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5.5.1 RELEASE & U-CARE – estimating ĉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-21

5.6 MARK and bootstrapped GOF testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-24

5.6.1 RELEASE versus the bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-28
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Program MARK – a ‘gentle introduction’ o

Program MARK is the most comprehensive and widely used software application currently available

for the ‘analysis of data from marked individuals’ (hence the name MARK). MARK is a very flexible

and powerful program, with many options, and a lot of technical and theoretical sophistication. It

encompasses virtually all currently used methods for analysis of marked individuals – including many

new approaches only recently described in the primary literature.

As such, MARK is not a program that you can learn to use without some instruction. Unfortunately,

the only documentation for MARK consists entirely of the Windows ‘help file’ which accompanies

MARK. This is not to slight the help file – it is extremely comprehensive, and covers almost all of the

‘hard details’ you might want to know. For people with a strong background in analysis of these sorts

of data, and especially experienced users of E/M-SURGE and POPAN (the other ‘big’ applications in

common use), the help file alone may, in fact, be sufficient to get you ‘up and running’ with MARK

with only a bit of work. MARK draws heavily on the strengths of other applications, and aspects and

underlying principles are (to varying degrees) similar across many applications.

However, for the ‘new user’, who may have little to no background in the analysis of these sort of data,

learning how to use MARK from the help file alone is very inefficient, and is often a frustrating exercise.

This type of user needs a different type of ‘documentation’. It was with this type of user in mind that we

developed this book – a comprehensive example-driven ‘tutorial’ on the theory, mechanics and practice

of using MARK.

Of course, MARK is not the only program available for analysis of encounter data from marked

individuals (see http://www.phidot.org/software/ for pointers to other available software), so you

may wonder “why bother with MARK?”. The short answer is that MARK offers far more flexibility

and power in statistical modeling and hypothesis testing than other widely available and frequently

used programs. It also uses a consistent, and familiar ‘Windows interface’, and allows the user to work

with a consistent data format throughout. If you’re just starting out, and have to pick one program to

become proficient with, we strongly suggest you spend your time with MARK. Of course, there may

be reasons why you don’t want to use MARK, but on average, it’ll be well worth your while.

About this book

This book is intended to allow you to (in effect) ‘teach yourself how to use MARK’. We have included

much of the material we normally cover in the classroom or during workshops, placing as much

emphasis on “why things work the way they do” as on “now. . .press this button”. Our basic view

of learning to use software is that the only way to really master an application is to understand what it

is doing, and then to practice the mechanics of the application (over and over again).
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Having said that, it is worth letting you know right from the beginning that this is not a book on the

theory of analysis of data from marked individuals (in the strict sense), and should not be cited as such.∗

This guide is intended simply to be an accessible means by which you can learn how to use MARK. In

the process, however, we do cover a fair bit of the ‘conceptual theory’. If you’re an experienced analyst

of these sort of data, you’ll quickly find which parts you can skip, and which you can’t. Regardless, we

urge you to read the current literature (see below) – it is the only way to keep up with the many recent

developments in the analysis of data from marked individuals.

Structure of the book

Chapters 1 through 7 are the ‘core’ mechanical and conceptual ‘skill-building’ chapters. Chapters 8

and higher are focused on more advanced applications. For newcomers, we strongly suggest that you

work through Chapters 1 through 7 first. And, by ‘working through’, we mean sitting at the computer,

with this book, and working through all of the computer exercises. This book is largely based on the

premise that you ‘learn by doing’. Chapter 1 provides a simple introduction to some of the ideas and

theory. Chapter 2 covers the basics of data formatting (the obvious first step to analyzing your data).

Chapters 3 to 7 provide detailed instruction on the ‘basics’ of using MARK, within the context of

‘standard’ open population mark-recapture analysis. We decided to begin with basic mark-recapture

for two reasons. First, it is the basis for most of the commonly used software applications currently

in wide use. Since most experienced analysts will probably have some level of experience with one or

more of these applications, building the core introduction around mark-recapture seems to present the

minimal learning curve. Second, and perhaps more importantly for beginners, if you understand basic

mark-recapture analysis, you can pick up the other types of analysis fairly quickly.

In these first chapters,we will take you through the process of using MARK,working for the most part

with ‘practice’ data sets†, starting with the basic rudiments, and ending with some fairly sophisticated

examples. Our goal is to provide you with enough understanding of how MARK works so that even if

we don’t explicitly cover the particular problem you’re working on, you should be able to figure out how

to approach the problem with MARK, on your own. In fact, we measure the success of this book by how

little you’ll need to refer to it again, once you’ve gone through all of the core chapters. Once you have

worked through Chapters 1 through 7, you should be able to jump to any of the following chapters with

relative ease. All succeeding chapters are reasonably self-contained, but do presume you’re familiar

with basic mark-recapture theory, and (especially) how it is applied in MARK.

begin sidebar

sidebars – extra information

Interspersed throughout most chapters will be ‘sidebars’ – small snippets of technical information,

conceptual arm-waving, or other information which we think is potentially useful for you to read – but

not so essential that they can’t be skipped over to maintain your flow of the reading of the main body

of the text. Whenever you come across one of these sidebar items, it might be worth at least reading

the first few lines to see what it refers to.

end sidebar

∗ We’re occasionally asked how to properly cite this book. Easy answer – please don’t. This book is not a ‘technical reference’,
but a ‘software manual’. The various ‘technical’ bits in the book (i.e., suggestions on how to approach some sorts of analysis,
guides to interpreting results...) are drawn from the primary literature, which should be cited in all cases.

† Most of the practice data sets are contained in the file markdata.zip, which can be downloaded from the same website you
accessed to download this book. The last item of the drop-down menu where you select chapters (left-hand side of the page)
is a link to the example files. If you can’t find the files there, check the /mark/examples subdirectory that is created when you
install MARK.

Foreword
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Getting MARK and installing it on your computer

The primary source for program MARK is Gary White’s MARK web page, which is currently located

at

http://www.cnr.colostate.edu/∼gwhite/mark/mark.htm

New versions, miscellaneous notes, and general comments concerning MARK are found there, as

well as links to lecture notes, and other relevant information. And, if you’re reading this, then you’ve

obviously found the ‘other MARK website’, maintained by Evan Cooch.

http://www.phidot.org/software/mark/

The purpose of this ‘other’ web site is twofold: (i) to provide access to this book, and (ii) to provide a

locally mirrored copy of the MARK install files (either one website or the other is always likely to be

‘up and running’). Updates to MARK are relatively frequent. At present, the only way to check for new

versions is to periodically visit either of these two websites, and look to see if another version has been

posted. Alternatively, you can register for the online MARK discussion forum (see below), which will

send periodic emails announcing new releases of MARK.

Now, about installing MARK. Before we go into the details – some quick comments:

• MARK is a Windows program, and is intended to be run under a Windows ‘environment’.

For most users, this means a machine running Windows 7→Windows 10. However, as the

technology underlying ‘Windows emulation’ and ‘virtualization’ software gets better and

better, it has become more and more tractable to run MARK on a non-Windows platform

(e.g., using VMWare, VirtualBox or wine under Linux, or Parallels, Bootcamp, VirtualBox or

SoftPC on a Mac). Some details about running MARK on a non-Windows machine can be

found on the MARK website.

• Running MARK also requires a ‘real computer’ – we recommend minimally a machine with

a CPU clocked at 2 GHz or better (MARK supports and makes use of multi-core processors),

with at least 2 GB of RAM (>2 GB strongly recommended). We also suggest getting a decent

sized monitor – no less than 20 inches (you’ll discover why we make this recommendation

the first time you pull up a ‘big, ugly’ design matrix).

You install MARK using a fairly standard setup program. Once you’ve downloaded the MARK

setup.exe program, simply double-click it, and off you go! It is a fairly standard Windows installer, with

prompts for where you want to install MARK, and so forth. The installation is generally uneventful.

Once the install program has finished, you’re done. The install routine should have placed a short-cut

to MARK for you on your desktop.

begin sidebar

upgrading from an earlier installation

As noted, updates to MARK are fairly frequent (with the pace of change being roughly proportional

to the rate at which new methods enter the literature). To upgrade an existing MARK installation, you

should

1. uninstall the old version, using the standard ‘uninstall software’ option from the Windows

control panel (ignore any error messages you might get about Windows not being able to

unregister certain items – these are spurious). If you really want to be thorough, follow this

by manually deleting the MARK subdirectory as well (although this isn’t really necessary).

Foreword
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2. install the new version. For some operating systems, you may get an error message or two

concerning problems trying to register certain graphics components – ignore these.

3. test the installation. double-click the MARK icon, and make sure the MARK GUI starts up

correctly. If it does, you should be fine.

end sidebar

Finding help

No matter how good the documentation, there will always be things that remain unclear, or simply

aren’t covered in this book (although we keep trying). As such, it’s nice to have some options for getting

help (beyond the earlier suggestion to ‘check the help file’). As such, we have created a web-based

discussion forum for just this purpose – a place where you can ask questions, make suggestions for

MARK∗, and so forth. The forum can be accessed at

http://www.phidot.org/forum

In addition to providing a resource for getting answers to specific technical questions, registering

for the forum† is also a convenient way to learn about recent changes to MARK (and this book), and

finding out about upcoming workshops and training sessions.

∗ The forum also hosts similar discussions for a number of other software applications; e.g., PRESENCE, M/E-SURGE...
† Registration for the forum is free, and you have a fair bit of control over how much ‘email traffic’ it generates.
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References & background reading

The literature for analysis of data from marked individuals is very large – and growing at an exponential

rate (100-150 new papers per year in recent years). As such, it’s easy to feel that keeping up with the

literature is not even remotely tractable. Don’t fret – it’s unlikely anyone reads all the papers.∗

Fortunately, there have been several recently published books, which do much of the collation and

synthesis of this large literature for you – we strongly suggest that you get access (in some fashion) to

the following 3 books:

Analysis and Management of Animal Populations – Ken Williams, Jim Nichols,
and Mike Conroy. (2002) Academic Press. 1,040 pages.

A staggering volume that is the de facto standard reference for the integration of
modeling, estimation, and management, written by 3 of the luminaries in the field.
It provides a superb synthesis of most of the vast literature on estimation from data
from marked individuals.

Handbook of Capture-Recapture Analysis – Steve Amstrup, Lyman MacDonald,
and Bryan Manly. (2006) Princeton University Press. 296 pages.

In some ways, a precis of some of the key ‘estimation’ sections of the WNC book
(above), in others, a more detailed ‘guide’ to several extensions to methods discussed
in WNC. A very good, compact summary of estimation methods, with a focus on
practical application.

Model Selection and Multi-Model Inference (2nd Edition) – Ken Burnham and
David Anderson. (2002) Spring-Verlag. 496 pages.

So you want to fit models to data, eh? Well, fundamental to this process is the issue
of selecting amongst such models. How should you do this? Burnham and Anderson
cover this critical issue in great detail – and in so doing, will give you a solid basis
for the mechanics, and theory, of model selection as applied to analysis of data from
marked individuals.

Collectively, these books represent the minimum library you should have at your disposal, and are

essential companions to this book.

∗ With the likely exception of Jim Nichols, who is a ‘special case’ in several respects...
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CHAPTER 1

First steps. . .

We introduce the basic idea for analysis of data from encounters of marked individuals by means

of a simple example. Suppose you are interested in exploring the potential ‘cost of reproduction’ on

survival of some species of your favorite taxa (say, a species of bird). The basic idea is pretty simple: an

individual that spends a greater proportion of available energy on breeding may have less available for

other activities which may be important for survival. In this case, individuals putting more effort into

breeding (i.e., producing more offspring) may have lower survival than individuals putting less effort

into breeding. On the other hand, it might be that individuals that are of better ‘quality’ are able to

produce more offspring, such that there is no relationship between ‘effort’ and survival. You decide to

reduce the confounding effects of the ‘quality’ hypothesis by doing an experiment. You take a sample of

individuals who all produce the same number of offspring (the idea being, perhaps, that if they had the

same number of offspring in a particular breeding attempt, that they are likely to be of similar quality).

For some of these individuals, you increase their ‘effort’ by adding some offspring to the nest (i.e., more

mouths to feed, more effort expended feeding them). For others, you reduce effort by removing some

offspring from the nest (i.e., fewer mouths to feed, less effort spent feeding them). Finally, for some

individuals, you do not change the number of offspring, thus creating a control group.

As described, you’ve set up an ‘experiment’, consisting of a control group (unmanipulated nests),

and 2 treatment groups: one where the number of offspring has been reduced, and one where the

number of offspring has been increased. For convenience, call the group where the number of offspring

was increased the ‘addition’ group, and call the group where the number of offspring was reduced

the ‘subtraction’ group. Your hypothesis might be that the survival probability of the females in the

‘addition’ group should be lower than the control (since the females with enlarged broods might have to

work harder, potentially at the expense of survival), whereas the survival probability of the females in

the ‘subtraction’ group should be higher than the control group (since the females with reduced broods

might not have to work as hard as the control group, potentially increasing their survival). To test this

hypothesis, you want to estimate the survival of the females in each of the 3 groups. To do this, you

capture and individually mark the adult females at each nest included in each of the treatment groups

(control, additions, subtractions). You release them, and come back at some time in future to see how

many of these marked individuals are ‘alive’ (the word ‘alive’ is written parenthetically for a reason

which will be obvious in a moment).

Suppose at the start of your study (time t) you capture and mark 50 individuals in each of the 3 groups.

Then, at some later time (time t+1), you go back out in the field and encounter alive 30 of the marked

individuals from the ‘additions’ treatment, 38 of the marked individuals from the control group, and

30 individuals from the ‘subtractions’ treatment. The ‘encounter data’ from our study are tabulated at

the top of the next page.

© Cooch & White (2016) 03.09.2016



1.1. Return ‘rates’ 1 - 2

group t t + 1

additions 50 30

control 50 38

subtractions 50 30

Hmm. This seems strange. While you predicted that the 2 treatment groups would differ from the

controls, you did not predict that the results from the two treatments would be the same. What do these

results indicate? Well, of course, you could resort to the time-honored tradition of trying to concoct a

parsimonious ‘post-hoc adaptationist’ story to try to demonstrate that (in fact) these results ‘made

perfect sense’, according to some ‘new twist to underlying theory’. However, there is another possibility

– namely, that the analysis has not been thoroughly understood, and as such, interpretation of the results

collected so far needs to be approached very cautiously.

1.1. Return ‘rates’

Let’s step back for a moment and think carefully about our experiment – particularly, the analysis of

‘survival’. In our study, we marked a sample of individual females, and simply counted the numbers of

those females thatwere subsequently seen again on the next sampling occasion. The implicit assumption

is that by comparing relative proportions of ‘survivors’ in our samples (perhaps using a simple χ2 test),

we will be testing for differences in ‘survival probability’. However (and this is the key step), is this

a valid assumption? Our data consist of the number of marked and released individuals that were

encountered again at the second sampling occasion. While it is obvious that in order to be seen on the

second occasion, the marked individual must have survived, is there anything else that must happen?

The answer (perhaps obviously, but in case it isn’t) is ‘yes’ – the number of individuals encountered

on the second sampling occasion is a function of 2 probabilities: the probability of survival, and the

probability that conditional on surviving, that the surviving individual is encountered. While the first

of these 2 probabilities is obvious (and is in fact what we’re interested in), the second may not be. This

second probability (which we refer to generically as the ‘encounter probability’) is the probability that

given that the individual is alive and in the sample, that it is in fact encountered (e.g., seen, or ‘visually

encountered’). In other words, simply because an individual is alive and in the sampling area may not

guarantee that it is encountered. So, the proportion of individuals that were encountered alive on the

second sampling occasion (which is often referred to in the literature as ‘return rate’∗) is the product

of 2 different probability processes: the probability of surviving and returning to the sampling area

(which we’ll call ‘apparent’ or ‘local’ survival), and the probability of being encountered, conditional

on being alive an in the sample (which we’ll call ‘encounter probability’). So, ‘return rate’ = ‘survival

probability’ × ‘encounter probability’. Let’s let ϕ (pronounced ‘fee’ or ‘fie’, depending on where you

come from) represent the ‘local survival probability’, and p represent the ‘encounter probability’. Thus,

we would write ‘return rate’ = ϕp.

So, why do we care? We care because this complicates the interpretation of ‘return rates’ – in our

example, differences in ‘return rates’ could reflect differences in the probability of survival, or they

could reflect differences in encounter probability, or both! Similarly, lack of differences in ‘return rates’

(as we see when comparing the ‘additions’ and ‘subtractions’ treatment groups in our example) may

not indicate ‘no differences in survival’ (as one interpretation) – there may in fact be differences in

survival, but corresponding differences in encounter probability, such that their products (‘return rate’)

∗ The term ‘return rate’ is something of a misnomer, since it is not a rate, but rather a proportion. However, because the term ‘return
rate’ is in wide use in the literature, we will continue to use it here.
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are equal. For example, in our example study, the ‘return rate’ for both the ‘additions’ and ‘subtractions’

treatment groups is the same: (30/50) � 0.6. Our initial ‘reaction’ might have been that these data did

not support our hypothesis predicting difference in survival between the 2 groups.

However, suppose that in fact the ‘treatment’ (i.e., manipulating the number of offspring in the nest)

not only influenced survival probability (as was our original hypothesis), but also potentially influenced

encounter probabilities? For example, suppose the true survival probability of the ‘additions’ group was

ϕadd � 0.65 (i.e., a 65% probability of surviving from t to t+1), while for the ‘subtractions’ group, the

survival probability is ϕsub � 0.80 (i.e., an 80% probability of surviving from t to t+1). However, in

addition, suppose that the encounter probability for the ‘additions’ group was padd � 0.923 (i.e., a

92.3% chance that a marked individual will be encountered, conditional on it being alive and in the

sampling area), while for the ‘subtractions’ group, the encounter probability was psub � 0.75 (we’ll

leave it to proponents of the adaptationist paradigm to come up with a ‘plausible’ explanation for such

differences). While there are clear differences between the 2 groups, the products of the 2 probabilities

are the same: (0.65×0.923) � 0.6, and (0.8×0.75) � 0.6. In other words, it is difficult to compare ‘return

rates’, since differences (or lack thereof) could reflect differences or similarities in the 2 underlying

probabilities (survival probability, and encounter probability).

1.2. A more robust approach

How do we solve this dilemma? Well, the solution we’re going to focus on here (and essentially for

the next 1,000 pages or so) is to collect more data, and using these data, separately estimate all of the

probabilities (at least, when possible) underlying the encounters of marked individuals. Suppose for

example, we collected more data for our experiment, on a third sampling occasion (at time t + 2). On

the third occasion, we encounter individuals marked on the first occasion. But, perhaps some of those

individuals encountered on the third occasion were not encountered on the second occasion. How

would we be able to use these data? First, we introduce a simple bookkeeping device, to help us keep

track of our ‘encounter’ data (in fact, we will use this bookkeeping system throughout the rest of the

book – discussed in much more detail in Chapter 2). We will ‘keep track’ of our data using what we

call ‘encounter histories’. Let a ‘1’ represent an encounter with a marked individual (in this example,

we’re focusing only on ‘live encounters’), and let a ‘0’ indicate that a particular marked individual was

not encountered on a particular sampling occasion. Now, recall from our previous discussion that a ‘0’

could indicate that the individual had in fact died, but it could also indicate that the individual was in

fact still alive, but simply not encountered (the problem we face, as discussed, is how to differentiate

between the two possibilities). For our 3 occasion study, where individuals were uniquely marked on

the first occasion only, there are 4 possible encounter histories:

encounter history interpretation

111 captured and marked on the first occasion, alive and encountered on

the second occasion, alive and encountered on the third occasion

110 captured and marked on the first occasion, alive and encountered on

the second occasion, and either (i) dead by the third occasion, or (ii)

alive on the third occasion, but not encountered

101 captured and marked on the first occasion, alive and not encountered

on the second occasion, and alive and encountered on the third

occasion
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100 captured and marked on the first occasion, and either (i) dead

by the second occasion, (ii) alive on the second occasion, and not

encountered, and alive on the third occasion and not encountered,

(iii) alive on the second occasion, and not encountered, and dead by

the third occasion

You might be puzzled by the verbal explanation of the third encounter history: 101. How do we know

that the individual is alive at the second occasion, if we didn’t see it? Easy – we come to this conclusion

logically, since we saw it alive at the third occasion. And, if it was alive at occasion 3, then it must also

have been alive at occasion 2. But, we didn’t see it on occasion 2, even though we know (logically) that it

was alive. This, in fact, is one of the key pieces of logic – the individual was alive at the second occasion

but not seen. If p is the probability of detecting (encountering) an individual given that it is alive and in

the sample, then (1− p) is the probability of missing it (i.e., not detecting it). And clearly, for encounter

history ‘101’, we ‘missed’ the individual at the second occasion.

All we need to do next is take this basic idea, and formalize it. As written (above), you might see that

each of these encounter histories could occur due to a specific sequence of events, each of which has a

corresponding probability. Let ϕi be the probability of surviving from time (i) to (i+1), and let pi be the

probability of encounter at time (i). Again, if pi is the probability of encounter at time (i), then (1 − pi )

is the probability of not encountering the individual at time (i).

Thus, we can re-write the preceding table as:

encounter history probability of encounter history

111 ϕ1p2ϕ2p3

110 ϕ1p2

[

ϕ2(1 − p3) + (1 − ϕ2)
]

� ϕ1p2(1 − ϕ2p3)

101 ϕ1

(

1 − p2

)

ϕ2p3

100
(

1 − ϕ1

)

+ ϕ1(1 − p2)(1 − ϕ2) + ϕ1(1 − p2)ϕ2(1 − p3)

� 1 − ϕ1p2 − ϕ1(1 − p2)ϕ2p3

(If you don’t immediately see how to derive the probability expressions corresponding to each

encounter history, not to worry: we will cover the derivations in much more detail in later chapters).

So, for each of our 3 treatment groups, we simply count the number of individuals with a given

encounter history. Then what? Once we have the number of individuals with a given encounter history,

we use these frequencies to estimate the probabilities which give rise to the observed frequency. For

example, suppose for the ‘additions’ group we had N111 � 7 (where N111 is the number of individuals

in our sample with an encounter history of ‘111’), N110 � 2, N101 � 5, and N100 � 36. So, of the 50

individuals marked at occasion 1, only (7 + 2 + 5) � 14 individuals were subsequently encountered

alive (at either sampling occasion 2, sampling occasion 3, or both), while 36 were never seen again.

Suppose for the ‘subtractions’ group we had N111 � 5, N110 � 7, N101 � 2, and N100 � 36. Again, 14

total individuals encountered alive over the course of the study.

However, even though both treatment groups (additions and subtractions) have the same overall

3-year return rate (14/50 � 0.28), we see clearly that the frequencies of the various encounter histories

differ between the groups. This indicates that there are differences among encounter occasions in
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survival probability, or encounter probability (or both) between the 2 groups, despite no difference

in overall return rate. The challenge, then, is how to estimate the various probabilities (parameters) in

the probability expressions, and how to determine if these parameter estimates are different between

the 2 treatment groups.

An ad hoc way of getting at this question involves comparing ratios of frequencies of different

encounter ratios. For example,

N111

N101
�

✚✚ϕ1 p2✚✚ϕ2✚✚p3

✚✚ϕ1 (1 − p2)✚✚ϕ2✚✚p3

�
p2

1 − p2

So, for the ‘additions’ group, (N111/N101) � (7/5) � 1.4. Thus, p̂(2,add) � 0.583. In contrast, for the

‘subtractions’ group, (N111/N101) � (5/2) � 2.5. Thus, p̂(2,sub) � 0.714. Once we have estimates of p2, we

can see how we could substitute these values into the various probability expressions to solve for some

of the other parameter (probability) values. However, while this is reasonably straightforward (at least

for this very simple example), what about the question of ‘is this difference between the two different p̂2

values meaningful/significant?’. To get at this question, we clearly need something more – in particular

we need to be able to come up with estimates of the uncertainty (variance) in our parameter estimates.

To do this, we need a robust statistical tool.

1.3. Maximum likelihood theory – the basics

Fortunately, we have such a tool at our disposal. Analysis of data from marked individuals involves

making inference concerning the probability structure underlying the sequence of events that we

observe. Maximum likelihood (ML) estimation (courtesy of Sir Ronald Fisher) is the workhorse of

analysis of such data. While it is possible to become fairly proficient at analysis of data from marked

individuals without any real formal background in ML theory, in our experience at least a passing

familiarity with the concepts is helpful. The remainder of this (short) introductory chapter is intended

to provide a simple (very) overview of this topic. The standard ‘formal’ reference is the 1992 book by

AWF Edwards (‘Likelihood’, Johns Hopkins University Press). Readers with significant backgrounds in

the theory will want to skip this chapter, and areencouraged to refrain from comment as to the necessary

simplifications we make.

So here we go. . .the basics of maximum likelihood theory without (much) pain. . .

1.3.1. Why maximum likelihood?

The method of maximum likelihood provides estimators that are both reasonably intuitive (in most

cases) and several have some ‘nice properties’ (at least statistically):

1. The method is very broadly applicable and is simple to apply.

2. Once a maximum-likelihood estimator is derived, the general theory of maximum-likelihood

estimation provides standard errors, statistical tests, and other results useful for statistical

inference. More technically:

(a) maximum-likelihood estimators (MLE) are consistent.

(b) they are asymptotically unbiased (although they may be biased in finite samples).

(c) they are asymptotically efficient – no asymptotically unbiasedestimatorhas a smaller

asymptotic variance.
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(d) they are asymptotically normally distributed – this is particularly useful since it

provides the basis for a number of statistic ‘tests’ based on the normal distribution

(discussed in more detail in Chapter 4).

(e) if there is a sufficient statistic for a parameter, then the MLE of the parameter is a

function of a sufficient statistic.∗

3. A disadvantage of the maximum likelihood method is that it frequently requires strong

assumptions about the structure of the data.

