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ABSTRACT. European eel, Anguilla anguilla, is a target species for future captive breeding, yet best 
methodology to estimate sperm density for application in in vitro fertilization is not established. Thus, our 
objectives were to evaluate methods to estimate European eel sperm density including spermatocrit, 
computer assisted sperm analysis (CASA) and flow-cytometry (FCM), using Neubauer Improved 
hemocytometer as benchmark. Initially, relationships between spermatocrit, hemocytometer counts, and 
sperm motility were analyzed, as well as the effect of sperm dilution on hemocytometer counts. 
Furthermore, accuracy and precision of permatocrit, applying a range of G-forces, were tested and the 
best G-force used in method comparisons. We found no effect of dilution on hemocytometer sperm 
density estimates, whereas motility associated positively with hemocytometer counts, but not with 
spermatocrit. Results from all techniques, spermatocrit, CASA and FCM, showed significant positive 
correlations with hemocytometer counts. The best correlation between spermatocrit and hemocytometer 
counts was obtained at 6000 × g (r = 0.68). Out of two CASA variants, one or three photographic fields 
(CASA-1 and CASA-2), CASA-2 showed a very high accuracy to hemocytometer counts (r = 0.93), but 
low precision (CV: CASA-2 =28.4%). FCM was tested with and without microfluorospheres (FCM-1 and 
FCM-2,) and relationships to hemocytometer counts were highly accurate (FCM-1: r = 0.94; 45 FCM-2: r 
= 0.88) and precise (CV: FCM-1 = 2.5; FCM-2 = 2.7%). Overall, CASA-2 46 and FCM-1 feature reliable 
methods for quantification of European eel sperm, but FCM-1 has a clear advantage featuring highest 
precision and accuracy. Together, these results provide a useful basis for gamete management in 
fertilization protocols. 
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Contents 26 

European eel, Anguilla anguilla, is a target species for future captive breeding, yet best 27 

methodology to estimate sperm density for application in in vitro fertilization is not 28 

established. Thus, our objectives were to evaluate methods to estimate European eel 29 

sperm density including spermatocrit, computer assisted sperm analysis (CASA) and 30 

flow-cytometry (FCM), using Neubauer Improved hemocytometer as benchmark. 31 

Initially, relationships between spermatocrit, hemocytometer counts, and sperm motility 32 

were analyzed, as well as the effect of sperm dilution on hemocytometer counts. 33 

Furthermore, accuracy and precision of spermatocrit, applying a range of G-forces, were 34 

tested and the best G-force used in method comparisons.  35 

We found no effect of dilution on hemocytometer sperm density estimates, whereas 36 

motility associated positively with hemocytometer counts, but not with spermatocrit. 37 

Results from all techniques, spermatocrit, CASA and FCM, showed significant positive 38 

correlations with hemocytometer counts. The best correlation between spermatocrit and 39 

hemocytometer counts was obtained at 6000 × g (r = 0.68). Out of two CASA variants, 40 

one or three photographic fields (CASA-1 and CASA-2), CASA-2 showed a very high 41 

accuracy to hemocytometer counts (r = 0.93), but low precision (CV: CASA-2 = 42 

28.4%). FCM was tested with and without microfluorospheres (FCM-1 and FCM-2,) 43 

and relationships to hemocytometer counts were highly accurate (FCM-1: r = 0.94; 44 

FCM-2: r = 0.88) and precise (CV: FCM-1 = 2.5; FCM-2 = 2.7%). Overall, CASA-2 45 

and FCM-1 feature reliable methods for quantification of European eel sperm, but 46 

FCM-1 has a clear advantage featuring highest precision and accuracy. Together, these 47 

results provide a useful basis for gamete management in fertilization protocols. 48 

 49 

 50 
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Introduction 51 

European eel, Anguilla anguilla, is a well-known species in aquaculture with a 52 

commercial value in 2010 of ~8.3 € per kg and production approaching 7000 tons 53 

(FIGIS 2012). Still, the eel farming industry relies solely on wild-caught juveniles for 54 

production, as protocols for commercial production of glass eels are not available. Since 55 

2006, new integrated methods have expanded this research field for European eel, thus 56 

enabling researchers to produce multiple batches of competent gametes, embryos and 57 

yolk sac larvae (Tomkiewicz 2012; PRO-EEL 2013). 58 

For several species of marine finfish, it is challenging to produce high-quality 59 

gametes for fertilization (Bobe and Labbé 2010). As such, research has focused on how 60 

to optimize fertilization strategies for a given species (Butts et al. 2012; 2009). 61 

