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Abstract—Data centers are increasingly using high-speed cir-
cuit switches to cope with the growing demand and reduce
operational costs. One of the fundamental tasks of circuit switches
is to compute a sparse collection of switching configurations to
support a traffic demand matrix. Such a problem has been
addressed in the literature with variations of the approach
proposed by Birkhoff in 1946 to decompose a doubly stochastic
matrix exactly. However, the existing methods are heuristic and
do not have theoretical guarantees on how well a collection of
switching configurations (i.e., permutations) can approximate a
traffic matrix (i.e., a scaled doubly stochastic matrix).

In this paper, we revisit Birkhoff’s approach and make three
contributions. First, we establish the first theoretical bound on
the sparsity of Birkhoff’s algorithm (i.e., the number of switching
configurations necessary to approximate a traffic matrix). In par-
ticular, we show that by using a subset of the admissible permu-
tation matrices, Birkhoff’s algorithm obtains an ǫ-approximate
decomposition with at most O(log(1/ǫ)) permutations. Second,
we propose a new algorithm, Birkhoff+, which combines the
wealth of Frank-Wolfe with Birkhoff’s approach to obtain sparse
decompositions in a fast manner. And third, we evaluate the
performance of the proposed algorithm numerically and study
how this affects the performance of a circuit switch. Our results
show that Birkhoff+ is superior to previous algorithms in
terms of throughput, running time, and number of switching
configurations.

I. INTRODUCTION

Data centers are increasingly adopting hybrid switching

designs that combine traditional electronic packet switches

with high-speed circuit switches [1], [2], [3]. In short, packet

switches are flexible at making forwarding decisions at a

packet level, but have limited capacity and are becoming

increasingly expensive in terms of cost, heat, and power. In

contrast, circuit switches provide significantly higher data rates

at a lower cost but are less flexible at making forwarding

decisions. The main drawback of circuit switches is that they

have high reconfiguration times, which limit the amount of

traffic they can carry [4], [1], [5]. For instance, circuit switches

have reconfiguration times in the order of milliseconds (e.g.,

25 ms for off-the-self circuit switches [6], [7]), whereas the

reconfiguration times in electronic switches are in the scale of

microseconds. As a result, hybrid switching architectures load

balance and use circuit switches for high-intensity/bursty flows

[8], [9]1 and electronic switches for traffic that needs of a more

fine-grained scheduling (e.g., delay-sensitive applications).

The problem of computing switching configurations for

circuit switches is central to networking and has a direct

1Traffic in data centers is often bursty [10], [11] and uses few input/output
ports [12].

impact on the performance of nowadays data centers. Mathe-

matically, we can model a circuit switch as a crossbar,2 and

cast the problem of finding a small collection of switching

configurations as decomposing a doubly stochastic matrix3

as a sparse convex combination of permutations matrices. In

brief, for a given n × n doubly stochastic matrix X⋆ (i.e.,

a scaled traffic matrix) and an ǫ ≥ 0, the goal is to find a

small collection of permutation matrices P1, P2, . . . , Pk (i.e.,

switching configurations) and weights θ1, θ2, . . . , θk > 0 (i.e.,

the fraction of time the switching configurations will be used)

with
∑k

i=1 θi ≤ 1 such that
∥

∥

∥

∥

∥

X⋆ −
k
∑

i=1

θiPi

∥

∥

∥

∥

∥

F

≤ ǫ, (1)

where ‖ · ‖F is the Frobenius norm (see definition in Section

III-A). The smaller ǫ is, the higher the throughput. However,

practical systems cannot use as many switching configurations

as desired as each inflicts a reconfiguration time δ that affects

the fraction of time the switch can carry traffic.4 Or put dif-

ferently, there is a constraint on the number of configurations

a switch can use to approximate a traffic matrix.

Previous work has addressed the problem above with vari-

ations (e.g., [14], [8], [15], [16]) of the approach proposed

by Birkhoff in 1946 [17] to decompose a doubly stochastic

matrix exactly (i.e., ǫ = 0). However, little is known about the

behavior or convergence properties of Birkhoff’s algorithm,

and so fundamental questions remain still unanswered. In

particular, how does the decomposition approximation ǫ in Eq.

(1) depend on the number of switching configurations? How

much does an additional switching configuration contribute

to increasing a circuit switch throughput? How is Birkhoff’s

algorithm related to other numerical methods in other fields,

such as optimization and machine learning? Answering these

questions is crucial to better understand the structure of the

problem and to design new algorithms that improve the perfor-

mance of circuit switches. To this end, the main contributions

of the paper are the following:

(i) Revisiting Birkhoff’s approach. We revisit Birkhoff’s

algorithm and establish the first theoretical bound on its spar-

2See, for example, [13, Section 4.1].
3A matrix is doubly stochastic if its entries are non-negative and the sum

of every row and column is equal to one. A permutation matrix is a binary
doubly stochastic matrix.

4Technically, a traffic matrix X⋆ is valid for a time window period W ,

and the decomposition must satisfy
∑k

i=1
(θi + δ) ≤ W . That is, the time

spent transmitting (
∑k

i=1
θi) and reconfiguring (δk) cannot exceed the time

window duration (W ).

http://arxiv.org/abs/2011.02752v1
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Table I
SPARSITY AND PERMUTATION SELECTION COMPLEXITY OF BIRKHOFF+

(THIS PAPER) AND PREVIOUS ALGORITHMS. LP AND QP STAND FOR

LINEAR AND QUADRATIC PROGRAM RESPECTIVELY.

Algorithm Sparsity (k) Perm. selec. complexity

Birkhoff [17] — One LP
Solstice[8] — Multiple LPs
Eclipse∗ [9] Approx. ratio Multiple LPs

FW [18] O(1/ǫ2) One LP

FCFW [19] O(log(1/ǫ2)) One LP + QP(k)
Birkhoff+ (this paper) O(log(1/ǫ)) One LP

sity (i.e., the number of permutations necessary to approximate

a doubly stochastic matrix). In particular, we show that by

selecting permutations from a subset of admissible permuta-

tions, Birkhoff’s algorithm has sparsity O(log(1/ǫ)) (Theorem

1). That is, the number of permutations required to obtain an

ǫ-approximate decomposition increases logarithmically with

the decomposition error. Our results also show that previous

Birkhoff-based algorithms that select permutations using a

Max-Min criterion (e.g., [8]) have logarithmic sparsity (Corol-

lary 1), and that Birkhoff’s algorithm is strongly connected to

block-coordinate descent and Frank-Wolfe methods in convex

optimization (Section IV-D2 and Section V).

(ii) New algorithm (Birkhoff+). We propose a new

algorithm that combines Birkhoff’s approach and Frank-Wolfe.

Specifically, permutation matrices are selected using a Frank-

Wolfe-type update with a barrier function, while the weights

as in Birkhoff’s approach. The proposed algorithm has theo-

retical guarantees (Corollary 2) and is non-trivial as a direct

combination of Birkhoff’s approach with Frank-Wolfe may not

converge (Theorem 4). Furthermore, Birkhoff+ is faster

than previous algorithms as it computes a new permuta-

tion/configuration by solving a single linear program (LP).

Table I contains a summary of the main differences between

Birkhoff+ and the state-of-the-art algorithms discussed in

Section II.

(iii) Numerical evaluation. We evaluate Birkhoff+’s

performance in a circuit switch application and compare it

against existing algorithms for a range of matrices (dense,

sparse, skewed) that capture the characteristics of traffic in

data centers. Our results show that Birkhoff+ is superior

to previous algorithms in terms of throughput, running time,

and number of switching configurations. For instance, when

δ/W = 10−2 (the reconfiguration time over the time available

for transmission), Birkhoff+ has 7% more throughput than

the best state-of-the-art algorithm. If we consider, in addi-

tion, the time to compute the switching configurations as an

overhead, the throughput gain increases to 34% (switch with

n = 100 ports).

The outline of the paper is as follows. Section II presents

related work and Section III the preliminaries, which include

the notation and how to find a permutation matrix by solving a

linear program. In Section IV, we revisit Birkhoff’s approach

in a general form, establish its sparsity rate, and show how this

is connected to block-coordinate descent methods in convex

optimization. The latter also clarifies that selecting a permuta-

tion matrix can be seen as choosing a (gradient) descent direc-

tion. Section V shows how to use Frank-Wolfe algorithms to

decompose a doubly stochastic matrix, and how Frank-Wolfe

chooses a permutation matrix that provides “steepest descent.”

In Section VI, we present the new algorithm (Birkhoff+)

and in Section VII evaluate its performance against the state-

of-the-art algorithms. Finally, Section VIII concludes. All the

proofs are in the Appendix.

