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We discuss the dynamo activities of zero-age main-sequence stars (ZAMSs) with their periodic light variation caused by a starspot and with the strength of the chromospheric emission lines. The amplitudes of the light curves of
33 ZAMSs in IC 2391 and IC 2602 were measured with TESS photometric data. The light curves can be grouped into the following four categories; single frequency, double-dipped, beater, and complex variability. The amplitudes
of the light curves are 0.001 — 0.145 mag, which are similar to those of ZAMSs in Pleiades (Rebull et al. 2016, AJ, 152, 133). The starspot coverages are 0.1 — 17%. It is known that the solar-type superflare stars with the large
amplitude of the light curve have strong Ca Il IRT emission line (Notsu et al. 2015, PASJ, 67, 33). We found that the light variations and Rl)\8542 of the ZAMSs are as large as those of the most active superflare stars and two orders
larger than those of the Sun. It is suggested that the high magnetic activity similar to that of the Sun continues from 30 Myr old. ZAMSs with single frequency in the light curve tend to have both large light variation, indicating large
spot coverage, and saturated Rl)\8542' ZAMSs with complex variability have small spot coverage (< 1%) and small Rl>\8542' We also detected 21 flares in the TESS light curves of 12 ZAMSs. The energy of the flares are estimated as

~ 1073 — 10% erg, which are comparable to the energy of superflare.
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starspot have been observed as the indicator of the activity. solar-type stars (Gallet & Bouvier, 2013) (Yamashita & Itoh, 2022a) We analyzed TESS photometric data with eleanor (Feinstein et al., 2019), and obtained the rotational
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21 flares are detected in the light curves of 12 ZAMS stars in IC 2391 and IC 2602 (1.5h < duration time < 15h).
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o The objects with smaller N have flare energy, Fiue = /Lﬂ (t)dt.

» larger amplitude
» larger R’ (= brighter Ca Il emission line) A. The energy, Ffare, is estimated to be ~ 10?3 — 10% erg, which is comparable with the energy of a superflare.

o The objects with the larger chromospheric emission lines also have the larger spot / spot group.

A. ZAMSs with single frequency in the light curve (@) tend to have both large light variation, indicating 4-3. Flare and saturation
large spot coverage, and saturated R/)\8542'

A. ZAMSs with complex variability (4) have small spot coverage (< 1%) and small R/)\8542' p <2 5 post of the ZAMS stars in [t 2581 and [1- 2652 on which the
: | flares are detected are located in the saturated regime.
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Conclusion: The high magnetic activity similar to that of the Sun continues from 30 Myr old.
The energy of the flares are estimated as ~ 10%° — 10%° erg, which are comparable to the energy of superflare.
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