Standardizing the sperm to egg ratio is one such technique that has been used to 62 

improve fertilization rates (Bart and Dunham 1996; Christopher et al. 2010; Suquet et 63 

al. 1995). Generally lowering the sperm density reduces the fertilization percentage, but 64 

any excess sperm sticking to the egg chorion serves as a substrate for microbial activity, 65 

which is known to impair embryonic development (Bergh et al. 1992; Oppenheimer 66 

1955). Determining the optimal sperm to egg ratio (among other methods) is therefore 67 

important for successful in-vitro fertilization, thus implying the need for accurate and 68 

precise methods for quantification of sperm concentration and density.  69 

Sperm quality is commonly assessed using density and motility/velocity. In the 70 

literature sperm density and motility has been correlated to motility (Rideout et al., 71 

2004). Quantifying spermatozoa density is routinely done by counting the number of 72 

spermatozoa in a specific volume of ejaculate (Alavi et al. 2008). The most common 73 

counting method is performed using a hemocytometer, which is classified by the World 74 

Health Organization as the “gold standard” for sperm quantification in humans (WHO 75 
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1999). This method however, is time consuming (Suquet et al. 1992), and precision 76 

relies on skilled personnel. As such, studies have been conducted to discover faster and 77 

more automated counting methods (reviewed in Fauvel et al. 2010).  78 

Spermatocrit, defined as the ratio of packed sperm to the total volume of milt × 100, 79 

is a fast and easy method to estimate spermatozoa concentration. Positive significant 80 

correlations between spermatocrit and sperm density estimates, using a hemocytometer, 81 

have been reported for several species (Agarwal and Raghuvanshi 2009; Ciereszko and 82 

Dabrowski 1993; Hatef et al. 2007; Rideout et al. 2004). However, it is important to 83 

note that sperm sedimentation is a reported feature in marine fish species (Fauvel et al. 84 

2010), potentially compromising the accuracy of spermatocrit estimates. In addition, 85 

fluctuations in spermatozoa size during the spawning season potentially bias and 86 

influence spermatocrit values; for instance, spermatozoa head size changes in marine 87 

fish during a spawning season, such as in Atlantic cod (Butts et al. 2011).  88 

Computer assisted sperm analysis (CASA) automates sperm quality assessment, 89 

which in turn provides quick, precise, and objective results (Fauvel et al. 2010; López 90 

Rodríguez et al. 2011). The strength of CASA lies in quantification of motility, velocity, 91 

and behavioral trajectories (i.e. linearity, amplitude of lateral head movement). CASA is 92 

furthermore capable of quantifying density of sperm as shown by (Ehlers et al. 2011) 93 

together making it a versatile descriptor of sperm quality. Flow-cytometry (FCM) is 94 

another automated technique that is able to measure the amount of one or more 95 

fluorescent stains in a cell. It features high precision, sensitivity, accuracy, and speed 96 

(Cordelli et al. 2005) and due to this deemed a potentially valuable method for assessing 97 

male germ cell quality (Cordelli et al. 2005). Within this context, there is a need to 98 

assess the applicability of these automated counting methods for the European eel.   99 
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Spermatogenesis in eels applied in captive reproduction experiments is induced using 100 

human chorionic gonadotropin (hCG) (Pérez et al. 2000; Tomkiewicz et al. 2011). 101 

Spermiation in European eel starts around week 5 using 1.5 to 2.0 IU hCG g-1 fish in 102 

weekly treatment (Asturiano et al. 2006; Pérez et al. 2000) with sperm volume 103 

increasing until week 8-12 of treatment after which it stabilizes (Asturiano et al. 2006; 104 

Tomkiewicz et al. 2011). At this stage, spermatozoa densities are in the range of 5 to 18 105 

× 109 cells mL-1 (Gallego et al. 2012; Pérez et al. 2000). During spermatozoa 106 

maturation, spermatozoa size changes in European eel (Asturiano et al. 2006; Marco-107 

Jiménez et al. 2006). This includes an increase in spermatozoa head length from the 5th 108 

to 7th week and head thickening continuing until the 8th week of hormonal treatment 109 

(Asturiano et al. 2006; Marco-Jiménez et al. 2006). After the 8th week, only minor 110 

changes in spermatozoa/sperm cells head size occur, followed by a decrease in head 111 

length from the 12th week and onwards (Marco-Jiménez et al. 2006; Peñaranda et al. 112 

2010; Pérez et al. 2009). Within the last decade, European eel sperm have been 113 

analyzed using CASA techniques to describe motility parameters (Gallego et al. 2013; 114 

Peñaranda et al. 2010; Pérez et al. 2009), ratio of viable spermatozoa (Asturiano et al. 115 