II. HISTORY AND RELATED WORK

A. Birkhoff’s approach

This is the method employed by Birkhoff in 1946 to

decompose a doubly stochastic matrix exactly [17, first the-

orem].5 In brief, the method consists of finding permutations

matrices sequentially (e.g., with the Hungarian algorithm) and

terminates when it obtains an exact decomposition, which

happens with at most k = (n−1)2+1 iterations/permutations

[21], [22] by Carathéodory’s theorem. The method, however,

does not guarantee that the decomposition (i.e.,
∑k

i=1 θiPi) is

close to the doubly stochastic matrix it aims to approximate

(i.e., X⋆). In fact, the approximation is typically very poor

until the algorithm converges exactly in the last iteration (see

Figure 3a in Section VII for an example).

B. Related mathematical problems

The problem of finding the Birkhoff decomposition with

the minimum number of permutation matrices (min k s.t.

X⋆ =
∑k

i=1 θiPi) was addressed in [15] and shown to be NP-

hard. In [23], the authors also show that the problem is not

tractable when the minimal decomposition can be expressed

with k ≥ 4 permutations. The work in [24] formulates a

similar problem. For a demand matrix D = X⋆ − S with

S ∈ [0, 1]n×n,6 the goal is to find a collection of weights

{θi}ki=1 and permutation matrices {Pi}ki=1 that minimizes
∑k

i=1(θi + δ) subject to
∑k

i=1 θiPi ≥ D entry-wise. The

problem is shown to be NP-complete. The problem addressed

in this paper is different in spirit from the mathematical

problems in [15], [24] because we do not aim to find a

(small) collection of objects (i.e., k) subject to decomposition

constraints (i.e., X⋆ =
∑k

i=1 θiPi or
∑k

i=1 θiPi ≥ D).

Instead, our goal is to design an algorithm that minimizes

‖X⋆−Xk‖F where Xk =
∑k

i=1 θiPi. The convergence rate of

the numerical method correponds the number of permutations

required to obtain an ǫ-approximate decomposition.

C. Algorithms

The paper in [8] proposes Solstice, a Birkhoff-based

heuristic for finding a Birkhoff decomposition with few permu-

tations/configurations. Solstice picks permutation matrices

using a Max-Min type criterion, and the weights or configu-

rations durations are selected as large as possible provided

5The result is also known as Birkhoff-von Neumman (BvN) as it was
discovered independently by von Neumman [20]. We use Birkhoff instead
of BvN as the algorithm used in the literature is based on the method of
proof used by Birkhoff in [17].

6The entries of the demand matrix D are non-negative. Matrix S adds a
non-negative virtual load to demand matrix so that D+S is doubly stochastic.
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X⋆ − ∑k
i=1 θiPi is non-negative entry-wise. The work in

[9] proposes Eclipse, a sub-modular-type algorithm for

solving the problem of the type introduced in [24]. Permu-

tation matrices and weights are selected jointly to maximize

an effective utilization criterion, which takes into account

the reconfiguration penalty δ. Also, [9] shows that the final

decomposition satisfies the optimal approximation ratio in sub-

modular optimization with cover constraints. Both algorithms

[8], [9] select permutation matrices by solving multiple linear

programs (LPs) with a simplex type method [25]. Finally,

we note the recent works in [16] and [26]. The first extends

Eclipse to use a special type of weights/time coefficients

that do not constraint the decomposition to be a scaled doubly

stochastic matrix. The second addresses the online version

of the problem in [9]—in the machine learning sense [27]—

where the traffic matrix is learned a posteriori.

To conclude, we note the Frank-Wolfe algorithms [18], [28]

used extensively in machine learning. The Frank-Wolfe setup

is the following. Given a collection of discrete objects D and

a convex set X ⊆ conv(D), the goal is to minimize a convex

function by making convex combinations of the discrete

objects. The problem addressed in this paper can be seen

as a special case for Frank-Wolfe. The permutation matrices

correspond to the discrete objects, the Birkhoff polytope is the

convex set, and the objective function a metric that captures

the distance between the approximate decomposition and X⋆

(e.g., Frobenius norm or Euclidean distance). Also, and unlike

Birkhoff-based approaches, Frank-Wolfe algorithms provide

sparsity guarantees and ensure that the approximate decom-

position is always a doubly stochastic matrix.

III. PRELIMINARIES

A. Notation

We use R+ and R
d to denote the set of nonnegative real

numbers and d-dimensional real vectors. Vectors and matrices

are written in lower and upper case respectively, and all vectors

are in column form. The transpose of a vector x ∈ R
d is

indicated with xT , and we use 1 to indicate the all ones

vector—the dimension of the vector will be clear from the

context. We use parenthesis to indicate an element in a vector,

i.e., x(j) is the j’th element of vector x. Similarly, the element

in the i’th row and j’th column of a matrix X is indicated

with X(i, j). For two vectors x, y ∈ R
d, we write x ≻ y

when x(j) > y(j) for all j ∈ {1, . . . , d}, and x � y when

x(j) ≥ y(j). Finally, we recall the Frobenius norm of a matrix

X is defined as ‖X‖F =
√

∑

i,j |X(i, j)|2 =
√

Tr(XX∗)

and that [n] is the short-hand notation for {1, . . . , n}.

B. Finding extreme points by solving linear programs

We will present algorithms that find extreme points (i.e.,

permutation matrices) by solving linear programs (LPs) over

a convex set (i.e., the Birkhoff polytope or set of doubly

stochastic matrices). We recall the following result from linear

programming.

Lemma 1. Let X be a bounded polytope from R
d, and E

denote its extreme points. For any vector c ∈ R
d, we have

that {argminx∈X cTx} ∩ E 6= ∅.

That is, an extreme point in E is always a solution to

minx∈X cTx. In our case, X is the Birkhoff polytope and P
the set of permutation matrices. Throughout the paper, we will

cast linear programs as

LP(c,X ) : minimize cTx
subject to x ∈ X , (2)

and we will assume that the solution returned is always an

extreme point—which is the case if we solve the LP with a

simplex-type method [25].

IV. REVISITING BIRKHOFF’S ALGORITHM

This section revisits Birkhoff’s algorithm. The main techni-

cal contribution is Theorem 1, which establishes that the num-

ber of permutation matrices in Birkhoff’s approach increases

logarithmically with the decomposition error.

A. Approximate Birkhoff decomposition problem

The mathematical problem we want to solve is the follow-

ing. For a given n × n doubly stochastic matrix X⋆ and an

ǫ ≥ 0, our goal is to find a small collection of permutation

matrices P1, P2, . . . , Pk and weights θ1, θ2, . . . , θk > 0 with
∑k

i=1 θi ≤ 1 such that ‖X⋆ −∑k
i=1 θiPi‖F ≤ ǫ. Recall a

matrix X ∈ [0, 1]n×n is doubly stochastic if every row and

column sums to one. That is, X1 = 1 and 1
TX = 1

T . Also,

a doubly stochastic matrix is a permutation if its entries are

binary.

B. Algorithm description

The original Birkhoff algorithm is described in Algorithm

1, and consists of two steps. First, the algorithm calls the

subroutine PERM, which returns a permutation Pk and a weight

θk. The second step is to add θkPk to the previous approximate

decomposition, i.e., Xk = Xk−1 + θkPk. The permutation Pk

and weight θk must satisfy the following three conditions:

Xk−1(a, b) + θkPk(a, b) ≤ X⋆(a, b) ∀a, b ∈ [n] (3)

θk > 0 ∀k ≥ 1 (4)
∑k

i=1 θi ≤ 1 ∀k ≥ 1 (5)

In words, Xk(a, b) ≤ X⋆(a, b) for all a, b ∈ {1, . . . , n}, the

weights are strictly positive, and the sum of the weights is

less than or equal to one. The algorithm terminates when the

approximate decomposition Xk is ǫ close to X⋆, or when

the maximum number of admissible permutations (kmax) is

reached.

C. Convergence

We proceed to establish the convergence of Birkhoff’s

algorithm. We start by presenting the following lemma, which

establishes a lower and upper bound on ‖Xk −X⋆‖F .

Lemma 2. Consider the setup in Algorithm 1 and suppose

the subroutine PERM returns a weight θk and a permutation
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Algorithm 1 General Birkhoff

Input: Doubly stochastic matrix X⋆, ǫ ≥ 0, and kmax ≥ 1
Set: k = 1 and X0 = {0}n×n

while ‖Xk−1 −X⋆‖F > ǫ and k ≤ kmax do

Pk, θk ← PERM(Xk−1, X
⋆)

Xk ← Xk−1 + θkPk

k ← k + 1
end while

return (P1, . . . , Pk−1), (θ1, . . . , θk−1)

matrix Pk that satisfy the conditions in Eqs. (3)- (5) for all

k ≥ 1. Then, the following two bounds hold:

‖Xk −X⋆‖F ≥
(

1−
k
∑

i=1

θi

)

(6)

‖Xk −X⋆‖F ≤

√

√

√

√n
k
∏

i=1

(

1− nθ2i
‖Xi−1 −X⋆‖2F

)

(7)

where θi ≤ 1√
n
‖Xi−1 −X⋆‖F .

