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Background: Amyloid-β (Aβ) accumulation is considered the earliest

pathological change in Alzheimer’s disease (AD). The Amyloid Imaging

to Prevent Alzheimer’s Disease (AMYPAD) consortium is a collaborative

European framework across European Federation of Pharmaceutical

Industries Associations (EFPIA), academic, and ‘Small and Medium-sized

enterprises’ (SME) partners aiming to provide evidence on the clinical utility

and cost-e�ectiveness of Positron Emission Tomography (PET) imaging in

diagnostic work-up of AD and to support clinical trial design by developing

optimal quantitative methodology in an early AD population.

The AMYPAD studies: In the Diagnostic and Patient Management Study

(DPMS), 844 participants from eight centres across three clinical subgroups

(245 subjective cognitive decline, 342 mild cognitive impairment, and 258

dementia) were included. The Prognostic and Natural History Study (PNHS)
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recruited pre-dementia subjects across 11 European parent cohorts (PCs).

Approximately 1600 unique subjects with historical and prospective data

were collected within this study. PET acquisition with [18F]flutemetamol or

[18F]florbetaben radiotracers was performed and quantified using the Centiloid

(CL) method.

Results: AMYPAD has significantly contributed to the AD field by furthering our

understanding of amyloid deposition in the brain and the optimalmethodology

to measure this process. Main contributions so far include the validation of

the dual-time window acquisition protocol to derive the fully quantitative

non-displaceable binding potential (BPND), assess the value of this metric

in the context of clinical trials, improve PET-sensitivity to emerging Aβ

burden and utilize its available regional information, establish the quantitative

accuracy of the Centiloid method across tracers and support implementation

of quantitative amyloid-PET measures in the clinical routine.

Future steps: The AMYPAD consortium has succeeded in recruiting and

following a large number of prospective subjects and setting up a collaborative

framework to integrate data across European PCs. E�orts are currently

ongoing in collaboration with ARIDHIA and ADDI to harmonize, integrate, and

curate all available clinical data from the PNHS PCs, which will become openly

accessible to the wider scientific community.

KEYWORDS

amyloid, positron emission tomography (PET), consortium, Alzheimer’s disease,

diagnosis, prognosis

1. The scientific landscape of
Alzheimer’s disease

Dementia is a major cause of disability, dependency, and

mortality in the elderly population. It is estimated that by the

year 2050, up to 150 million individuals will be affected by this

condition (1). Care of these patients comes with considerable

societal and economic impact, stressing the importance of

optimal diagnostics and the availability of disease-modifying

therapies. The main cause of dementia is Alzheimer’s disease

(AD), which is a neurodegenerative disorder that progressively

impairs cognitive functioning (primarily memory and executive

functioning). One of the first observable changes in the AD

brain is the accumulation of the amyloid-β (Aβ) protein, which

can be detected in vivo by positron emission tomography using

radiolabeled tracers. Currently, three fluorine-18 radiotracers

have been approved for clinical use by the European Medicine

Agency (EMA) and by other competent authorities worldwide;

[18F]flutemetamol/VizamylTM (FMM) (2) by GE Healthcare,

[18F]florbetaben/NeuraceqTM (FBB) (3) by Life Molecular

Imaging, and [18F]florbetapir/AmyvidTM (FBP) (4) by Eli

Lilly. The detection of amyloid pathology supports a clinical

diagnosis of AD and provides useful information on its clinical

progression (5). After some years of clinical use of the amyloid

PET tracers, the appropriate use criteria (AUC) were drafted

(5, 6) and today amyloid-PET imaging is more frequently

used in a clinical setting. However, reimbursement of the

technique is lagging due to the lack of definitive evidence

supporting its clinical utility and cost-effectiveness in the

diagnostic workup.

In the clinical trial setting, the role of amyloid-PET has

increased significantly over the past decade. Initial trials did not

require biomarker confirmation at study entry, and amyloid-

PET was therefore rarely used as an inclusion criteria, resulting

in a high fraction of enrolled subjects being amyloid-negative

(6, 7). As the field advances, biomarker confirmation for trial

inclusion has become the standard and nowadays amyloid-PET

is generally used as a quantitative measure of amyloid burden for

both trial enrollment and to assess target engagement. As both

ongoing and future trials are moving from an interventional

to a preventive approach, the role of amyloid-PET imaging

in clinical trial design is again changing. Also, the arrival

of plasma biomarkers, which are being actively developed at

present, will most likely have an important role in future clinical

and research settings (8) and already have a prominent role

in screening participants for trial enrollment (9), challenging

the use of amyloid-PET imaging. Nonetheless, the technique

holds the advantage of being the only validated measure against
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neuropathology as the gold standard (10), in contrast to fluid

biomarkers, PET provides regional information and a measure

of the extent of Aβ pathology (11), and is able to support disease

monitoring efforts (12).