2005; 2004) and their morphology (Marco-Jiménez et al. 2006). Furthermore, 116 

spermatocrit (12,000 × g) has been used to standardize sperm:egg ratios in European eel 117 

fertilization experiments (Tomkiewicz 2012). However, no studies have been conducted 118 

to quantify eel sperm density using CASA or FCM; nor has the accuracy and precision 119 

of different methods to quantify sperm density been evaluated. 120 

The purpose of this study was to provide fast and reliable tools to measure sperm 121 

density for European eel. More specifically, our objectives were to (i) test the 122 

relationship between spermatocrit and Neubauer Improved hemocytometer counts, (ii) 123 

test whether spermatocrit and hemocytometer counts correlates with sperm motility 124 
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class; (iii) assess the effect of sperm dilution on hemocytometer counts; (iii) test the 125 

accuracy of spermatocrit for sperm quantification and identify the G-force for best 126 

correlation between spermatocrit and hemocytometer counts; (iv) evaluate accuracy and 127 

precision of spermatocrit, CASA, FCM using hemocytometer counts as benchmark; and  128 

(v) discuss these results in context of applicability for use in hatchery production of the 129 

European eel. 130 

 131 

Material and methods 132 

Data collection  133 

Fish and hormonal treatment  134 

Male European eels (n = 43; mean standard length and body weight ± SD: 40 ± 2.6 cm 135 

and 124 ± 21 g, respectively) were obtained from a commercial eel farm, Stensgård Eel 136 

Farm A/S in Jutland, Denmark (55.655461N : 9.20051E). Age of the fish ranged from 2 137 

to 6 years. The fish were transported to a research facility (55.407444N : 9.403414E) of 138 

the Technical University of Denmark (DTU) in September 2011, and acclimatized to 139 

saltwater over a 10 day period. While at DTU, the eels were kept in 300 L tanks 140 

equipped with a closed re-circulation system. The salinity and temperature of the system 141 

ranged from 36.7 to 37.3 ppt and 19.5 to 20.5 °C, respectively. Saltwater was made 142 

artificially using Tropic Marin Sea Salt (Dr. Biener GmbH, Wartenberg, Germany). 143 

Fish were maintained under a 12 L light photoperiod  at ~20 lux and 12 h dark with a 30 144 

min gradual transition. No feed was provided during the experiment to mimick nature, 145 

as eels cease feeding in the silvering stage (Dollerup and Graver 1985). 146 

Hormonal treatment was initiated on 22 September 2011. Prior to onset of hormonal 147 

treatment, all males were anesthetized using ethyl p-aminobenzoate at 20 mg L-1 148 

(benzocaine; Sigma-Aldrich Chemie, Steinheim, Germany). Each fish was tagged with 149 
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a passive integrated transponder (PIT tag) in the dorsal muscle tissue. Each week, fish 150 

were weighed and received dorsal injections of recombinant human chorionic 151 

gonadotropin at 1.5 IU g-1 fish (rhCG; Ovitrelle, Madrid, Spain) following Gallego et al. 152 

(2012). 153 

  154 

Sperm sampling  155 

Milt was collected after the 8th (trail 1) and 9th (trials 2+3) hormonal treatment, 156 

coinciding with the recommended time to strip sperm for high quality gametes 157 

(Asturiano et al. 2006). Sperm samples were obtained 24 h after injection of rhCG to 158 

optimize sperm quality (Pérez et al. 2000). Prior to harvest, males were anesthetized 159 

using benzocaine, as above. The urogenital pore was thoroughly cleaned using Milli-Q 160 

water and dried prior to sperm collection. The first ejaculate of milt was omitted to 161 

avoid urine and feces contamination. Ejaculated milt was kept in sterilized 50 mL 162 

Falcon tubes, covered using Parafilm®M, and stored at 4 ˚C until motility estimation 163 

(max. 30 min). Following motility estimation sperm was refrigerated at 4 ˚C until 164 

further assessment (within 5 h).   165 

 166 

Sperm dilution 167 

Dilutions used for hemocytometer counting, CASA, and FCM were 1:1000 or 1:2000 168 

(see below). Hemocytometer counts were performed on fresh sperm, while the other 169 

treatments were conducted on preserved sperm samples. Sperm dilutions were done 170 

immediately after milt collection in P1 medium (Peñaranda et al. 2010) containing 171 

glutaraldehyde 2.5% (v/v) (Sigma-Aldrich Chemie, Steinheim, Germany) to avoid 172 

movement of sperm. Dilutions were done using a two-step procedure by first diluting 173 

sperm 1:20 and subsequently 1:50 or 1:100 to obtain final dilutions of 1:1000 or 1:2000, 174 
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respectively. 175 

 176 

Sperm motility determination 177 

Immediately after milt collection, sperm motility was assessed by mixing 2 µL of milt 178 

with 200 µL of 37 ppt artificial seawater (Aqua Medic Sea salt, GmbH, Bissendorf, 179 