The bounds in Lemma 2 are very general as they hold for

any collection of permutation matrices and weights that satisfy

the conditions in Eqs. (3)-(5). The lower bound in Eq. (6)

tells us that the approximate decomposition error is at least

(1 −∑k
i=1 θi), and so we will have an exact decomposition

(i.e., serve 100% of the traffic demand) only if
∑k

i=1 θi = 1.

The upper bound in Eq. (7) shows how the decomposition error

depends on the weights θi and the previous approximations

‖Xi−1 − X⋆‖2F , i = 1, . . . , k. In particular, on the ratio

nθ2i /‖Xi−1 −X⋆‖2F , which captures how large θi is with

respect to the previous approximation. Note that the values

that θi can take depend on ‖Xi−1−X⋆‖2F as we must always

satisfy the conditions in Eqs. (3)–(5). Finally, we note that

finding a joint collection of weights and permutation matrices

that minimize the RHS of Eq. (7) for a fixed k is as difficult

as minimizing ‖Xk − X⋆‖2F directly, since the RHS of Eq.

(7) depends on ‖Xi−1 −X⋆‖F , i = 1, . . . , k. Because of the

latter, we study how to minimize the RHS of Eq. (7) in an

iterative manner: for a given collection of permutation matrices

Pi and weights θi with i = 1, . . . , k− 1, our goal is to find a

permutation matrix Pk and weight θk that decrease the RHS

of Eq. (7).

In the following, we study the algorithm’s progress in

terms of error for every additional permutation matrix in

the decomposition. Addressing this question is important to

obtain a bound on the number of permutations required to

obtain an ǫ-approximate decomposition as well as to know

how to select good permutation matrices. To start, let µi :=
nθ2i /‖Xi−1 −X⋆‖2F and rewrite Eq. (7) as

‖Xk −X⋆‖F ≤

√

√

√

√n

k
∏

i=1

(1− µi) (8)

Note that (1 − µi) ∈ [0, 1) for all i = 1, 2, . . . since θi ≤
1√
n
‖Xi−1 −X⋆‖F . Hence, we have that Xk → X⋆ as k →∞

and so the algorithm converges. Now, suppose there exists a

Algorithm 2 Subroutine PERM

1: Input: X⋆ and Xk−1 =
∑k−1

i=1 θiPi

2: α← (1−∑k−1
i=1 θi)/n

2

3: Pk ← P̂ ∈ Ik(α)
4: θk ← BIRKHOFF_STEP(X⋆, Xk−1, Pk) (Algorithm 3)

Algorithm 3 BIRKHOFF_STEP

1: Input: X⋆, Xk−1, and Pk

2: return mina,b {(X⋆(a, b)−Xk−1(a, b)− 1)Pk(a, b) + 1}

constant µmin > 0 such that µmin ≤ µi for all i ≥ 1. Then,

the bound in Eq. (8) simplifies to

‖Xk −X⋆‖F ≤
√
n(1− µmin)

k/2. (9)

The last equation tells us that the approximation error de-

creases exponentially with the number of permutations. For

example, if µmin = 1/2, we have that ‖Xk − X⋆‖F ≤√
n(1/2)k/2, which means that every additional permutation

in the decomposition decreases the approximation error by at

least half. The ratio κ := 1/µmin ≥ 1 can be regarded as

the condition number in optimization with a strongly convex

objective [29][Section 9.1.2 and 9.3.1].

The following lemma establishes an upper bound on the

number of permutations required to obtain an ǫ-approximate

decomposition provided that a constant µmin > 0 exists.

Lemma 3. Suppose nθ2i /‖Xi−1 −X⋆‖2F ≥ µmin for all

i = 1, . . . , k for some constant µmin > 0. Then, Algorithm

1 obtains an ǫ-approximate decomposition with at most

k ≤ 2 log−1

(

1

1− µmin

)

log

(√
n

ǫ

)

permutation matrices.

Lemma 3 says that if a constant µmin exists, then the number

of permutation required to obtain an ǫ-approximate decompo-

sition has a logarithmic dependence with ǫ. Hence, it remains

to show whether such constant exists. Or equivalently, we need

to show that we can select a θi such that nθ2i /‖Xi−1 −X⋆‖2F
is uniformly lower bounded by a strictly positive constant. We

show that in the following theorem, which is one of the main

contributions of the paper.

Theorem 1. Let P be the set of n× n permutation matrices

and define

Ik(α) = {P ∈ P | Xk−1(a, b) + αP (a, b) ≤ X⋆(a, b)} (10)

with α =
√µmin

n (1 −∑k
i=1 θi) where µmin = 1/n3. Then,

Ik(α) 6= ∅, and Algorithm 1 with the subroutine PERM defined

in Algorithm 2 obtains an ǫ-approximate decomposition with

at most

k ≤ 2 log−1

(

1−min
i∈[k]

nθ2i
‖Xi−1 −X⋆‖2F

)−1

log

(√
n

ǫ

)

(11)

permutation matrices.

Theorem 1 establishes that by selecting permutation ma-

trices from set Ik(α) ⊆ P , and weights as indicated in
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Algorithm 2, then the number of permutation matrices required

to obtain an ǫ-decomposition increases logarithmically with

ǫ. Set Ik(α) is necessary to enforce that conditions in Eqs.

(3)–(5) are satisfied, but also to push Birkhoff’s algorithm

to make sufficient progress in every iteration. Observe that

the threshold α is bounded away from zero and that this

depends on the constant µmin = 1/n3. Finally, we have written

mini∈{1,...,k} nθ
2
i /‖Xi−1 −X⋆‖2F instead of µmin in Eq. (11)

(c.f. Lemma 3) to emphasize two points. The first one is

that µmin is over-conservatively small, and that we can in

general obtain a much sharper upper bound. In the numerical

evaluation (Section VII-B1), we show the condition numbers

(κ = 1/µmin) of different algorithms. The second point is that

nθ2i /‖Xi−1−X⋆‖2F is a quantity that we can measure and so

use a as a criterion for selecting a “good enough” permutation

matrix. Importantly, recall that the PERM subroutine does

not specify which specific permutation to select from Ik(α),
which is in marked contrast to pervious approaches (e.g.,

[8], [9], [16]), which use a predefined criterion for selecting

permutation matrices and weights.

D. Discussion

1) Max-Min Birkhoff algorithms: The most popular variant

of Birkhoff’s algorithm (e.g., [8], [15]) aims to find a permuta-

tion matrix with the largest associated weight. Such approach

corresponds to solving the following optimization problem:

maximize
θ>0,P∈P

θ

subject to Xk−1(a, b) + θP (a, b) ≤ X⋆(a, b)
∀a, b ∈ [n]

(12)

The strategy is also known as Max-Min because it is equivalent

to finding a permutation matrix P with the largest smallest

element X⋆(a, b)−Xk(a, b) provided P (a, b) = 1. Hence, the

set of solutions to the optimization problem above is given by

Sk := argmax
P∈P











min
a,b∈[n]

P (a,b)=1

X⋆(a, b)−Xk(a, b)











Note that Sk ⊆ Ik(α) since Ik(α) includes all the solutions

with θ ≥ α > 0. Further, we have that Ik(α) 6= ∅ by Theorem

1. We have arrived at the following corollary to Theorem 1.

Corollary 1 (Theorem 1). The Birkhoff-type algorithms that

select permutation matrices using a Max-Min criterion (e.g.,

[8]) have sparsity O(log(1/ǫ)).

To conclude, we would like to emphasize that finding

a permutation matrix in set Sk is non-trivial. The typical

approach is to fix a weight θ, and then try to find a permutation

matrix that satisfies the constraints in Eq. (12). The process

is repeated for different weights, which are selected with

different strategies; for example, [8] uses a halving threshold

rule. The main issue with this method is that it is slow,

and so non-convenient for applications that need to carry

out decomposition fast. For example, when we are given a

traffic matrix associated with a time window. The time spent

computing the switching configurations is time that the switch

cannot use for serving traffic.

Algorithm 4 Birkhoff (vector form)

1: Input: Birkhoff polytope B, x⋆ ∈ B, ǫ ≥ 0, kmax ≥ 1
2: Set: k = 1 and x0 = 0
3: while ‖x⋆ − xk−1‖2 > ǫ and k ≤ kmax do

4: ◦ pk ← LP (−⌈x⋆ − xk−1⌉,B)
5: ✩ θk ← BIRKHOFF_STEP(x⋆, xk−1, pk)
6: ⋄ xk ← xk−1 + θkpk
7: k ← k + 1
8: end while

9: return (p1, . . . , pk−1), (θ1, . . . , θk−1)

2) Birkhoff’s algorithm as a block-coordinate descent:

The Birkhoff algorithm can be thought in convex optimization

terms. In particular, as solving the following convex optimiza-

tion problem

minimize
X∈Rn×n

‖X −X⋆‖2F
subject to X(a, b) ≤ X⋆(a, b) ∀a, b[n]

X(a, b) ≥ 0 ∀a, b ∈ [n]

(13)

using a block-coordinate descent method with X0 = {0}n×n

(see [30] [31], [32][Section 7.5.3]). Note that the objective

is convex and the constraints linear. The block-coordinate

method consists of the update7

Xk = Xk−1 + θkMk

where θk > 0 is a step size and Mk ∈ {−1, 0, 1}n×n a matrix

that indicates the direction in which to update each of the

coordinates. Birkhoff’s approach can be regarded as a special

case where the Mk matrices are permutations, and so have

constrains on the group of coordinates can be jointly updated.