2. The innovative medicines initiative
‘AMYPAD’ study

It is within this context, that the Innovative Medicines

Initiative (IMI) funded the ‘Amyloid Imaging to Prevent

Alzheimer’s Disease’ (AMYPAD) study. Since its original

kick-off in October 2016, the AMYPAD consortium is a unique

collaboration of a wide range of partners, including nine

academic institutes, three industry/ European Federation of

Pharmaceutical Industries Associations (EFPIA) (GEHealthcare

[GEHC], Life Molecular Imaging [LMI] and Janssen

Pharmaceuticals), 2 ‘Small and Medium-sized enterprises’

(SME’s) (IXICO and SYNAPSE), and 1 patient organization

(Alzheimer Europe) (www.amypad.eu). With the funding

formally ended in at the end of September 2022, AMYPAD has

formed new collaborations with ARIDHIA and Alzheimer’s

disease Data Initiative (ADDI) to maintain, curate, and provide

access to the large database of biomarkers collected from nearly

2400 subjects who have been included in the study at large. In

this paper, we want to highlight the important collaborations

necessary to make AMYPAD a successful project, reach not

only the scientific community but also engage society at large,

and illustrate how these endeavors ensured the value of the

consortium during and after the funding period.

3. The AMYPAD studies

The AMYPAD consortium is led by Professor Frederik

Barkhof from the Amsterdam UMC, location VUmc, and Dr.

Gill Farrar from GE Healthcare. AMYPAD aimed to optimize

the use of amyloid-PET in both clinical and research settings.

Also, collaborators had a strong desire to develop a robust

analytical methodology to ensure that measures of the amyloid

burden by PET are both accurate and consistent across different

centres and multiple tracers. To these ends, two trials were

set-up: the Diagnostic and Patient Management study (DPMS)

including a memory clinic population; and the Prognostic and

Natural History Study (PNHS), focused on a pre-dementia and

mainly pre-clinical population.

3.1. Diagnostic and patient management
study (DPMS)

AMYPAD DPMS aimed to assess the clinical impact and

cost-effectiveness of amyloid-PET in memory clinic patients.

One of the AMYPAD DPMS main strengths is its randomized

controlled study design. Participants were allocated to three

study arms: ARM1, amyloid-PET performed early in the

diagnostic workup (within 1 month); ARM2, late in the

diagnostic workup (after 8 ± 2 months); or ARM3, if and

when the managing physician chose to scan the subject.

This allowed comparing a diagnostic pathway that includes

amyloid-PET (ARM1) with one without amyloid-PET (ARM2).

The study recruitment was finalized in October 2020 and a

total of 840 participants with variable cognitive stages (244

with subjective cognitive decline plus [SCD+], 341 with mild

cognitive impairment [MCI], and 255 with dementia) were

enrolled from eight memory clinics, resulting in the largest

European study implementing amyloid-PET in clinical practice.

The main outcome was the difference between ARM1 and

ARM2 in the proportion of participants receiving an etiological

diagnosis with very high diagnostic confidence after 3 months.

As a secondary outcome, we are assessing the cost-effectiveness

of amyloid-PET by using longitudinal health-related outcomes

and information on the participants’ use of healthcare resources.

Please refer to Frisoni et al. (13) and (14) for a detailed

description of the study rationale and baseline features of the

final recruited patient population, respectively.

3.2 The prognostic natural history study
(PNHS)

Originally, the PNHS was closely associated with its sister

project ‘European Prevention of Alzheimer’s dementia’ (EPAD),

aiming to perform amyloid-PET in this well-phenotyped cohort

to investigate the added value of this imaging technique in

assessing a participant’s risk to develop cognitive decline due

to AD. However, to facilitate timely recruitment into the study,

other cohorts with similar aims and readily collected data across

Europe were invited to participate as parent cohorts (PCs).

In return, AMYPAD PNHS provided the newly collaborating

PCs with the opportunity to perform amyloid-PET imaging.

Effectively, this framework boosted the recruitment for PNHS

and resulted in the availability of longitudinal data in a

significant proportion of participants in several studies across

Europe. To date, 17 centres have contributed to the PNHS across

11 PCs [EPAD (15), EMIF-AD 60++ (16) and 90+, ALFA+

(17), FACEHBI (18), FPACK (19), UCL-2010-412, Microbiota,

AMYPAD DPMS [via the VUmc] (13), DELCODE (20), and

H70 (21)], with several additional PCs expressing interest in

joining forces after the IMI-funding period. By the end of the

study in June 2022, 1,192 prospective baseline and 227 follow-

up scans had been performed. An additional 1,300 PET scans

were also made available through collaborations with the PCs,

bringing the final total available scans for PNHS analysis to over

2,700 PET images across 1,624 participants. Please see Lopes
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FIGURE 1

Network of study cohorts and sites that contribute to the AMYPAD consortium. Sites a�liated with the DPMS study are shown in yellow, sites

a�liated with the PNHS are shown in blue, and sites a�liated with both trials are shown in green. EPAD: European Prevention of Alzheimer’s

Dementia; ALFA+ for Alzheimer and Families; FPACK Flemish Prevent AD Cohort-KU; FACEBHI Fundació ACE Healthy Brain Initiative;

UCL-2010-412 University College Louvain 2010-412 study; DELCODE Longitudinale Studie zu Kognitiven Beeinträchtigungen und Demenz;

H70 Gothenburg H70 Birth cohort study; EMIF-AD 60++ and 90+ Medicine Initiative European Medical Information Framework for AD

Twin60++ and 90+ study from the Alzheimercenter Amsterdam; DPMS Diagnostic and Patient Management Study from AMYPAD.

