
1.  Introduction
Fast magnetic reconnection is an explosive plasma process, bringing the topological reconfiguration of 
magnetic fields, plasma heating, and acceleration in laboratory and space plasmas (e.g., Gonzalez & Park-
er, 2016; Yamada et al., 2010). In general, this is a time-dependent multi-scale three-dimensional process 
(e.g., Bhattacharjee, 2004; Dorfman et al., 2013; Frank, 1999; Xiao et al., 2006), but sometimes reconnection 
may demonstrate a symmetric configuration and be quasi-stationary. Particularly, at the day side of the 
Earth's magnetopause, quasi-stationary reconnection has been detected in-situ on several occasions (e.g., 
Gosling et al., 1982; Phan et al., 2004; Retinò et al., 2005) as well as anti-parallel reconnection (Cassak & 
Fuselier, 2016, and references therein). The latter is more common in the Earth's magnetotail (Paschmann 
et al., 2013). It is also important that in many cases reconnection can be studied analytically in the frame 
of two-dimensional models for the considerable length of the reconnection X-line. Configurations with 
short X-lines demonstrate spreading in the X-line direction (see, e.g., Li et al., 2020, and references there-
in) in course of time. At last, both at the dayside magnetopause and in the magnetotail (e.g., Cassak & 
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configuration in the magnetic reconnection electron diffusion region (EDR). The problem is addressed 
in the frame of electron magnetohydrodynamics with kept electron inertia term. We introduce the 
new reconstruction model independent of divergence of the electron pressure tensor and reconnection 
electric field. The model is tested on the magnetotail reconnection event of July 11, 2017 observed by 
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from the two-dimensional time-independent model adopted in our study. We suggest also a new technique 
to estimate the guide field, implementing the reconstruction of magnetic potential of the in-plane 
magnetic field and relying on symmetric properties of magnetic reconnection.

Plain Language Summary  Magnetic reconnection is a fundamental plasma process 
responsible for the magnetic field reconfiguration and transforming magnetic energy to kinetic and 
thermal energy of plasma. In the Earth's magnetosphere, the magnetospheric conditions are monitored 
by several spacecraft missions. Among them, the NASA Magnetospheric Multiscale (MMS) mission is 
designed for exploring the process of reconnection. On July 11, 2017 at about 22:34 UT MMS was located 
in the magnetotail at a very fortunate position, intersecting the reconnection region in its very central part, 
the so-called electron diffusion region (EDR).

Since MMS consists of four identical spacecraft, MMS provides an excellent tool for testing analytical 
models of reconnection. Taking the data of one probe as the boundary condition for the analytical model, 
one can compare the results of calculations with other probes data. In the present paper we suggest a new 
model of EDR, and compare it to the existing one using the data of 2017/07/11 event. This comparison has 
shown that the electron inertia term plays an important role in the EDR physics; the proper handling of 
this term allows considerable improvement of the EDR reconstruction accuracy.
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Fuselier, 2016; Hesse & Cassak, 2020), rare particle collisions bring forth the concept of collisionless recon-
nection (e.g., Birn et al., 2001; Øieroset et al., 2001; Scudder, 2016). Thus, in respect to magnetosheric ap-
plications, the simplest analytical framework is provided by the model of fast two-dimensional steady-state 
collisionless reconnection (Birn et al., 2001), which is adopted in the current paper. To address such a prob-
lem, it is convenient to choose the coordinate system shown in Figure 1, where the origin coincides with 
the X-point (the projection of the reconnection X-line onto the reconnection plane), the x axis is directed 
along the current sheet (CS), the y axis is directed along the X-line, and the z axis is perpendicular to the CS.

Even in such a simple statement, the problem stays rather complicated for being substantially multi-scaled 
(e.g., Hesse et al., 2011; Hesse & Winske, 1998; Kuznetsova et al., 2007). Indeed, in ideal magnetohydrody-
namics (MHD), magnetic field lines are frozen into the plasma; hence, no topological changes are possible. 
In non-resistive plasma the Hall effect demagnetizes (Sonnerup, 1979) ions at the scale of the ion inertial 
length, di. Within this so-called ion diffusion region (IDR), the magnetic field stays frozen in the electron 
fluid. In the interior of this Hall MHD (HMHD) domain, the relation between amplitudes of the ion and 
electron current densities, |ji| ≪ |je|, allows the neglect of the ion current, yielding the commonly used elec-
tron MHD (EMHD) approximation (e.g., Biskamp, 2000; Bulanov et al., 1992; Ji et al., 2014). Approved to be 
appropriate for plasmas with high and moderate values of the β parameter (Biskamp et al., 1997), where β is 
the ratio of the gas and magnetic pressures, the condition |ji| ≪ |je| is found to fulfill not in immediate vicin-
ity of the X-point only, but at bigger distances also, where β drops down to ∼0.1 (Korovinskiy et al., 2020). At 
last, in the very central part of the reconnection region, the EDR, electrons are also demagnetized due to the 
electron pressure anisotropy and electron inertia at the scale of the electron inertial length, de (e.g., Hesse 
et al., 2011; Paschmann et al., 2013). EDR, in turn, is splitting in two parts, internal and external (Daughton 
et al., 2006; Karimabadi et al., 2007; Shay et al., 2007), carrying electron currents in the out-of-plane and 
longitudinal directions, respectively. The described multi-scaled structure is sketched in Figure 1.

Considering two-dimensional steady-state reconnection and adopting EMHD approximation, the problem 
is reduced to calculation of the scalar magnetic potential of the in-plane magnetic field, A (x, z), and eval-
uation of the out-of-plane magnetic component, By(x, z), appearing to be a flux function for the in-plane 
electron flow. In incompressible plasma with neglected electron inertia equations for A and By decouple, 
the former turns to the Grad—Shafranov (GSH) equation (Grad & Rubin, 1958; Shafranov, 1966), and the 
latter is solved when the solution for A is found (Korovinskiy et al., 2008; Sonnerup et al., 2016; Uzdensky 
& Kulsrud, 2006). In view of the reconstruction problem, one faces here two difficulties, where the first one 
is pure mathematical and the second one is physical.

The mathematical problem resides in the fact that GSH equation with boundary conditions specified 
at an unclosed curve (e.g., the satellite trajectory) represents the ill-posed problem; hence, the solution 
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Figure 1.  Sketch of the coordinate system XYZ and magnetic configuration of the reconnection region. Numbers 1, 
2, 3 mark MHD, HMHD, and EMHD domains, respectively, 4 and 5 – external and internal EDR. Blue arrowed curves 
figure the magnetic field lines. Green and red arrows show the plasma flow directions in the inflow and outflow 
regions, respectively.
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is either not unique or not stable, or both. Solution of such problems 
should imply some regularization procedure, suppressing exponential-
ly growing non-physical oscillations, analogous to those of Hadamard's 
example (Hadamard,  1923). Two different regularization procedures, 
suggested by now for this particular problem, are: (a) numerical filter-
ing at each integration step (Sonnerup et al., 2016), and (b) the bound-
ary layer approximation (BLA), neglecting the term ∂2 A/∂x2 (Korovin-
skiy et al., 2008), grounded on the reconnection rate smallness (Cassak 
et  al.,  2017; Comisso & Bhattacharjee,  2016) causing the pronounced 
configuration stretching. The comparison of these two regularization 
techniques revealed their proximity in terms of the reconstruction accu-
racy (Korovinskiy et al., 2020). In the current paper we adopt BLA for its 
relative simplicity.

