
Performance Improvements for the ATLAS
Detector Simulation Framework

August 2013

Author:
Yasin Almalioglu

Supervisors:
Andreas Salzburger
Elmar Ritsch

CERN openlab Summer Student Report 2013

 2

Abstract

Many physics and performance studies carried out with the ATLAS detector at the Long

Hadron Collider (LHC) require very large event samples. A detailed simulation for the

detector, however, requires a great amount of CPU resources. In addition to detailed

simulation, fast techniques and new setups are developed and extensively used to supply

large event samples. In addition to the development of new techniques and setups, it is still

possible to find some performance improvements in the existing simulation technologies.

This work shows some possible ways to increase the performance for different full and

fast ATLAS detector simulation setups, using new libraries and code improvements in the

ATLAS detector simulation framework. Besides of the improvements, measured time

consumptions of different setups are shown and possible further improvements are the other

main focuses of this project.

 3

Table of Contents

Performance Improvements for the ATLAS Detector Simulation Framework 1

Abstract .. 2

1 Introduction .. 4

2 ATLAS Experiment ... 6

2.1 Inner Detector ... 7

2.2 Calorimeter System .. 8

2.3 Muon Spectrometer .. 8

3 Simulation Strategies in ATLAS.. 9

3.1 Event Generation .. 10

3.2 Physics and Detector Response ... 10

3.2.1 Geant4 ..11

3.2.2 ATLFASII ..11

3.2.3 ATLFASTIIF and Fatras ...12

3.3 Digitization .. 12

3.4 Reconstruction .. 12

4 Test Results and Performance Improvements .. 12

5 Summary .. 17

6 Reference .. 18

7 APPENDIX ... 19

7.1 ATLFASTIIF CPU Profiling Results .. 19

7.2 ATLFASTII CPU Profiling Results .. 21

 4

1 Introduction

Particle physics is one of the fundamental approaches to be able to understand the

laws of the smallest parts of the matter, called particles. Several particle physics

experiments have been organised to have a deeper understanding of the particle world.

Between 1998 and 2008, the LHC1 was built to reach higher energies in particle

collisions. It is the highest-energy (14TeV) particle collider ever built so far. It has a

circumference of 27 km and lies 100 m underground. Protons are first accelerated in a

linear accelerator and are subsequently carried to the LHC via a chain of circular

accelerators. Each proton beam consists of ~3000 bunches and each bunch contains

~1011 protons. Then, they are collided in four different experiment points. To keep the

beams on track, ~1200 superconducting dipole and ~400 quadruple magnets producing

an 8.33 Tesla magnetic field are used.

There are four main experiments on the LHC. ATLAS2 and CMS3 are the two largest

symmetric general-purpose particle detectors. Furthermore, the other two non-

symmetric detectors are LHCb4 and ALICE5. The LHCb experiment mainly investigates

the properties of b-quarks and CP Violation. The focus of ALICE experiment is to

measure the collision of heavy ions and is to analyse behaviour of quark gluon plasmas.

All the four detectors and the LHC were successfully constructed and the first beam

was circulated in 2008. However, they do not function at full capacity, upgrades are still

going on to catch the maximum centre of mass energy of 14 TeV for proton-proton

collisions. A schematic view of LHC and how the experiments are located are shown in

Figure 1.

Modern particle physics relies as much on computer simulations as on the physical

experiments. Before the construction of the detectors, it has to be ensured that high

quality physics studies are feasible with the intended detector design. That is to say,

1 LHC: Long Hadron Collider
2 ATLAS: A Toroidal LHC ApparatuS
3 CMS: Compact Muon Solenoid
4 LHCb: Large Hadron Collider beauty
5 ALICE: A Large Ion Collider Experiment

 5

particle identification and measurements will be done at high efficiencies and with high

precision. Detector simulation plays an important role to assure that all the requirements

will be met. Moreover, complex particle interaction processes with the detector material

make the calculations by hand impossible. As a particle traverses the detector, it

interacts with the detector material in many ways and it may decay into other particles.

Thus, the detector output is non-trivial and software tools are used to simulate the most

relevant processes and their impacts on the measurements.

To allow for highly accurate results in physics studies, very large simulated collision

event samples are required. The traditional way to simulate particles traversing the

detector is a full, very accurate simulation which models the particle interactions with

the detector material, taking into account various material and particle properties. This

simulation approach is used, regardless of whether collision or cosmic ray events are

simulated. Since this full detector simulation takes time in the order of minutes per

event, it is necessary to investigate faster and feasible ways to generate billions of

simulated events per year.