1.3.2. Simple estimation example – the binomial coefficient

We will introduce the basic idea behind maximum likelihood (ML) estimation using a simple, and

(hopefully) familiar example: a binomial model with data from a flip of a coin. Much of the analysis

of data from marked individuals involves ML estimation of the probabilities defining the occurrence

of one or more events. Probability events encountered in such analyses often involve binomial or

multinomial distributions. As you might appreciate, there is a simple, logical connection between

binomial probabilities, and analysis of data from marked individuals, since many of the fundamental

parameters we are interested in are ‘binary’ (having 2 possible states). For example, survival probability

(live or die), detection probability (seen or not seen), and so on. Like a coin toss (head or tail), the

estimation methods used in the analysis of data from marked individuals are deeply rooted in basic

binomial theory. Thus, a brief review of this subject is in order.

To understand binomial probabilities, you need to first understand binomial coefficients. Binomial

coefficients are commonly used to calculate the number of ways (combinations) a sample size of n

can be taken without replacement from a population of N individuals.

(

N

n

)

�
N!

n!(N − n)!
(1.1)

This is read as ‘the number of ways (or, ‘combinations’) a sample size of n can be taken (without

replacement) from a population of size N’. Think of N as the number of organisms in a defined

population, and let n be the sample size, for example. Recall that the ‘!’ symbol means factorial (e.g.,

5! � 5 × 4 × 3 × 2 × 1 � 120).

A quick example – how many ways can a sample of size 2 (i.e., n � 2) be taken from a population of

size 4 (i.e., N � 4)? Just to confirm we’re getting the right answer, let’s first derive the answer by ‘brute

force’. Let the individuals in the sample all have unique marks: call them individuals A, B, C and D,

respectively. So, given that we sample 2 at a time, without replacement, the possible combinations we

could draw from the ‘population’ are:

AB AC AD BC BD CD

BA CA DA CB DB DC

So, 6 total different combinations are possibly selected (6, not 12 – the pair in each column are

equivalent; e.g., ‘AB’ and ‘BA’ are treated as equivalent).

∗ Sufficiency is the property possessed by a statistic, with respect to a parameter, when no other statistic which can be calculated
from the same sample provides any additional information as to the value of the parameter. For example, the arithmetic mean
is sufficient for the mean (µ) of a normal distribution with known variance. Once the sample mean is known, no further
information about µ can be obtained from the sample itself.
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So, does this match with
(4
2

)

?

(

4

2

)

�
4!

2!(4 − 2)!
�

24

2(2)
�

24

4
� 6

Nice when things work out, eh? OK, to continue – we use the binomial coefficient to calculate the

binomial probability. For example, what is the probability of 5 heads in 20 tosses of a fair coin. Each

individual coin flip is called a Bernoulli trial, and if the coin is fair, then the probability of getting a head

is p � 0.5, while the probability of getting a tail is (1 − p) � 0.5 (commonly denoted as q). So, given a

fair coin, and p � q � 0.5, then the probability of y heads in N flips of the coin is:

f
(

y �� N, p
)

�

(

N

y

)

p y
(1 − p)

(N−y) (1.2)

The left-hand side of the equation is read as ‘the probability of observing y events given that we do

the experiment – toss the coin N times, and given that the probability of a head in any given experiment

(i.e., toss of the coin) is p’. Given that N � 20, and p � 0.5, then the probability of getting exactly 5 heads

in 20 tosses of the coin is:

f
(

5 �� 20, p
)

�

(

20

5

)

p5
(1 − p)

(20−5)

First, we calculate
(20

5

)

� 15,504 (note: 20! is a huge number). If p � 0.5, then f (5 | 20, 0.5) �

(15,504 × 0.03125 × 0.000030517578125) � 0.0148. So, there is a 1.48% chance of having 5 heads out

of 20 coin flips, if p � 0.5.

Now, in this example, we are assuming that we know both the number of times that we toss the coin,

and (critically) the probability of a head in a single toss of the coin. However, if we are studying the

survival of some organism, for example, what information on the left side of the probability equation

(above) would we know? Well, hopefully we know the number of individuals marked (N). Would we

know the survival probability (in the above, the survival probability would correspond to p – later, we’ll

call it S)? No! Clearly, this is what we’re trying to estimate.

So,given the numberof marked individuals (N) at the start of the study and the numberof individuals

that survive (y), how can we estimate the survival probability p? Easy enough,actually – we simply work

‘backwards’ (more or less). We find the value of p that maximizes the likelihood (L) that we would observe

the data we did.∗ So, for example, what would the value of p have to be to give us the observed data?

Formally, we write this as:

L
(

p �� N, y
)

�

(

N

y

)

p y
(1 − p)

(N−y) (1.3)

We notice that the right-hand side of eqn. (1.3) is identical to what it was before in eqn. (1.2) – but the

left hand side is different in a subtle, but critical way. We read the left-hand side now as ‘the likelihood

L of survival probability p given that N individuals were released and that y survived’. Now, suppose

N � 20, and that we see 5 individuals survive (i.e., y � 5). What would p have to be to maximize the

chances of this occurring?

∗ The word ‘likelihood’ is often used synonymously for ‘probability’ but in statistical usage, they are not equivalent. One may
ask ‘If I were to flip a fair coin 10 times, what is the probability of it landing heads-up every time?’ or ‘Given that I have flipped
a coin 10 times and it has landed heads-up 10 times, what is the likelihood that the coin is fair?’ but it would be improper to
switch ‘likelihood’ and ‘probability’ in the two sentences.
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We’ll try a ‘brute force’ approach first, simply seeing what happens if we set p � 0, 0.1, 0.2, . . . , and

so on. Look at the following plot of the binomial probability calculated for different values of p:
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As you see, the probability of ‘observing 5 survivals out of 20 individuals’ rises to a maximum when

p is 0.25. In other words, if p, which is unknown, were 0.25, then this would correspond to the maximal

probability of observing the data of 5 survivors out of 20 released individuals. This graph shows that

some values of the unknown parameter p are ‘relatively unlikely’ (i.e., those with low likelihoods), given

the data observed. The value of the parameter p at which this graph is at a maximum is the most likely

value of p (the probability of a head), given the data. In other words, the chances of actually observing

11 heads and 5 tails are maximal when p is at the maximum point of the curve, and the chances are less

when you move away from this point.

While graphs are useful for getting a ‘look’ at the likelihood, we prefer a more elegant way to estimate

the parameter. If you remember any of your basic calculus at all, you might recall that what we want

to do is find the maximum point of the likelihood function. Recall that for any function y � f (x),

we can find the maximum inflection point over a given domain by setting the first derivative dy/dx

to zero and solving. This is exactly what we want to do here, except that we have one preliminary

step – we ‘could’ take the derivative of the likelihood function as written, but it is simpler to convert

everything to logarithms first. The main reason to do this is because it simplifies the analytical side of

things considerably. The log-transformed likelihood, now referred to as a ‘log-likelihood’, is denoted as

lnL
(

q | data
)

.

Recall that our expression is

f
(

p �� N, y
)

�

(

N

y

)

p y
(1 − p)

(N−y)

The binomial coefficient in this equation is a constant (i.e., it does not depend on the unknown

parameter p), and so we can ignore it, and express this equation in log terms as:

L
(

p �� data
)

∝ p y
(1 − p)

(N−y) → lnL
(

p �� data
)

∝ y ln(p) + (N − y) ln(1 − p)
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Note that we’ve written the left-hand side in a sort of short-hand notation – ‘the likelihood L of the

parameter p, given the data’ (which in this case consist of 5 survivors out of 20 individuals). So, now

the equation we’re interested in is:

lnL
(

p �� data
)

∝ y ln(p) + (N − y) ln(1 − p)

So, all you need to do is differentiate this equation with respect to the unknown parameter p, set

equal to zero, and solve.

∂
[

lnL
(

p �� data
) ]

∂p
�

y

p
−

(N − y)

(1 − p)
� 0

So, solving for p, we get:

p̂ �
y

N

Thus, the value of parameter p which maximizes the likelihood of observing y � 5 given N � 20

(i.e., p̂, the maximum likelihood estimate for p) is the same as our intuitive estimate: simply, y/N . Now,

your intuition probably told you that the ‘only’ way you could estimate p from these data was to simply

divide the number of survivors by the total number of animals. But we’re sure you’re relieved to learn

that 5/20 � 0.25 is also the MLE for the parameter p.

begin sidebar

closed and non-closed MLE

In the preceding example, we considered the MLE for the binomial likelihood. In that case, we

could ‘use algebra’ to ‘solve’ for the parameter of interest (p̂). When it is possible to derive an

‘analytical solution’ for a parameter (or set of parameters for likelihoods where there are more than

one parameter), then we refer to the solution as a solution in ‘closed form’. Put another way, there is a

closed form solution for the MLE for the binomial likelihood.

However, not all likelihoods have closed form solutions. Meaning, the MLE cannot be derived

‘analytically’ (generally, by taking the derivative of the likelihood and solving at the maximum, as

we did in the binomial example). MLE’s that cannot be expressed in closed form need to be solved

numerically. Here is a simple example of a likelihood that cannot be put in closed form. Suppose we

are interested in estimating the abundance of some population. We might intuitively understand that

unless we are sure that we are encountering the entire population in our sample, then the number we

encounter (the ‘count’ statistic; i.e., the number of individuals in our sample) is a fraction of the total

population. If p is the probability of encountering any one individual in a population, and if n is the

number we encounter (i.e., the number of individuals in our sample from the larger population), then

we might intuitively understand that our canonical estimator for the size of the larger population is

simply (n/p). For example, if there is a 50% chance of encountering an individual in a sample, and

we encounter 25 individuals, then our estimate of the population size is N̂ � (25/0.5) � 50. (Note: we

cover abundance estimation in detail in Chapter 14.)

Now, suppose you are faced with the following situation. You are sampling from a population for

which you’d like to derive an estimate of abundance. We assume the population is ‘closed’ (no entries

or exits while the population is being sampled). You go out on a number of sampling ‘occasions’, and

capture a sample of individuals in the population. You uniquely mark each individual, and release

it back into the population. At the end of the sampling, you record the total number of individuals

encountered at least once – call this Mt+1. Now, if the canonical estimator for abundance is N̂ � (n/p),

then p̂ � (n/N ). In other words, if we knew the size of the population N then we could derive a

simple estimate of the encounter probability p by dividing the number encountered in the sample n

into the size of the population. Remember, p is the probability of encountering an individual. Thus,

the probability of ‘missing’ an individual (i.e., not encountering it) is simple (1 − p) � 1 − (n/N ).
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So, over t samples, we can write

(

1 −
n1

N

) (

1 −
n2

N

)

. . .
(

1 −
nt

N

)

�
(

1 − p1

) (

1 − p2

)

. . .
(

1 − pt

)

where pi is the encounter probability at time i, and ni is the number of individuals caught at time i.

If you think about it for a moment, you’ll see that the product on right-hand side is the overall

probability that an individual is not caught – not even once – over the course of the study (i.e., over t

total samples). Remember from above that we defined Mt+1 as the number of individuals caught at

least once. So, we can write

(

1 −
Mt+1

N

)

�

(

1 −
n1

N

) (

1 −
n2

N

) (

1 −
n3

N

)

· · ·
(

1 −
nt

N

)

In other words, the LHS and RHS both equal the probability of never being caught – not even once.

Now, if you had estimates of pi for each sampling occasion i, then you could write

(

1 −
Mt+1

N

)

�
(

1 − p1

) (

1 − p2

)

. . .
(

1 − pt

)

Mt+1

N
� 1 −

(

1 − p1

) (

1 − p2

)

. . .
(

1 − pt

)

N̂ �
Mt+1

1 −
(

1 − p1

) (

1 − p2

)

. . .
(

1 − pt

)

So, the expression is rewritten in terms of N – analytical solution – closed form, right? Not quite.

Note that we said if you had estimates of pi . In fact, you don’t. All you have is the count statistic (i.e.,

the number of individuals captured on each sampling occasion, ni). So, in fact, ‘all we have’ are the

count data (i.e., Mt+1 , n1 , n2 . . . nt ), which (from above) we relate algebraically in the following:

(

1 −
Mt+1

N

)

�

(

1 −
n1

N

) (

1 −
n2

N

) (

1 −
n3

N

)

· · ·
(

1 −
nt

N

)

It is not possible to ‘solve’ this equation so that only the parameter N appears on the LHS, while all

the other terms (representing data – i.e., Mt+1 , n1 , n2 . . . nt) appear on the RHS. Thus, the estimator

for N cannot be expressed in closed form.

However, the expression does have a solution – but it is a solution we must derive numerically, rather

than analytically. In other words, we must use numerical, iterative methods to find the value of N that

‘solves’ this equation. That value of N is the MLE, and would be denoted as N̂ .

Consider the following data:

n1 � 30, n2 � 15, n3 � 22, n4 � nt � 45, and Mt+1 � 79

Thus, one wants the value of N that ‘solves’ the equation

(

1 − 79

N

)

�

(

1 − 30

N

) (

1 − 15

N

) (

1 − 22

N

) (

1 − 45

N

)

One could try to solve this equation by ‘trial and error’. That is, one could plug in a guess for

population size and see if the LHS = RHS (not very likely unless you can guess very well). Thinking

about the problem a bit, one realizes that, logically, N ≥ Mt+1 (i.e., the size of the population N must

be at least as large as the number of unique individuals caught at least once, M+ t + 1). So, at least, one

has a lower bound (in this case, 79 if we restrict the parameter space to integers). If the first guess for N

does not satisfy the equation, one could try another guess and see if that either (1) satisfies the equation

or (2) is closer than the first guess. The log-likelihood functions for many (but not all) problems are

unimodal (for the exponential family); thus, you can usually make a new guess in the right direction.
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One could keep making guesses until a value of N (an integer) allows the LHS = RHS, and take

this value as the MLE, N̂ . Clearly, the ‘trial-and-error’ method will unravel if there is more than 1 or 2

parameters. Likewise, plotting the log-likelihood function is useful only when 1 or 2 parameters are

involved. We will quickly be dealing with cases where there are 30-40 parameters, thus we must rely

on efficient computer routines for finding the maximum point in the multidimensional cases. Clever

search algorithms have been devised for the 1-dimensional case. Computers are great at such routine

computations and the MLE in this case can be found very quickly. Many (if not most) of the estimators

we will work with cannot be put in closed form, and we will rely on computer software – namely,

program MARK – to compute MLEs numerically.

end sidebar

Why go to all this trouble to derive an estimate for p? Well the maximum likelihood approach also

has other uses – specifically, the ability to estimate the sampling variance. For example, suppose you

have some data from which you have estimated that p̂ � 0.6875. Is this ‘significantly different’ (by some

criterion) from, say, 0.5? Of course, to address this question, you need to consider the sampling variance

of the estimate, since this is a measure of the uncertainty we have about our estimate. How would you

do this? Of course, you might try the ‘brute force’ approach and simply repeat your ‘experiment’ a

large number of times. Each time, derive the estimate of p, and then calculate a mean and variance of

the parameter. While this works, there is a more elegant approach – again using ML theory and a bit

more calculus (fairly straightforward stuff).

Conceptually, the sampling variance is related to the curvature of the likelihood at its maximum.

Why? Consider the following: let’s say we release 16 animals, and observe 11 survivors. What would

the MLE estimate of p be? Well, we now know it is (y/N) � (11/16) � 0.6875. What if we had

released 80 animals, instead of 16? Suppose we did this experiment, and observed 55 survivors (i.e.,

the expected values assuming p � 0.6875). What would the likelihood look like in this case? Well,

clearly, the maximum of the likelihood in both ‘experiments’ should occur at precisely the same point:

0.6875.

But what about the ‘shape’ of the curve. In the following, we plot the likelihoods for both experiments

(N � 16 and N � 80 respectively).
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MLEN � 16, y � 11

N � 80, y � 55

Clearly, the larger sample size (N � 80) results in a ‘narrower’ function around the ML parameter

Chapter 1. First steps. . .



1.3.2. Simple estimation example – the binomial coefficient 1 - 12

estimate, p̂ � 0.6875. If the sampling variance is related to the degree of curvature of the likelihood at

its maximum, then we would anticipate the sampling variance of the parameter in these 2 experiments

to be quite different, given the apparent differences in the likelihood functions.

What is the basis for stating that ‘variance is related to curvature’? Think of it this way – values of

the likelihood at increasing distances from the MLE are increasingly ‘unlikely’, relative to the MLE.

The degree to which they are less likely is a function of how rapidly the curve drops away from the

maximum as you move away from the MLE (i.e., the ‘steepness’ of the curve on either side of the MLE).

How do we address this question of ‘curvature’ analytically? Well, again we can use calculus. We use

the first derivative of the likelihood function to find the point on the curve where the rate of change was

0 (i.e., the maximum point on the function). This first derivative of the likelihood is known as Fisher’s

score function.

We can then use the derivative of the score function with respect to the parameter(s) (i.e., the second

derivative of the likelihood function, which is known as the Hessian), evaluated at the estimated value

of the parameter (p, in this case), to ‘tell us something about the curvature’ at this point. In fact, more

than just the curvature, Fisher showed that the negative inverse of the second partial derivative of the

log-likelihood function (i.e., the negative inverse of the Hessian), evaluated at the MLE, is the MLE of

the variance of the parameter. This negative inverse of the Hessian, evaluated at the MLE, is known as

the information function, or matrix.

For our example, our estimate of the variance of p is

v̂ar(p̂) �

−
*,
∂

2 lnL
(

p �� data
)

∂p2
+-


−1

p�p̂

So, we first find the second derivative of the log-likelihood (i.e., the Hessian):

∂
2
L

∂p2
� −

y

p2
−

N − y

(1 − p)
2

We evaluate this second derivative at the MLE, by substituting y � pN (since p̂ � y/N). This gives

∂
2
L

∂p2

������y�pN

� −
Np

p2
−

N (1 − p)

(1 − p)
2

� − N

p(1 − p)

The variance of p is then estimated as the negative inverse of this expression (i.e., the information

function, or matrix), such that:

v̂ar(p̂) �
p(1 − p)

N

Some of you may recognize this as the often-used estimator of the variance of a binomial proportion

– it is in all the ‘stats books’. But now you can sleep more easily knowing how it was derived!

So, how do the sampling variances of our 2 experiments compare? Clearly, since p and (1-p) are the

same in both cases (i.e., same ML estimate for p̂), the only difference is in the denominator, N. Since

N � 80 is obviously larger than N � 16, we know immediately that the sampling variance of the larger

sample will be smaller (0.0027) than the sampling variance of the smaller sample (0.0134).
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1.3.3. Multinomials: a simple extension

A binomial probability involves 2 possible states (e.g., live or dead). What if there are more than 2

states? In this case, we use multinomial probabilities. As with our discussion of the binomial probability

(above), we start by looking at the multinomial coefficient – the multinomial equivalent of the binomial

coefficient. The multinomial is extremely useful in understanding the models we’ll discuss in this book.

The multinomial coefficient is nearly always introduced by way of a die tossing example. So, we’ll stick

with tradition and discuss this classic example here. Recall that a die has 6 sides – therefore 6 possible

outcomes if your roll a die once. The multinomial coefficient corresponding to the ‘die’ example is

(

N

n1 n2 n3 n4 n5 n6

)

�
N!

n1!n2!n3!n4!n5!n6!
�

N!
∏k

i�1 ni !

Note the use of the product operator ‘
∏

’ in the denominator. In a multinomial context,we assume that

individual trials are independent, and that outcomes are mutually exclusive and all inclusive. Consider

the ‘classic’ die example. Assume we throw the die 60 times (N � 60), and a record is kept of the number

of times a 1, 2, 3, 4, 5 or 6 is observed. The outcomes of these 60 independent trials are shown below.

face frequency notation

1 13 y1

2 10 y2

3 8 y3

4 10 y4

5 12 y5

6 7 y6

Each trial has a mutually exclusive outcome (1 or 2 or 3 or 4 or 5 or 6). Note that there is a type of

dependency in the cell counts in that once n and y1, y2, y3, y4 and y5 are known, then y6 can be obtained

by subtraction, because the total (N) is known. Of course, the dependency applies to any count, not just

y6. This same dependency is also seen in the binomial case – if you know the total number of coin tosses,

and the total number of heads observed, then you know the number of tails, by subtraction.

The multinomial distribution is useful in a large number of applications in ecology. The probability

function for k � 6 is

P
(

yi | n, pi

)

�

(

n

yi

)

p
y1

1 p
y2

2 p
y3

3 p
y4

4 p
y5

5 p
y6

6

Again, as was the case with the binomial probability, the multinomial coefficient does not involve

any of the unknown parameters, and is conveniently ignored for many estimation issues.

This is a good thing, since in the simple die tossing example the multinomial coefficient is

(

n

yi

)

�
60!

13!10!8!10!12!7!

which is an absurdly big number – beyond the capacity of your simple hand calculator to calculate. So,

it is helpful that we can ignore it for all intents and purposes.

Some simple examples – suppose you role a ‘fair’ die 6 times (i.e., 6 trials), First, assume (y1, y2, y3,

y4, y5, y6) is a multinomial random variable with parameters p1 � p2 � . . . p6 � 0.1667 and N � 6.
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What is the probability that each face is seen exactly once? This is written simply as:

P
(

1, 1, 1, 1, 1, 1 �� 6, 1/6, 1/6, 1/6, 1/6, 1/6, 1/6
)

�
6!

1!1!1!1!1!1!

(
1

6

)6

�

(
5

324

)

� 0.0154

What is the probability that exactly four 1’s occur, and two 2’s occur in 6 tosses? In this case,

L
(

4, 2, 0, 0, 0, 0 �� 6, 1/6, 1/6, 1/6, 1/6, 1/6, 1/6
)

�
6!

4!2!0!0!0!0!

(
1

6

)4 (
1

6

)2

�

(
5

15,552

)

≪ 0.0154

As noted in our discussion of the binomial probability theorem, we are generally faced with the

reverse problem – we do not know the parameters, but rather we want to estimate the parameters

from the data. As we saw, these issues are the domain of the likelihood and log-likelihood functions.

The key to this estimation issue is the multinomial distribution, and, particularly, the likelihood and

log-likelihood functions

L
(

q �� data
)

or L
(

pi
�� ni , yi

)

which we read as ‘the likelihood of the parameters, given the data’ – the left-hand expression is the

more general one, where the symbol q indicates one or more parameters. The right-hand expression

specifies the parameters of interest.

At first, the likelihood function looks pretty messy, but it is only a slightly different view of the

probability function. Just as we saw from the binomial probability function, the multinomial function

assumes N is given. The probability function further assumes that the parameters are given, while the

likelihood function assumes the data are given. The likelihood function for the multinomial distribution

is

L
(

pi
�� ni , yi

)

�

(

N

yi

)

p
y1

1
p

y2

2
p

y3

3
p

y4

4
p

y5

5
p

y6

6

Since the first term – the multinomial coefficient – is a constant, and since it doesn’t involve any

parameters, we ignore it. Next, because probabilities must sum to 1 (i.e., {sum of pi over all i} = 1), there

are only 5 ‘free’ parameters, since the 6th one is defined by the other 5 (the ‘dependency’ issue we

mentioned earlier), and the total, N. We will use the symbol K to denote the total number of estimable

parameters in a model. Here, K � 5.

The likelihood function for K � 5, for example, is

L
(

pi
�� N, yi

)

�

(

N

yi

)

p
y1

1 p
y2

2 p
y3

3 p
y4

4 p
y5

5

(

1 −
5∑

i�1

pi

)
(

N−
∑5

i�1 pi

)

So, just as we saw for the binomial example, we use a maximization routine (either analytical or

numerical, depending on whether or not the likelihood can be expressed in closed form) to find the

values of p1 , p2, p3 , p4 and p5 that maximize the likelihood of the data that we observe. Remember – all

we are doing is finding the values of the parameters which maximize the likelihood of observing the

data that we see. Nothing more than that – at least conceptually.
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1.4. Application to mark-recapture

Let’s look at an example relevant to the task at hand (no more dice, or flipping coins.). Let’s pretend

we do a three year mark-recapture study, with 55 total marked individuals from a single cohort.∗ Once

each year, we go out and look to see if we can ‘see’ (encounter) any of the 55 individuals we marked

alive and in our sample. For now, we’ll assume that we only encounter ‘live’ individuals.

The following represents the basic ‘structure’ of our sampling protocol:

1 2 3

p2 p3

ϕ1 ϕ2

In this diagram, each of the sampling events (referred to as ‘sampling occasions’) is indicated by a

shaded grey circle. Our ‘experiment’ has three sampling occasions, numbered 1 → 3, respectively. In

this diagram, time is moving forward going from left to right (i.e., sampling occasion 2 occurs one time

step after sampling occasion 1, and so forth). Connecting the sampling occasions we have an arrow –

the direction of the arrow indicates the direction of time – again, moving left to right, forward in time.

We’ve also added two variables (symbols) to the diagram: ϕ and p. What do these represent?

For this example, these represent the two primary parameters which we believe (assume) govern the

encounter process: ϕi (the probability of surviving from occasion i to i+1), and pi (the probability that if

alive and in the sample at time i, that the individual will be encountered). So, as shown on the diagram,

ϕ1 is the probability that an animal encountered and released alive at sampling occasion 1 will survive

the interval from occasion 1→ occasion 2, and so on. Similarly, p2 is the probability that conditional

on the individual being alive and in the sample, that it will be encountered at occasion 2, and so on.

Why no p1? Simple – p1 is the probability of encountering a marked individual in the population, and

none are marked prior to occasion 1 (which is when we start our study). In addition, the probability of

encountering any individual (marked or otherwise) could only be calculated if we knew the size of the

population, which we don’t (this becomes an important consideration we will address in later chapters

where we make use of estimated abundance). The important thing to remember here is the probability

of being encountered at a particular sampling occasion is governed by two parameters: ϕ and p.

