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We take a systematic look at the problem of storing whole files in a cache with limited capacity in the context

of optimistic learning, where the caching policy has access to a prediction oracle (provided by, e.g., a Neural

Network). The successive file requests are assumed to be generated by an adversary, and no assumption is

made on the accuracy of the oracle. In this setting, we provide a universal lower bound for prediction-assisted

online caching and proceed to design a suite of policies with a range of performance-complexity trade-offs.

All proposed policies offer sublinear regret bounds commensurate with the accuracy of the oracle. Our results

substantially improve upon all recently-proposed online caching policies, which, being unable to exploit the

oracle predictions, offer only 𝑂 (
√
𝑇 ) regret. In this pursuit, we design, to the best of our knowledge, the first

comprehensive optimistic Follow-the-Perturbed leader policy, which generalizes beyond the caching problem.

We also study the problem of caching files with different sizes and the bipartite network caching problem.

Finally, we evaluate the efficacy of the proposed policies through extensive numerical experiments using

real-world traces.

CCS Concepts: • Networks→ Network performance analysis.

Additional Key Words and Phrases: online algorithms; optimistic learning; caching; regret bounds.

1 INTRODUCTION
This paper addresses the discrete caching (prefetching) problem: choose files to replicate in a local

cache in order to maximize the probability that a new file request is served locally. Hitting the

cache speeds up CPU, optimizes user experience in CDN’s [8], and enhances the performance of

wireless networks [63]. With the perpetual growth of Internet traffic fueled by new services such

as AR/VR [18], caching policies that learn fast to maximize cache hits can mitigate the increasing

costs of information transportation [54], and similar benefits can be expected for embedded and

other computing systems [23]. This work aspires to advance our theoretical understanding of this

fundamental problem and proposes new provably-optimal and computationally-efficient caching

algorithms using a new modeling and solution approach based on optimistic learning.

1.1 Motivation
Common caching policies store the newly requested files and employ the Least-Recently-Used

(LRU) [32], Least-Frequently-Used (LFU) [37] and other similar rules to evict files when the cache

capacity is exhausted. Under certain statistical assumptions on the request trace, such policies

maintain the cache at an optimal state, see [52, Sec. 3.1-3.2]. However, with frequent addition of

new content to libraries of online services and the high volatility of file popularity [28], these

policies can perform arbitrarily bad. This has spurred intensive research efforts for policies that

operate under more general conditions by learning on-the-fly the request distribution or adapting

dynamically, e.g., with Reinforcement Learning, to observed requests; see Sec. 2. Nonetheless, these

studies do not offer performance guarantees nor scale well for large libraries. The goal of this work

is to design robust caching policies that are able to learn effective caching decisions with the aid

of a prediction oracle of unknown quality (Fig. 1 left) even when the file requests are made in an

adversarial fashion.

To that end, we formulate the caching problem as an online convex optimization (OCO) problem

[30]. At each slot 𝑡 = 1, 2, . . . ,𝑇 , a learner (the caching policy) selects a caching vector 𝑥𝑡 ∈ X from
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Fig. 1. Optimistic online caching with predictions: system schematic (left) & algorithm template (right).

the set of admissible cache states X ⊆ {0, 1}𝑁 for a cache of size 𝐶, where 𝑁 is the library size.

Then, a 1-hot vector 𝜃𝑡 ∈ {0, 1}𝑁 with value 1 for the requested file is revealed, and the learner

receives a reward of 𝑓𝑡 (𝑥𝑡 ) = ⟨𝜃𝑡 , 𝑥𝑡 ⟩ for cache hits. The reward is revealed only after committing

𝑥𝑡 , which naturally matches the dynamic caching operation where the cached files are decided

before the next request arrives. Here, the learner makes no statistical assumptions and 𝜃𝑡 can follow

any distribution, even one that is handpicked by an adversary. In the optimistic framework, the

learner does not only consider its hit or miss performance so far when deciding 𝑥𝑡 , but also the

predictor’s performance and output (Fig. 1 right). As customary in the online learning literature,

we characterize the policy’s performance by using the static regret metric:

𝑅𝑇 ({𝑥}𝑇 ) ≜ sup

{𝑓𝑡 }𝑇𝑡=1

{
𝑇∑︁
𝑡=1

𝑓𝑡 (𝑥★) −
𝑇∑︁
𝑡=1

𝑓𝑡 (𝑥𝑡 )
}
,

where 𝑥★=argmax𝑥 ∈X
∑𝑇

𝑡=1
𝑓𝑡 (𝑥) is the (typically unknown) best-in-hindsight cache decision that

can be selected only with access to future requests.
1
The regret measures the accumulated reward

gap between the online decisions {𝑥𝑡 }𝑡 and benchmark 𝑥★. An algorithm is said to achieve sublinear

regret when its average performance gap 𝑅𝑇 /𝑇 vanishes as 𝑇 →∞. In this context, recent works

have proposed caching policies that offer 𝑂 (
√
𝑇 ) regret bound [12, 44, 45, 51, 53, 64, 65], which, in

fact, is the optimal (as small as possible) achievable regret rate, see [50, Thm. 5.1], [12, Thm. 1].

Most of these regret-optimal algorithms have been designed for continuous caching, where it is
assumed that each file is encoded and divided into a large number of small chunks such that storing

them can be approximated by continuous variables [40]. In this case, the set of eligible caching

states X is convex and hence one can readily apply standard OCO algorithms such as the Online

Gradient Ascent (OGA). Albeit a handy assumption, there are settings where continuous caching

cannot be used for practical reasons. Namely, keeping chunk meta-data consumes non-negligible

storage; the coding operation is often computationally demanding; and the number of chunks might

not be big enough to render continuous caching a good approximation. Therefore, we consider

here the more realistic, and more challenging to solve, discrete caching problem. Indeed, in discrete

caching the set X is naturally non-convex (containing binary file-caching decisions) and thus

standard OCO policies cannot be employed. While first steps in the study of discrete caching, with

equal-sized files, were recently made by [12, 51, 64]. In this paper, we extend their scope and design

algorithms with substantially improved performance guarantees.

Namely, while regret minimization yields robust policies that learn under adversarial conditions,

this framework receives the fair criticism that the policies have often suboptimal performance

when the requests (cost functions, in general) are predictable, e.g., stationary. In such situations,

we would like the policy to gauge the predictability of requests, and optimize aggressively the

cache. For instance, requests in services like Facebook are often amenable to accurate forecasts;

while in YouTube and Netflix the viewers receive recommendations which can effectively serve

as predictions for their forthcoming requests [4, 25]. Unfortunately, regret-based caching policies,

such as [12, 38, 51, 53, 64, 65], are pessimistically designed for the worst-case request sequence and

1
It is interesting to note that 𝑥★ caches the most frequent requests, which coincides with the limit behavior of LFU.
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cannot benefit from predictable requests. We tackle this shortcoming by designing a new suite

of optimistic caching algorithms. An optimistic algorithm [46, 56] has access to a prediction of

an unknown quality for the next-slot utility function. The ultimate goal is to achieve constant

(independent of 𝑇 ) regret when the predictions are accurate, while maintaining the worst-case

regret bounds when predictions fail. This best-of-two-worlds approach, we show theoretically and

demonstrate numerically, brings significant performance gains to dynamic caching.

1.2 Methodology and Contributions
We study key variants of the discrete caching problem, namely the single cache with equal or

unequal-sized files and the bipartite caching, and propose a suite of optimistic learning algorithms

with different pros and cons.
2
Our first result demonstrates the best achievable regret in the setup

we consider, which turns out to be 𝑅𝑇 = Ω( [∑𝑡 ∥𝜃𝑡 − ˜𝜃𝑡 ∥]1/2), indicating a significant potential of
obtaining a regret that scales with the predictor’s error rather than the time horizon 𝑇 (Sec. 3).

We then proceed to propose variants of the seminal Follow-The-Regularized-Leader (FTRL) and

Follow-the-Perturbed-Leader (FTPL) algorithms, which can be both viewed as smoothing techniques
for stabilizing learning decisions (Sec. 2.2), whose regret match this lower bound up to constants. In

detail, we expand the optimistic FTRL algorithm [44–46] that was designed for convex problems, to

handle, through sampling, discrete (non-convex) decisions (Sec. 4). We prove this approach attains

expected regret 𝑂 (
√
𝑇 ) for worst-case predictions and zero-regret for perfect predictions with an

improved prefactor that does not depend on library size 𝑁 . However, the OFTRL implementation

can be hindered by an involved projection step that might be computationally expensive
3
. Thus, we

develop a new optimistic FTPL algorithm that applies prediction-adaptive perturbations to achieve

a similar regret bound with linear (𝑂 (𝑁 )) computation overhead (Sec. 5). The flip side is that its

regret bound contains 𝑂 (poly-log(𝑁 )) term.

We first derive results for equal-sized files, in line with all prior learning-based works for discrete

caching [12, 39, 51, 58] or continuous caching [44, 53, 64]. Subsequently, we drop this assumption

and study the single cache problem with different file sizes (Sec. 6). These first-of-their-kind regret-

based algorithms require a point-wise approximation scheme for solving efficiently the NP-Hard

Knapsack instance at each slot, while keeping the accumulated regret bound sublinear. To that

end, we use the help of a rounding subroutine, DepRound [13], to a known almost-discrete optimal

solution Dantz [19]. We show that the proposed policies achieve (1/2)-approximate regret of𝑂 (
√
𝑇 )

and zero-regret for adversarial and perfect predictions, respectively. We also extend the OFTRL

analysis to the widely used bipartite network caching model [54, 63] (Sec. 7), where we optimize

jointly the discrete caching and routing decisions to obtain prediction-modulated performance.

In (Sec. 8), we change tack and incorporate the optimism through the celebrated Experts model.

The caching system in this case is a meta-learner which receives caching advice from an optimistic
expert that suggests to cache solely w.r.t. predicted requests, and from a pessimistic expert that
ignores predictions. We propose a tailored OGD-based scheme that allows the meta-learner to adapt

to predictions’ accuracy ( performance of the optimistic expert) in a way that achieves negative

regret when that expert is reliable, and, again, maintains an𝑂 (
√
𝑇 ) regret for unreliable predictions.

In summary, we provide a comprehensive toolbox of algorithms having different computation

overheads and performance, hence enabling practitioners to select the best approach to their prob-

lem. Moreover, we include technical results that are of independent interest, such as the non-convex

2
Optimistic learning was originally proposed for problems with slowly-varying (hence, predictable) cost functions [56]; in

caching, we note the additional motivation coming from the abundance of forecasting models, e.g., by a Neural Network.

3
In some cases the projection can be optimized, but in general it is𝑂 (𝑁 2) even for the non-weighted capped simplex [71].
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OFTPL algorithm with improved regret bounds; the approximate non-convex OFTRL algorithm for

the Knapsack problem; and an analysis of OFTRL/OFTPL with a probabilistic prediction model.

Notation. We denote sets with calligraphic capital letters, e.g., N = {1, 2, . . . , 𝑁 }; vectors with
𝑥 = (𝑥𝑖 , 𝑖 ∈ N) where 𝑥𝑖 is the 𝑖th component; and denote 𝑥𝑡𝑖 the 𝑖th component of the time-indexed

vector 𝑥𝑡 . The shorthand notation 𝑥1:𝑡 is used for

∑𝑡
𝑖=1

𝑥𝑖 . Also, {𝑥𝑡 }𝑘𝑡=1
denotes the sequence of

vectors {𝑥1, 𝑥2, . . . , 𝑥𝑘 }, and we use the succinct version {𝑥𝑡 }𝑇 for {𝑥1, 𝑥2, . . . , 𝑥𝑇 }. When clear from

context, we often drop the notation of actions and denote the regret 𝑅𝑇 ({𝑥}𝑇 ) simply with 𝑅𝑇 .

2 BACKGROUND AND RELATEDWORK
2.1 Caching and Learning
Research on caching optimization spans several decades and we refer the reader to survey [52] for

an introduction to the recent developments in this area. A large body of works focuses on offline

policies which use the anticipated request pattern to proactively populate the caches with files that

maximize the expected hits [8]. At the other extreme, dynamic caching solutions studied variants

of the LFU/LRU policies [1, 21, 32, 37]; tracked the request distribution [49, 69] and optimized

accordingly the caching [36]; employed reinforcement learning to adapt the caching decisions to

requests [61, 62, 66]; and, more recently, applied online convex optimization towards enabling

the policies to handle unknown (adversarial) request patterns [12, 38, 44, 51, 53, 64, 65]. These

latter works assume that the files can be fetched dynamically at each slot to optimize the cache

configuration, as opposed to works such as [39, 58] which study pure eviction policies.

The interplay between predictions and caching has attracted attention from both machine

learning and networking communities. The studies in [14, 22, 24] formulated the joint caching and

recommendation problem, considering static models, and assuming full knowledge of requests and

the users’ propensity to follow recommendations (i.e., they place assumption on the prediction

accuracy). On the other hand, [39, 58] presented a mechanism agnostic to requests that uses

untrusted predictions to achieve competitive-ratio guarantees. Their approach was generalized to

metrical task systems by [7] and improved with nearly lower-bound matching for the competitive

ratios in [59]. However, as proved in [6], algorithms that ensure constant competitive-ratios do

not necessarily guarantee sub-linear regret, which is the performance criterion we employ here

following the recent regret-based caching research [12, 38, 44, 51, 53, 64, 65]. We note that all

the above works consider files with equal size, while we extend the framework to the general

scenario of unequally-sized files. In addition, none of the above works studies discrete caching with

predictions. Finally, it is worth stressing that employing predictions for improving the performance

of communication/computing systems is not a new idea: predictions have been incorporated in

stochastic optimization [34, 72] which assume the requests and system perturbations are stationary;
and in online learning [16, 73] which do not adapt to predictions’ accuracy (considered known).

Here, we make no assumptions on the predictions’ quality, which can be even adversarial.

