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Abstract 

Many physics and performance studies carried out with the ATLAS detector at the Long 

Hadron Collider (LHC) require very large event samples. A detailed simulation for the 

detector, however, requires a great amount of CPU resources. In addition to detailed 

simulation, fast techniques and new setups are developed and extensively used to supply 

large event samples. In addition to the development of new techniques and setups, it is still 

possible to find some performance improvements in the existing simulation technologies.  

This work shows some possible ways to increase the performance for different full and 

fast ATLAS detector simulation setups, using new libraries and code improvements in the 

ATLAS detector simulation framework. Besides of the improvements, measured time 

consumptions of different setups are shown and possible further improvements are the other 

main focuses of this project. 
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1 Introduction 

Particle physics is one of the fundamental approaches to be able to understand the 

laws of the smallest parts of the matter, called particles. Several particle physics 

experiments have been organised to have a deeper understanding of the particle world.  

Between 1998 and 2008, the LHC1 was built to reach higher energies in particle 

collisions. It is the highest-energy (14TeV) particle collider ever built so far. It has a 

circumference of 27 km and lies 100 m underground. Protons are first accelerated in a 

linear accelerator and are subsequently carried to the LHC via a chain of circular 

accelerators. Each proton beam consists of ~3000 bunches and each bunch contains 

~1011 protons. Then, they are collided in four different experiment points. To keep the 

beams on track, ~1200 superconducting dipole and ~400 quadruple magnets producing 

an 8.33 Tesla magnetic field are used.  

There are four main experiments on the LHC. ATLAS2 and CMS3 are the two largest 

symmetric general-purpose particle detectors. Furthermore, the other two non-

symmetric detectors are LHCb4 and ALICE5. The LHCb experiment mainly investigates 

the properties of b-quarks and CP Violation. The focus of ALICE experiment is to 

measure the collision of heavy ions and is to analyse behaviour of quark gluon plasmas. 

All the four detectors and the LHC were successfully constructed and the first beam 

was circulated in 2008. However, they do not function at full capacity, upgrades are still 

going on to catch the maximum centre of mass energy of 14 TeV for proton-proton 

collisions. A schematic view of LHC and how the experiments are located are shown in 

Figure 1. 

Modern particle physics relies as much on computer simulations as on the physical 

experiments. Before the construction of the detectors, it has to be ensured that high 

quality physics studies are feasible with the intended detector design. That is to say, 

                                                      
1 LHC: Long Hadron Collider 
2 ATLAS: A Toroidal LHC ApparatuS 
3 CMS: Compact Muon Solenoid 
4 LHCb: Large Hadron Collider beauty 
5 ALICE: A Large Ion Collider Experiment 
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particle identification and measurements will be done at high efficiencies and with high 

precision. Detector simulation plays an important role to assure that all the requirements 

will be met. Moreover, complex particle interaction processes with the detector material 

make the calculations by hand impossible. As a particle traverses the detector, it 

interacts with the detector material in many ways and it may decay into other particles. 

Thus, the detector output is non-trivial and software tools are used to simulate the most 

relevant processes and their impacts on the measurements.  

To allow for highly accurate results in physics studies, very large simulated collision 

event samples are required. The traditional way to simulate particles traversing the 

detector is a full, very accurate simulation which models the particle interactions with 

the detector material, taking into account various material and particle properties. This 

simulation approach is used, regardless of whether collision or cosmic ray events are 

simulated. Since this full detector simulation takes time in the order of minutes per 

event, it is necessary to investigate faster and feasible ways to generate billions of 

simulated events per year. 
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Figure 1 A schematic view of LHC experiments and the CERN accelerator complex [1] 

2 ATLAS Experiment  

The ATLAS [1] detector is the biggest particle detector ever constructed. As of today, 

the collaboration consists of more than 3000 scientists. The detector measures 25m in 

height and 44m in length and weighting about 7000 tons. It is built to measure the 

particles produced by proton-proton collisions of up to 14 TeV centre of mass energy 

as well as heavy-ion collisions up to 5.5 TeV. The purpose has been to verify the existing 

Standard Model physics and search new phenomena in particle physics as well as other 

physics scenarios like Supersymmetry and “exotic” particles.  The detector consists of 
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three sub systems: Inner detector, calorimeters and muon system. The cross-section of 

the detector and main parts of it are shown in Figure 2. Each detector sub-system has its 

own purpose and functionality. When combining the information gathered by the 

individual systems, a complex picture of the collision event is obtained. 