Alves et al. (22) for an overview of the study design and scientific

aims of the PNHS. An overview of AMYPAD affiliated sites can

be found in Figure 1.

4. The value of EFPIA partnerships

4.1. Availability of PET radiotracers

Beyond the academic collaborations, a key partnership

within AMYPAD was the support of our EFPIA partners

through the supply of the EMA-approved [18F]flutemetamol

(FMM) and [18F]florbetaben (FBB) PET radiotracers by

GE Healthcare (GE) and Life Molecular Imaging (LMI),

respectively. Both GE and LMI maintain distribution networks

in Europe to provide respective tracers to investigators;

imaging sites in the AMYPAD consortium were chosen so

that there was a relatively equal distribution of manufacturing

availability of the two PET tracers between the AMYPAD

study centres. The short shelf life of these F-18 radiolabeled

tracers (∼8–10 h) limits the geographic distribution of the

products and therefore careful logistical planning between

manufacturing sites, nuclear medicine departments, and

referring physicians was required to optimize the utility

of each batch produced. A working party was specifically

set up for the duration of clinical scanning to pay careful

attention to the consistent delivery of both tracers to facilitate

including the maximum numbers of subjects for both DPMS

and PNHS.

As per standard guidelines, 185MBq (FMM) or 300MBq

(FBB) of tracer were injected intravenously and 20-min scans

were acquired 9-min post-injection. All PNHS images were

centrally collected by IXICO and processed using their in-house

LEAP pipeline (23), providing global and regional Centiloid

(CL) values. For the DPMS, amyloid-PET scans were processed

and analyzed using AMYPYPE, a modified Cortex ID (24) PET-

only pipeline, which provides global CL units as well as regional

z-scores compared to a reference population. For 515 PNHS

participants, dynamic amyloid-PET scans were performed with

the so-called coffee-break protocol (25), which allows for full

quantitation (i.e., BPND) and additionally provides a measure

of relative flow (i.e., R1), in addition to CL values. In addition,

318 of these participants had, at least, one longitudinal dynamic

amyloid-PET scan. Dynamic amyloid-PET was performed

longitudinally in a sub-set of DPMS (n= 45), bringing the total

number of collected ‘coffee-break’ scans over 900 and making

AMYPAD a unique resource to study in what scenarios dynamic

amyloid PET imaging could be advantageous over standard

acquisition and quantification.
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4.2. Regulatory interactions

One of the fundamental premises of IMI partnerships is

to ensure that the technology that is widely used in research

can also optimally be used for routine clinical workup. Both

PET tracers used in the AMYPAD consortium (FMM and FBB)

were previously approved by the EMA through pivotal phase

III registration studies wherein a high correlation was verified

between visual inspection of the images, as either negative or

positive, for neuritic amyloid and the post-mortem measures of

amyloid burden. However, further studies relating to the value

of the amyloid-PET agent to improve diagnostic thinking were

suggested by EMA, and hence the DPMS was designed also to

investigate this component. In fact, dialogue with both EMA

and Health Technology Assessment instances (HTAs) was first

conducted in 2016, with a goal to incorporate EMA’s input

into the study design via formal Scientific Advice, as well as

initiating dialogue with HTA bodies. A second Scientific advice

was conducted in 2019, providing further input, particularly in

the area of quantitative methodology for measuring amyloid

load using PET. Specifically, focus was given to EMA’s view on

the opportunity for quantitative metrics, such as the Centiloid

measure, to assist with both subject selection and therapy

monitoring, as well as for prediction of cognitive progression

and measuring small early changes over time. During this

period, quantitation was added to the Summary of Product

Characteristics (SmPCs) of both tracers used in AMYPAD, as

a result of data packages presented to EMA showing the value

of quantitation as an adjunct to the visual read of a adjunctive

diagnostic scan.

AMYPAD aims to continue discussions with various

regulators, such as EMA and FDA, even beyond its IMI period,

to facilitate a wider appreciation of both the robustness and value

of quantitative methodology to measure amyloid PET burden.