 6

Figure 1 A schematic view of LHC experiments and the CERN accelerator complex [1]

2 ATLAS Experiment

The ATLAS [1] detector is the biggest particle detector ever constructed. As of today,

the collaboration consists of more than 3000 scientists. The detector measures 25m in

height and 44m in length and weighting about 7000 tons. It is built to measure the

particles produced by proton-proton collisions of up to 14 TeV centre of mass energy

as well as heavy-ion collisions up to 5.5 TeV. The purpose has been to verify the existing

Standard Model physics and search new phenomena in particle physics as well as other

physics scenarios like Supersymmetry and “exotic” particles. The detector consists of

 7

three sub systems: Inner detector, calorimeters and muon system. The cross-section of

the detector and main parts of it are shown in Figure 2. Each detector sub-system has its

own purpose and functionality. When combining the information gathered by the

individual systems, a complex picture of the collision event is obtained.

Figure 2 A cut away view of ATLAS detector measuring 25m in height, 45m in length and

weighting about 7000 tons.

2.1 Inner Detector

The inner detector is the sub-detector closest to the collision point and, thus, the

inner-most part of the ATLAS detector. The inner detector is a tracking detector,

consisting of three components: three layers of silicon pixel detectors providing three

space points per charged particle, four stereo layers of silicon strip detectors (SCT)

providing four-space points and a transition radiation tracker (TRT) providing 36 hits

and additional electron – pion separation capabilities.

 8

2.2 Calorimeter System

After the particles have passed through the inner detector, they enter the calorimeter

system. The main purpose of the calorimeter system is to measure the energies of the

particles. It is composed of two sub-calorimeters. The electromagnetic calorimeter is

responsible for measuring photon and electron energies, while the hadronic

calorimeter measures energies of hadrons. In order to measure these energies, incident

particles are forced stop inside the calorimeter. Thus, they are provoked to cause a

particle shower such that energy deposited by the shower can be measured. As

different showers shapes are caused by different type of particles, the shower shapes

can be used to determine the particle types. Muons, however, only interact very weakly

with the calorimeter much so that they easily pass through the calorimeter system.

2.3 Muon Spectrometer

The muon spectrometer is the outer-most part of the ATLAS detector and has the

most significant signatures for some of the most interesting processes at the LHC. Like

the inner detector, the muon system is responsible for particle tracking, whereas only

muons will reach the muon spectrometer. Throughout the muon system, a 0.3 T

magnetic field is applied to measure each particle’s charge over momentum ratio.

Combining this to that of inner detector, very accurate muon momentum measurements

are obtained.

As mentioned above, each particle leaves a distinct signature in the detector. Figure

3 shows a few examples of particle signatures as they appear in the ATLAS detector.

 9

Figure 3 Particle signatures of particles traversing the ATLAS detector. The distinct

signatures of different particle types allow for efficient particle identification with the ATLAS

detector.

3 Simulation Strategies in ATLAS

Detector simulation is required to qualify the detector response (and its uncertainties)

to particles stemming from proton-proton collisions. Due to in-time and out-of-time

pileup, measurements of signal events are overlaid with background processes. Thus,

both background and signal particles are simulated in the detector. During the design

phase of the ATLAS experiment, detector simulation played a major role in finding the

most suitable detector layout for physics studies at the LHC. Besides, in order to prepare

 10

physics analyses and software tools prior to recording data, a great number of simulated

event samples was necessary.

The modelling of detector responses and the simulation of physics events with Monte

Carlo methods is a basic technique in particle and high energy physics. The main input

for the testing and validating the performance of the reconstruction software is simulated

data as most of the tools and software are developed during the construction of the

detector.

In order to compare recorded and simulated data, after some point, it necessary to have

a common output format. However, this comparison is valid only on a statistical basis

for significant distributions due to the intrinsic randomness of the Monte Carlo method.

There are four steps to produce Monte Carlo event samples for the ATLAS

experiment.

3.1 Event Generation

The physics event generator is the basis for particle simulation. The events consist of

stable particles with specified creation point in space and time, four momenta and

particle type. Stable particles from a single proton-proton interaction at the vertex

(0,0,0) are computed on the theoretical basis. These events are either directly passed

to the detector simulation or written into a file.

3.2 Physics and Detector Response

The next step in producing the Monte Carlo events is to simulate interactions of the

particles with the detector. In a fast manner, this is done by modelling the energy

depositions of particles inside the detector. Yet, in a detailed manner, further on called

full simulation, the particles are processed through the detector and the most significant

interactions with the detector are emulated. Energy depositions in sensitive detector

elements, further on called hits, are saved to a file for further processing in the

digitization step (see section 3.3). In the ATLAS experiment, there are three detector

simulation methods available. All three of them are analysed and tested on this work:

Geant4, ATLFASTII, and ATLFASTIIF. These approaches can be categorized into

 11

two groups: Geant4 in full simulation; ATLFASTII and ATLFASTIIF are in fast

simulation.

