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Abstract

In this paper, we consider the problem of domain generalization in semantic seg-
mentation, which aims to learn a robust model using only labeled synthetic (source)
data. The model is expected to perform well on unseen real (target) domains.
Our study finds that the image style variation can largely influence the model’s
performance and the style features can be well represented by the channel-wise
mean and standard deviation of images. Inspired by this, we propose a novel adver-
sarial style augmentation (AdvStyle) approach, which can dynamically generate
hard stylized images during training and thus can effectively prevent the model
from overfitting on the source domain. Specifically, AdvStyle regards the style
feature as a learnable parameter and updates it by adversarial training. The learned
adversarial style feature is used to construct an adversarial image for robust model
training. AdvStyle is easy to implement and can be readily applied to different
models. Experiments on two synthetic-to-real semantic segmentation benchmarks
demonstrate that AdvStyle can significantly improve the model performance on
unseen real domains and show that we can achieve the state of the art. Moreover,
AdvStyle can be employed to domain generalized image classification and produces
a clear improvement on the considered datasets.

1 Introduction

Semantic segmentation plays a critical role in autonomous driving, which has achieved impressive
improvements with the recent development of deep networks [20, 5, 1, 45]. However, these achieve-
ments have been mostly attributed to large-scale labeled segmentation datasets, in which annotating
pixel-wise labels is very expensive and time-consuming. Moreover, the model trained on one dataset
commonly produces poor performance on unseen datasets captured in different conditions. This
degradation phenomenon is mainly caused by domain shifts [7], including differences in weather,
season, light, etc. For instance, the segmentation model trained on the dataset captured in sunny
London will have low accuracy when deployed on the streets of Zurich in rainy weather.

To address the cross-domain problem, domain adaptation methods [21, 41] are designed to transfer
the knowledge of labeled source data to unlabeled target data. However, one of their main drawbacks
is that they require the use of target data during training, which cannot always be accessible in practice.
Another promising line is domain generalization (DG), which focuses on learning a generalizable
model using only the labeled source domain. To reduce the annotating cost and protect data privacy,
the existing DG works [7, 40, 46] in semantic segmentation commonly choose to learn the robust
model with synthetic data, e.g., GTAV [28]. In this paper, we focus on this synthetic-to-real DG
problem for semantic segmentation.
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Figure 1: (a) Examples of different datasets. The image styles from different datasets commonly
are very different. (b) Style distribution of different datasets. We use image-level mean-variance
as the style feature and show that the style distribution gap between different datasets are large. (c)
Examples of changing style feature for a GTAV sample, including adding random noise and replacing
the style feature with ones of samples from other datasets. (d) mIoU performance of changing styles
for GTAV testing set, which is largely reduced after style changing.

To eliminate the impact caused by the large domain gap between synthetic and real data, existing
solutions mainly aim at augmenting the synthetic source data with extra real-world samples [40, 14]
or learning domain-invariant features with carefully designed modules [24, 7]. The key idea behind
them is to avoid the model overfitting on the source domain. This work follows this idea and
introduces a new augmenting approach in the perspective of image style for domain generalized
semantic segmentation, which is motivated by the observations in Fig. 1. First, when visualizing the
samples of different datasets in Fig. 1(a) we observe that the image styles are quite different among
them, e.g., the road color. The style distribution gap can also be observed in Fig. 1(b). Second, the
channel-wise mean and standard deviation of an image, which is called style feature in this paper, can
well represent the image style. When changing the style feature, the image style of an example varies
while the semantic content is well maintained (see Fig. 1(c)). Third, changing the style features of
testing samples will largely deteriorate the model performance (see Fig. 1(d)). Importantly, when
replacing the style features with the ones of CityScapes, which has a large distribution distance to
GTAV (see red and green dots in Fig. 1(b)), the performance is lower than other style changing cases.
This indicates that the model performance on testing data is highly related to the style distribution
gap between training and testing data.