The physical problem is related to electron kinetic effects, making iso-
tropic fluid approximation inappropriate within EDR. Namely, the 
out-of-plane magnetic field occurs to be dependent on the out-of-plane 
component of divergence of the electron pressure tensor,  ( ˆ )e yP  (Kor-
ovinskiy et al., 2020; Sonnerup et al., 2016). Though some analytical ap-
proximations were suggested (Divin et al., 2012, 2016; Hesse et al., 1999), 
in general, analytical expression for this term is unknown. In view of 
reconstruction problem, the approximation of Hesse et  al.  (1999), de-
veloped for the case of uniform electron number density, ne, is the most 
appropriate. The successful reconstruction of By, resting upon this ap-
proximation, is performed in several works (Hasegawa et al., 2017, 2019; 
Sonnerup et al., 2016). The major disadvantage of this approach is the 
smallness of the applicability domain. Namely, comparing the Hesse 
et  al.  (1999) approximation for  ( ˆ )e yP  with the genuine value of this 
term, evaluated by means of particle-in-cell (PIC) simulations, the size of 
the applicability domain is found to be approximately two times smaller 
than the size of the number density uniformity region (see Figure 2 in 
Korovinskiy et al. 2020, and discussion after Equation 53, ibid).

At the same time, the calculation of By from the Ohm's law, implying the 
term  ( ˆ )e yP , stays a single option only until electron inertia is neglected. 
Keeping electron inertia and assuming ne = const, one arrives at the sys-
tem of two coupled Poisson's equations for A and By, which do not contain 
the term  ( ˆ )e yP  (see Equation 12, 13 in Sonnerup et al. (2016) or Equa-
tion 51, 52 in Korovinskiy et al. (2020)). In the present paper, we examine 
the new reconstruction technique, based on the solution of this system, 
by reconstructing the configuration of EDR, encountered by MMS on 
July 11, 2017 – an event, reported by Torbert et  al.  (2018) and consid-
ered in a number of studies (e.g., Denton et al., 2021; Egedal et al., 2019; 
Genestreti et  al.,  2018; Hasegawa et  al.,  2019; Nakamura et  al.,  2019). 
Namely, we address three reconstruction models, two of which consider 
the electron inertial term contribution, and the third one, implementing 
the Hesse et al. (1999) approximation for  ( ˆ )e yP , coincides mainly with 
the model, adopted in Sonnerup et al. (2016) and Hasegawa et al. (2017); 
Hasegawa et al. (2019) studies. Since the event of 2017/07/11 is well-stud-
ied by other authors, we focus on the models comparison rather than on 
the case study. Alongside with these three models, the new technique for 
the guide field estimate, relying on the magnetic potential reconstruction, 
is also discussed.
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Figure 2.  Normalized values of the CS parameters, as measured by MMS 
probes. Panel (a): electric field Ey versus time, starting from 22:34:01.70 
UT. Dashed green curve shows MMS3 data increased for 1.8 mV/m, and 
horizontal magenta lines draw the values ɛ = {0.062, 0.089}, corresponding 
to reconnection electric field of {2.8, 4.0} mV/m, respectively. Panels 
(b), (c), and (d) show electron number density ne, temperature Te, and 
velocity Vey, respectively, versus magnetic potential A; at each curve 
maximum value of A corresponds to the last moment 22:34:04.92 UT of 
the reconstruction interval. Subscript y marks the M-component in the co-
moving frame LMN′. The color code is specified by the legend in panel (c).
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The paper is organized as follows: in Section 2 we state the reconstruction problem and formulate three 
reconstruction models, in Section 3 we investigate the current sheet conditions and present the models' 
functions; reconstruction results are exhibited in Section 4; summary, discussion and conclusions are given 
in Section 5.

2.  The Problem Formulation
We examine the problem of steady magnetic reconnection in collisionless non-resistive compressible plas-
ma in the vicinity of the infinite X-line, at length scale of the electron inertial length. Adopting the reference 
system, sketched at Figure 1, we assume that for any magnetoplasma quantity U the equality ∂U/∂y = 0 
is fulfilled. Considering the plasma, consisting of two particle species, protons and electrons, obeying the 
quasi-neutrality condition, and adopting an assumption that the proton velocity is negligible as compared 
to the electron one, we address the reconstruction problem in the frame of single-fluid EMHD, disregarding 
the problem of the proton motion.

2.1.  EMHD Equations

The problem statement includes time-independent equations of the electron fluid motion, Maxwell's 
equations, and the mass conservation law, which we cast to dimensionless form. Contrary to Korovinskiy 
et al. (2020), where two-fluid MHD formalism is used, in this paper we use a single-fluid model. Hence, all 
equations in Section II of Korovinskiy et al. (2020) remain the same, except for the equations of the proton 
motion and state, which are not considered here. The set of normalization constants is also changed from 
the proton scale to the electron one: e, me, de, t*, B0, n0, VAe, EAe, p0, 0T , where e is the elementary charge, me 

is the electron mass; de = c/ωe is the electron inertial length; c is the speed of light;   2
0 0/ ( )e en e m  is 

the electron plasma frequency, where ɛ0 is the permittivity of free space; * 1
et  is the time scale; magnetic 

field B0 ∼  max |B|; electron number density n0 ∼ < ne >;  0 0 0/Ae eV B n m  and EAe = B0VAe are the electron 
Alfvén velocity and electric field, respectively, where μ0 is the permeability of free space;  2

0 0 0/p B  and 
T0 = p0/n0 are the normalization constants for pressure and temperature (in energetic units), respectively.

Omitting all details, addressed in Section II of Korovinskiy et al. (2020), where the transition to the electron 
scale units is performed by the substitution μ = 1, the problem is formulated as follows.

First, Ampère's law reveals that stream function of the in-plane electron flux (nVex, nVez) is represented by 
the out-of-plane magnetic field component By(x, z),

    [ ] ,e y yn BV e� (1)

where ey is the unit vector of the out-of-plane direction. Here and below, the symbol ⊥ stands for the in-
plane component of any three-dimensional vector.

Second, we introduce the magnetic vector-potential A = (0, A (x, z), 0) of the in-plane magnetic field, B⊥, the 
scalar potential φ(x, z) of the in-plane electric field, E⊥, and effective electric potential, φ*,

   [ ] ,yAB e� (2)

   ,E� (3)

     * 2
2

1 | | .
2e yT B

n
� (4)

Since A has only one non-zero component, in the following we address it as a scalar function. Definition 
(4) is based on the following model for the electron pressure tensor ( êP ) divergence, adopted in studies of 
Sonnerup et al. (2016) and Korovinskiy et al. (2020),
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      ( ) .ˆ ˆ
e e e y yP p P e� (5)

The second term in the right-hand side of Equation 5 describes the electron pressure anisotropy, broadening 
the problem beyond the isotropic fluid approximation, since in a two-dimensional model ∂pe/∂y = 0, where 
pe = nTe is the scalar electron pressure.

Third, we introduce the notation ɛ* for the out-of-plane component of the electron convective electric field,




  


  
* (1 / )( )

,
1 ( / )

ê y

ey

n P
V A

� (6)

where ɛ = Ey/EAe is the normalized value of the out-of-plane electric field. According to Faraday's law, Ey has 
to be constant in a steady-state two-dimensional configuration. Under the proper choice of the normaliza-
tion constants, the reconnection rate is measured as R0 = Ey/EA (Schindler, 2007), where  /A e p AeE m m E .

Magnetic potential obeys Poisson's equation, obtained by substituting (2) to Ampère's law,

 Δ ,eyA nV� (7)

where Δ⊥ stands for the in-plane Laplace operator, and the y-component of the Ohm's law is

    *( ) .yB nB� (8)

Using definition (2), Equation 8 takes the form of the Jakobian of the variables transformation (x, z) → (A, 
By),







*( , )
.