Also, there are no negative coordinates since by selecting

X0 = {0}n×n as starting point the algorithm only needs to

“move forward.” To conclude, we note that our sparsity result

is connected to the linear convergence rate obtained by convex

optimization algorithms that exploit the strong convexity of the

objective function.

V. FRANK-WOLFE FOR THE APPROXIMATE BIRKHOFF

DECOMPOSITION

In this section, we show how the Frank-Wolfe (FW) algo-

rithm and its fully corrective variant (FCFW) can be used to

decompose a doubly stochastic matrix. The main contributions

are to give explicit sparsity bounds for the FW and FCFW

algorithms (Theorem 2 and 3) and to discuss the properties of

how Frank-Wolfe selects permutation matrices (Observations

1 and 2). The latter will be key to choose permutation matrices

in the Birkhoff-type algorithm we will present in Section VI.

A. Birkhoff polytope and algorithm in vector form

In the rest of the paper, it will be more convenient to write

n × n doubly stochastic matrices as n2-dimensional vectors8

in the set

B := {x ∈ R
d | x � 0, Ax = b},

7The method is usually expressed in vector form. In our case, we can create
a vector by stacking the matrix columns.

8Instead of having a matrix Z ∈ R
n×n
+

such that Z1 = ZT1 = 1, we

work with a vector x := (z1, . . . , zn) where zi is the i’th column of Z .
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where d = n2, A ∈ {0, 1}2n×d, and b := {1}2n. Matrix

A contains the 2n equality constraints that characterize the

Birkhoff polytope (i.e., the sum of the columns and rows of a

doubly stochastic matrix must be equal to 1). The specific

structure of A can be derived easily and is given in the

Appendix. As before, we use set P ⊂ {0, 1}d to denote the set

of permutation matrices or extreme points, but now these are in

column form. The terms extreme point and permutation matrix

will be used interchangeably in the rest of the paper. Finally,

Algorithm 4 contains the procedure of the classic Birkhoff

algorithm [17] in vector form,9 which is a special case of the

more general Algorithm 1. Permutation matrices are selected

by solving the liner program LP (−⌈x⋆ − xk−1⌉,B) (see

Section III-B) and the step sizes as large as possible provided

xk � x⋆ for all k ≥ 1. The LP (−⌈x⋆ − xk−1⌉,B) returns

any admissible permutation matrix (see Section III) and ⌈·⌉
denotes the entry-wise ceiling of a vector.

B. Frank-Wolfe overview

In short, the Frank-Wolfe algorithm is a numerical method

for minimizing a convex function f over a convex set con-

tained in the convex hull of a set of discrete points or atoms

[28]. In our case, the convex set is the Birkhoff polytope (B)

and the atoms the set of permutation matrices (P). In each

iteration, the algorithm selects an extreme point with update

pk ∈ argmin
u∈P

∇f(xk−1)
Tu (14)

and choses a step size θ > 0 such that f(xk−1 + θ(pk −
xk−1)) < f(xk−1). The essence of the algorithm is that

when f is smooth on B,10 there always exists an extreme

point that is a direction in which it is possible to improve

the objective function. The step size can be selected in a

variety of ways (e.g. constant, line search, etc.) and differently

from the previous section, Frank-Wolfe does not require that

xk−1 + θkpk � x⋆ where x⋆ is the doubly stochastic matrix

we want to decompose. Also, Frank-Wolfe ensures, by con-

struction, that xk is a convex combination of the permutation

matrices throughout the iterations. As objective function, we

use f(x) = (1/2)‖x− x⋆‖22 to streamline exposition but also

because it allows us to make the following observations:

Observation 1 (Weighted search direction). For this partic-

ular choice of objective function, we have that ∇f(xk−1) =
−(x⋆ − xk−1). Hence, the update in Eq. (14) becomes

pk ∈ argmin
u∈P
−(x⋆ − xk−1)

Tu,

which is equivalent to solving the linear program LP (−(x⋆−
xk−1),B). That is, computing an extreme point with Frank-

Wolfe and Birkhoff is the same except for the ceiling.11

Note that by ceiling the vector −(x⋆−xk−1), we are “weight-

ing” all the components that are not equal to zero equally.

9The algorithm corresponds to the method of proof employed by Birkhoff to
show that a doubly stochastic matrix is an arithmetic measure of permutation
matrices. See [17], theorem on page 1.

10There exists a constant L such that f(y) ≤ f(x) +∇f(x)T (y − x) +
L
2
‖y − x‖22 for all x, y ∈ B.
11Recall also that with FW there is not requirement that x⋆ � x.

Figure 1. Schematic illustration of the steepest descent permutation discussed
in Observation 2. The black dots with a red cross are the extreme points
that are non-descent directions. Frank-Wolfe with f(x) = (1/2)‖x⋆ − x‖22
chooses the extreme point pk (i.e., the permutation) that minimizes the angle
between (pk − xk−1) and −∇f(xk) = (x⋆ − xk−1).

Without the ceiling, the Frank-Wolfe update takes into account

the geometry of the decomposition, i.e., how close xk−1 is to

x⋆ entry-wise.

Observation 2 (Steepest descent permutation). The extreme

points selected by Frank-Wolfe corresponds to obtaining the

“steepest” descent direction, or direction (pk − xk−1) that

has the smallest angle with respect to (x⋆ − xk−1). Note that

(x⋆−xk−1) = −∇f(xk−1) is the direction that goes straight

to the target value x⋆, and that

argmin
u∈P
∇f(xk−1)

Tu

(a)
= argmin

u∈P
‖∇f(xk−1)‖2‖u‖2 cosφ〈∇f,u〉

(b)
= argmin

u∈P
cosφ〈∇f,u〉

where (a) follows from the dot product and (b) since ‖p‖2 =√
n for all p ∈ P , and ‖∇f(xk−1)‖2 does not depend on

p. The RHS of the last equation corresponds to maximizing

cosφ〈−∇f,p〉, which is equivalent to finding the p ∈ P that

minimizes the angle between −∇f(x) = (x⋆−x) and (p−x).
Furthermore, since the Birkhoff polytope is regular and the

number of extreme points increases factorially with n, we can

expect φ〈−∇f,p〉 to be small. Figure 1 shows, schematically,

how Frank-Wolfe selects the extreme point that has the smallest

angle with respect to (x⋆ − x). The black dots with a red

cross are “non-descent” permutations that will not improve

the decomposition approximation.

Both observations rely on the objective function being

quadratic; however, we can expect similar properties for

other smooth convex objectives. For example, we could use

f(x) = (x⋆ − x)TQ(x⋆ − x) where Q is a positive semi-

definite matrix that emphasizes which of the components in

vector x⋆−x to minimize. In Section VI, we will include a log-

barrier function to the objective. In the rest of the section, we

will use a quadratic objective function to streamline exposition.

C. Frank-Wolfe with line search

The procedure of the Frank-Wolfe algorithm is given in

Algorithm 5. Differently from Birkhoff’s approach, FW uses

an extreme point as a starting point instead of the origin. Note

that 0 /∈ B. The choice of step size is indicated in step 3, and

corresponds to carrying out line search. This can be easily
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Algorithm 5 Frank-Wolfe (FW) with quadratic objective and

line search

1: As Algorithm 4, but set x0 ∈ P and replace lines ◦, ✩, ⋄
with

2: pk ← LP (−(x⋆ − xk−1),B)
3: θk ← (x⋆ − xk−1)

T (pk − xk−1)/‖pk − xk−1‖22
4: xk ← xk−1 + θk(pk − xk−1)

Algorithm 6 Fully Corrective Frank-Wolfe (FCFW)

1: As Algorithm 4, but set x0 ∈ P and define V0 = ∅. Let

∆k be the k-simplex. Replace lines ◦, ✩, ⋄ with

2: pk ← LP (∇f(xk−1),B)
3: Vk ← [Vk−1, pk]
4: (θ1, . . . , θk)← argminu∈∆k

‖Vku− x⋆‖22
5: xk ← Vk(θ1, . . . , θk)

verified. Let xk := xk−1 + θk(pk − xk−1) be the k’th iterate,

and observe that we can write

1

2
‖xk − x⋆‖22 −

1

2
‖xk−1 − x⋆‖22

=
1

2
‖xk−1 + θk(pk − xk−1)− x⋆‖22 −

1

2
‖xk−1 − x⋆‖22

= θk(xk−1 − x⋆)T (pk − xk−1) +
θ2

2
‖pk − xk−1‖22.