Taking the above observations into consideration, we argue that the image style is an important factor
that affects the model performance and propose the adversarial style augmentation (AdvStyle) for
domain generalized semantic segmentation. Specifically, AdvStyle contains two steps: adversarial
style learning and robust model learning. In adversarial style learning, we first decompose the training
sample into style feature and normalized image. The style feature is regarded as a learnable parameter,
which is used to reconstruct a new training example together with the normalized image. Then, we
feed the reconstructed example into the segmentation model and optimize the style feature using
the adversarial segmentation loss. The updated style feature is called adversarial style feature and
is used to produce hard example in the following step. In robust model training, we first generate
an adversarial example by de-normalizing the normalized image with the learned adversarial style
feature. The adversarial image and the original image are then used to train a robust model using
the segmentation loss. In AdvStyle, the adversarial image is dynamically generated based on the
current model. In this way, the model is always encouraged to update with difficult styles and thus
will be more robust to style variations in unseen domains. In Fig. 2, we show the comparison between
AdvStyle and traditional augmentation methods. Our AdvStyle can significantly improve the model
performance on unseen target domains and clearly outperforms the other augmentation methods. To
summarize, our contributions are threefold:

• We propose the novel adversarial style augmentation (AdvStyle) for domain generalized semantic
segmentation, which can consistently improve the results on unseen real domains. AdvStyle
introduces very limited learnable parameters (6-dim feature for each example) and can be easily
implemented with different networks and DG methods.
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Figure 2: Illustration of different data augmentation methods. We use GTA5 as the source domain
and the ResNet-50 as the backbone. The mIoU given in parentheses is evaluated on CityScapes
validation set for the model trained with the corresponding augmentation method.

• Experiments on two synthetic-to-real DG benchmarks demonstrate the effectiveness of the
proposed AdvStyle and show that we achieve new state-of-the-art DG performance.

• We show that AdvStyle can also be applied to single DG in image classification and can produce
state-of-the-art accuracy on two datasets.

2 Related Work

Domain Generalization (DG). To tackle the deficiency of annotated data, DG [40, 14, 7, 33, 46, 4, 43]
is introduced to learn a robust model with one or multiple source domains, where the model is expected
to perform well on unseen domains. Recent DG works in semantic segmentation mostly use synthetic
data as the source domain, which can be automatically generated but have a large distribution gap
to real-world datasets. One main stream of DG methods [40, 14] focuses on augmenting training
samples with extra real-world data from ImageNet [9]. Learning domain-invariant features [7, 24, 33]
is another stream to narrow the domain gap. [24] and [7] leverage instance normalization [34] and
whitening transformation to remove the domain-specific information, respectively. [33] exchanges
style features of two samples and adjusts style features with the attention mechanism. Different from
the above methods, our AdvStyle generates new samples by learning adversarial styles using only the
synthetic source data.

Adversarial Training in DG. Adversarial training [12] is initially proposed to learn a robust model
that can combat imperceptible perturbations. In recent years, adversarial training is applied to single
DG in image classification [36, 27, 26, 11], by regarding adversarial samples as augmented unseen
samples. [36] is the first to introduce adversarial samples in DG by max-min iterative training
procedure. Later methods form novel domains with the generated adversarial samples and learn a
domain-invariant representation by meta-learning [27, 26] or adaptive normalization [11]. Different
from them, this paper adopts adversarial training for semantic segmentation and generates adversarial
samples in the perspective of image style.

Style Variation. Style features are widely studied in image translation [16, 10]. By varying the
style features, the image style can be changed while semantic content will be maintained. Inspired
by this, recent works focus on generating data of novel distributions by modifying style features,
which are used to train a more robust model. One effective manner is to generate new styles by
exchanging [33, 44] or mixing styles [47] between samples. On the other hand, new styles can be
generated by learnable modules [37]. Instead, we generate novel styles by adversarial training, which
encourages the model to always optimize with hard stylized examples. This work is also closely
related to [2], which generates adversarial examples by colorizing. However, it requires a pre-trained
colorization model to change the image color, which is much more complex than our AdvStyle. In
addition, [2] aims to impair the performance of models by adversarial examples. In contrast, our
AdvStyle leverages the adversarial examples to improve the generalization ability of the segmentation
model. This work also has a connection with “Learning-to-Simulate” [30]. However, [30] tries to
learn good sets of parameters for an image rendering simulator in actual computer vision applications
while we attempt to learn a generalized model for semantic segmentation. Our work also shares a
similar idea with AdvBN [32]: generating novel styles through adversarial learning. However, unlike
AdvBN, which perturbs feature statistics in the Batch Normalization (BN) [18] layers, we directly
generate stylized adversarial examples at the image level, which not only avoids the selection of BN
layers, but also requires fewer learnable parameters (6-dim vector).
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Figure 3: The framework of the proposed adversarial style augmentation.