( , )
yA B

n
x z

� (9)

Since ɛ* may turn to zero or infinity at the manifold of measure zero only (according to Equation 6), outside 
that manifold the quantities A and By may be considered as a pair of independent variables, specifying the 
new coordinate system. The partial derivatives on A and By are expressed as follows,


 


  

 *
1 ( ),eA

V� (10)

  


  
 *

1 ( ).
yB n

B� (11)

With Equation 10 and 11, the in-plane component of the Ohm's law (which is nothing else but the equation 
of motion for electrons) yields two equations for the effective electric potential,

 
 

 

*
ln( ),ey eV T n

A A
� (12)

 
  

 

* 1 ln( ) ( , ),y e y
y y

B T n R A B
B n B� (13)

where we introduce the notation

        2
1( , ) ( ln( ) ) Δ .y y yR A B n B B
n

� (14)

The quantity R describes the contribution of the electron inertia, since with Equations 1 and 9 it is rear-
ranged as
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
     

       
2

*
1 ( ) ( / 2) .e e eR V

n
B V V� (15)

Representation (15) shows that the electron pressure anisotropy is also contributing to the quantity R via 
the term ɛ*.

2.2.  Reconstruction Models

Assuming uniform number density, differentiating (12) for By and (13) for A, and equating the results, we 
derive

  
  

  2
1 ,ey

y

V R Q
B A An

� (16)

where we introduce the notation Q (A, By) = Δ⊥By. The reconstruction implies the solution of system (7, 8) 
or (7, 16) with boundary conditions (BC) specified at a single unclosed curve (satellite trajectory). In the 
current paper we consider three models for the given problem.

Model 1. Under the assumption Vey = Vey(A), Equation 16 yields Q = Q (By). Hence we arrive at two GSH 
equations:

 Δ ( ),eyA nV A� (17)

 Δ ( ).y yB Q B� (18)

According to Equation 15, neglect of the inertial term in the equation of electron motion corresponds to the 
formal substitution Q = 0. We use the term “formal” because the contribution of the inertial term is found to 
be non-vanishing both in PIC-simulations data (Korovinskiy et al., 2020) and in in-situ data set studied here. 
Electron inertia was neglected in a number of previous studies, such as (Hasegawa et al., 2017, 2019; Kor-
ovinskiy et al., 2008, 2011, 2020; Semenov et al., 2009; Sonnerup et al., 2016; Uzdensky & Kulsrud, 2006). 
However, Equation 18 with zero right part (i.e., the Laplace equation) has not been applied for calculation 
of By.

Model 2. In this model, we release the condition Vey = Vey(A) and consider the Taylor series for Vey (A, By) 
on By. Assuming symmetrical configuration, the symmetry conditions require Vey to be even function on By. 
Hence we have   2

0 ( ) 0.5 ( )ey yV v A f A B . When symmetry is corrupted for any reason, the odd terms 
contribute to the Taylor series as well. For example, when guide field (the uniform part of the out-of-plane 
magnetic field) is non-zero, the out-of-plane magnetic field can be written as

   ( , ),y g yB B B x z� (19)

where Bg is the guide field, and yB  is the non-uniform Hall magnetic field. Assuming the pronounced asym-
metry (Bg is large as compared to 

yB ), we omit all terms of the Taylor series except for the two first ones,

  
0( ) ( ) ,ey yV V A F A B� (20)

where   2
0 0( ) ( ) 0.5 ( )gV A v A B f A  and F(A) = Bgf(A). Substituting this linear approximation for Vey to Equa-

tion 16 and integrating on A, we derive the representation for   
1 2( , ) ( ) ( )y yQ A B q A q B , where q1 = −n2 

∫FdA and 
2 ( )yq B  is an arbitrary function (the constant of integration). Model 1 corresponds to the case |q2| 

≫ |q1|. In Model 2 we adopt the opposite assumption. By neglecting 
2 ( )yq B , we arrive at the system of two 

Poisson's equations,

   
0

1Δ ( ) ,y
dQA nV A B

n dA
� (21)
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 Δ ( ).yB Q A� (22)

Remind that system (21, 22) is applied only for those configurations, where the symmetry of By is signifi-
cantly corrupted. Evidently, the sign tilde in the left-hand side of Equation 22 may be omitted. In the follow-
ing we omit tilde any time when it is not confusing.

Model  3. The third approach addresses system (7, 8) in the same manner, as it was made in studies of 
Sonnerup et al. (2016) and Hasegawa et al. (2017); Hasegawa et al. (2019), with two minor modifications. 
Namely, we make use of the Hesse et al. (1999) approximation for the term  ( ˆ )e yP . In normalized units 
(me = 1, e = 1) it reads

 
          

221 ( ) .
2

ˆ yeeze ex
e y

BTVT VP
n x z n x z

� (23)

Substituting (23) to (6) and (6) to (8) we derive the equation for By,


                            

2 1 1 ,
2

y ey y y

e

B V B BA A n
x z A x z z xT

� (24)

where the term ∂Vey/∂A is responsible for the electron inertia (see Equation 10). Without this term, Equa-
tion 24 is solved in (Hasegawa et al., 2017, 2019; Sonnerup et al., 2016) with Te = const. In our study, Equa-
tion 24 is addressed under the assumption Te = Te(A). The system is closed by the GSH Equation 17 for A.

Thus, Model 1 and 3 are stated by two decoupled equations, where Equation 17 for A is the same; in Model 
2 equations for A and By are coupled, where the former attains small (as we will see below) extra term. 
Equations for By, at contrary, are substantially different in all three models. In Model 3 By is calculated from 
the Ohm's law with using approximation (23), neglecting electron inertia, and relying on the linear approx-
imation for the êP  components (Kuznetsova et al., 1998) and the assumption of the nongyrotropic electric 
field constancy inside EDR (Kuznetsova et al., 2000). Models 1 and 2 address the Ohm's law without extra 
simplifying assumptions (except for the assumption n = const common for all three models), differing from 
each other in the specific type of Vey, handled as a function of one (Vey(A) in Model 1) or two (Vey (A, By) in 
Model 2) variables.

3.  Reconstruction Setup
3.1.  CS Condition and the Models' Functions

We consider magnetotail reconnection event, seen by MMS3 spacecraft on July 11, 2017 at around 22:34 
UT (Torbert et al., 2018), and studied in the paper of Hasegawa et al. (2019), providing us a reference point. 
The orbit of MMS3, located at (−21.6, 4.2, 3.6) RE, where RE stands for the Earth radius, in geocentric solar 
ecliptic coordinate system (GSE), can be found in Figure 1J of Torbert et al. (2018), and event overview is 
presented in Figure 1 of Hasegawa et al. (2019). We initiate the reconstruction procedure by implementing 
the results derived by Hasegawa et al. (2019). Namely, satellite data are transformed to the same optimized 
LMN coordinate system with eL = (0.9605, −0.1735, −0.2177), eM = (0.0985, 0.9432, −0.3272), eN = (0.2604, 
0.2832, 0.9230) in GSE, after that all plasma quantities are recalculated to the system LMN′, moving with 
the velocity V0 = (−231.70, −176.75, −59.20) km/s as respect to LMN, estimated as the structure velocity 
in Hasegawa et al. (2019). Magnetic configuration is reconstructed with boundary conditions specified by 
MMS3 data (except for the boundary condition for function Q, specified by an averaged value, defined below). 
The reconstruction time interval is extended from 22:34:01.70–22:34:03.10 UT in Hasegawa et al. (2019) to 
22:34:01.70–22:34:04.92 in this paper. All computations are performed in normalized units. Apart from the 
electron charge and mass, the set of normalization constants includes B0 = 3 nT and n0 = 0.035 cm−3. Other 
constants, constrained by B0 and n0, are de = 28.4 km, A0 = 85.2 nT ⋅ km, T0 = 1.28 keV, VAe = 15 ⋅ 103 km/s, 
EAe = 45 mV/m, p0 = 7.16 pPa, and t* = 1.9 ms. The normalization constants for number density and mag-
netic field are chosen for n ≈ 1 and max |Vey| ∼ 1 in normalized units.