2.2 Adaptive Smoothing
In contrast to the above studies, our optimistic learning approach is based on adaptive smoothing.
Abernethy et. al. [2] introduced a unified view of FTRL and FTPL as techniques to add smoothing,

through regularization or perturbation, to a non-smooth potential function. This perspective is

useful to our work since we leverage both ideas. Namely, let us define: Φ(𝜃 ) ≜ max𝑥 ∈X ⟨𝑥, 𝜃⟩, and
consider the potential function Φ(Θ𝑡 ), where Θ𝑡 = 𝜃1:𝑡 is the vector of aggregated gradients (file

requests). An intuitive strategy is to choose the action that maximizes the rewards seen so far:

𝑥𝑡 = argmax

𝑥 ∈X
⟨Θ𝑡−1, 𝑥⟩ = ∇Φ(Θ𝑡−1), (1)
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which is known as Follow The Leader (FTL) and is optimal when the utility functions are sam-

ples from a stationary statistical distribution. In contrast, FTL has linear regret in the adver-

sarial setting [20, 60], since successive gradients of non-smooth functions can be arbitrarily

far from each other, thus leading to unstable actions. [2] proposed to stabilize the learner ac-

tions by smoothing the potential function, and selecting actions based on the smoothed potential

∇Φ̃(𝜃 ). In FTRL, the smoothing is achieved by adding a strongly convex function to the potential,

i.e.,
4𝑥𝑡 = argmax𝑥 ∈conv(X) ⟨𝑥,Θ𝑡 ⟩ − 𝑟1:𝑡 (𝑥)
where 𝑟𝑡 (𝑥) is a 𝜎𝑡 -strongly convex regularizer. This framework generalizes the Online Gradient

Ascent (OGA) and the Exponentiated Weights (EG) algorithms, which were employed for the

caching problem in [53] and [64] respectively
5
. As for FTPL, the smoothing is done by adding

perturbation to the accumulated cost parameter of the potential. And the actions are decided by
6

𝑥𝑡 = arg max𝑥 ∈X ⟨𝑥,Θ𝑡 + 𝜂𝑡𝛾⟩,
where 𝛾 ∼N(0, 1) and 𝜂𝑡 is a scaling factor that controls the smoothing. FTPL was shown

to provide optimal regret guarantees for the discrete caching problem in [12]. Computationally

efficiency is also a notable feature for FTPL updates as it requires an ordering operation instead of

projection.

We propose to modulate the regularization 𝜎𝑡 and perturbation 𝛾𝑡 parameters with the predic-

tions quality. Intuitively, accurate predictions should lead to less regularization/perturbation (less

smoothing), enabling the learner to align its decisions more with the predictions. On the other

hand, inaccurate predictions induce more smoothing, which alleviates their effects on the decisions.

We show that careful tuning of these smoothing parameters leads to regret bounds that interpolate

between 𝑅𝑇 ≤ 0, and 𝑅𝑇 ≤ 𝑂 (
√
𝑇 ). Nonetheless, these two algorithms have considerable differences

in terms of computational complexity and constants in the bounds, which are discussed in detail.

2.3 Optimistic Learning
For regret minimization with predictions, [48] used predictions 𝜃𝑡 for the gradient ˜𝜃𝑡 = ∇𝑓𝑡 (𝑥𝑡 )
with guaranteed correlation ⟨ ˜𝜃𝑡 , 𝜃𝑡 ⟩ ≥ 𝛼 ∥𝜃𝑡 ∥2 to improve the regret . In [10], this assumption was

relaxed to allow predictions to fail the correlation condition at some steps, obtaining bounds that

interpolate between 𝑂 (log(𝑇 )) and 𝑂 (
√
𝑇 ); while this idea was extended to multiple predictors in

[11]. A different line of works [56], [46] use adaptive regularizers and define the 𝑡-slot prediction

errors ∥𝜃𝑡 − ˜𝜃𝑡 ∥2 to obtain 𝑂 ( [∑𝑡 ∥𝜃𝑡 − ˜𝜃𝑡 ∥2]1/2) regret bounds. Specifically, OFTRL versions

have been proposed in [46] and recently used in [5] for problems with budget constraints, while

[44, 45] tailored these ideas to continuous caching. The problem of discrete caching is fundamentally

different. Through a careful analysis, we manage to reuse these results after relaxing the cache

integrality constraints, and then employing a randomized rounding technique that recovers the

same prediction-modulated regret in expectation. The regret bounds have the desirable property of

being dimension-free. Nonetheless, we proceed to remark that OFTRL can have a computational

bottleneck due to involving a projection step, which can be avoided in FTPL.

Optimistic versions of FTPL were recently investigated in [68] and [67]. In [68], the regret bound

grows polynomially w.r.t. the decision set dimension. In the caching problem, this would imply a

highly-problematic polynomial growth of the regret w.r.t. the typically huge library size 𝑁 . The

dependence of the regret on the dimension was improved in [67], but it still remains linear. On

4
While the maximization requires that 𝑥𝑡 to be in the convex hull of X, feasibility can be recovered via appropriate rounding.

5
We note that these papers present their algorithms as instances of a similar framework to FTRL called Online Mirror

Descent (OMD). Nonetheless, there exist equivalence results between these two frameworks (see [43, Sec. 6.1 ]) for specific

choices of the mirror-map (in OMD), or equivalently the regularizer (in FTRL).

6
In this case the gradient of the smoothed potential is in fact the expectation ∇Φ(Θ𝑡 + 𝜂𝑡𝛾 ) = E𝛾 [𝑥𝑡 ]
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the contrary, our proposed OFTPL exploits the structure of the decision set and utilizes adaptive

perturbation to obtain a regret bound that depends on dimension only by 𝑂 (log(𝑁 )1/4), is order-
optimal (based on the achievable lower bound), returns zero-regret for perfect predictions, does

not require knowing the time-horizon𝑇 , nor the prediction errors. None of these desirable features

is available in these prior works. We kindly refer the reader to the table in Appendix. A.1 for an

overview of the presented algorithms in the context of the most related literature.

3 ACHIEVABLE REGRET FOR CACHINGWITH A PREDICTOR
We first introduce a lower bound for the regret of any online caching policy 𝜋 , working with a

cache of capacity 𝐶 , and has access to an untrusted and potentially adversarial prediction oracle.

In general, the predictions refer to the next function
˜𝑓𝑡 (·). However, since most OCO algorithms

learn based on the observed gradients, it suffices to have predictions
˜𝜃𝑡 = ∇ ˜𝑓𝑡 (𝑥𝑡 ). And for caching,

this coincides with a prediction for the next request
7
. Now, unlike all prior works in optimistic

learning [10, 46, 56], we adopt here the more general probabilistic prediction model where
˜𝜃𝑡 is not

necessarily a one-hot vector (as the actual 𝜃𝑡 ), but a probability distribution over the library. Thus,

each
˜𝜃𝑡 is drawn from the N-dimensional probability simplex Δ𝑁 . This more general approach

is rather intuitive as the forecasting models (e.g., a Neural Network) typically yield probabilistic

inferences. It also enhances the performance of our optimistic algorithms and allows efficient

training of the forecaster using a convex loss function (please see Appendix A.7.1 for examples and

justification). It does require, however, a more elaborate technical analysis, especially for the case

of OFTPL. In this setup, we have the following lower bound:

Theorem 1. For any online caching policy 𝜋 , there exist a sequence of requests {𝜃𝑡 }𝑇 and predictions
{ ˜𝜃𝑡 }𝑇 for which the regret 𝑅𝑇 satisfies

E [𝑅𝑇 ] ≥
√︂

𝐶

2𝜋

√√√
𝑇∑︁
𝑡=1

| |𝜃𝑡 − ˜𝜃𝑡 | |2
2
− Θ

(
1

√
𝑇

)
.

Proof. To prove the lower bound, we show the existence of a request and prediction sequence

under which the regret is guaranteed to be larger than the stated bound regardless of the online

policy 𝜋 . For that, we use the standard probabilistic method [3] with an appropriately constructed

random file request and prediction sequence as detailed below.

Denote by 𝜉𝑡 and ˜𝜉𝑡 the random variables representing the requested file (𝜃𝑡 ) and its prediction

(
˜𝜃𝑡 ) at time 𝑡 , respectively. Denote by {𝑋𝜋

𝑡 }𝑡 ≥1 the random variables representing the action of any

policy 𝜋 . We use a setup where 𝑁 ≥ 2𝐶 and consider an ensemble of caching problems (i.e., request

and prediction sequences) where at each slot 𝑡 , the requested file 𝜉𝑡 is chosen independently and

uniformly at random from the library N . The predictions
˜𝜉𝑡 are also chosen independently and

uniformly at random from the probability simplex Δ𝑁 . Specifically, we let

{ ˜𝜉𝑡 }𝑡 i.i.d.∼ Dirichlet(𝜆1, . . . , 𝜆𝑛, . . . 𝜆𝑁 ) with 𝜆𝑛 = 1,∀𝑛 ∈ N .

Hence, the expected reward obtained by any caching policy 𝜋 on any slot 𝑡 , conditional on the

information available to the policy can be bounded as

E
[
⟨𝜉𝑡 , 𝑋𝜋

𝑡 ⟩|{ ˜𝜉𝜏 }𝑡𝜏=1
, {𝜉𝜏 }𝑡−1

𝜏=1

] (𝑎)
= EE

[
⟨𝜉𝑡 , 𝑋𝜋

𝑡 ⟩|{ ˜𝜉𝜏 }𝑡𝜏=1
, {𝜉𝜏 }𝑡−1

𝜏=1
, 𝑋𝜋

𝑡

]
(𝑏)
=

1

2𝐶
E

[
⟨1, 𝑋𝜋

𝑡 ⟩|{ ˜𝜉𝜏 }𝑡𝜏=1
, {𝜉𝜏 }𝑡−1

𝜏=1
, 𝑋𝜋

𝑡

]
(𝑐)
≤ 1

2

,

7
In fact this model can be readily generalized to other linear utilities beyond cache-hits, so as to incorporate e.g., file-specific

caching gains, time-varying network conditions, and so on; see similar models in [45, 53].
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where (𝑎) follows from the tower property of expectations, (𝑏) from the fact 𝜉𝑡 ⊥
(
{ ˜𝜉𝜏 }𝑡𝜏=1

, {𝜉𝜏 }𝑡−1

𝜏=1
, 𝑋𝜋

𝑡

)
and hence E(𝜉𝑡 |{ ˜𝜉𝜏 }𝑡𝜏=1

, {𝜉𝜏 }𝑡−1

𝜏=1
, 𝑋𝜋

𝑡 ) = E(𝜉𝑡 ) = 1

2𝐶
1𝑁×1. Finally (𝑐) since ⟨1, 𝑋𝜋

𝑡 ⟩ ≤ 𝐶, which

holds because of the cache capacity constraint. Taking expectation of the above bound, we have

E[⟨𝜉𝑡 , 𝑋𝜋
𝑡 ⟩] ≤ 1

2
. Hence, using the linearity of expectations, the expected value of the cumulative

hits up to slot 𝑇 under any policy 𝜋 is upper bounded as E
[ ∑𝑇

𝑡=1
⟨𝜉𝑡 , 𝑋𝜋

𝑡 ⟩
]
≤ 𝑇

2
.

Now we compute a lower bound to the expected number of cumulative hits achieved by the best-

in-hindsight fixed cache configuration 𝑋★
𝑇
. Similar to [12], we identify the problem with the classic

setup of balls (requests) into bins (files). In this framework, it follows that the offline benchmark

achieves cumulative hits which are equal to the total number of balls into the most-loaded 𝐶 bins

when 𝑇 balls are thrown uniformly at random into 𝑁 = 2𝐶 bins. Hence, from [12, Lemma 1]:

E
[ 𝑇∑︁
𝑡=1

⟨𝜉𝑡 , 𝑋★
𝑇 ⟩

]
≥ 𝑇

2

+
√︂

𝐶𝑇

2𝜋
− Θ

(
1

√
𝑇

)
.

Hence, the expected regret achieved by any policy in the optimistic set up is lower bounded as

E [𝑅𝑇 ] = E
( 𝑇∑︁
𝑡=1

⟨𝜉𝑡 , 𝑋★
𝑇 ⟩ −

𝑇∑︁
𝑡=1

⟨𝜉𝑡 , 𝑋𝜋
𝑡 ⟩

)
≥

√︂
𝐶𝑇

2𝜋
− Θ

(
1

√
𝑇

)
. (2)

Finally, we evaluate the expected value of the quantity𝑀𝑇 ≜
∑𝑇

𝑡=1
∥ ˜𝜉𝑡 − 𝜉𝑡 ∥22 as follows.

E [𝑀𝑇 ] = E
[

𝑇∑︁
𝑡=1

∥ ˜𝜉𝑡 − 𝜉𝑡 ∥22

]
(𝑎)
= 𝑇 E

[
| | ˜𝜉1 − 𝜉1 | |22

] (𝑏)
= 𝑇𝑁 E

[
( ˜𝜉1

1
− 𝜉1

1
)2

]
= 𝑇𝑁 E

[
( ˜𝜉1

1
)2 − 2

˜𝜉1

1
𝜉1

1
+ (𝜉1

1
)2

] (𝑐)
= 𝑇𝑁

[
Var( ˜𝜉1,1) + (E( ˜𝜉1,1))2 − 2E( ˜𝜉1,1)E(𝜉1,1) + E(𝜉2

1,1)
]

(𝑑)
= 𝑇𝑁

[
(𝑁 − 1)

𝑁 2 (𝑁 + 1) +
1

𝑁 2
− 2

𝑁 2
+ 1

𝑁

]
= 𝑇

(
1 − 2

𝑁 (𝑁 + 1)
)
≤ 𝑇,

where (𝑎) follows from the i.i.d. assumption of the random vectors at each 𝑡 , (𝑏) from the i.i.d

assumption of each component of vectors
˜𝜉1 and 𝜉1, (𝑐) from 𝜉𝑡 ⊥ ˜𝜉𝑡 , and (𝑑) from standard results

on Dirichlet distribution. Combining the above bound with (2), we have by Jensen’s inequality

E [𝑅𝑇 ] ≥
√︂

𝐶E[𝑀𝑇 ]
2𝜋

− Θ
(

1

√
𝑇

)
≥ E

[√︂
𝐶𝑀𝑇

2𝜋
− Θ

(
1

√
𝑇

)]
i.e.,

E

𝑅𝑇 −
√︄
𝐶

∑𝑇
𝑡=1
∥ ˜𝜉𝑡 − 𝜉𝑡 ∥2

2

2𝜋

 ≥ −Θ
(

1

√
𝑇

)
From the above inequality, the result now follows from the standard probabilistic arguments. □

We will see that the proposed optimistic algorithms in Sections 4 and 5 attain this bound within

an absolute and a poly-logarithmic factor, respectively.