3 Method

Problem Definition. Synthetic-to-real domain generalization (DG) focuses on training a robust
model with one labeled synthetic domain S , where the model is expected to perform well on unseen
domains {T1, T2, · · · } of different real-world distributions. As stated by [36], the DG task can be
formulated as solving the worst-case problem:

min
θ

sup
T :D(S,T )≤ρ

ET [Ltask (θ; T )] , (1)

where θ is the model parameters and T is the target domains. Ltask denotes the task-specific loss
function, which is the pixel-wise cross-entropy loss in this paper. D(S, T ) denotes the distribution
distance between the source domain and target domains in semantic space. It is constrained to be
lower than ρ for semantic consistency. Inspired by Eq. 1, we propose a novel approach to generate a
dynamic source domain S+, which can help us to reduce the domain shifts between the synthetic
domain S and real-world domains T during training.

3.1 Overview

In the introduction, we show that the image style is an important factor that influences the DG
performance. In addition, the channel-wise mean and standard deviation of an image, which is called
style feature, can well represent the image style. Inspired by that, we propose the adversarial style
augmentation approach (AdvStyle) for domain generalized semantic segmentation. AdvStyle can dy-
namically generate images with new styles during training and effectively improve the generalization
ability of the segmentation model. AdvStyle includes two steps: adversarial style learning and robust
model training. In adversarial style learning, we first decompose the image into normalized image
and style feature and then update the style feature by adversarial segmentation loss. In robust model
training, we compose the adversarial image by the normalized image and learned adversarial style
feature. The model is then optimized with both original and adversarial images. These two steps are
implemented in each training iteration, enabling us dynamically generate hard stylized samples for
the current model. Our overall framework is illustrated in Fig. 3.

3.2 Adversarial Style Learning

Given an training image x at each iteration, we first compute the channel-wise mean µ and standard
deviation σ of x and then obtain the normalized image x̄ by normalization:

µ =
1

HW

∑
h∈H,w∈W

xh,w,

σ =

√
1

HW

∑
h∈H,w∈W

(xh,w − µ)2, x̄ =
x− µ

σ
,

(2)

where H and W denote the spatial size of x.
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After that, we initialize the adversarial style feature µ+ and σ+ by µ and σ, which are regarded as
learnable parameters. Then we reconstruct the image with µ+, σ+ and x̄ and forward it into the
network for loss computation. During the backward, the parameters of the network are fixed and the
adversarial style feature is updated by:

µ+ ← µ+ + γ∇µ+Lseg (θ; x̂) ,

σ+ ← σ+ + γ∇σ+Lseg (θ; x̂) ,
(3)

where γ is the learning rate for adversarial style learning and Lseg is the cross-entropy loss. x̂ =
x̄ · σ+ + µ+ is the reconstructed image. Notice that the style feature is optimized by the adversarial
gradient of Lseg. Indeed, the adversarial style learning process can be iterated multiple times. In our
experiment, we find that one-step adversarial style learning achieves similar results with multi-step
ones but is much more efficient. Therefore, we only update the style feature once.

3.3 Robust Model Training

Given the learned adversarial style feature (µ+ and σ+), we use it to generate the adversarial sample
x+ with the corresponding normalized image:

x+ = x̄ · σ+ + µ+. (4)

Then the original image x and the generated adversarial image x+ are forwarded to the model for
optimization, which can be formulated by,

min
θ
Lseg(θ;x) + Lseg(θ;x

+). (5)

The detailed training procedure and Pytorch-like pseudo-code can be found in the Appendix. During
testing, we directly input the original samples into the network without implementing AdvStyle.