3.2.1 Geant4

Geant4 is a generic toolkit to simulate particles traversing matter. It can simulate

different types of particle interactions with different materials over a very wide variety.

Its main applications are found to be several fields such as medical science, high

energy physics and astrophysics.

Due to very high precision capacity of Geant4, the detailed full simulation in

ATLAS is based on Geant4. Geometrical description and the desired accuracy

parameters are passed to Geant4 for particle simulation. While it provides very

accurate results, the drawback for that is the immense computational power and a great

amount of time required to simulate collision events in the ATLAS detector. Due to

this disadvantage, it is not feasible to use Geant4 for the cases that require great amount

of event samples. Thus, it is necessary to seek for faster ways of doing this job. The

relative Geant4 simulation time contribution per ATLAS sub-detector is shown in

Figure 4.

Figure 4 Relative Geant4 simulation time per sub-detector [2].

3.2.2 ATLFASII

About 95% of the overall detector simulation time is spent in the calorimeter

simulation in Geant4. Thus, a fast calorimeter simulator (FastCaloSim [3]), which is a

parameterised simulation based on Geant4, is developed to reduce total time.

ATLFASTII is a fast ATLAS detector simulator which uses FastCaloSim for the

calorimeter simulation and Geant4 for the inner detector and muon spectrometer. This

way, overall job time is reduced by the factor of 10.

 12

Muons are the only particles simulated by Geant4 outside of the inner detector. The

rest of the particles leaving the inner detector are simulated by FastCaloSim. Thus, the

only particles that can pass to muon spectrometer in ATLFASTII are muons.

3.2.3 ATLFASTIIF and Fatras

ATLFASTIIF is a fast simulation for ATLAS detector. It is an upgrade to

ATLFASTII in a sense that ATLFASTIIF uses the fast ATLAS Tracking Simulation

(Fatras [4]) for the inner detector and muon spectrometer instead of Geant4. With

ATLFASTIIF, a factor of ~100 in CPU time is gained compared to full Geant4 detector

simulation. Fatras uses the simplified reconstruction geometry and physics

parameterizations so that an additional factor of ~10 is obtained compared to full

Geant4 simulation.

3.3 Digitization

The digitization software converts the simulated energy deposits inside sensitive

detector material into the detector response. Hence, the next step in the simulation

chain is to simulate the detector response and obtain an output format, comparable to

data retrieved from the detector. This includes conversion of the previously computed

energy deposits into measurable quantities. The output format is RDO (RAW Data

Objects). Thus, the steps after this point are not specific to the simulation.

3.4 Reconstruction

After the RDO output format is produced, the next step both in the simulation chain

and real detector data chain is to interpret the file. Different algorithms are used to

trace the particles, to measure momentum and energy and to identify individual

particles.

4 Test Results and Performance Improvements

Different setups and approaches for detector simulation in the ATLAS experiment

explained in the section 3.2. Each of these setups takes different amount of time for the

 13

simulation. In order to test and improve these different setups in terms of CPU time

consumption, there are several practical techniques.

The first technique is to measure simulation time per event. When the main concern is

time consumption of different setups, this technique is very feasible to apply. Another

technique that can be employed in performance tests is to use CPU profiling. The CPU

profiling technique that was used in this project takes samples of the call stack of the program

within the specified time intervals and, thus, gives sufficiently enough results for average

CPU time consumptions of the different functions called by the program. With the profiling,

it is easier to analyse which part of the program takes most of the time and, hence, to find

possible candidate functions to be improved. KCachegrind [5] is a visualization tool for the

profiling data, which is used in this work. Each colored rectangle represents a function; its

size tries to be proportional to the cost spent therein while the active function is running. The

profiling tool catches all memory accesses for the trace. The trace includes the number of

instruction/data memory accesses and 1st/2nd level cache misses, and relates it to source

lines and functions of the run program. Thus, the numbers just under the percentages in the

profiling diagrams give us a good approximate values proportional to the exact run time of

functions.

In order to test and improve the simulation, the standard mathematics library is replaced

by the Intel® Math Kernel Library and an improved ATLAS magnetic field interpolation is

used. Test results for time per event statistics are shown in the following table and CPU

profiling diagrams are in the appendix.