 

Figure 2 A cut away view of ATLAS detector measuring 25m in height, 45m in length and 

weighting about 7000 tons. 

 

2.1 Inner Detector  

The inner detector is the sub-detector closest to the collision point and, thus, the 

inner-most part of the ATLAS detector. The inner detector is a tracking detector, 

consisting of  three components: three layers of silicon pixel detectors providing three 

space points per charged particle, four stereo layers of silicon strip detectors (SCT) 

providing four-space points and a transition radiation tracker (TRT) providing 36 hits 

and additional electron – pion separation capabilities. 
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2.2 Calorimeter System 

After the particles have passed through the inner detector, they enter the calorimeter 

system. The main purpose of the calorimeter system is to measure the energies of the 

particles. It is composed of two sub-calorimeters. The electromagnetic calorimeter is 

responsible for measuring photon and electron energies, while the hadronic 

calorimeter measures energies of hadrons. In order to measure these energies, incident 

particles are forced stop inside the calorimeter. Thus, they are provoked to cause a 

particle shower such that energy deposited by the shower can be measured. As 

different showers shapes are caused by different type of particles, the shower shapes 

can be used to determine the particle types. Muons, however, only interact very weakly 

with the calorimeter much so that they easily pass through the calorimeter system.  

2.3 Muon Spectrometer   

The muon spectrometer is the outer-most part of the ATLAS detector and has the 

most significant signatures for some of the most interesting processes at the LHC. Like 

the inner detector, the muon system is responsible for particle tracking, whereas only 

muons will reach the muon spectrometer. Throughout the muon system, a 0.3 T 

magnetic field is applied to measure each particle’s charge over momentum ratio. 

Combining this to that of inner detector, very accurate muon momentum measurements 

are obtained. 

As mentioned above, each particle leaves a distinct signature in the detector. Figure 

3 shows a few examples of particle signatures as they appear in the ATLAS detector. 
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Figure 3 Particle signatures of particles traversing the ATLAS detector. The distinct 

signatures of different particle types allow for efficient particle identification with the ATLAS 

detector. 

3 Simulation Strategies in ATLAS 

Detector simulation is required to qualify the detector response (and its uncertainties) 

to particles stemming from proton-proton collisions. Due to in-time and out-of-time 

pileup, measurements of signal events are overlaid with background processes. Thus, 

both background and signal particles are simulated in the detector. During the design 

phase of the ATLAS experiment, detector simulation played a major role in finding the 

most suitable detector layout for physics studies at the LHC.  Besides, in order to prepare 
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physics analyses and software tools prior to recording data, a great number of simulated 

event samples was necessary.       

The modelling of detector responses and the simulation of physics events with Monte 

Carlo methods is a basic technique in particle and high energy physics. The main input 

for the testing and validating the performance of the reconstruction software is simulated 

data as most of the tools and software are developed during the construction of the 

detector. 

In order to compare recorded and simulated data, after some point, it necessary to have 

a common output format. However, this comparison is valid only on a statistical basis 

for significant distributions due to the intrinsic randomness of the Monte Carlo method.  

There are four steps to produce Monte Carlo event samples for the ATLAS 

experiment.  

3.1 Event Generation 

The physics event generator is the basis for particle simulation. The events consist of 

stable particles with specified creation point in space and time, four momenta and 

particle type. Stable particles from a single proton-proton interaction at the vertex 

(0,0,0) are computed on the theoretical basis. These events are either directly passed 

to the detector simulation or written into a file.  

3.2 Physics and Detector Response 

The next step in producing the Monte Carlo events is to simulate interactions of the 

particles with the detector. In a fast manner, this is done by modelling the energy 

depositions of particles inside the detector. Yet, in a detailed manner, further on called 

full simulation, the particles are processed through the detector and the most significant 

interactions with the detector are emulated. Energy depositions in sensitive detector 

elements, further on called hits, are saved to a file for further processing in the 

digitization step (see section 3.3). In the ATLAS experiment, there are three detector 

simulation methods available. All three of them are analysed and tested on this work: 

Geant4, ATLFASTII, and ATLFASTIIF. These approaches can be categorized into 
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two groups: Geant4 in full simulation; ATLFASTII and ATLFASTIIF are in fast 

simulation.  