4 CACHING THROUGH OPTIMISTIC REGULARIZATION (OFTRL-CACHE)
The first algorithm we propose is based on OFTRL. Prediction adaptive regularization was explored

before in [56] and later improved via proximal regularizers in [46], all for convex sets. The gist

of our approach is that we use OFTRL to obtain 𝑥𝑡 ∈ conv(X),∀𝑡 , and then apply Madow’s
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Algorithm 1: Optimistic Follow The Regularized Leader (OFTRL-Cache)

1 Input: 𝜎 = 1/
√
𝐶 , 𝛿1 = ∥𝜃1 − ˜𝜃1 ∥2

2
, 𝜎1 = 𝜎

√
𝛿1, 𝑥1 = arg min𝑥∈X ⟨𝑥, 𝜃1 ⟩

2 Output: {𝑥𝑡 ∈ X}𝑇 // Feasible discrete caching vector at each slot
3 for 𝑡 = 2, 3 . . . do
4 ˜𝜃𝑡 ← prediction //Obtain request prediction for slot 𝑡

5 𝑥𝑡 = argmax𝑥∈conv(X)

{
−𝑟1:𝑡−1 (𝑥) + ⟨𝑥,Θ𝑡−1 + ˜𝜃𝑡 ⟩

}
// Update the continuous cache vector

6 𝑥𝑡 ← 𝑀𝑎𝑑𝑜𝑤𝑆𝑎𝑚𝑝𝑙𝑒 (𝑥𝑡 ) // Obtain the discrete cache vector using Algorithm 7
7 Θ𝑡 = Θ𝑡−1 + 𝜃𝑡 // Receive 𝑡 -slot request and update total gradient
8 𝜎𝑡 = 𝜎

(√
𝛿1:𝑡 −

√
𝛿1:𝑡−1

)
// Update the regularization parameter

end

sampling scheme [41] to recover integral caching vectors 𝑥𝑡 ∈ X,∀𝑡,which satisfy the hard capacity

non-convex constraint. In other words, we define:

X =

{
𝑥 ∈ {0, 1}𝑁

����� 𝑁∑︁
𝑖=1

𝑥𝑖 ≤ 𝐶

}
,

where N is the set of unit-sized files (library) and 𝐶 is the cache capacity (in file units); and 𝑥𝑖 =1

decides to cache file 𝑖 ∈N . Interestingly, despite having to operate on this non-convex set, this

approach yields in expectation the same regret bounds as OFTRL for continuous caching [45].

Let us define the prediction error at slot 𝑡 as 𝛿𝑡 ≜ ∥𝜃𝑡 − ˜𝜃𝑡 ∥22, and introduce the proximal

𝜎𝑡 -strongly convex regularizer w.r.t. the Euclidean ℓ2 norm:

𝑟𝑡 (𝑥) =
𝜎𝑡

2

∥𝑥 − 𝑥𝑡 ∥22. (3)

Following [44], we define parameters {𝜎𝑡 }𝑡 using the accumulated prediction errors, namely:

𝜎1 = 𝜎
√︁
𝛿1, 𝜎𝑡 = 𝜎

(√︁
𝛿1:𝑡 −

√︁
𝛿1:𝑡−1

)
∀𝑡 ≥ 2, with 𝜎 = 1/

√
𝐶.

The basic OFTRL update stems from using these regularizers in the FTRL update formula.

Namely, at each slot 𝑡 we update the cache to maximize the aggregated utility. This maximization

is regularized through a term (the above-defined regularizers) that depends on the predictor’s

accuracy.

The detailed steps are summarized in Algorithm 1. In the first iteration we draw randomly a

feasible caching vector 𝑥1 and observe the prediction error 𝛿1 = ∥𝜃1 − ˜𝜃1∥22. In each iteration we

need to solve a strongly convex program (line 5) which returns the continuous caching vector 𝑥𝑡 ,

that is transformed to a feasible discrete 𝑥𝑡 (line 6) using Madow’s Sampling (see Appendix A.2).

The algorithm notes the new gradient vector, by simply observing the next request
8
, and updates

the accumulated gradient Θ𝑡 (line 7). The regret guarantee of Algorithm 1 is described next.

Theorem 2. Algorithm 1 ensures, for any time horizon 𝑇 and 𝑁 ≥ 2𝐶 , the expected regret bound:

E[𝑅𝑇 ] ≤ 2

√
𝐶

√√√
𝑇∑︁
𝑡=1

∥𝜃𝑡 − ˜𝜃𝑡 ∥2
2

Proof. We define first the regret w.r.t. the continuous actions {𝑥𝑡 }𝑇 as 𝑅𝑇 ≜ ⟨Θ𝑇 , 𝑥
★⟩ −∑𝑇

𝑡=1
⟨𝜃𝑡 , 𝑥𝑡 ⟩, where 𝑥★ is the optimal-in-hindsight caching vector

9
. We also define the scaled

8
For modeling convenience, we define the time slots to be the (non-uniform) time intervals that receive only one request.

Our analysis can be readily extended to a bounded number of requests per slot.

9
This benchmark remains unchanged if we switch from the continuous to the discrete space.
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Euclidean ℓ2 norm ∥ · ∥ (𝑡 ) =
√
𝜎1:𝑡 ∥ · ∥2 so that 𝑟1:𝑡 is 1-strongly convex w.r.t ∥ · ∥ (𝑡 ) , and note that

its dual norm is ∥ · ∥ (𝑡 ),★ = 1√
𝜎1:𝑡
∥ · ∥2. Our starting point is [44, Lem. 1], which we restate below:

Lemma 1. Let 𝑟1:𝑡 be a 1-strongly convex w.r.t. a norm ∥ · ∥ (𝑡 ) . Then, the OFTRL iterates produced
by line 5 in Algorithm 1 guarantee the bound 𝑅𝑇 ≤ 𝑟1:𝑇 (𝑥★) + 1

2

∑𝑇
𝑡=1
∥𝜃𝑡 − ˜𝜃𝑡 ∥2(𝑡 ),★.

Now, we first get a deterministic regret bound on 𝑥𝑡 . Assuming that
10 𝐶 ∈ (0, 𝑁 /2], we can

bound the ℓ2 diameter of the caching set as ∥𝑥★ − 𝑥𝑡 ∥2 ≤
√

2𝐶,∀𝑥★, 𝑥𝑡 ∈ conv(X). Thus, we can
upper-bound the regularizers in (3), replace in the above Lemma and telescope to get:

𝑅𝑇 ≤ 𝜎1:𝑇 𝐶 + 1

2

𝑇∑︁
𝑡=1

𝛿𝑡

𝜎1:𝑡

. (4)

Observing that the sum 𝜎1:𝑡 telescopes to 𝜎
√
𝛿1:𝑡 , we can substitute it in (4) and use the standard

identity [50, Lem. 4.13] to bound the second term via

∑𝑇
𝑡=1

𝛿𝑡/
√
𝛿1:𝑡 ≤ 2

√
𝛿1:𝑇 . Therefore, we obtain:

𝑅𝑇 ≤ 𝜎
√
𝛿1:𝑇 𝐶 + 1

𝜎

√
𝛿1:𝑇 , and by setting the parameter 𝜎 to its optimal value 𝜎 = 1/

√
𝐶 , we can

eventually write:

𝑅𝑇 ≤ 2

√
𝐶

√√√
𝑇∑︁
𝑡=1

∥𝜃𝑡 − ˜𝜃𝑡 ∥2
2
. (5)

The last step requires Madow’s sampling (line 6). By construction, the routine selects 𝐶 files

and hence returns a feasible integral caching vector 𝑥𝑡 (or, sampled vector). In addition, each

item is included in the sampled vector with a probability based on the continuous 𝑥𝑡 . Namely, it

holds Pr(𝑥𝑡𝑖 = 1) = 𝜋𝑖 − 𝜋𝑖−1 = 𝑥𝑡𝑖 , where the auxiliary parameter 𝜋𝑖 aggregates the (interpreted

as) probabilities for caching the first 𝑖 files, i.e., 𝜋𝑖 =
∑𝑖

𝑘=0
𝑥𝑘 . Since each 𝑥𝑡𝑖 is binary, it holds

E[𝑥𝑡 ]=Pr(𝑥𝑡𝑖 = 1)=𝑥𝑡 . The result follows by using (5) and observing:

E [𝑅𝑇 ({𝑥}𝑇 )] = ⟨Θ𝑇 , 𝑥
★⟩ − E

[
𝑇∑︁
𝑡=1

⟨𝜃𝑡 , 𝑥𝑡 ⟩
]
= 𝑅𝑇 .

□

Discussion. The bound in Theorem 2 ensures the desirable prediction-based modulation of

the algorithm’s performance, as the achieved regret shrinks with the prediction quality. If all

predictions are accurate, we get 𝑅𝑇 ≤ 0; when all predictions fail, we get 𝑅𝑇 ≤ 2

√
2𝐶𝑇 . That is,

in the worst scenario (e.g., when the predictions are created by an adversary) the regret bound is

worse by a constant factor of

√
2 compared to the FTRL algorithm that does not use predictions

[43, Sec. 3.4]), and ∼ 5 compared to the lower bound derived in Sec. 3. Moreover, due to selecting

an ℓ2 regularizer, the bounds are dimension-free and do not depend on the library size 𝑁 . This

is particularly important since in caching problems oftentimes the library size is an even bigger

concern than the time horizon. Finally, note that the algorithm does not need to know the horizon

𝑇 beforehand. The drawback of this optimistic caching approach is the computational complexity

of the iteration (line 5) which involves a projection operation. While ℓ2 projections have received

attention [30, Sec. 7], they can hamper the scalability of the algorithm under certain conditions
11
.

In the following section we show how perturbation-based smoothing can avoid the projection step.

10𝑁 is typically orders of magnitude higher than𝐶 . In the cases where this does not hold the current analysis is still valid

but can be improved by using the tighter diameter

√︁
2(𝑁 −𝐶) .

11
For instance, this can be a bottleneck if the library size is extremely large, while the slot duration is very short and the

available computation power is limited.
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Algorithm 2: Optimistic Follow The Perturbed Leader (OFTPL-Cache)

1 Input: 𝜂1 = 0, 𝑦1 = arg min𝑦∈X ⟨𝑦, 𝜃1 ⟩
2 Output: {𝑦𝑡 ∈ X}𝑇 // Feasible discrete caching vector at each slot

3 𝛾
𝑖𝑖𝑑∼ N(0, 1𝑁×1) // Sample a perturbation vector

4 for 𝑡 = 2, 3, . . . do
5 ˜𝜃𝑡 ← prediction //Obtain request prediction for slot 𝑡

6 𝜂𝑡 = 1.3√
𝐶

(
1

ln(𝑁𝑒/𝐶 )

) 1

4

√︃∑𝑡−1

𝜏=1
∥𝜃𝜏 − ˜𝜃𝜏 ∥2

1
// Update the perturbation parameter

7 𝑦𝑡 = argmax𝑦∈X ⟨𝑦,Θ𝑡−1 + ˜𝜃𝑡 + 𝜂𝑡𝛾 ⟩ // Update the discrete cache vector
8 Θ𝑡 = Θ𝑡−1 + 𝜃𝑡 // Receive the request for slot 𝑡 and update total gradient
end

5 CACHING THROUGH OPTIMISTIC PERTURBATIONS (OFTPL-CACHE)
We propose next a new OFTPL algorithm that significantly improves previous OFTPL proposals

[67, 68], both in terms of their bounds and implementation, and as such is of independent interest

with potential applications that extend beyond caching to other 𝑘−set structured problems such as

those discussed in [15]. The improvement is possible by setting the perturbation parameters 𝜂𝑡 in a

manner that is adaptive to prediction error witnessed until 𝑡 − 1.

Following the discussion in Sec. 2, we remind the reader that the FTPL actions are derived by

solving in each slot 𝑡 a linear program (LP) with a parameterized perturbed cumulative utility

vector, Θ𝑡−1 + 𝜂𝑡𝛾 , where 𝜂𝑡 ∈ R+ is the perturbation parameter. In order to obtain the optimistic

FTPL variant we introduce two twists: (i) the prediction for the next-slot utility
˜𝜃𝑡 is added to the

cumulative utility; and (ii) the perturbation parameter 𝜂𝑡 is scaled according to the accumulated

prediction error. Interestingly, due to the structure of the decision set X, the LP solution reduces to

identifying the 𝐶 files with the highest coefficients. This step can be efficiently implemented in

deterministic linear (𝑂 (𝑁 )) time using, e.g., the Median-of-Medians algorithm [17]. The steps of

the proposed scheme are presented in Algorithm 2, where we denote the 𝑡-slot OFTPL decisions

with 𝑦𝑡 ∈ X. The following theorem characterizes the performance of this new OFTPL algorithm.

Theorem 3. Algorithm 2 ensures, for any time horizon 𝑇 and 𝑁 ≥ 2𝐶 with 𝐶 ≥ 11, the expected
regret bound:

E𝛾 [𝑅𝑇 ] ≤ 3.68

√
𝐶

(
ln

𝑁𝑒

𝐶

)
1/4

√√√
𝑇∑︁
𝑡=1

| |𝜃𝑡 − ˜𝜃𝑡 | |2
1
.