 14

 Geant4

(7 Events)

(Average ±Standard Deviation)

/(Minimum)/ (Maximum) per

event in sec.

ATLFASTII

(80 events)

(Average ±Standard Deviation)

/(Minimum)/ (Maximum) per

event in

sec.

ATLFASTIIF

(500 Events)

(Average ±Standard Deviation)

/(Minimum)/ (Maximum) per

event in sec.

Standard 308(± 146)

/ 151 / 628

33.9(± 11.8)

/ 9.77 / 67.6

1.45(± 0.452)

/ 0.503 / 3.3

Intel® Math

Kernel Library

10.3 update 2

297(± 128)

/ 153 / 572

29.6(± 10.4)

/ 11.2 / 64.2

1.28(± 0.395)

/ 0.429 / 2.76

Intel® Math

Kernel Library

11.0 update 3

274(± 115)

/ 136 / 514

29.4(± 10.4)

/ 10.2 / 66.8

1.18(± 0.361)

/ 0.423 / 2.67

Intel® Math

Kernel Library

11.0 update 3 +

Improved

ATLAS

Magnetic Field

Interpolation

270(± 115)

/ 142 / 512

-

(Unable to test due to

temporary incompatibilities)

1.26(± 0.388)

/ 0.442 / 2.84

All values are (Average ± Standard Deviation)/(Minimum)/(Maximum) per event in seconds,

tested in the ATLAS offline software release 17.7.X.Y with ttbar samples and geometry version ATLAS-

GEO-20-00-01.

 15

 Another way to improve execution performance is based on a deeper understanding

of low-level CPU features such as instruction level parallelism. In the programming,

branch prediction strategy plays an important role. The if-else statements in a code are one

of the important parts of the branch prediction. In the CPU, multiple instructions are

pipelined. If the next instructions that will be issued can be predicted correctly, no

instruction would be wasted. That is to say, the better a branch is predicted, the more

efficient the CPU is utilized. A mechanism to predict a branch is to count how many times

a branch is taken or not. Thus, reducing the number of branches caused by the if-else

statements is important in terms of CPU time. On this work, thanks to the CPU profiling

explained previously, the straightLineDistanceEstimate() function is chosen and, then,

improved, using the branch prediction strategy. The code before and after the modification

is as shown:

0209 if(A==0.) { // direction parallel to cylinder axis
0210 if (fabs(currDist) < tol) {
0211 return Trk::DistanceSolution(1,0.,true,0.); // solution at surface
0212 } else {
0213 return Trk::DistanceSolution(0,currDist,true,0.); //point of closest approach without intersection
0214 }
0215 }
0216
0217 // minimal distance to cylinder axis
0218 double rmin = C - B*B/A < 0. ? 0. : sqrt(C - B*B/A);
0219
0220 if (rmin > radius) { // no intersection
0221 double first = B/A;
0222 return Trk::DistanceSolution(0,currDist,true,first); //point of closest approach without intersection
0223 } else {
0224 if (fabs(rmin - radius) < tol) { // tangential 'intersection' - return double solution
0225 double first = B/A;
0226 return Trk::DistanceSolution(2,currDist,true,first,first);
0227 } else {
0228 double first = B/A - sqrt((radius-rmin)*(radius+rmin)/A);
0229 double second = B/A + sqrt((radius-rmin)*(radius+rmin)/A);
0230 if (first >= 0.) {
0231 return Trk::DistanceSolution(2,currDist,true,first,second);
0232 } else if (second <= 0.) {
0233 return Trk::DistanceSolution(2,currDist,true,second,first);
0234 } else { // inside cylinder
0235 return Trk::DistanceSolution(2,currDist,true,second,first);
0236 }
0237 }
0238 }
0239 }

Figure 5 Unmodified part of the straightLineDistanceEstimate function in CylinderSurface.cxx [6] code

 16

//just tools for quick calculation

 double oneOvera = 1./A;
 double bOvera = B*oneOvera;

 //Arguments of DistanceSolution function
 double first = bOvera;
 double second = bOvera;
 int num=0;

 if(A!=0.) {
 double temp2 = C - B*bOvera; //just used in the following
 double rmin = temp2 < 0. ? 0. : sqrt(temp2); // minimal distance to cylinder axis
 double rDiff = rmin-radius;

 if(rDiff > 0.){ // no intersection
 second=0.; // point of closest approach without intersection
 }else if(fabs(rDiff) >= tol){ // tangential 'intersection' - return double solution
 double mySqrt = sqrt((-1*rDiff)*(radius+rmin)*oneOvera);
 second -= mySqrt;
 first += mySqrt;
 num = 2;
 if(second >= 0.){
 double temp = first;
 first = second;
 second = temp;
 }
 }
 }else{ // direction parallel to cylinder axis
 first = 0.;
 second = 0.;
 if(fabs(currDist) < tol){
 num=1;
 currDist = 0.;
 }
 }

 return Trk::DistanceSolution(num, currDist, true, first, second);
}

Figure 6 Improved part of the straightLineDistanceEstimate() function in CylinderSurface.cxx [5] code