3.2.1 Geant4 

Geant4 is a generic toolkit to simulate particles traversing matter. It can simulate 

different types of particle interactions with different materials over a very wide variety. 

Its main applications are found to be several fields such as medical science, high 

energy physics and astrophysics. 

Due to very high precision capacity of Geant4, the detailed full simulation in 

ATLAS is based on Geant4. Geometrical description and the desired accuracy 

parameters are passed to Geant4 for particle simulation. While it provides very 

accurate results, the drawback for that is the immense computational power and a great 

amount of time required to simulate collision events in the ATLAS detector. Due to 

this disadvantage, it is not feasible to use Geant4 for the cases that require great amount 

of event samples. Thus, it is necessary to seek for faster ways of doing this job. The 

relative Geant4 simulation time contribution per ATLAS sub-detector is shown in 

Figure 4. 

 

Figure 4 Relative Geant4 simulation time per sub-detector [2]. 

3.2.2 ATLFASII 

About 95% of the overall detector simulation time is spent in the calorimeter 

simulation in Geant4. Thus, a fast calorimeter simulator (FastCaloSim [3]), which is a 

parameterised simulation based on Geant4, is developed to reduce total time. 

ATLFASTII is a fast ATLAS detector simulator which uses FastCaloSim for the 

calorimeter simulation and Geant4 for the inner detector and muon spectrometer. This 

way, overall job time is reduced by the factor of 10.  
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Muons are the only particles simulated by Geant4 outside of the inner detector. The 

rest of the particles leaving the inner detector are simulated by FastCaloSim. Thus, the 

only particles that can pass to muon spectrometer in ATLFASTII are muons. 

3.2.3 ATLFASTIIF and Fatras 

ATLFASTIIF is a fast simulation for ATLAS detector. It is an upgrade to 

ATLFASTII in a sense that ATLFASTIIF uses the fast ATLAS Tracking Simulation 

(Fatras [4]) for the inner detector and muon spectrometer instead of Geant4. With 

ATLFASTIIF, a factor of ~100 in CPU time is gained compared to full Geant4 detector 

simulation. Fatras uses the simplified reconstruction geometry and physics 

parameterizations so that an additional factor of ~10 is obtained compared to full 

Geant4 simulation.  

3.3 Digitization 

The digitization software converts the simulated energy deposits inside sensitive 

detector material into the detector response. Hence, the next step in the simulation 

chain is to simulate the detector response and obtain an output format, comparable to 

data retrieved from the detector. This includes conversion of the previously computed 

energy deposits into measurable quantities. The output format is RDO (RAW Data 

Objects). Thus, the steps after this point are not specific to the simulation. 

3.4 Reconstruction 

After the RDO output format is produced, the next step both in the simulation chain 

and real detector data chain is to interpret the file. Different algorithms are used to 

trace the particles, to measure momentum and energy and to identify individual 

particles. 

4 Test Results and Performance Improvements 

Different setups and approaches for detector simulation in the ATLAS experiment 

explained in the section 3.2. Each of these setups takes different amount of time for the 
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simulation. In order to test and improve these different setups in terms of CPU time 

consumption, there are several practical techniques. 

The first technique is to measure simulation time per event. When the main concern is 

time consumption of different setups, this technique is very feasible to apply. Another 

technique that can be employed in performance tests is to use CPU profiling. The CPU 

profiling technique that was used in this project takes samples of the call stack of the program 

within the specified time intervals and, thus, gives sufficiently enough results for average 

CPU time consumptions of the different functions called by the program. With the profiling, 

it is easier to analyse which part of the program takes most of the time and, hence, to find 

possible candidate functions to be improved. KCachegrind [5] is a visualization tool for the 

profiling data, which is used in this work. Each colored rectangle represents a function; its 

size tries to be proportional to the cost spent therein while the active function is running. The 

profiling tool catches all memory accesses for the trace. The trace includes the number of 

instruction/data memory accesses and 1st/2nd level cache misses, and relates it to source 

lines and functions of the run program. Thus, the numbers just under the percentages in the 

profiling diagrams give us a good approximate values proportional to the exact run time of 

functions. 

