120._rk)

© 2009-22 LRZ Advanced Fortran Topics 95

Array as passed object

Passed object must be a scalar

therefore, arrays must usually invoke TBP or OBP elementwise

But a type-bound procedure may be declared ELEMENTAL

actual argument then may be an array
(remember further restrictions on interface of an ELEMENTAL procedure)

invocation can be done with array or array slice

This is not feasible for the object-bound case

each elements' procedure pointer component may point to a different procedure

TYPE :: elt
:

CONTAINS
PROCEDURE :: p

END TYPE

ELEMENTAL SUBROUTINE p(this, x)
CLASS(elt), INTENT(INOUT) :: this
REAL, INTENT(IN) :: x
: ! no side effects

END SUBROUTINE

TYPE(elt) :: o(5)
:
CALL o%p([(real(i), i=1,5)])

invocation

© 2009-22 LRZ Advanced Fortran Topics 96

Variations on the passed object: PASS and NOPASS

Pass non-first argument

via explicit keyword

specification

example: bind procedure to

more than one type

Do not pass argument at all

Invocations:

Note:

overriding TBPs must preserve

PASS / NOPASS

TYPE :: t1
:

CONTAINS
PROCEDURE, &

PASS(o1) :: pf
END TYPE

TYPE :: t2
:

CONTAINS
PROCEDURE, &

PASS(o2) :: &
pq => pf

END TYPE

SUBROUTINE pf(o1, x, o2, y)
CLASS(t1) :: o1
CLASS(t2) :: o2
:

END SUBROUTINE

TYPE :: t3
:

CONTAINS

PROCEDURE, NOPASS :: pf
END TYPE

TYPE(t1) :: o_t1
TYPE(t2) :: o_t2
TYPE(t3) :: o_t3
:
CALL o_t1%pf(x, o_t2, y)
CALL o_t2%pq(o_t1, x, y)
CALL o_t3%pf(o_t1, x, o_t2, y)

no „=>“. Why?

© 2009-22 LRZ Advanced Fortran Topics 97

Abstract Types

Properties:

no entity of that (dynamic) type

can exist

may have zero or more

components

declaration of a polymorphic

entity of declared abstract type

is permitted

an abstract type may be an

extension

Example:

valid and invalid usage:

TYPE, ABSTRACT :: <type name>
: ! components, if any

[CONTAINS
: ! type-bound procedures

]
END TYPE

TYPE, ABSTRACT :: shape
END TYPE

TYPE, EXTENDS(shape) :: square
REAL :: side

END TYPE

TYPE(shape) :: s1
TYPE(square) :: s2
CLASS(shape), ALLOCATABLE :: &

s3, s4

ALLOCATE(shape :: s3)
ALLOCATE(square :: s4)

© 2009-22 LRZ Advanced Fortran Topics 98

Abstract Types with deferred TBPs

(aka Interface Classes)

Syntax of definition

one or more deferred bindings

are added:

cannot override a non-deferred

binding with a deferred one

Deferred binding:

described by an interface

(usually abstract)

enforces that any client defi-

ning a type extension must

establish an overriding binding
(once you have one, it is inherited to

extensions of the extension)

TYPE, ABSTRACT :: handle
PRIVATE
INTEGER :: state = 0

CONTAINS
PROCEDURE(open_handle), &

DEFERRED :: open

PROCEDURE, &
NON_OVERRIDABLE :: getstate

END TYPE HANDLE

ABSTRACT INTERFACE
SUBROUTINE open_handle(this, &

info)
IMPORT :: handle

CLASS(handle) :: this
CLASS(*), INTENT(IN), &

OPTIONAL :: info
END SUBROUTINE

END INTERFACE

only allowed
in an abstract type

assuming type definition in host

© 2009-22 LRZ Advanced Fortran Topics 99

Extending from an interface class

MODULE mod_file_handle
USE mod_handle
TYPE, EXTENDS(handle) :: file_handle
PRIVATE
INTEGER :: unit

CONTAINS
PROCEDURE :: open => file_open

END TYPE file_handle
CONTAINS
SUBROUTINE file_open(this, info)
CLASS(file_handle) :: this
CLASS(*), INTENT(IN), OPTIONAL :: info
SELECT TYPE (info)
TYPE IS (character(len=*))

: ! open file with name info and store this%unit
this%state = 1

: ! error handling via class default
END SELECT

END SUBROUTINE
END MODULE mod_file_handle

will not compile without this override

© 2009-22 LRZ Advanced Fortran Topics 100

Diagrammatic representation

of the interface class and its realization

Will typically use (at least) two separate modules

e.g., module providing abstract type often third-party-provided

Abstract class and abstract interface indicated by italics

non-overridable TBP getstate() → “invariant method”

mod_handle

open_handle()

handle

getstate()

open()

getstate()

mod_mystuff

file_handle

open()

file_open()

u

state unit

© 2009-22 LRZ Advanced Fortran Topics 101

Using the interface class

Compare to „traditional“ design:

Implementation details of non-abstract type decoupled from “policy-

based” design of abstract type

Dependency inversion:

ideally, both clients and implementations depend on abstractions

in a procedural design, the type “handle” would need to contain all possible variants

→ abstraction becomes dependent on irrelevant details

PROGRAM prog_client
USE mod_file_handle, ONLY : handle, file_handle
IMPLICIT NONE

CLASS(handle), ALLOCATABLE :: h
ALLOCATE(file_handle :: h)
CALL h%open('output_file.dat')
: ! further processing including I/O
: ! close file
DEALLOCATE(h)

END PROGRAM prog_client

full dependency inversion
would imply that use association

is only to mod_handle

Dependency Inversion

with Submodules

© 2009-22 LRZ Advanced Fortran Topics 102

© 2009-22 LRZ Advanced Fortran Topics 103

Problems with Modules

Tendency towards monster modules for large projects

e.g., type component privatization prevents programmer from breaking

up modules where needed

Recompilation cascade effect

changes to module procedures forces recompilation of all code that use

associates that module, even if specifications and interfaces are

unchanged

workarounds are available, but somewhat clunky

Object oriented programming

more situations with potential circular module dependencies are possible

(remember TP2 on earlier slide)

type definitions referencing each other may also occur in object-based

programming

© 2009-22 LRZ Advanced Fortran Topics 104

Solution: Submodules

Split off implementations (module procedures) into

separate files

MODULE mymod

PROCEDURE()

MODULE mymod

PROCEDURE()

SUBMODULE (mymod) smod_1

PROCEDURE()

h

access is by host association
(i.e. also to private entities)

procedure implementation

procedure
interface

Submodule program units

Syntax

applies recursively: a descendant

of smod_1 is

sibling submodules are permitted
(but avoid duplicates for accessible

procedures)

Symbolic representation

SUBMODULE (mymod) smod_1

: ! specifications

CONTAINS

: ! implementations

END SUBMODULE

SUBMODULE (mymod:smod_1) smod_2

:

END SUBMODULE

mymod

smod_1

smod_2

h

h

ancestor
module

immediate
ancestor submodule

© 2009-22 LRZ Advanced Fortran Topics 105

Submodule specification part

Like that of a module, except

no PRIVATE or PUBLIC statement or attribute can appear

Reason: all entities are private

and only visible inside the submodule and its descendants

SUBMODULE (mymod) smod_1

TYPE, EXTENDS(t) :: ts

:

END TYPE

REAL, ALLOCATABLE :: x(:,:)

:

END SUBMODULE

MODULE mymod

IMPLICIT NONE

TYPE :: t

:

END TYPE

:

END MODULE

© 2009-22 LRZ Advanced Fortran Topics 106

effectively
private

Separate module procedure interface

In specification part of the ancestor module

IMPORT statement not permitted (auto-import is done)

MODULE mod_date
TYPE :: date

: ! as previously defined
END TYPE
INTERFACE
MODULE SUBROUTINE write_date (this, fname)
CLASS(date), INTENT(IN) :: this
CHARACTER(LEN=*), INTENT(IN) :: fname

END SUBROUTINE
MODULE FUNCTION create_date (year, mon, day) result(dt)
INTEGER, INTENT(IN) :: year, mon, day
TYPE(date) :: dt