KOROVINSKIY ET AL.

10.1029/2020JA029045

7 of 19



Journal of Geophysical Research: Space Physics

The applicability of the general approach of our study is characterized by the CS conditions, presented in 
Figure 2, where normalized values of the out-of-plane electric field, electron number density, temperature, 
and out-of-plane velocity, registered by four MMS probes, are plotted. Ey is plotted versus time, measured 
from the initial moment t0 = 22:34:01.70 UT. Other quantities are plotted versus magnetic potential, cal-
culated in the co-moving frame LMN′ at each spacecraft trajectory Sk as    ( ) ( )k k S z x kkA S B dx B dz a , 
where k is the spacecraft number, and integration constant ak is chosen to provide a peak value of Vey,k (Ak) 
at Ak = 0. For simplicity, here and below we denote longitudinal components by x, out-of-plane components 
by y, and normal components by z. In Figure 2 and throughout the paper, the MMS data and corresponding 
reconstruction results are shown by black color for MMS1, by red for MMS2, by green for MMS3, and by 
blue for MMS4.
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Figure 3.  The functions, utilized by reconstruction models (in LMN′): measured (green, dotted), interpolated (blue, solid) and extrapolated (red, dashed) 
values. In the left column, magnetic potential A, Vey, 

yB  and Q = Δ⊥By are plotted versus time in panels (a)–(d), respectively. Right column depicts Vey(A), Te(A), 
Q(A) and ( )yQ B  in panels (e)–(h), respectively. Black solid curve in panel (e) shows extrapolated function V0(A) of Equation 20.
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Figure 2a shows that the condition Ey = const is approximately fulfilled at 
the loci of all MMS probes, except for MMS3. The value of Ey as observed 
by MMS3 exhibits an offset of about − 1.8 mV/m (see green dashed curve 
in Figure  2a plotting the value of Ey with the corrected offset). In ad-
dition to this offset, Ey demonstrates significant oscillations at all MMS 
spacecraft, so that the condition Ey = const is fulfilled with an accuracy 
not exceeding 30%. It means that the configuration is not exactly two-di-
mensional or non-stationary, or both. The offset of Ey value observed by 
MMS3 implies also that the M axis of the coordinate system LMN′ does 
not exactly match the direction of the X-line (Genestreti et  al.,  2018). 
Hence, Ey is contributed by the Hall electric field (e.g., Drake et al., 2008).

Figures 2b and 2c demonstrate that the condition ne = const is fulfilled 
to high accuracy (the linear regression coefficient is ≈ 0.03), and the elec-
tron temperature is mainly supporting the assumption Te = Te(A). Since 
the pair {A, By} compose the system of independent variables, non-iden-
tity of the profiles of any magnetoplasma quantity U(A), evaluated by 
different probes' data, indicates the dependence of this quantity on the 
second variable, By. Particularly, according to Figure 2d, the out-of-plane 
velocity demonstrates the behavior, which can be described by the model 
equation Vey = V0(A) + δ, where V0 is the main term and δ is some small, 
but non-vanishing extra term that depends on By (and, perhaps, on A). 
Despite the confusing oscillations, the contribution of this term is clearly 
recognized by comparison of the red and green curves, demonstrating the 
inversion of local minima and maxima at A ≈ {0.4, 1.8, 3}. It is seen also 
that close to the left boundary of the figure (the initial period), two-val-
ued function Vey(A) is detected at all probes, which goes beyond the mod-
el concept.

The models' functions are shown in Figure  3, where measured values 
are plotted by green dots, polynomial interpolations are plotted in blue, 
and extrapolated functions, used for reconstruction, are plotted by red 
color (except for V0(A) shown by black curve in the top right panel). The 
function Q = Δ⊥By = n (∂Vex/∂z − ∂Vez/∂x) is estimated as ΣQ3k/3, where 
k = {1, 2, 4} and Q3k is calculated by data of the third and k-th spacecraft. 
All other boundary values are provided by MMS3 data. The number den-
sity is calculated as zero order polynomial fit of ne, n = 1.016. Panels (c) 
and (h) of Figure 3 show  ( )yB t  and ( )yQ B , respectively, where yB  of Equa-
tion 19 is evaluated with guide field Bg = 0.45 nT (see below).

It is seen (Figure 3a) that at t ≈ 0.43 s magnetic potential exhibits mini-
mum value ≈ −0.5, at smaller values of t the function Vey(A) (Figure 3e) 
switches to another branch, which cannot be used in reconstruction. This 
means that accurate reconstruction results in the region, where A < − 
0.5, are not expected, because the choice of extrapolating function for Vey 
is rather arbitrary. The same holds for functions Te(A) and Q(A), shown in 
Figures 3f and 3g, respectively. For A > − 0.5 all functions on A, shown in 
panels (e)–(g) by green dots, are relatively well-defined functions. On the 
contrary, values of ( )yQ B , shown by green dots in Figure 3h, demonstrate 
nearly chaotic behavior in the major part of the reconstruction interval 
(see for the cloud of green dots located at   0.1yB , corresponding to in-
terval t > 0.5 in Figure 3c). Comparing well-defined function Q(A) in Fig-
ure 3g with the ill-defined function ( )yQ B  in Figure 3h, one can presume 
the reconstruction Model 2 to be more relevant to the EDR conditions 
than Model 1.
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Figure 5.  Magnetic potential: reconstruction in coordinate system LMNl 
by Equation 17. White lines plot the axes, and oblique colored lines plot 
the trajectories of MMS probes {1, 2, 3, 4} by {black, red, green, blue} colors, 
respectively. BC: MMS3. Magenta curve bounds the region where magnetic 
potential stays within the interval specified by the boundary conditions 
and function Vey(A) is well-defined (see Figure 3e). For better visibility of 
the X-point vicinity, the demonstrated reconstruction interval is reduced 
to 1.46 s.

Figure 4.  Solid curves: magnetic field components as observed by MMS3, 
transformed to co-moving frame LMN′. Dashed curves: polynomial fit of 
magnetic field components in rotated system LMNl, where BM component 
is reduced for the guide field value. Time moments t1 and t2 mark the 
MMS3 crossings of the N and L axis, respectively, in LMNl coordinate 
system.
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Note that none of the quantities, plotted in Figure 3, change after coordi-
nate rotation in the reconnection plane.

3.2.  The Guide Field Estimate

In BLA the accuracy of reconstruction is sensitive to orientation of the 
coordinate system with respect to CS. If one neglects the term ∂2/∂x2 
in the Laplace operator, the minimal error is achieved, when the x axis 
coincides with the direction of minimal variations of the magnetoplas-
ma quantities, and the z axis – with the direction of maximal variations. 
Hence, the optimal coordinate system has to be a local LMN system. 
Identification of this optimal coordinate system may be gained by per-
forming reconstruction of the magnetic potential in LMN′ and estimating 
the value of the required rotation angle. However, the particular event 
considered here demonstrates a remarkable peculiarity. Namely, looking 
at Figure 4a of Hasegawa et al. (2019), one notices that MMS3 trajectory 
crosses EDR in the very close vicinity of the X-point, where the magnet-
ic configuration is nearly symmetrical both in longitudinal and in the 
cross-structure directions. This gives us an opportunity for accurate eval-
uation of the required rotation angle and the guide field value, relying on 
these symmetry properties.