Proof. We consider the following baseline potential function Φ(𝜃 ) ≜ max𝑦∈X ⟨𝑦, 𝜃⟩, which is a

sub-linear function
12
. The associated Gaussian smoothed potential function for each 𝑡 , is defined as:

Φ𝑡 (𝜃 ) ≜ E
𝛾∼N(0,𝐼 )

[
max

𝑦∈X
⟨𝑦, 𝜃 + 𝜂𝑡𝛾⟩

]
= E

𝛾
[Φ(𝜃 + 𝜂𝑡𝛾)]

Clearly, Φ𝑡 (𝜃 ) is convex in 𝜃 . Recall that the cumulative file request vector is defined as Θ𝑡 =

Θ𝑡−1 + 𝜃𝑡 . A Taylor expansion of Φ𝑡 (·) around the point Θ𝑡−1 + ˜𝜃𝑡 , evaluated at Θ𝑡 , with a second

12
A function 𝑓 is sub-linear if it is sub-additive (i.e., 𝑓 (𝑎) + 𝑓 (𝑏) ≥ 𝑓 (𝑎 + 𝑏) , which implies 𝑓 (𝑎) − 𝑓 (𝑏) ≤ 𝑓 (𝑎 − 𝑏)), and

positive homogeneous (i.e., 𝑓 (𝜆𝑎) = 𝜆𝑓 (𝑎), 𝜆 > 0) .
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order remainder is:

Φ𝑡 (Θ𝑡 ) = Φ𝑡 (Θ𝑡−1 + ˜𝜃𝑡 ) + ⟨∇Φ𝑡 (Θ𝑡−1 + ˜𝜃𝑡 ), 𝜃𝑡 − ˜𝜃𝑡 ⟩ +
1

2

⟨𝜃𝑡 − ˜𝜃𝑡 ,∇2Φ𝑡 ( ˆ𝜃𝑡 ) (𝜃𝑡 − ˜𝜃𝑡 )⟩, (6)

where
ˆ𝜃𝑡 is a point on the line segment connecting Θ𝑡 and Θ𝑡−1 + ˜𝜃𝑡 . From the convexity of Φ𝑡 (·):

Φ𝑡 (Θ𝑡−1 + ˜𝜃𝑡 ) ≤ Φ𝑡 (Θ𝑡−1) + ⟨∇Φ𝑡 (Θ𝑡−1 + ˜𝜃𝑡 ), ˜𝜃𝑡 ⟩. (7)

From (6) and (7), we can eventually write:

Φ𝑡 (Θ𝑡 ) ≤ Φ𝑡 (Θ𝑡−1) + ⟨∇Φ𝑡 (Θ𝑡−1 + ˜𝜃𝑡 ), 𝜃𝑡 ⟩ +
1

2

⟨𝜃𝑡 − ˜𝜃𝑡 ,∇2Φ𝑡 ( ˆ𝜃𝑡 ) (𝜃𝑡 − ˜𝜃𝑡 )⟩. (8)

Now, note that it holds ∇Φ𝑡 (Θ𝑡−1 + ˜𝜃𝑡 ) =

∇E
𝛾

[
Φ𝑡 (Θ𝑡−1 + ˜𝜃𝑡 )

] (𝑎)
= E

𝛾

[
∇Φ𝑡 (Θ𝑡−1 + ˜𝜃𝑡 )

]
= E

𝛾

[
arg max

𝑦∈X
⟨𝑦,Θ𝑡−1 + ˜𝜃𝑡 + 𝜂𝑡𝛾⟩

]
= E

𝛾
[𝑦𝑡 ] ,

where (𝑎) stems from [9, Prop. 2.2]. Thus, (8) can be written as:

Φ𝑡 (Θ𝑡 ) ≤ Φ𝑡 (Θ𝑡−1) + E
𝛾
[⟨𝜃𝑡 , 𝑦𝑡 ⟩] +

1

2

⟨𝜃𝑡 − ˜𝜃𝑡 ,∇2Φ𝑡 ( ˆ𝜃𝑡 ) (𝜃𝑡 − ˜𝜃𝑡 )⟩.

Subtracting Φ𝑡−1 (Θ𝑡−1) from both sides and telescoping over 𝑇 and setting 𝜂0 = 0, we get:

Φ𝑇 (Θ𝑇 ) ≤
𝑇∑︁
𝑡=1

(
Φ𝑡 (Θ𝑡−1) − Φ𝑡−1 (Θ𝑡−1) + E

𝛾
[⟨𝜃𝑡 , 𝑦𝑡 ⟩] +

1

2

⟨𝜃𝑡 − ˜𝜃𝑡 ,∇2Φ𝑡 ( ˆ𝜃𝑡 ) (𝜃𝑡 − ˜𝜃𝑡 )⟩
)
.

Then, by Jensen’s inequality: max𝑦∈X E𝛾 [⟨𝑦,Θ𝑇 + 𝜂𝑇𝛾⟩] = max𝑦∈X ⟨𝑦,Θ𝑇 ⟩ = Φ(Θ𝑇 ) ≤ Φ𝑇 (Θ𝑇 ),
and writing the last term as the norm of the vector (𝜃𝑡 − ˜𝜃𝑡 ) induced by the symmetric positive

semidefinite matrix ∇2Φ𝑡 ( ˆ𝜃𝑡 ) ≜ 𝐻𝑡 , we get the following upper bound of the regret:

𝑅𝑇 ≤ Φ(Θ𝑇 ) −
𝑇∑︁
𝑡=1

E
𝛾
[⟨𝜃𝑡 , 𝑦𝑡 ⟩] ≤

𝑇∑︁
𝑡=1

(
Φ𝑡 (Θ𝑡−1) − Φ𝑡−1 (Θ𝑡−1) +

1

2

∥𝜃𝑡 − ˜𝜃𝑡 ∥𝐻𝑡

)
. (9)

We now bound the first term in the RHS of inequality (9):

𝑇∑︁
𝑡=1

Φ𝑡 (Θ𝑡−1)−Φ𝑡−1 (Θ𝑡−1) =
𝑇∑︁
𝑡=1

E
𝛾
[Φ(Θ𝑡−1+ 𝜂𝑡𝛾) − Φ (Θ𝑡−1+ 𝜂𝑡−1𝛾)]

(𝑎)
≤

𝑇∑︁
𝑡=1

E
𝛾
[Φ ((𝜂𝑡− 𝜂𝑡−1)𝛾)]

(𝑏)
≤

𝑇∑︁
𝑡=1

(𝜂𝑡 − 𝜂𝑡−1) E
𝛾
[Φ(𝛾)] ≤𝜂𝑇 E

𝛾

[
max

𝑦
⟨𝑦,𝛾⟩

]
(𝑐)
≤ 𝜂𝑇

√︄
2𝐶 ln

(
𝑁

𝐶

)
(𝑑)
≤ 𝜂𝑇𝐶

√︁
2 ln(𝑁𝑒/𝐶), (10)

where inequalities (𝑎) and (𝑏) follow from the sub-linearity of the potential function; (𝑐) from
Massart’s lemma which gives an upper bound the expected sum of the top𝐶 elements in a Gaussian

random vector (e.g., [15, Lem. 9]); and finally (𝑑) is due to
(
𝑁
𝐶

)
≤ ( 𝑁𝑒

𝐶
)𝐶 .

We now upper bound the second term in the RHS of (9). From [15, Eqn. (4)], the (𝑖, 𝑗)th entry of

the Hessian matrix is given by 𝐻 𝑡
𝑖, 𝑗 =

1

𝜂𝑡
E
[
𝑦 ( ˆ𝜃𝑡 + 𝜂𝑡𝛾)𝑖𝛾 𝑗

]
, where 𝑦 (·) = arg max𝑦∈X ⟨𝑦, ·⟩. Hence,

we have the following bound on the absolute value of each entry:

|𝐻 𝑡
𝑖, 𝑗 | =

1

𝜂𝑡

����E
𝛾

[
𝑦 ( ˆ𝜃 + 𝜂𝑡𝛾)𝑖𝛾 𝑗

] ���� ≤ 1

𝜂𝑡
E
𝛾

[
|𝑦 ( ˆ𝜃 + 𝜂𝑡𝛾)𝑖 | |𝛾 𝑗 |

]
≤ 1

𝜂𝑡
E
𝛾
[|𝛾𝑖 |] ≤

1

𝜂𝑡

√︂
2

𝜋
, (11)

where the first inequality follows from Jensen’s inequality, the second holds since 𝑦𝑖 = {0, 1}; and
the last one is a property of Gaussian r.v.s. Thus each of the quadratic forms on the RHS of Eqn. (9)

can be bounded as follows:
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∥𝜃𝑡 − ˜𝜃𝑡 ∥𝐻𝑡
= ⟨𝜃𝑡 − ˜𝜃𝑡 , 𝐻𝑡 (𝜃𝑡 − ˜𝜃𝑡 )⟩ =

∑︁
𝑖, 𝑗

(𝜃𝑡,𝑖 − ˜𝜃𝑡,𝑖 )𝐻 𝑡
𝑖 𝑗 (𝜃𝑡, 𝑗 − ˜𝜃𝑡, 𝑗 )

(𝑎)
≤

∑︁
𝑖, 𝑗

| (𝜃𝑡,𝑖 − ˜𝜃𝑡,𝑖 ) | |𝐻 𝑡
𝑖 𝑗 | | (𝜃𝑡, 𝑗 − ˜𝜃𝑡, 𝑗 ) |

(𝑏)
≤ 1

𝜂𝑡

√︂
2

𝜋
(
∑︁
𝑖

| (𝜃𝑡,𝑖 − ˜𝜃𝑡,𝑖 ) |)2 =
1

𝜂𝑡

√︂
2

𝜋
| |𝜃𝑡 − ˜𝜃𝑡 | |21 . (12)

where (𝑎) follows from the triangle inequality and (𝑏) from the bound (11).

Another way to bound ∥𝜃𝑡 − ˜𝜃𝑡 ∥𝐻𝑡
, which will be useful later

13
, starts from (6) to get:

1

2

∥𝜃𝑡 − ˜𝜃𝑡 ∥𝐻𝑡
= Φ𝑡 (Θ𝑡 ) − Φ𝑡 (Θ𝑡−1 + ˜𝜃𝑡 ) − ⟨∇Φ𝑡 (Θ𝑡−1 + ˜𝜃𝑡 ), 𝜃𝑡 − ˜𝜃𝑡 ⟩

= E
𝛾

[
Φ(Θ𝑡 + 𝜂𝑡𝛾) − Φ(Θ𝑡−1 + ˜𝜃𝑡 + 𝜂𝑡𝛾)

]
+ ⟨∇Φ𝑡 (Θ𝑡−1 + ˜𝜃𝑡 ), ˜𝜃𝑡 − 𝜃𝑡 ⟩

(𝑎)
≤ Φ(𝜃𝑡 − ˜𝜃𝑡 )+

+ ⟨∇Φ𝑡 (Θ𝑡−1 + ˜𝜃𝑡 ), ˜𝜃𝑡 − 𝜃𝑡 ⟩ = max

𝑦∈X
⟨𝑦, 𝜃𝑡 − ˜𝜃𝑡 ⟩ + ⟨∇Φ𝑡 (Θ𝑡−1 + ˜𝜃𝑡 ), ˜𝜃𝑡 − 𝜃𝑡 ⟩

(𝑏)
≤ 2∥𝜃𝑡 − ˜𝜃𝑡 ∥1, (13)

where (𝑎) follows from the sub-additivity of Φ(·), and in (𝑏) we use that 𝑦𝑖 ∈ {0, 1},∀𝑖 and bounded
both terms using triangle inequality. Hence, combining the bounds (12) and (13), we get:

1

2

∥𝜃𝑡 − ˜𝜃𝑡 ∥𝐻𝑡
≤ min

(
1

√
2𝜋

| |𝜃𝑡 − ˜𝜃𝑡 | |21
𝜂𝑡

, 2| |𝜃𝑡 − ˜𝜃𝑡 | |1
)
.

Now we choose the learning rate 𝜂𝑡 = 𝛽

√︃∑𝑡−1

𝜏=1
| |𝜃𝜏 − ˜𝜃𝜏 | |2

1
, 𝑡 ≥ 1 for some constant 0 < 𝛽 ≤ 1√

2𝜋

that will be specified later. Hence, we have:

1

2

∥𝜃𝑡− ˜𝜃𝑡 ∥𝐻𝑡
≤min

©«
| |𝜃𝑡− ˜𝜃𝑡 | |21

√
2𝜋𝛽

√︃∑𝑡−1

𝜏=1
| |𝜃𝜏− ˜𝜃𝜏 | |2

1

, 2
| |𝜃𝑡 − ˜𝜃𝑡 | |21

√
2𝜋𝛽

√︃
| |𝜃𝑡− ˜𝜃𝑡 | |2

1

ª®®¬
(𝑎)
≤ 3

√
2𝜋𝛽

| |𝜃𝑡− ˜𝜃𝑡 | |21√︃∑𝑡
𝜏=1
| |𝜃𝜏− ˜𝜃𝜏 | |2

1

(14)

where in (𝑎), we used the fact that min(𝑎1/𝑎2, 𝑏1/𝑏2) ≤ 𝑎1+𝑎2

𝑏1+𝑏2

for any two positive fractions and

√
𝑥 + 𝑦 ≤

√
𝑥 + √𝑦, for any non-negative 𝑥 and 𝑦’s.

Now that we have a bound for the smoothing-overhead in (10), and the per-step regret bounds

(14), we can substitute them in (9) to get:

E
𝛾
[𝑅𝑇 ] ≤ 𝜂𝑇𝐶

√︁
2 log(𝑁𝑒/𝐶) + 3

√
2𝜋𝛽

𝑇∑︁
𝑡=1

| |𝜃𝑡 − ˜𝜃𝑡 | |21√︃∑𝑡
𝜏=1
| |𝜃𝜏 − ˜𝜃𝜏 | |2

1

. (15)

The second term above can be upper-bounded as:

𝑇∑︁
𝑡=1

| |𝜃𝑡 − ˜𝜃𝑡 | |21√︃∑𝑡
𝜏=1
| |𝜃𝜏 − ˜𝜃𝜏 | |2

1

≤
𝑇∑︁
𝑡=1

∫ ∑𝑡
𝜏=1
| |𝜃𝜏− ˜𝜃𝜏 | |2

1∑𝑡−1

𝜏=1
| |𝜃𝜏− ˜𝜃𝜏 | |2

1

𝑑𝑥
√
𝑥
=

∫ ∑𝑇
𝜏=1
| |𝜃𝜏− ˜𝜃𝜏 | |2

1

0

𝑑𝑥
√
𝑥
= 2

√√√
𝑇∑︁
𝜏=1

| |𝜃𝜏 − ˜𝜃𝜏 | |2
1
.