END FUNCTION
END INTERFACE

END MODULE

indication that the
implementation is contained

in a submodule

© 2009-22 LRZ Advanced Fortran Topics 107

Separate module procedure implementation

Variant 1:

complete interface (including argument keywords) is taken from

module

dummy argument and function result declarations are not needed

SUBMODULE (mod_date) date_procedures
: ! specification part

CONTAINS
MODULE PROCEDURE write_date

: ! local variable-decls and executable
: ! statements as shown before

END PROCEDURE write_date
MODULE PROCEDURE create_date

: ! local variable-decls and executable
: ! statements as shown before

END PROCEDURE create_date
END SUBMODULE date_procedures

© 2009-22 LRZ Advanced Fortran Topics 108

Separate module procedure implementation

Variant 2:

interface is replicated in the submodule

must be consistent with ancestor specification

SUBMODULE (mod_date) date_procedures
: ! specification part

CONTAINS
MODULE SUBROUTINE write_date (this, fname)

CLASS(date), INTENT(IN) :: this
CHARACTER(LEN=*), INTENT(IN) :: fname
: ! local variable-decls and executable
: ! statements as shown before

END SUBROUTINE write_date
MODULE FUNCTION create_date (year, mon, day) result(dt)

INTEGER, INTENT(IN) :: year, mon, day
TYPE(DATE) :: dt

: ! ... as shown before
END FUNCTION create_date

END SUBMODULE date_procedures

note syntactic
difference to Variant 1

© 2009-22 LRZ Advanced Fortran Topics 109

Dependency inversion explained

Access to submodule entities

can be indirectly obtained via

execution of procedures declared with

separate module procedure interfaces

Changes to implementations

no dependency of program units

(except descendant submodules) on

these

do not require recompilation of

program units using the parent

module

mod_date

date
write_date()
create_date()

date_procedures

write_date()
create_date()

h

program

u

implementation of module procedure
can access private type components

due to host access to module

© 2009-22 LRZ Advanced Fortran Topics 110

© 2009-22 LRZ Advanced Fortran Topics 111

Exploiting dependency inversion in OO design

mod_date

date

write()

date_procedures

write_date()

Avoid circular use dependency:

the submodule is allowed to access all

modules which define extensions to

date by use association

mod_ext

datetime_hires

msec

write_date can now deal with

entities of type datetime_hires
without generating a

circular module dependency

…

datetime

…

h

Beware:

use association overrides host

association → applying an ONLY

clause is advisable

USE mod_ext, ONLY : datetime_hires

following now: Exercise session 2

Generic Type-bound

Procedures

© 2009-22 LRZ Advanced Fortran Topics 113

Example scenario

Two existing concepts

both support an interface of

same name and function

Need to join those concepts

which may interact in some way

scenario: multiple inheritance

TBP increment():

for funds, increments amount

for date, increments by days

for admin_funds, both the

above should work individually,

and in addition it should be

possible to account for the

interest rate (interaction!)

These are interfaces with

differing signatures!

in principle, the funds binding

will be inherited by

admin_funds

remember interface restrictions

on overriding a TBP

funds

increment()

currency, amount

date

increment()

day, mon, year

admin_funds

increment()

interest

not supported
by language

syntax/semantics

how to define?

© 2009-22 LRZ Advanced Fortran Topics 114

Declaring a generic type-bound procedure

Starting point:

the type which first declares the

binding that must be generic

may need to retrofit generic

from simple TBP (easily done, at

the cost of recompiling all clients)

Adding specifics to a

generic in a type extension:

three specific TBPs now can be

invoked via one generic name
(one inherited, two added)

it is also allowed to bind to an

inherited specific TBP

TYPE, PUBLIC :: funds
PRIVATE
CHARACTER(len=3) :: currency
REAL :: amount

CONTAINS

PROCEDURE, PRIVATE :: &
inc_funds

GENERIC, PUBLIC :: &
increment => inc_funds

END TYPE

good manners
to hide this

TYPE, PUBLIC, &
EXTENDS(funds) :: admin_funds
PRIVATE
REAL :: interest
TYPE(date) :: d

CONTAINS
PROCEDURE, PRIVATE :: inc_date
PROCEDURE, PUBLIC :: inc_both
GENERIC, PUBLIC :: &
increment => inc_date, inc_both

END TYPE

aggregation

O
C

P

© 2009-22 LRZ Advanced Fortran Topics 115

Disambiguating procedure interfaces

SUBROUTINE inc_funds(this, by)

SUBROUTINE inc_date(this, days)

SUBROUTINE inc_both(this, days, by)

class(funds)

INTEGER :: days REAL :: by

class(admin_funds)CLASS(admin_funds)

Selection of specific TBP:

must be possible at compile time

pre-requisite: between each pair of specifics, for at least one non-

optional argument type incompatibility is required

providing two specifics which only differ in one argument, one being

type compatible with the other, is not sufficient to disambiguate

… is inherited

… re-dispatches to
this%d%increment()

… invokes both the above,
after accounting for interest

Implementation ...

© 2009-22 LRZ Advanced Fortran Topics 116

Invocation of a generic TBP

The usual TKR (type/kind/rank)

matching rules apply …

a specific TBP can still be

overridden i.e., compile-time

resolution is only partial

TYPE(admin_funds) :: of
CLASS(funds), &

allocatable :: of_poly

ALLOCATE(admin_funds :: of_poly)
: ! initialize both objects

CALL of%increment(12, 600.)

CALL of%increment(17)

CALL of%increment(100.)

CALL of_poly%increment(1, 2.)

… to inc_both()

Compile-time resolution ...

… to inc_date()

… to inc_funds()

… is not possible because
this interface is not defined
for an entity of declared
type funds

how can this be fixed?

See examples/multiple_inheritance

© 2009-22 LRZ Advanced Fortran Topics 117

Overriding a specific binding in a generic TBP

Further type extension
(in a different module)

with a module procedure:

Invocation:

TYPE, EXTENDS(admin_funds) :: &
my_funds

:
CONTAINS
PROCEDURE :: &

inc_both => inc_my_funds
END TYPE

SUBROUTINE inc_my_funds(this, &
ninc, by)

CLASS(my_funds) :: this
: ! ninc, by as before

END SUBROUTINE

CLASS(admin_funds), &
ALLOCATABLE :: o_mf

ALLOCATE(my_funds :: o_mf)
: ! initialize o_mf

CALL o_mf%increment(1, 23.)

invokes overriding procedure
inc_my_funds because

dynamic type is my_funds

original binding public
so it can be overridden

© 2009-22 LRZ Advanced Fortran Topics 118

Unnamed generic TBPs – defined operator

Example:
unary trace operator

the NOPASS attribute is not

allowed for unnamed generics

Invocation:

Rules and restrictions:

same rules and restrictions
(e.g., with respect to characteristics)

as for generic interfaces and

their module procedures

here: procedure must be a func-

tion with an INTENT(IN) argument

Note:

inheritance → statically typed

function result may be insufficient

TYPE, PUBLIC :: matrix
PRIVATE
REAL, ALLOCATABLE :: element(:,:)

CONTAINS
PROCEDURE, PUBLIC :: trace
GENERIC, PUBLIC :: &

OPERATOR(.tr.) => trace
END TYPE matrix

TYPE (matrix) :: o_mat
: ! initialize object
WRITE(*,*) 'Trace of o_mat is ',&

.tr. o_mat

REAL FUNCTION trace(this)
CLASS(matrix), INTENT(IN) :: this
:

END FUNCTION

© 2009-22 LRZ Advanced Fortran Topics 119

Unnamed generic TBPs – overloaded operator

Overloading allowed for

existing operators

assignment

Example:

Specifics:

TYPE :: vector
: ! see earlier definition

CONTAINS
PROCEDURE :: plus1, plus2
PROCEDURE, PASS(v2) :: plus3
GENERIC, PUBLIC :: OPERATOR(+) => &

plus1, plus2, plus3
END TYPE matrix

FUNCTION plus1(v1, v2)
CLASS(vector), INTENT(IN) :: v1
TYPE(vector), INTENT(IN) :: v2
TYPE(vector) :: plus1
: ! implementation omitted