Now, as discussed earlier, if we encounter the animal, we record it in our data as ‘1’. If we don’t

encounter the animal, it’s a ‘0’. So, based on a 3 year study, an animal with an encounter history of ‘111’

was ‘seen in the first year (the marking year), seen again in the second year, and also seen in the third

year’. Compare this with an animal with an encounter history of ‘101’. This animal was ‘seen in the

first year, when it was marked, not seen in the second year, but seen again in the third year’. For a 3

occasion study, where the occasion refers to the sampling occasion, with a single release cohort, there

are 4 possible encounter histories:

encounter history

111

101

110

100

∗ In statistics and demography, a cohort is a group of ‘subjects’ defined by experiencing a common event (typically birth) over a
particular time span. In the present context, a cohort represents a group of individuals captured, marked, and released alive
at the same point in time. These individuals would be part of the same release cohort.
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Now, the key question we have to address, and (in simplest terms) the basis for analysis of data

from marked individuals, is ‘what is the probability of observing a particular encounter history?’. The

probability of a particular encounter history is determined by a set of parameters – for this study, we

know (or assume) that the parameters governing the probability of a given encounter history are ϕ and

p. Based on the diagram on the previous page, we can write a probability expression corresponding to

each of these possible encounter histories:

encounter history probability

111 ϕ1p2ϕ2p3

110 ϕ1p2

(

1 − ϕ2p3

)

101 ϕ1

(

1 − p2

)

ϕ2p3

100 1 − ϕ1p2 − ϕ1(1 − p2)ϕ2p3

For example, take encounter history ‘101’. The individual is marked and released on occasion 1 (the

first 1 in the history), is not encountered on the second occasion,but is encountered on the third occasion.

Now, because of this encounter on the third occasion, we know that the individual was in fact alive on

the second occasion, but simply not encountered. So, we know the individual survived from occasion

1→ 2 (with probability ϕ1), was not encountered at occasion 2 (with probability 1 − p2), and survived

to occasion 3 (with probability ϕ2) where it was encountered (with probability p3). So, the probability

of observing encounter history ‘101’ would be ϕ1(1 − p2)ϕ2p3.

Here are our ‘data’ – which consist of the observed frequencies of the 55 marked individuals with

each of the 4 possible encounter histories:

encounter history frequency

111 7

110 13

101 6

100 29

So, of the 55 individually marked and released alive in the release cohort, 7 were encountered on

both sampling occasion 2 and sampling occasion 3, 13 were encountered on sampling occasion 2, but

were not seen on sampling occasion 3, and so on.

The estimation problem, then, is to derive estimates of the parameters pi andϕi which maximizes the

likelihood of observing the frequency of individuals with each of these 4 different encounter histories.

Remember, the encounterhistories are the data - we want to use the data to estimate the parametervalues.

What parameters? Again, recall also that the probability of a given encounter history is governed (in

this case) by two parameters: ϕ, and p.

OK, so we’ve been playing with multinomials (above), and you might have suspected that these

encounter data must be related to multinomial probabilities, and likelihoods. Good guess! The basic

idea is to realize that the statistical likelihood of an actual encounter data set (as is tabulated above) is

merely the product of the probabilities of the possible capture histories over those actually observed.

As noted by Lebreton et al. (1992), because animals with the same encounter history have the same

probability expression, then the number of individuals observed with each encounter history appears

as an exponent of the corresponding probability in the likelihood.
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Thus, we write

L �
(

ϕ1p2ϕ2p3

)N(111) ×
[
ϕ1p2

(

1 − ϕ2p3

) ] N(110) ×
[
ϕ1

(

1 − p2

)

ϕ2p3

] N(101)

×
[
1 − ϕ1p2 − ϕ1

(

1 − p2

)

ϕ2p3

] N(100)

where N(i jk) is the observed frequency of individuals with encounter history i jk.

As with the binomial, we take the log transform of the likelihood expression, and after substituting

the frequencies of each history, we get:

lnL
(

ϕ1 , p2, ϕ2 , p3

)

� 7 ln
(

ϕ1p2ϕ2p3

)

+ 13 ln
[
ϕ1p2

(

1 − ϕ2p3

) ]
+ 6 ln

[
ϕ1

(

1 − p2

)

ϕ2p3

]
+ 29 ln

[
1 − ϕ1p2 − ϕ1

(

1 − p2

)

ϕ2p3

]
All that remains is to derive the estimates of the parameters ϕi and pi that maximize this likelihood.

Let’s go through a worked example, using the encounter history data tabulated on the preceding

page. To this point, we have assumed that these encounter histories are governed by ‘time-specific’

variation in ϕ and p. In other words, we would write the probability statement for encounter history

‘111’ as ϕ1p2ϕ2p3.

These time-specific parameters are indicated in the following diagram:

1 2 3

p2 p3

ϕ1 ϕ2

Again, the subscripting indicates a different survival and recapture probability for each interval or

sampling occasion.

However, what if instead we assume that the survival and recapture probabilities do not vary over

time? In other words, ϕ1 � ϕ2 � ϕ, and p2 � p3 � p. In this case, our diagram would now look like

1 2 3

p p

ϕ ϕ

What would the probability statements be for the respective encounter histories? In fact, in this case

deriving them is very straightforward – we simply drop the subscripts from the parameters in the

probability expressions:

encounter history probability

111 ϕpϕp

110 ϕp(1 − ϕp)

101 ϕ
(

1 − p
)

ϕp

100 1 − ϕp − ϕ(1 − p)ϕp
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So, what would the likelihood look like? Well, given the frequencies, the likelihood would be:

L � [ϕpϕp]N111

[ϕp(1 − ϕp)]N110

[ϕ(1 − p)ϕp]N101

[1 − ϕp − ϕ(1 − p)ϕ]N100

Thus,

lnL(ϕ, p) � 7 ln[ϕpϕp] + 13 ln[ϕp(1 − ϕp)] + 6 ln[ϕ(1 − p)ϕp] + 29 ln[1 − ϕp − ϕ(1 − p)ϕp]

Again, we can use numerical methods to solve for the values of ϕ and p which maximize the likelihood

of the observed frequencies of each encounter history. The likelihood profile for these data is plotted as

a 2-dimensional contour plot, shown below:

�
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�
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We see that the maximum of the likelihood occurs at p � 0.542 and ϕ � 0.665 (where the 2 dark black

lines cross in the figure).

For this example, we used a numerical approach to find the MLE. In fact, for this example where ϕ

and p are constant over time, the probability expressions are defined entirely by these two parameters,

and we could (if we really had to) write the likelihood as two closed-form equations in ϕ and p, and

derive estimates for ϕ and p analytically. All we need to do is (1) take the partial derivatives of the

likelihood with respect to each of the parameters (ϕ, p) in turn (∂L/∂ϕ, ∂L/∂p), (2) set each partial

derivative to 0, and (3) solve the resulting set of simultaneous equations.

Solving simultaneous equations is something that most symbolic math software programs (e.g.,

MAPLE, Mathematica, GAUSS, Maxima) does extremely well. For this problem, the ML estimates are

derived analytically as ϕ̂ � 0.665 and p̂ � 0.542 (just as we saw earlier using the numerical approach).

However, recall that many of the likelihoods we’ll be working with cannot be evaluated analytically
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in closed form, so we will rely in numerical methods. Program MARK evaluates all likelihoods (and

functions of likelihoods) numerically.

What is the actual value of the likelihood at this point? On the log scale, ln(L) is maximized at -65.041.

For comparison, the maximized ln(L) for the model where both ϕ and p were allowed to vary with time

is -65.035. Now, these likelihoods aren’t very far apart – only in the second and third decimal places.

Further, the two models (with constantϕ and p, and with time varyingϕ and p) differby only 1 estimable

parameter (we’ll talk a lot more about estimable parameters in coming lectures). So, a χ2 test would

have only 1 df. The difference in the ln(L) is 0.006 (actually, the test is based on 2 ln(L), so the difference

is actually 0.012). This difference is not significant (in the familiar sense of ‘statistical significance’) at

P ≫ 0.5. So, the question we now face is, which of the two models do we use for inference? This takes

us to one of the main themes of this book – model selection – which we’ll cover in some detail in Chapter

4. But, for the moment, a glimpse of where we’re headed.

1.5. Variance estimation for > 1 parameter

Earlier, we considered the derivation of the MLE, and the variance, for a simple situation involving only

a single parameter. If in fact we have more than one parameter, the same idea we’ve just described for

one parameter still works, but there is one important difference: a multi-parameter likelihood surface

will have more than one second partial derivative. In fact, what we end up with a matrix of second

partial derivatives, called the Hessian.

Consider for example, the log-likelihood of the simple mark-recapture data set we just analyzed in

the preceding section:

lnL(ϕ, p) � 7 ln[ϕpϕp] + 13 ln[ϕp(1 − ϕp)] + 6 ln[ϕ(1 − p)ϕp] + 29 ln[1 − ϕp − ϕ(1 − p)ϕp]

Thus, the Hessian H (i.e., the matrix of second partial derivatives of the likelihood L with respect to ϕ

and p) would be

H �



∂
2
L

∂ϕ2

∂
2
L

∂ϕ∂p

∂
2
L

∂p∂ϕ

∂
2
L

∂p2


We’ll leave it as an exercise for you to derive the second partial derivatives corresponding to each of

the elements of the Hessian. It isn’t difficult, just somewhat cumbersome.

For our present example,

∂
2
L

∂ϕ2
� − 26

ϕ2
−

26p

ϕ(1 − ϕp)
−

13[p(1 − ϕp) − ϕp2]

ϕ2p(1 − ϕp)
+

13[p(1 − ϕp) − ϕp2]

ϕ(1 − ϕp)
2

−
58(1 − p)p

1 − ϕp − ϕ2
(1 − p)p

−
29[−p − 2ϕ(1 − p)p]2

[1 − ϕp − ϕ2
(1 − p)p]2

Pretty ugly (and this for a simple model with only 2 parameters – ϕ and p – both of which are held

constant over time in this example). Good thing MARK handles all this messy stuff for you.
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Next, we evaluate the Hessian at the MLE for ϕ and p (i.e., we substitute the MLE values for our

parameters – ϕ̂ � 0.6648 and p̂ � 0.5415 – into the Hessian), which yields the information matrix, I:

I �

[
−203.06775 −136.83886

−136.83886 −147.43934

]

The negative inverse of the information matrix (−I−1) is the variance-covariancematrix for parameters

ϕ and p

−I−1
� −

[
−203.06775 −136.83886

−136.83886 −147.43934

]−1

�

[
0.0131 −0.0122

−0.0122 0.0181

]

Note that the variances are found along the diagonal of the matrix, while the off-diagonal elements

are the covariances.

In general, for an arbitrary parameter θ, the variance of θi is given as the elements of the negative

inverse of the information matrix corresponding to

∂
2 lnL

∂θi∂θi

while the covariance of θi with θj is given as the elements of the negative inverse of the information

matrix corresponding to

∂
2 lnL

∂θi∂θj

Obviously, the variance-covariance matrix is the basis for deriving measures of the precision of our

estimates. But, as we’ll see in later chapters, the variance-covariance matrix is used for much more –

including estimating the number of estimable parameters in the model. While MARK handles all this

for you, it’s important to have a least a feel for what MARK is doing ‘behind the scenes’, and why.

1.6. More than ‘estimation’ – ML and statistical testing

In the preceding, we focussed on the maximization of the likelihood as a means of deriving estimates of

parameters and the sampling variance of those parameters.However, the otherprimary use of likelihood

methods is for comparing the fits of different models.

We know that L(θ̂) is the value of the likelihood function evaluated at the MLE θ̂, whereas L(θ) is

the likelihood for the true (but unknown) parameter θ. Since the MLE maximizes the likelihood for a

given sample, then the value of the likelihood at the true parameter value θ is generally smaller than

the MLE θ̂ (unless by chance θ̂ and θ happen to coincide).

This, combined with other properties of ML estimators noted earlier lead directly to several classic

and general procedures for testing the statistical hypothesis that Ho : θ � θ0. Here we briefly describe

three of the more commonly used tests.

Fisher’s Score Test

The ‘score’ is the slope of the log-likelihood at a particular value of θ. In other words, S(θ) �

∂ lnL(θ)/∂θ. At the MLE, the score (slope) is 0 (by definition of a maximum).
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Recall from earlier in this chapter that

v̂ar(θ̂) �

−
*,
∂

2 lnL(θ | data)

∂θ2
+-


−1

θ�θ̂

The term inside the inner parentheses is known as Fisher information

I(θ) � −∂
2 lnL(θ)

∂θ2

It can be shown that the score statistic

S0 �
S
(

θ0

)

√

I
(

θ0

)

is asymptotically distributed as N(0, 1) under Ho.

Wald test

The Wald test relies on the asymptotic normality of the MLE θ̂. Given the normality of the MLE, we

can calculate the test statistic

Z0 �
θ̂ − θ0

√

v̂ar
(

θ̂
)

which is asymptotically distributed as N(0, 1) under the null Ho .

Likelihood ratio test

It is known that 2
[

lnL
(

θ̂
)

− lnL
(

θ0

) ]

follows an asymptotic χ2 distribution with one degree of

freedom.

The relationship among these tests is shown in the following diagram:
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In general, these three tests are asymptotically equivalent, although in some applications, the score

test has the practical advantage of not requiring the computation of the MLE at θ̂ (since S0 depends

only on the null value θ0, which is specified in H0). We consider one of these tests (the likelihood ratio

test) in much more detail in Chapter 4.

1.7. Technical aside: a bit more on variances

As we discussed earlier, the classic MLE approach to variance calculation (for purposes of creating a

SE and so forth) is to use the negative inverse of the 2nd derivative of the MLE evaluated at the MLE.

However, the problem with this approach is that, in general, it leads to derivation of symmetrical 95%

CI, and in many cases – especially for parameters that are bounded on the interval [0, 1] – this makes no

sense. A simple example will show what we mean. Suppose we release 30 animals, and find 1 survivor.

We know from last time that the MLE for the survival probability is (1/30) � 0.03333. We also know

from earlier in this chapter that the classical estimator for the variance, based on the 2nd derivative, is

v̂ar(p̂) �
p̂(1 − p̂)

N

�
0.0333(1− 0.0333)

30
� 0.0010741

So, based on this, the 95% CI using classical approaches would be ±1.96(SE), where the SE (standard

error) is estimated as the square-root of the variance. Thus, given v̂ar � 0.001074, the 95% CI would be

±1.96(0.03277), or [0.098,−0.031].

OK, so what’s wrong with this? Well, clearly, we don’t expect a 95% CI to ever allow values < 0 (or

> 1) for a parameter that is logically bounded to fall between 0 and 1 (like ϕ or p). So, there must be a

problem, right?

Well, somewhat. Fortunately, there is a better way, using something called the profile likelihood ap-

proach, which makes more explicit use of the shape of the likelihood. We’ll go into the profile likelihood

in further detail in later chapters, but to briefly introduce the concepts – consider the following diagram,

which shows the maximum part of the log likelihood for ϕ, given N � 30, y � 23 (i.e., 23/30 survive).
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Profile likelihood confidence intervals are based on the log-likelihood function. For a single parame-

ter, likelihood theory shows that the 2 points 1.92 units down from the maximum of the log likelihood

function provide a 95% confidence interval when there is no extra-binomial variation (i.e., c � 1; see

Chapter 5). The value 1.92 is half of the χ2
1 � 3.84. Thus, the same confidence interval can be computed

with the deviance by adding 3.84 to the minimum of the deviance function, where the deviance is the

log-likelihood multiplied by -2 minus the -2 log likelihood value of the saturated model (more on these

concepts in later chapters).

Put another way, we use the critical value of 1.92 to derive the profile – you take the value of the log

likelihood at the maximum (for this example, the maximum occurs at −16.30), add 1.92 to it (yielding

−18.22; note we keep the negative sign here), and look to see where the −18.22 line intersects with the

profile of the log likelihood function. In this case, we see that the intersection occurs at approximately

0.6 and 0.9. The MLE is (23/30) � 0.767, so clearly, the profile 95% CI is not symmetrical around this

MLE value. But, it is bounded on the interval [0, 1]. The profile likelihood is the preferred approach to

deriving 95% CI. The biggest limit to using it is computational – it simply takes more work to derive a

profile likelihood (and corresponding CI). Fortunately, MARK does all the work for us.

1.8. Summary

That’s it for Chapter 1! Nothing about MARK, but some important background. Beginning with

Chapter 2, we’ll consider formatting of our data (the ‘encounter histories’ we introduced briefly in

this chapter). After that, the real details of using program MARK. Our suggestion at this stage is to (i)

leave your own data alone – you need to master the basics first. This means working through at least

chapters 3 → 8, in sequence, using the example data sets. Chapter 9 and higher refer to specific data

types – one or more may be of particular interest to you. Then, when you’re ready (i.e., have a good

understanding of the basic concepts), (ii) get your data in shape – this is covered in Chapter 2.
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CHAPTER 2

Data formatting: the input file . . .

Clearly, the first step in any analysis is gathering and collating your data. We’ll assume that at the

minimum, you have records for the individually marked individuals in your study, and from these

records, can determine whether or not an individual was ‘encountered’ (in one fashion or another) on

a particular sampling occasion. Typically, your data will be stored in what we refer to as a ‘vertical file’

– where each line in the file is a record of when a particular individual was seen. For example, consider

the following table, consisting of some individually identifying mark (ring or tag number), and the year.

Each line in the file (or, row in the matrix) corresponds to the animal being seen in a particular year.

tag number year

1147-38951 73

1147-38951 75

1147-38951 76

1147-38951 82

1147-45453 74

1147-45453 78

However, while it is easy and efficient to record the observation histories of individually marked

animals this way, the ‘vertical format’ is not at all useful for capture-mark-recapture analysis. The

preferred format is the encounter history. The encounter history is a contiguous series of specific dummy

variables, each of which indicates something concerning the encounter of that individual – for example,

whether or not it was encountered on a particular sampling occasion, how it was encountered, where it

was encountered, and so forth. The particular encounter history will reflect the underlying model type

you are working with (e.g., recaptures of live individuals, recoveries of dead individuals). Consider

for example, the encounter history for a typical mark-recapture analysis (the encounter history for a

mark-recapture analysis is often referred to as a capture history, since it implies physical capture of the

individual). In most cases, the encounter history consists of a contiguous series of ‘1’s and ‘0’s, where

‘1’ indicates that an animal was recaptured (or otherwise known to be alive and in the sampling area),

and ‘0’ indicates the animal was not recaptured (or otherwise seen). Consider the individual in the

preceding table with tag number ‘1147-38951’. Suppose that 1973 is the first year of the study, and that

1985 is the last year of the study. Examining the table, we see that this individual was captured and

marked during the first year of the study, was seen periodically until 1982, when it was seen for the last

time. The corresponding encounter-history for this individual would be: ‘1011000001000’.

In other words, the individual was seen in 1973 (the starting ‘1’), not seen in 1974 (‘0’), seen in 1975

and 1976 (‘11’), not seen for the next 5 years (‘00000’), seen again in 1982 (‘1’), and then not seen again
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(‘000’).

While this is easy enough in principal, you surely don’t want to have to construct capture-histories

manually. Of course, this is precisely the sort of thing that computers are good for – large-scale data

manipulation and formatting. MARK does not do the data formatting itself – no doubt you have your

own preferred ‘data manipulation’ environment (dBASE, Excel, Paradox, SAS). Thus, in general, you’ll

have to write your own program to convert the typical ‘vertical’ file (where each line represents the

encounter information for a given individual on a given sampling occasion; see the example on the

preceding page) into encounter histories (where the encounter history is a horizontal string). In fact,

if you think about it a bit, you realize that in effect what you need to do is to take a vertical file, and

‘transpose’ (or, ‘pivot’) it into a horizontal file – where fields to the right of the individual tag number

represent when an individual was recaptured or resighted. However, while the idea of a ‘transpose’ or

‘pivot’ seems simple enough, there is one rather important thing that needs to be done – your program

must insert the ‘0’ value whenever an individual was not seen. We’ll assume for the purposes of this

book that you will have some facility to put your data into the proper encounter-history format. For

those of you who have no idea whatsoever on how to approach this problem, we provide some practical

guidance in the Addendum at the end of this chapter. Of course, you could always do it by hand, if

absolutely necessary!

begin sidebar

editing the INP file

Many of the problems people have getting started with MARK can ultimately be traced back to prob-

lems with the INP file. One common issue relates to choice of editor used to make changes/additions

to the INP file. You are strongly urged to avoid – as in ‘like the plague’ – using Windows Notepad (or,

even worse, Word) to do much of anything related to building/editing INP files. Do yourself a favor

and get yourself a real ASCII editor. There are a number of very good ‘free’ applications you can (and

should) use instead of Notepad (e.g., Notepad++, EditPad Lite, jEdit, and so on...)

end sidebar

2.1. Encounter histories formats

Now we’ll look at the formatting of the encounter histories file in detail. It is probably easiest to show

you a ‘typical’ encounter history file, and then explain it ‘piece by piece’. The encounter-history reflects

a mark-recapture experiment.

Superficially, the encounter histories file is structurally quite simple. It consists of an ASCII (text)

file, consisting of the encounter history itself (the contiguous string of dummy variables), followed by

one or more additional columns of information pertaining to that history. Each record (i.e., each line)
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in the encounter histories file ends with a semi-colon. Each history (i.e., each line, or record) must be

the same length (i.e., have the same number of elements – the encounter history itself must be the

same length over all records, and the number of elements ‘to the right’ of the encounter history must

also be the same) – this is true regardless of the data type. The encounter histories file should have

a INP suffix (for example, EXAMPLE1.INP). Generally, there are no other ‘control statements’ or ‘PROC

statements’ required in a MARK input file. However, you can optionally add comments to the INP file

using the ‘slash-asterisk asterisk/slash’ convention common to many programming environments – we

have included a comment at the top of the example input file (shown at the bottom of the preceding

page). The only thing to remember about comments is that they do not end with a semi-colon.

Let’s look at each record (i.e., each line) a bit more closely. In this example, each encounter history

is followed by a number. This number is the frequency of all individuals having a particular encounter

history. This is not required (and in fact isn’t what you want to do if you’re going to consider individual

covariates – more on that later), but is often more convenient for large data sets. For example, the

summary encounter history

110000101 4;

could also be entered in the INP files as

110000101 1;

110000101 1;

110000101 1;

110000101 1;

Note again that each line – each ‘encounter history record’ – ends in a semi-colon. How would you

handle multiple groups? For example, suppose you had encounter data from males and females? In

fact, it is relatively straightforward to format the INP file for multiple groups – very easy for summary

encounter histories, a bit less so for individual encounter histories. In the case of summary encounter

histories, you simply add a second column of frequencies to the encounter histories to correspond to

the other sex. For example,

110100111 23 17;

110000101 4 2;

101100011 1 3;

In other words, 23 of one sex and 17 of the other have history ‘110100111’ (the ordering of the sexes –

whichcolumn of frequencies corresponds to whichsex – is entirely up to you). If you are using individual

records, rather than summary frequencies, you need to indicate group association in a slightly less-

obvious way – you will have to use a ‘0’ or ‘1’ within a group column to indicate the frequency – but

obviously for one group only. We’ll demonstrate the idea here. Suppose we had the following summary

history, with frequencies for males and females (respectively):

110000101 4 2;

In other words, 4 males, and 2 females with this encounter history (note: the fact that males come

before females in this example is completely arbitrary. You can put whichever sex – or ‘group’ – you want

in any column you want – all you’ll need to do is remember which columns in the INP file correspond

to which groups).
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To ‘code’ individual encounter histories, the INP file would be modified to look like:

110000101 1 0;

110000101 1 0;

110000101 1 0;

110000101 1 0;

110000101 0 1;

110000101 0 1;

In this example, the coding ‘1 0’ indicates that the individual is a male (frequency of 1 in the male

column, frequency of 0 in the female column), and ‘0 1’ indicates the individual is a female (frequency

of 0 in the male column, and frequency of 1 in the male column). The use of one-record per individual

is only necessary if you’re planning on using individual covariates in your analysis.

2.1.1. Groups within groups...

In the preceding example, we had 2 groups: males and females. The frequency of encounters for each

sex is coded by adding the frequency for each sex to the right of the encounter history.

But, what if you had something like males, and females (i.e., data from both sexes) and good colony

and poor colony (i.e., data were sampled for both sexes from each of 2 different colonies – one classified

as good, and the other as poor). How do you handle this in the INP file? Well, all you need to do is have

a frequency column for each (sex.colony) combination: one frequency column for females from the

good colony, one frequency column for females from the poor colony, one frequency column for males

from the good colony, and finally, one frequency column for males from the poor colony. An example

of such an INP file is shown below:

As we will see in subsequent chapters, building models to test for differences between and among

groups, and for interactions among groups (e.g., an interaction of sex and colony in this example) is

relatively straightforward in MARK – all you’ll really need to do is remember which frequency column

codes for which grouping (hence the utility of adding comments to your INP file, as we’ve done in this

example).

2.2. Removing individuals from the sample

Occasionally, you may choose to remove individuals from the data set at a particular sampling occasion.

For example, because your experiment requires you to remove the individual after its first recapture,

or because it is injured, or for some other reason. The standard encounter history we have looked at

so far records presence or absence only. How do we accommodate ‘removals’ in the INP file? Actually,
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it’s very easy – all you do is change the ‘sign’ on the frequencies from positive to negative. Negative

frequencies indicates that that many individuals with a given encounter history were removed from

the study. For example,

100100 1500 1678;

100100 -23 -25;

In this example,we have 2 groups, and 6 sampling occasions. In the first record,we see that there were

1,500 individuals and 1,678 individuals in each group marked on the first occasion, not encountered on

the next 2 occasions, seen on the fourth occasion, and not seen again. In the second line, we see the same

encounter history, but with the frequencies ‘-23’ and ‘-25’. The negative values indicate to MARK that

23 and 25 individuals in both groups were marked on the first occasion, not seen on the next 2 occasions,

were encountered on the fourth occasion, at which time they were removed from the study. Clearly, if

they were removed, they cannot have been seen again. So, in other words, 1,500 and 1,678 individuals

recaptured and released alive, on the fourth occasion, in addition to 23 and 25 individuals that were

recaptured, but removed, on the fourth occasion. So, (1,500 + 23) � 1,523 individuals in group 1, and

(1,678 + 25) � 1,703 individuals in group 2, with encounter history ‘100100’.