4.3. Interacting with other IMI partners
and external collaborators

AMYPAD had a close working relationship with EPAD

(https://ep-ad.org/) in that a large number of the initial PNHS

participants were recruited from the Longitudinal Cohort Study

(LCS). EPAD has also developed data access models that

AMYPAD benefited from (see section 8 below). Additionally,

AMYPAD has been an active member of coordination and

support action (CSA) NEURONET (https://www.imi-neuronet.

org/), which was created to set up an efficient platform to boost

synergy and collaboration across IMI’s wider neurodegenerative

disorders (ND) portfolio. Here, members of AMYPAD were

represented on the NEURONET Scientific Coordination Board,

the Working Group on sustainability and the NEURO Cohort

Task Force. Furthermore, AMYPAD’s cohorts, datasets and

algorithms were signposted in the NEURONET Asset Map.

This in turn was held on the NEURONET Knowledge Base,

which also signposts and reports further information about

the AMYPAD project, including its deliverables, partners

and publications (https://kb.imi-neuronet.org/). Other close

relationships have developed with other global consortiums.

Collaborations with IDEAS, ALFA, AIBL and ADNI are

ongoing, whilst data sharing with additional cohorts such as

OASIS, EMIF-AD, ABIDE, and ADC yielded the highly cited

work on the pooledmulti-tracer amyloid stagingmodel (26) (see

section 6.1).

5. Amyloid burden in Centiloid units
for DPMS and PNHS

The goals of AMYPAD rely on the assumption that

amyloid burden can be accurately quantified irrespective of the

radiotracer that was used for the acquisition of the PET scans.

In this regard, the Centiloid (CL) method has been proposed

as an absolute scale to quantify amyloid burden, allowing the

pooling and comparison of data across tracers and quantification

pipelines. This scale assigns a CL value of 0 to the lack of amyloid

burden (similar to what would be observed in a young control

group), and a CL value of 100 to the typical amyloid load of

mild-moderate AD patients.

To verify the assumption that CL values are comparable

across the two tracers used in AMYPAD, we have conducted a

GaussianMixtureModeling (GMM) exercise on the distribution

of CL values in the DPMS and the PNHS. GMM is a data-

driven statistical technique capable of estimating the parameters

of a finite number of Gaussian distributions that underlie the

observed distribution of values. GMM has been widely used to

model global estimates of amyloid burden as measured by PET

(27). It is well-established in the literature that the distributions

of amyloid load values, when recruiting memory clinic patients,

show a bimodal distribution with one Gaussian modeling the

distribution of ‘negative’ scans and another one that of the

‘positive’ ones (28, 29). Such a bimodal distribution fits well with

the clinical use of the amyloid tracers that are typically rated

visually as positive or negative, but it is not suitable to describe

the distribution observed in cognitively unimpaired individuals

at high risk of AD, which is dominated by a Gaussian centred

around zero CL that is skewed toward higher values (27). Such

a distribution violates the assumption of the GMM that the

data points follow a finite number of Gaussian distributions. In

addition, GMM presents other limitations such as sensitivity to

the initialization parameters, and the lack of spread estimates

(i.e., the 95% confidence interval [95%CI]) of the estimated

parameters (relative proportion, mean and standard deviation).

To overcome such limitations and robustly model the

distribution of CL values also in this early population, we have

introduced several methodological innovations to the modeling.
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First, to circumvent the dependency of initial estimates and the

lack of spread estimates of the Gaussian parameters, we have

implemented a bootstrapped version of the GMM. This method

performs a GMM with random initial parameters in 100,000

bootstrap samples from the original distribution. Bootstrapping

is a technique that randomly resamples a given distribution with

replacements for a high number of times. By doing so, it mimics

the sampling of the recruited population in the study and is,

therefore, capable of providing generalizable estimates. Using

this method, we can also obtain spread estimates to the Gaussian

parameters and, due to the random initialization at each of the

bootstrap samples, we compensate for the dependency of the

GMM to the initial parameters

Finally, to overcome the limitation of some of the

distributions not resulting from a finite number of “pure”

Gaussian distributions, a non-Gaussian distribution has been

added to the GMM to model the intermediate CL values. The

distribution of these intermediate CL values is modeled using

a dedicated function that is linked to the means and standard

deviations of the positive and negative Gaussians and only the

relative proportion of intermediate values is estimated by the

GMM. This strategy is based on previous work on the modeling

partial volume voxels of magnetic resonance scans (30). Using

this procedure, we modeled the distribution of the CL values in

the DPMS study, also stratifying it by tracer (Figure 2A).

Of note, our version of the GMM estimated a negative

Gaussian with a mean of 0.42 CL, close to zero as expected,

with 95% CI below 2 CL [−0.94, 1.90]. The mean of the positive

Gaussian was 92.52 CL, slightly below the value of 100 CL

expected for a group of typical mild-moderate ADpatients. Since

the DPMS included amyloid-positive participants at earlier AD

clinical stages (SCD+, MCI) such a lower CL value was also

expected. Moreover, when stratifying by tracer, the 95%CI of all

parameters overlapped between the two tracers, thus confirming

that the CL scale provides comparable estimates of amyloid

burden across the two tracers in the DPMS.