Germany), with 2% w/v Bovine Serum Albumin (Sigma-Aldrich, Chemie, Steinheim, 180 

Germany), adjusted to 8.2 pH (Peñaranda et al. 2010). After activation, 2 µL of sperm 181 

were assessed in a SpermTrack-10® chamber (Proiser R+D, S.L.; Paterna, Spain) and 182 

observed between 15 and 30 s after activation using a Nikon Eclipse 55i microscope 183 

(Nikon Corporation, Tokyo, Japan), fitted with a Nikon DS-Fi1 camera head, and 100× 184 

magnification (10× CFI Plan Flour). All the samples were performed in triplicate and 185 

analyzed by the same trained observer to avoid subjective differences in motility 186 

evaluation. Motility of each replicate was characterized to the nearest 10% increment, 187 

averaged, and then categorized into an arbitrary scale where 0: represents no motile 188 

sperm; while I: <25%; II: 25-50%; III: 50-75%; IV: 75-90%; and V: 90-100% represent 189 

per cent of motile spermatozoa (Pérez et al. 2009).  190 

 191 

Spermatocrit  192 

Spermatocrit, defined as the ratio of packed sperm to the total volume of milt × 100, 193 

was used to estimate sperm concentration. Fresh milt from each male was drawn into 194 

three Vitrex™ micro-hematocrit tubes, 75 mm long, with a 1.1 to 1.2 mm opening and 195 

sealed using Vitrex™ Sigillum wax. Tubes were centrifuged (Haematokrit 210, Andreas 196 

Hettich GmbH & Co.KG, Tuttlingen Germany) for 10 min at specific G-forces ranging 197 

from 500 to 14,000 × g (see below for further details). The mean of three measurements 198 

per male was used for statistical analyses. Spermatocrit was determined using a digital 199 
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caliper (± 0.05 mm). 200 

 201 

Hemocytometer counting 202 

A Neubauer Improved hemocytometer was used for counting sperm cell density diluted 203 

at 1:1000 or 1:2000 (see section Sperm dilution). Sperm counts were done in triplicate 204 

and results expressed as spermatozoa × 109 mL-1  205 

 206 

CASA counting 207 

Milt samples preserved and diluted at 1:2000 in P1 medium (see section Sperm dilution) 208 

were used for CASA counting. Sperm (2.5 μL) were added to the SpermTrack-10® 209 

chamber (Proiser R+D, S.L.; Paterna, Spain) and density was assessed by the 210 

concentration module of the Integrated Semen Analysis System (ISAS; Proiser R+D, 211 

S.L.; Paterna, Spain). Images for CASA analyses were captured using a Nikon Eclipse 212 

E-400 microscope (Nikon Corporation, Tokyo, Japan) equipped with a 10× negative 213 

phase objective lens. The image captured represented ~90% of the whole microscope 214 

field. The mean number of cells per field varied between 15 and 45 sperm, depending 215 

on sperm density. All analyses were performed in triplicate and two different methods 216 

were used: CASA-1 = capturing one microscope field per replicate and CASA-2 = 217 

capturing three microscope fields per replicate.  218 

 219 

Flow cytometer counting 220 

Milt samples used for flow cytometer analyses (Cytomics FC500; Beckman Coulter, 221 

USA) were diluted at 1:2000 in P1 medium (see section Sperm dilution). Two different 222 

methods were applied to calculate sperm density: FCM-1 = at least 5000 events 223 

(spermatozoa detected, after discarding debris) were analyzed by a medium flow rate 224 



10 
 

(30 μL/min) with time as the measured factor in each sample; and FCM-2 = a known 225 

concentration of fluorospheres (Flow-Check™ Fluorospheres, Beckman Coulter) were 226 

diluted in each sperm sample and at least 5000 events (spermatozoa and fluorospheres 227 

detected, after discarding debris) were analyzed by a medium flow rate. Here the ratio 228 

of sperm cells/fluorospheres was the registered factor in each sample. In both methods, 229 

sperm density was determined by the number of spermatozoa per volume analyzed for 230 

each sample. All spermatozoa were stained using 0.1 μM SYBR-14 for 10 min, making 231 

sperm distinguishable from the remaining particles. We used a 20-mW air-cooled 232 

Argon ion laser with excitation wavelength of 488 nm, and measured emission light 233 

using the FL1 photodetector channel to read the green light (525 nm). 234 

 235 

Experimental design  236 

Trial 1: Relationships between spermatocrit, sperm density, and motility  237 

Males (n = 43) were stripped and spermatocrit was measured in triplicate for individual 238 

males by centrifuging at 12,000 × g for 10 min. Sperm samples were counted using a 239 

hemocytometer with a dilution of 1:1000. Sperm motility was assessed for each male.  240 