Note: the ‘-1’ code is for removing individuals from the live marked population. This is usually

reserved for losses on capture (i.e., where the investigator captures and animal, and then, for some

reason, decides to remove it from the study). The idea is that you don’t want to include these ‘biologist-

caused’ mortalities in the survival estimate.

On the other hand, if the known mortalities are natural (i.e., the investigator encounters a ‘dead

recovery’), and are not associated with the capture event itself, you have two options to get unbiased

survival estimates

1. pretend you never observed the mortalities (i.e., just treat those individuals as regular

releases that you never observe again). This approach is probably reasonable if the number

of such mortalities is relatively small.

2. conduct a joint live recapture-dead recovery analysis with these 6 individuals treated as

dead recoveries (see Chapter 9). Including the known mortalities (i.e., dead recoveries) will

improve precision of your survival estimates.

begin sidebar

uneven time-intervals between sampling occasions?

In the preceding, we have implicitly assumed that the sampling interval between sampling occasions

is identical throughout the course of the study (e.g., sampling every 12 months, or every month, or

every week). But, in practice, it is not uncommon for the time interval between occasions to vary –

either by design, or because of ‘logistical constraints’. This has clear implications for how you analyze

your data.

For example, suppose you sample a population each October, and again each May (i.e., two samples

within a year, with different time intervals between samples; October→May (7 months), and May→
October (5 months)). Suppose the true monthly survival rate is constant over all months, and is equal

to 0.9. As such, the estimated survival for October→May will be 0.97
� 0.4783, while the estimated

survival rate for May→ October will be 0.95
� 0.5905. Thus, if you fit a model without accounting

for these differences in time intervals, it is clear that there would ‘appear’ to be differences in survival

between successive samples, when in fact the monthly survival does not change over time.

So, how do you ‘tell MARK’ that the interval between samples may vary over time? You might

think that you need to ‘code’ this interval information in the INP file in some fashion. In fact, you don’t
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– you specify the time intervals when you are specifying the data type in MARK, and not in the INP

file. In the INP file, you simply enter the encounter histories as contiguous strings, regardless of the

true interval between sampling occasions. We will discuss handling uneven time-intervals in more

detail in a later chapter.

end sidebar

2.3. Different encounter history formats

Up until now, we’ve more or less used typical mark-recapture encounter histories (i.e., capture histories)

to illustrate the basic principles of constructing an INP file. However, MARK can be applied to far more

than mark-recapture analysis, and as such, there are a number of slight permutations on the encounter

history that you need to be aware of in order to use MARK to analyze your particular data type. First,

we summarize in table form (below) the different data types MARK can handle, and the corresponding

encounter history format.

recaptures only LLLL

recoveries only LDLDLDLD

both LDLDLDLD

known fate LDLDLDLD

closed captures LLLL

BTO ring recoveries LDLDLDLD

robust design LLLL

both (Barker model) LDLDLDLD

multi-strata LLLL

Brownie recoveries LDLDLDLD

Jolly-Seber LLLL

Huggins’ closed captures LLLL

Robust design (Huggins) LLLL

Pradel recruitment LLLL

Pradel survival & seniority LLLL

Pradel survival & λ LLLL

Pradel survival & recruitment LLLL

POPAN LLLL

multi-strata - live and dead encounters LDLDLDLD

closed captures with heterogeneity LLLL

full closed captures with heterogeneity LLLL

nest survival LDLDLDLD

occupancy estimation LLLL

robust design occupancy estimation LLLL

open robust design multi-strata LLLL

closed robust design multi-strata LLLL

Each data type in MARK requires a primary from of data entry provided by the encounter history.

Encounter histories can consist of information on only live encounters (LLLL) or information on both

live and dead (LDLDLDLD). In addition, some types allow a summary format (e.g., recovery matrix) which

reduces the amount of input. The second column of the table shows the basic structure for a 4 occasion

encounter history. There are, in fact, broad types: live encounters only, and mixed live and dead (or
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known fate) encounters.

For example, for a recaptures only study (i.e., live encounters), the structure of the encounter history

would be ‘LLLL’ – where ‘L’ indicates information on encountered/not encountered status. As such,each

‘L’ in the history would be replaced by the corresponding ‘coding variable’ to indicate encountered or

not encountered status (usually ‘1’ or ‘0’ for the recaptures only history). So, for example, the encounter

‘1011’ indicates seen and marked alive at occasion 1, not seen on occasion 2, and seen again at both

occasion 3 and occasion 4.

For data types including both live and dead individuals, the encounter history for the 4 occasion

study is effectively ‘doubled’ – taking the format ‘LDLDLDLD’, where the ‘L’ refers to the live encountered

or not encountered status, and the ‘D’ refers to the dead encountered or not encountered status. At each

sampling occasion, either ‘event’ is possible – an individual could be both seen alive at occasion (i) and

then found dead at occasion (i), or during the interval between (i) and (i+1). Since both ‘potential events’

need to be coded at each occasion, this effectively doubles the length of the encounter history from a 4

character string to an 8 character string.

For example, suppose you record the following encounter history for an individual over 4 occasions

– where the encounters consist of both live encounters and dead recoveries. Thus, the history ‘10001100’

reflects an individual seen and marked alive on the first occasion, not recovered during the first interval,

not seen alive at the second occasion and not recovered during the second interval, seen alive on the

third occasion and then recovered dead during the third interval, and not seen or recovered thereafter

(obviously, since the individual was found dead during the preceding interval).

2.4. Some more examples

The MARK help files contain a number of different examples of encounter formats. We list only a few

of them here. For example, suppose you are working with dead recoveries only. If you look at the table

on the preceding page, you see that it has a format of ‘LDLDLDLD’. Why not just ‘LLLL’, and using ‘1’ for

live’, and ‘0’ for recovered dead? The answer is because you need to differentiate between known dead

(which is a known fate) , and simply not seen. ‘0’ alone could ambiguously mean either dead, or not

seen (or both!).

2.4.1. Dead recoveries only

The following is an example of dead recoveries only, because a live animal is never captured alive after

its initial capture. That is, none of the encounter histories have more than one ‘1’ in an L column. This

example has 15 encounteroccasions and 1 group. If you study this example,you will see that 500 animals

were banded each banding occasion.

000000000000000000000000000010 465;

000000000000000000000000000011 35;

000000000000000000000000001000 418;

000000000000000000000000001001 15;

000000000000000000000000001100 67;

000000000000000000000000100000 395;

000000000000000000000000100001 3;

000000000000000000000000100100 25;

000000000000000000000000110000 77;
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Traditionally, recoveries only data sets were summarized into what are known as recovery tables.

MARK accommodates recovery tables, which have a ‘triangular matrix form’, where time goes from left

to right (shown below). This format is similar to that used by Brownie et al. (1985).

7 4 1 0 1;

8 5 1 0;

10 4 2;

16 3;

12;

99 88 153 114 123;

Following each matrix is the number of individuals marked each year. So, 99 individuals marked

on the first occasion, of which 7 were recovered dead during the first interval, 4 during the second, 1

during the third, and so on.

2.4.2. Individual covariates

Finally,an example (below) of known fate data,where individual covariates are included.Comments are

given at the start of each line to identify the individual (this is optional, but often very helpful in keeping

track of things). Then comes the capture history for this individual, in a ‘LDLDLD. . .’ sequence. Thus the

first capture history is for an animal that was released on occasion 1, and died during the interval. The

second animal was released on occasion 1, survived the interval, released again on occasion 2, and died

during this second interval. Following the capture history is the count of animals with this history

(always 1 in this example). Then, 4 covariates are provided. The first is a dummy variable representing

age (0=subadult, 1=adult), then a condition index, wing length, and body weight.

/* 01 */ 1100000000000000 1 1 1.16 27.7 4.19;

/* 04 */ 1011000000000000 1 0 1.16 26.4 4.39;

/* 05 */ 1011000000000000 1 1 1.08 26.7 4.04;

/* 06 */ 1010000000000000 1 0 1.12 26.2 4.27;

/* 07 */ 1010000000000000 1 1 1.14 27.7 4.11;

/* 08 */ 1010110000000000 1 1 1.20 28.3 4.24;

/* 09 */ 1010000000000000 1 1 1.10 26.4 4.17;

What if you have multiple groups, such that individuals are assigned (or part of) a given group, and

where you also have individual covariates? There are a couple of ways you could handle this sort of

situation. You can either code for the groups explicitly in the .inp file, or use an individual covariate for

the groups. There are pros and cons to either approach (this issue is discussed in Chapter 11).

Here is an snippet from a data set with 2 groups coded explicitly, and an individual covariate. In

this data fragment, the first 8 contiguous values represent the encounter history, followed by 2 columns

representing the frequencies depending on group: ‘1 0’ indicating group 1, and ‘0 1’ indicating group

2, followed by the value of the covariate:

11111111 1 0 123.211;

11111111 0 1 92.856;

11111110 1 0 122.115;

11111110 1 0 136.460;
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So, the first record with an encounter history of ‘11111111’ is in group 1, and has a covariate value

of 123.211. The second individual, also with an encounter history of ‘11111111’, is in group 2, and has a

covariate value of 92.856. The third individual has an encounter history of ‘11111110’, and is in group

1, with a covariate value of 122.115. And so on.

If you wanted to code the group as an individual covariate, this same input file snippet would look

like:

11111111 1 1 123.211;

11111111 1 0 92.856;

11111110 1 1 122.115;

11111110 1 1 136.460;

In this case, following the encounter history, is a column of 1’s, indicating the frequency for each

individual, followed by a column containing a 0/1 dummy code to indicate group (in this example,

we’ve used a 1 to indicate group 1, 0 to indicate group 2), followed by the value of the covariate.

A final example – for three groups where we code for each group explicitly (such that each group

has it’s own ‘dummy column’ in the input file), an encounter history with individual covariates might

look like:

11111 1 0 0 123.5;

11110 0 1 0 99.8;

11111 0 0 1 115.2;

where the first individual with encounter history ‘11111’ is in group 1 (dummy value of 1 in the first

column after the encounter history, and 0’s in the next two columns) and has a covariate value of 123.5,

second individual with encounter history ‘11110’ is in group 2 (dummy code of 0 in the first column, 1

in the second, and 0 in the third) and a covariate value of 99.8, and a third individual with encounter

history ‘11111’ in group 3 (0 in the first two columns, and a 1 in the third column), with a covariate

value of 115.2.

As is noted in the help file (and discussed at length in Chapter 11), it is helpful to scale the values

of covariates to have a mean on the interval [0, 1] to ensure that the numerical optimization algorithm

finds the correct parameter estimates. For example, suppose the individual covariate ‘weight’ is used,

with a range from 1,000 g to 5,000 g. In this case, you should scale the values of weight to be from

0.1 to 0.5 by multiplying each ‘weight’ value by 0.0001. In fact, MARK defaults to doing this sort of

scaling for you automatically (without you even being aware of it). This ‘automatic scaling’ is done by

determining the maximum absolute value of the covariates, and then dividing each covariate by this

value. This results in each column scaled to between -1 and 1. This internal scaling is purely for purposes

of ensuring the success of the numerical optimization – the parameter values reported by MARK (i.e.,

in the output that you see) are ‘back-trasformed’ to the original scale. Alternatively, if you prefer that

the ‘scaled’ covariates have a mean of 0, and unit variance (this has some advantages in some cases), you

can use the ‘Standardize Individual Covariates’ option of the ‘Run Window’ to perform the default

standardization method (more on these in subsequent chapters).

More details on how to handle individual covariates in the input file are given in Chapter 11.
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Summary

That’s it! You’re now ready to learn how to use MARK. Before you leap into the first major chapter

(Chapter 3), take some time to consider that MARK will always do its ‘best’ to analyze the data you

feed into it. However, it assumes that you will have taken the time to make sure your data are correct.

If not, you’ll be the unwitting victim to perhaps the most telling comment in data analysis: ‘garbage

in...garbage out’. Take some time at this stage to make sure you are confident in how to properly create

and format your files.
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Addendum: generating .inp files

Andrew Sterner, Marine Turtle Research Group, University of Central Florida

As noted at the outset in this chapter, MARK has no capability of generating input (INP) files. This

is something you will need to do for yourself. In this short addendum, we introduce one approach to

generating INP files, based on ‘Excel pivot tables’. Since there are any number of different software appli-

cations for managing and manipulating data, we state for the record that we are going to demonstrate

creating INP files using Excel, not as a point of advocacy for using Excel, but owing more to its near

ubiquity (note: most of what follows applies generally to Access databases as well).

We will demonstrate the basic idea using an example where we will reformat an Excel spreadsheet

containing some live encounter data. We wish to format these data into an INP file. The data are

contained in the Excel spreadsheet csj-pivot.xlsx (note, we’re clearly using Excel 2007 or later). Here

are what the data look like before we transform them into an input file.

The file consists of two data columns: TAG (indicating

the individual), and YEAR (the year that the individual was

encountered). This data file contains encounter data for 14

marked individuals, with encounter data collected from 2000 to

2010 (thus, the encounter history will be 11 characters in length).

Our challenge, then is to take this ‘vertical’ file (one record per

individual each year encountered), and ‘pivot’ it horizontally. For

example, take the first individual in the file, ATS150. It was first

encountered in 2000,again in 2002,andagain (for the final time) in

2003. The second individual, ATS151, was seen for the first time

in 2006, and then not seen again. The third individual, ATS153,

was seen in 2004, and not seen again after that. And so on. If we

had to generate the INP file by hand for these individuals, their

encounter histories would look like:

/* ATS150 */ 101100000 1;

/* ATS151 */ 000000100 1;

/* ATS153 */ 000010000 1;

As it turns out, we can make use of the ’pivot table’ in Excel

(and some simple steps involving ‘search and replace’ and the

CONCATENATE function), to generate exactly what we need. The

process can be more involved for more complicated data types

(e.g., robust design), but the basic principle of ‘pivoting’ applies.

Here are the basic steps. First, we select the rows and

columns containing the data. Then, select ‘Insert | PivotTable

| PivotTable’, as shown to the right (make sure you select

PivotTable and not PivotChart). This will bring up a dialog

window (shown at the top of the next page) asking you to choose

the data you want to ‘pivot’, and where you want the pivot table

to be placed.
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The ‘Table/Range’ field will already be filled with the rows and columns of the data you selected. We

strongly recommend you put the pivot table into a ‘New Worksheet’ (this is selected by default). Once

you click ‘OK’, you will be presented with the template from which you will generate the pivot table:

Chapter 2. Data formatting: the input file . . .



Addendum: generating .inp files 2 - 13

All you really need to do at this point is specify the ‘row labels’, the ‘column labels’, and the ‘values’

(on the right hand side of the template). So, to specify the row labels, we simply select ‘tag’

and then drag the ‘tag’ field down to the ‘row labels’ box at the bottom-right:

Then, do the same thing for the ‘Year’ field: select ‘Year’, and drag it down to the ‘column labels’

box.

Once you have done this, you will quickly observe that a table (the ‘pivot table’) has been inserted

into the main body of the template (see top of the next page). The table has row labels (individual tag

numbers) and column labels (the years in your data file), plus some additional rows and columns for

‘Grand total’ (reflecting the fact that pivot tables were designed primarily for business applications).
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However, at present, there is nothing in the table (all of the cells are blank). Now, drag the ‘year’ field

label down to the ‘values’ box in the lower right-hand corner.
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What we see is that the year during which an encounter has occurred for a given individual has

been entered explicitly into the table, in the column corresponding to that year. But, for an encounter

history, we want a ‘1’ to indicate the encounter year, not the year itself, and a ‘0’ to indicate a year when

an encounter did not occur. Achieving the first objective is easy. Simply pull down the ‘Sum of Year’

menu, and select ‘Value Field Settings...’:

Then, switch the ‘Summarize value field by’ selection from ‘Sum’ to ‘Count’:

As soon as you do this, then all of the years in the pivot table will be changed to 1. Why? Simple – all

you’ve told the pivot table to do is count the number of times a year occurs in a given cell. Since the data

file contains only a single record for each individual for each year it was encountered, then it makes

sense that the tabulated ‘Count’ should be a 1. Moreover, now the ‘Grand Total’ rows and columns have

some relevance – they indicate the number of individuals encountered in a given year (column totals),

or the number of times a given individual was caught over the interval from 2000 to 2010 (row totals).

OK, on to the next step – putting a ‘0’ in the blank cells for those years when an individual wasn’t

caught. This sounds easy enough in principle – a reasonable approach would be to select the rows and

columns, and execute a ‘search and replace’, replacing blank cells with ‘0’. In fact, this is exactly what

we want to do. However, for various reasons, you can’t actually edit a pivot table. What you need to do

first is select and copy the rows and columns (including the row labels, but excluding row and column

totals), and paste them into a new worksheet. Then, simply do a ‘Find & Select’), replacing blanks
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(simply leave the ‘Find what’ field empty) with a ‘0’. The result is shown below:

(Alternatively, if you navigate to ‘PivotTable | PivotTable Name | Options’, you will see an option

to specify what an empty cell should show. Simply change it to a ‘0’).

We’re clearly getting closer. All that remains is to do the following. First, we remember that each line

of the encounter history file must end with a frequency – where each line in the file corresponds to a

single individual, then this frequency is simply ‘1;’. So, we simply enter ‘1;’ into column K, and copy it

down for as many rows as there are in the data (there are a number of ways to copy a value down a set

of rows – we’ll assume here you know of at least one way to do this).

Now, for a final step – we ultimately want an encounter history (INP file) where the encounters form

a contiguous string (i.e., no spaces). We can achieve this relatively easily by using the CONCATENATE

function in Excel. Simply click the top-most cell in the next empty column (column L in our example),

and then go up into the function box, and enter

=CONCATENATE("/* ",A1," */ ",B1,C1,D1,E1,F1,G1,H1,I1,J1," ",K1)

In other words, we want to ‘concatenate’ (merge together without spaces), various elements – some

from within the spreadsheet, others explicitly entered (e.g., the delimiters for comments, so we can

include the tag information, and some spacer elements).

Once you execute this cell macro, you can copy it down in column L over all rows in the file. If you

manage to do this correctly, you will end up with a spreadsheet looking like the one shown at the top

of the next page. All that remains is to select column L (which contains the formatted, concatenated

encounter histories), and paste them into an ASCII text file. (A reminder here that you should avoid

– as in ‘like the plague’ – using Word or Notepad as your ASCII editor. Do yourself a favor and get

yourself a real ASCII editor. As mentioned earlier, there are a number of very good ‘free’ applications

you can – and should – use instead of Notepad (e.g., Notepad++, EditPad Lite, jEdit, and so on...).
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Other data types

Here we will consider 2 other data types, the robust design, and multi-state. Clearly, there are more

data types in MARK, but these two represent very common data types, and if you understand steps

in formatting INP files for these two data types, you’ll more than likely be able to figure out other data

types on your own.

multi-state

Here we will demonstrate formatting anINPfile for a multi-state data set (see Chapter 10).The encounter

data we will use are contained in the Excel spreadsheet MS-pivot.xlsx. The file consists of 3 columns:

TAG (indicating the individual), YEAR (the year the individual was encountered), and the STATE (for this

example, there are 3 possible states: F, U, N).

We start by noting that STATE is a character (i.e., a

letter). This might seem perfectly reasonable, since the

most appropriate state name (indicator) might be a

character. Unfortunately, Excel can’t handle characters

in the table cells when you pivot the table. As such,you

first need to (i) select the column containing the state

variable, (ii) copy this into the first empty column, and

(iii) execute a ‘Find and Replace’ in this column, such

that you change F→ 1, U→ 2, and N→ 3. Once finished,

your Excel spreadsheet shoot look something like what

is shown to the right.
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Next, select the data, and inset a Pivot Table into a new sheet in the spreadsheet. Drag TAG to the

‘Row Labels’ box, YEAR to the ’Column Labels’ box, and State (numeric) to the ‘Values’ box, as shown

below.

Next, copy the TAGS, YEARS and table values to a new worksheet. Then ‘Find and Replace’ all the

blank cells with zeros. At this point, you have a decision to make: you can either (i) ‘Find and Replace’

the states from numeric back to their original character values (i.e., 1→ F, 2→ U and 3→ N), or (ii) leave

the states numeric, and simply inform MARK what the states mean. For this example, we’ll ‘Find and

Replace’ the states from numeric back to their original character values. Finally, add a column of ‘1;’

to the new worksheet.

Then click the top-most cell in the next empty column (column L in our example), and then go up

into the function box, and enter

=CONCATENATE("/* ",A1," */ ",B1,C1,D1,E1,F1,G1,H1,I1,J1,K1,L1," ",M1)

In other words, we want to ‘concatenate’ (merge together without spaces), various elements – some

from within the spreadsheet, others explicitly entered (e.g., the delimiters for comments, so we can

include the tag information, and some spacer elements). Once you execute this cell macro, you can

copy it down in column L over all rows in the file. The final worksheet should look something like the

one shown at the top of the next page. At this point, you simply copy your concatenated encounter

histories from column N into an editor, and save into an INP file.
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robust design

For our final example, we consider formatting an INP file for a robust design analysis (the robust design

is covered in Chapter 15). In brief, the robust design combines closed population samples embedded

(nested) within open population samples. Consider the following figure:

1 2 k1
... 1 2 k2

... 1 2 k3
...

1 2 3

closure closure closure

open open

secondary

samples

primary

samples

time

As shown, there are 3 ‘open population’ samples (known as primary period samples). Between open

samples, population abundance can change due to emigration, death, immigration or birth. Within each

open sample period are embedded k ‘closed population’ (or secondary) samples. The trick here is to

encode the encounter history taking into account the presence of both primary and secondary samples

(where the number of secondary samples may vary among primary samples). As you might expect, the

greater complexity of the RD encounter file might require a somewhat higher level of Excel proficiency

than the first two examples we discussed earlier.

In this example (data contained in RD-pivot.xlsx), we assume primary samples from 2000-2010.

Within each primary period, we have 4 secondary samples, which occur from May 1 to May 15
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(secondary sample 1), May 16 to May 30 (secondary sample 2), June 1 to June 15 (secondary sample 3),

and June 16 to June 30 (secondary sample 4). For each secondary sample, and encountered individual

is recorded only once. We imagine that your data are stored in the following way. For each individual

(TAG), for each primary sample (YEAR), you have a series of columns, one for each secondary sampling

period.

For example, in the preceding figure, we see that individual with tag ‘ATS150’ was observed during

primary sample, 2000, 2001, 2002, 2003, 2009, and 2010. In 2000, the individual was not observed during

the first secondary sample (May 1 to May 15), was observed during the second secondary sample (May

16 to May 30),was not observed during the third secondary sample (June 1 to June 15), and was observed

during the fourth and final secondary sample (June 16 to June 30). In contrast, in 2010, the individual

with tag ‘ATS1150’ was observed in all 4 secondary samples.

Now, you may be wondering why we’ve entered dates in terms of 2012, even for primary encounter

years <2012. For example, for ‘ATS150’,we enter ‘5/30/12’ as the date for the encounter during the second

secondary sample period. We need to do this in order to make use of some very handy Excel functions.

For example, consider the ‘year’ function. This function extracts the year associated with a given date

(such that if you type in ‘=year(B2)’ and B2 is a date, it will return the year associated with that date. So,

for robust design data, you may have intervals (for a secondary sample period) spanning from 5/1/12

to 5/15/12, and you want to know if the encounter date falls between them.

All you need to do is

• use the AND function to determine if a date falls within a given range. For example, in cell

H3 in the spreadsheet, we enter

=AND(D3>=H1,D#<=H2)

• What you are asking Excel is: “Is D3 (my date of capture) greater than or equal to my first

date, 5/1/12, and less than or equal to 5/15/12”. We do the same thing for each of the other

3 secondary sample periods.

• This may seem a bit odd at first but keep in mind that Excel treats all dates as a number of

days since January 1, 1900 or 1904 (depending on which version of Excel you are using)

• The AND function will return a TRUE value is the criteria in the parenthesis are met or a

FALSE value if they are not
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• Once you have got all of your TRUE and FALSE values copy them into a separate set of

columns. Note that instead of just ‘paste’or ‘ctrl+v’, you want to right click and ‘paste

special’ and select the ‘Values’ box. This tells Excel to just give you the displayed number

text or whatever appears in the box without any of the underlying formulas.

• Now you can ‘Find and Replace’ TRUE with 1 and FALSE with 0

These steps (and cell macros) are shown in worksheet ‘RD within season period trick’. At this

point, you will se something that look like

At this point, the remaining steps are similar to the same steps we used for CJS and MS data types

(as described earlier). You simply

1. copy the the data to a new worksheet (shown in ‘capture data-robust design’)

2. Select the data, then ‘Insert | Pivot Table | Pivot Table’

3. Drag Tag to ’Row Label’, Year to ‘Column Label’

4. Now here is another difference for the RD: there are multiple occasions per year. So just

drag each one to the values box in the order that they occur!

5. concatenate into a contiguous encounter history, and you’re done. Have a look at the

worksheet ‘RD Input Construction’ for what it should look like.
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First steps in using Program MARK. . .

In this chapter we will introduce the basic mechanics of running program MARK, using a small data set

consisting of 7 years of capture-recapture data on a small passerine bird, the European Dipper (Cinclus

cinclus). This data set is the same as that used in ‘Examples’ in Lebreton et al. (1992), and consists of

marking and recapture data from 294 breeding adults each year during the breeding period, from early

March to 1 June. All birds in the sample were at least 1 year old when initially banded. We’ll forgo

discussion of GOF (Goodness of Fit) testing for the moment, although we emphasize that, in fact, this

is the prerequisite step before you analyze your data. GOF testing is covered later.