Regarding the PNHS, the developed GMM method could

also adapt to the expected distribution that was dominated by

a negative Gaussian skewed toward lower values. In this case, it

can be observed that the relative proportion of the distribution of

intermediate values is higher (20%) than that of the positive one

(7%). In this case, the 95%CI of the mean value of the negative

Gaussian also included the zero, as expected (Figure 2B).

6. Pan-European scientific
collaborations

In addition to scientific data generated from both

the DPMS and PNHS, AMYPAD researchers have

significantly contributed to the AD field by furthering

our understanding of amyloid deposition in the brain

and the optimal methodology to measure this process.

Several key papers have been published using either

locally readily available datasets, open-access sources,

or the academic collaborations established under the

AMYPAD umbrella.

From a methodological perspective, the consortium has

validated the implementation of the coffee-break or dual-time

acquisition protocol for both the FMM and FBB radiotracers

(25). This acquisition protocol results in fully quantitative data

(i.e., BPND) and additionally provides a surrogate measure of

cerebral blood flow (i.e., R1) while allowing for interleaved

scanning, which translates to efficient scanner use and reduced

participant burden (9). Subsequently, we investigated the value

of fully quantitative measures in the context of clinical trials,

showing that sample sizes in AD secondary prevention trials

can be reduced by the acquisition of dynamic PET scans and/or

by restricting inclusion to subjects with intermediate amyloid

burden or APOE-ε4 carriers. Moreover, using a targeted early

composite leads to reductions in sample size requirements in

primary prevention trials (31).

The concept of an early composite is the focus of a

second major line of research within the AMYPAD consortium,

namely the value of regional rather than global amyloid-PET

investigations to improve disease tracking, risk profiling, and

prediction of cognitive decline over time. A major collaboration

was the development of a multi-tracer staging model, which

included over 3,000 amyloid-PET scans from six cohorts,

including historical data of several PCs aligned with the

PNHS (26). Taking these findings, we performed preliminary

analyses in predicting changes in cognitive functioning in a

preclinical population of the OASIS-3 open-access dataset.

We showed that regional and longitudinal amyloid-PET

improved the prediction of cognitive decline in specific domains

(mean follow-up period was 4.0 ± 1.9 years) (32). This is

considered the groundwork for the primary end-point of the

PNHS trial.

The third line of research has been to optimize the

use of amyloid-PET in the clinical setting. Firstly, from a

regional perspective, implementing the results of the previously

mentioned quantitative studies in our approach to performing

visual assessments. We showed in a collaborative paper between

VUmc and BBRC that visual assessment of amyloid-PET images

can identify early amyloid accumulation and grade the extent

of deposition. This approach goes beyond the use of a binary

global measure, currently implemented in the clinical routine.

Moreover, our results were confirmed by post-mortem data

from the Phase III Flutemetamol trial, kindly provided by

GEHC (33).

Our most recent focus is on the implementation of

(Centiloid) quantification into the clinical routine, to not only

support visual assessment of challenging cases, but also prepare

the field for a potential necessity which could arise from the

possible approval of disease-modifying therapies in the near

future. To this end, academic and EFPIA partners collaborated
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FIGURE 2

Centiloid distributions across DPMS and populations. (A) Centiloid distribution across patient populations, reflecting a bi-modal distribution. (B)

Centiloid distribution across per-dementia subjects, mostly cognitively unimpaired, skewed toward lower amyloid burden.

on a comprehensive review regarding possible quantification

approaches for the clinical setting (34) as well as engaging

with regulatory bodies to share the in-depth knowledge that

AMYPAD has gained using these methods during the course of

the project. In this context, the AMYPAD team has investigated

the robustness of the Centiloid quantification method (35), its

feasibility in detecting early Aβ pathology (36), and its ability

to detect changes over time. This work has been collated into

a Biomarker Qualification Opinion document, which has been

submitted to the EMA at the end of September 2022.

7. AMYPAD success beyond the
trials: SYNAPSE and Alzheimer
Europe

Management, communication, and dissemination were a

core part of the AMYPAD project to ensure that activities and

results have been communicated and shared with internal and

external stakeholders in a clear, consistent, and effective manner.

To combine an adequate use of resources and a successful

outreach, Synapse Research Management Partners (SYNAPSE)

and Alzheimer Europe work in close collaboration with all

project partners.

Firstly, a Project Management Office was set up to follow

up on project activities and to monitor compliance with the

work plan, planned resources and schedule according to IMI2

JU rules. SYNAPSE, a firm specialized in the high-quality

management of complex research and development projects

in the biomedical sector, led the management activities of

the project including areas such as financial management

(e.g., monitoring budget and resource consumption), legal

(e.g., amendments or subcontracting of study centers), risk

management, and deliverable quality control procedures. The

day-to-day management was crucial for the completion of

the deliverables and the achievement of project milestones,

and the establishment of the project governance facilitated

the collaboration with other related initiatives (including

EPAD, NEURONET, European Platform for Neurodegenerative

Diseases [EPND], and ADDI).