 241 

Trial 2:  Effect of sperm dilution  242 

In total, 14 randomly chosen males were stripped and sperm from six of these 243 

individuals were selected to have a good dispersion of motility values and avoid bias 244 

(10 to 45%). For hemocytometer counts, sperm samples from the same males were 245 

diluted at 1:1000 and 1:2000 in P1 medium.   246 

 247 

Trial 3: Identification of the optimal G-force 248 
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Initially milt from 35 mature males was collected. From these fish, sperm from 10 249 

males were selected covering the range from low to high (27 to 95%) spermatozoa 250 

motility. Spermatocrit was measured using 500; 2000; 4000; 6000; 8000; 10,000; 251 

12,000; and 14,000 × g at a centrifugal time of 10 min. For each G-force, new aliquot 252 

samples of sperm were used. For each male, hemocytometer counts were obtained using 253 

samples diluted at 1:2000 (see section Hemocytometer counting).  254 

 255 

Trail 4: Test accuracy of automated methods (CASA, FCM) with hemocytometer counts 256 

Data were collected using the same 10 sperm samples as in Trial 3. Automated counting 257 

was performed using CASA (CASA-1 and CASA-2) and FCM (FCM-1 and FCM-2). In 258 

addition, sperm were counted using a hemocytometer. Measurements were done in 259 

triplicate.  260 

 261 

Statistical analyses 262 

Data were analyzed using Sigmaplot v. 11 (Systat Software Inc, Hounslow, UK), and R 263 

(R Core Team, 2012, Vienna, Austria). Shapiro-Wilk and Levene´s test were used to 264 

check for normality and homoscedasticity assumptions, respectively. Data were 265 

expressed as mean ± SD. Alpha was set at 0.05 for main effects and interactions.  266 

 267 

Trial 1: Relationships between spermatocrit, sperm density, and motility 268 

To compare spermatocrit and hemocytometer counts Model II linear regression was 269 

used (ordinary least products regression as described by (Ludbrook 2010)) due to 270 

possible variation on both x and y-axes. Model II regression was run for all males and 271 

also for a subset of males exhibiting motility values greater than 80%. Furthermore, 272 

one-way ANOVAs were run to test whether spermatocrit and hemocytometer counts 273 
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were independent of sperm motility class. Hemocytometer data violated ANOVA 274 

assumptions. As such, a Kruskal-Wallis test was used for further analyses.   275 

 276 

 277 

Trial 2:  Effect of sperm dilution on sperm density 278 

A student T-test was used to compare sperm density estimates in samples diluted in the 279 

ratios 1:1000 and 1:2000, respectively. 280 

  281 

Trial 3: Identification of the optimal G-force  282 

Model II linear regression was used to compare hemocytometer counts and spermatocrit 283 

for each G-force.  284 

 285 

Trial 4: Test accuracy of automated methods (CASA, FCM) with hemocytometer counts 286 

Model II linear regression was used to compare CASA-1, CASA-2, FCM-1, FCM-2, 287 

spermatocrit with hemocytometer counts. Next, coefficient of variation (CV) was used 288 

for each counting technique to assess between subject variability; spermatocrit values 289 

for this analysis were obtained from Trial 3.  290 

 291 

Results 292 

Trial 1: Relationships between spermatocrit, sperm density, and motility 293 

Spermatocrit at 12,000 × g ranged from 12.3 to 100% and hemocytometer counts 294 

ranged from 1.4 to 21.4 × 109 sperm mL-1 (Fig. 1). For these 43 males, there was a 295 

significant positive relationship between spermatocrit and hemocytometer counts (r = 296 

0.53, F1,42 = 15.60, P < 0.001, y =  ̶ ̶1.564 + 4.031x). However, a high degree of scatter 297 

was observed in the spermatocrit values; i.e. spermatocrit values for hemocytometer 298 
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counts around 8 x 109 mL-1 ranged from 15 to 60%. The hemocytometer counts for 299 

males showing motility > 80% (n = 10) were generally higher, resulting in a different 300 

relationship between spermatocrit and hemocytometer counts (r = 0.62, F1,9  = 5.02, P = 301 