13
This second bound on the norm enables us to set 𝜂𝑡 parameters based solely on the prediction error witnessed so far∑𝑡−1

𝜏=1
∥𝜃𝜏 − ˜𝜃𝜏 ∥. Consequently, the regret will depend solely on a scaled prediction error (without additive constants).
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Substituting the above bound into (15) and using the definition of 𝜂𝑇 we get the regret upper

bound:

E𝛾 [𝑅𝑇 ] ≤

√√√
𝑇∑︁
𝜏=1

| |𝜃𝜏 − ˜𝜃𝜏 | |2
1

(
𝐶
√︁

2 ln(𝑁𝑒/𝐶))𝛽 + 6

𝛽
√

2𝜋

)
(16)

Optimizing over the constant 𝛽 , we get that 𝛽 =

√︃
3

𝐶
( 1

𝜋 ln(𝑁𝑒/𝐶) )
1/4
, 𝐶 ≥ 11 (Recall we that 0 < 𝛽 ≤

1/
√

2𝜋 ). Substituting this valud for 𝛽 back in (16) we arrive at the result. □

Discussion. Similarly to Theorem 2, the regret bound here is modulated with the quality of pre-

dictions: it collapses to zero when predictions are perfect, and maintains 𝑅𝑇 ≤ 3.68 ln

(
𝑁𝑒
𝐶

)
1/4 √

2𝐶𝑇

for arbitrary bad predictions. Interestingly, this worst-case scenario is only inferior by a factor of

∼ 2.5 compared to the recent FTPL algorithm in [12] that does not use (and cannot benefit from)

predictions. Hence, incorporating predictions (even, of unknown quality) comes without cost in

the proposed OFTPL algorithm. Furthermore, for the more common case of predictions within a

certain range of error, the regret bounds diminish in proportion to their quality.

Comparing with Theorem 2, OFTPL achieves regret bounds worse by a factor of ∼ 1.9 ln

(
𝑁𝑒
𝐶

)
1/4

,

which depends on 𝑁 , albeit in a small order. The regret bounds are also different in nature, for

OFTRL it is ℓ2 squared whereas for OFTPL, it is the much larger ℓ1 squared of the prediction error.

On the other hand, Algorithm 2 does not involve the expensive projection operation that appears

in Algorithm 1, but rather a simple quantile-finding operation (top 𝐶 files) with a worst-case

complexity of 𝑂 (𝑁 ). This facilitates greatly the implementation of OFTPL in systems with low

computing capacity or in applications that require decisions in near real-time. A notable point about

Theorem 3 is that in the special case where the predictor
˜𝜃𝑡 suggests a single file (i.e., deterministic),

the regret scales with the square root of the number of mistakes as opposed to the conventional

number of time slots (i.e., horizon 𝑇 ) in previous no regret discrete caching works
14
[12, 51, 64]. It is

also interesting to note that the bounds of Theorem 3, and 2, provide insights on the appropriate

loss function to be optimized by the prediction oracle (squared norms). This is helpful while training

and tuning machine learning models on request traces detests. Lastly, we note that we can sample a

fresh perturbation vector at each time step in order to handle adaptive adversaries (i.e., adversaries

that do not fix the cost sequence in advance but react to the choices of the algorithm). The same

analysis applies since perturbations are equal in distribution. We refer the reader to e.g., [31, Sec. 8]

for techniques for reducing guarantees from oblivious to adaptive adversaries via fresh-sampling.

6 CACHING FILES WITH ARBITRARY SIZES
While the caching problem with equal-sized files has been studied using regret analysis and

competitive analysis, to the best of the authors’ knowledge, there are no results for the more

challenging case of files with different sizes. This section fills this gap by extending the above tools

accordingly. In particular, we consider the setting where each file 𝑖 ∈ N has a size of 𝑠𝑖 units, 𝑠𝑖 ≤ 𝐶 .

Hence, the set of feasible caching vectors needs to be redefined as:

X𝑠 =
{
𝑥 ∈ {0, 1}𝑁

���� 𝑁∑︁
𝑖=1

𝑠𝑖𝑥𝑖 ≤ 𝐶

}
,

where the caching decisions are calibrated with the respective file sizes in the capacity con-

straint. And similarly, the benchmark (designed-in-hindsight) policy is redefined as 𝑥★ = 𝑦★ ≜

14
The same property of depending on prediction mistakes rather than𝑇 holds for Theorem 2 but the regret scales as the

square root of double the number of mistakes, due to the use of ℓ2 norm.
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argmax𝑥 ∈X𝑠 ⟨𝑥,Θ𝑇 ⟩. We present two solution approaches for this problem, using both OFTRL and

OFTPL. These results are of independent interest with applications beyond caching.

6.1 Approximate OFTPL
Similarly to Algorithm 2, the OFTPL algorithm in this case determines the next cache configuration

𝑦𝑡 by solving the following integer programming problem at each round 𝑡 :

P1 : max

𝑦∈X𝑠
⟨Θ𝑡−1 + ˜𝜃𝑡 + 𝜂𝑡𝛾,𝑦⟩,

which is a Knapsack instance with profit vector 𝑝 = Θ𝑡−1 + ˜𝜃𝑡 + 𝜂𝑡𝛾 ; size vector 𝑠 = (𝑠𝑖 ,∀𝑖 ∈ N);
and capacity 𝐶 . Since the Knapsack problem is NP-Hard [42], we cannot solve P1 efficiently (fast

and accurately) at each slot, and hence it is not practical (or, even possible) to use the approach of

Sec. 5. Instead, we resort here to an approximation scheme for solving P1 and, importantly, do so in

a way that these approximately-solved instances do not accumulate an unbounded regret w.r.t. 𝑦★.

This requires a tailored approximation analysis and to define a new regret metric.

In detail, we leverage Dantzig’s approach for tackling packing problems [19], to obtain an

almost-integral solution from the respective integrality-relaxed problem; and then recover, via a

point-wise randomized rounding, a fully-integral solution which, as we prove, keeps the long-term

1/2-approximate regret bounded. First, recall that the 𝛼-approximate regret is defined as [35]:

𝑅
(𝛼)
𝑇
≜ 𝛼 ⟨Θ𝑇 , 𝑥

★⟩ −
𝑇∑︁
𝑡=1

⟨𝜃𝑡 , 𝑥𝑡 ⟩, (17)

for a positive constant 𝛼 . This generalized regret metric allows to use a parameterized benchmark,

in line with prior works, e.g., see [51] and references therein. Now, it is important to see that while

the Knapsack problem admits an FPTAS [70], due to the online nature of our caching problem,

not all 𝛼-approximation schemes for the offline OFTPL problem provide an 𝛼-approximate regret

guarantee. In light of this, we employ the stronger notion of point-wise 𝛼-approximation scheme,

which yields an 𝛼-regret guarantee for the online learning problem [35]. We restate the definition:

Definition 1 (𝛼-point-wise approximation). A randomized 𝛼-point-wise approximation algo-
rithmA for a fractional solution 𝑦 = (𝑦𝑖 , 𝑖 ∈ N) of a maximizing LP with non-negative coefficients, is
one that returns an integral solution 𝑦 = (𝑦𝑖 , 𝑖 ∈ N) such that E [𝑦𝑖 ] ≥ 𝛼𝑦𝑖 ,∀𝑖 ∈ N and some 𝛼 > 0;
where the expectation is taken over possible random choices made by algorithm A.

In our case, we set 𝛼 = 1/2 and propose an (1/2)-point-wise approximation algorithm for P1.

Our starting point is Dantzig’s approach which operates on the integrality-relaxed version of

P1. In particular, the integrality-relaxed LP for the Knapsack problem with profit vector 𝑝 , weight

vector 𝑠 , and capacity 𝐶 , through the following steps:

Dantz(𝐶, 𝑝, 𝑠):
(1) Index files in decreasing profit-to-size ratios, i.e., (𝑝1/𝑠1) ≥ (𝑝2/𝑠2) ≥ . . . ≥ (𝑝𝑁 /𝑠𝑁 ).
(2) Set 𝑘 = min

{
𝑗
�� ∑𝑗

𝑖=1
𝑠𝑖 > 𝐶

}
and 𝐶 = 𝐶 −∑𝑘−1

𝑖=1
𝑠𝑖 .

(3) Assign the continuous variables 𝑦𝑖 ∈ [0, 1], 𝑖 ∈ N as follows:

𝑦𝑖 =


1, if 𝑖 ∈ [𝑘 − 1]
𝐶
𝑠𝑘
, if 𝑖 = 𝑘

0, otherwise.

To streamline presentation, we denote with Dantz(𝐶, 𝑝, 𝑠) the operation of steps (1)-(3) above on

the Knapsack instance (𝐶, 𝑝, 𝑠), which return the solution 𝑦 and the value of parameter 𝑘 . An
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Algorithm 3: OFTPL-UneqCache
1 Input: 𝜂1 = 0, 𝑦1 = arg min𝑦∈X𝑠 ⟨𝑦, 𝜃1 ⟩, 𝑠 = (𝑠𝑖 , 𝑖 ∈ N)
2 Output: {𝑦𝑡 ∈ X𝑠 }𝑇 // Feasible discrete caching vector at each slot

3 𝛾
𝑖𝑖𝑑∼ N(0, 1𝑁×1) // Sample a perturbation vector

4 for 𝑡 = 2, 3, . . . do
5 ˜𝜃𝑡 ← prediction //Obtain request prediction for slot 𝑡

6 𝜂𝑡 = 1.3√
𝐶

(
1

ln(𝑁𝑒/𝐶 )

)
1/4 √︃∑𝑡−1

𝜏=1
∥𝜃𝜏 − ˜𝜃𝜏 ∥2

1
// Update the perturbation parameter

7 𝑝 ← Θ𝑡−1 + ˜𝜃𝑡 + 𝜂𝑡𝛾 // Update the profit vector
8 (�̂�𝑡 , 𝑘) ← Dantz(𝐶, 𝑝, 𝑠) // Compute the "almost integral" cache vector
9 𝑦𝑡 ← Rand(�̂�𝑡 , 𝑘) // Perform Randomized Rounding

10 Θ𝑡 = Θ𝑡−1 + 𝜃𝑡 // Receive 𝑡 -slot request and update total grad
end

interesting property of returned solution 𝑦, which we exploit in our randomized approximation

scheme, is that at most one component of the vector 𝑦 is non-integral.

The detailed steps of the proposed OFTPL scheme are presented in Algorithm 3. At each slot

we obtain a new (probabilistic) prediction for the next requested file
˜𝜃𝑡 (line 5) and update the

perturbation parameter 𝜂𝑡 (line 6). Then we calculate the new profits 𝑝𝑖 = Θ𝑡−1+ ˜𝜃𝑡 +𝜂𝑡𝛾 , 𝑖 ∈ N , and

solve the relaxed Knaspack by invoking Dantz(𝐶, 𝑝, 𝑠) to obtain the almost-integral𝑦𝑡 and parameter

𝑘 (line 7). This vector has 𝑘 − 1 components equal to 1, one additional non-negative component, and

𝑁 − 𝑘 components equal to 0. This solution is then rounded through the randomization scheme:

Rand(𝑦𝑡 , 𝑘):

(1) Set 𝑆 = 1, 2, . . . , 𝑘 − 1 ≜ [𝑘 − 1] with probability 1/2; Set 𝑆 = {𝑘} with probability 1/2.
(2) Set 𝑦𝑡𝑖 = 0,∀𝑖 ∈ N ; and update to 𝑦𝑡𝑖 = 1 for each 𝑖 ∈ 𝑆 .

The Rand operation is invoked and creates integral caching vector 𝑦𝑡 which satisfies the capacity

constraint (line 9). Finally, we observe the new gradient, update the aggregate gradient vector and

repeat the process (line 10). The following theorem, proved in Appendix. A.4, characterizes the

guarantees of Algorithm 3.

Theorem 4. Algorithm 3 ensures, for any time horizon 𝑇 , the expected regret bound:

E
[
𝑅
(1/2)
𝑇

]
≤ 1.84

√
𝐶

(
ln

𝑁𝑒

𝐶

)
1/4

√√√
𝑇∑︁
𝑡=1

∥𝜃𝑡 − ˜𝜃𝑡 ∥2
1

Discussion. The bounds of Theorem 3 possess the desirable property of being modulated with

the prediction errors, and in fact are improved by a factor of half compared to the equal-sizes bound.

However, we remind the reader that the regret metric in this section is defined w.r.t. a weaker

benchmark, i.e., a benchmark that achieves 1/2 the utility of the best-in-hindsight utility ⟨Θ𝑇 , 𝑦
★⟩.

Relying upon such approximations is an inevitable concession for NP-hard problems – especially

when having to solve them repeatedly. Interestingly, the computational complexity of Algorithm 3

is comparable to that of Algorithm 2, which is quite surprising since we are able to handle integral

caching decisions with arbitrary-sized files. To the best of the authors’ knowledge, this work is the

first to propose an OCO-based solution for this variant of the online caching problem. We proceed

next to remove the effect of the library size on the regret bound.
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Algorithm 4: OFTRL-UneqCache
1 Input: 𝜎 = 1/

√
𝐶 , 𝛿1 = ∥𝜃1 − ˜𝜃1 ∥2

2
, 𝜎1 = 𝜎

√
𝛿1, 𝑥1 = arg min𝑥∈X𝑠 ⟨𝑥, 𝜃1 ⟩

2 Output: {𝑦𝑡 ∈ X𝑠 }𝑇 // Feasible discrete caching vector at each slot
3 for 𝑡 = 2, 3, . . . do
4 ˜𝜃𝑡 ← prediction //Obtain gradient prediction for slot 𝑡

5 𝑥𝑡 = arg max𝑥∈conv(X𝑠 )
{
−𝑟1:𝑡−1 (𝑥) + ⟨𝑥,Θ𝑡−1 + ˜𝜃𝑡 ⟩

}
6 𝑥𝑡 ←− DepRound(𝑥𝑡 ) // Compute the "almost integral" cache vector
7 𝑥𝑡 ←− Rand(𝑥𝑡 , 𝑘) // Perform Randomized Rounding
8 Θ𝑡 = Θ𝑡−1 + 𝜃𝑡 // Receive 𝑡 -slot request and update total grad
9 𝜎𝑡 = 𝜎

(√
𝛿1:𝑡 −

√
𝛿1:𝑡−1

)
// Update the regularization parameter

end

6.2 Approximate OFTRL
We introduce next an OFTRL algorithm that can handle arbitrary file sizes. To that end, we use

the OFTRL update on the integrality-relaxed version of the problem, then modify the obtained

vector so as to be almost integral, and finally employ the same randomized rounding technique as

above to correct for feasibility. The new intermediate step (that yields the almost-integral vector)

is necessary since, unlike in Sec. 6.1, we cannot apply the (1/2)-sampling technique directly on

{𝑥𝑡 }𝑡 because these vectors do not have this required almost-integral form. Thus, we leverage the

DepRound subroutine from [13], which is known to achieve the useful property re-stated below.