In the symmetric configuration both the normal and the out-of-plane 
components of the magnetic field change sign at the vertical axis. Solid 

curves in Figure 4 plot the magnetic field components observed by MMS3 rotated to co-moving frame LMN′ 
versus time. It is seen that at those moments when BL and BN components change signs, the BM component 
does not. Since in-plane magnetic configuration is nearly symmetrical (in the vicinity of the X-point), this 
means that the guide field is nonzero. Applying the substitution (19), we require that in local coordinate 
system, denoted as LMNl, the components BN and 

MB  change sign at the same moment t1, corresponding to 
the spacecraft crossing of the N axis of LMNl. Apparently, the value of t1 depends on the selected value of Bg. 
This requirement gives the orientation of LMNl, because the rotation angle θ: LMN′ → LMNl is evaluated in 
LMN′ as arctan [BN(t1)/BL (t1)].

Thus, by fixing some value of Bg we specify the moment t1 of crossing the N axis in LMNl. Then, the rota-
tion angle is evaluated and all in-plane components are transformed to this system (see dashed curves in 
Figure 4). Due to the symmetry, the moment t2, when the longitudinal component BL changes sign, cor-
responds to the crossing of the L axis in LMNl. Thus, LMNl is fully defined. Solving Equation 17 in LMNl, 
we evaluate the magnetic potential and in-plane magnetic components. The symmetry condition requires 
in-plane magnetic field to vanish at the coordinates origin, therefore the value of Bg is found by means of 
minimization of BL and BN in the origin. Taking into account the guide field estimate of 0.3–0.5 nT from 
Genestreti et al. (2018) and 0.4 nT from Torbert et al. (2018), we initiated the described procedure by set-
ting the value of the guide field to 0.4 nT. The minimum value of the in-plane magnetic field is achieved 
for Bg = 0.445 ± 0.005 nT, yielding BL (0) = 1.5 ⋅ 10−4 nT and BN(0) = −0.0011 nT (5 ⋅ 10−5 and − 3.8 ⋅ 10−4, 
respectively, in normalized units). Since such precision of the guide field estimate is completely unneces-
sary (for instance, the accuracy of the method may be reduced by non-ideal CS symmetry), we rounded up 
the value of Bg to 0.45 nT (0.15B0). The corresponding solution for magnetic potential, obtained in LMNl 
coordinate system, is shown in Figure 5. The rotation angle θ amounted to 8.58° in anti-clockwise direction.

3.3.  Key Factors Affecting the Reconstruction Performance: Coordinate System, BLA, 
Extrapolation of Vey(A)

Though the coordinate system LMNl provides the best performance of BLA, the oblique trajectory does not 
allow evaluation of the derivative ∂/∂x, needed in Equation 24. Meanwhile, the inclination of the probes' 
trajectories with respect to the horizontal axis amounts to 14.37° in LMN′, and 5.79° only in LMNl. There-
fore, we pass from LMNl to the “satellite coordinate system” (SCS), where probes' trajectories are parallel 
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Figure 6.  Comparison of two regularization techniques for Equation 17 
in SCS: observed values of Bx (solid curves) as compared to the solutions of 
Equation 17 with kept (dotted curves) and omitted (dashed curves) term 
∂2 A/∂x2. The color code is the same to the one of Figure 2. BC: MMS3.
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to the x axis. Even though the rotation angle LMNl → SCS is small, SCS 
is not optimal for BLA, hence the contribution of the term ∂2 A/∂x2 in 
Equation 17 is to be estimated. To this end, Equation 17 is solved in SCS 
with and without this term. The solution with kept derivative implies the 
problem regularization by means of the numerical smoothing at each in-
tegration step, as it was suggested in study of Sonnerup et al. (2016). As 
for the solution of Equation 17 with omitted term ∂2 A/∂x2 (i.e., solution 
in BLA), BLA is the regularization procedure itself. The detailed compar-
ison of these two regularization techniques is provided in Korovinskiy 
et al. (2020). Two solutions of Equation 17 are compared to each other 
and to the in-situ data in terms of the Bx value in Figure 6. Comparing 
the dashed and dotted curves in this figure, we see that the contribution 
of the term ∂2 A/∂x2 is negligible. Moreover, the solution derived in BLA 
demonstrates a slightly better accuracy. Therefore, in the following all 
equations containing the Laplace operator are solved in BLA.

In the major part of the reconstruction region (x > − 2.5) the reconstruct-
ed values demonstrate good qualitative and quantitative agreement with 
the data, exhibiting some systematic error for about 20% downgrade, 
which characterizes the deviation of the real CS conditions from the 
model assumptions. In the leftmost part of the CS (x < − 2.5) the recon-
struction fails. Note that the magnetic potential at the MMS3 trajectory 
reaches a minimum value at x  =  −1.8 (the leftmost coordinate of the 
magenta curve in Figure  5 recalculated from LMNl to SCS); to the left 
of this point the function Vey(A) switches to another branch, while we 
are switching (some time earlier) from the well-defined function to its 
extrapolation (see Figure 3e). Besides that, out-of-plane electric field Ey, 
as observed by MMS3, is considerably suppressed there, attaining even 
negative values (see Figure 2a). Apparently, the two-dimensional steady-
state reconnection model does not suite real CS conditions in the region 
x < − 2.5.

Note that by varying the function, extrapolating Vey(A) to the left, one 
could improve the accuracy of reconstruction for Bx in the leftmost 
part of the box. However, it is achieved at the expense of considerable 
reduction of the By reconstruction accuracy. Also, the trajectories of all 
other probes, except for MMS3, leave the trusted reconstruction region 
(contoured by magenta curve in Figure 5) much further than MMS3, at 
x = 2.1 for MMS1, 2.6 for MMS4, and 2.8 for MMS2. Meanwhile, within 
the interval x ∈ (−2.5, + 2.8) we observe good quality of the reconstruc-
tion. It means that at least the initial part of our extrapolating function 
for Vey(A) is correct.

4.  Reconstruction Results
4.1.  Comparison of Model 1 with Model 2

We start the comparison of Models 1 and 2 from exploring the in-plane magnetic field reconstruction ac-
curacy, that is, we compare the solutions of GSH (17) and Poisson's (21) equations. Note that Equation 17, 
adopted by Models 1 and 3, does not depend on By, while in Model 2 coupled Equations (21 and 22) are 
solved.

Figure 7 presents the solutions for Bx and Bz as derived from the GSH and Poisson's equations at the MMS 
spacecraft trajectories, along with the measured values. Solutions for Bz demonstrate no recognizable dif-
ference. Solutions for Bx do not differ at x < 5, in the interval 5 < x < 12 solution of GSH equation exhibits 
minor advantage, at x > 12 solution of Poisson's equation reveals a slightly better accuracy. In fact, at such 
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Figure 7.  Reconstruction in SCS. Top: Bx, bottom: Bz. Observed values 
(solid) as compared to the reconstruction prediction, evaluated by 
Equation 17 (dashed) and Equation 21 (dotted). The color code is the same 
to the one of Figure 2. BC: MMS3. For better visibility, in bottom panel 
reconstruction results for MMS1 and MMS4 are not shown.
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small distances (maximum spacecraft separation amounted 0.63 de be-
tween MMS3 and MMS2), Models 1 and 2 provide the same solutions for 
magnetic potential and its derivatives.

Solutions at large distances are compared in Figure  8, where top pan-
el plots the solution of Equation  17. Visually, solution of Equation  21 
looks nearly identical (not shown), the difference of these two solutions 
is drawn in the bottom panel of Figure 8, depicting the quantity δA = 
(A2 − A1)/max |A1|, where A1 is the solution of Equation 17, and A2 is the 
solution of Equation 21. It is seen that this normalized discrepancy does 
not exceed the value of 5%. The peaking values of δA are reached in those 
regions, where values of By (contributing the second term in the right-
hand side of Equation 21) go far beyond the interval, specified by BC.