3.4 Discussion

Adversarial data augmentation have been studied by several works for DG in image classification.
Most of them [27, 36] generate pixel-wise perturbations on the training image x, which usually require
additional constraint loss to guarantee the semantic consistency in Eq. 1. In addition, these works
focus on the image classification task where the recognition result is mostly related to global feature.
However, in semantic segmentation, the model needs to produce the per-pixel predictions so that it
is more difficult to ensure the pixel-wise semantic consistency during adversarial learning. Instead,
our AdvStyle varies the style feature of the image, which will maintain the semantic content of most
pixels and thus can well guarantee the pixel-wise semantic consistency for semantic segmentation.
We conduct experiments in Table 3, which demonstrate the superiority of the proposed AdvStyle over
pixel-wise adversarial learning.

4 Experiments

4.1 Experimental Setup

Datasets and Implementation Details. For the synthetic-to-real domain generalization (DG),
we use one of the synthetic datasets (GTAV [28] or SYNTHIA [29]) as the source domain and
evaluate the model performance on three real-world datasets (CityScapes [8], BDD-100K [39],
and Mapillary [23]). The details of the datasets can be found in the Appendix. Following [7], we
use DeepLabV3+ [6] as the segmentation model. The segmentation model is constructed by three
backbones, including MobileNetV2 [31], ResNet-50 [13] and ResNet-101. We adopt SGD optimizer
with an initial learning rate 0.01, momentum 0.9 and weight decay 5×10−4 to optimize the model.
The polynomial decay [19] with the power of 0.9 is used as the learning rate scheduler. The learning
rate of AdvStyle γ is set to 3. All models are trained for 40K iterations with a batch size of 16. Four
widely used data augmentation techniques are used during training, including color jittering, Gaussian
blur, random cropping and random flipping. The input image is randomly cropped to 768×768 for
training. The original image size is used for testing.

Evaluation Metric. Following [7], the model obtained by the last training iteration is used to evaluate
the mIoU performance on the three real-world validation sets. For each method, we report the
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Table 1: Evaluation of the proposed AdvStyle on different methods (Baseline, IBN-Net [24] and
ISW[7]) and backbones (MobileNetV2 [31], ResNet-50 [13], and ResNet-101). All models are
trained on the GTAV training set and tested on CityScapes (C), BDD-100K (B), and Mapillary (M)
validation sets.

Methods MobileNetV2 ResNet-50 ResNet-101

GTAV→ C B M Mean C B M Mean C B M Mean

Baseline 25.92 25.73 26.45 26.03 28.95 25.14 28.18 27.42 32.97 30.77 30.68 31.47
+AdvStyle 31.81 33.01 31.50 32.11 39.62 35.54 37.00 37.39 39.52 36.39 36.10 37.34

IBN-Net 30.14 27.66 27.07 28.29 33.85 32.30 37.75 34.63 37.37 34.21 36.81 36.13
+AdvStyle 32.45 31.55 33.09 32.36 39.32 36.42 40.82 38.85 44.04 39.96 42.67 42.22

ISW 30.86 30.05 30.67 30.53 36.58 35.20 40.33 37.37 37.20 33.36 35.57 35.38
+AdvStyle 33.23 31.84 32.00 32.36 39.60 38.59 41.89 40.03 43.44 40.32 41.96 41.91

Table 2: Results of using SYNTHIA as the source domain. The backbone is ResNet-101.

Methods (SYNTHIA→) CityScapes BDD Mapillary Mean

Baseline 34.94 21.96 27.94 28.28
Baseline+AdvStyle 37.59 27.45 31.76 32.27

IBN-Net 35.83 23.62 28.88 29.44
IBN-Net+AdvStyle 38.72 28.55 33.59 33.62

ISW 35.27 23.54 26.72 28.51
ISW+AdvStyle 39.74 28.33 32.87 33.65

result averaged on 3 runs. When using GTAV as the source domain, we use the 19 shared semantic
categories for training and evaluation. When using SYNTHIA as the source domain, we use 16
shared categories for training and evaluation, i.e., ignoring the train, truck, and terrain categories.