Our main intent here is to show you the basics of running MARK, not to provide great detail on

‘why you are doing what you are doing’. Our experience has shown that perhaps the greatest initial

hurdle to using a new piece of software, especially one as sophisticated as MARK, is the ‘newness’ of

the interface, and the sheer number of options available to the user. In addition, we are starting with

the Dipper data set, since it has been extensively analyzed in several places, and will be very familiar

to many experienced users migrating to MARK from another application.

We also believe that starting with a ‘typical’ mark-recapture problem is a good place to begin – if

you understand how to do a mark-recapture analysis, you’re much of the way to understanding the

principles behind many of the other analytical models incorporated into MARK. The male subset of

the Dipper data set is not one of those which are ‘bundled’ with MARK (although the full dipper data

set is). We’ll assume here that you’ve managed to extract the Dipper data set ED_MALES.INP from the

markdata.zip file that accompanies this book (if you don’t have markdata.zip, you can download it

from the same website you downloaded this book from).

3.1. Starting MARK

Since MARK is a true Windows application, starting it is as simple as double-clicking the MARK icon

(which we assume resides in some specified folder on your desktop). Locate the icon, and double-click

on it. MARK is a fairly large program (although this is now a relative statement with the advent of 100+

MB word processors!), and may take a few moments to start up. If all goes well, you should soon be

presented with the opening ‘splash screen’ (shown at the top of the next page – the particular ‘warm and

fuzzy organism’ you see will depend on which version of MARK you are using), indicating that MARK

is ‘up and running’. If nothing happens (or you get some typically obscure Windows error message),

this is a good indication that something is not working right. Unfortunately, figuring out the problem

depends to a large degree on things like: how many other applications do you have open? Are you

sure you’ve installed the most recent version of MARK? How much memory is in your machine? Are
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you ‘lucky’ enough to still be running Windows Vista? And so on, and so on. MARK is very robust on

most machines, so problems getting it started should be very infrequent. If it doesn’t start correctly, then

try again after first closing all other running applications (in general, MARK runs ‘best’ when it is the

only program running). If that doesn’t work, then trying re-installing from scratch – if you’ve already

downloaded the setup.exe file, then this should only take a few moments (again, when in doubt, try

reinstalling – this is often a good way to ‘fix’ minor problems that might arise).

3.2. starting a new project

The very first thing you need to do is to tell MARK you’re going to start a new project (we’re assuming

that at this stage, you don’t have any existing MARK projects going ). Doing this is very easy – all you

need to do is pull down the ‘File’ menu in the upper left-hand corner of the main MARK window, and

select ‘New’ from the drop-down menu:

Once you have selected the ‘New’ option from the drop-down ‘File’ menu, the graphical ‘splash-

screen’ that you saw when you started MARK will be erased, and you will be presented with a new

sub-window – the specification window for program MARK (top of the next page):
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Clearly, the specification window contains a fair bit of information, but the ‘basics’ can be broken

down into 4 main sections.

First, on the left of the window (highlighted by a bezeled line) is a simple radio-button list for the

various data types MARK can handle. In fact, this is the point at which you tell MARK what kind

of analysis you want to do. In its simplicity, this list belies the sheer scope of analytical coverage

provided by MARK. Whereas most previous applications specialized on one (or a couple) of types

of analysis (for example, live recapture-only, or dead recovery-only), MARK can handle most of the

common analytical designs in use today. While MARK is clearly not a replacement (in some ways) for

a more general purpose approach like SURVIV (or, more recently, R, MATLAB or WinBUGS), it is in

many respects a replacement for much (if not all) of the ‘canned’ software previously in general use.

The ‘live recaptures (CJS)’ data type is selected by default – and, is the data type we want for this

analysis. At the top of the right-hand half of the window is a fill-in element for the ‘Title’ of the project.

This is available as a convenience to the user, and does not have to be filled out. For this example, we

use a title reflecting the fact we’re analyzing the male data from the European Dipper study.

Immediately below the title field is a second fill-in element where the user specifies the file containing

the encounter histories they want to analyze. If the file name and path are known, they can be entered

directly into this box. More typically, you will want to browse for the file (i.e, select it manually), by

clicking on the ‘Click to Select File’ button immediately below the box (you can also double-click

the fill-in box itself). If you click on this button, you will be presented with the standard Windows

interface to finding and selecting a particular file (see below).
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One thing to note is that until you have selected a file to analyze, the ‘View File’ button is not available

(i.e., is not active). Once you have selected the file, you will be able to view its contents. This is useful if

you forget certain things about your data (for example, the number of occasions). In our example, we

select the file ED_MALES.INP (obviously, the path shown here reflects the machine we’re running MARK

on, and will not be the same as what might appear on your machine).

Again, note that once the file has been specified, the ‘View File’ button become active. If we click on

View File, MARK starts up the default Windows browser (usually the Windows Notepad – if your file

is too large for Notepad to handle, then Windows will prompt you to use an alternative application to

view the file). We see from the Notepad window (pictured below) that we have 7 occasions, and only

1 group (recall from Chapter 2 the basics of formatting data for processing by program MARK). You

might want to note that since this is the Windows Notepad, you can, if necessary, edit the input file at

this stage.

Finally, the bottom-half of the right hand side. Here, you specify the number of occasions in the file.

Because the .inp files containing the capture histories do not explicitly code for the number of capture

histories in the file, you will have to tell MARK how many occasions there are. It defaults to 5 – do not

be fooled into thinking this is the number of occasions in your file. MARK has no way of knowing what

this value is – you have to enter it explicitly. You can also tell MARK how many ‘attribute groups’

are in the data (for example, if your file contained data for both males and females, you would enter 2).

Finally, the number of individual covariates. (Note: the boxes for the ‘number of strata’ and Mixtures’
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only becomes available if you select the appropriate data types which require specifying these options.)

To the right of each input box, there is a button which allows you to control some aspects of each

box. For example, to the right of the number of occasions box is a button which lets you set the intervals

between each occasion. The default is ‘1 time period between each occasion’. We’ll talk more about

this particular option later. The other two buttons for ‘group labels’ and ‘individual covariate’

names are (we suspect) fairly self-explanatory. For this analysis, since we have only one attribute group

(males), there is no real need to specify a particular label.

In our Dipper example, we have 7 occasions, and only 1 group (as shown below):

Now, once you’ve got everything set in the specification window, you’re ready to proceed (if not,

simply correct the individual entries as needed, or cancel to start over). To continue, simply click the

‘OK’ button.

The first thing that will happen when you press the ‘OK’ button (assuming that you’ve specified a file

that exists) is that MARK will close the specification window, and present you with a small little pop-up

window telling you that it has created a DBF (data-base format) file to hold the results of your analyses.

The name of the file in this example, is ED_MALES.DBF. MARK uses the prefix of the .inp data file (in

this case, ED_MALES) as the prefix of the DBF file (resulting in ED_MALES.DBF). MARK pauses until you

press the ‘OK’ button, telling it to proceed. If ED_MALES.DBF already existed (i.e., if you’d already done

some analysis on these data), MARK would inform you that it will have to overwrite the existing file,

and will then ask you if this is OK.

Since we haven’t run any analysis on these data before, we simply click the ‘OK’ button. Doing so

causes the pop-up window to close, and a window containing a ‘triangular’ matrix representation of

the survival model structure is presented:
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However, you’ll note from the title of the window that the matrix represents only the survival

parameters. For a mark-recapture analysis, we’re also interested in estimating the recapture probability.

What you don’t see here is that, by default, MARK initially presents you with only the survival

parameters, assuming (presuming?) that this is what you’re most interested in working with. However,

clearly we may (and probably should) also be interested in modelling the other parameters which

define the system (in this case, the recapture parameter). For now, let’s get MARK to show us both

parameter matrices. We get MARK to show us any (or all) of the parameter matrices by accessing the

‘Parameter Information (or Index) Matrix’ menu (PIM), and selecting the ‘Open Parameter Index

Matrix’ option:

Once you select this option, you will be presented with a new window containing a list of parameters

which you can ‘open’ – in other words, a list of parameters you can ask MARK to show you in the

‘triangular matrix’ format. In our example, since the survival parameter chart is already open, the only

one which will show up on the list is the recapture parameter. You can either select it individually, or

use the ‘Select All’ button. Once you have selected the recapture parameter matrix, you simply click

‘OK’, to cause MARK to place the recapture PIM in its own window. Initially, they may (or likely will)

be presented in an overlapped way (technically known in Windows-jargon as ‘cascaded’). To see the 2

PIM windows separately, you can access the ‘Window’ menu, and select ‘Tile’. This will cause the PIM

windows to be arranged in a ‘tiled’ (i.e., non-overlapping) fashion.

If you’ve had some background in mark-recapture analysis, you might recognize that these PIM’s

reflect the fully time-dependent Cormack-Jolly-Seber (CJS) model. If you’re new to mark-recapture

analysis, not to worry – all of this gets covered in great detail in subsequent chapters. For the moment,

all you need to know is that in this analysis, the survival parameters are numbered 1 to 6 (there are seven

occasions, so six intervals over which survival is estimated), and 6 recapture parameters (numbered 7

through 12). In fact, there are only 10 separable parameters and one ‘product’ parameter estimated in

this analysis (11 total parameters), but we’ll discuss the details concerning this later.
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3.3. Running the analysis

Let’s proceed to run the analysis. Not surprisingly, to run an analysis in MARK, you need to access the

‘Run’ menu. In this example (and at this stage), when you access the ‘Run’ menu, MARK will present

you with several options – for now, we want to select the ‘Current Model’ option.

The first thing thatMARK does is presentyou witha new window – the ‘Setup Numerical Estimation

Run’ window (since this is a rather awkward window name, we’ll refer to it simply as the ‘Run’ window).

Much like the specification window we saw earlier, the ‘Run’ window (shown on the next page) contains

a lot of options, so let’s take some time at this point to get you familiar with the components of this

window. As with the specification window, the run window can be broken down into 4 major elements.

First, in the top left, the analysis title (which MARK carries over from what you entered earlier in the

specification window), and the model name (which is initially blank). MARK must have a model title to

refer to (the reason why will be obvious later), so we need to enter something in the model name input

box. Following the naming convention advocated in Lebreton et al. (1992) (which follows closely from

standard linear models notation), we’ll use ‘Phi(t)p(t)’ as the name for this model, reflecting the fact

that the model we’re fitting has full time-dependence for both survival (ϕ – since MARK doesn’t allow

you to enter non-ASCII text, we’re restricted to writing out the Greek symbol as ‘phi’) and recapture

(p). The (t)-notation simply indicates time-dependence.

Next, the lower-left hand side of the run window. This is where we specify the link function (MARK

lets you choose among several different functions – the sin link is the default, while the logit link is

perhaps the most familiar). We’ll talk about link functions in more detail later. For the moment, we’ll

use the default sin link.

To the right of this list of link functions is a list of two ‘Var. Estimation’ options – these are

options which controls how the variance-covariance matrix is estimated. This is important because

this estimation provides both the information needed to compute the standard errors of the estimates,

but is also used to calculate the number of estimable parameters in the model (in this example, there

should be 11 estimable parameters). The ‘2nd Part’ option is the default and preferred option, so we’ll

use it here. Finally, just above the link and variance estimation lists is a button which allows you to ‘fix

parameters’. As we’ll see in subsequent chapters, there will be occasions when we need to specify a value
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(normally 0 or 1) for some parameters – in this example, there is no need to do so. Fixing parameters that

are logically constrained to be a particular value is useful, since it both reduces the number of estimable

parameters, and helps MARK estimate the remaining parameters more accurately and efficiently.

On the right-hand side of the run window are a series of program options related to the numerical

optimization. Most of the options are fairly self-explanatory, so we won’t go into any of these in detail

here. For now, we’ll leave all of the check boxes on the right-hand side blank.

You’re now ready to run the program. To do this, simply click on the ‘OK to run’ button in the lower

right-hand corner of the run window. If you are using the default preferences for MARK (which you

probably will be at this point), MARK will spawn a box asking you if you want to use the ‘identity

matrix’ (since none was specified). The use of the identity matrix will be covered in much more detail

in Chapter 6 – for now, simply accept the ‘identity matrix’, by clicking ‘Yes’. Immediately after doing

so, MARK spawns a numerical estimation window (black background). This window, which is a shell

to the numerical estimation routines in MARK, allows you to watch the progress of the estimation.

Several things will scroll by pertaining to the estimation. Much of the information being printed to the

estimation window can be also printed out to the results DBF, by specifying the appropriate options

in the run window. You may also notice that MARK has created another window, called the ‘Results

Browser’ – more on this window in a moment. Once the estimation is complete (which should only take

a second or two for this dataset), MARK will shut down this command window, and then present you

with the ‘pop-up’ window shown below:

This window provides summary of some of the key results of your estimation (the number of

parameters estimated, the model deviance and so forth). The purpose of this summary is to give you

the option of whether or not to append the full results of the estimation to the result database file (DBF).

In theory, you could decide at this point that there was something ‘wrong’, and not append the results.

You might wonder about the **WARNING** statement at the bottom – if you read it carefully, you’ll see

that MARK is ‘warning’ you that at least one pair of encounter histories in the .INP file are duplicates.

In fact, for .INP files where each line represents the encounter history for a different individual (as in the

present example), this is entirely expected. Meaning, there is nothing to worry about in this case. So we

click ‘Yes’, and accept the results. As soon as you click ‘Yes’, two things happen in rapid succession. First,

the results summary window closes. Next, an item is added to the results browser window (below):
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3.4. Examining the results

Now that we have something to ‘look at’ in the browser window,we can focus a bit more on the structure

of the window, and what options are available. First, in the main body of the results browser, you have

several columns of information. From left to right: the model title (or simply, ‘Model’), the corrected

or adjusted Akaike’s Information Criterion (AICc), the ∆AIC value (the difference in the value of the

AIC from the model currently in the browser having the lowest AIC – since we have only one model in

the browser at the moment, ∆AIC � 0), the AIC weight, the model likelihood, the number of estimated

parameters, and the model deviance. The column arrangement can be modified to suit your preferences

by simply dragging the columns to the left or right. The AICc , the number of parameters and the model

deviance (in particular) form the basis for comparison with other models. Since we only have one model

at the moment, we’ll defer discussion of these issues until later. Along the top of the browser window

are a number of buttons, which you can use to access a variety of functions. More on these later.

For now, we want to view the results of our estimation. We can view just the reconstituted parameter

estimates (on the ‘real probability scale’) by clicking on the fourth button (from the left) on the menu,

or by selecting ‘Output | Specific Model Output | Parameter Estimates | Real’. This spawns a

Windows Notepad window to open up, containing the estimates (shown below).

The MARK output consists of 5 columns: the first column is the parameter index number (1→ 12),

followed by the parameter estimate, the standard error of the parameter, and the lower and upper 95%

confidence limits for the estimates, respectively. The parameter indexing relates to the indexing used

in the PIMs we saw earlier.

3.4.1. MARK, PIMs, and parameter indexing

Let’s stop a moment for a quick introduction to the indexing scheme that MARK uses. Consider the

following figure:

1
ϕ1−→ 2

ϕ2−→ 3
ϕ3−→ 4

ϕ4−→ 5
ϕ5−→ 6

ϕ6−→ 7
p2 p3 p4 p5 p6 p7

In our analysis of the male Dipper data, recall that we have 7 occasions – the initial marking occasion,

and 6 subsequent recapture (or resighting) occasions. The ϕi values represent the survival probabilities

between successive occasions (i.e., ϕi is the probability of surviving from occasion i to occasion i + 1),

while the pi values represent the recapture probabilities at the ith occasion. For details, see Lebreton et

al. (1992).
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What MARK does is to substitute a numerical indexing scheme for the individual ϕi and pi values,

respectively. For example, consider the indexing for the survival parameters ϕi – there are 6 values, ϕ1

through ϕ6. How does this connect to the ‘survival PIM’?

1
ϕ1−→ 2

ϕ2−→ 3
ϕ3−→ 4

ϕ4−→ 5
ϕ5−→ 6

ϕ6−→ 7
p2 p3 p4 p5 p6 p7

⇓
1

1−→ 2
2−→ 3

3−→ 4
4−→ 5

5−→ 6
6−→ 7

7 8 9 10 11 12

What about individuals captured for the first time and marked at the second occasion? Technically,

we would refer to such individuals as being in the second release cohort (a cohort is simply a group of

individuals that bear something in common – in this case, individuals captured, marked and released

on the second occasion would comprise the second cohort). This is similar for individuals captured,

marked and released on the third occasion, and so forth. All we need to do to account for these different

release cohorts is to start the ‘indexing’ at the appropriate occasion for each cohort – this is shown

schematically, below:

cohort 1 1
ϕ1−→ 2

ϕ2−→ 3
ϕ3−→ 4

ϕ4−→ 5
ϕ5−→ 6

ϕ6−→ 7 

p2 p3 p4 p5 p6 p7

cohort 2 2
ϕ2−→ 3

ϕ3−→ 4
ϕ4−→ 5

ϕ5−→ 6
ϕ6−→ 7

p3 p4 p5 p6 p7

cohort 3 3
ϕ3−→ 4

ϕ4−→ 5
ϕ5−→ 6

ϕ6−→ 7
p4 p5 p6 p7

cohort 4 4
ϕ4−→ 5

ϕ5−→ 6
ϕ6−→ 7

p5 p6 p7

cohort 5 5
ϕ5−→ 6

ϕ6−→ 7
p6 p7

cohort 6 6
ϕ6−→ 7

p7

1
1−→ 2

2−→ 3
3−→ 4

4−→ 5
5−→ 6

6−→ 7
7 8 9 10 11 12

2
2−→ 3

3−→ 4
4−→ 5

5−→ 6
6−→ 7

8 9 10 11 12

3
3−→ 4

4−→ 5
5−→ 6

6−→ 7
9 10 11 12

4
4−→ 5

5−→ 6
6−→ 7

10 11 12

5
5−→ 6

6−→ 7
11 12

6
6−→ 7

12

Now, have another look at the PIMs for survival and recapture:
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The numbers 1 to 6 in the PIM correspond to the survival values ϕ1 to ϕ6, respectively. For the

recapture PIM, the numbers 7 to 12 correspond to the recapture probabilities p2 to p7, respectively.

Notice that MARK indexes the survival parameters first (1 to 6), followed in numerical sequence by

the index values for the recaptures (7 to 12). In other words, the indexing that MARK uses does not

correspond to the number of the particular interval or occasion involved. For example, the recapture

index 8 corresponds to the recapture probability at occasion 3 (i.e., p3). Although it can be a little

confusing at first, with a bit of work you should be able to see the basic connection between the ‘true’

parameter structure of the model, and the way in which MARK indexes it, both internally (which

becomes very important later on as we examine more complex models), and in the output file.

We’ll be using PIMs frequently throughout the rest of the book, so not to worry if you don’t

immediately see the connection – you’ll get lots of practice. But, make sure you spend some time trying

to grasp the connection now. This is very important.

So, getting back to the output:

Note that our survival estimates correspond to parameters 1 to 6, while 7 to 12 correspond to the

recapture probabilities (corresponding to the figures on the preceding page). But, if you look carefully,

you’ll notice that the estimates for index 6 (the survival probability from occasion 6 to occasion 7)

and index 12 (the recapture probability at occasion 7) are identical (0.76377). As discussed in detail in

Lebreton et al. (1992), and elsewhere in this book, this reflects the fact that, for this model, the survival

and recapture rates for the last interval are not individually identifiable. The value of 0.76377 is actually

the square-root of the estimated productϕ6p7 (this is denoted as β7 in Lebreton et al. 1992). Thus,MARK

has estimated 11 parameters: 5 survival probabilities (ϕ1 to ϕ5), 5 recapture probabilities (p2 to p6), and

one related to the product ϕ6p7. You may also notice that the SE and 95% CI for one of the estimates

(p̂3) is clearly ‘suspect’ – we’ll deal much more with ‘problems with the estimates’ later.

At this point, you can do one of several things. You can print your estimates, you can plot them, or

you can examine aspects of the estimation procedure, and look at the degree to which any given capture

history in your .INP file affects your estimates. We’ll defer all the options for the moment, and simply

close the notepad window with the estimates, and look back at the main browser window itself.

Much of what MARK shows you in the browser is important only in the context of comparing the

fit of one model with that of another. In order to demonstrate this, we’ll continue our exploration of

the Dipper data set, by running 3 additional models: {ϕt , p}, {ϕ,pt} and {ϕ, p}, corresponding to time-

varying survival and constant recapture ({ϕt , p}), constant survival and time-varying recapture ({ϕ,pt}),

and constant survival and recapture ({ϕ, p}), respectively. There are many more models we could try

to fit, but for the purposes of this exercise (which is intended to give you a more complete sense of

how the results browser works), we’ll run these three. There are a number of ways you could specify

these models in MARK. For the moment, we’ll use a ‘short-cut’ method which is convenient for some
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standard models. The short-cut makes use of some ‘built-in’ models in MARK. Note: you will be

strongly discouraged from ever using this short-cut again, but for the moment, it’s convenient.

If you pull down the ‘Run’ menu, you will see that there are several menu options, beside the ‘run

the current model’ we used earlier. The two options of interest at this point are: ‘pre-defined’ models

and ‘file’ models. For the moment, we’re interested only in the pre-defined models.

Once you have selected the ‘pre-defined models’ option from the ‘Run’ menu, you will be dumped

directly back into the ‘Run’ window. However, there is one important, but easily overlooked change to

the window. Where in the first instance there was a button to fix parameter estimates, note that now

this button has been replaced with a ‘Select models’ button. Everything else is the same, so you have

to be observant. The other difference is that the model title box has been eliminated. In a moment you’ll

see why. Click on the ‘Select models’ button.

Once you’ve clicked on the appropriate button, you’ll be presented with a tabbed-window (shown at

the top of the next page), where each tab represents one of the parameters in the models you’re working

with (in this case, ϕ and p). All you need to do is (i) select the parameter by clicking the appropriate tab,

and (ii) select the model structure(s) you want for each parameter in turn. For example, the following

shows the ϕ parameter – we’ve selected only the time-invariant ‘dot’ model {.}. [Don’t worry about the

‘design matrix’ option for the moment – much more on that in Chapter 6.] Selecting both t and . for

both parameters would yield 4 final models: {ϕt pt}, {ϕt p.}, {ϕ.pt }, and {ϕ.p.}. For the moment, we’re

only interested in the last 3 (since we’ve already built model {ϕt pt}).
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So, simply select the {.} option for the ϕ parameter, as shown above. Note that at this point, MARK

tells you (in the lower-right hand corner of the window) that the number of models selected to run is 0

– this is because we haven’t yet defined the structure for the other parameter p yet. Click the tab for the

p parameter, and select both the {t} and {.} models. Now, MARK reports that you’ve selected 2 models:

{ϕ.p.} and {ϕ.pt}. Click the ‘OK’ button for the 2 models we’ve just selected. This brings you back to

the ‘Set Up Numerical Estimation Run’ window again. Click the ‘Run’ button, which will run these 2

models, and automatically add the results to the browser. However, we also want to run model {ϕtp.}.

Simply go through this process again (i.e., running a pre-defined model), except this time, select {t} for

the ϕ parameter, and {.} for the p parameter. Click ‘OK’, and run this model, adding the results to the

browser.

Note that when running pre-defined models,you still do not have the option of fixing parameters,and

there is still no input box to specify the model title. The reason? Simple – MARK figures that if you’re

using the pre-defined models, you’re willing to accept the parameter structure and model names that

MARK uses for defaults. Of course, MARK still allows you to choose among the various link functions,

variance estimation routines, and other options normally associated with the run window. If you’re

satisfied with what is set for these other options, then simply click the ‘OK to run’ button in the lower

right-hand corner of the run window.

Running pre-defined models in MARK is somewhat different from the way they run normally (i.e.,

the way our initial model ran). First, running pre-defined windows does not cause MARK to spawn

a command window showing the progress of the numerical estimation. Second, MARK does not ask

you after each model is finished whether or not you want to add the results to the results browser –

MARK assumes you do, and sends the results to the browser automatically.

Once the processing of the models is complete, you will note that they have been added to the results

browser:

However, note that the results are not listed in the order in which the models were processed. In fact,

if you’d been watching the results browser while MARK was processing the list of models, you might

have noticed that the ordering of the models in the list changed with the completion of each model. In

fact, MARK is ordering (or sorting) the results based on some sort of criterion – in this case, in ascending

sequence starting with the model with the lowest AICc (Akaike Information Criterion) value (for the

Dipper example, this corresponds to model ‘Phi(.)p(.)’ – constant survival and constant recapture).

The sorting criterion can be controlled using the ‘Order’ menu.

We will talk a lot more about AICc in subsequent chapters. For the moment, accept that the AICc is

a good, well-justified criterion for selecting the most parsimonious model (i.e., the model which best

explains the variation in the data while using the fewest parameters). In a very loose sense, we might

state that the model with the lowest AICc is the ‘best’ model (although clearly, what is ‘best’ or ‘worst’

depends upon the context). The results browser shows you the AIC for each model, as well as the

arithmetic difference between each model and the top model (i.e., the one with the lowest AICc value).

For example, model ‘Phi(t)p(.)’ has an AICc value of 330.06, which is 7.50 units larger than the AICc
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for the most parsimonious model (model ‘Phi(.)p(.)’, which has an AICc value of 322.55).

The right-most column (by default) is the model deviance. In simple terms, the lower the deviance,

the better the model fits. The technical details of the estimation of the likelihood and deviances are

given in Lebreton et al. (1992). We’ll talk more about the deviance (and related statistics) later.