Lemma 2. For 𝑎 ∈ [0, 1]𝑁 , the DepRound scheme in Algorithm 8 returns a vector 𝑏 such that
• All elements of 𝑏 are integral except one: 𝑏𝑖 ∈ {0, 1} ∀𝑖 ∈ N/ 𝑗 , 𝑏 𝑗 ∈ [0, 1].
• 𝑏𝑖 is an unbiased estimator of 𝑎𝑖 : E [𝑏𝑖 ] = 𝑎𝑖 ,∀𝑖 ∈ N .
• 𝑏 respects the linear constraints satisfied by 𝑎: Pr[∑𝑖∈N 𝑠𝑖 𝑎𝑖 =

∑
𝑖∈N 𝑠𝑖 𝑏𝑖 ] = 1.

With this almost-integral solution at hand, we re-use the sampling technique Rand, to achieve

an (1/2)-Regret guarantee w.r.t. the same benchmark as in Sec. 6.1. The steps are presented in

Algorithm 4. The diligent reader will observe that essentially we merge steps from Algorithm 1

and Algorithms 3. The detailed steps of the DepRound subroutine are presented in the Appendix.

The next theorem, proved in the Appendix A.5, characterizes the algorithm’s performance.

Theorem 5. Algorithm 4 ensures, for any time horizon 𝑇 , the expected regret bound:

E
[
𝑅
(1/2)
𝑇

]
≤
√
𝐶

√√√
𝑇∑︁
𝑡=1

∥𝜃𝑡 − ˜𝜃𝑡 ∥2
2

Discussion. Compared to the approach we used to extend OFTPL to unequal-sized files, an

additional rounding technique (DepRound) was necessary to extend OFTRL. The complexity of

this sub-routine is linear in the library size. Thus, despite preserving the order-level complexity of

Algorithm 4, handling such files increases the overhead to get the almost-integral caching vectors

{𝑥𝑡 }𝑡 . The important point is that we recover the dimension-free bounds for the regret, which

are better by a constant factor of 1.84

(
ln

𝑁𝑒
𝐶

)
1/4

compared to OFTPL-UneqCache, at the expense
of performing a (potentially challenging) projection step. Hence, one can select the most suitable

method depending on the requirements of the application (size of library, slot length, etc.) and

the computing resources when executing the algorithm. Lastly, in Algorithm 4, and all introduced

algorithms for the single cache case, the request vector 𝜃 can be extended to include (time-varying

and unknown) weights that depend on users or network properties.
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Algorithm 5: OFTRL-BipCache
1 Input: 𝜎 = 1/

√
1 + 𝐽𝐶 , 𝛿1 = ∥𝜃1 − ˜𝜃1 ∥2

2
, 𝜎1 = 𝜎

√
𝛿1, 𝑥1 = arg min𝑥∈X𝑏 ⟨𝑥, 𝜃1 ⟩

2 Output: {𝑥𝑡 = (𝑘𝑡 ,𝑢𝑡 ) ∈ X𝑏 }𝑇 // Feasible discrete caching/routing vector at each slot
3 for 𝑡 = 2, 3, . . . do
4 ˜𝜃𝑡 ← prediction //Obtain request prediction for slot 𝑡

5 𝑥𝑡 = arg max𝑥∈conv(X𝑏 )
{
−𝑟1:𝑡−1 (𝑥) + ⟨𝑥,Θ𝑡−1 + ˜𝜃𝑡 ⟩

}
// Update the continuous policy vector

6 (𝑘𝑡
𝑗
) ←− 𝑀𝑎𝑑𝑜𝑤𝑆𝑎𝑚𝑝𝑙𝑒 ( ˆ𝑘𝑡 ) , ∀𝑗 ∈ J // Obtain the discrete cache vector for each cache independently

7 Θ𝑡 = Θ𝑡−1 + 𝜃𝑡 // Receive 𝑡 -slot request and update total grad
8 Set 𝑢𝑡

𝑛𝑖 𝑗′ ← 1 for a randomly selected 𝑗 ′ ∈ J𝑛𝑖 //Update the discrete routing vector

9 𝜎𝑡 = 𝜎

(√
𝛿1:𝑡 −

√
𝛿1:𝑡−1

)
// Update the regularization parameter

end

7 BIPARTITE CACHING THROUGH OPTIMISM (OFTRL-BIPCACHE)
Finally, we extend our study to caching networks where a set of edge caches J = {1, 2, . . . , 𝐽 }
serves a set of users I = {1, 2, . . . , 𝐼 } requesting files from the libraryN . The connectivity between

I and J is modeled with parameters 𝑑 =
(
𝑑𝑖 𝑗 ∈ {0, 1} : 𝑖 ∈I, 𝑗 ∈ J

)
, where 𝑑𝑖 𝑗 = 1 if cache 𝑗 can

be reached from user location 𝑖 . Each user can be (potentially) served by any connected cache. This

is a widely-studied non-capacitated bipartite model [52, 63].

We introduce the new caching variables 𝑘 and routing variables 𝑢. Namely, 𝑘𝑡𝑛 𝑗 ∈ {0, 1} decides
whether file 𝑛 ∈N is stored at cache 𝑗 ∈J at the beginning of slot 𝑡 , and the 𝑡-slot caching vector

𝑘𝑡 = (𝑘𝑡𝑛 𝑗 : 𝑛 ∈N , 𝑗 ∈J) belongs to K =
{
𝑘 ∈ {0, 1}𝑁 ·𝐽

�� ∑
𝑛∈N 𝑘𝑛𝑗 ≤ 𝐶 𝑗 , 𝑗 ∈ J

}
, where 𝐶 𝑗 is the

capacity of cache 𝑗 ∈ J . We use the routing variable 𝑢𝑡𝑛𝑖 𝑗 ∈ {0, 1} to decide the delivery of file 𝑛

to user 𝑖 from cache 𝑗 , and define the 𝑡-slot routing vector 𝑢𝑡 = (𝑢𝑡𝑛𝑖 𝑗 ∈ [0, 1] : 𝑛 ∈N , 𝑖 ∈I, 𝑗 ∈J)
that is selected from the set:U =

{
𝑢 ∈ {0, 1}𝑁 ·𝐽 ·𝐼

�� ∑
𝑗 ∈J 𝑢𝑛𝑖 𝑗 ≤ 1, 𝑛 ∈ N , 𝑖 ∈ I

}
. Note also that

unserved requests, i.e., when the summation is strictly smaller than 1, are satisfied by the root cache.

This option, however, yields zero benefit for the users (no cache-hit gains); see also [63]. The request

vector 𝜃𝑡 is redefined to reflect a request’s source and destination: 𝜃𝑡 = (𝜃 𝑡𝑛𝑖 ∈ {0, 1} : 𝑛 ∈N , 𝑖 ∈I),
and is drawn from the set: Q =

{
𝜃 ∈ {0, 1}𝑁 ·𝐼

�� ∑
𝑛∈N

∑
𝑖∈I 𝜃𝑛𝑖 = 1

}
.

We can now introduce the 𝑡-slot utility function:

𝑓𝑡 (𝑥𝑡 ) =
∑︁
𝑛∈N

∑︁
𝑖∈I

∑︁
𝑗 ∈J

𝜃 𝑡𝑛𝑖𝑘
𝑡
𝑛𝑖 𝑗 .

where we abuse notation and redefine 𝑥𝑡 ≜ (𝑘𝑡 , 𝑢𝑡 ). Therefore, the utility-maximizing caching-

routing policy at each slot 𝑡 is found by solving the following problem:

P2 : max

𝑥

𝑇∑︁
𝑡=1

𝑓𝑡 (𝑥) s.t. 𝑢 ∈ U, 𝑘 ∈ K ; 𝑢𝑛𝑖 𝑗 ≤ 𝑘𝑛𝑗𝑑𝑖 𝑗 , 𝑖 ∈ I, 𝑗 ∈ J , 𝑛 ∈ N ,

and we define the feasible caching/routing set as X𝑏 ≜
{
{K ×U} ∩ {𝑢𝑛𝑖 𝑗 ≤ 𝑘𝑛𝑗𝑑𝑖 𝑗 }

}
. P2 is known

to be NP-Hard via a reduction to the set cover problem [63, Sec. 3], [51, Sec. 4.1]. Hence, we will be

using below also its integrality-relaxed version P′
2
with continuous variables 𝑥𝑡 ≜ ( ˆ𝑘𝑡 , 𝑢𝑡 ).

Our strategy for tackling P2 is to use OFTRL on the convex hull of X𝑏 (essentially learning w.r.t.

P′
2
) to optimize 𝑥𝑡 , and then obtain discrete caching vectors with Madow’s sampling applied to each

cache separately. As last step we select a proper routing solution for the received request 𝜃𝑡 . Namely,

upon receiving a request for file 𝑛 from user 𝑖 , the corresponding routing variable is set to 1 if any
cache connected to 𝑖 stores file 𝑛. Thus, we define the auxiliary set J𝑛𝑖 =

{
𝑗 ∈ J

�� 𝑦𝑛𝑗 𝑑𝑖 𝑗 = 1

}
,
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and assign 𝑢𝑡
𝑛𝑖 𝑗 ′ = 1 for the (𝑛, 𝑖) pair and some 𝑗 ′ ∈ J𝑛𝑖

. It is important to stress that in such

uncapacitated models, the routing plan is directly determined once a caching vector is fixed
15
. The

detailed steps of the proposed OFTRL schemed are presented in Algorithm 5, where we reuse the

regularization scheme from Sec. 4 with the difference that it operates now on the newly defined

variables and request vectors. The performance of the algorithm is characterized with the next

theorem, the proof of which can be found in Appendix. A.6

Theorem 6. Algorithm 5 ensures, for any horizon 𝑇 , the expected (1 − 1/𝑒)−Regret bound:

E
[
𝑅
(1−1/𝑒)
𝑇

]
≤ 1.3

√︁
1 + 𝐽𝐶

√√√
𝑇∑︁
𝑡=1

∥𝜃𝑡 − ˜𝜃𝑡 ∥2
2

Discussion. Similar to the single cache, Theorem 6 improves the regret by removing the effect

of library size 𝑁 , as opposed to the recently-proposed bipartite OFTPL algorithm for equal-sized

files in [51]
16
. This improvement comes at the expense of a projection operation in the OFTRL step.

Additionally, Algorithm 5 manages to reduce further the constant terms when it has access to high

quality predictions for the next-slot requests.

8 EXPERT-BASED OPTIMISTIC CACHING
Changing tack in this section, we explore a different approach for optimism that is based on the

classical experts framework. Specifically, we consider a model with two experts: a pessimistic (or

robust) learner and an optimistic learner. The pessimist expert proposes caching decisions based on

the OGA policy [53] that does not use predictions, and provides adversarial regret guarantees. The

optimistic expert proposes a caching policy that is optimized solely w.r.t. the predicted request,

i.e., as if the predictions are fully reliable. Finally, a meta-learner receives the proposals from the

two experts and gradually discerns which of them should be trusted. The expert-based approach to

optimistic learning has been previously proposed for continuous caching in [44, 45]. We expand it

here to handle discrete decisions and demonstrate it using the single cache scenario.

Formally, the pessimistic expert (𝑝) proposes caching {𝑧 (𝑝)𝑡 }𝑡 according to adaptive OGA:

𝑧
(𝑝)
𝑡 = Pconv(X)

{
𝑧
(𝑝)
𝑡−1
+ 1

√
𝑡
𝜃𝑡

}
, (18)

where Pconv(X) is the Euclidean projection onto the convex hull of X. We denote the regret of this

expert by 𝑅
(𝑝)
𝑇

= ⟨Θ𝑇 , 𝑧
★⟩ −∑𝑇

𝑡=1
⟨𝜃𝑡 , 𝑧 (𝑝)𝑡 ⟩, where 𝑧★ = argmax𝑧∈conv(X) ⟨Θ𝑇 , 𝑧⟩. On the other hand,

the optimistic expert (𝑜) solves the following LP 𝑧 (𝑜) = arg max𝑧∈X ⟨ ˜𝜃𝑡 , 𝑧⟩,
and we denote its regret with 𝑅

(𝑜)
𝑇

= ⟨Θ𝑇 , 𝑧
★⟩ −∑𝑇

𝑡=1
⟨𝜃𝑡 , 𝑧 (𝑜)𝑡 ⟩.

Unlike the previous sections where predictions were used to modify the perturbation and

regularization parameters, here they are treated independently through the optimistic expert. The

challenge is then to learn which of the two experts’ proposals to follow. To that end, a meta-learner

combines the proposals through a set of learned weights. Namely, the meta-learner’s decision

variable is 𝑤 ≜ (𝑤 (𝑝) ,𝑤 (𝑜) ) ∈ Δ2, where Δ2 =
{
𝑤 ∈ [0, 1]2

��∥𝑤 ∥1 = 1

}
, and is used to create a

convex combination of the provided caching proposals, i.e., 𝑧𝑡 = 𝑤
(𝑝)
𝑡 𝑧

(𝑝)
𝑡 +𝑤 (𝑜)𝑡 𝑧

(𝑜)
𝑡 .

15
In other words, the routing variables are auxiliary in the Femtocaching model, and indeed in [63] these variables where

omitted, while they appear with different name in subsequent works, e.g., as virtual caching variables in [51].