The solutions for 
yB  and Vex as derived from the GSH (18) and Poisson's 

(22) equations at the MMS spacecraft trajectories are compared to each 
other and to measured values in Figure 9. In the left part of the recon-
struction region, − 2.3 < x < 13, and in the rightmost spot x > 22 both 
solutions for 

yB  exhibit good agreement with the data. In the right part, 
13 < x < 22, the solution of Poisson's equation is still accurate, while the 
GSH equation solution demonstrates the lower accuracy, where the re-
construction error is increasing with the distance from the boundary. At 
x < − 2.3, on the contrary, Model 1 appears somewhat better than Model 
2. Solutions for Vex show the same features, except for the leftmost part of 
the sheet where reconstruction by Model 1 fails in the region x < 1, while 
the Model 2 reconstruction is collapsing at x < −1 only.

Thus, even at such small distances Model 2 demonstrates evident ad-
vantage over the Model 1. This is confirmed by two-dimensional plots 
of reconstructed 

yB  values shown in Figure 10. It is seen that in Model 
1 | |yB  is growing extremely fast, reaching the value of 6 B0 at 2 de from 
the MMS3 trajectory (at this distance, the peaking values of Bx and Bz 
are about 2 and 0.4, respectively). Of course, this result may be correct-
ed by different choice of the extrapolating function ( )yQ B . Particularly, 
the blue curve of Figure 3h demonstrates a quasi-periodic behavior with 
the quasi-period of about 0.6 B0. However, extrapolating this curve in 
the same quasi-periodic manner, the problem 18 turns to the equation 

  Δ sin(2 / 0.6)y yB B . Applying BLA, we finally arrive at the non-lin-
ear pendulum equation, yielding an oscillating (on z) solution, which is 
unphysical for EDR.

Keeping in mind the results of this section and taking into consideration 
the absence of any prominent dependence of ( )yQ B  in the most part of 
the CS (cloud of green points in Figure 3h corresponds to the interval 

t > 0.5 in Figure 3c), Model 1 shows worse consistency with observations than Model 2. Good agreement of 
the solutions for 

yB , obtained from Model 1 and Model 2, is observed in the regions, where small values of 
the function Q make both GSH and Poisson's equations for 

yB  performing similar to the Laplace equation, 
showing minor discrepancy of the solutions at small distance of |z| ≲ 0.6 de (from the boundary). On the 
same reason, solutions for A, derived by using these two models, are nearly identical at these small distanc-
es, as like as the stagnation points positions, plotted by red asterisks in Figure 10. Both models reveal the 
earthward shift of the stagnation point for about 110 km from the X-point (in LMN′), which is somewhat 
larger than the value of 90 km obtained by Hasegawa et al. (2019).
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Figure 8.  Reconstruction in SCS. Top: A (x, z) as obtained from solution 
of Equation 17. Bottom: δA = (A2 − A1)/max |A1|, where A1 is the solution 
of Equation 17, and A2 is the solution of Equation 21. White lines plot the 
axes, magenta curve bounds the region where magnetic potential stays 
within the interval specified by the boundary conditions and function 
Vey(A) is well-defined (see Figure 3e). Horizontal colored lines in top panel 
plot the trajectories of MMS probes (color code is the same to the one of 
Figure 5), and orange curves in bottom panel contour region, where By 
stays within the interval specified by BC (see Figure 3c).
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4.2.  Comparison of Model 2 with Model 3

In Model 3 magnetic potential is calculated by the same GSH Equation 17 
as in Model 1. So, we need to compare the solutions for 

yB  only. The 
mixed derivative in Equation 24 substantially complicates this equation, 
preventing using both BLA and the matrix method. Fortunately, Equa-
tion 24 has the form of the well-known Goursat problem (Goursat, 1915). 
With boundary conditions (for 

yB ) specified at the axes, this problem 
allows the unique solution in the rectangle [0, x0] × [0, z0] by means of 
the converging iterative procedure (Vladimirov, 1981). This procedure is 
applied as follows: the x axis is shifted at the MMS3 trajectory, and solu-
tion for 

yB  is evaluated in each quadrant separately with the boundary 
conditions, specified at the x axis (MMS3 data) and at the z axis (solution, 
obtained from Model 2, demonstrating high accuracy at x = 0, as it is seen 
in Figures 7 and 9).

Since Equation 24 depends on the term ɛ, the Model 3 possesses some un-
certainty. As it was mentioned in Section 2.1, in two-dimensional steady-
state configuration Ey = ER, where ER = const is the reconnection electric 
field, hence the value ɛ = Ey/EAe is equal to 0/e pm m R  under the proper 
choice of the normalization constants, where R0 is the reconnection rate. 
Meanwhile, in the present study, the measured values of Ey demonstrate 
considerable oscillations and the offset of − 1.8 mV/m at the MMS3 po-
sition (Figure 2a). This implies some freedom in the choice of the ɛ val-
ue. The series of reconstructions with varying ɛ revealed that the best 
reconstruction accuracy is obtained for ɛ ∈ [0.062, 0.089], corresponding 
to reconnection electric field ER ∈ [2.8, 4.0] mV/m (see Figure 2a). The 
choice of a specific value within this interval is impeded by the fact that 
minimum value provides for the best accuracy of the 

yB  reconstruction 
with very low accuracy for Vex, the maximum value yields the higher ac-
curacy of the Vex reconstruction with the worse result for 

yB . These fea-
tures are demonstrated in Figure 11 and Figure 12, discussed below.

In Figure 11 the observed values of By, Vex and Vez are compared to the 
reconstruction prediction, evaluated by Equations 22 and 24 with includ-
ed or omitted inertial term ∂Vey/∂A and ER = 4 mV/m. For the sake of a 
better visibility, the data of MMS1 and MMS4 and corresponding solu-
tions are not shown. Figures 11a shows that in the most part of the CS 
all solutions show approximately the same good reconstruction quality. 
In more details, Model 2 benefits in the interval − 2 < x < 7 and x > 17, 

Model 3 with omitted inertial term performs the best in [7 < x < 17] and at x < − 2; within the whole CS 
the inertial term contribution to the Model 3 reconstruction accuracy is either neutral or negative. Thus, 
in terms of the out-of-plane magnetic field reconstruction, neither Models 2 nor Model 3 demonstrate any 
evident advantage.

Figure 11b, where solutions for Vex are shown, exhibits much more univocal results. At x < − 1 Model 3 with 
omitted inertial term demonstrates good reconstruction accuracy, while the Model 2 fails. In the interval 
− 1 < x < 8 both models provide a good accuracy. At x > 8 Model 2 shows the same high reconstruction 
accuracy, while solutions derived by Model 3 loose both qualitative and quantitative agreements with the 
MMS data. Note that Model 3 uses boundary conditions for 

yB  only, the value of Vex at the MMS3 trajectory 
is obtained from the solution of Equation 24. As concerns the inertial term, its contribution to Vex solution 
accuracy is either neutral or negative again.

The solutions for Vez, plotted in Figure 11c, demonstrate considerably worse results. Actually, both Model 
2 and Model 3 with omitted inertial term reveal appropriate solutions in the small interval 0 < x < 5 only. 
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Figure 9.  Reconstruction in SCS. Top: 
yB , bottom: Vex. Observed values 

(solid) as compared to the reconstruction prediction, evaluated by 
Equation 18 (dashed) and Equation 22 (dotted). The color code is the same 
to the one of Figure 2. BC: MMS3. For better visibility, reconstruction 
results for MMS4 are not shown.
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Outside this interval both models fail to reproduce the MMS data. By 
keeping inertial term in Equation 24, the successful reconstruction inter-
val is extended to the left in the region x < 0.