The RHS of the last equation is a quadratic function in θk,

whose minimizer can be obtained in closed form. And since

equality holds in the last equation, minimizing the quadratic

function on the RHS is equivalent to minimizing the LHS with

line search. Hence, Algorithm 5 corresponds to Frank-Wolfe

with line search, and so from [28, Theorem 1],12 we have the

bound

‖xk − x⋆‖22 ≤
4n

k + 2
. (15)

By rearranging terms in Eq. (15), we can obtain an upper

bound on the sparsity of FW.

Theorem 2 (FW sparisty). Algorithm 5 obtains an ǫ-
approximate decomposition with at most k ≤ 4n/ǫ2 permuta-

tion matrices, where ǫ = ‖xk − x⋆‖2.

The bound in Theorem 2 says that the sparsity increases

exponentially with the error, and so it does not allow us to

obtain good approximations that are also sparse. One of the is-

sues with first-order-methods is the zig-zagging phenomenon13

when the approximate decomposition is close to x⋆. Hence,

even though FW selects the steepest descent direction, the

choice of step size is not enough. One way to avoid zig-

zagging is to recompute the weights of all the atoms or extreme

points discovered so far, which is in essence what the fully

corrective variant of the algorithm does.

12The bound in Eq. (15) follows from Theorem 1 in [28] with δ = 0 (i.e.,
in our problem the gradients are noiseless) and Cf = maxu,v∈B ‖u−v‖22 =
2n.

13See the discussion on page 2 in [19].

D. Fully Corrective Frank-Wolfe (FCFW)

This variant of Frank-Wolfe differers from the classic al-

gorithm because it provides the best approximation with the

number of extreme points selected up to iteration k. The FCFW

procedure is described in Algorithm 6. As in the FW algorithm,

it starts from an arbitrary p ∈ P and computes a new

permutation by solving a linear program LP (∇f(xk−1),B).
The main difference is that the permutations are collected in

matrix Vk, and the weights (θ1, . . . , θk) selected to minimize

‖Vk(θ1, . . . , θk) − x⋆‖22 subject to
∑k

i=1 θi = 1 and θi ≥ 0
for all i = 1, . . . , k. An important difference of Algorithm

6 with respect to Algorithm 5 is that the computation of a

new collection of weights involves solving a quadratic program

(QP) whose dimension increases with the number of iterations.

For this Frank-Wolfe variant, from Theorem 1 in [19], we have

the bound

‖xk − x⋆‖22 ≤ ‖x0 − x⋆‖22 exp
(

− µ

4L

(

λ

M

)2

k

)

, (16)

where µ/L is the condition number and (λ/M)2 the eccentric-

ity14 of the Birkhoff polytope. These two parameters are usu-

ally not known, however, not in our problem since the Birkhoff

polytope and the objective function f(x) = (1/2)‖x − x⋆‖22
have remarkable structure. We establish the eccentricity of the

Birkhoff polytope in the next lemma.

Lemma 4. The eccentricity (λ/M)2 of the Birkhoff polytope

is lower bounded by 1/(2n3).

Using the last lemma and the fact that the condition number

of the objective function (µ/L) is equal to 1, we can obtain

the FCFW’s sparsity.

Theorem 3 (FCFW sparsity). Algorithm 6 obtains an ǫ-
approximate decomposition with at most k ≤ 8n3 log(2n/ǫ2)
permutation matrices, where ǫ = ‖xk − x⋆‖2.

From the last theorem, we have that the number of extreme

points required to obtain an approximate Birkhoff decompo-

sition increases logarithmically with the decomposition error.

This is a huge improvement with respect to the sparsity result

obtained with the line search FW in Theorem 2. Unfortunately,

FCFW is less exciting in practice because recomputing the

weights is expensive computationally since the size of the

quadratic program (step 4 in Algorithm 6) increases with the

number of permutations. Furthermore, the accuracies of the

quadratic solvers such as SCS [33], Ipopt [34], and Gurobi [35]

are in the order of 10−6, which means that we cannot obtain

decompositions with accuracies below 10−3. The latter can be

observed in Figure 3a in the numerical evaluation.

VI. NEW ALGORITHM

Birkhoff and FCFW algorithms have both logarithmic

sparsity, but they are very different algorithmically. On the one

hand, weights are easy to compute in Birkhoff’s approach,15

but finding a good permutation matrix is slow as it requires to

14The eccentricity of a set is similar to the condition number of a function;
see [29, pp. 461]

15Birkhoff’s step size requires to find the smallest of n elements.
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(a) Birkhoff (b) Frank-Wolfe (c) Birkhoff+

Figure 2. Schematic illustration of the (a) Birkhoff’s and (b) Frank-Wolfe
approaches and how they combine into the (c) new setup. The yellow polygon
represents the convex hull of xk−1 and the permutation matrices in Ik(α).

solve multiple linear programs (e.g., [8]). In contrast, FCFW

can obtain a good permutation matrix by solving a single

linear program (see Observation 2), but it requires to solve

a quadratic program to (re)calculate the weights.

In this section, we present Birkhoff+ (Algorithm 7), a

variation of the original Birkhoff’s algorithm that uses the in-

tuition behind Frank-Wolfe to obtain sparse decompositions in

a fast manner. The performance of Birkhoff+ is evaluated

in Section VII.

A. Approach

The intuition behind our approach is shown schematically

in Figure 2. In brief, Birkhoff’s algorithm (Figure 2a) can

be seen as constructing a path from the origin (x0 = 0) to

the target value (x⋆) while always remaining in the dotted

box (i.e., xk � x⋆ for all k = 0, 1, 2, . . . ). Frank-Wolfe

(Figure 2b), on the other hand, constructs a path from a

permutation matrix x0 ∈ P to the target value x⋆ within

the polytope of doubly stochastic matrices (blue surface). Our

approach (Figure 2c) can be regarded as using Frank-Wolfe

within the polytope conv(Ik(α) ∪ xk−1) (yellow polygon in

Figure 2c) with the additional constraint that the approximate

decomposition must be within the dotted box. That is, we want

to use the path or permutations that Frank-Wolfe would select

while remaining in the box that characterizes the Birkhoff’s

approach. It is important to use conv(Ik(α) ∪ xk−1) instead

of conv(P ∪ xk−1) (i.e., all permutations) as the algorithm

may otherwise not converge. The latter is shown formally in

the following theorem.

Theorem 4. Consider Algorithm 4 and replace line ◦ with

LP(−(x⋆ − xk−1)). Then, there may not exist a k for which

‖xk − x⋆‖22 ≤ ǫ for any ǫ > 0.

We can prove the theorem by example. Suppose we want

to decompose the following n× n doubly stochastic matrix














1− 1/n 0 · · · 0 1/n
0 1− 1/n 1/n
...

. . .
...

0 1− 1/n 1/n
1/n 1/n · · · 1/n 0















(17)

That is, (i) the first n− 1 entries in the diagonal are equal to

1 − 1/n, (ii) the first n − 1 entries of the last row are equal

to 1/n, and (iii) the first n − 1 entries of the last column

are equal to 1/n. Note the sum of each row and column is

equal to one. Next, suppose that f(x) = (1/2)‖x⋆ − x‖22
where x⋆ is the matrix in Eq. (17) in column form. In the

first iteration (x0 = 0), Frank-Wolfe selects a permutation

by solving the linear program LP(−x⋆,B), the solution of

which is the identity matrix since the doubly stochastic ma-

trix in Eq. (17) is diagonally dominant. And because the

last entry of the matrix in Eq. (17) is equal to zero, we

have that BIRKHOFF_STEP(x⋆, xk−1, pk) = 0 and therefore

xk = xk−1. That is, the algorithm will be “stuck.”

In sum, a Birkhoff-type algorithm that selects permutation

matrices with Frank-Wolfe using all the permutation matrices

P may not converge. However, we can use Frank-Wolfe with

the permutations in the set Ik(α), which ensures not only that

the algorithm converges but that this has logarithmic sparsity

(Theorem 1).

1) Objective function with barrier: Since Birkhoff’s ap-

proach restricts xk to remain in the Birkhoff’s dotted box (see

Figure 2), it is reasonable to use an objective function that

aims to construct a path to x⋆ from within the box. For that,

we define

fβ(x) = f(x)− β
d
∑

j=1

log(x⋆(j)− x(j) + ǫ/d), (18)

where β ≥ 0 and x(j) is the j’th component of vector x. Note

that fβ is convex as this is the composition of f plus a convex

penalty/barrier function −β∑j=1 log(x
⋆(j)−xk−1(j)+ǫ/d).

The term ǫ/d in the barrier is used for numerical stability as

otherwise the barrier goes to +∞ when x⋆(j) = x(j). The

motivation for using a barrier function comes from interior

point methods in optimization, where parameter β is typically

tuned throughout the algorithm to allow xk → x⋆. Note that

fβ → f as β → 0.