END FUNCTION
FUNCTION plus2(v1, r)
CLASS(vector), INTENT(IN) :: v1
REAL, INTENT(IN) :: r(:)
TYPE(vector) :: plus2
: ! implementation omitted

END FUNCTION
FUNCTION plus3(r, v2)
CLASS(vector), INTENT(IN) :: v2
REAL, INTENT(IN) :: r(:)
TYPE(vector) :: plus3
: ! implementation omitted

END FUNCTION

© 2009-22 LRZ Advanced Fortran Topics 120

Using the overloaded operator

Remaining problem:

how to deal with polymorphism –

for an extension of vector, the result usually should also be of the

extended type

but: function result must be declared consistently for an override

TYPE(vector) :: w1, w2
REAL :: r(3)

w1 = vector([2.0, 3.0, 4.0])
w2 = vector([1.0, 1.0, 1.0])
r = [-1.0, -1.0, -1.0]

w2 = w1 + w2
w2 = w2 + r
w2 = r + w1

invokes plus1((w1), (w2))

invokes plus2((w2), (r))

invokes plus3((r), (w1))

© 2009-22 LRZ Advanced Fortran Topics 121

Diagrammatic representation of generic TBPs

Use italics to indicate generic-ness

provide list of specific TBPs as usual

overriding in subclasses can then be indicated as previously shown

mod_foo

foo
:

operator(+):
%plus_1()
%plus_2()

plus_1() plus_2()

© 2009-22 LRZ 122

Advanced I/O Topics

Advanced Fortran Topics

© 2009-22 LRZ 123

Reminder on error handling for I/O

❑ An I/O statement may fail:

Examples:

• opening a non-existing file with

status=‘OLD‘

• reading beyond the end of a file

❑ Without additional measures:

RTL will terminate the program

❑ Prevent termination via:

user-defined error handling

• specify an iostat and possibly

iomsg argument in the I/O statement

• use of err / end / eor = <label>

is also possible but is legacy!

→ do not use in new code!!

❑ iostat=ios specification

ios (scalar default integer) will be:

- negative if end of file detected,

- positive if an error occurs,

- zero otherwise

❑ iomsg=errstr specification

errstr (default character string of sufficient

length) supplied with appropriate description
of the error if iostat is none-zero

❑ Use intrinsic logical functions:

to check iostat-value of I/O operation

for EOF (end of file) or EOR (end of record)

condition

is_iostat_end(ios)

is_iostat_eor(ios)

Advanced Fortran Topics

© 2009-22 LRZ 124

Nonadvancing I/O (1)

Allow file position to vary inside a

record:

Syntactic support:

ADVANCE specifier in formatted

READ or WRITE statement

(default setting is 'YES')

Let's use a magnifying glass

on record No. 2 ...

read with '(f5.2)','(l1)' – each square is

1 character (byte)

after execution of

after execution of

if a further READ statement is executed, it

would abort with an end-of-record condition.

retrieve iostat-value (default integer) via iostat

specifier: allows handling by user code and

positions connection at beginning of next

record:

rec 1

rec 2

rec 3

previous

next

READ (…, ADVANCE='NO') …

1 . 2 3 T

! REAL :: r; LOGICAL :: b
READ (22,…, ADVANCE='NO') r

READ (22,…, ADVANCE='NO') b

READ (…,ADVANCE='NO',IOSTAT=ios) …
IF (is_iostat_eor(ios)) …

-

start

Advanced Fortran Topics

© 2009-22 LRZ 125

Nonadvancing I/O (2)

❑ Reading character variables

the SIZE specifier allows to

determine the number of

characters actually read

mainly useful in conjunction with

EOR (end-of-record) situations

❑ Nonadvancing writes

usually used in form of a

sequence of nonadvancing

writes, followed by an

advancing one to complete a

record

❑ Final remarks

nonadvancing I/O may not be

used in conjunction with name-

list, internal or list-directed I/O

several records may be pro-

cessed by a single I/O state-

ment also in non-advanced

mode

format reversion takes prece-

dence over non-advancing I/O

CHARACTER(len=6) :: c
INTEGER :: sz
:
! Read chars from file into string:
READ(23,fmt='(a6)',advance='NO',&

pad='YES', iostat=ios, size=sz) c
! Set remaining chars to
! a non-blank char if EOR occurs:
IF (is_iostat_eor(ios)) c(sz+1:)='X'

Advanced Fortran Topics

Issues with I/O for derived data types

Non-trivial derived data type

An object of this type cannot appear directly in a data transfer statement

Workaround:

write module procedures that process type components individually

Disadvantages:

recursive I/O is disallowed (makes nesting of types difficult)

I/O transfer not easily integrable into an I/O stream

➢ defined by edit descriptor for intrinsic types and arrays,

➢ or a sequence of binary I/O statements

© 2009-22 LRZ Advanced Fortran Topics 126

MODULE mod_person
TYPE :: person_list
CHARACTER(len=:), ALLOCATABLE :: name
INTEGER :: age
TYPE(person_list), POINTER :: next

END TYPE
...

User-defined Derived Type I/O

Concept:

execution of a data transfer statement causes a user-defined

procedure to be executed

implementation:

© 2009-22 LRZ Advanced Fortran Topics 127

write(...) contacts

TYPE (person_list) :: contacts

Parent I/O statement

CALL write_fmt_person_list (contacts, ...)

implicit call

RECURSIVE SUBROUTINE write_fmt_person_list(contacts, ...)
...
WRITE(...) contacts%name
...
IF (associated(contacts%next) &

CALL write_fmt_person_list (contacts%next, ...)

Child I/O statement

Recursive invocation permitted

© 2009-22 LRZ 128

Binding I/O subroutines to derived types

Two variants are possible

1. Use an unnamed generic interface (required for non-extensible types)

2. Use a generic type-bound procedure

Notes:

more than one specific may exist (e.g. refer to kind parameters or type of

object)

analogous: I/O binding declarations for write(unformatted),
read(formatted), read(unformatted)

TYPE :: person_list
:

CONTAINS
GENERIC :: write(formatted) => write_fmt_person_list

END TYPE

Advanced Fortran Topics

INTERFACE write(formatted)
MODULE PROCEDURE write_fmt_person_list

END INTERFACE

© 2009-22 LRZ 129

Client use

TYPE(person_list) :: contacts

: ! set up contacts

: ! open formatted file to unit

WRITE(unit,FMT=‚(DT “Person_List“ (4,20))', IOSTAT=is) contacts

: ! close unit and release resources for contacts

TYPE(person_list) :: friends
: ! unformatted writing also bound to person_list
: ! set up friends
: ! open unformatted (direct access) file to unit 21

WRITE(unit, REC=n) friends

Formatted DTIO: the DT edit descriptor

Unformatted DTIO

Advanced Fortran Topics

These two objects are transmitted to the user-defined routine
as the iotype and v_list arguments, respectively

© 2009-22 LRZ 130

DTIO restricted module procedure interface

❑ dtv

• scalar of derived type

• polymorphic iff type is extensible

• of suitable intent

❑ unit

• integer, intent(in) – describes

I/O unit or is negative for internal I/O

❑ iotype (formatted only)

• character, intent(in)
'LISTDIRECTED', 'NAMELIST' or

'DT'//string
see dt edit descriptor

❑ v_list (formatted only)

• integer, intent(in)- assumed

shape array see dt edit descriptor

❑ iostat

• integer, intent(out) – scalar,

describes error condition

• iostat_end / iostat_eor /

zero if all OK

❑ iomsg

• character(*) - explanation for

failure if iostat nonzero

SUBROUTINE formatted_io(dtv,unit,iotype,v_list,iostat,iomsg)

SUBROUTINE unfmatted_io(dtv,unit, iostat,iomsg)

Advanced Fortran Topics

procedure names are only placeholders

© 2009-22 LRZ 131

Limitations for DTIO subroutines

I/O transfers to other units

than unit are disallowed

I/O direction also fixed

Exception: internal I/O is OK

(and commonly needed)