4.2 Evaluation

Effectiveness of AdvStyle on Different Models. Our AdvStyle is a model-agnostic method, which
can be directly applied to different models without modifying the models. To verify the effectiveness
of AdvStyle, we apply it to models with different backbones and normalization modules. The
backbones include MobileNetV2, ResNet-50 and ResNet-101. The normalization modules include
vanilla batch norm (baseline), instance-batch norm (IBN-Net [24]), and instance selective whitening
(ISW [7]). In Table 1, we show the results of using GTAV as the source domain. We can make
the following conclusions. First, injecting instance-batch norm (IBN-Net) and instance selective
whitening (ISW) modules can consistently improve the performance of the baseline. Second, the
proposed AdvStyle can significantly enhance the generalization performance of the baseline model
for all backbones. Specifically, the average mIoU is increased from 26.03%, 27.42% and 31.47% to
32.11%, 37.39% and 37.34% for MobileNetV2, ResNet-50 and ResNet-101, respectively. In addition,
the baseline with AdvStyle produces higher average mIoU than IBN-Net and ISW for all backbones.
Third, when adding AdvStyle, the results of IBN-Net and ISW can be further improved for all settings.
For example, when using ResNet-101 as the backbone, AdvStyle improves the average mIoU of
IBN-Net and ISW by 6.09% and 6.53%, respectively. In Table 2, we show the results of using
SYNTHIA as the source domain and also observe clear improvements for AdvStyle. These results
verify the prominent advantage of our AdvStyle on different models.

Comparison of Different Augmentation Techniques. We investigate the impact of different
augmentation methods, including color jittering, Gaussian blur, AdvPixel [36] and the proposed
AdvStyle. AdvPixel is a state-of-the-art method for domain generalized image classification. The
main difference between AdvPixel and AdvStyle is that AdvPixel learns pixel-wise adversarial
example while AdvStyle learns style-wise adversarial example. We reproduce AdvPixel in our
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Table 3: Comparison of different augmentations.
Source: GTAV; Backbone: ResNet-50. CJ: Color
Jittering, GB: Gaussian Blur, AP: AdvPixel, Ours:
AdvStyle.
CJ GB AP Ours CityScapes BDD Mapillary Mean

- - - - 21.64 22.85 24.22 22.91

✓ - - - 26.36 23.82 26.33 25.50
- ✓ - - 25.77 24.05 26.71 25.51
- - ✓ - 23.34 28.42 30.64 27.46
- - - ✓ 37.51 33.74 34.73 35.32

✓ ✓ - - 28.95 25.14 28.18 27.42
✓ ✓ ✓ - 35.42 33.28 33.23 33.97
✓ ✓ - ✓ 39.62 35.54 37.00 37.39

Table 4: Comparison of different style-aware
methods. Source: GTAV; Backbone: ResNet-
50.
Methods CityScapes BDD Mapillary Mean

Baseline 28.95 25.14 28.18 27.42

RandStyle 33.40 34.14 31.67 33.07
MixStyle 35.53 32.41 35.87 34.60
CrossStyle 37.26 32.40 34.09 34.58
AdvStyle 39.62 35.54 37.00 37.39
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Figure 4: Parameter analysis on the adversarial learning rate.

setting and select the adversarial learning rate (=10) that achieves the best performance. The random
cropping and random flipping are used in default.

Results in Table 3 show that all four augmentation methods can improve the generalization per-
formance. Importantly, our AdvStyle produces significant improvement compared to other three
methods. Specifically, when using AdvStyle, the average mIoU is increased from 22.91% to 35.32%.
This improvement is about 8% higher than the other 3 methods. Moreover, AdvStyle is well com-
plementary to color jittering and Gaussian blur. When combining these three methods, the mIoU is
further improved in all target domains. Compared to AdvPixel, our AdvStyle achieves clearly higher
performance, no matter using color jittering and Gaussian blur. This demonstrates the advantage of
learning adversarial style in domain generalized semantic segmentation.

Comparison of Different Style-Aware Methods. In Table 4, we compare AdvStyle with three style-
aware augmentation methods, including MixStyle [47], CrossStyle [33] and RandStyle. MixStyle
mixes the styles of two samples with a convex weight while CrossStyle directly swaps the styles
of two samples. RandStyle can be regarded a reduction of our AdvStyle, which randomly adds
Gaussian noise into the style feature. All style-aware methods are implemented on the image-level
for fair comparison. We can find that (1) all style-aware methods can consistently improve the
performance on all target domains and (2) AdvStyle achieves the best results. The first finding verifies
the effectiveness of augmenting image styles and the second finding shows the benefit of learning
adversarial styles over other style-aware methods for domain generalized semantic segmentation.