16
We note that the bound in [51] contains additionally the number of users since they consider a different request model of

one request per user per time slot. Our work can be readily extended in that direction, as explained above.
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Algorithm 6: Experts-Cache
1 Input: 𝑧1 ∈ X
2 Output: {𝑧𝑡 ∈ X}𝑇 // Feasible caching vector at each slot
3 for 𝑡 = 2, 3, . . . do
4 𝑧

(𝑝 )
𝑡 = P

conv(X)
{
𝑧
(𝑝 )
𝑡−1
+ 1√

𝑡
𝜃𝑡

}
// Pessimistic expert makes proposal

5 𝑧 (𝑜 ) = arg max𝑧∈X ⟨ ˜𝜃𝑡 , 𝑧 ⟩ // Optimistic expert makes proposal based on the oracle’s prediction

6 𝑧𝑡 = 𝑤
(𝑝 )
𝑡 𝑧

(𝑝 )
𝑡 + 𝑤 (𝑜 )𝑡 𝑧

(𝑜 )
𝑡 // Meta-learner combines proposals

7 𝑧𝑡 ← 𝑀𝑎𝑑𝑜𝑤𝑆𝑎𝑚𝑝𝑙𝑒 (𝑧𝑡 ) // Obtain the discrete cache vector using Algorithm 7
8 Θ𝑡 = Θ𝑡−1 + 𝜃𝑡 // Receive the request for slot 𝑡 and update total grad
9 �̂�𝑡 = P

conv(Δ2 )
{
𝑤𝑡−1 + 1√

𝑡
𝑙𝑡

}
// Meta-learner observes losses 𝑙𝑡 & updates weights

end

Clearly, by its definition, it holds that 𝑧𝑡 ∈ conv(X). The weights are updated with adaptive

OGA:

�̂�𝑡 = Pconv(Δ2)

{
𝑤𝑡−1 +

1

√
𝑡
𝑙𝑡

}
, (19)

where 𝑙𝑡 ≜
(
⟨𝜃𝑡 , 𝑧 (𝑝)𝑡 ⟩, ⟨𝜃𝑡 , 𝑧

(𝑜)
𝑡 ⟩

)
is the experts’ utility vector at slot 𝑡 . We then have the following

result for the regret of the actual mixed action [45, Thm. 3]:

𝑅𝑇 {𝑧}𝑇 = ⟨Θ𝑇 , 𝑧
★⟩ −

𝑇∑︁
𝑡=1

⟨𝜃𝑡 , 𝑧𝑡 ⟩ ≤ 𝑅
(𝑤)
𝑇
+min

{
𝑅
(𝑝)
𝑇

, 𝑅
(𝑜)
𝑇

}
≤ 2

√
2𝑇 +min

{
𝑅
(𝑝)
𝑇

, 𝑅
(𝑜)
𝑇

}
(20)

Finally, similar to what we have shown in the OFTRL section, it is possible to use Madow’s sampling

to recover integral cache states 𝑧𝑡 ∈ X with the associated bound

E [𝑅𝑇 {𝑧𝑡 }] ≤ 𝑅
(𝑤)
𝑇
+min

{
𝑅
(𝑝)
𝑇

, 𝑅
(𝑜)
𝑇

}
. (21)

The steps of this scheme are summarized in Algorithm 6.

Discussion. The performance advantage of the bound in (21) is that it can be strictly negative,

depending on the optimistic expert’s regret. For example, in case of perfect predictions and non-

fixed cost functions, the min term evaluates to −𝜖𝑇 for some 𝜖 > 0, making the meta-regret negative

for large enough 𝑇 . In all cases, the meta-regret is upper bounded by 𝑂 (
√
𝑇 ) due to the existence

of the robust expert’s regret in the min term, hence we maintain the order-optimal regret for

worst-case scenarios with this approach as well. From a computational load perspective, the most

challenging step is the projection involved in the calculation of the OGD-based policy (pessimistic

expert). However, one can leverage the tailored fast projection proposed in [53] for that operation.

It is also important to stress that this framework allows to combine more than one expert, in order

to either to e.g., include more than one predictor, see discussion also in [44].

We note that since experts-based optimism is a meta-algorithm whose regret is characterized by

that of the experts (i.e., learning algorithms), it can be applied to the other setups of unequal sizes

and bipartite caching. The (possibly 𝛼) meta regret will then be related to that of the (possibly 𝛼)

regret of the optimistic and pessimistic experts. Finally, it is worth noting that the idea of using

the experts model for combining multiple caching policies has been previously proposed in [27],

and evaluated in several cases, e.g., see [57] and reference therein, which however do not consider

predictors nor provide any theoretical analysis (or, bounds) for the performance of this approach.
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(a) OFTRL-Cache (b) OFTPL-Cache (c) OFTRL/OFTPL, 𝜌 =0.75 (d) OFTRL/OFTPL, 𝜌 =0

Fig. 2. Comparison of 𝑅𝑇 /𝑇 for equal-sized files in a single cache and different policies: (a) OFTRL-Cache
vs. FTRL/OGD; (b) OFTPL-Cache vs. FTPL [12]; (c) OFTRL-Cache vs. OFTPL-Cache for good predictions and
in (d) for worst-case predictions. In (c), (d) we plot the 0.95-confidence interval (8 runs).

(a) OFTRL-UneqCache (b) OFTPL-UneqCache (c) OFTRL/OFTPL, 𝜌 =0.75 (d) OFTRL/OFTPL, 𝜌 =0

Fig. 3. Comparing 𝑅 (
1/2)

𝑇
/𝑇 for unequal-sized files, single cache. (a) OFTRL-UneqCache vs. FTRL/OGD; (b)

OFTPL-UneqCache vs. FTPL [12]; (c)-(d) OFTRL-UneqCache vs. OFTPL-UneqCache for good (bad) predictions.

9 EXPERIMENTS
We compare the performance of our algorithms with carefully-selected competitors: the FTRL

policy which generalizes the OGD from [53], and the FTPL method from [12]. We note that these

competitors already showed superior performance to the classical methods of LRU and LFU in

their experiments. The request traces are created using the MovieLens dataset [29] which contains

time-stamped movie ratings. We assume a request is initiated to a CDN in the same chronological

order as their ratings’ timestamps. We consider movies with at least 8 ratings, leading to a library

of 𝑁 =10379 and we set capacity 𝐶 = 150. Each prediction is assumed correct with probability 𝜌 .

Specifically, we generate a one-hot
˜𝜃𝑡 that has 1 at the file to be requested with probability 𝜌 , or at

any other random file with probability 1−𝜌 . We also experiment with probabilistic predictions where
the vector components represent the probabilities of files being requested (details in Appendix

A.7.1). For the experiments with unequal-sized files, we generate the sizes uniformly 𝑠𝑖 ∼ 𝑈 [1, 10]
and set 𝐶 = 500. For the bipartite network, we use the 100k variation of the MovieLens dataset

and consider files with at least 10 ratings, leading to 𝑁 =1152. The network consists of 3 caches

(𝐶 =150) and 4 user locations, the first two connected to caches 1 & 2, and the rest to caches 2 & 3.

Fig. 2 shows the average regret (hit-rate gap to the optimal) growth with time for FTPL [12],

FTRL [53], and their proposed optimistic counterparts. We experiment with 𝜌 = 0, and 𝜌 = 0.75.

If, e.g., the request predictions were based on recommendations, these reflect the cases where the

users do not follow the recommendations (𝜌 = 0), or actually request the recommended movie/file

with probability 75%, (𝜌 = 0.75). In addition, we experiment with a sinusoidal 𝜌 , which varies

between 𝜌 = 0.5 and 𝜌 = 0.9, with a period of 10
3
slots. We observe that optimism accelerates and

improves learning the best files to cache, reaching an average improvement of 104% (for OFTRL)

and 37.1% (for OFTPL) when 𝜌 = 0.75, compared to their "vanilla" counterparts (no predictions).

Moreover, the performance degradation due to inaccurate predictions is almost negligible: ≤ 8.3%

for OFTRL and ≤ 6.6% for OFTPL. We also plot the 0.95-confidence interval of 𝑅𝑇 in Figures 2c

and 2d, where we note the more condensed distribution for OFTRL: 44.3% and 26.1% tighter at
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𝑡 = 10𝑘 when 𝜌 = 0.75, 𝜌 = 0, respectively. This is because the distribution ({𝑥𝑡 }𝑇 iterates in

OFTRL) becomes more concentrated with time; an argument that is not directly applicable to

OFTPL, where the randomness is due to solving a perturbed linear program. In Fig. 3 we evaluate

the algorithms for the unequal sizes case and plot the 1/2-regret. We observe the same pattern

of negligible performance degradation when 𝜌 = 0, while 𝜌 = 0.75 enables an improvement of

35% (for OFTRL) and 18.8% (for OFTPL). We kindly refer the reader to the appendix for additional

experiments for the experts-caching algorithm, the bipartite caching problem, and with probabilistic

predictions of varying qualities.

10 CONCLUSIONS AND FUTUREWORK
In this paper, we presented several provably optimal algorithms that exploit predictions of unknown

quality to improve the regret bounds for important variants of the discrete caching problem, while

maintaining worst-case guarantees. The tackled problems are general (e.g., the Knapsack problem)

and extend beyond caching; and hence the corresponding proposed optimistic algorithms can be

applied to other similar problems. Our approach was based on the unified view of FTRL and FTPL

algorithms as smoothing operations, where we proposed to make such smoothing adaptive to the

predictions’ accuracy. This allowed us to obtain a regret that interpolates between 0 and 𝑂 (
√
𝑇 ).

This work also paves the road for several promising extensions. Given that eviction-only policies

such as LFU or LRU have provably linear worst-case regret [12], we studied policies that can

dynamically prefetch files. Thus, balancing the cache hits with prefetching costs remains to be

tackled. Moreover, we note that static regret algorithms, like ours, can be used as a subroutine in

algorithms with stronger benchmarks, such as the Φ-regret [26] and the minimum regret over all

Finite-State-Predictors [33], and extending the study towards such more-refined benchmarks is

certainly interesting. Finally, considering unequal routing utility (e.g., link-capacitated model [55])

and unequal-sized files for the bipartite network model remains an open question [47].
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A APPENDIX
A.1 Comparative Summary with Related Work
Table 1 shows the performance and complexity trade-offs for the presented algorithms, and compares

them to recent studies of discrete no-regret caching in the literature. The best case refers to the

situation where the request predictions are perfect
˜𝜃𝑡 = 𝜃𝑡 ,∀𝑡 . The worst case refers to the situation

where predictions are furthest from the truth
˜𝜃𝑡 = arg max𝜃 ∥𝜃 − 𝜃𝑡 ∥,∀𝑡 . The previous studies have

the best and worst case columnsmerged as they do not utilize predictions. Furthermore, the works of

[12] and [64] assume and utilize knowledge of the time horizon𝑇 ( [38] uses the standard doubling

trick) and use the Lipschitz constant for the gradient (i.e., request) vector. Thus, they are not

classified as performing Adaptive Learning (Adap. Learn.) as defined by [43], which argues about

the advantages of adaptive algorithms of the sort presented here. While the authors in [12] discuss

the bipartite model, their simpler linear elastic model of utility is different than the one considered

here (see [12, Sec. 3.2]). Hence, we compare to their single cache result. Finally, for algorithm 5, we

make explicit the dependence on weights regret 𝑅 (𝑤)
𝑇

, although it is still 𝑅
(𝑤)
𝑇
≤ 𝑂 (

√
𝑇 ) to clarify

the cause of inferior performance of the experts-based optimism in the worst case compared to

adaptive smoothing, which even appears in the simulations.

Table 1. Online discrete caching policies with adversarial no regret guarantees: a summary of the contributions
and comparison with literature. For the constant 𝛼 , recall that 𝛼 = 1 indicates the regular regret. Otherwise,
we have 𝛼-approximate regret (see equation (17)).

Alg. Model and Conditions Guarantees (𝑅 (𝛼 )
𝑇
≤ ) Comput.

Complex.

Approx.
Const.

𝛼

Adap.
Learn.

Best case Worst case
1 • Single cache • Predictions 0 𝑂 (

√
𝑇 ) 𝑂 (𝑁 2) 1 ✓

2 • Single cache • Predictions 0 𝑂 (poly-log(𝑁 )
√
𝑇 ) 𝑂 (𝑁 ) 1 ✓

3

• Single cache • Predictions
• Unequal sizes 0 𝑂 (

√
𝑇 ) 𝑂 (𝑁 2) 1/2 ✓

4

• Single cache • Predictions
• Unequal sizes 0 𝑂 (poly-log(𝑁 )

√
𝑇 ) 𝑂 (𝑁 ) 1/2 ✓

5 • Bipartite Network • Predictions 0 𝑂 (
√
𝑇 ) 𝑂 (𝑁 2) 1 − 1/𝑒 ✓

6 • Single Cache • Predictions 𝑏 < 0 𝑅
(𝑤)
𝑇
+𝑂 (
√
𝑇 ) 𝑂 (𝑁 ) 1 ✓

[12] • Single cache 𝑂 (poly-log(𝑁 )
√
𝑇 ) 𝑂 (𝑁 ) 1 –

[64] • Single cache 𝑂

(√
𝑇

)
𝑂 (𝑁 ) 1 –

[51] • Bipartite network 𝑂 (poly-log(𝑁 )
√
𝑇 ) 𝑂 (𝑁 ) 1 − 1/𝑒 ✓

[38] • General network 𝑂 (poly-log(𝑁 )
√
𝑇 ) 𝑂 (𝑁 ) 1 − 1/𝑒 –
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A.2 Madow’s Sampling Algorithm
Algorithm 7 describes how we obtain an integral caching vector from the continuous one. We start

by sampling a uniform scalar and then loop for 𝐶 iterations, including in our gradually-built set

exactly one item per iteration. Hence we ensure the resulting set satisfies the capacity constraint.

During an iteration, we include an item if its probability (continuous variable) falls in a carefully

designed range: [𝜋 𝑗−1, 𝜋 𝑗 ]. Hence, each item is included with probability 𝜋 𝑗−1 − 𝜋 𝑗 = 𝑥𝑖 . We refer

the reader to [41] for futher details.