Perhaps more notably, the difference in deviance between ‘nested models’ (models in which one

model differs from another by the elimination of one or more model terms) is distributed as a χ2 statistic

with the degrees of freedom given as the difference in the number of estimable parameters between the

two models. This forms the basis of the likelihood ratio test (LRT). In fact, MARK provides a variety of

‘statistical tests’ for comparing among models, including the LRT. To perform a LRT on the models in

the results browser, simply pull down the ‘Tests’ menu, and select ‘LR tests’ (as shown at the top of

the next page). (Note: the relationship between AIC, model selection, and ‘classical’ statistical tests like

the LRT will be presented in more detail in subsequent chapters.)

MARK will then present you with a window allowing you to select the models you want to compare

using LRT. For now, simply ‘Select all’, and then click the ‘OK’ button. You will be shown the results

of the LRT tests in a Notepad window.

Now, what do we note about the results? Most importantly, we see that not all paired-comparisons

among models are possible – the comparison between model {ϕtp} and model {ϕpt} is not calculated.

Why? If you recall from the preceding page, LRT may be applied only to ‘nested’ models. We’ll talk

more about ‘nesting’ in the next chapter, but for now, accept that these 2 models are not nested. As such,

we cannot use an LRT to compare the fit of the 2 models. In one sense (although perhaps not the most

appropriate one), this is one of the advantages of using the AIC to compare models – it works regardless

of whether or not the models are nested. [However, as we will discover in later chapters, there may be

far more important reasons to use AIC as an omnibus (general) model selection tool.]

For the moment, concentrate on the comparison of model {ϕ.p.} with model {ϕt p.}, the first 2 models

noted in the notepad window (above). We note that the difference in the model deviances is 3, with a

difference in the number of parameters of 5. Based on a χ2 distribution, this difference is not significant

at the nominalα � 0.05 level (P � 0.700). In other words,both models fit the data equally well (we cannot

differentiate between them statistically). The model with more parameters fits the data better in terms

of the model deviance, but not so much so as to compensate for the fact that it takes more parameters
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to achieve this better fit. Thus, we would conclude that model {ϕ.p.} is the more parsimonious model,

which is consistent with the results using the AICc .

Of course, at this point you can browse the estimates, plot them, examine residual plots – simply by

selecting the model you’re interested in (by clicking on it in the results browser). You can also re-run

any particular model, using (for example) a different link function, simply by selecting the model from

the list, retrieving the model (the ‘Retrieve’ menu), and then re-running the model (specifying the new

link function, of course). MARK will process the data, and then ask you if you want to add the new

results to the browser. It’s that easy.

Once you’re done working with this project, all you need to do is exit MARK. All the model results

will be stored away in a DBF file (in this case, called ED_MALES.DBF). Then, if you want to continue work

on this analysis, all you’ll need to do is start MARK, and then ‘Open’ the ed_males.dbf file. That’s it!

3.5. Summary

Congratulations! You’ve just finished your first analysis using program MARK. Of course, the fact that

there are many hundreds of pages left in this book should tell you that there is a lot more left to be

covered. But, you’ve at least gotten your feet wet, and run through a ‘typical’ MARK analysis once

– this is an important first step. If you don’t feel comfortable with what we’ve done so far go back

through the chapter – slowly. Many of the basic mechanics and presented in this chapter (in particular,

the relationship between model ‘structure’ and the PIMs) will be used repeatedly throughout the rest

of the book, so it is important to feel comfortable with them before proceeding much further.
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CHAPTER 4

Building & comparing models

In this chapter, we introduce several important concepts.∗ First, we introduce the basic concepts and

‘mechanics’ for building models in MARK. Second, we introduce some of the concepts behind the

important questions of ‘model selection’ and ‘multi-model inference’. How to build models in MARK

is ‘mechanics’ – why we build certain models, and what we do with them, is ‘science’. Both are critical

concepts to master in order to use MARK effectively, and are fundamental to understanding everything

else in this book, so take your time.

We’ll begin by re-visiting the male Dipper data we introduced in the last chapter. We will compare

2 different subsets of models: models where either survival or recapture (or both) varies with time, or

models where either survival or recapture (or both) are constant with respect to time. The models are

presented in the following table, using the notation suggested in Lebreton et al. (1992).

model explanation

{ϕt pt} both survival and encounter probability time dependent

{ϕ.pt} survival constant over time, encounter probability time dependent

{ϕt p.} survival time dependent, encounter probability constant over time

{ϕ.p.} both survival and encounter probabilities constant over time

In the following, we will go through the steps in fitting each of these 4 models to the data. In fact,

these models are the same ones we fit in Chapter 3. So why do them again? In Chapter 3, our intent was

to give you a (very) gentle run-through of running MARK, using some of the standard options. In this

chapter, the aim is to introduce you to the mechanics of model building, from the ground up. We will

not rely on ‘built-in’ or ‘pre-defined’ models in this chapter (in fact, you’re not likely to ever use them

again). Since you already saw the ‘basics’ of getting MARK up and running in Chapter 3, we’ll omit

some of the more detailed explanations for each step in this chapter.

However, we must emphasize that before you actually use MARK (or any other program) to compare

different models, you need to first confirm that your ‘starting model’ (generally, the most parameterized

or most general model) adequately fits the data. In other words, you must conduct a goodness-of-fit

(GOF) test for your ‘starting model’. GOF testing is discussed in detail in Chapter 5, and periodically

throughout the remainder of this book. For convenience, we’ll assume in this chapter that the ‘starting

model’ does adequately fit the data.

∗ Very important...
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4.1. Building models – parameter indexing & model structures

As in Chapter 3, start MARK by double-clicking the MARK icon. We’re going to use the same data set

we analyzed in Chapter 3 (ED_MALES.INP). At this point, we can do one of 2 things: (1) we can start a

completely new MARK session (i.e., create a completely new *.DBF file), or (2) we can re-open the *.DBF

file we created in Chapter 3, and append new model results to it. Since you already saw in Chapter 3

how to start a ‘new’ project, we’ll focus here on the second possibility – appending new model results

to the existing *.DBF file.

This is very easy to do – from the opening MARK ‘splash screen’, select ‘Open’ from the ‘File’ menu,

and find the ED_MALES.DBF file you created in Chapter 3 (remember that MARK uses the prefix of the

*.INP file – the file containing the encounter histories – as the prefix for the *.DBF file. Thus, analysis of

ED_MALES.INP leads to the creation of ED_MALES.DBF). Once you’ve found the ED_MALES.DBF file, simply

double-click the file to access it. Once you’ve double-clicked the file, the MARK ‘splash screen’ will

disappear, and you’ll be presented with the main MARK window, and the results browser. In the

results browser, you’ll see the models you already fit to these data in the last chapter (there should be

4 models), and their respective AIC and deviance values.

In this chapter, we want to show you how to build these models from scratch. As such, there is no

point in starting with all the results already in the browser! So, take a deep breath and delete all the

models currently in the browser! To do this, simply highlight each of the models in turn, and click the

trash-can icon in the browser toolbar.

Next, bring up the Parameter Index Matrices (PIMs), which (as you may recall from Chapter 3), are

fundamental to determining the structure of the model you are going to fit to the data. So, the first

step is to open the PIMs for both the survival and recapture parameters. To do this, simply pull down

the ‘PIM’ menu, and select ‘Open Parameter Index Matrix’. This will present you with a dialog box

containing two elements: ‘Apparent Survival Parameter (Phi) Group 1’, and ‘Recapture Parameter

(p) Group 1’. You want to select both of them. You can do this either by clicking on both parameters,

or by simply clicking on the ‘Select All’ button on the right-hand side of the dialog box. Once you’ve

selected both PIMs, simply click the ‘OK’ button in the bottom right-hand corner. This will cause the

PIMs for survival and recapture to be added to the MARK window. Here’s what they look like, for the

survival parameters
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and the recapture parameters, respectively.

We’re going to talk a lot more about PIMs, and why they look like they do, later on in this (and

subsequent) chapters. For now, the only thing you need to know is that these PIMs reflect the currently

active model. Since you deleted all the models in the browser, MARK reverts to the default model –

which is always the fully time-dependent model. For mark-recapture data, this means the fully time-

dependent CJS model.

OK, so now you want to fit a model. While there are some ‘built-in’ models in MARK, we’ll

concentrate at this stage on using MARK to manually build the various models we want to fit to our

data. Once you’ve mastered this manual, more general approach, you can then proceed to using ‘short-

cuts’ (such as built-in models). Using short-cuts before you know the ‘general way’ is likely to lead to

one thing – you getting lost!

Looking back at the table on the first page of this chapter, we see that we want to fit 4 models to the

data, {ϕt pt}, {ϕt p.}, {ϕ.pt} and {ϕ.p.}. A quick reminder about model syntax – the presence of a ‘t’

subscript means that the model is structured such that estimates for a given parameter are time-specific;

in other words, that the estimates may differ over time. The absence of the ‘t’ subscript (or, the presence

of a ‘dot’) means the model will assume that the parameter is fixed through time (the use of the ‘dot’

subscript leads to such models usually being referred to as ‘dot models’ – naturally).

Let’s consider model {ϕt pt} first. In this model, we assume that both survival (ϕ) and recapture (p)

can vary through time. How do we translate this into MARK? Pretty easy, in fact. First, recall that in this

data set, we have 7 total occasions: the first occasion is the initial marking (or release) occasion, followed

by 6 subsequent recapture occasions. Now, typically, in each of these subsequent recapture occasions

2 different things can occur. Obviously, we can recapture some of the individuals previously marked.

However, part of the sample captured on a given occasion is unmarked. What the investigator does with

these individuals differs from protocol to protocol. Commonly, all unmarked individuals are given a

unique mark, and released. As such, on a given recapture occasion, 2 types of individuals are handled

and released: those individuals which have been previously marked,and those which are newly marked.

Whether or not the fate of these two ‘types’ of individuals is the same is something we can test (we will

explore this in a later chapter). In some studies, particularly in some fisheries and insect investigations,

individuals are only marked at the initial release (sometimes known as a ‘batch mark’). There are no

newly marked individuals added to the sample on any subsequent occasions. The distinctions between

these two types of mark-release schemes are important to understanding the structure of the parameter
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matrices MARK uses.

Consider our first model, the CJS model {ϕtpt} with full time-dependence in both survival and

recapture probabilities. Let’s assume there are no age effects (say, forexample,all individuals are marked

as adults – we deal with ‘age’ in a later chapter). In Chapter 3, we represented the parameter structure

of this model as shown below:

1
ϕ1−→ 2

ϕ2−→ 3
ϕ3−→ 4

ϕ4−→ 5
ϕ5−→ 6

ϕ6−→ 7
p2 p3 p4 p5 p6 p7

In fact, this representation is incomplete, since it does not record or index the fates of individuals

newly marked and released at each occasion. These are referred to as ‘cohorts’ – groups of animals

marked and released on a particular occasion.

We can do this easily by adding successive rows to our model structure, each row representing the

individuals newly marked on each occasion. Since the occasions obviously occur sequentially, then each

row will be indented from the one above it by one occasion. This is shown below:

cohort 1 1
ϕ1−→ 2

ϕ2−→ 3
ϕ3−→ 4

ϕ4−→ 5
ϕ5−→ 6

ϕ6−→ 7
p2 p3 p4 p5 p6 p7

cohort 2 2
ϕ2−→ 3

ϕ3−→ 4
ϕ4−→ 5

ϕ5−→ 6
ϕ6−→ 7

p3 p4 p5 p6 p7

cohort 3 3
ϕ3−→ 4

ϕ4−→ 5
ϕ5−→ 6

ϕ6−→ 7
p4 p5 p6 p7

cohort 4 4
ϕ4−→ 5

ϕ5−→ 6
ϕ6−→ 7

p5 p6 p7

cohort 5 5
ϕ5−→ 6

ϕ6−→ 7
p6 p7

cohort 6 6
ϕ6−→ 7

p7

Notice that the occasions are numbered from left to right, starting with occasion 1. Survival proba-

bility is the probability of surviving between successive occasions (i.e., between columns). Each release

cohort is listed in the left-hand column.

For example, some individuals are captured and marked on occasion 1, released, and potentially can

survive to occasion 2. Some of these surviving individuals may survive to occasion 3, and so on. At

occasion 2, some of the captured sample are unmarked. These unmarked individuals are newly marked

and released at occasion 2. These animals comprise the second release cohort. At occasion 3, we take a

sample from the population. Some of the sample might consist of individuals marked in the first cohort

(which survived to occasion 3), some would consist of individuals marked in the second cohort (which

survived to occasion 3), while the remainder would be unmarked. These unmarked individuals are

newly marked, and released at occasion 3. These newly marked and released individuals comprise the

third release cohort. And so on.

If we rewrite cohort structure, showing only the sampling occasion numbers, we get the structure

shown at the top of the next page.
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cohort 1 1 −→ 2 −→ 3 −→ 4 −→ 5 −→ 6 −→ 7

cohort 2 2 −→ 3 −→ 4 −→ 5 −→ 6 −→ 7

cohort 3 3 −→ 4 −→ 5 −→ 6 −→ 7

cohort 4 4 −→ 5 −→ 6 −→ 7

cohort 5 5 −→ 6 −→ 7

cohort 6 6 −→ 7

The first question that needs to be addressed is: does survival vary as a function of which cohort an

individual belongs to, does it vary with time, or both? This will determine the indexing of the survival

and recapture parameters. For example, assume that cohort does not affect survival, but that survival

varies over time. In this case, survival can vary among intervals (i.e., among columns), but over a given

interval (i.e., within a column), survival is the same over all cohorts (i.e., over all rows). Again, consider

the following cohort matrix – but showing only the survival parameters:

cohort 1 1
ϕ1−→ 2

ϕ2−→ 3
ϕ3−→ 4

ϕ4−→ 5
ϕ5−→ 6

ϕ6−→ 7

cohort 2 2
ϕ2−→ 3

ϕ3−→ 4
ϕ4−→ 5

ϕ5−→ 6
ϕ6−→ 7

cohort 3 3
ϕ3−→ 4

ϕ4−→ 5
ϕ5−→ 6

ϕ6−→ 7

cohort 4 4
ϕ4−→ 5

ϕ5−→ 6
ϕ6−→ 7

cohort 5 5
ϕ5−→ 6

ϕ6−→ 7

cohort 6 6
ϕ6−→ 7

The shaded columns indicate that survival is constant over cohorts, but the changing subscripts in ϕi

indicate that survival may change over time. This is essentially Table 7A in Lebreton et al. (1992). What

MARK does to generate the parameter or model structure matrix is to reproduce the structure and

dimensions of this figure, after first replacing the ϕi values with a simple numerical indexing scheme,

such that ϕ1 is replaced by the number 1, ϕ2 is replaced by the number 2, and so forth. Thus, the

preceding figure (above) is represented by a triangular matrix of the numbers 1 to 6 (for the 6 survival

probabilities):

1 2 3 4 5 6

2 3 4 5 6

3 4 5 6

4 5 6

5 6

6

This ‘triangular matrix’ (the PIM) represents the way that MARK ‘stores’ the model structure

corresponding to time variation in survival, but no cohort effect (Fig. 7A in Lebreton et al. 1992). Notice

that the dimension of this matrix is (6 rows by 6 columns), rather than (7 columns by 7 rows). This is

because there are 7 capture occasions, but only 6 survival intervals (and, correspondingly, 6 recapture

occasions). This representation is the basis of the PIMs which you see on your screen (it will also be

printed in the output file). Perhaps most importantly, though, this format is the way MARK keeps
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track of model structure and parameter indexing. It is essential that you understand the relationships

presented in the preceding figures. A few more examples will help make them clearer.

Let’s consider the recapture probability. If recapture probability is also time-specific, what do you

think the model structure would look like? If you’ve read and understood the preceding, you should

be able to make a reasonable guess. Again, remember that we have 7 sampling occasions – the

initial marking event (occasion 1), and 6 recapture occasions. With time-dependence, and assuming

no differences among cohorts, the model structure for recaptures would be:

cohort 1 1 −→ 2 −→ 3 −→ 4 −→ 5 −→ 6 −→ 7
p2 p3 p4 p5 p6 p7

cohort 2 2 −→ 3 −→ 4 −→ 5 −→ 6 −→ 7
p3 p4 p5 p6 p7

cohort 3 3 −→ 4 −→ 5 −→ 6 −→ 7
p4 p5 p6 p7

cohort 4 4 −→ 5 −→ 6 −→ 7
p5 p6 p7

cohort 5 5 −→ 6 −→ 7
p6 p7

cohort 6 6 −→ 7
p7

Now, what are the corresponding index values for the recapture probabilities? As with survival,

there are 6 parameters, p2 to p7 (corresponding to recapture on the second through seventh occasion,

respectively). With survival probabilities, we simply looked at the subscripts of the parameters, and

built the PIM. However, things are not quite so simple here (although as you’ll see, they’re not very

hard). All you need to know is that the recapture parameter index values start with the first value after

the survival values. Hmmm...let’s try that another way. For survival, we saw there were 6 parameters,

so our survival PIM looked like

1 2 3 4 5 6

2 3 4 5 6

3 4 5 6

4 5 6

5 6

6

The last index value is the number ‘6’ (corresponding toϕ6 , the apparent survival probability between

occasion 6 and occasion 7). To build the recapture PIM, we start with the first value after the largest value

in the survival PIM. Since ‘6’ is the largest value in the survival PIM, then the first index value used in

the recapture PIM will be the number ‘7’. Now, we build the rest of the PIM. What does it look like?

If you think about it for a moment, you’ll realize that the recapture PIM looks like:

7 8 9 10 11 12

8 9 10 11 12

9 10 11 12

10 11 12

11 12

12
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Do these look familiar? They might – look at the PIMs MARK has generated on the screen. In fact,

we’re now ready to ‘run the CJS model’ fully time-dependent model. We covered this step in Chapter 3,

but let’s go through it again (repetition is a good teacher). In fact, there are a couple of ways you can

proceed. You can either (i) pull down the ‘Run’ menu and ‘Run the current model’ (the model defined

by the PIMs is always the current model), or (ii) click the ‘Run’ icon on the toolbar of either of the PIMs.

This will bring up the ‘Setup’ window for the numerical estimation, which you saw for the first time in

Chapter 3. All you need to do is fill in a name for the model (we’ll use Phi(t)p(t) for this model), and

click the ‘OK to run button’ (lower right-hand corner). Again, as you saw in Chapter 3, MARK will

ask you about the ‘identity matrix’, and then spawn a numerical estimation window. Once it’s finished,

simply add these results to the results browser.

Now, let’s considermodel{ϕt p.} – time-dependent survival,but constant recapture probability. What

would the PIMs for this model look like? Clearly, the survival PIM would be identical to what we already

have, so no need to do anything there. What about the recapture PIM? Well, in this case,we have constant

recapture probability. What does the parameter structure look like? Look at the following figure:

cohort 1 1 −→ 2 −→ 3 −→ 4 −→ 5 −→ 6 −→ 7
p p p p p p

cohort 2 2 −→ 3 −→ 4 −→ 5 −→ 6 −→ 7
p p p p p

cohort 3 3 −→ 4 −→ 5 −→ 6 −→ 7
p p p p

cohort 4 4 −→ 5 −→ 6 −→ 7
p p p

cohort 5 5 −→ 6 −→ 7
p p

cohort 6 6 −→ 7
p

Note that there are no subscripts for the recapture parameters – this reflects the fact that for this

model, we’re setting the recapture probability to be constant, both among occasions, and over cohorts.

What would the PIM look like for recapture probability? Well, recall that the largest index value for

the survival PIM is the number ‘6’, so the first index value in the recapture PIM is the number ‘7’. And,

since the recapture probability is constant for this model, then the entire PIM will consist of the number

‘7’ (as shown at the top of the next page).

7 7 7 7 7 7

7 7 7 7 7

7 7 7 7

7 7 7

7 7

7

Now, how do we modify the PIMs in MARK to reflect this structure? As you’ll discover, MARK

gives you many different ways to accomplish the same thing. Modifying PIMs is no exception. The

most obvious (and pretty well fool-proof) way to modify the PIM is to edit the PIM directly, changing

each cell in the PIM, one at a time, to the desired value. For small PIMs, or for some esoteric model

structures we’ll discuss in later chapters, this is not a bad thing to try. However, let’s use one of the

built-in time-savers in MARK to do most of the work for us.
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Remember, all we want to do here is modify the recapture PIM. To do this, make that PIM ‘active’

by clicking in the first ‘cell’ (upper left corner of the PIM). You can in fact make a window active by

clicking on it anywhere (it doesn’t matter where – just remember not to click the ‘X’ in the upper right-

hand corner, since this will close the window!), but as we’ll see, there are advantages in clicking in a

specific cell in the PIM. When you’ve successfully selected a cell, you should see a vertical cursor in that

cell.

Once you’ve done this, you can do one of a couple of things. You can pull down the ‘Initial’ menu

on the main MARK parent toolbar. When you do this, you’ll see a number of options – each of them

controlling the value (if you want, the initial value) of some aspect of the active window (in this case, the

recapture PIM). Since we want to have a constant recapture probability, you might guess the ‘Constant’

option on the ‘Initial’ menu would be the right one. You’d be correct. Alternatively, you can right-

click with the mouse anywhere in the recapture PIM window – this will generate the same menu as

you would get if you pull down the ‘Initial’ menu. Use whichever approach you prefer:

Once you’ve done this, you will see that all the values in the recapture PIM are changed to 7.

Believe it our not, you’re now ready to run this model (model {ϕt p.}). Simply go ahead and click

the ‘Run’ icon in the toolbar of either PIM. For a model name, we’ll use ‘Phi(t)p(.)’. Once MARK is
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finished, go ahead and append the results from this run to the results browser.

What you might see is that model ‘Phi(t)p(.)’ (representing model {ϕt p.}) is listed first, and model

‘Phi(t)p(t)’ second, even though model ‘Phi(t)p(t)’ was actually run first. As you may recall from

our discussions in Chapter 3, the model ordering is determined by a particular criterion (say, the AIC),

and not necessarily the order in which the models were run.

Before we delve too deeply into the results of our analyses so far, let’s finish our list of candidate

models. We have model {ϕ.pt} and model {ϕ.p.} remaining. Let’s start with model {ϕ.pt} – constant

survival, and time-dependent recaptureprobability. If you think about it for a few seconds, you’ll realize

that this model is essentially the ‘reverse’ of what we just did – constant survival and time-dependent

recapture, instead of the other way around. So, you might guess that all you need to do is reverse the

indexing in the survival and recapture PIMs. Correct again! Start with the survival PIM. Click in the

first cell (upper left-hand corner), and then pull down the ‘Initial’ menu and select ‘Constant’, as you

did previously. The survival PIM will change to a matrix of all ‘1’s.

What about the recapture PIM? Again, click in the first cell. Since we’re reusing the PIMs from our

last analysis, the value of the first cell in the recapture PIM will be the number ‘7’. If we pull down the

‘Initial’ menu and select ‘Time’, we’d see the matrix change from all ‘7’s to values from 7 to 12. Now,

think about this for a minute. If we stop at this point, we’d be using the parameter index ‘1’ for survival

(constant survival), and indices 7 through 12 for recapture probability. What happened to indices 2

through 6?

In fact, nothing has really happened to them – but you don’t know that yet. While it might make

more sense to explicitly index the recapture PIM from 2 through 7, in fact, MARK will do this for you –

but only during the numerical estimation itself. In fact, MARK more or less assumes that you’ve used

‘1’ and ‘7 through 12’ as the index values by mistake, and actually uses ‘1’ and ‘2 through 7’ when it

does its calculations. Let’s prove this to ourselves. Leave the PIMs as they are now – all ‘1’s for survival,

and ‘7 through 12’ for recapture, and press the ‘Run’ icon on the PIM toolbar. You’ll be dumped into

the ‘Numerical Estimation’ setup window. For a title, we’ll use ‘Phi(.)p(t)’. Then, simply click on the

‘OK to Run’ button. Append the results to the browser. Now, before looking at the browser itself, have

another look at both the survival and recapture PIMs. What you’ll see is that MARK has ‘corrected’

the PIM indexing for the recapture PIM, such that it is now ‘2 through 7’, rather than ‘7 through 12’.

Clever, eh? Yes, and no. It is nice that MARK does this for you, but you should not rely on software

to do too much ‘thinking’ for you. It would have been better (albeit, somewhat slower) to simply index

the recapture PIM correctly in the first place.

How would you do this? Aaah. . .this is where selecting the first cell in the PIM itself becomes

important. Initially, the recapture PIM had all ‘7’ values. You want to change it to time-dependent,

but want the first value to be ‘2’ (since the survival parameter index is ‘1’). To do this, simply change the

value in the first cell of the recapture PIM from ‘7’ to ‘2’, and then select ‘Time’ from the ‘Initial’ menu.

Let’s put this into practice with the final model in our candidate model set – the constant survival

and recapture model, {ϕ.p.}. For this model, the survival and recapture PIMs will be ‘1’s and ‘2’s,

respectively.

begin sidebar

Why not ‘2’s?

Why not use 2’s for indexing survival, and 1’s for recapture? In fact, MARK doesn’t care at all – in

MARK, the ordering or sequencing of PIM indexing is as arbitrary as which window you place where

on the screen – it’s entirely up to you. You would get the same ‘results’ using either ‘1’ and ‘2’ for

survival and recapture, or ‘2’ and ‘1’, respectively.

end sidebar
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In other words, for survival

1 1 1 1 1 1

1 1 1 1 1

1 1 1 1

1 1 1

1 1

1

and for recapture

2 2 2 2 2 2

2 2 2 2 2

2 2 2 2

2 2 2

2 2

2

One simple way to remember what the triangular matrix is telling you is to remember that time

moves left to right, and cohort from top to bottom. If the numbers (indices) change in value from left

to right, then survival changes with time. If they change from top to bottom, they change over cohort.

Of course, the indices can change in either one or both directions simultaneously.