B. Birkhoff+ algorithm description and complexity

The procedure of Birkhoff+ is described in Algorithm

7, and consists of replacing how permutation matrices are

selected in Algorithm 4 with LP(∇fβ(xk−1), conv(Ik(α))),
where fβ is as defined in Eq. (18). Parameter β can be selected

to emphasize the barrier over the objective function f . In our

case, we do not need β → 0 as by selecting permutations from

Ik(α) is enough to allow the algorithm to make progress.

The convergence of the algorithm is stated formally in the

following corollary.

Corollary 2. Algorithm 7 obtains an ǫ-approximate decom-

position with at most k ≤ O(log(1/ǫ)) permutation matrices.

The complexity of Birkhoff+ per iteration is equal to

solving a linear program with a simplex type method. The

linear program LP(∇fβ(xk−1), conv(Ik(α)) can be carried

out with LP(∇fβ(xk−1)+bk,B) where bk = d/ǫ ·I{0,1}(x⋆−
xk−1 � α) is a penalty vector to force the solver to do not

select the components of vector (x⋆ − xk) smaller than α.

Finally, we note that Birkhoff+ depends on how we

define set Ik(α). Algorithm 8 is a meta-heuristic for selecting

α based on Birkhoff’s step size. In particular, α is set to

(1 −∑k
i=1 θi)/n

2 in the first iteration and then equal to the
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Algorithm 7 Birkhoff+

1: As Algorithm 4, but take β ≥ 0 also as input. Replace

line ◦ with

2: α← (1−∑k−1
i=1 θi)/n

2

3: pk ← LP(∇fβ(xk−1), conv(Ik(α)))

Algorithm 8 Birkhoff+(max_rep) — with permutation

selection refinement
1: As Algorithm 7, but replace line ◦ with

2: for i = 1, . . . ,max_rep do

3: pi ← LP(∇fβ(xk−1), conv(Ik(α))
4: θi ← BIRKHOFF_STEP(x⋆, xk−1, pk)
5: if (θi > α) α← BIRKHOFF_STEP(x⋆, xk−1, pk)
6: else exit while loop

7: pk ← pi
8: end for

largest step size for the permutation selected using the Frank-

Wolfe-type update. The search for a large α terminates when

the maximum number of repetitions (max_rep) is reached

or the value of α does not increase. We call Algorithm 8

Birkhoff+(#), where # indicates the maximum number

of permutation refinements. Birkhoff+(1) is equivalent to

Birkhoff+ as it computes only one permutation matrix.

VII. NUMERICAL EVALUATION

In this section, we evaluate performance of Birkhoff+

and compare it to existing algorithms. Our goal is to illus-

trate the algorithms’ characteristics and how different traffic

matrices affect the performance of a circuit switch in terms

of throughput, configurations computation time, and number

of configurations. The code of Birkhoff+ is available as a

Julia [36] package in [37].

A. Setup

The Birkhoff, FW, FCFW, Birkhoff+ and

Birkhoff+(#) algorithms are implemented in Julia

[36] and as indicated in Algorithms 4, 5, 6, 7 and 8

respectively. Parameter β is fixed to 1 and the maximum

number of permutation refinements in Birkhoff+(#)

to 10 — however, we observe in the experiments that the

actual number of permutation refinements is usually less

than 3. Solstice corresponds to Algorithm 2 in [8], and

Eclipse to Algorithm 2 in [9]. The linear programs LP(·, ·)
are carried out with Clp [38] in all algorithms and return an

extreme point/permutation matrix. The quadratic programs

in the FCFW algorithm are carried out with Ipopt [34]. Both

solvers are open-source.

Traffic demand matrices are generated by sampling permu-

tations uniformly at random, and weights are selected to model

the type of load in data centers. In particular, we follow the

evaluation scenario in [9], where traffic matrices are sparse and

consist of 12 flows. Three of the flows are large and carry the

70% of the load, while the rest are small flows and carry the

remaining 30% of the traffic. We note that the traffic matrix

in practical scenarios may be below the switch’s capacity (i.e.,
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Figure 3. Decomposition error (ǫ) of Birkhoff, FW, FCFW, Solstice,
Eclipse, Birkhoff+, and Birkhoff+(10) algorithms depending on
(a) the number or permutations and (b) time. The figure shows the average
of 50 realizations.

the sum of each row or column may be smaller than one), and

so we first need to add a virtual load to the traffic matrix to

make it doubly stochastic.16 For simplicity, we assume in the

evaluation that the demand matrices are doubly stochastic.

Finally, the numerical evaluation is carried out on a com-

puter equipped with an Intel i7 8700B (3.2 GHz) CPU and 32

GB of memory. The version of Julia is 1.3.1.

B. Experiments

We first study the algorithms’ characteristics, and then show

how those affect the performance of a circuit switch.

1) Decomposition approximation vs. number of permuta-

tions and time: We set n = 32 and sample traffic matrices as

indicated in Section VII-A. Also, we fix ǫ = 10−4, kmax = 300
and δ = 10−2 (just for Eclipse)17. Figure 3 shows the

algorithms decomposition error in terms of permutations and

time. The results are the average of 50 realizations.

Observe from Figure 3a that the decomposition error of

Birkhoff is large until it converges exactly in the last

iteration (k ≈ 250). On the other hand, FW progresses quickly,

but it slows down drastically around ǫ = 0.9. The latter is due

to the O(1/ǫ2) sparsity rate and the zig-zagging phenomenon

typical in first-order-methods (see Section V-C). The FCFW

has a better sparsity performance than FW, but it cannot obtain

decomposition with an ǫ below 0.5 ·10−3 due to the numerical

accuracy of the quadratic solvers (see Section V-D). Eclipse

has a better performance than previous algorithms until it gets

stuck between ǫ ∈ [10−2, 10−1]. We conjecture the latter is

because Eclipse selects permutations using a Max-Weight-

type matching, and so it may face similar issues as when we

combine Frank-Wolfe and Birkhoff approaches directly; see

discussion in Section VI-A. Also, the performance guarantees

of Eclipse given in [9] are for the problem type in [24]

(see Section II) and not for decomposing a doubly stochas-

tic matrix. Finally, observe that Solstice, Birkhoff+,

and Birkhoff+(10)18 have all better sparsity performance

16The work in [8] (see Section 4.2.1) uses the term “stuffing” for adding
virtual load to the traffic matrix. Stuffing can be seen as a special type of
projection of the demand matrix onto the Birkhoff polytope. Technically, for
a demand matrix D, we need to find a matrix S ∈ B − D. Matrix S may
not be unique and finding the best virtual load matrix for our algorithm is an
interesting problem but out of the scope of the paper.

17The value corresponds to having a switching cost of 10 ms.
18The number in the parentheses is the maximum number of permutations

refinements (max_rep).
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than the previous algorithms and that Birkhoff+(10) is

noticeably better for ǫ < 0.1. The last three algorithms

have linear convergence/logarithmic sparsity (y-axis is in log-

scale) but different condition numbers: 0.89, 0.85 and 0.82
respectively.19 Recall the condition number indicates how

an additional permutation reduces the decomposition error

multiplicatively (see discussion in Section IV-C).

Figure 3b shows the decomposition error against the running

time. Observe that Birkhoff+ is the fastest followed by

Birkhoff+(10). FW is also fast for ǫ > 0.1, but it

slows down afterward for the same reason explained above.

Solstice and Eclipse are both slower than Birkhoff+

by an order of magnitude since they need to solve multiple

linear programs to select a permutation matrix. The running

time of Birkhoff is in line with the sparsity results: it makes

slow progress until it converges exactly in the last iteration.

Finally, FCFW is the slowest as it has to recompute all the

weights (i.e., solve a quadratic program) every time it adds a

new permutation to the decomposition.

2) Circuit switch performance: We now evaluate the al-

gorithm’s performance when used to compute the switching

configurations for a circuit switch with n = 100 ports.

The performance metrics we evaluate are the throughput, the

configurations computation time, and the number of switching

configurations. We carry out three experiments where we vary

the reconfiguration cost, the skewness and sparsity of the

traffic matrix, and the configurations computation overhead.

Importantly, now the traffic matrix X⋆ is associated with a

time window W that enforces the decomposition to satisfy
∑k

i=1(θi+δ) ≤W , i.e., the time spent transmitting (
∑k

i=1 θi)
and reconfiguring (δk) cannot exceed the time window dura-

tion (W ). Finally, we only evaluate Solstice, Eclipse,

Birkhoff+, and Birkhoff+(10) as (i) Birkhoff and

FW have a poor performance, and (ii) FCFW is very slow when

n ≥ 32 (see times in Figure 3b).