Parameter Analysis on the Adversarial Learning Rate. The proposed AdvStyle has one important
hyperparameter, i.e., the adversarial learning rate γ. To study the impact of γ, we vary it in the range
of [0.1, 40]. Results in Fig. 4 show that AdvStyle can significantly improve the performance on all
target domains even with a small value of γ. The best results are achieved when γ is between 1 and
10. Assigning a too large value to γ (e.g., 40) may produce unrealistic styles and thus hampers the
model training.

4.3 Comparison with State-of-The-Art Methods

In Table 5, we compare our method with state-of-the-art DG methods in semantic segmentation,
including IBN-Net [24], SW [25], IterNorm [15], ISW [7], DPRC [40] and FSDR [14]. The source
domain is GTAV and the backbones are ResNet-50 and ResNet-101. Note that, since different
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Table 5: Comparison with state-of-the-art domain generalization methods. All models use the GTAV
as the source domain. For each backbone, models with the same ID are implemented with the same
baseline. Models of “ID=I, II and IV” use the whole set (24,966) for training while models of
“ID=III” only use the training set (12,403). The absolute gain of each model is calculated over the
corresponding baseline. § denotes extra using the ImageNet images. ∗ indicates using the best trained
checkpoints for evaluating each target domain.

Net ID Methods (GTAV) CityScapes BDD Mapillary Mean
R

es
N

et
-5

0

I Baseline 22.20 - N/A N/A N/AI IBN-Net 29.60 7.40 ↑
II Baseline∗ 32.45 - 26.73 - 25.66 - 28.28 -
II DRPC§∗ 37.42 4.97↑ 32.14 5.41↑ 34.12 8.46↑ 34.56 6.28↑
III Baseline 28.95 - 25.14 - 28.18 - 27.42 -
III Baseline+AdvStyle 39.62 10.67↑ 35.54 10.4↑ 37.00 8.82↑ 37.39 9.97↑
III SW 29.91 0.96↑ 27.48 2.34↑ 29.71 1.53↑ 29.03 1.61↑
III IterNorm 31.81 2.86↑ 32.70 7.56↑ 33.88 5.7↑ 32.79 5.37↑
III IBN-Net 33.85 4.90↑ 32.30 7.16↑ 37.75 9.57↑ 34.63 7.21↑
III IBN-Net+AdvStyle 39.32 10.37↑ 36.42 11.28↑ 40.82 12.64↑ 38.85 11.43↑
III ISW 36.58 7.63↑ 35.20 10.06↑ 40.33 12.15↑ 37.37 9.95↑
III ISW+AdvStyle 39.60 10.65↑ 38.59 13.45↑ 41.89 13.71 ↑ 40.03 12.61↑

R
es

N
et

-1
01

I Baseline∗ 33.4 - 27.3 - 27.9 - 29.53 -
I IBN-Net∗ 40.3 6.9↑ 35.6 8.3↑ 35.9 8.0↑ 37.26 7.73↑
I FSDR§∗ 44.8 11.4↑ 41.2 13.9↑ 43.4 15.5↑ 43.13 13.6↑
II Baseline∗ 33.56 - 27.76 - 28.33 - 29.88 -
II DRPC§∗ 42.53 8.97↑ 38.72 10.96↑ 38.05 9.72↑ 39.76 9.88↑
III Baseline 32.97 - 30.77 - 30.68 - 31.47 -
III Baseline+AdvStyle 39.52 6.55↑ 36.39 5.62↑ 36.10 5.42↑ 37.34 5.87↑
III IBN-Net 37.37 4.40↑ 34.21 3.44↑ 36.81 6.13↑ 36.13 4.66↑
III IBN-Net+AdvStyle 44.04 11.07↑ 39.96 9.19↑ 42.67 11.99↑ 42.22 10.75↑
III ISW 37.20 4.23↑ 33.36 2.59↑ 35.57 4.89↑ 35.38 3.91↑
III ISW+AdvStyle 43.44 10.47↑ 40.32 9.55↑ 41.96 11.28↑ 41.91 10.44↑
III ISW+AdvStyle∗ 45.62 12.65↑ 41.71 10.97↑ 46.69 16.01↑ 44.67 13.20↑
IV ISW 37.51 - 33.54 - 36.12 - 35.72 -
IV ISW+AdvStyle 44.51 - 39.27 - 43.48 - 42.42 -