In order to test and improve the simulation, the standard mathematics library is replaced 

by the Intel® Math Kernel Library and an improved ATLAS magnetic field interpolation is 

used. Test results for time per event statistics are shown in the following table and CPU 

profiling diagrams are in the appendix. 
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 Geant4 

(7 Events) 

(Average ±Standard Deviation) 

/(Minimum)/  (Maximum) per 

event in sec. 

ATLFASTII 

(80 events) 

(Average ±Standard Deviation) 

/(Minimum)/ (Maximum) per 

event in  

sec. 

ATLFASTIIF 

(500 Events) 

(Average ±Standard Deviation) 

/(Minimum)/ (Maximum) per 

event in sec. 

Standard 308(±  146) 

/ 151 /  628 

33.9(± 11.8) 

/ 9.77 / 67.6 

1.45(± 0.452) 

/ 0.503 /  3.3 

Intel® Math 

Kernel Library 

10.3 update 2 

297(±  128) 

/ 153 / 572 

29.6(± 10.4) 

/ 11.2 / 64.2 

1.28(± 0.395) 

/ 0.429 / 2.76 

Intel® Math 

Kernel Library 

11.0 update 3 

274(±  115) 

/ 136 / 514 

29.4(± 10.4) 

/ 10.2 / 66.8 

1.18(± 0.361) 

/ 0.423 / 2.67 

Intel® Math 

Kernel Library 

11.0 update 3 + 

Improved 

ATLAS 

Magnetic Field 

Interpolation 

270(±  115) 

/ 142 / 512 

- 

(Unable to test due to 

temporary incompatibilities) 

1.26(± 0.388) 

/ 0.442 / 2.84 

All values are (Average ± Standard Deviation)/(Minimum)/(Maximum) per event in seconds, 

tested in the ATLAS offline software release 17.7.X.Y with ttbar samples and geometry version ATLAS-

GEO-20-00-01. 
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 Another way to improve execution performance is based on a deeper understanding 

of low-level CPU features such as instruction level parallelism. In the programming, 

branch prediction strategy plays an important role. The if-else statements in a code are one 

of the important parts of the branch prediction. In the CPU, multiple instructions are 

pipelined. If the next instructions that will be issued can be predicted correctly, no 

instruction would be wasted. That is to say, the better a branch is predicted, the more 

efficient the CPU is utilized. A mechanism to predict a branch is to count how many times 

a branch is taken or not. Thus, reducing the number of branches caused by the if-else 

statements is important in terms of CPU time. On this work, thanks to the CPU profiling 

explained previously, the straightLineDistanceEstimate() function is chosen and, then, 

improved, using the branch prediction strategy. The code before and after the modification 

is as shown:  

 

 

0209   if(A==0.) {                      // direction parallel to cylinder axis 
0210     if ( fabs(currDist) < tol ) { 
0211       return Trk::DistanceSolution(1,0.,true,0.);   // solution at surface 
0212     } else { 
0213       return Trk::DistanceSolution(0,currDist,true,0.); //point of closest approach without intersection 
0214     } 
0215   } 
0216  
0217   // minimal distance to cylinder axis 
0218   double rmin = C - B*B/A < 0. ? 0. :  sqrt(C - B*B/A); 
0219  
0220   if ( rmin > radius ) {          // no intersection 
0221     double first = B/A; 
0222     return Trk::DistanceSolution(0,currDist,true,first); //point of closest approach without intersection 
0223   } else { 
0224     if ( fabs(rmin - radius) < tol ) {     // tangential 'intersection' - return double solution 
0225       double first = B/A; 
0226       return Trk::DistanceSolution(2,currDist,true,first,first); 
0227     } else { 
0228       double first  = B/A - sqrt((radius-rmin)*(radius+rmin)/A); 
0229       double second = B/A + sqrt((radius-rmin)*(radius+rmin)/A); 
0230       if ( first >= 0. ) { 
0231         return Trk::DistanceSolution(2,currDist,true,first,second); 
0232       } else if ( second <= 0. ) { 
0233         return Trk::DistanceSolution(2,currDist,true,second,first); 
0234       } else {      // inside cylinder 
0235         return Trk::DistanceSolution(2,currDist,true,second,first); 
0236       } 
0237     } 
0238   } 
0239 } 