Secondly, a communication plan for the AMYPAD project,

led by Alzheimer Europe, was developed at an early stage of

the project. In this plan, a consistent communication strategy

was defined, to provide continuous up-to-date information

about the project and disseminate its results among different

stakeholders, but also to liaise and establish synergies with

neighboring initiatives. This strategy was adopted throughout

the project execution and targeted a variety of key audiences,

including among others the patient community, regulators,

payers, policymakers, and the wider scientific community.

Specific attention was paid to reaching out to the dementia

community. Alzheimer Europe used its extensive network of 37

member associations from 33 countries and its communication

tools (e.g., website, social media, newsletter, Dementia in Europe

magazine, annual conference) to relay information on the

AMYPAD project. This represented a major opportunity to

target Alzheimer’s associations/patient groups affiliated with

Alzheimer Europe. In addition, AMYPAD communication

objectives were met thanks to tailored strategies and the use of

cross-channel communication. AMYPAD communication tools

such as the project’s website (https://amypad.eu/) and the active
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presence on social media channels such as Twitter maximized

the outreach by creating continuous visibility of the project and

engagement with stakeholders in the discussion on the different

topic areas covered by the project.

8. Toward open source

8.1. Imaging harmonization

8.1.1. PET harmonization

It is well established that the Centiloid scale, used in the two

trials in AMYPAD, is robust to differences in image resolution

and quality (35). Given such a robust behavior, it could have

been argued that there was no need to harmonize the differences

in image resolution and quality inherent to multi-center PET

studies. However, this may not hold true when estimating

regional amyloid burden, as opposed to global ones. In this

regard, one of the goals of AMYPAD is to better understand

the information provided by regional patterns of amyloid

deposition, on top of global estimates as the CL scale. As an

example of such added value, we recently described three distinct

spatial-temporal trajectories of amyloid accumulation (37) and

proposed a visual staging method based on the regional pattern

of positivity of the PET scans (33). Since AMYPAD will serve

to assess the clinical value of the regional information of PET

scans, an image harmonization standard operational procedure

(SOP) has been developed in collaboration with EARL (https://

earl.eanm.org/), the initiative of the European Association of

Nuclear Medicine (EANM), to harmonize quantification in

nuclear medicine imaging. This SOP is based on the acquisition

of Hoffman phantom scans in the AMYPAD imaging network

to account for inter-scanner differences and provide several

indicators of image quality (Figure 3) (38).

8.1.2. Advanced MRI harmonization

In addition, most PNHS PCs had available historical

advanced magnetic resonance imaging (MRI). These include

resting-state functional MRI (rs-fMRI), diffusion-weighted

imaging (DWI) and arterial spin labeling (ASL). The PNHS

team has, therefore, aligned efforts with the ‘EPAD imaging

core’ to process all collected scans using a harmonized pipeline

as described in Lorenzini et al. (39). To promote accessibility

and replicability, standard image-derived phenotypes (IDPs) will

be computed from MRI sequences and shared as spreadsheets.

IDPs are image-specific summary statistics that provide a

quantitative way to investigate structural and functional

brain characteristics. For rs-fMRI, a group-level independent

component analysis (ICA) will be performed on 4mm MNI-

registered bold time series, using FSL Melodic (40) to identify

canonical resting-state networks (RSN). A dual regression

approach will then be used to compute the mean time

series and functional connectivity strength of each RSN.

Similarly, bold time series will be summarized within atlases

region of interest. Functional connectivity matrices in atlas

space and graph properties will be derived. For DWI, pre-

processed data will first be fed into the FSL Brain Extraction

Toolbox (BET) (41) and then into FSL DTIFIT, to fit the

diffusion tensor model to the data and produce diffusion

tensor imaging (DTI) scalars maps (fractional anisotropy (FA),

and mean (MD), axial (AD) and radial (RD) diffusivity). On

these data, the Tract-based spatial statistics (TBSS) pipeline

will be used to compute global and regional FA features

from the JHU ICBM-DTI-81 atlas (42). For ASL, mean

cerebral blood flow (CBF) and spatial coefficient-of-variation

will be computed as described in Mutsaerts et al. (43).

These processing steps have been integrated in an in-house

workflow to perform semi-automatic QC of MRI data. This

set of QC functionalities was written as an extension to

ExploreASL (43) called ExploreQC (39). The semi-automated

QC procedure was based on two steps: feature estimation

and visualization. Image quality features were computed from

five image feature domains: motion, noise, inhomogeneity,

asymmetry, and descriptives. The visualization module consists

of an interactive dashboard with violin and scatter plots for

observing variation between and within sites, respectively.

Individual scans can be visually inspected by selecting their

data points on the scatter plots, allowing to visualize the

scans themselves together with the QC features (Figure 4).