Inside a formatted DTIO

procedure,

I/O is nonadvancing

(no matter what you specify for

ADVANCE=)

Use of the statements

OPEN, CLOSE, REWIND

BACKSPACE, ENDFILE

is disallowed

File positioning:

on entry: left tab limit

on return: no record

termination

positioning with

REC=... (direct access) or

POS=... (stream access)

is disallowed

(it is implicitly determined by

the Parent I/O statement)

Advanced Fortran Topics

Advanced Fortran Topics© 2009-22 LRZ 132

Implementation details of DTIO routine

: ! module mod_person continued
RECURSIVE SUBROUTINE write_fmt_person_list (this,unit,iotype, &

vlist,iostat,iomsg)
CLASS(list_person), INTENT(IN) :: this
INTEGER, INTENT(IN) :: unit, vlist(:)
CHARACTER(*), INTENT(IN) :: iotype
INTEGER, INTENT(OUT) :: iostat
CHARACTER(*), INTENT(INOUT):: iomsg
! Local variable declarations not shown
IF (iotype /= ′DTPerson_List′ .OR. size(vlist) < 2) THEN
iostat = 42; iomsg=′Unsupported DT configuration′; RETURN

END IF
WRITE(pfmt, '(a,i0,a,i0)') '(i',vlist(1),',a',vlist(2),')'

WRITE(unit, fmt=pfmt, iostat=iostat) this%age,this%name
IF (iostat == 0 .AND. associated(this%next)) &

CALL write_fmt_person_list (this%next,unit,iotype,&
vlist,iostat,iomsg)

END SUBROUTINE
: ! other procedures

END MODULE mod_person See examples/uddtio

Stream I/O

An access mode modeled on C streams:

usable for formatted and unformatted I/O

for formatted stream I/O, there is no maximum record length. Explicit newlines

can be written to terminate a record:

File positioning:

on the granularity of a file storage unit

explicit positioning may be supported:

str3 value is (maybe partially) overwritten; previous content is preserved

© 2009-22 LRZ Advanced Fortran Topics 133

OPEN (myunit, ..., ACCESS=′STREAM′, FORM=′FORMATTED′)

WRITE (myunit, FMT=′(a)′) str1, new_line(′a′), str2

INQUIRE (myunit, POS=current)
WRITE (myunit, FMT=′(a)′) str3
IF (...) WRITE(myunit, FMT=′(a)′), POS=current, IOS=...) str4

INTEGER variable

value from INQUIRE (or 1) must be used

Asynchronous processing

An idea for performance tuning:

overlap computation with independent data transfers

Assumption:

additional resources are available for processing the extra activity or even

multiple activities (without incurring significant overhead)

© 2009-22 LRZ Advanced Fortran Topics 134

compute a

compute b,
maybe using a

dump a

update a

wait

saved time

Completion:
prevent race of dumping

affector (a) against

its subsequent update

Initiation:
start a second,
independent

instruction sequence

The ASYNCHRONOUS attribute:
Contractual obligations between initiation and completion

Programmer:

if affector is dumped, do not

redefine it

if affector is loaded, do not

reference or define it

analogous for changing the

association state of a pointer, or

the allocation state of an

allocatable

Attribute syntax:

here: for an assumed-shape

array dummy argument

sometimes also implicit (if the

compiler can deduce it)

Processor:

do not perform code motion of

references and definitions of

affector across initiation or

completion procedure

code motion across procedure

calls between initiation and

completion is prohibited, even if

the affector is not involved in any

of them

Constraints for dummy

arguments

assure that no copy-in/out can

happen to affectors

violations rejected by compiler,

assuming the ASYNCHRONOUS

attribute is properly specified

© 2009-22 LRZ Advanced Fortran Topics 135

REAL(rk), ASYNCHRONOUS :: x(:,:)

Scenario 1: asynchronous I/O

Example: non-blocking READ

Actual asynchronous

execution

is at processors discretion

likely most advantageous for

large, unformatted transfers

Ordering requirements

apply for a sequence of data

transfer statements on the

same I/O unit

but not for data transfers to

different units

ID specifier

allows to assign each

individual statement a tag for

subsequent use

if omitted, WAIT blocks until

all outstanding I/O transfers

have completed

INQUIRE

permits non-blocking query of

outstanding transfers via

PENDING option

© 2009-22 LRZ Advanced Fortran Topics 136

REAL, DIMENSION(ndim), ASYNCHRONOUS :: a

INTEGER :: tag

OPEN(NEW_UNIT=iu,...,ASYNCHRONOUS='yes')

...

READ(iu, ASYNCHRONOUS='yes', ID=tag) a

: ! do work on something else

WAIT(iu, ID=tag, IOSTAT=io_stat)

! do work with a

... = a(i)

no prefetches
on a here

Scenario 2: non-blocking MPI calls

Non-blocking receive - equivalent to a READ operation

Likely a good idea to avoid call stacks with affector arguments

violations of contract or missing attribute can cause quite subtle bugs that

surface rarely

© 2009-22 LRZ Advanced Fortran Topics 137

REAL :: buf(100,100)
TYPE(MPI_Request) :: req
TYPE(MPI_Status) :: status
... ! Code that involves buf
BLOCK
ASYNCHRONOUS :: buf
CALL MPI_Irecv(buf, size(buf), MPI_REAL, src, tag, &

MPI_COMM_WORLD, req)
... ! Overlapped computation that does not involve buf
CALL MPI_Wait(req, status)
... ! Code that involves buf

END BLOCK

asynchronous execution
is limited to BLOCK

permitted, but may perform
better outside the BLOCK

© 2009-22 LRZ 138

Performance considerations

for using I/O

Advanced Fortran Topics

© 2009-22 LRZ 139

Expected types of I/O

1. Configuration data

usually small, formatted files

parameters and/or meta-data

for large scale computations

2. Scratch data

very large files containing

complete state information

required e.g., for

checkpointing/restarting

→ rewrite in regular intervals

throw away after calculation

complete

3. Data for permanent storage

result data set

for post-processing

to be kept (semi-) permanently

archive to tape if necessary

may be large, but do not

(necessarily) comprise

complete state information

Advanced Fortran Topics

© 2009-22 LRZ 140

Which file system(s) should I use?

For I/O of type 1:

any will do

if working on a shared

(possible parallel) file system:

Beware transaction rates

→ OPEN and CLOSE stmts may

take a long time

→ do not stripe files

For I/O of type 2 or 3:

need a high bandwidth file

system

→ parallel file system with block

striping

large file support nowadays is

standard

What bandwidths are

available?

normal SCSI disks

~100 MByte/s

DSS storage arrays at LRZ:

up to 7 GByte/s

SuperMUC storage arrays:

up to 300 GByte/s

aggregate for all nodes

single node can do up to 2

GB/s (large files striped

across disks)

→ writing the memory content

of system to disk takes ~40

minutes

Advanced Fortran Topics

© 2009-22 LRZ 141

I/O formatting issues

various ways of reading and writing

Formatted I/O

list directed

write(unit,fmt=*) ...

with format string

write(unit,fmt=`(es20.13)`) ...

write(unit,fmt=iof) ...

can be static or dynamic

Unformatted I/O

sequential

write(unit) ...

direct access

write(unit, rec=i) ...

can also be formatted

I/O access patterns

by implicit loop

by array section

by complete array

write(...) ((a(i,j),i=1,m),j=1,n)

write(...) a(1:m,1:n)

write(...) a

better performance

b
e

tte
r p

e
rfo

rm
a

n
c

e

Advanced Fortran Topics

© 2009-22 LRZ 142

I/O performance for implicit DO loops

Improve performance by

imposing correct loop order (fast loop inside!)

more important: writing large block sizes

do i=1,16

write(unit[,...]) (a(i,k),k=1,10000000)

end do

proper tuning

→ performance may exceed that for array sections

Large blocks, but wrong order.
On some platforms this may give a
performance hit
→ re-copy array or reorganize data