Experiment 1 (impact of reconfiguration time). Figure 4

shows the algorithms’ performance in terms of throughput,

running time, and the number of configurations depending

on the ratio δ/W (the impact of the reconfiguration delay

proportionally to the time window duration). Observe from

the figure that Birkhoff+(10) outperforms the other al-

gorithms in terms of throughput. For instance, for δ/W =
10−2, Birkhoff+(10) achieves a 7% more throughput

than Eclipse and Solstice. Birkhoff+ has almost the

same throughput than Eclipse and Solstice. Regarding

the time required to compute the switching configurations,

Solstice and Eclipse are slower than Birkhoff+ and

Birkhoff+(10) by an order of magnitude; however, the

difference decreases as δ/W increases because we have fewer

switching configurations as a result of larger reconfiguration

penalties (c.f. Figure 4b and Figure 4c). Finally, observe from

Figure 4c that Birkhoff+(10) can obtain decompositions

with half of the configurations compared to other algorithms

when ǫ is small (i.e., 10−4). Conclusions: Birkhoff+ has

the same performance in terms of throughput and number

of switching configurations than Solstice and Eclipse,

19Average of the 50 first iterations.

but it is 10 times faster. Birkhoff+(10) obtains higher

throughput than all algorithms and it is only slightly slower

than Birkhoff+.

Experiment 2 (sparsity and skewness). Now we set

δ/W = 10−2 and evaluate the algorithms’ performance

depending on the skewness and the sparsity of the demand

matrix. In Figure 5, we vary the fraction of the load carried

by the small flows. Observe that as before, Birkhoff+(10)

outperforms the other algorithms, and that Birkhoff+,

Solstice, and Eclipse are almost the same in terms of

throughput for different demand matrices. Furthermore, there

is little variation on the running time and the number of

switching configurations—despite a slight bend in the curves

when the traffic matrix contains the same fraction of large and

small flows.

In Figure 6, we show the results when we vary the number

of permutations used to generate the demand matrix. Each per-

mutation matrix is sampled as explained in Section VII-A. Ob-

serve from the figure that the sparsity of the traffic matrix has

a significant impact on the throughput, running time, and the

number of the switching configurations. In particular, observe

from Figure 6a that the throughput of all algorithms decreases

and that Eclipse is comparable to Birkhoff+(10) as

the traffic matrix becomes denser. However, the running time

of Birkhoff+(10) does not explode (see Figure 6b) and

Birkhoff+(10) does not get stuck when the traffic demand

matrix is very sparse.20 Regarding Birkhoff+, observe that

now the running times difference with Birkhoff+(10)

becomes more noticeable as the demand matrix becomes

denser. Finally, observe from Figure 6c that the number of

switching configurations increases with the density of the

traffic matrix for all algorithms. Conclusions: The skewness

of the demand matrix has little impact on to the performance

of all algorithms. The sparsity, on the other hand, plays an

important role. Eclipse has a similar performance than

Birkhoff+(10), but it is notably slower.

Experiment 3 (configurations computation overhead).

This experiment shows how time to compute the switching

configurations affects the circuit switch’s throughput. In par-

ticular, we set δ/W = 10−2 and truncate the decomposition

to satisfy
∑k

i=1(θi + δ) ≤ W − T , where T is the time to

compute the switching configurations. The values of T for this

particular setting are given in Figure 4b. Figure 7 shows the

throughput for different values of W in seconds. Observe from

the figure that the throughput increases with W for all algo-

rithms. When W is small (i.e., the decomposition computation

overhead is large), Birkhoff+ has a higher throughput than

Birkhoff+(10) because it is faster—recall Birkhoff+

selects a new switching configuration by solving a single linear

program. However, Birkhoff+(10)’s throughput is higher

when W > 5 since the reconfiguration time is larger than

the time to compute the switching configurations. Regarding

Eclipse and Solstice, observe that both are affected

heavily by the decomposition overhead. For instance, when

W = 5, Birkhoff+ has 67% and 34% more throughput

than Solstice and Eclipse respectively. Also, note that

20See discussion in Section VII-B1.
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Figure 4. Circuit switch performance (throughput, running time, and number of configurations) depending on δ/W , where δ is the switching time and W
the time window duration. The figures show the average of 50 realizations.
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Figure 5. Circuit switch performance (throughput, running time, and number of configurations) depending on the load carried by the small flows. The figures
show the average of 50 realizations.
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Figure 6. Circuit switch performance (throughput, running time, and number of configurations) depending on the number of permutations matrices used to
generate the traffic matrix. The figures shows the average of 50 realizations.
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Figure 7. Circuit switch throughput when the time to compute the switching
configurations is an overhead. The figure shows the average of 50 realizations.

when W = 1, Birkhoff+ can serve 80% of the traffic

whereas Solstice and Eclipse almost nothing. Conclu-

sions: Birkhoff+ outperforms Solstice and Eclipse

and it is slightly better than Birkhoff+(10) when the

time windows are short. As with the reconfiguration costs, the

benefit of computing switching configurations fast diminishes

as the time window duration increases.

VIII. CONCLUSIONS

This paper studies how to compute switching configurations

for circuit switches. We have revisited Birkhoff’s approach and

established its properties in terms of the number of switching

configurations required to obtain an approximate representa-

tion of a traffic matrix. A new algorithm (Birkhoff+) is

proposed, which obtains representations with fewer switching

configurations than previous work (Solstice, Eclipse)

and is 10-100 times faster depending on the setting. The latter

is important in terms of throughput when traffic bursts are

short-lived, and so the time required to compute the switching

configurations is a non-negligible overhead. We also propose

a variant of Birkhoff+ that is slightly slower but obtains

representations with even fewer switching configurations. The

performance of the proposed algorithms is evaluated through

exhaustive numerical experiments for traffic demand matrices

that capture traffic characteristics in data centers.
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APPENDIX

A. Proofs of Section IV

We start by presenting two lemmas. The first lemma gives

an upper bound on the Frobenius norm of a doubly stochastic

matrix.

Lemma 5. ‖X‖F ≤
√
n for any doubly stochastic matrix X .

Proof: Let ri be the i’th row of X and note ‖ri‖1 = 1
for all i ∈ {1, . . . , n}, i.e., the sum of a row is equal to 1.

Observe

‖X‖F =
√

Tr (XX∗) =

√

√

√

√

n
∑

i=1

‖ri‖22 ≤

√

√

√

√

n
∑

i=1

‖ri‖21 ≤
√
n,

where the first inequality follows because ‖ · ‖2 ≤ ‖ · ‖1.

The second lemma establishes that X⋆ − Xk is a scaled

doubly stochastic matrix.

Lemma 6. Let Xk =
∑k

i=1 θiPi and suppose Xk(a, b) ≤
X⋆(a, b) for all a, b ∈ {1, . . . , n} and k ≥ 1. Then,

https://coin-or.github.io/Ipopt/
http://www.gurobi.com/
https://github.com/vvalls/BirkhoffDecomposition.jl
https://projects.coin-or.org/Clp
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(a)
X⋆ −Xk

1−∑k
i=1 θi

is doubly stochastic

(b) ‖X⋆ −Xk‖F ≤
√
n

(

1−
k
∑

i=1

θi

)

Proof: We start with (a). By assumption, 0 ≤ Xk(a, b) ≤
X⋆(a, b) ≤ 1 for all a, b ∈ {1, . . . , n}. Hence, we only need

to show that the sum of each row and column is equal to one.

Observe

(1−∑k
i=1 θi)

−1(X⋆ −Xk)1

= (1−∑k
i=1 θi)

−1(X⋆ −∑k
i=1 θiPi)1

= (1−∑k
i=1 θi)

−1(X⋆
1−∑k

i=1 θiPi1)

= (1−∑k
i=1 θi)

−1(1− 1
∑k

i=1 θi)

= 1(1−∑k
i=1 θi)

−1(1−∑k
i=1 θi)

= 1

The same argument above can be used to show that (1 −
∑k

i=1 θi)
−1

1
T (X⋆−Xk) = 1

T , i.e., the sum of each column

is equal to one.

For (b), observe ‖(1 −∑k
i=1 θi)

−1(X⋆ − Xk)‖F = (1 −
∑k

i=1 θi)
−1‖X⋆ − Xk‖F ≤

√
n by Lemma 5. Rearranging

terms yields the result.

Proof of Lemma 2

We start by proving the lower bound. We first note ‖X‖F ≥
1 for any doubly stochastic matrix X . Recall

‖X‖F ≥ ‖X‖2 := sup

{‖Xu‖2
‖u‖2

with u ∈ R
n s.t. u 6= 0

}

Let u = 1 in the equation above to obtain

‖X‖F ≥
‖X1‖2
‖1‖2

=
‖1‖2
‖1‖2

= 1,

where X1 = 1 follows since X is doubly stochastic. Next,

since X⋆−Xk

1−∑
k

i=1
θi

is doubly stochastic by Lemma 6, we have

1 ≤
∥

∥

∥

∥

∥

X⋆ −Xk

1−∑k
i=1 θi

∥

∥

∥

∥

∥

F

=

(

1−
k
∑

i=1

θi

)−1

‖X⋆ −Xk‖F

Rearranging terms yields the lower bound.