Once the PIMs are set, run the model (we’ll use ‘Phi(.)p(.)’ for the model name), and append the

results to the browser. You now have 4 different model results in the browser, corresponding to each

of the 4 models we’re interested in. Of course, there are many other models we could have tried, but at

this stage, we simply want to get comfortable building models in MARK. As we’ll discuss shortly, the

selection of the candidate set of models is crucial to our task. For now though, let’s just consider these

4 as representative of models we have an interest in. Let’s start by looking at the results browser itself.

We see that the 4 models are listed, in order of ascending AIC, ranging from 322.55 for model {ϕ.p.}
to 336.43 for model {ϕtpt}.

Before we evaluate the results from our 4 models, it is often a good starting point to take the

estimates from the most fully parameterized model, and plot them (MARK has some basic ‘built-

in’ plotting capabilities – simply click the ‘line graph’ icon in the browser toolbar, and go from there.

Fairly self-explanatory). Often, a sense of the underlying model structure is revealed by examination

of the estimates from the most parameterized model. The reason is fairly straightforward – the more

parameters in the model, the better the fit (smaller the deviance – more on model deviance later on).
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As we will discuss shortly, this does not necessarily mean that it is the best model, merely the one that

fits the best (this is a crucial distinction). However, the most parameterized model generally gives the

most useful ‘visual’ representation of the pattern of variation in survival and recapture. In the case of

our 4 models, the most parameterized is model {ϕt pt} – the CJS model. The parameter estimates (with

95% CI) for ϕ and p are plotted below – first, the estimated apparent survival probabilities (ϕ̂i)

Then, the estimated recapture probabilities (p̂i)

Note that in these figures we do not include all 6 estimates that MARK derives for both survival

and recapture. Why? As it turns out, the final estimate for both survival and recapture is 0.7638. Is

this just a coincidence? No! In fact, what MARK has done is estimate the square-root of the combined

probability ϕ6p7 (which Lebreton et al. (1992) refer to as β7). For the time-dependent CJS model, the

components of this product are not individually identifiable – without further information, we cannot

separately estimate survival from recapture – we can only estimate the square-root of the product.

We shall discuss this again in more detail later on. Since this ϕ6p7 product term is not comparable to
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either survival or recapture probabilities separately, it is excluded from our plots. Of course, if you’ve

looked at the output listing already, you may have ‘seen’ that parameters 6 and 12 are not separately

identifiable. However, as we’ve mentioned before, we do not favor unquestioning reliance on the ability

of the software (be it MARK or any other application) to determine the number of estimable parameters

– you should first develop an understanding of how it is done from first principals. This is covered in

the Addendum at the end of this chapter. [We have placed it there to minimize disruption to the flow of

the material on building models. However, you are strongly urged to read it carefully, at some point].

4.2. A quicker way to build models – the PIM chart

In the preceding example, we started our model building by opening the PIMs for both survival and

recapture (the two primary parameters in the live encounter analysis of the male Dipper data). We

modified the PIMs to set the underlying parameter structure for our models. However, at this point, we

want to show you another,more efficient way to do the same thing,by introducing one of the ‘whiz-bang’

(from the Latin) features of MARK – the Parameter Index Chart (hereafter referred to as the ‘PIM chart’).

Introducing the PIM chart, and demonstrating its utility is probably most effectively done by letting

you have a look. We’ll do so by considering two different numerical examples – one involving a single

group of marked individuals, and the second involving multiple groups of marked individuals. Not

only is the situation involving multiple groups quite common, but some of the notable advantages of

using the PIM chart to speed model construction are even more obvious for analyses involving multiple

groups of marked individuals.

4.2.1. PIM charts and single groups – Dipper re-visited

Open up the male Dipper data analysis – there should be 4 models in the results browser. We’re going

to replicate these 4 models again, this time using the PIM chart, rather than manually modifying the

individual PIMs. We’ll start with model {ϕtpt}. Simply find that model in the results browser, right-

click it and select ‘Retrieve’ from the sub-menu. This will make the underlying PIM structure for this

model active (you can always check this by opening up each of the individual PIMs and having a look).

Recall that for model {ϕt pt}, there are 6 intervals for survival, and 6 occasions for recapture – so, in

theory, 12 total parameters that could be estimated: 1 → 6 for survival, and 7 → 12 for recapture

(although we remember that for the fully time-dependent model, the final survival and recapture

parameters are confounded – such that only 11 total parameters will be estimated). Recall that at this
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point, we’re simply setting the underlying parameter structure for our models.

Now, let’s have a look at this thing called the PIM chart. You can either (i) select ‘Parameter Index

Chart’ from the PIM menu

or (ii) click the appropriate icon in the main toolbar (for the PIM chart, this is the icon that looks like a

‘camera’, more or less).

Go ahead and open up the PIM chart for model {ϕt pt}.

Zowie! OK. . .now, what is it? The PIM chart is a simple, yet useful visual tool for looking at the

parameter indexing MARK uses for the various groups and parameters in the current model (in our

case, model {ϕt pt}). What you can see from the chart is that there are 2 main ‘groupings’ of parameters

for this model: survival (ϕ) respectively, and recapture (p), respectively. Along the bottom axis is the

parameter index itself, and along the vertical axis are the parameters. So, in this example, parameters

1 to 6 refer to the survival probabilities, and 7 to 12 correspond to the recapture parameters.
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Now, at this point we haven’t changed anything to the parameter structure – the PIM chart simply

reflects the structure of the current model. You can confirm that in fact nothing has changed by running

this model, and adding the result to the browser. Make the title for the model ‘Phi(t)p(t) - PIM chart’

– adding the extra label will help you identify which models in the browser were created using the PIM

chart.

As you can see, the results for model ‘Phi(t)p(t) - PIM chart’ are identical to those for model

‘Phi(t)p(t)’.

OK, so far, the PIM chart hasn’t really done much for us, other than provide a convenient visual

representation of the underlying parameter structure for our model. In fact, the greatest utility of the

PIM chart is the ease with which you can use it to build other models. We’ll demonstrate that now. Let’s

consider building model {ϕt p.}. How can we build this model using the PIM chart? Recall that for this

model, the underlying parameter structure for survival should look like

1 2 3 4 5 6

2 3 4 5 6

3 4 5 6

4 5 6

5 6

6

and for recapture

7 7 7 7 7 7

7 7 7 7 7

7 7 7 7

7 7 7

7 7

7

However, the recapture PIM for our current model {ϕt pt} has the structure

7 8 9 10 11 12

8 9 10 11 12

9 10 11 12

10 11 12

11 12

12
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So, we want to change the recapture PIM from time-dependent (index values 7 → 12) to time-

invariant (constant; index values 7 only for all occasions). How do we do this using the PIM chart?

Easy! Simply open up the PIM chart, and right click on the ‘blue-box’ corresponding to the recapture

parameter. This will spawn a sub-menu which list various options – the option we want to select is

‘Constant’ (shown below):

What this will do is change the parameter structure for the selected ‘blue box’ (which in this

case represents the recapture parameter) and change it from the current structure (in this case, time-

dependent) to constant. Go ahead and select ‘Constant’:

Chapter 4. Building & comparing models



4.2.1. PIM charts and single groups – Dipper re-visited 4 - 16

Now, the right-most blue box has only one parameter index – ‘7’. The size of the box has changed

to reflect that we’ve gone from full time-dependence (6 parameters wide) to a constant ‘dot’ model

(1 parameter wide).

We can confirm this by opening up the recapture PIM.

As expected, it consists entirely of the number ‘7’.

Now, wasn’t that fast? To build model {ϕt p.} from model {ϕt pt}, all we did was (i) open up the PIM

chart for model {ϕt pt}, (ii) right-click the ‘blue box’ corresponding to the recapture parameter, and (iii)

select constant.

Go ahead and run this model – label it ‘phi(t)p(.) - PIM chart’, and add the results to the browser.

The results should be identical to those from model ‘phi(t)p(.)’, which we fit by manually modifying

the parameter-specific PIMs.

Now, what about model {ϕ.pt}? At this point we could either go back into the browser, retrieve model

{ϕt pt}, bring up the PIM chart, and repeat the steps we just took, except right-clicking on the survival

‘blue box’, rather than the recapture ‘blue box’. Alternatively, we could simply bring up the PIM chart

for the model we just fit {ϕtp.} and modify that. We’ll use the second approach. Go ahead and bring

back up the PIM chart. Now, we’re going to right-click on the recapture ‘blue-box’, and change it from

constant to time-dependent:
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This will generate a PIM chart that looks like

Recognize it? You should – it’s the PIM chart corresponding to the model we started with {ϕt pt} –

which has 6 survival parameters, and 6 recapture parameters.

Now, right-click on the survival ‘blue-box’, and select ‘Constant’. Remember, we’re trying to build

model {ϕ.pt}.

So, a couple of things to notice here. First, as intended, the ‘blue box’ for the survival parameter

has ‘shrunk’, reflecting the fact that we’ve gone from time-dependent (parameters 1 → 6) to constant

(parameter 1).
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But, we also notice there is a substantial ‘gap’ between the two ‘blue-boxes’. Parameter index values

2→ 6 don’t correspond to anything. We want to eliminate the gap (i.e., remove the meaningless index

values). You could do this in one of two ways. First, the PIM chart lets you manually ‘drag’ the ‘blue-

boxes’ around. So, you could left-click the recapture ‘blue-box’ and, while holding down the left mouse

button, drag the recapture blue box to the left, so that the left-most edge of the box corresponds to

parameter index 2. Try it, it’s pretty slick. Alternatively, you can right-click anywhere on the PIM chart,

and select either of the ‘Renumber’ options you are given (the distinction between the two will become

obvious in our next worked example):

Doing so will cause the PIM chart to change (shown at the top of the next page) – the gap between

the two ‘blue boxes’ will be eliminated, and the structure will now reflect model {ϕ.pt}.

Go ahead and run the model, label it ‘phi(.)p(t) - PIM chart’, and add the results to the browser.

Again, they should be identical to the results from fitting model ‘phi(.)p(t)’ built by modifying the

individual PIMs. Again, using the PIM chart is much faster.

As a final test, try fitting model {ϕ.p.}. You’ll know you’ve done it correctly if the results match those

for ‘phi(.)p(.)’ already in the browser.
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4.2.2. PIM charts and multiple groups

This second worked example involves some data from two different nesting colonies of the swift (Apus

apus), a small insectivorous bird. In addition to providing an opportunity to demonstrate the use of the

PIM chart, this data set also introduces the general concept of comparing groups (an extremely common

type of analysis you’re likely to run into routinely). In fact, as we will see, it involves only slightly more

work than the model comparisons we saw in the Dipper example we considered in the first part of this

chapter.

The data consist of live encounter data collected over an 8 year study of 2 different swift colonies in

southern France. One of the two colonies was believed to be of ‘poorer’ quality than the other colony

for a variety of reasons, and the purpose of the study was to determine if these perceived differences

between the two colonies (hereafter, P – ‘poor’, and G – ‘good’) were reflected in differences in either

survival or recapture probability. The data for both the P and G colonies are both in AA.INP – the

encounter frequencies are tabulated for the ‘poor’ and ‘good’ colonies, respectively. In this example, we

will analyze the data in terms of the following 2 factors: colony (G or P), and time. Thus, this example

is very similar to the Dipper example, except that we have added one more factor, colony. As such, the

number of possible models is increased from 22
� 4 models to 42

� 16 models – survival and recapture

could vary with colony, time or both. The candidate set of models is shown at the top of the next page.

{ϕc∗tpc∗t} {ϕc pc∗t} {ϕtpc∗t} {ϕ.pc∗t}
{ϕc∗tpc} {ϕc pc} {ϕt pc} {ϕ.pc}
{ϕc∗tpt} {ϕcpt} {ϕt pt} {ϕ.pt}
{ϕc∗tp.} {ϕc p.} {ϕt p.} {ϕ.p.}

With an increasing number of factors, the number of possible models that may need to be tested

increases geometrically. Here we have an 8 year study, considering only 2 primary factors (colony and

time), and there are at least 16 possible models to test (in fact, we will see in subsequent chapters there

are potentially many more).

Two points to make before we go any further. First,we should make sure you understand the syntax of

the model representations in the preceding table (which follow the approach recommended in Lebreton

et al. 1992). Remember, that the subscripts for the two parameters (ϕ and p) reflect the structure of the

model. The most general model in the table is model {ϕc∗tpc∗t}. The ‘c*t’ subscript means we have a

‘full’ model (for both survival and recapture), including both the main effects (colony and time) and

the interaction of the two (i.e., ‘c*t’ = c + t + c.t + error). By ‘interaction’, we are referring to the

statistical meaning of the word – that colony and time interact, such that the relationship between

survival or recapture and time can differ depending upon the colony (or conversely, the relationship

between survival or recapture and colony can differ depending upon the time interval). This model is

the most general, since any of the other models listed can be derived by removing one or more factors

(a simple comparison of the ‘complexity’ of the subscripting for both survival and recapture among the

various models will confirm this).

Second, by now you’ve no doubt noticed that we highlighted the word ‘possible’ repeatedly. We

did so for a reason – to foreshadow discussion of ‘model selection’ and ‘model uncertainty’, presented

later in this chapter. For the moment, we’ll assume that we are particularly interested in whether or not

there are differences in survival between the 2 colonies. We’ll assume that there are no differences in

recapture probability between the colonies. These assumptions are reflected in our ‘candidate model

set’, which is a subset of the table presented above:

{ϕc∗tpt} {ϕt pt} {ϕc pt}
{ϕc∗tp.} {ϕt p.} {ϕc p.}
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Note that this candidate model set reflects some ‘prior thinking’ about the data set, the analysis, the

biology – different investigators might come up with different candidate model sets. However, for the

moment, we’ll use this particular candidate model set, and proceed to analyze the data. We will start

by fitting the data to the most general approximating model in the model set {ϕc∗tpt}. It is the most

general, because it has the most parameters of all the models we will consider. Start program MARK,

and start a ‘New’ project (i.e., from the ‘File’ menu, select ‘New’). Pull in the data from AA.INP (2 groups, 8

occasions – the first frequency column represents the ‘poor’ colony, while the second frequency column

represents the ‘good’ colony).

Next, either pull down the ‘PIM’ menu, and select ‘Parameter Index Chart’, or select the PIM chart

icon on the toolbar. The resulting (default) PIM chart corresponds to model {ϕc∗tpc∗t} is shown at the

top of the next page. Again, what you can see from the chart is that there are 4 main ‘groupings’ of

parameters for this model: survival for good and poor colonies respectively, and recapture for the good

and poor colonies, respectively. Along the bottom index is the parameter index itself, and along the

vertical axis are the parameters and group labels. So, in this example, parameters 1 to 7 refer to the

survival probabilities for the poor colony, 8 to 14 correspond to the survival parameters for the good

colony, and so on. As mentioned in the Dipper example we just completed, the PIM chart allows you

to quickly determine the structure of your model, in terms of the parameters indices.

However, before we proceed, think back for a moment to our candidate model set. In the model set,

the most general model we want to fit is model {ϕc∗tpt}. However, the default model MARK starts

with is always the fully structured model, in this case, model {ϕc∗tpc∗t}. So, as a first step, we need

to reconfigure the default model from {ϕc∗tpc∗t} to {ϕc∗tpt}. This involves changing the parameter

structure for the recapture parameters, by eliminating the colony effect.
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This should be reasonably straightforward. We have 8 occasions, and 2 groups. Thus, for a given

group, we have 7 survival intervals, and 7 recapture occasions. For model {ϕc∗tpc∗t}, the parameters

would be numbered:

survival recapture

poor good poor good

1→ 7 8→ 14 15→ 21 22→ 28

In other words, the PIMs would look like the following for survival:

1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 3 4 5 6 7 9 10 11 12 13 14

3 4 5 6 7 10 11 12 13 14

4 5 6 7 11 12 13 14

5 6 7 12 13 14

survival 6 7 survival 13 14

‘poor’ 7 ‘good’ 14

and for recapture

15 16 17 18 19 20 21 22 23 24 25 26 27 28

16 17 18 19 20 21 23 24 25 26 27 28

17 18 19 20 21 24 25 26 27 28

18 19 20 21 25 26 27 28

19 20 21 26 27 28

recapture 20 21 recapture 27 28

‘poor’ 21 ‘good’ 28

Now, what we want to do is modify this structure to reflect model {ϕc∗tpt} – in other words, we want

to change the recapture PIMs so that they are the same between the two groups (the two colonies):

survival recapture

poor good poor good

1→ 7 8→ 14 15→ 21 15→ 21

The recapture PIMs would now look like:

15 16 17 18 19 20 21 15 16 17 18 19 20 21

16 17 18 19 20 21 16 17 18 19 20 21

17 18 19 20 21 17 18 19 20 21

18 19 20 21 18 19 20 21

19 20 21 19 20 21

recapture 20 21 recapture 20 21

‘poor’ 21 ‘good’ 21
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While we could do this ‘manually’, by modifying the indexing for each individual PIM, MARK lets

you accomplish this in a faster, more elegant way – by modifying the PIM chart directly. How? By simply

selecting (left-click with the mouse) the ‘good’ colony ‘blue box’ in the PIM chart, and while holding

down the left mouse button, dragging it to the left, so that it lines up with the recapture ‘blue box’ for

the ‘poor’ colony, then releasing the mouse button (shown below). Compare this PIM chart with the

original one.

Next, look at the PIMs – you’ll see that the recapture PIMs are now identical for both groups, indexed

from 15→ 21, just as they should be. Now isn’t that easy? We’re now ready to run our general, starting

model{ϕc∗tpt}. Go ahead and run it, calling it model ‘Phi(c*t)p(t)’. Add the results to the browser. The

model deviance is 107.563, with 20 estimated parameters (6 survival parameters for the ‘poor’ colony,

6 survival parameters for the ’good’ colony, 6 recapture probabilities (the same for both colonies), and

2 β-terms (one for each colony). Make sure you understand the parameter counting!

Now, we simply run the other models in the candidate model set: {ϕc∗tp.}, {ϕt pt}, {ϕc pt}, {ϕt p.}
and {ϕcp.}. To reinforce your understanding of manipulating the PIM chart, and to demonstrate at

least one other nifty trick with the PIM chart, we’ll start with model {ϕtpt}. For this model, the PIM

structure would be:

For survival

1 2 3 4 5 6 7 1 2 3 4 5 6 7

2 3 4 5 6 7 2 3 4 5 6 7

3 4 5 6 7 3 4 5 6 7

4 5 6 7 4 5 6 7

5 6 7 5 6 7

survival 6 7 survival 6 7

‘poor’ 7 ‘good’ 7
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and for recapture

8 9 10 11 12 13 14 8 9 10 11 12 13 14

9 10 11 12 13 14 9 10 11 12 13 14

10 11 12 13 14 10 11 12 13 14

11 12 13 14 11 12 13 14

12 13 14 12 13 14

recapture 13 14 recapture 13 14

‘poor’ 14 ‘good’ 14

Now, if you understood ourfirst attempt with manipulating the PIM chart,you might guess (correctly)

that what you need to do is ‘make the blue boxes for the survival parameters line up’. However, if you

look at the chart, you see you could do this by grabbing the ‘blue box’ for survival for the poor colony

and dragging it to the right (under the box for the good colony), or, in reverse, grabbing the box for the

good colony, and dragging it to the left. We’ll use the latter approach, because we want to point out

another feature of the PIM chart that is worth noting. Here is the PIM chart.

Notice that now there is a gap between the ‘stacked blue boxes’ for the survival and recapture

parameters – survival is indexed from 1 → 7, while recapture is indexed from 15 → 21. The index

values for 8 → 13 don’t correspond to any parameter. We want to eliminate the gap (i.e., remove the

meaningless index values). You could do this manually, simply by dragging both recapture blue boxes

to the left. Or, you could do this by right-clicking anywhere in the PIM chart. You’ll be presented with

a menu, which has ‘Renumber with overlap’ as one of the options. ‘Renumber with overlap’ means

(basically), renumber to eliminate any gaps, but allow for the blue boxes for some parameters to overlap

each other’. If you select the ‘renumber with overlap’ option, the PIM chart will change to look like the

chart shown at the top of the next page.

Pretty slick, eh? This corresponds to model {ϕt pt}. Confirm this for yourself by checking the 4

individual PIMs (in fact, this is always a good idea, until you’re 100% comfortable with MARK). Once

you’re sure you have the right model, go ahead and run it – call it ‘phi(t)p(t)’, and add the results

to the browser. This model has a much smaller AIC value than our starting model, although it has a
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larger deviance (which alone suggests that the time-dependent model does not fit the data as well as

the more general model which included colony effects). We’ll defer discussion/interpretation of these

‘model fitting’ considerations to the next section.

There are still several other models in our candidate model set. Go ahead and run them – here are

the results for all of the models in the candidate model set:

If your values for deviance and so on match those shown here, then that’s a good clue that you’ve

managed to build the models successfully (we’ll be explaining what the various columns in the results

browser are shortly).

begin sidebar

specifying and modeling uneven time-intervals between sampling occasions

In the preceding, we have implicitly assumed that the sampling interval between encounter occasions

is identical throughout the course of the study (e.g., sampling every 12 months, or every month, or

every week). But, in practice, it is not uncommon for the time interval between occasions to vary –

either by design, or because of ‘logistical constraints’.

Consider the following example (contained in interval.inp), where you sample a population each

October, and again each May (i.e., two samples within a year, with different time intervals between
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samples; October→May (7 months), and May→October (5 months), for 7 occasions (assume the first

sampling occasion is in October). Thus, the sampling intervals over the course of the study are

1 2 3 4 5 6 7

Oct May Oct May Oct May Oct

7 m 5 m 7 m 5 m 7 m 5 m

Suppose the ‘monthly’ survival probability is 0.95 (this was the value used to simulate the data

– the recapture probability in the simulation was held constant at p � 0.80 at each occasion). Thus,

the expected ‘seasonal’ survival probability for the May→ October season is 0.955
� 0.7738, and

0.957
� 0.6983 for the October → May season; in other words, the same monthly survival between

seasons,but different expected seasonal survival probabilities. But,more importantly, since the monthly

survival probability is the same, then if the seasons were the same length (say, both 6 months long),

then we would expect that seasonal survival for both seasons would be the same,and that the best,most

parsimonious model would likely be one that constrained survival to be the same between seasons.

But, what happens if you fit a model to these data where survival is constrained to be the same

between seasons,withoutcorrectly specifying the different time intervals between sampling occasions?

Start MARK, and read in the file interval.inp. The simulated data represent a live mark-encounter

study, which is the default data type in MARK. We specify 7 sampling occasions. If you click the

button to the right of where you specify the number of encounter occasions, you’ll see that MARK

defaults to a common, constant interval of ‘1‘ time unit between each successive sampling occasion:

We know that for this example, these default intervals are incorrect, but to demonstrate what

happens if you don’t correctly specify the time interval we’ll accept the default interval values of

‘1’. We’ll fit 2 models to these data: model {ϕ.p.}, and model {ϕ(season)p.}, where the second model

assumes there is a different survival probability between seasons (but that within season, the estimated

survival probability is constant among years). How do we build model {ϕ(season)p.}?

Fairly simply – we can do this by using a common index value for each season in the survival PIM:
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Here, the ‘1’ index values correspond to the October→May season (recall that in this example, the

first sampling occasion is assumed to be in October), and the ‘2’ index values correspond to the May→
October season.

We see clearly (below) that model {ϕ(season)p.} is not equivalent to model {ϕ.p.}:

We see from the parameter estimates for model {ϕ(season)p.} (shown below) that the values for

each season are very close to what we expected: 0.6958 is very close to 0.957
� 0.6983, and 0.7739 is

also very close to 0.955
� 0.7738.

OK, all is well, right? Well, not quite. Suppose you wanted to test the hypothesis that monthly

survival is the same between seasons. How would you do this? Well, you could derive an estimate of

monthly survival from each of these seasonal estimates by taking the appropriate root of the estimated

value. For example, for October→May, which is a 7 month interval, the estimated monthly survival

probability is
7
√

0.6958 � 0.9495, and for May→ October, which is a 5 month interval, the estimated

survival probability is
5
√

0.7739 � 0.9500. While it is clear that both of these estimates are virtually

identical in this instance, in practice you would need to derive SE’s for these values, and use a formal

statistical test to compare them (deriving the SE’s for the nth roots – or any other function – of various

parameter estimates involves use of the Delta method – see Appendix B).

How can we avoid these ‘hand calculations’? Can we get MARK to give us the monthly estimates

directly? In fact, we can, by correctly specifying the time intervals. Obviously we do so by entering

the appropriate intervals once we’ve specified the appropriate number of sampling occasions. The

key, however, is in deciding what is the appropriate interval. Suppose we’re really interested in the

monthly survival value, and whether or not these values differ between seasons. How can we test this

hypothesis in MARK, if the number of months in the two seasons differs?

In fact, it is quite straightforward∗, but first you need to know something about how MARK handles

time intervals. Consider the following example – suppose that 3 consecutive years of live trapping are

conducted (with the first year capturing only new or unmarked animals), then a year is missed, then 3

∗ At least, it is straightforward for simple live encounter models. Handling uneven intervals gets more complicated when we
consider models where individuals ‘move’ between discrete states – these models are covered in later chapters.
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more consecutive years are conducted. Then, the time intervals for these 5 encounter occasions would

be specified as

1 1 2 1 1

where the ‘2’ indicates that the length of the time interval separating these 2 capture occasions is 2

years instead of 1 year like the other 4 intervals. The purpose of specifying the time intervals is to

make the survival probabilities for each of the intervals comparable. Thus, the survival probability

for all 5 of the above intervals will be an annual or 1 year probability, so that all can be constrained to

be the same, even though the length of the time intervals to which they apply are not the same. The

time interval is used as an exponent of the estimated survival probability to correct for the length of

the time interval.