methods use different segmentation networks (e.g., DeepLabV2 [5], DeepLabV3+ [6] and FCN [20]),
different training sets (e.g., the whole GTAV and the training set of GTAV), different training strategies
(e.g., learning rate and optimizer) , different auxiliary data (e.g., ImageNet samples) and different
evaluation manners (e.g., the best model and the last model), it is hard to compare them in an
absolutely fair way. We show the results of each method as well as the absolute gain against the
corresponding baseline.

From Table 5, we can make the following conclusions. First, when using the same baseline model,
adding AdvStyle can produce better results than IBN-Net, SW, IterNorm and ISW. Moreover,
when applying AdvStyle to IBN-Net or ISW, we achieve new state-of-the-art performance for
both ResNet-50 and ResNet-101. Second, when compared across baselines, “Baseline+AdvStyle”
achieves the state-of-the-art mIoU for ResNet-50. On the other hand, when using ResNet-101 as the
backbone, “IBN-Net+AdvStyle” produces higher results than DRPC and comparable results with
FSDR. Importantly, both FSDR and DRPC use extra ImageNet images and select the best training
checkpoints for each target domain. Instead, “IBN-Net+AdvStyle” only utilizes the source data and
uses the last training checkpoint to evaluate all target domains. Third, when using the best checkpoint
for evaluation, we (“ISW+AdvStyle”) produce better performance than DRPC and FSDR, leading to
the new state-of-the-art results under the “best checkpoint setting”. Even so, we argue that it is more
reasonable to use the last checkpoint for evaluating all target domains. This is because we can not
always have the right labeled validation sets to select the best model for unseen domains in practice.
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Table 6: Results of using GTAV and SYNTHIA as the source domains. The backbone is ResNet-50.
Methods (GTAV+SYNTHIA→) CityScapes BDD Mapillary Mean

Baseline [7] 35.46 25.09 31.94 30.83
IBN-Net [24] 35.55 32.18 38.09 35.27
ISW [7] 37.69 34.09 38.49 36.75

ISW+AdvStyle 39.29 39.26 41.14 39.90

Image ISWIBN-NetGround truth Baseline Baseline+AdvStyle ISW+AdvStyleIBN-Net+AdvStyle
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Figure 5: Qualitative comparison of segmentation results. Source: GTAV; Backbone: ResNet-50.

To make more fair comparisons with the state-of-the-art methods, we also use the whole set of GTAV
for training ISW and “ISW+AdvStyle”. The results with ResNet-101 are reported in the last two
rows of Table 5. We can find that using the whole set of GTAV can produce higher results on the
CityScapes and the Mapillary datasets.

4.4 Performance under Multi-Source Setting

In Table 6, we evaluate the models under the multi-source domain generalization setting, where both
GTAV and SYNTHIA are used as the source domains. The compared methods include baseline [7],
IBN-Net [24], ISW [7], and our AdvStyle. Clearly, AdvStyle consistently improves the results of
ISW, further verifying the effectiveness of the proposed AdvStyle.

4.5 Visualization

Qualitative Comparison of Segmentation Results. In Fig. 5, we compare the segmentation results
for different methods on target domains. It is clear that, the proposed AdvStyle can consistently
improve the segmentation results for baseline, IBN and ISW models, especially for the easily-confused
classes, e.g., road vs sidewalk and building vs sky.

t-SNE of Styles. In Fig. 6, we visualize the style features generated by AdvStyle during the training
phase for the GTAV training set, where ResNet-50 is used as the backbone. We can find that AdvStyle
can continuously generate new style features that are different from the original distribution. The new
style features have the chance to be located at the distributions of other datasets during the training
process. Moreover, AdvStyle will also generate styles that are out of the distributions of the four
datasets (G, C, B, M) and may appear in other unseen domains. The visualization results further
demonstrate that AdvStyle can encourage the model to meet more diverse and unseen styles during
training, leading to a more robust model.