The toolbox in freely available online (https://github.com/

luislorenzini/ExploreQC).

Overview of the quality control workflow. QC features are

computed in the feature estimation module and cover 5 image

features domains. Feature distributions can then be interactively

inspected between-sites (5A) and within-sites (5B). Single-

subject scans can be opened by clicking on the scatterplots (5C).

Adapted from Lorenzini et al. (39).

8.2. Clinical data harmonization

Different strategies were used for the harmonization of

the clinical data in the AMYPAD trials, mostly determined

by the design of each study. The prospective nature of the

DPMS allowed for the implementation of harmonized strategies

already from the beginning of the project, which were executed

during the whole data collections. However, the PNHS dataset

is composed by the combination of prospective and historical

data from multiple sources, these limited the capacity to define

harmonize methods during data collection, as most data was

already obtained, and required a more thoroughly process of

harmonization across the different data sources.

The AMYPAD DPMS clinical dataset includes baseline and

follow-up variables concerning sociodemographic, clinical, and

cognitive features of 840 memory clinic patients. These data

were prospectively collected locally by the teams of the 8
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FIGURE 3

Visual illustration of amyloid PET harmonization results. Example images of the Ho�man phantom were acquired on four di�erent scanners

before (left panel) and after (right panel) harmonization. Coe�cient of variance (COV%), which is an indication of image noise, is shown for

each scan. Before harmonization, the COV% di�erence was more than 22, while after harmonization this ranged only ∼1.

AMYPAD DPMS recruiting memory clinics using electronic

case report forms (developed by IXICO) and, therefore,

following harmonized procedures defined in advance during

the early phases of the study. Then, after data collection, the

AMYPAD DPMS dataset had a final quality-checked by the

sponsor team (University of Geneva).

Meanwhile, the AMYPAD PNHS clinical dataset is a

combination of prospective and historical data from 17

European sites. Due to the variety of sources and data formats

present across the Parent Cohorts, the data curation process in

PNHS deals with multiple challenges. Among these obstacles,

the most notables are the use of different data models,

measurements, and cognitive questionnaires. Therefore, it was

decided to perform a comprehensive process of data curation

based on the work of the Data Curation Network (https://

datacurationnetwork.org) which developed a standardized set

of CURATED steps (Check, Understand, Request, Augment,

Transform, Evaluate, and Document).

This process resulted in the largest European dataset

phenotyping longitudinally individuals at risk of AD-related

progression, which currently consists of∼3,350 subjects,∼1,600

of those with a baseline amyloid PET and about 940 of them

having at least one follow-up PET acquisition. The dataset

currently contains 9,740 observations (visits) and 614 variables,

grouped into (68) “concepts” and (13) “domains,” such as

demographics, family history, genetics, vital signs, medical

history, neuropsychological questionnaires, lifestyle, CSF, PET

and MRI. While current dataset has been developed using

its own data model, tailored to the needs of the project, the

AMYPAD PNHS has been selected to work with the European

Health Data & Evidence Network (EHDEN) in the adoption of

theOMOPdatamodel. This will allow for the systematic analysis

of the PNHS database, using a harmonize format as well as a

common presentation of terminologies, vocabularies and coding

schemes (EHDEN has received funding from the IMI 2 Join

Undertaking under the grant agreement No 806968).

Frontiers inNeurology 09 frontiersin.org

https://doi.org/10.3389/fneur.2022.1063598
https://datacurationnetwork.org
https://datacurationnetwork.org
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Collij et al. 10.3389/fneur.2022.1063598

FIGURE 4

Graphic illustration of ExploreQC toolbox. Overview of the quality control workflow. QC features are computed in the feature estimation

module and cover 5 image features domains. Feature distributions can then be interactively inspected between-sites (5A) and within-sites (5B).

Single-subject scans can be opened by clicking on the scatterplots (5C). Adapted from Lorenzini et al. (39).

All this process of data handling has been performed

in close collaboration with the ARIDHIA team,

where their expertise in data science has played a

major role supporting data integration, harmonization

and storage.

8.3. Availability of software

A couple of open-source software packages dedicated to

PET imaging in dementia have been developed: NiftyPET for

neuro-image reconstruction with basic analyses, and NiftyPAD

for dynamic PET analyses.

NiftyPET (https://niftypet.readthedocs.io/) is an open-

source software solution for standalone and high-throughput

PET image reconstruction, manipulation, processing and

analysis with high quantitative accuracy and precision (Figure 5)

(44). One of its key applications is brain imaging in dementia

using amyloid and tau tracers. The key computational routines

are written in CUDA C for fast and efficient execution on

NVIDIA GPU devices. The routines are then embedded in

Python C extensions to be readily available for high-level

manipulation of PET data in Python. Using NiftyPET, it has

been possible to accurately assess the precision of MR-PET

image registration, critical for accurate quantification of amyloid

PET data (45). Also, the software was used for comprehensive
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FIGURE 5

Infrastructure for standalone PET image reconstruction and analysis of PET/MR brain data using amyloid PET tracer. Stages (A–C) involve

processing of input data (raw acquisition and image data), while in stages (D, E) image reconstruction is performed followed by image analysis in

stages (F–H).

analysis of the American College of Radiology PET phantom

to estimate the spatial resolution of PET scanners (46) –

information which is essential for performing a robust partial

volume correction of amyloid PET images.