After the improvement, a 1% overall performance gain is achieved. Reduced actual CPU

time consumption from 7.44%, in Figure 7, to 6.52%, in Figure 8 ;

Figure 7 Actual CPU time consumption of unmodified straightLineDistanceEstimate() shown in the CPU profiling software

with ATLFASTIIF detector simulation setup, ATLAS offline software release: 17.6.0.5 & ttbarSample

 17

Figure 8 Actual CPU time consumption of improved straightLineDistanceEstimate() shown in the CPU profiling software

with ATLFASTIIF detector simulation setup, ATLAS offline software release: 17.6.0.5 & ttbarSample

5 Summary

Detector simulation is one of the biggest challenges for CERN LHC experiments.

There are several detector simulation setups varying from full, detailed simulation to

very fast, comparatively less accurate simulation. Three different detector simulation

approaches are used by the ATLAS Collaboration and studied in this work: Geant4,

ATLFASTII and ATLFASTIIF. Improving and testing these detector simulation setups

are challenging jobs in addition to creating new simulation techniques. Measuring the

time consumption of different simulation setups, creating CPU profiles and improving

the code of simulation setups are described in this work. With these techniques, certain

performance improvements are gained and test results of the three simulation setups are

obtained.

 18

6 Reference

[1] The ATLAS Collaboration, «The ATLAS Experiment at the CERN Large Hadron,» Aug 2008.

[2] W. Lukas, «Fast simulation for ATLAS: Atlfast-II and ISF,» ATL-SOFT-SLIDE-2012-196, 2012.

[3] W. Lukas, «Fast Simulation for ATLAS: Atlfast-II and ISF,» ATL-SOFT-PROC-2012-065, 2012.

[4] K. Edmonds, S. Fleischmann, T. Lenz, C. Magass, J. Mechnich ve A. Salzburger, «The Fast ATLAS

Track Simulation (FATRAS),» ATL-SOFT-PUB-2008-001 ; ATL-COM-SOFT-2008-002, 2008.

[5] G. G. P. L. v. 2. (GPLv2). [Online]. Available: http://sourceforge.net/projects/kcachegrind/.

[Accessed: 21 November 2013].

[6] ATLAS Detector Software, [Online]. Available: http://acode-

browser.usatlas.bnl.gov/lxr/source/atlas/Tracking/TrkDetDescr/TrkSurfaces/src/CylinderSurface.cxx.

[Accessed: 12 September 2013].

[7] M. Duehrssen ve K. Jakobs, «Study of Higgs bosons in the WW final state and development of a fast

calorimeter simulation for the ATLAS experiment,» CERN-THESIS-2010-061, 2009.

[8] E. Ritsch, A. Salzburger ve E. Kneringer, «Fast Calorimeter Punch-Through Simulation for the

ATLAS Experiment,» CERN-THESIS-2011-112, 2011.

[9] A. Rimoldi, «Simulation Strategies for the ATLAS Experiment at LHC,» ATL-SOFT-PROC-2011-

016, 2011.

[10] A. Salzburger, «Track Simulation and Reconstruction in the ATLAS experiment,» 2008.

 19

7 APPENDIX

All the results are obtained in the ATLAS offline software release 17.7.X.Y with ttbar event samples

and detector geometry version ATLAS-GEO-20-00-01. The percentage values show the actual CPU time

consumption in the overall simulation job.Each colored rectangle represents a function; its size tries to be

proportional to the cost spent therein while the active function is running.(For further explanation see [5])

7.1 ATLFASTIIF CPU Profiling Results

2 Original ATLFASTIIF setup

1 ATLFASTIIF with Intel® Math Kernel Library

10.3 update 2

 20

4 ATLFASTIIF with Intel® Math Kernel Library

11.0 update 3

3 ATLFASTIIF with Intel® Math Kernel Library 11.0

update 3 and new ATLAS magnetic field interpolation

 21

7.2 ATLFASTII CPU Profiling Results

6 Original ATLFASTII Setup 5 ATLFASTII with Intel® Math Kernel Library 10.3 update 2

 22

7 ATLFASTIIF with Intel® Math Kernel Library 11.0 update 3