0.030, y =  ̶̶ 24.434 + 4.661x).  302 

 303 

[Insert Figure 1] 304 

 305 

Hemocytometer counts were associated with motility class, such that sperm counts 306 

were significantly higher in motility class V (approaching 100 %) than in class 0 with 307 

lowest motility (F4,37 = 2.73, P = 0.034; Fig. 2). On the contrary, spermatocrit values did 308 

not vary among sperm motility classes (H = 4.789, P = 0.442; Fig. 2);  class 0 showed 309 

high variability as it was composed of two individuals.  310 

 311 

[Insert Figure 2] 312 

 313 

Trial 2:  Effect of sperm dilution on sperm density 314 

The effect of dilution (1:1000 vs. 1:2000) on hemocytometer estimates of sperm density 315 

was non-significant (t10 = 0.048, P = 0.963; Fig. 3); only the variation among replicates 316 

tended to be higher at lower dilution.  317 

 318 

[Insert Figure 3] 319 

  320 

 Trial 3: Identification of optimal G-force 321 

Sperm from Male 3 and Male 8 showed a rapid decrease in spermatocrit over the G-322 

force gradient (Fig. 4). There were significant positive relationships between 323 



14 
 

spermatocrit and hemocytometer counts at 500; 4000; 6000; 12,000; and 14,000 × g (r 324 

values ranged from 0.33 to 0.68, P ≤ 0.049; Fig. 5.). The best relationship was found 325 

between spermatocrit and hemocytometer counts at 6000 × g (r = 0.68, P = 0.016; Fig. 326 

5), as such these G-force data were used for further comparisons. 327 

 328 

[Insert Figure 4] 329 

[Insert Figure 5] 330 

 331 

 Trail 4: Test accuracy of automated methods (CASA, FCM) with hemocytometer counts 332 

CASA-1 (r = 0.70, F1,9 = 7.61, P = 0.012) and CASA-2 (r = 0.93, F1,9 = 51.16, P < 0.001; 333 

Fig. 6) density estimates were positively related to hemocytometer counts. Furthermore, 334 

there were significant positive relationships between FCM-1 (r = 0.94, F1,9 = 62.921, P < 335 

0.001) and FCM-2 (r = 0.88, F1,9 = 26.84, P < 0.001) and hemocytometer counts.  336 

 337 

[Insert Figure 6] 338 

 339 

The CVs for CASA-1 (17.9%) and CASA-2 (28.4%) were in the order of 7.5 times 340 

greater compared to the other counting techniques (CV ranges from 2.5 to 5.9%; Table 341 

1).  342 

 343 

[Insert Table 1] 344 

 345 

Discussion  346 

In this study, we report several key findings: (i) hemocytometer counts were positively 347 

associated sperm motility; (ii) hemocytometer counts were not affected by milt dilution 348 
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ratio; (iii) optimizing G-force for centrifuging milt improved the relationship between 349 

spermatocrit and hemocytometer counts; (iv) spermatocrit, CASA and FCM, were all 350 

positively related to hemocytometer counts with CASA-2 and FCM-1 having the 351 

strongest relationship to hemocytometer counts.  352 

Spermatocrit has been used to estimate sperm concentration for several species of 353 

fish (Rakitin et al. 1999; Rideout et al. 2004), such as yellow perch, Perca flavescens 354 

(Ciereszko and Dabrowski 1993), haddock, Melanogrammus aeglefinus (Rideout et al. 355 

2004), Atlantic halibut, Hippoglossus hippoglossus (Tvedt et al. 2001), snow trout, 356 

Schizothorax richardsonii (Agarwal and Raghuvanshi 2009), brown trout, Salmo trutta 357 

(Poole and Dillane 1998), Atlantic salmon, Salmo salar (Aas et al. 1991), rainbow trout, 358 

Oncorhynchus mykiss (Ciereszko and Dabrowski 1993) and lake whitefish, Coregonus 359 

clupeaformis (Ciereszko and Dabrowski 1993). Together these studies found 360 

spermatocrit as a quick and easy technique for estimating sperm concentration (Alavi et 361 

al. 2008). In the present study, we evaluated the relationship between spermatocrit and 362 

hemocytometer counts for the European eel and showed a significant positive 363 

relationship between these two quantitative sperm metrics. However, its relationship 364 

with hemocytometer counts showed considerable scatter and appeared inferior to the 365 

automated counting methods. Furthermore, the tests of different centrifugal G-forces 366 

revealed that r-values varied between 0.33 and 0.68 and the best relationship between 367 

spermatocrit and hemocytometer counts was obtained at 6000 × g. Higher centrifugal 368 

forces tended to result in low correlation coefficients, as a result of changes in cell 369 

packing within the microhematocrit tube. 370 

A non-significant relationship between spermatocrit and hemocytometer counts was 371 

found in Atlantic cod, Gadus morhua (Rakitin et al. 1999). The authors suggested this 372 

might be an artifact of small volumes of milt being diluted in immobilizing media 373 
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before sperm density was quantified using a hemocytometer. This study by Rakitin et al. 374 

(1999) used a one-step 500-fold dilution and their reported variability was high (CV = 375 