NiftyPAD is a freely available open source, Python-based

software package for versatile analyses of static, full or dual-time

window dynamic brain PET data. The key novelties of NiftyPAD

are the analyses of dual-time window scans with reference input

processing, pharmacokinetic modeling with shortened PET

acquisitions through the incorporation of arterial spin labeling

(ASL)-derived relative perfusion measures, as well as optional

PET data-based motion correction. The implemented kinetic

models were validated by comparing the outcomes with the well-

established software packages PPET and/or QModeling. Real

dynamic PET data were used from four different amyloid tracers

used in clinics. High correlations were earlier validated software

indicating reliable model implementation in NiftyPAD. It is

freely available (https://github.com/JJiao/NiftyPAD), and allows

for multiplatform usage. The modular setup makes adding new

functionalities easy, and the package is lightweight with minimal

dependencies, making it easy to use and integrate into existing

processing pipelines.

8.4. Facilitating an open-access platform

8.4.1. Data access

The AMYPAD PNHS dataset is hosted in the Alzheimer’s

Disease Data Initiative (ADDI) Workbench, with the first

private data release made in November 2021 (Figure 6). Thanks

to a 5-year partnership between the AMYPAD consortium

and ADDI, the PNHS dataset will remain available to the

research community beyond the project duration, with the

first public release planned by the end of the first quarter

of 2023.

Those researchers interested in using the AMYPAD PNHS

data can request access to the imaging, clinical, and biomarker

data for scientific research investigation and/or educational

activities. The application can be performed via the FAIR Data

Service of the Alzheimer’s Disease Data Initiative (ADDI). In

this platform, the user will indicate if the request includes only

access to the clinical data or also to the neuroimaging data,

the data domains, and the type of data (i.e., raw, harmonized,

or derivative). In addition, the researcher should provide a

one-page proposal describing the study and the use of the data.

Frontiers inNeurology 11 frontiersin.org

https://doi.org/10.3389/fneur.2022.1063598
https://github.com/JJiao/NiftyPAD
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Collij et al. 10.3389/fneur.2022.1063598

FIGURE 6

Schematic representation of data-flow within the PNHS trial.

The AMYPAD Data Sharing and Publication Committee

(DPC) will review the application and the research proposal.

Incomplete applications or those without a clear focus will not

receive approval. The results of the DPC review will be sent via

the FAIR platform, and approved application will be processed

differently based on the requested data type:

• Harmonized and derivative data does not require further

approval by the Parent Cohorts, and the access will be

granted. This process will take up to 1 month.

• Raw data requires specific approval by the Parent Cohorts,

which will be contacted with a copy of the proposal. Each

cohort will decided if they would grant or not approval.

This process will take up to 2 months (1 month for the

assessment of the DPC and 1month for the Parent Cohort).

The results for the data access request will be sent to the

researcher via the FAIR platform, and approved application will

receive access to retrieve the data in the AD Workbench. In

case that neuroimaging data was also requested, information to

access the XNAT will be also provided via the FAIR platform

(more details in the next section).

8.4.2. Image data access and XNAT

Imaging data from all sites have been collected by

IXICO and have undergone quality control and between-

site harmonization. Image data are disseminated by the

Amsterdam UMC using an XNAT system (www.xnat.org),

an open-source medical image server that allows control

of multi-user access and storage of clinical non-imaging

data. The image data that is made available, adheres

to the PET-BIDS standard (https://bids-specification.

readthedocs.io) (47), which ensures transparency of the

image provenance and processing history, and enables open and

reproducible science.

Together with the EPAD project, the AMYPAD group is

working in conjunction with the Alzheimers Disease Data

Initiative (https://www.alzheimersdata.org), which will ensure

the availability of the main clinical databases for these projects,

and support sharing of the imaging data as facilitated by

Amsterdam UMC.

9. Conclusion

In summary, the AMYPAD consortium has made a

strong contribution to the AD field over the last 6 years.

A legacy of over 3,500 amyloid PET scans covering

the entire AD continuum has been collected across the

DPMS and PNHS, which is now curated for sharing

with the research community. AMYPAD has expanded

the knowledge in both the utility and measurement of

amyloid PET beyond the basic dichotomization of a standard

negative or positive scan and, in particular, has harnessed

the Centiloid metric as a universal tracer-independent

method for assessing amyloid load. The consortium has

widely demonstrated the robustness and validity of the

technique across tracers to enable further research using

this technology for both initial diagnosis and prognosis,
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and opens possibilities for optimal therapy monitoring

and/or patient-management.
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