Advanced Fortran Topics

© 2009-22 LRZ 143

Discussion of unformatted I/O properties

No conversion needed

saves CPU time

No information loss

Needs less space on disk

File not human-readable

binary

Fortran record control words

possible interoperability

problems with I/O in C

convert to Stream I/O

Format not standardized

in practice much the same format is

used anyway

exception big/little endian issues

solvable if all data types have same

size

Support for little/big endian

conversion by Intel compiler

enable at run time

suitable setting of environment

variable F_UFMTENDIAN

example:

export F_UFMTENDIAN=“little;big:22”

will set unit 22 only to big-endian mode

(little endian is default)

performance impact??

other compilers might need:

changes to source or

compile time switch

Advanced Fortran Topics

Buffering setup for Intel compilers

Setting up buffering as follows can significantly increase I/O

performance:

this will activate buffering for all I/O units

Blocksize

this is a tunable. On LRZ HPC systems, we recommend

Linux Cluster SCRATCH:

SuperMUC-NG SCRATCH/WORK:

© 2009-22 LRZ Advanced Fortran Topics 144

export FORT_BUFFERED=true

export FORT_BLOCKSIZE=16777216

export FORT_BLOCKSIZE=8388608

© 2009-22 LRZ 145

I/O and program design

Except for debugging or informational printout

try to encapsulate I/O as far as possible

→ each module has (as far as necessary) I/O routines related to it’s

global data structures

→ mapping of file names should reflect this

write extensibly, i.e.: use a generic interface which can then be applied

to an extended type definition

in fact module internal code can usually be re-used

keep in mind: performance issues may crop up if code used outside

its original design point

Additional documentation requirement

description of structure of data sets needed

Advanced Fortran Topics

following now: Exercise session 3

Parameterized derived Types

© 2009-22 LRZ Advanced Fortran Topics 146

© 2009-22 LRZ Advanced Fortran Topics 147

Parameterized Derived Types: Introduction

❑ So far we have seen three important

concepts related to OOP-paradigm:

inheritance, polymorphism and data

encapsulation

❑ Here we add another concept:

➢ Concept of a

parameterized derived type

❑ We know the concept already, have a look

at object declarations of intrinsic type:

All intrinsic types are actually

parameterized with the kind

parameter (intrinsic types: integer,

real, complex, logical, character)

Objects of type character are

additionally parameterized with

the len parameter

We extend the concept to derived

types, e.g.:

! scalar of type real
! with non-default kind:
real(kind=real32) :: a
! array of integer numbers
! with non-default kind parameter
integer(kind=int64) :: numbers(n)
!character of default kind
!with deferred length parameter:
character(len=:), allocatable :: path

!define parameterized type:
type pmatrixT(k,r,c)

integer, kind :: k
integer, len :: r,c
real(kind=k) :: m(r,c)

end type
!declare an object of that type
type(pmatrixT(real64,30,20)) :: B

© 2009-22 LRZ Advanced Fortran Topics 148

Parameterized Derived Types:

Kind and Length Parameters

❑ F2003 permits type parameters of derived

type objects.

Two varieties of type parameters exist:

❑ kind parameters, must be known at

compile time

❑ Length parameter which are also

allowed to be known only during runtime

Type parameters are

declared the same way as

usual DT-components with

the addition of specifying

either the kind or len attribute

k here resolves to compile-

time constant real32 (for A)

and real64 (for B)

r,c could be deferred but

here resolves to literal

constants 30,20 (A) and

10,15 (B)

!kind parameters from intrinsic module
use iso_fortran_env, only: real32, real64
!define parameterized type:
type pmatrixT(k,r,c)

integer, kind :: k
integer, len :: r,c
real(k) :: m(r,c)

end type
!: declare an object of that type
type(pmatrixT(real32,30,20)) :: A
type(pmatrixT(real64,10,15)) :: B

© 2009-22 LRZ Advanced Fortran Topics 149

Parameterized Derived Types:
Parameterized Derived Type vs. Conventional Derived Type

module mod_pmatrix
!define parameterized type:
type pmatrixT(k,r,c)
integer, kind :: k
integer, len :: r,c
real(k) :: m(r,c)

end type
contains
subroutine workona_pmat32(cs,rs)

integer :: cs,rs
type(pmatrixT(real32,cs,rs)) :: M
!M%m(:,:) = …

end subroutine
subroutine workona_pmat64(cs,rs)

integer :: cs,rs
type(pmatrixT(real64,cs,rs)) :: M
!M%m(:,:) = …

end subroutine end module
end module

! client use
call workona_pmat32(20,30)
call workona_pmat64(20,30)

module mod_matrix
type matrix32T
real(real32),allocatable:: m(:,:)

end type
type matrix64T

real(real64),allocatable:: m(:,:)
end type

contains
subroutine workona_mat32(cs, rs)
type(matrix32T) :: M
allocate(M%m(cs,rs))
!M%m(:,:) = …

end subroutine
subroutine workona_mat64(cs, rs)

type(matrix64T) :: M
allocate(M%m(cs,rs))
!M%m(:,:) = …

end subroutine
end module

! client use
call workona_mat32(20,30)
call workona_mat64(20,30)

advantage:

1 single type definition

2 dynamic data in component

without allocatable or pointer

attribute

disadvantage:

1 two type definitions

2 dynamic data only

through allocatable or

pointer attribute

© 2009-22 LRZ Advanced Fortran Topics 150

Parameterized Derived Types:

Inquire Type parameters

!type definition as in previous example
type(pmatrixT(real64,cols,rows)) :: A

write(*,*) A%k
write(*,*) A%c
write(*,*) A%r
do i = 1,A%c
do j = 1,A%r
A%m(i,j) = …

enddo
enddo

❑ Type parameters of a parameterized

object can be accessed directly using

the component selector

❑ However, type parameters cannot be

directly modified, e.g.: type(pmatrixT(real64,cols,rows)) :: A
A%k=real32 ! invalid
A%c=8 ! invalid
A%r=12 ! invalid

© 2009-22 LRZ Advanced Fortran Topics 151

Parameterized Derived Types:

Assumed Type Parameters

!type definition as in previous example
type(pmatrixT(real64,20,30)) :: A
type(pmatrixT(real64,10,20)) :: B

call proc_pmat(A)
call proc_pmat(B)

❑ Let‘s pass a parameterized object into

a subroutine

❑ The len parameter can be assumed from the

actual argument using the *-notation

❑ NOTE! The kind parameter cannot be assumed!

➢ But dealing with the (few) different kind

parameters of interest is potentially more

manageable than having to additionally

deal with all len-parameter combinations

❑ NOTE! Type parameters cannot be assumed if

dummy object has the allocatable or pointer

attribute

module mod_pmatrix
!: definitions as before
interface proc_pmat

module procedure :: proc_pmat32, &
proc_pmat64

end interface
contains

subroutine proc_pmat64(M)
! dummy with assumed len parameters:
type(pmatrixT(real64,*,*)) :: M
do i = 1,M%c

do j = 1,M%r
M%m(i,j) = …

enddo
enddo

end subroutine
subroutine proc_pmat32(M)

type(pmatrixT(real32,*,*)) :: M
end subroutine
!:
subroutine otherwork_pmat64(M1,M2)
type(pmatrixT(real64,*,*)), &

allocatable :: M1 !invalid
type(pmatrixT(real64,*,*)), &

pointer :: M2 !invalid
end subroutine
end module

© 2009-22 LRZ Advanced Fortran Topics 152

Parameterized Derived Types:

Deferred Type Parameters

!type definition as in previous example
type(pmatrixT(real32,:,:)), allocatable :: A, B
type(pmatrixT(real32,:,:)), pointer :: P
type(pmatrixT(real32,5,8)) :: M_5_8

allocate(type(pmatrixT(real32,15,10)::A)
P => M_5_8
allocate(B, source=P) !B allocated B%r=5, B%c=8