27.7%). We found negligible effect of milt dilution ratio on hemocytometer counts as 376 

well as a low coefficient of variation (CV = 5.9%). The precision and accuracy of 377 

hemocytometer counts has been addressed in the literature (see Alavi et al. 2008 and 378 

Fauvel et al. 2010 for review) and errors due to pipetting, dilution ratio, sperm settling 379 

times, and operator biases are emphasized (Rakitin et al. 1999). Therefore, there is a 380 

need for species-specific guidelines for fishes as set by the WHO for humans (WHO 381 

1999).  382 

Sperm motility and spermatocrit values were independent, while hemocytometer 383 

density estimates increased with motility class, such that the low motility class 0 (no 384 

motility) had significantly lower sperm density than the high motility class V (90-100% 385 

motility). The latter concurs with final hydration of spermatozoa coinciding with final 386 

maturation and increase of motility (Gallego et al. 2012). Useful future research should 387 

relate these quantitative sperm metrics to other estimates of quality, such as sperm 388 

velocity and fertilization success. 389 

In our study, CASA-2 and FCM-1 show strong predictive relationships with 390 

hemocytometer counts (r = 0.93 and 0.94, respectively). FCM-1 gave the strongest 391 

relationship. FCM has an advantage over CASA in that it has a 10-fold lower 392 

coefficient of variation. Similarly, sperm counts measured by hemocytometer and flow 393 

cytometer were also highly correlated (r2 = 0.85) in the razorback sucker, Xyrauchen 394 

texanus (Jenkins et al. 2011). CASA, although not commonly used for quantification of 395 

fish sperm density, gave us promising result. This indicates that CASA is a universal 396 

tool for sperm quality/quantity assessment and further complements flow cytometry 397 

which -besides quantification, can describes the physiology of milt parameters (i.e. 398 
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membrane potential, cell integrity; Cordelli et al. 2005; Fauvel et al. 2010). CASA 399 

software is commonly used throughout the field of sperm biology (Marco-Jiménez et al. 400 

2006; Peñaranda et al. 2010; 2008; Pérez et al. 2009), as open-source systems have 401 

immerged, resulting in inexpensive alternatives for sperm quality assessment (Komori 402 

et al. 2006; Wilson-Leedy and Ingermann 2007). We recommend these automated 403 

systems for studying reproductive physiology and for routine assessment of sperm 404 

density for the European eel. Additionally, spectrophotometry methods should be 405 

examined (Fauvel et al. 1999).  406 

When deciding which method to use for quantification of sperm, both economic 407 

feasibility and accuracy/precision of specific device(s) need to be considered. In Table 408 

2, we provide an overview of resource requirements, advantages, and disadvantages for 409 

the different quantitative methods investigated. In summary, the hemocytometer 410 

features low operational costs, precise measurements, but is time consuming and 411 

precision relies on skilled personnel. Spermatocrit measurements require a centrifuge, 412 

low level of operator training, are fast, but are not as accurate as other methods. CASA-413 

1 requires special software and a microscope with video frame grabber. Additionally, 414 

CASA-1 gives fast results, but has relatively low accuracy and precision. CASA-2, like 415 

the aforementioned, needs software, requires a microscope, and video frame grabber. 416 

Furthermore, CASA-2 gives an accurate result, but at low precision. FCM-1 requires 417 

expensive equipment, gives both accurate and precise results, while FCM-2 features the 418 

same characteristics, although slightly more expensive and less accurate. Both the 419 

hemotocymeter and automated counting techniques differ from spermatocrit by giving 420 

counts rather than concentration, and therefore are likely less subjective to bias from 421 

changes in spermatozoa head morphology (Marco-Jiménez et al. 2006).   422 

 423 
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[Insert Table 2] 424 

 425 

In conclusion, we found highly predictive relationships between CASA-2 and FCM-426 

1 and hemocytometer counts, which can be considered as accurate methods for 427 

quantification of European eel sperm. These methods appear the most efficient for 428 

developing standardized fertilization protocols, enabling optimized sperm to egg ratios. 429 

We also found a lower, but significant correlation between spermatocrit and 430 

hemocytometer counts, although not as clear as reported in some other fish species. 431 
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Fig. 1. Relationships between spermatocrit and hemocytometer counts in the European 604 

eel, Anguilla anguilla. Model II linear regression was used (ordinary least products 605 

regression as described by (Ludbrook 2010)) due to possible error in both x and y-axes. 606 

Regression analyses were run for all males (n = 43) and this is represented by a solid 607 

line; those males with motility >80% (n = 10) are represented by open circles and a 608 

dashed line.  609 
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 611 
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Figure 2 614 
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 616 