Figure 12 represents the same plots, with the value of ER = 2.8 mV/m 
utilized by Model 3. In this figure we do not show the solutions of Equa-
tion 24 with kept inertial term, exhibiting the same features as in Fig-
ure  11. Instead we plot reconstruction results at the MMS1 position. 
The profiles of Figure 12a demonstrate high accuracy of the 

yB  recon-
struction obtained by both models in the whole reconstruction region. 
Particularly, Model 3 demonstrates some overestimate of 

yB  in the in-
terval 7 < x < 17, while Model 2 shows the underestimate in x ∈  (7, 
22). Thus, Model 3 benefits in the intervals x > 17 and x < − 3, in the 
rest part of the CS Models 2 and 3 are equally worth. However, Model 3 
solution for Vex, drawn in Figure 12b by dashed curves, exhibits a con-
siderable accuracy decrease with respect to the corresponding results 
depicted in Figure 11b. As for the solutions for Vez, in Figure 12c they 
are as bad as in Figure 11c. Notably, the stagnation point location is also 
affected considerably by the reconnection electric field value utilized 
in Model 3. For ER = 4.0 mV/m the earthward shift of the stagnation 
point amounted to 92 km, while for ER = 2.8 mV/m it has increased up 
to 140 km (in LMN′).

Summarizing the above, the comparison of Models 2 and 3 reveals that 
in terms of the By reconstruction they achieve a similar good accuracy. 
Under the proper choice of the reconnection electric field value, Model 3 
may yield a more accurate solution. Particularly, this model yields unex-
pectedly good results in the region x < 0 (which is especially surprising 
in the interval x < −3, where reconstruction of Bx, plotted in Figure 7a, 
fails). However, in terms of the velocity Vex reconstruction, Model 3 ben-
efits at x < 0 only, in the rest part of the CS it fails rather fast (at x ≈ 8 
for ER = 4 mV/m and at x ≈ 4 for ER = 2.8 mV/m). The inertial term in 
Equation 24 is found to be redundant since it is rather worsening the re-
construction accuracy than improving it (except for Vez, which is actually 
not reconstructed properly neither by Model 2 nor by Model 3). Perhaps, 
it may be explained by the fact that the Hesse et al. (1999) approximation 
for  ( ˆ )e yP  is obtained without taking this term into account. On aver-
age, Model 2 benefits over Model 3 because it provides more than two 
times bigger region of accurate Vex reconstruction.

5.  Discussion and Conclusions
In the present paper we considered the problem of reconstruction of the magnetic configuration in the 
electron diffusion region of magnetic reconnection. The problem is addressed in the frame of a steady-state 
two-dimensional model, in which we adopt the EMHD approximation |ji| ≪ |je| and assume a uniform 
plasma density. The problem stated this way is reduced to the system of two equations, for scalar magnetic 
potential A of the in-plane magnetic field and for the out-of-plane magnetic field component By; the prob-
lem allows the coordinates transform (x, z) → (A, By).

The problem is considered by means of three different reconstruction models. Model 1 takes an assumption 
Vey = Vey(A), leading to the system decouple to two independent Grad—Shafranov Equations 17 and 18. 
Model 2 assumes Vey = Vey (A, By), resulting in two coupled Poisson's Equations 21 and 22. The right-hand 
sides of Equations 18 and 22 for By represent the contribution of the electron inertia to the equation of mo-
tion. Finally, Model 3 assumes Vey = Vey(A), and equation for By (24) relies on the Hesse et al. (1999) approx-
imation Equation 23 for the y component of the electron pressure tensor divergence,  ( ˆ )e yP .

KOROVINSKIY ET AL.

10.1029/2020JA029045

14 of 19

Figure 10.  Reconstruction in SCS. Solutions for 
yB  as obtained from 

Equation 22 (top) and from Equation 18 (bottom). In both panels red 
asterisks mark the electron in-plane flow stagnation points S (coordinates 
are given in the titles). White lines plot the axes, and horizontal colored 
lines plot the trajectories of MMS probes (color code is the same to the one 
of Figure 5).
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We applied these three models to the EDR crossing event of July 11, 2017 
reported by Torbert et al. (2018), when MMS spacecraft were located in 
the very close vicinity of the reconnection X-line for about 3 s. Profiles 
of the magnetoplasma quantities (Figure 2), registered by MMS probes, 
confirm that the CS conditions within this time period were mainly con-
sistent with the model assumptions (except for the first 0.4 s and except 
for Ey offset at MMS3 position). Another important feature of this par-
ticular event is that it has being studied carefully in a number of works, 
including the paper of Hasegawa et al. (2019), where the reconstruction 
Model 3 has been successfully applied; so that the cited paper provided 
a convenient starting/reference point for our analysis. However, in our 
studies the reconstruction interval is increased from 1.4 to 3.22 s, starting 
from 22:34:01.70 UT.

The major difference of the three considered models consists in different 
approaches to By reconstruction. Particularly, Models 1 and 2 depend on 
the function Q = Δ⊥By, which value along the MMS trajectory is estimat-
ed by using Equation  1; this estimate is possible due to small spacing 
of the MMS probes (the maximum spacecraft separation did not exceed 
the value of 18 km, corresponding to 0.63 de in our normalization), ex-
hibiting the regular tetrahedron constellation (see Figure 2 of Genestreti 
et al. (2018)). However, the functional dependence of this quantity is not 
defined. Therefore we considered two options:  ( )yQ Q B  in Model 1 and 
Q = Q(A) in Model 2, where 

yB  is the non-uniform part of the out-of-
plane magnetic field. These two models provide self-consistent solutions 
of the system of EMHD equations under the assumptions Vey = Vey(A) 
and Vey = Vey (A, By), respectively. The comparison of the solutions for 


yB  and Vex (Figure 9) has demonstrated the benefit of Model 2 even at 
small distances of about 0.4 de (the distance between MMS3 and MMS1), 
as well as at larger distances. Solutions for magnetic potential and in-
plane magnetic components (Figures 7 and 8) reveal that both models 
provide similar good accuracy. This can be explained by a small second 
term in the right-hand side of Equation 21. To arrive at the more univo-
cal conclusion, one should use a data set with irregular MMS spacecraft 
configuration, where one probe is significantly remote; or instead the 
PIC-simulations data can be engaged. Grounding in the present results, 
we can conclude that Vey is to be treated as two-dimensional function, 
since neglect of the By-dependence (even a weak one) results in inappro-
priate Equation 18 for By.

The solution by Model 2 occurs very supportive for addressing the Model 3. Namely, by using this solution 
in the capacity of the boundary conditions, Equation 24, considered as the Goursat problem, allows an exact 
solution (Vladimirov, 1981). The comparison of the solutions for yB  and in-plane electron velocity, obtained 
in the frame of Model 2 and Model 3 reveals the following results: (a) in terms of 

yB  reconstruction, both 
models perform nearly the same good; (b) in terms of Vex reconstruction Model 3 shows much shorter ap-
plicability domain; (c) both models fail in Vez reconstructing; (d) Model 3 benefits in the leftmost part of the 
CS at x < 0.

The lower accuracy of the Model 2 solution at x < 0 is presumably caused by the inaccuracy in the extrapo-
lating function Q(A). Looking in Figure 3g, one can see that on the left side the data become very uncertain. 
As for the failure of the Vez reconstruction, it may have the more transparent physical reason. According 
to Equation 1, it may mean that in reality ∂Bx/∂y ≠ 0 (note that with the specified structure velocity V0, the 
length of the MMS trajectory in the y direction amounted for ≈ 3/4 of the longitudinal path length). The 
inaccurate solution for Vex, resulting from Model 3, is explained by inappropriate solution for Vez, since this 
velocity component, multiplied by Bx, contributes to Equation 24. At the same time, the solution for 

yB  
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Figure 11.  Reconstruction in SCS with ɛ = 0.089 (reconnection electric 
field ER = 4.0 mV/m). Top: 

yB , middle: Vex, bottom: Vez. Observed values 
(thick solid) as compared to the reconstruction prediction, evaluated by 
Equation 22 (thin solid) and by Equation 24 with kept (dotted) and omitted 
(dashed) inertial term. The color code is the same to the one of Figure 2. 
BC: MMS3. For better visibility, MMS1 and MMS4 data and corresponding 
reconstruction results are not shown.
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from Model 3 is completely specified by the boundary conditions for 
yB , 

by constants ɛ and n, and by the solution for A (x, z). Therefore, it is not 
affected by the inaccuracy of the solutions for velocity components. It is 
curious that Equation 24, resting upon a number of simplifying assump-
tions listed in Section 2.2, reveals the same By reconstruction accuracy 
(at least at small distances considered here) as Equation 22, derived from 
the exact Ohm's law. It may be explained by mutually exclusive effects of 
these assumptions.