❑ Using the colon notation we

may declare objects of

parmeterized derived type with

deferred len-parameter if they

have the pointer or allocatable

attribute

module mod_pmatrix
!: definitions as before
contains
!:
subroutine otherwork_pmat64(M1,M2)
type(pmatrixT(real64,:,:)), allocatable :: M1 ! valid
type(pmatrixT(real64,:,:)), pointer :: M2 ! valid

end subroutine
!:
end module

❑ The previous invalid code (assumed len parameter for allocatable dummy

object) can be corrected using deferred len parameters using colon-

notation for passed dummy objects with allocatable or pointer attribute

© 2009-22 LRZ Advanced Fortran Topics 153

Parameterized Derived Types:

Default Type Parameters

type pmatrixT(k,r,c)
integer, kind :: k=real64
integer, len :: r=6,c=6
real(k) :: m(r,c)

end type
! you may declare objects of such a type
! without specifying all parameter values, e.g.:
type(pmatrixT) :: default_matrix ! all parametes default
type(pmatrixT(real32)) :: real32_matrix ! with default len, specific kind
type(pmatrixT(r=3,c=9)) :: matrix_3_9 ! with default kind, specific len
type(pmatrixT(c=9,r=3,k=real32)) :: out_of_order ! Out of order specification

! using keywords

❑ It is possible to define default parameters for a parameterized derived type

❑ You may specify only a subset of parameters and/or out of order

but it requires to use keyword notation to correctly associate each

actual parameter with the right type-parameter

type(pmatrixT(k=real32,c=*,r=*)) :: M_assumed
type(pmatrixT(c=:,r=:,k=real32)), allocatable :: M_deferred
type(pmatrixT(c=:,r=:,k=real32)), pointer :: M_pointer

❑ This also applies to

deferred or assumed

len declarations:

© 2009-22 LRZ Advanced Fortran Topics 154

Parameterized Derived Types:

Inheritance and polymorphism

❑ It is possible to inherit properties from

an existing base type via type

extension

❑ Extended types may add additional

kind and/or len parameters for

subsequent component declarations

! usage, e.g.:
type(mat_rT(real32,9,9)), target :: A
type(mat_crT(real64,:,:,int32,:), &

allocatable, target :: B
Class(*), pointer :: P

P => A ! P is now of dynamic type mat_rT
allocate(mat_crT(real64,5,5,int32,80) :: B)
P => B ! P is now of dynamic type mat_crT

! unwrap polymorphism to access components
select type(P)
type is (mat_crT(real64,*,*,int32,*))
write(*,*)'%m=',P%m
write(*,*)'%counter=',P%counter

end select

type mat_aT(k,r,c)
integer, kind :: k=real64
integer, len :: r=1,c=1

end type
type,extends(mat_aT) :: mat_rT

real(k) :: m(r,c)
end type
type,extends(mat_aT) :: mat_crT(k2,ml)

real(k) :: m(r,c)
integer, kind :: k2=int64
integer, len :: ml=100
integer(k2) :: counter(r,c)
character(len=ml) :: message

end type

❑ unwrap polymorphism from polymorphic object

(here P) to access components

❑ argument for type-guard statement: need to

specify all kind parameters (compile-time

constants) and all len parameters as assumed

(*-notation)

Creation and Destruction

of objects

© 2009-22 LRZ Advanced Fortran Topics 156

Polymorphic type components

Assuming the following:

and the type definitions

interior

ext_interior

Then the following

constructors can be used:

auto-(re)allocation occurs at

each assignment

difference o_1 vs o_2:

o_2%r can be of any type

TYPE :: t_unlimited
CLASS(*), &

ALLOCATABLE :: r(:)
END TYPE

TYPE :: t_poly
CLASS(interior), &

ALLOCATABLE :: r(:)
end type

TYPE(t_poly) :: o_1
TYPE(t_unlimited) :: o_2

o_1 = t_poly([&
(interior(real(i)),i=1,3)])

o_1 = t_poly([&
(ext_interior(real(i)),i=1,3)])

o_2 = t_unlimited([&
(interior(real(i)),i=1,3)])

o_1%r is of dynamic type interior

o_1%r is of dynamic type ext_interior

o_2%r is of dynamic type interior

© 2009-22 LRZ Advanced Fortran Topics 157

Polymorphic overloaded constructor (1)

Assumption:

type of object to be created

is not known at compile

time

possible reason: object's type is

determined from information

stored in an external file

how should the constructor

be written in this case?

Need a polymorphic function

result

this must have the POINTER or

ALLOCATABLE attribute

prefer ALLOCATABLE

datetime

date
example types as
defined yesterday

Polymorphic overloaded constructor (2)

Specific function for base type date() overload:

© 2009-22 LRZ Advanced Fortran Topics 158

FUNCTION dt_io(fname) RESULT(this)

CLASS(date), ALLOCATABLE :: this

CHARACTER(LEN=*), INTENT(IN) :: fname

CHARACTER(LEN=strmx) :: this_type

: ! open file fname on unit

READ(unit, …) this_type

SELECT CASE (trim(this_type))

CASE ('date')

ALLOCATE(date :: this)

CASE ('datetime')

ALLOCATE(datetime :: this)

CASE DEFAULT

STOP 'unknown type'

END SELECT

: ! continued to the right

SELECT TYPE(this)

TYPE IS (date)

: ! read and set up date

TYPE IS (datetime)

: ! read and

: ! set up datetime

END SELECT

: ! close file

END FUNCTION dt_io

© 2009-22 LRZ Advanced Fortran Topics 159

Usage of the polymorphic overloaded constructor

Target object is polymorphic

assignment to polymorphic

variable is not allowed in

in , the last line of the

above code can be replaced

by

(auto-allocation of LHS to the type of

the RHS; furthermore the RHS may

also involve the object appearing on

the LHS – this is not allowed in

sourced allocation)

Target object is non-

polymorphic

type of LHS must be base type

if the constructor produces an ex-

tension, the object will be trun-

cated to the base type object

Covering the Inheritance Tree

may require use of a submodule if

extensions are defined in a diffe-

rent module

alternatively, overload an exten-

sion via its name

USE mod_date
CLASS(date), ALLOCATABLE :: o_d

ALLOCATE(o_d, source=date('D.dat'))

o_d = date('D.dat')

USE mod_date
TYPE(date) :: o_nonpoly

o_nonpoly = date('D.dat')

mod_ext

Diagramming the polymorphic constructor

Illustrates going beyond

module boundaries with an

extension

Type base could also be

abstract

Usage looks as follows

(whether or not base is abstract):

mod_base
base()

b_1()

b_2()

base

ext
ext()

e_1()

USE mod_base
CLASS(base), ALLOCATABLE :: o
ALLOCATE(o, source=base(…))
SELECT TYPE (o)
TYPE IS (…)
: ! process object
TYPE IS (…)
: ! process object
CLASS DEFAULT
: ! throw error
END SELECT

decide on whether
b_1 or b_2
is invoked

each clause must reference
an extension of base if

the latter is abstract

© 2009-22 LRZ Advanced Fortran Topics 160

© 2009-22 LRZ Advanced Fortran Topics 161

Factory methods with polymorphic dummy arguments

use the POINTER or

ALLOCATABLE attribute

third variant of polymorphism

Invocation of the procedure

Actual argument

must have same attribute,

and same declared type

as the dummy argument

(otherwise, type compatibility

could be violated)

Note:

such a procedure cannot be bound

to a type via one of the allocatable

arguments (→ see day 2)

SUBROUTINE produce(o_up, o_dt, …)
CLASS(*), ALLOCATABLE :: o_up
CLASS(date), ALLOCATABLE :: o_dt
: ! determine type for o_up
IF (…) THEN
ALLOCATE(body :: o_up)

ELSE IF (…)
:
END IF
: ! determine type for o_dt
IF (…) THEN
ALLOCATE(datetime :: o_dt)

ELSE IF (…)
:
END IF

end subroutine

CLASS(*), ALLOCATABLE :: o1
CLASS(date), ALLOCATABLE :: o2

CALL produce(o1, o2, …)

prefer ALLOCATABLE
→ avoid memory leaks

© 2009-22 LRZ Advanced Fortran Topics 162

Returning to overloaded operators:

handling polymorphic result variables

Example:

form the sum of two bodies

etc.
𝑚 = 𝑚1 +𝑚2

Ԧ𝑟 = Τ𝑚1𝑟1 +𝑚2𝑟2 𝑚1 +𝑚2

charged_body (charge)

body (mass, pos, vel)