Algorithm 7:Madow’s Sampling (MadowSample)

1 Input: 𝑥 ∈ [0, 1]𝑁 ,
∑
𝑥𝑖∈N ≤ 𝐶 .

2 Output: Random set 𝑆 , s.t |𝑆 | = 𝐶 and Pr(𝑖 ∈ 𝑆) = 𝑥𝑖

3 Sample a uniformly random scalar𝑈 ∈ [0, 1]
4 Define the cumulative probabilities 𝜋0 = 0, 𝜋𝑖 = 𝜋𝑖−1 + 𝑥𝑖 , ∀ 1 ≤ 𝑖 ≤ 𝑁

5 for 𝑖 = 0, 1, . . . ,𝐶 do
6 𝑆 ← 𝑆 ∪

{
𝑗 : 𝜋 𝑗−1 ≤ 𝑈 + 𝑖 < 𝜋 𝑗

}
end

7 return 𝑆

A.3 Dependent Rounding Algorithm (𝐷𝑒𝑝𝑅𝑜𝑢𝑛𝑑)
The dependent rounding algorithm operates sequentially. At each iteration, it picks two continuous

variables and transfers at least one of them into an integer (through the if statements in lines

4 to 8), while adjusting the other one (lines 9 to 12). Hence, we ensure that when the algorithm

terminates, only one item is still fractional. The properties of the resulting vector listed in Lemma

2 are proved in [13, Lem. 2.1].

Algorithm 8: Dependent Rounding (DepRound)
1 Input: 𝑎 ∈ [0, 1]𝑁 , 𝑠 ∈ 𝑅𝑁

+ .

2 Output: 𝑏 satisfying points in lemma-2.

3 while 𝑎 contains two or more fractional elements do
4 Denote the two left most fracitonal elements 𝑎𝑖 and 𝑎 𝑗 .

5 if 0 ≤ 𝑠𝑖 𝑎𝑖 + 𝑠 𝑗 𝑎 𝑗 ≤ min{𝑎𝑖 , 𝑎 𝑗 } then
Set 𝑏𝑖 = 0 with probability 𝑠 𝑗𝑎 𝑗/𝑠𝑖𝑎𝑖+𝑠 𝑗𝑎 𝑗 . With the remaining probability set 𝑏 𝑗 = 0

end
6 if 𝑎𝑖 ≤ 𝑠𝑖 𝑎𝑖 + 𝑠 𝑗 𝑎 𝑗 ≤ 𝑎 𝑗 then

Set 𝑎𝑖 = 1 with probability 𝑎𝑖 . With the remaining probability set 𝑎𝑖 = 0

end
7 if 𝑎 𝑗 ≤ 𝑠𝑖 𝑎𝑖 + 𝑠 𝑗 𝑎 𝑗 ≤ 𝑎𝑖 then

Set 𝑎 𝑗 = 1 with probability 𝑎 𝑗 . With the remaining probability set 𝑎 𝑗 = 0

end
8 if max{𝑎𝑖 , 𝑎 𝑗 } ≤ 𝑠𝑖 𝑎𝑖 + 𝑠 𝑗 𝑎 𝑗 ≤ 𝑎𝑖 + 𝑎 𝑗 then

Set 𝑏𝑖 = 1 with probability 𝑠 𝑗 (1−𝑎 𝑗 )/(𝑠𝑖 (1−𝑎𝑖 ) )+(𝑠 𝑗 (1−𝑎 𝑗 ) ) . With the remaining set 𝑏 𝑗 = 1

end
9 if 𝑏𝑖 = 0 set 𝑏 𝑗 = 𝑠𝑖/𝑠 𝑗 𝑎𝑖 + 𝑎 𝑗

10 if 𝑏𝑖 = 1 set 𝑏 𝑗 = 𝑎 𝑗 − 𝑠𝑖/𝑠 𝑗 (1 − 𝑎𝑖 )
11 if 𝑏 𝑗 = 0 set 𝑏𝑖 = 𝑎𝑖 + 𝑠 𝑗/𝑠𝑖 𝑎 𝑗

12 if 𝑏 𝑗 = 1 set 𝑏𝑖 = 𝑎𝑖 − 𝑠 𝑗/𝑠𝑖 (1 − 𝑎 𝑗 )
end
return 𝑏
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A.4 Proof of Theorem 4
Proof. Since 𝑦𝑡𝑖 ∈ {0, 1} ∀𝑡, 𝑖 , and the sampling in line 8 is uniform, we get E [𝑦𝑡𝑖 ] = 1

2
. Hence

E [𝑦𝑡𝑖 ] ≥
1

2

𝑦𝑡𝑖 . (22)

where we have used that 𝑦𝑡 ∈ [0, 1]𝑁 . Now, from the definition of 1/2-Regret we have:

𝑅
(1/2)
𝑇

=
1

2

𝑇∑︁
𝑡=1

⟨𝜃𝑡 , 𝑦★⟩ − E
[

𝑇∑︁
𝑡=1

⟨𝜃𝑡 , 𝑦𝑡 ⟩
]
(𝑎)
≤ 1

2

(
𝑇∑︁
𝑡=1

⟨𝜃𝑡 , 𝑦★⟩ −
𝑇∑︁
𝑡=1

⟨𝜃𝑡 , 𝑦𝑡 ⟩
)

(𝑏)
= 1.84

√
𝐶

(
ln

𝑁𝑒

𝐶

)
1/4

√√√
𝑇∑︁
𝑡=1

∥𝜃𝑡 − ˜𝜃𝑡 ∥2
1
.

where inequality (𝑎) follows from the 1/2-approximation property of the randomized rounding

algorithm (22); and (𝑏) follows from the result of Theorem
17
3.

□

A.5 Proof of Theorem 5
First, we show that the 1/2-point-wise approximation holds for {𝑥𝑡 }𝑡 . Then, we re-use the result
of Theorem 2. In detail, by Lemma 2, the DepRound subroutine returns 𝑥𝑡 such that E [𝑥𝑡 ] = 𝑥𝑡 .

Then, by the same argument about uniform sampling in the proof of Theorem 4, we have that

E [𝑥𝑡 ] ≥ 1

2
𝑥𝑡 , where 𝑥𝑡 ∈ X𝑠 . We recover our 1/2-approximation guarantee for OFTRL iterates {𝑥𝑡 }𝑡 :

E [𝑥𝑡 ] ≥
1

2

𝑥𝑡 . (23)

By the definition of 1/2-regret guarantee, we have

𝑅
(1/2)
𝑇

=
1

2

𝑇∑︁
𝑡=1

⟨𝜃𝑡 , 𝑥★⟩ − E
[

𝑇∑︁
𝑡=1

⟨𝜃𝑡 , 𝑥𝑡 ⟩
]
(𝑎)
≤ 1

2

( 𝑇∑︁
𝑡=1

⟨𝜃𝑡 , 𝑥★⟩ −
𝑇∑︁
𝑡=1

⟨𝜃𝑡 , 𝑥𝑡 ⟩
) (𝑏)
=
√
𝐶

√√√
𝑇∑︁
𝑡=1

∥𝜃𝑡 − ˜𝜃𝑡 ∥2
2
.

where inequality (𝑎) follows from the 1/2-approximation property of the randomized rounding

algorithm (23); and (𝑏) follows from the result of Theorem 2. Although that theorem states the

bound for the regret of the integral decisions {𝑥𝑡 }𝑡 , we have seen in its proof that the bound is

essentially the same for the continuous actions.

A.6 Proof of Theorem 6
We start from the result of [44, Thm. 1] (or its earlier version from [45]), which provides guarantees

for the regret of the continuous variables 𝑥 . For the moment, assume that we have the following

point-wise approximation for the decision variables E[ ˆ𝑘] = 𝑘 , E [𝑢] ≥ (1 − 1/𝑒)𝑢, and that the

capacity constraints are respected. Then, due to the linearity of the objective function 𝑓𝑡 (·), we get

17
Theorem 3 operates on integral decisions 𝑦𝑡 . Nonetheless, even if we allow 𝑦★, 𝑦𝑡 ∈ conv(X) , they are still integral due

to the linear program in line 6 of Algorithm 2 ({0, 1} decision variables with non-negative coefficients).
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that our 𝛼-regret (with 𝛼 = 1 − 1/𝑒) is:

𝑅
(1−1/𝑒)
𝑇

= (1 − 1

𝑒
)

𝑇∑︁
𝑡=1

⟨𝜃𝑡 , 𝑥★⟩ − E
𝑇∑︁
𝑡=1

⟨𝜃𝑡 , 𝑥𝑡 ⟩
(𝑎)
≤ 1 − 1

𝑒

( 𝑇∑︁
𝑡=1

⟨𝜃𝑡 , 𝑥★⟩ −
𝑇∑︁
𝑡=1

⟨𝜃𝑡 , 𝑥𝑡 ⟩
)

(𝑏)
= (2 − 2

𝑒
)
√︁

1 + 𝐽𝐶

√√√
𝑇∑︁
𝑡=1

∥𝜃𝑡 − ˜𝜃𝑡 ∥2
2
.

where inequality (𝑎) follows from the (1− 1/𝑒)-approximation property of the randomized rounding

algorithm; and (𝑏) follows from the result of Theorem [44, Thm. 1].

Now, to show that E[ ˆ𝑘] = 𝑘 , we follow the same argument in the proof of Theorem 2. Namely,

due to Madow’s sampling, each file is included with probability
ˆ𝑘 , and at most 𝐶 𝑗 files are included

at each cache. Hence, E
[
𝑘𝑛𝑗

]
= ˆ𝑘𝑛𝑗 ,∀𝑛, 𝑗 . Regarding the point-wise approximation for 𝑢, we define

the set J 𝑖
of caches connected to user 𝑖:

J 𝑖 =
{
𝑗 ∈ J

�� 𝑑𝑖 𝑗 = 1

}
.

Then, we have

E
[
𝑢𝑛𝑖 𝑗

] (𝑎)
= Pr[𝑢𝑛𝑖 𝑗 = 1] (𝑏)= Pr[∨𝑗 ∈J𝑖𝑘𝑛𝑗 = 1] (𝑐)= 1 −

∏
𝑗 ∈J𝑖

(
1 − ˆ𝑘𝑛𝑗

)
(𝑑)
≥ 1 − 𝑒−

∑
𝑗∈J𝑖

ˆ𝑘𝑛𝑗
(𝑒)
≥ 1 − 𝑒−�̂�𝑛𝑖 𝑗

(𝑓 )
≥

(
1 − 1

𝑒

)
𝑢𝑛𝑖 𝑗 .

Where in the above chain of inequalities, (𝑎) follows from 𝑢𝑛𝑖 𝑗 being binary variable; (𝑏) by the

construction of the algorithm (step 8); and (𝑐) from the independent rounding for each cache.

Also, inequality (𝑑) follows from from 𝑒𝑥 ≥ 1 + 𝑥,∀𝑥 ∈ R; (𝑒) from the relaxed version of the

caching/routing constraint of P2, and finally (𝑓 ) from the concavity of 1 − 𝑒−𝑥 and the domain of

𝑢𝑛𝑖 𝑗 being restricted to [0, 1].

A.7 Additional Simulations
A.7.1 Probabilistic Predictions. Let us first demonstrate, with a simple example, that using proba-

bilistic predictions is beneficial for the performance of optimistic algorithms. The regret bound

of the proposed algorithms depend on the terms ∥𝜃𝑡 − ˜𝜃𝑡 ∥, ∀𝑡 . Now, consider a prediction ˜𝜃𝑡 that

places 𝜖 probability mass on the correct file, and the remaining uniformly over the rest of the files

in the library. Then, we get:

∥𝜃𝑡 − ˜𝜃𝑡 ∥2 ≈ 1 − 𝜖, since

(1 − 𝜖)2
(𝑁 − 1) ≈ 0,

compared to a mis-prediction (or, mistaken) one-hot
˜𝜃𝑡 which will have ∥𝜃𝑡 − ˜𝜃𝑡 ∥2 =

√
2. Using the

ℓ1 norm, a one-hot mistake costs 2 compared to 2− 2𝜖 for the probabilistic one. We stress again that

all the results presented in this work hold both for probabilistic and for deterministic predictions.

The former can be taken directly from the output of a forecasting model, while one can create the

latter by simply using the highest-probability request.

We continue by presenting experimental results for a probabilistic prediction model with varying

accuracy. In detail, in Fig. 4 we measure the regret of the proposed OFTRL and OFTPL policies after

5𝑘 time steps (i.e., file request) using the well-known YouTube request trace [74] with 𝑁 = 10
4
and

𝐶 = 150. 𝑅5𝑘 is measured using prediction vectors with varying density that is placed on the file to



28 Naram Mhaisen et al.

Fig. 4. Regret with varying probability mass placed on the correct file in the prediction vector.

Fig. 5. Average regret of experts-based
optimism.

Fig. 6. Average OFTRL hit-rate for
cache network.

be requested. Namely, if at step 𝑡 , the requested file is 𝑛, we feed the optimistic algorithms with a

prediction vector:

˜𝜃 with:
˜𝜃 𝑡𝑛 = 𝜁 and

˜𝜃 𝑡𝑛′ = (1 − 𝜁 )/(𝑁 − 1), ∀𝑛′ ≠ 𝑛.

That is, the prediction vector has 𝜁 probability placed on the file to be requested, and the remaining

(1 − 𝜁 ) uniformly distributed across the remaining files. We note that when the prediction vector is

almost uniform (i.e.,
˜𝜃 contains no useful information), the optimistic versions nearly match the

non optimistic ones.

We can see that at 𝜁 = 0.1, both OFTRL and OFTPL already start outperforming their non-

optimistic counterparts, by 9.8% and 1.4%, respectively. Also, they outperform the best-in-hindsight

benchmark 𝑥★ when the accuracy becomes reasonably high (𝜁 ≥ 0.8). Lastly, we see that OFTRL

has a performance advantage of up to 59.6% compared to OFTPL, when fed the same predictions,

at the expense of its additional computation complexity.

A.7.2 Algorithms 5 and 6. Fig. 5 plots the regret for the expert-based Algorithm 6. Note that the 𝑅𝑇
can reach negative values, i.e., outperform better the benchmark, when 𝜌 = 0.5. This is aligned with

the bound in (21) and hints to the fact that stronger benchmarks can be used for this algorithm.

However, it performs worse than the regularization-based optimism in the case where 𝜌 = 0,

achieving regret 𝑅𝑇 = 0.113 at time 𝑇 = 10𝑘 compared to 𝑅𝑇 = 0.075 (OFTRL). Lastly, the bipartite

utility is shown in Fig. 6, the hit-ratio of OFTRL is approximately 0.49 when 𝜌 = 0.5. Expectantly,

the performance drops when 𝜌 = 0, but steadily increases from 0.30 at 𝑇 = 500, to 0.44 at 𝑇 = 10𝑘 .
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