For the upper bound, observe

‖Xk −X⋆‖2F
(a) = ‖Xk−1 + θkPk −X⋆‖2F

= ‖Xk−1 −X⋆‖2F + θ2k‖Pk‖2F
+ 2θk

∑

a,b Pk(a, b)(Xk−1(a, b)−X⋆(a, b))

(b) ≤ ‖Xk−1 −X⋆‖2F + θ2k‖Pk‖2F − 2θ2k
∑

a,b Pk(a, b)
2

= ‖Xk−1 −X⋆‖2F + θ2k‖Pk‖2F − 2θ2kn

(c) ≤ ‖Xk−1 −X⋆‖2F + θ2kn− 2θ2kn

= ‖Xk−1 −X⋆‖2F − θ2kn (19)

where (a) follows by Algorithm 1, (b) by Eq. (3), and (c) by

Lemma 5. Hence,

‖Xk −X⋆‖2F ≤
(

1− nθ2k
‖Xk−1 −X⋆‖2F

)

‖Xk−1 −X⋆‖2F

Applying the argument recursively from i = 1, . . . , k

‖Xk −X⋆‖2F ≤ ‖X0 −X⋆‖2F
k
∏

i=1

(

1− nθ2i
‖Xi−1 −X⋆‖2F

)

Finally, since X0 = {0}n×n and ‖X⋆‖F ≤
√
n by Lemma 5,

‖Xk −X⋆‖2F ≤ n
k
∏

i=1

(

1− nθ2i
‖Xi−1 −X⋆‖2F

)

Taking square roots on both sides yields Eq. (7).

To conclude, we show that θi ≤ 1√
n
‖Xi−1 −X⋆‖F for

all i = 1, 2, . . . , k. From Eq. (19), 0 ≤ ‖Xk−1 − X⋆‖2F −
θ2kn. Rearranging terms and taking square roots on both sides

completes the proof.

Proof of Lemma 3

Since nθ2i /‖Xi−1 −X⋆‖2F ≥ µmin by assumption, the

upper bound in Lemma 2 becomes ‖Xk − X⋆‖F ≤√
n (1− µmin)

k/2
. Next, let ǫ = ‖Xk − X⋆‖F and write

ǫ ≤ √n (1− µmin)
k/2

. Rearranging terms yields

(

1

1− µmin

)k/2

≤
√
n

ǫ
.

Taking logs on both sides and further rearranging terms yields

the result.

Proof of Theorem 1

We start by showing that we can design a subroutine PERM

that returns a permutation with an associated weight that is

uniformly lower bounded and satisfies the conditions in Eqs.

(3)–(5). We have the following lemma.

Lemma 7. Set Ik(α) with α =
1−∑

k−1

i=1
θi

(n−1)2+1 is non-empty.

Proof: By Lemma 6,
X⋆−Xk−1

1−∑
k−1

i=1
θi

is doubly stochastic, and

so, by Carathéodory’s theorem, we can write it as the convex

combination of (n− 1)2 + 1 permutation matrices, i.e.,

X⋆ −Xk−1

1−∑k−1
i=1 θi

=

(n−1)2+1
∑

j=1

βjPj

where βj ≥ 0 and
∑(n−1)2+1

j=1 βj = 1. Next, note that since

the permutation matrices and weights are non-negative, we

have that

βjPj(a, b) ≤
X⋆(a, b)−Xk−1(a, b)

1−∑k−1
i=1 θi

(20)

holds for all a, b ∈ {1, . . . , n} and j ∈ {1, . . . , (n− 1)2 +1}.
Furthermore, since

∑(n−1)2+1
j=1 βj = 1, we have that

βj ≥
1

(n− 1)2 + 1
(21)

for at least one j ∈ {1, . . . , (n − 1)2 + 1}. Let α = βj such

that the last equation holds. Combining Eq. (20) and Eq. (21),

we obtain that

1−∑k−1
i=1 θi

(n− 1)2 + 1
P (a, b) = αP (a, b) ≤ X⋆(a, b)−Xk−1(a, b)
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That is, there exists at least a permutation P such that Xk−1+
αP (a, b) ≤ X⋆(a, b), and so set Ik(α) is non-empty.

We are now in position to present the proof of Theorem

1. By Lemma 7, set Ik(α′) with α′ =
1−∑

k−1

i=1
θi

(n−1)2+1 is non-

empty. Now, observe that since α =
√

µmin

n (1−∑k
i=1 θi) ≤ α′

because µmin = 1/n3, we have that Ik(α′) ⊆ Ik(α) and so

Ik(α) is non-empty. The rest of the proof follows as in Lemma

3 with µmin = mini∈{1,...,k} nθ
2
i /‖Xi−1 −X⋆‖2F .

B. Proofs of Section V

Birkhoff polytope representation in vector form: The

Birkhoff polytope is the set that contains all doubly stochastic

matrices. Recall we say that a nonnegative matrix is doubly

stochastic if the sum of its rows and columns is equal to one.

This corresponds to having 2n equality constraints. We can

express these in vector form by defining matrices

A′(in+ 1, in+ j) =

{

1 i = 0, . . . , n− 1, j = 1, . . . , n

0 otherwise

A′′(j + in, j) =

{

1 i = 0, . . . , n− 1, j = 1, . . . , n

0 otherwise

and then collecting them in A = [A′;A′′]. Next, define b ∈
{1}2n. Any vector from R

d
+ such that Ax = b correspond to

having doubly stochastic matrix in vector form.

For example, with n = 3 we have

A =

















1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1

















, b =

















1
1
1
1
1
1

















.

Proof of Lemma 4

The eccentricity consists of two parameters. The diameter of

the polytope (M ) and its pyramidal width (λ). The diameter

of the Birkhoff polytope is the maximum distance between

two points in B, which is the maximum distance between two

vertices. Specifically, this is equal to ‖p− p′‖2 =
√
2n where

p, p′ ∈ P are two vertices such that pT p′ = 0, i.e. have ones

in different components.

It is possible to obtain a lower bound on the pyramidal width

of the Birkhoff polytope by using the fact that its extreme

points are a subset of the extreme points of the unit cube in d
dimensions. Formally, P ⊂ {0, 1}d and so conv(P) := B ⊂
C := conv({0, 1}d). The latter means that the unit cube is

“extreme-point-wise denser” than the Birkhoff polytope and

so it has smaller pyramidal width. From Lemma 4 in [19] we

can obtain that the pyramidal width of the Birkhoff polytope is

lower bounded by 1/
√
d = 1/n.21 Hence, (λ/M)2 ≥ 1/(2n3)

as claimed.

21Recall that d = n2.

Proof of Theorem 3

This theorem is an application of Theorem 1 in [19] with

the quadratic objective function f(x) = (1/2)‖x− x⋆‖22 and

set B. This theorem says that

‖xk − x⋆‖22 ≤ ‖x0 − x⋆‖22 exp
(

− µ

4L

(

λ

M

)2

k

)

The term ‖x0 − x⋆‖2 can be upper bounded by
√
2n, which

is the maximum Euclidean distance between two points in

B (see the proof of Lemma 4). The condition number µ/L
is equal to 1 because the objective function is quadratic and

(λ/M)2 ≥ 1/(2n3) by Lemma 4. Hence,

‖xk − x⋆‖22 ≤ 2n exp

(

− k

8n3

)

.

To conclude, let ǫ2 = ‖xk − x⋆‖22 and write ǫ2 ≤
2n exp(−k/(8n3)). By expressing k as a function of ǫ in the

last equation, we obtain the stated result.


	I Introduction
	II History and related work 
	II-A Birkhoff's approach
	II-B Related mathematical problems
	II-C Algorithms

	III Preliminaries
	III-A Notation
	III-B Finding extreme points by solving linear programs

	IV Revisiting Birkhoff's Algorithm
	IV-A Approximate Birkhoff decomposition problem 
	IV-B Algorithm description
	IV-C Convergence
	IV-D Discussion
	IV-D1 Max-Min Birkhoff algorithms
	IV-D2 Birkhoff's algorithm as a block-coordinate descent


	V Frank-Wolfe for the Approximate Birkhoff Decomposition
	V-A Birkhoff polytope and algorithm in vector form
	V-B Frank-Wolfe overview
	V-C Frank-Wolfe with line search
	V-D Fully Corrective Frank-Wolfe (FCFW)

	VI New Algorithm
	VI-A Approach
	VI-A1 Objective function with barrier

	VI-B Birkhoff+ algorithm description and complexity

	VII Numerical Evaluation
	VII-A Setup
	VII-B Experiments
	VII-B1 Decomposition approximation vs. number of permutations and time
	VII-B2 Circuit switch performance


	VIII Conclusions
	IX Acknowledgements
	References
	Appendix
	A Proofs of Section IV
	B Proofs of Section V