 

Figure 5 Unmodified part of the straightLineDistanceEstimate function in CylinderSurface.cxx [6] code 
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//just tools for quick calculation 

  double oneOvera = 1./A; 
  double bOvera = B*oneOvera; 
 

  //Arguments of DistanceSolution function 
  double first = bOvera; 
  double second = bOvera; 
  int num=0; 
 

  if(A!=0.) { 
      double temp2 = C - B*bOvera; //just used in the following 
      double rmin = temp2 < 0. ? 0. : sqrt(temp2); // minimal distance to cylinder axis 
      double rDiff = rmin-radius; 
 

      if( rDiff > 0. ){ // no intersection 
      second=0.; // point of closest approach without intersection 
      }else if( fabs(rDiff) >= tol ){   // tangential 'intersection' - return double solution 
      double mySqrt = sqrt( (-1*rDiff)*(radius+rmin)*oneOvera ); 
      second -= mySqrt; 
      first += mySqrt; 
      num = 2; 
      if(second >= 0.){ 
          double temp = first; 
          first = second; 
          second = temp;           
      } 
      } 
  }else{    // direction parallel to cylinder axis 
      first = 0.; 
      second = 0.; 
      if( fabs(currDist) < tol ){ 
      num=1; 
      currDist = 0.; 
      } 
  } 
 

  return Trk::DistanceSolution(num, currDist, true, first, second); 
} 

 

Figure 6 Improved part of the straightLineDistanceEstimate() function in CylinderSurface.cxx [5] code 

 

After the improvement, a 1% overall performance gain is achieved. Reduced actual CPU 

time consumption from 7.44%, in Figure 7, to 6.52%, in Figure 8 ; 

 

Figure 7 Actual CPU time consumption of unmodified straightLineDistanceEstimate() shown in the CPU profiling software 

with ATLFASTIIF detector simulation setup, ATLAS offline software release: 17.6.0.5 & ttbarSample 
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Figure 8 Actual CPU time consumption of improved straightLineDistanceEstimate() shown in the CPU profiling software 

with ATLFASTIIF detector simulation setup, ATLAS offline software release: 17.6.0.5 & ttbarSample 

5 Summary 

Detector simulation is one of the biggest challenges for CERN LHC experiments. 

There are several detector simulation setups varying from full, detailed simulation to 

very fast, comparatively less accurate simulation. Three different detector simulation 

approaches are used by the ATLAS Collaboration and studied in this work: Geant4, 

ATLFASTII and ATLFASTIIF. Improving and testing these detector simulation setups 

are challenging jobs in addition to creating new simulation techniques. Measuring the 

time consumption of different simulation setups, creating CPU profiles and improving 

the code of simulation setups are described in this work. With these techniques, certain 

performance improvements are gained and test results of the three simulation setups are 

obtained. 
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7 APPENDIX 

All the results are obtained in the ATLAS offline software release 17.7.X.Y with ttbar event samples 

and detector geometry version ATLAS-GEO-20-00-01. The percentage values show the actual CPU time 

consumption in the overall simulation job.Each colored rectangle represents a function; its size tries to be 

proportional to the cost spent therein while the active function is running.(For further explanation see [5]) 

7.1 ATLFASTIIF CPU Profiling Results  

 

2 Original ATLFASTIIF setup 

  

1 ATLFASTIIF with Intel® Math Kernel Library 

10.3 update 2 
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4 ATLFASTIIF with Intel® Math Kernel Library 

11.0 update 3 

3 ATLFASTIIF with Intel® Math Kernel Library 11.0 

update 3 and new ATLAS magnetic field interpolation 
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7.2 ATLFASTII CPU Profiling Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 Original ATLFASTII Setup 5 ATLFASTII  with Intel® Math Kernel Library 10.3 update 2 
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7 ATLFASTIIF with Intel® Math Kernel Library 11.0 update 3 

 