TYPE :: body
: ! data components

CONTAINS
PROCEDURE :: plus
GENERIC :: OPERATOR(+) => plus

END TYPE
TYPE, EXTENDS(body) :: charged_body
REAL :: charge

CONTAINS
PROCEDURE :: plus => plus_charged

END TYPE

Implementation of TBP:

overriding this TBP is required

for each extension of body

FUNCTION plus(b1, b2)
CLASS(body), INTENT(IN) :: b1, b2
CLASS(body), ALLOCATABLE :: plus

ALLOCATE(body :: plus)
plus%mass = b1%mass + b2%mass
plus%pos = …
plus%vel = …

END FUNCTION plus

override for extension

© 2009-22 LRZ Advanced Fortran Topics 163

Overriding a specific in the polymorphic generic
(for a symmetric implementation)

FUNCTION plus_charged(b1, b2)
CLASS(charged_body), &

INTENT(IN) :: b1

CLASS(body), INTENT(IN) :: b2
CLASS(body), ALLOCATABLE :: &

plus_charged

Nested select type statement are

needed in order to access the type

components

declarations for second argument
and function result are forced

by restrictions on TBP interface

SELECT TYPE(b2)
CLASS IS (charged_body)
ALLOCATE(charged_body :: &

plus_charged)
SELECT TYPE (plus_charged)
TYPE IS (charged_body)

plus_charged%… = …
END SELECT

CLASS DEFAULT
STOP 'Parent of charged_body. &

& Aborting.'
END SELECT

END FUNCTION plus_charged

continued from left panel ...

CLASS(body), ALLOCATABLE :: o1, o2, b1, b2

ALLOCATE(body :: b1, b2)
: ! give values to b1, b2

o1 = b1 + b2

DEALLOCATE(b1, b2)
ALLOCATE(charged_body :: b1, b2)
: ! give values to b1, b2

o2 = b1 + b2

Usage of the operator and its overridden version

unless support for polymorphic LHS is implemented, the above also

requires overloading of the assignment operator (exercise)

© 2009-22 LRZ Advanced Fortran Topics 164

invokes plus((b1),(b2))

invokes plus_charged((b1),(b2))

© 2009-22 LRZ Advanced Fortran Topics 165

Remember Finalizers

Have a class or object associated with additional state

open files

unfinished non-blocking network (MPI) calls

allocated pointer components

Imagine object goes out of scope

unrecoverable I/O unit

communication breakdown

memory leak

Solution: object auto-destructs by
providing it with a procedure which is called as object

goes out of scope,

is deallocated,

is passed to an INTENT(out) dummy argument, or

appears on the left hand side of an intrinsic assignment

© 2009-22 LRZ Advanced Fortran Topics 166

Syntax of Final Procedure

Type definition

Finalizer implementation:

Differences to TPB:

Not normally invoked by

programmer

finalizer is automatically executed

as described on previous slide

Must have single dummy argument

of type to be finalized

non-polymorphic

non-pointer, non-allocatable

all length type parameters

assumed

Generic set of finalizers possible:

rank

kind parameter values

multiple execution order

processor-dependent

TYPE :: sparse
:
TYPE(sparse), POINTER :: &

next => null()
CONTAINS
FINAL :: finalize_sparse

END TYPE

ELEMENTAL RECURSIVE subroutine &
finalize_sparse(this)

TYPE(sparse), INTENT(INOUT) :: &
this

IF (associated(this%next)) THEN
DEALLOCATE(this%next)

END IF
END SUBROUTINE

applicability to array objects

assumes that all targets
have been dynamically

allocated

© 2009-22 LRZ Advanced Fortran Topics 167

The IMPURE attribute and one of its applications

By default, ELEMENTAL

procedures must not have

side effects

consequence: in many cases, no

elemental finalizer can be written

specifying the IMPURE attribute

allows to circumvent this

restriction

Example:

Finalizer with side effects:

Usage:

TYPE, EXTENDS(handle) :: file_handle
PRIVATE
INTEGER :: unit
CLASS(h), POINTER :: data

CONTAINS
PROCEDURE :: open => file_open
FINAL :: delete_fh

END TYPE file_handle

IMPURE ELEMENTAL subroutine &
delete_fh(this)

TYPE(file_handle) :: this
IF (this%state == 1) THEN

IF associated(this%data)) &
WRITE(this%unit, …) this%data

CLOSE(this%unit)
this%state = 0

END IF
END SUBROUTINE

e.g., use UDDTIO

SUBROUTINE foo(...)
TYPE(file_handle) :: fh0, fh1(5)
...

END SUBROUTINE

initialize local variables fh0, fh1
and associate with data

invokes delete_fh for

both fh0 and fh1

type introduced earlier

© 2009-22 LRZ Advanced Fortran Topics 168

Diagrammatic representation of finalizers

Finalizer is not inherited by

extensions

reflected in nonpolymorphic

argument

exact type match required

mod_p_vec

p_vec

:

~p_vec()

delete_p_vec()

Layering of finalizers

If an object of type tp goes out of

scope

first cleanup() is called

then destroy()

if contd is a pointer component, it

needs to be explicitly deallocated or

nullified in cleanup()

mod_tp

tp

:

~tp()

cleanup()

contd

:

~contd()

destroy()

© 2009-22 LRZ Advanced Fortran Topics 169

Finalization of type extensions

If tp is a subclass of base, and an object of type tp goes out

of scope

first cleanup() is called

then destroy()

This applies recursively in the case of more than one

inheritance level

mod_tp

tp

:

~tp()

cleanup()

base

:

~base()

destroy()

© 2009-22 LRZ Advanced Fortran Topics 170

Constraints on PURE procedures

Procedure body:

must not contain statements that cause an impure finalizer to be invoked

INTENT(OUT) argument:

must not be polymorphic

PURE function:

function result must not be an allocatable polymorphic entity

Quite heavy restrictions – reason:

cannot check for possible invocation of impure finalizer at compile time,

which is required for PURE

Partly a corrigendum

© 2009-22 LRZ Advanced Fortran Topics 171

Returning to the Environment problem

Case study

Handling numerical integration

or

Using Polymorphism in the context of

function arguments

© 2009-22 LRZ Advanced Fortran Topics 172

Example: Numerical integration (1)
(cf „Modern Fortran Explained“, Section 14.9)

Quadrature routine

usually provided with user

defined function as dummy

argument

Not flexible enough

user-defined function

interfaces typically do not fit

required profile

want additional parameters

Available solutions

use module globals

(threading?)

additional dummy in

quadrature routine

still not flexible

reverse communication

interface

avoids function parameter

return from quadrature routine

to request function data

complicated to use and

implement

Object oriented solution

define an interface class

encapsulate additional user

data into type extension

© 2009-22 LRZ Advanced Fortran Topics 173

Numerical integration example (2)
Defining the interface class

Programmer of client must implement eval() in own extension

interface for this is also fixed

reason: is used in contained module procedure

MODULE qdr
TYPE, ABSTRACT :: qdr_fun

! user-defined data elements in extension
CONTAINS
PROCEDURE(qdr_if), DEFERRED :: eval

END TYPE
ABSTRACT INTERFACE
REAL(kind=rk) FUNCTION qdr_if(this, x)

IMPORT :: qdr_fun
CLASS(QDR_FUN) :: this
REAL(kind=rk), INTENT(IN) :: x

END FUNCTION
END INTERFACE
: ! further type definitions

CONTAINS
: ! continued

© 2009-22 LRZ Advanced Fortran Topics 174

Numerical integration example (3)
... and its module procedure

Implementation does not (and should not) reference additional

user data

these are handed through to the overriding TBP via the fun object

REAL(KIND=rk) FUNCTION integral_1d(intv,fun,status)
REAL(KIND=rk), INTENT(IN) :: intv(2)
CLASS(qdr_fun), INTENT(IN) :: fun
INTEGER, OPTIONAL, INTENT(OUT) :: status
:
DO …
x = …
y = fun%eval(x)
:

END DO
:
integral_1d = …

END FUNCTION

start default integration algorithm

© 2009-22 LRZ Advanced Fortran Topics 175

Numerical integration example (4)
Subtyping in user code

Suppose function is a polynomial:

MODULE qdr_poly
USE qdr

TYPE, EXTENDS(qdr_fun) :: poly_fun
REAL(KIND=rk), ALLOCATABLE :: f(:)

CONTAINS

PROCEDURE :: eval => eval_poly
END TYPE

CONTAINS
REAL(KIND=rk) FUNCTION eval_poly(this, x)

CLASS(poly_fun) :: this
REAL(KIND=rk), INTENT(IN) :: x
: ! use Horner's scheme to evaluate

END FUNCTION
END MODULE

෍

𝑖=1

𝑛

𝑓𝑖 ⋅ 𝑥
𝑖−1

© 2009-22 LRZ Advanced Fortran Topics 176

Numerical integration example (5)
Usage by program

Can now extend to various methods for interpolation

polynomial

spline

trigonometric

or use other (arbitrary or analytical) representation

PROGRAM myprog
USE qdr_poly
TYPE(poly_fun) :: o_poly_fun
REAL(KIND=rk) :: result
:
o_poly_fun%f = [1.0_rk, 2.5_rk, 4.0_rk]
result = integral_1d([-1._rk, 1._rk], o_poly_fun)
:

END PROGRAM

© 2009-22 LRZ Advanced Fortran Topics 177

Numerical integration example (6)
Extending the functionality

Consider special cases

integrals could be calculated analytically / faster

discontinuous or singular integrands

would like to be able to use alternative integrator

(included with module)

example: integral equation 𝜇 0׬
1
𝐾 𝑥, 𝑡 𝑓 𝑡 𝑑𝑡 + 𝑔 𝑥 = 𝑓(𝑡)

extend interface class slightly e.g.

previous functionality unchanged

TYPE, ABSTRACT :: qdr_fun
CLASS(qdr_opt), POINTER :: options => null()

! module-defined subtypes determine dispatch
! user-defined data elements in extension
CONTAINS

PROCEDURE(qdr_if), DEFERRED :: eval
END TYPE

Numerical integration example (7)

configuring options

Use an abstract type

extend it for the specific

purpose

Reason:

additional information is

needed by the specific

integrator (e.g. location of

singularities)

Interface for specific

integrator

© 2009-22 LRZ Advanced Fortran Topics 178

TYPE, ABSTRACT :: qdr_opt
END TYPE

TYPE, EXTENDS(qdr_opt) :: &
qdr_opt_sing

REAL, ALLOCATABLE :: rs(:)
END TYPE

SUBROUTINE integral_1d_sing(&
intv,fun,sing,status)

REAL(rk), INTENT(IN) :: intv(2)
CLASS(qdr_fun) :: fun
TYPE(qdr_opt_sing) :: sing
INTEGER, INTENT(OUT) :: status

END SUBROUTINE

© 2009-22 LRZ Advanced Fortran Topics 179

Numerical integration example (8)
Updates on integral_1d

REAL(KINd=rk) FUNCTION integral_1d(intv, fun, status)
REAL(KIND=rk), INTENT(IN) :: intv(2)
class(qdr_fun), intent(in) :: fun
INTEGER, OPTIONAL, INTENT(OUT) :: status

IF (associated(fun%options)) THEN
SELECT TYPE (fun%options)
TYPE IS (qdr_opt_sing)
call integral_1d_sing(intv,fun,fun%options,status)

: ! continue dispatch
END SELECT

ELSE
: ! start default algorithm
DO ...

y = fun%eval(x)
:

END DO
:
integral_1d = ...

END IF
END FUNCTION

other specialized integrators
(and don't forget CLASS DEFAULT)

© 2009-22 LRZ Advanced Fortran Topics 180

Diagramming the integration interface

Client

qdr_fun

%eval()
integral_1d()

qdr_poly

%eval()

qdr_my_sing

%eval()

qdr_xyz

%eval()

qdr_opt

qdr_opt_sing

integral_1d_sing()

(one) available
integration
strategy

client modules and programs

(nearly) independent
variation of functions

and integration methods

© 2009-22 LRZ Advanced Fortran Topics 181

Strategy Pattern: Varying algorithms transparently

Replaces subclassing for

variation

context interface provides

appropriate support

references only to abstract

strategy (dependency inversion)

Fewer classes, but more

objects in application

A “behavioral” pattern

Context

Interface()

Strategy

Algorithm()

Strategy_A

Algorithm()

Strategy_B

Algorithm()

Strategy_C

Algorithm()

strategy%Algorithm()

Adapting legacy code (1)

Assumption: A pre-existing library has a

procedural implementation of a specific integration method

with a procedure argument

and an appropriate type param_qag, all defined inside a

module mod_qag

Target: re-use this library code

as one more variant in the strategy pattern

REAL(rk) FUNCTION integ_qag(a, b, func, param)

REAL (rk) FUNCTION func(x, param)
REAL(rk), INTENT(IN) :: x
TYPE(param_qag), INTENT(IN) :: param

END FUNCTION

QAG: „adaptive integration“

© 2009-22 LRZ Advanced Fortran Topics 182

Adapting legacy code (2)

Transition from old interface to

new interface:

concept is called “class Adapter”

or “Wrapper”

old interface only used in mod_qdr
module, invisible to client

mod_qdr

mod_qag

u

qdr_opt

qdr_opt_qag

integral_1d_qag()

integ_qag()

legacy code

Notes:

C++ Adapter uses class for implementation inheritance (multiple

inheritance required)

Fortran can exploit use association as secondary inheritance mechanism

© 2009-22 LRZ Advanced Fortran Topics 183

Adapting legacy code (3):
Solving the argument function signature mismatch

Procedure:

1. create an auxiliary function with

the legacy signature that can be

used as an argument for the

internal invocation of
integ_qag()

2. make an object of type qdr_fun
available inside that function

→ this requires defining an auxiliary

type as an extension of
param_qag

→ only one object of that type will

be needed

param_qag

p_aux

func()
integ_qag()

func_aux()

qdr_fun

%eval()
integral_1d()

qdr_fun%eval() integ_qag()

TYPE, EXTENDS(param_qag) :: p_aux
CLASS(qdr_fun), POINTER :: &

p => null()
END TYPE

A non-polymorphic
variant of the

„Command“ Pattern

© 2009-22 LRZ Advanced Fortran Topics 184

Implementation of auxiliary function func_aux()

A module procedure in the module mod_qdr

For consistency, one change is needed in mod_qag

semantics remain identical, but recompilation is needed

REAL(rk) FUNCTION func_aux(x, pr)
REAL(rk), INTENT(IN) :: x

CLASS(param_qag), INTENT(IN) :: pr
SELECT TYPE (pr)

TYPE IS (p_aux)
! unpack qdr_fun object

func_aux = pr%p%eval(x)
END SELECT

END FUNCTION

only one type is
possible here

TYPE(param_qag) → CLASS(param_qag) in interface declaration
of argument function

declared type of the
actual argument
that matches pr

assume pr%p is associated

© 2009-22 LRZ Advanced Fortran Topics 185

Implementation of integral_1d_qag()

A module procedure in the module mod_qdr

REAL(rk) FUNCTION integral_1d_qag(intv, fun, status)
REAL(kind=rk), INTENT(IN) :: intv(2)

CLASS(qdr_fun), INTENT(IN), TARGET :: fun
INTEGER, OPTIONAL, INTENT(OUT) :: status

INTEGER :: st_loc

TYPE(p_aux) :: pr

pr%param_qag = …
! register qdr_fun object with pr and
! call legacy routine

pr%p => fun
integral_1d_qag = integ_qag(intv(1),intv(2), &

func_aux, pr, st_loc)

IF (present(status)) status = st_loc
END FUNCTION

this is the only object of

type p_aux

supply base type object
with needed information

(only if needed outside
invoked argument function)

© 2009-22 LRZ Advanced Fortran Topics 186

following now: Exercise session 4