Summarizing the above, the comparative study of three reconstruction 
models, formulated in Section  2.2, has shown that Model 1 is, in gen-
eral, inappropriate, except for the case of very small values of the func-
tion Q, when both Equations  18 and  22 perform at small distances as 
the Laplace equation. In case of the real CS conditions, considered in 
this paper, where both stationarity and two-dimensionality are violated, 
Equation 24 of Model 3 appears appropriate for reconstructing By but not 

eV . Model 2 is not affected so much by these violations (except for the 
solution for Vez), demonstrating, on average, the best accuracy in the re-
gion of well-defined function Q(A). The failure of Vez reconstruction leads 
also to a low accuracy of the stagnation point location estimate.

The substantial advantage of Model 2 (and Model 1) is that it does not 
depend on the reconnection electric field, ER, whose value imposes large 
uncertainty, because the measured values of Ey are strongly oscillating 
(see Figure 2a). For example, in the paper of Hasegawa et al. (2019), this 
electric field is estimated as 2−4 mV/m. The analogous estimate by Gen-
estreti et al. (2018) amounted to 3.2 ± 0.6 mV/m. Our estimate, based on 
the Model 3 reconstruction accuracy, is close to the latter one, amounting 
to 2.8–4.0 mV/m.

The estimate of the basic assumptions, adopted in our analysis, namely, 
the CS steady-state and two-dimensionality, is given by the comparison 
of the reconnection electric field with the reconnection rate, R0, which we 
evaluate by formula of Liu et al. (2017),

 


 
    

2
2

0 2
1 tantan 1 tan ,
1 tan

R� (25)

where 2ϕ is the separatrices opening angle. With the value of 2ϕ = 22.5°, 
obtained from the Model  2 solution, Equation 25 yields the reconnection 
rate R0 = 0.18 (the analogous estimate in Hasegawa et al. (2019) amount-
ed to 0.17, the difference is likely explained by the different sizes of the re-
construction regions). Recalculating reconnection electric field estimate 
ER = 2.8–4.0 mV/m to the Hasegawa et al. (2019) normalization, using the 

global CS parameters (  15.7H
AE  mV/m), we derive the reconnection rate estimate  / 0.18 0.25H

R AE E . 
Thus, the value R0 = 0.18, obtained by Equation 25, corresponds to the lowest estimate for ER = 2.8 mV/m. 
This, in turn, is 10–20% higher than the average value of Ey, observed by MMS1, MMS2 and MMS4, amount-
ing to {2.5, 2.6, 2.3} mV/m, respectively. This means that non-ideality of the CS conditions should produce 
the 10–20% inaccuracy of the reconstruction results. An error of that particular order is demonstrated by the 
solutions for the in-plane magnetic field components (see Figure 7).

Since Equation 21 of Model 2 depends on the term  
yB , implementation of this model requires the estimate 

of the guide field value, Bg, which has to be deduced from the measured value of By. Our study has shown 
that the requirement of the in-plane magnetic field vanishing at the X-point provides the condition that 
can be used for deriving the self-consistent estimate of Bg and local LMN coordinate system orientation. 
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Figure 12.  Reconstruction in SCS with ɛ = 0.062 (reconnection electric 
field ER = 2.8 mV/m). Top: 

yB , middle: Vex, bottom: Vez. Observed values 
(thick solid) as compared to the reconstruction prediction, evaluated by 
Equation 22 (thin solid) and by Equation 24 with omitted inertial term 
(dashed). The color code is the same to the one of Figure 2. BC: MMS3. For 
better visibility, MMS4 data and corresponding reconstruction results are 
not shown.
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The corresponding iterative procedure is realized in two steps. First, the choice of any particular value of 
Bg specifies the orientation of the coordinate system LMNl by the requirement that in LMNl both 

MB  and 
BN components change sign at the N axis, where  

M M gB B B . With the requirement that BL component 
changes sign at the L axis of LMNl, this coordinate system is completely defined. Second, the values of 
the in-plane magnetic field components in the origin of coordinates, BL (0) and BN(0), are evaluated by 
reconstruction in LMNl. Under the proper choice of Bg the origin of coordinates coincides with the X-point, 
hence BL (0) = BN(0) = 0. The estimate of Bg = 0.45 nT, obtained by means of this procedure, is consistent 
with the estimates of Genestreti et al. (2018) and Torbert et al. (2018). Implementation of this technique 
requires the satellite trajectory passing close to the X-line, where symmetry is not expected to be violated 
significantly. Besides that, the accuracy is restricted by the CS physical conditions, also restricting the ac-
curacy of the magnetic potential reconstruction. This means that inaccuracy of the obtained estimate of Bg 
is about of 10%.

Apart from the general limitations of the analytical approach utilized in our study (which are discussed 
in (Korovinskiy et  al.,  2020)), such as steady-state CS, “infinite” X-line, and isotropic model for the in-
plane electron pressure, the major limitation of Model 2 is related to derivation of Equation 22, based on 
Equation 20 for Vey. The latter represents the Taylor series on 

yB , where all terms except for two first ones 
are omitted under the assumption  | | | |g yB B . Looking at green dashed curve of Figure 4, we see that at 
the MMS3 trajectory this condition is fulfilled everywhere, except for the leftmost part of reconstruction 
interval, t < 0.4. However, in general, this condition may fail. Model 2 is easily modified for the case Bg = 0 
by keeping quadratic term of the Taylor series instead of the linear one, but for the case  | | | |g yB B  this 
approach fails, since both linear and quadratic terms are to be kept, hence instead of the function Q(A) we 
obtain two functions, Q1(A) and Q2(A), which cannot be distinguished in the boundary conditions data. 
Due to the same reason, we cannot address a more accurate estimate of Model 2 applicability condition, 

  2
1 2max | ( ) | max | ( ) |y yQ A B Q A B . The estimate  | | | |g yB B  is rather rough: Figure 12a demonstrates the 

good reconstruction quality even in those regions, where | |yB  exceeds the value of 0.15, which is the nor-
malized guide field value Bg/B0, up to three times. Thus, the only available estimate for the Model 2 applica-
bility (in view of the Bg value) is | | | |y gB k B  with the coefficient k ∼ 1.

With Equations 12 and 13, Model 2 allows further generalization by replacing the condition ne = const by the 
less restrictive condition ne = ne(A). According to results from our previous study (Korovinskiy et al., 2020), 
this might allow extending the reconstruction region in longitudinal direction up to the boundary of the 
EMHD domain. As concerns the cross-size of the reconstruction region, the problem is more complicated, 
since number density becomes the function of both variables, A and By, at very small distance from the x 
axis. PIC-simulations data analysis of Korovinskiy et al. (2020) revealed an estimate of 0.2 dp for this crucial 
distance (see Figure 10a, ibid). With the mass ratio mp/me = 256 used in that study, it corresponds to the 
distance of 3 de. Notably, release of the condition ne = const would break one of the basic assumptions of 
Model 3. This means that aforementioned generalization of Model 2 could allow reconstruction of By in the 
region, where Model 3 is expected to fail.

Data Availability Statement
The MMS data used here are available from the MMS Science Data Center: https://lasp.colorado.edu/mms/
sdc/public/.
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