Fig. 2. Spermatocrit (gray bars on primary y-axis) and hemocytometer counts (black 617 

bars on secondary y-axis) for five sperm motility classes in the European eel, Anguilla 618 

anguilla. Data are expressed as mean ± SD. Values with common letters were not 619 

significantly different via one-way ANOVA. 0 = 0% motility; I: 1 to 25% motility; II: 620 

25 to 50% motility; III: 50 to 75% motility; IV: 75 to 90% motility; V: 90 to 100% 621 

motility. 622 
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 629 

Fig. 3. Hemocytometer counts for six males using two different milt dilutions in the 630 

European eel, Anguilla anguilla. Solid symbols = 1:1000; open symbols = 1:2000 631 

dilution. 632 
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Figure 4 639 
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Fig. 4. Values of spermatocrit for 10 males over a G-force gradient (500 to 14,000 × g) 642 

in the European eel, Anguilla anguilla. Male Id is shown on the right (1 to 10). 643 
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Fig. 5. Relationships between spermatocrit and hemocytometer counts over a G-force 653 

gradient (500 to 14000 × g) in the European eel, Anguilla anguilla. Model II linear 654 

regression was used (ordinary least products regression as described by (Ludbrook 655 

2010)) due to possible error in both x and y-axes. For each plot the P-value, sample size, 656 

correlation coefficient, and equation of line are shown. 657 
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Figure 6 674 
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Fig. 6. Relationships between CASA-1, CASA-2, FCM-1, FCM-2 and hemocytometer 677 

for the European eel, Anguilla anguilla. Model II linear regression was used (ordinary 678 

least products regression as described by (Ludbrook 2010)) due to possible error in both 679 

x and y-axes. For each plot the P-value, sample size, correlation coefficient, and 680 

equation of line are shown. 681 
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Table 1. Coefficients of variation for hemocytometer, spermatocrit at 6000 × g, 685 

computer assisted sperm analysis (CASA-1 and CASA-2) and flow cytometry (FCM-1 686 

and FCM-2) for the European eel, Anguilla anguilla. Mean values are shown for each 687 

counting method. Measurements were performed in triplicate for 10 males.  688 

 689 

 Male 
number 

Neubauer-
Improved 

Spermatocrit CASA-1 CASA-2 FCM-1 FCM-2 

 1 6.1 6.5 36.5 34.7 5.5 3.6 

 2 11.2 3.0 11.7 31.5 1.7 2.5 

 3 8.4 2.1 13.8 27.4 1.8 3.5 

 4 0.0 10.1 6.9 36.0 2.1 1.5 

 5 5.1 9.6 30.6 27.3 1.7 1.4 

 6 4.7 6.8 12.0 21.0 2.5 3.9 

 7 8.7 6.8 1.8 16.0 3.8 4.2 

 8 6.0 4.0 29.0 21.5 2.0 3.2 

 9 7.6 4.2 32.4 26.4 0.8 3.0 

 10 0.9 3.1 3.8 42.2 3.6 0.5 

 Mean    5.9 5.6 17.9 28.4 2.5 2.7 

 690 
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Table 2. Resource requirements, advantages, and disadvantages for the different 703 

quantitative methods used to determine sperm density for the European eel, Anguilla 704 

anguilla.   705 

Quantification 
method 

   Requirements Advantages Disadvantages 

Neubauer-
Improved 
hemocytometer 

 microscope required 

 Neubauer Improved 
hemocytometer  

 trained personnel 

 cheap  

 precise - low CV 

 described in literature 
 

 time consuming 
 

Spermatocrit 

 centrifuge required 

 microhematocrit tubes  

 tube sealant 

 haematocrit tube reader 

 fast 

 precise - low CV 

 low level of  training 

 inaccurate - low r 

 sperm sedimentation 
 
 

CASA-1 

 CASA software 

 software calibration 

 computer and microscope with 
frame grabber  

 training 

 fast  

 additional measures of 
sperm quality obtained 
 

 low precision - high CV 

 inaccurate – low r 

 trained personnel 

CASA-2 

 CASA software 

 software calibration needed 

 computer and microscope with 
frame grabber  

 training  

 fast  

 accurate - high r 

 additional measures of 
sperm quality easy 
obtainable 

 low precision - high CV  
trained personnel  

 

FCM-1 

 flow cytometer required 

 training  

 precise - low CV 

 accurate – high r 

 trained personnel  

 need to extrapolate by 
equation 

FCM-2 

 flow cytometer and 
fluorospheres required 

 training  

 precise - low CV 

 accurate – high r 

 fluorospheres making it more 
expensive than FCM-1  

 lower accuracy than FCM-1 

 need to extrapolate by 
equation 

 706 

 707 

 708 

 709 

 710 

 711 