4.6 Evaluation on Image Classification Task

To verify the versatility of the proposed AdvStyle, we evaluate it on single DG in image classification.
Experiments are conducted on two popular DG datasets, i.e., Digits and PACS. The details of the
datasets and implementation can be found in the Appendix.

Results on Digits. In Table 7, we compare with the baseline (ERM [35]) and 6 state-of-the-art
methods, including CCSA [22], d-SNE [38], JiGen [3], ADA [36], M-ADA [27] and ME-ADA [42].
For AdvStyle, we implement it with ERM and ME-ADA. It is clear that, our AdvStyle can significantly
improve the accuracy of ERM on all target domains. When applying AdvStyle to the state-of-the-art
method (ME-ADA), the performance is improved by a large margin, i.e., 8.0% in average accuracy.
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Figure 6: t-SNE visualization of adversarial style features during training.

Table 7: Accuracy of single domain generalization
on Digits. MNIST is used as the training set, and
the results on different testing domains are reported
in different columns.
Method SVHN MNIST-M SYN USPS Avg.

ERM 27.8 52.7 39.7 76.9 49.3
CCSA 25.9 49.3 37.3 83.7 49.1
d-SNE 26.2 51.0 37.8 93.2 52.1
JiGen 33.8 57.8 43.8 77.2 53.1
ADA 35.5 60.4 45.3 77.3 54.6
M-ADA 42.6 67.9 49.0 78.5 59.5
ME-ADA 42.6 63.3 50.4 81.0 59.3

ERM+AdvStyle 50.4 73.4 58.7 81.6 66.0
ME-ADA+AdvStyle 55.5 74.1 59.3 80.1 67.3

Table 8: Accuracy of single domain general-
ization on PACS. One domain (name in col-
umn) is used as the training (source) data and
the other domains are used as the testing (tar-
get) data.

Method Art. Car. Ske. Pho. Avg.

ERM 67.4 74.4 51.4 42.6 58.9
JiGen 69.1 74.6 52.4 41.5 59.4
RSC 68.8 74.5 53.6 41.9 59.7
L2D 74.3 77.5 54.4 45.9 63.0

ERM+AdvStyle 75.8 76.6 58.1 51.1 65.4
RSC+AdvStyle 75.1 78.0 58.9 55.5 66.8
L2D+AdvStyle 80.6 78.4 58.3 59.7 69.3

Results on PACS. We compare with the baseline (ERM [35]) and three state-of-the-art DG methods,
including JiGen [3], RSC [17] and L2D [37]. We reproduce JiGen, RSC and L2D with their official
source codes. All methods use the same baseline (ERM). Results in Table 8 show that JiGen and
RSC produce limited improvements. Instead, our AdvStyle can significantly increase the accuracy
on all domains for both ERM and RSC. Compared to the recent published work (L2D), our method
(ERM+AdvStyle) outperforms it by 2.4% in average accuracy. In addition, AdvStyle can also be
applied to L2D and yields an improvement of 6.3% in average accuracy.

The results on Digits and PACS validate that AdvStyle can also be effectively applied to single
domain generalized image classification and can achieve state-of-the-art accuracy.

5 Conclusion

In this paper, we propose a novel augmentation approach, called adversarial style augmentation
(AdvStyle), for domain generalization (DG) in semantic segmentation. AdvStyle dynamically
generates hard stylized images by learning adversarial image-level style feature, which can encourage
the model learning with more diverse samples. With AdvStyle, the model can refrain from the
problem of overfitting on the source domain and thus can be more robust to the style variations
of unseen domains. AdvStyle is easy to implement and can be directly integrated with different
models without modifying the network structures and learning strategies. Experiments on two
synthetic-to-real settings show that AdvStyle can largely improve the generalization performance and
achieve state-of-the-art performance. In addition, AdvStyle can be employed to single DG in image
classification and obtain significant improvement.
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