To explain in more detail, unequal time intervals between encounter occasions are handled by

taking the length of the time interval as the exponent of the survival estimate for the interval, i.e.,

S
Li

i
. For the typical case of equal time intervals, all unity (1), this function has no effect (since raising

anything to the power of 1 has no effect). However, suppose the second time interval is 2 increments in

length,with the rest 1 increment. This function has the desired consequences: the survival estimates for

each interval are comparable, but the increased span of time for the second interval is accommodated.

Thus, models where the same survival probability applies to multiple intervals can be evaluated,

even though survival intervals are of different length. Moreover, you can use the exponent to derive

estimates of survival for whatever interval you deem appropriate.

OK, back to our example – we’re interested in monthly survival probabilities. To derive monthly

survival probabilities, all you need to do is re-do the analysis, and enter the appropriate number of

months:

Go ahead and re-run the analysis using the same two models. This time, however, we see that model

{ϕ.p.} is much better supported by the data than a model allowing for season differences:

Moreover, the estimated survival probability from this model (0.9497) is very close to the estimated

true monthly survival probability used to simulate the data.

As a final test, suppose that instead of monthly estimates,you were interested in estimates calculated

over 6 month intervals. You could derive 6-month (i.e., half-year) survival estimates (and correspond-

ing standard errors) by hand, but can you use MARK to do this for you directly? Sure – all you need

to do is re-scale both seasonal intervals in terms of the desired season length. How? Simply by using

the fact that a 7 month interval is in fact (7/6) � 1.16̇ times as long as a 6 month interval, and that a

5 month interval is (5/6) � 0.83̇ times as long as a 6 month interval. So, all you need to do is enter
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these re-scaled intervals into MARK. Note however that the interval input window in MARK does not

expand ‘visibly’ to handle non-integer intervals (or even integer intervals that are very large). This is

not a problem, however. Simply go ahead and enter the values (we’ll use 1.167 and 0.833, respectively,

so: 1.167 0.833 1.167 0.833 1.167 0.833).

Since the true monthly survival probability is 0.95, then if the season lengths were actually the

same (6 months), then we would expect the estimated seasonal survival probabilities for both re-scaled

seasons to be the same, 0.956
� 0.7351, and that model {ϕ.p.} should be much better supported than

competing model {ϕ(season)p.}. In fact this is exactly what we see – the estimated 6-month survival

probability from model {ϕ.p.} is 0.7338, which is very close to the expected value of 0.7351.

end sidebar

OK – so we’ve considered some of the basics of building some models in MARK. But, what model, or

models, should we make inference from? How do we establish whether or not some factor ‘significantly’

influences survival,or some otherparameterof interest? Whatparameterestimates are mostappropriate

to report? Of course, these are in fact the critical questions underlying the exercise of fitting models to

data in the first place. We begin addressing them in the next section.

4.3. Model selection – the basics

In simplest terms, we might express our objective as trying to determine the best model from the set of

approximating models we’ve fit to the data. How would we identify such a ‘best model’? An intuitive

answer would be to select the model that ‘fits the data the best’ (based on some statistical criterion).

However, there is a problem with this approach – the more parameters you put into the model, the

better the fit (analogous to ever-increasing R2 in a multiple regression as you add more and more terms

to the model). As such, if you use a simple measure of ‘fit’ as the criterion for selecting a ‘best’ model,

you’ll invariably pick the one with the most parameters. So, for our analysis of the Dipper data we would

select model {ϕt pt} as our ‘best’ model, simply because it has the lowest deviance (36.4013), which of

course it must since it has more parameters (11) than the other 3 models in the model set:

Great, right? Don’t we want to maximize the fit of our models to the data? Well – it’s not quite that

simple. While adding more parameters increases the fit of the model to the data, you pay a price in so

doing – that price is parameter uncertainty (or variance).

Consider Fig. (4.1) at the top of the next page. This figure represents the trade-off between squared

bias and variance versus the number of estimable parameters in the model. With an increasing number

of parameters, the squared bias of the estimates of the individual parameters goes down. In other

words, the overall fit of the model to the data is better. But, this increase in fit comes at the cost of

greater parameter uncertainty (i.e., larger and larger measures of parameter uncertainty – say, bigger

and bigger SE for parameter estimates). In the extreme, if you have one parameter for each datapoint, the
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Figure 4.1: Fundamental relationship between the number of parameters in a model (k), and the square of the bias
(related to overall model fit to the data), and parameter uncertainty (precision of parameter estimates).

fit of the model to the data will be perfect (R2
� 1). However, the SE for the estimates of each parameter

will be [−∞,+∞]. How can we find a good, defensible compromise between the two? One approach is

to make use of something called the AIC.

4.3.1. The AIC, in brief...

The AIC (which in fact is an acronym for ‘another information criterion’, but is almost universally ‘read’

as ‘Akaike’s Information Criterion’, after Hirotugu Akaike, who first described it in 1973∗) comes to us

from the world of information theory.

How does the AIC achieve an optimal ‘balance’ between precision and fit? While the ‘deep theory’

is somewhat dense (translation: not entirely trivial), in purely mechanical terms, it’s pretty easy to see

how the AIC works. The AIC is calculated for a particular model as

AIC � −2 lnL(θ̂ | data) + 2K

where L is the model likelihood (θ represents the vector of the various parameter estimates given the

data), and K is the number of parameters in the model.

In general, the fit of the model to the data is ‘indicated’ by the model likelihood (maximum likelihood

estimation was introduced in Chapter 1). Thus, as the fit of the model goes up, the likelihood of the

model (given the data) goes up (and thus −2 lnL goes down). However, as indicated in the preceding

figure, the greater the number of parameters, the greater the parameter uncertainty or variance. Thus,

as the fit of the model increases, −2 lnL goes down – and for a given number of parameters, the AIC

declines. Conversely, for a given fit, if it is achieved with fewer parameters (lower K), then the calculated

AIC is lower. The 2K term, then, is the penalty for the number of parameters. As K goes up, likelihood

goes down, but this is balanced by the penalty of adding the term 2K.

So, one strictly utilitarian interpretation of the AIC is that the model with the lowest AIC is the ‘best’

model because it is most parsimonious given the data – best fit with fewest parameters. However, more

formally, and perhaps more importantly at least conceptually, the model with the lowest AIC within

the candidate set of approximating models can be shown to be the model which is closest to ‘full truth’

– which is not known (and is not contained in the candidate model set).

∗ Akaike, Hirotogu, 1973. Information Theory and an Extension of the Maximum Likelihood Principle. In: B. N. Petrov and F.
Csaki, eds. Second International Symposium on Information Theory. Budapest: Akademiai Kiado, pp. 267-281.)
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Say, what? Start by imagining a model f which represents full truth. Such a model might exist in

theory, but we will never be able to fully specify it. Consider an approximating model g. We use the

term approximating for g since g (and in fact any model) is an approximation of truth. Our goal in model

selection is (ultimately) to determine which of our models minimizes the difference (distance) between

g and f . In the 1950’s, Kullback and Leibler determined that if I( f , g) represents the ‘information’ lost

when model g is used to approximate full truth f , then I( f , g), the distance between a model g and full

truth f , is given as

I( f , g) �

∫
f (x) ln

(
f (x)

g(x | θ)

)

dx ,

Here f and g are probability distributions. The verbal description of I( f , g) is that it represents the

distance from model g to model f . Alternatively, it is the information lost when using g to approximate

f .∗ As above, θ represents the vector of the various parameters used in the specification of g.

It might be helpful to consider the form of Kullback-Leibler (K-L) information for discrete probability

models (since they are somewhat easier to grasp). Let the true state of the system be

f �
{

p1 , p2 , . . . , pk

}

Here there are k possible outcomes of the underlying random variable – the true probability of the

ith outcome is given by pi . Let the model approximating the state be

g �
{

γ1 , γ2 , . . . , γk

}

where γi represents the approximating probability distribution for the ith outcome. (Note that in the

discrete case, 0 < pi < 1, 0 < γi < 1, and
∑

pi �
∑
γi � 1).

Thus, the K-L information between models f and g is defined for discrete distributions to be

I( f , g) �

k∑

i�1

pi ln
( pi

γi

)

After log-transforming, we write

I( f , g) �

k∑

i�1

pi ln pi −
k∑

i�1

pi ln γi

(As an aside, you may recognize the first of the two terms in this difference as H, the Shannon-Weiner

diversity index, another information-based measure.)

Now, back to the more general form – the integral form for I( f , g) can be written equivalently as a

difference of integrals

I( f , g) �

∫
f (x) ln f (x)dx −

∫
f (x) ln g(x | θ)dx

� E f [ln f (x)] − E f [ln g(x | θ)]

where in the second line we make use of the fact that the form of each integral is that of an expectation.

∗ The negative of K-L information is Boltzmann’s entropy, H � −I( f , g), a fundamental concept in statistical thermodynamics.
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I( f , g) is known as the Kullback-Leibler (K-L) information, or distance. With a bit of thought, it is clear

that a ‘good’ model is one where the distance between the model g and ‘truth’ f is as small as possible.

In other words, a model which minimizes the K-L distance. But, if we don’t (and can’t ever) know truth,

then how can we ‘estimate’ the K-L distance for a given model? In fact, we can’t, but it turns out that

doesn’t matter. We can make use of relative K-L information instead.

What do we mean by ‘relative’ K-L information? Look at the RHS of the preceding equation:

I( f , g) � E f [ln f (x)] − E f [ln g(x | θ)]

The first expectation E f [ln( f (x))] is ‘truth’, which clearly must be a constant across models. Thus,

I( f , g) � Constant − E f [ln g(x | θ)]

I( f , g) − Constant � −E f [ln g(x | θ)]

The term [I( f , g) − Constant] is called relative Kullback-Leibler information (or distance), and is

the relative distance between truth (f ) and the approximating model (g). Relative K-L information is

measured on an interval scale, a scale without an absolute zero. (In fact, the absolute zero is truth and

is no longer part of the expression.)

Why is the relative K-L information of interest? Suppose that in addition to our approximating model

g we have a second approximating model h for the true state of nature f . The information lost in using

h to approximate f is given by the following

I( f , h) �

∫
f (x) ln f (x)dx −

∫
f (x) ln h(x | θ)dx

� E f [ln f (x)] − E f [ln h(x | θ)]

Observe that E f

[

ln f (x)
]

is a common term in the expression for both model g and model h. Thus,

if we want to compare model g to model h it makes sense to consider the difference I( f , g) − I( f , h). If

we do so then we find

I( f , g) − I( f , h) �
(

E f [ln f (x)] − E f [ln g(x | θ)]
)

−
(

E f [ln f (x)] − E f [ln h(x | θ)]
)

� E f [ln h(x | θ] − E f [ln g(x | θ)]

OK,but where does that leave us? Look closely – notice that in the preceding bit of algebra,E f [ln f (x)]

has canceled out. So what? Again, recall that E f [ln f (x)] represents truth! So, if our goal is to compare

two models, truth drops out the comparison – which is a good thing since we cannot ever know what

truth is. Its absolute magnitude has no meaning. It is only useful for measuring how far apart two

approximating models are. This last expression represents the difference in relative Kullback-Leibler

information between two models. So if our only goal is model comparison then our objective can be

more limited. Rather than estimate K-L information we can estimate instead relative K-L information –

the information lost when model gi is used to approximate full reality ( f ). Another view of this is the

distance between model gi and full reality.

In either case, it seems compelling that one would want to select the model in the set of R models

(g1 , g2 , . . . , gR) that minimizes K-L information loss. That is, we want the model from within the model

set that loses the least information about full reality, hence, the model that is closest to full reality in the

current model set (Fig. 4.2)∗.

∗ Burnham, Anderson & Huyvaert (2011) - Behavioural Ecology & Sociobiology, 65, 23-35.
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Figure 4.2: Kullback-Leibler information is shown (at left) as the distances (di) between full reality (f) and the
various models (gi ). The ∆ values (right) provide the estimated distance of the various models to the best model
(in this case, model g2). These values are on the scale of information irrespective of the scale of measurement or
type of data.

While all might seem well, recall that in our approximating model we typically won’t know the exact

value of θ. Instead we will have to use an estimate, θ̂. To account for this additional uncertainty, Akaike

suggested that what we should do is to calculate the average value of relative K-L information over all

possible values ofθ. In terms of expectation we would call this quantity expected relative K-L information

and write it as

E
[

E f

[

ln g(x | θ)
] ]

Akaike showed that an asymptotically unbiased estimator of the relative expected K-L distance from

‘truth’ could be calculated as

lnL(θ̂ | data) − K

whereL(θ̂ | data) is the log likelihood function for an approximating model evaluated at the maximum

likelihood estimate of the parameter set θ, and where K is the number of parameters estimated in

maximizing the likelihood of the model. Akaike then defined ‘an information criterion’ (AIC), by

multiplying by -2 (for ‘historical reasons’, it seems) to get the familiar

AIC � −2 lnL(θ̂ | data) + 2K

Thus, as suggested earlier, one should select the model that yields the smallest value of AIC among

the models in the candidate model set, not simply because it provides some ‘balance’ between precision

and fit, but because this model is estimated to be the ‘closest’ to the unknown reality that generated

the sample data, from among the candidate approximating models being considered. In other words,

you should use the AIC to select the fitted approximating model that is estimated to be closest to the

unknown truth (i.e., which minimizes the K-L distance). This, of course, amounts to selecting the model

with the lowest AIC,among those models in the candidate model set. We emphasize here that the theory

guarantees that the model with the lowest AIC has the smallest K-L distance amongst the models in

the model set, conditional on the model set being specified a priori.

Returning to the Dipper analysis, we note that even though model {ϕt pt} has the lowest deviance
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(best fit; 36.40), it also has the greatest number of parameters (11) and the highest AIC value. In contrast,

the model deviance for model {ϕ.p.} is the greatest (fits the least well), but because it uses only 2

estimated parameters, it in fact has the lowest AIC of the 4 models.

4.3.2. Some important refinements to the AIC

While Akaike derived an asymptotically unbiased estimator of K-L information, the AIC may perform

poorly if there are too many parameters in relation to the size of the sample. A small-sample (second

order) bias adjustment led to a criterion that is called AICc (Sugiura 1978; Hurvich & Tsai 1989), that

accounts for differences in effective sample size:

AICc � −2 lnL(θ̂) + 2K +

(

2K(K + 1)

n − K − 1

)

where n is the effective sample size∗. Because AIC and AICc converge when the effective sample size is

large, one can always use AICc . As such, the AIC values reported by MARK are by default based on

this modified (corrected) version of the AIC.

We’ll talk about additional modifications to the AIC, particularly to account for lack of fit (c), in the

next chapter, but for the moment, conceptually at least, the AIC is simply the sum of 2 times the negative

log of the model likelihood and 2 times the number of parameters, adjusted for sample size.

begin sidebar

Maximum likelihood, least-squares, and AIC

You may at this point be wondering what the connection is between what you learned in some standard

introductory statistic class (which are often based on ‘sums of squares’, ‘residual sums of squares’,

MLE), and AIC). We’ll introduce the connections by means of a fairly familiar example – the MLE for

the mean, variance and standard deviation of the normal distribution. From any decent statistics text,

the pdf (probability distribution function) for the normal distribution is

f (x) �
1

σx

√
2π

e
− 1

2

(

x−x̄
σx

)2

from which the likelihood is given as

L

(

x1 , x2 , . . . , xN |x̄ , σx

)

�

N∏

i�1

*.,
1

σx

√
2π

e
− 1

2

(
xi−x̄

σx

)2 +/-
�

1

(σx

√
2π)

N
e
− 1

2

∑N
i�1

(
xi−x̄

σx

)2

∗ For many data types, the effective sample size is the number of Bernoulli trials. So, for the live encounter CJS model, the number
of animals released and re-released is taken as the effective sample size, because these releases form Bernoulli trials. Similarly
for dead recoveries (Chapter 8) and known fate data types (Chapter 16). Difficulties arise for models that have different types
of parameters – what constitutes the ‘effective sample size’ for these data types is an open question.

For example, consider patch occupancy models – ψ (the overall proportion of patches occupied) has a different sample size
than the encounter probability, p: ψ is based on the number of patches, whereas p is based on the number of visits to patches.
MARK has the capability to specify the effective sample size under the adjustments menu choice of the results browser - this
can be useful if there is uncertainty about the effective sample size for a given data type)
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Then

ln(L) � −N

2
ln(2π) − N ln σx −

1

2

N∑

i�1

(
xi − x̄

σx

)2

Taking the partial derivatives of L with respect to each one of the parameters and setting them

equal to zero yields,

∂L

∂x̄
�

1

σ2
x

N∑

i�1

(xi − x̄) � 0

and,

∂L

∂σ2
x

� − N

σx
+

1

σ3
x

N∑

i�1

(xi − x̄)
2

Solving these two equations simultaneously for x̄ and σx yields

x̄ �
1

N

N∑

i�1

xi σ2
x �

1

N

N∑

i�1

(xi − x̄)
2

Now, consider again the lnL expression:

ln(L) � −N

2
ln(2π) − N ln σx −

1

2

N∑

i�1

(
xi − x̄

σx

)2

You might (should) remember from your statistics class that the residual sums of squares (RSS) is

given as

RSS �

(

xi − x̄
)2

Thus, we can rewrite the lnL as

ln(L) � −N

2
ln(2π) − N ln σx −

1

2

N∑

i�1

(
xi − x̄

σx

)2

� −N

2
ln(2π) − N ln σx −

1

2
*,

RSS

σ2
x

+-
We see clearly that minimizing the RSS is equivalent to minimizing the likelihood.

Finally, differentiating this expression with respect to σ2 yields

ˆ
σ2

�
RSS

N

which when substituted into the likelihood expression yields

ln(L) � −
(

N

2

)

ln(2π) − N ln σx −
1

2
*,

RSS

σ2
x

+-
� C − N

2
ln

(
RSS

N

)

− N

2
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where C is the constant −(N/2) ln(2π). Thus, we can write the AIC in terms of RSS as

AIC � −2 lnL + 2K

� N ln
( RSS

N

)

+ 2K

end sidebar

4.3.3. BIC – an alternative to the AIC

While the AIC has been shown to be a good omnibus approach to model selection, there are some

theoretical considerations which may justify consideration of an alternative model selection criterion.

One such measure is the BIC (Bayes Information Criterion), which can be used instead of the AIC

in MARK – simply select ‘File | Preferences | Display BIC instead of AIC’. BIC or QBIC are

alternative model selection metrics to AICc or QAICc . The number of parameters in the model is K.

The BIC depends on the number of parameters as

BIC � −2 lnL
(

θ̂
)

+ K ln
(

ne

)

and as does the QBIC (quasi-BIC)

QBIC �
−2 lnL

(

θ̂
)

ĉ
+ K ln

(

ne

)

where ne is the effective sample size, and ĉ is an adjustment for lack of fit of the general model to the

data (this is introduced in the next chapter). If you select the BIC, model weights and model likelihood

are also computed using BIC instead of AICc , so that model averaging is also conducted from the BIC.

When should you use BIC versus AIC? This is a very deep question, and we can only briefly describe

some of the issues here. Much of the following is abstracted from the following paper:

Burnham, K.P. & D.R. Anderson. (2004) Multimodel inference - understanding AIC and BIC

in model selection. Sociological Methods & Research, 33, 261-304.

In general, recent research (much of it collated in the Burnham & Anderson paper) suggests there

are distinct contexts (say, model sets consisting of simple versus complex models) for which BIC

outperforms AIC (generally,when the approximating models in the model set are simple – relatively few

‘main effect’ factors), or where AIC outperforms BIC (when models are multi-factorial, and generally

more complex). AIC is often claimed (equally often without much empirical support) to ‘over-fit’ –

select models which are overly parameterized (relative to the true generating model), whereas the BIC

has been suggested to ‘under-fit’ – select models which are less parameterized than the true generating

model.∗

Why? While the technical reasons for any difference in ‘relative performance’ are complex, there is a

simple intuitive argument based on the fundamental difference in how the AIC and BIC are estimated.

Consider the differences in the following two equations:

AIC � −2 lnL
(

θ̂
)

+ 2K

BIC � −2 lnL
(

θ̂
)

+ K ln
(

ne

)

∗ ‘All generalizations are false, including this one...’ – Alexandre Dumas, or Mark Twain, depending on your source.
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So, in simplest terms, the difference between the AIC and the BIC is in terms of the multiplier for

K in the ‘penalty term’ for the number of parameters: 2 for the AIC, versus ln(ne ) for the BIC. Clearly,

2 , ln(ne ). But, more importantly, the multiplier for the AIC (2) is a constant scalar, whereas for the

BIC it scales as a function of the effective sample size. Recall that the larger the penalty, the simpler the

selected model (all other things being equal). As a result, AIC tends to perform well for ‘complex’ true

models and less well for ‘simple’ true models, while BIC does just the opposite.

In practice the nature of the true model, ‘simple’ or ‘complex’, is never known. Thus a data driven

choice of model complexity penalty would be desirable. This is an active area of research. It is important

to remember that the AIC is an estimate of the expected Kullback-Leibler discrepancy (discussed earlier),

while BIC is (in fact) an asymptotic Bayes factor (see paper by Link & Barker (2006) Model weights and

the foundations of multimodel inference. Ecology, 87, 2626-2635). Since each method was derived with

different motivations, it is not surprising that they have quite different theoretical properties.

While a full discussion of these issues is beyond the scope of what we want to present here, it is

important to note that focus should not be on ‘which model selection criterion is best?’, but remembering

that ‘model selection should be considered as the process of making inference from a set of models, not

just a search for a single best model’. As such, whenever possible, use model averaging. Not only does

this account for model selection uncertainty regarding estimated parameters and weight of evidence

for each approximating model, but also, differences between inference under AICc versus BIC diminish

under model averaging.

Note: why doesn’t MARK allow you to show both the AIC and BIC values/weights in the same

browser? Simple – to help discourage you from using a side-by-side comparison of the two to guide

your model selection – doing so would amount to little more than post hoc data dredging.

4.4. Using the AIC for model selection – simple mechanics...

The basic mechanics of using AICc for model selection in MARK are straightforward. The AICc is

computed for each of the models in the candidate set, and the models are automatically sorted in

descending order based on the AICc (i.e., the most parsimonious model – the one with the smallest

AICc value – is placed at the top of the results).

OK – so you run MARK, and calculate the AICc for each model. What do you do if, say, the model

with the lowest AICc differs from the next-lowest by only a small amount? How much ‘support’ is

there for selecting one model over the other? Note – we intentionally use the word support, rather than

statistical significance. We’ll deal with the issue of ‘significance’, and related topics, shortly.

As a first step, the models should be calibrated to provide an index of ‘relative plausibility’ (i.e., the

likelihood of the model given the model set), using what are known as normalized Akaike weights. These

weights (wi) are calculated for each approximating model (i) in the candidate model set as

wi �

exp
(
−∆AIC

2

)

∑ {

exp
(
−∆AIC

2

)}

What are we doing here, and why? To help understand the basic idea behind normalized AIC weights,

and how they are calculated, consider the concept of the likelihood of the parameters θ given a model

gi , and some data x

L
(

θ̂ �� x , gi

)
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We can extend this basic idea to the concept of the likelihood of the model given the data

L
(

gi
�� x

)

∝ e−
1
2
∆i

where ∆i is the difference in the AIC value between the model i and the model with the lowest AIC.

Note that the −1/2 term simply cancels out the fact that Akaike multiplied through by -2 to define his

AIC. So, the likelihood of a model, given the data, is proportional to the difference in AIC between that

model, and the model in the model set with the lowest AIC. Normalizing them creates a set of positive

values that sum to one (which lends to the interpretation of relative or proportional support in the data

for a given model, among the models in the candidate model set).

OK, fine, but you might be asking ‘why is the likelihood of a model, given the data, proportional

to the difference in AIC between that model and the candidate model with the lowest AIC?’. The

following might help. We note that for model i, ∆AIC=AICi-AIC0, where AIC0 is the minimum AIC in

the candidate model set (i.e., the most parsimonious model).

Given that AIC=−2 lnL + 2K, then

∆AIC � AICi −AIC0

�
(

−2 lnLi + 2Ki ) − (−2 lnL0 + 2K0

)

−∆AIC

2
� lnLi − Ki − lnL0 + K0

Thus,

exp

(−∆AICi

2

)

�

(
Li

L0

)

exp
(

K0 − Ki

)

So, the term exp(−∆i/2) in the expression used to calculate AIC weights is in fact a likelihood ratio,

corrected for the difference in the number of parameters estimated from the models.

How are these weights used? A given wi is considered as the weight of evidence in favor of model i

as being the actual K-L best model in the set. These are termed model probabilities (in fact, they are also

formally Bayesian posterior model probabilities; Burnham & Anderson 2004). So, wi is the probability

that model i is the actual K-L best model in the set. The bigger the wi value, the bigger the weight. The

bigger a ∆i value is, the less plausible is model i as being the actual K-L best model of full reality.

For example, consider the following set of models, with their ∆AICc values and Akaike weights.

Model ∆AIC Akaike weight (wi)

1 1.6 0.278

2 0.0 0.619

3 7.0 0.084

4 13.5 0.001

5 4.0 0.084

total 1.000

Here, model 2 is clearly the best (largest AIC weight), but how much better is it than the next best

model (model 1)? The Akaike weights let us state that the best model (model 2) is over twice as well

supported as the next best model (model 1), since (0.619/0.278) = 2.23. The remaining models (3, 4 and
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5) have essentially no support in the data, relative to models 1 and 2.

MARK calculates Akaike weights automatically. For our Dipper analysis, here again are the AIC

values, the ∆AIC values, and their relative (normalized) weights.

In this case, the results are clear – model {ϕ.p.} is much better supported than any other model – the

AIC for the next best model differs by 7.50, and has approximately 43-times less support than the best

model.

Consider again are the results from the analysis of the swift data (shown below). Again, the results are

quite clear – model {ϕc pt} is much better supported by the data than any other model in the candidate

model set. The AICc for the next best model (model {ϕc p.}) differs by 3.72, and has approximately

6-times less support than the best model. Note that in this example, unlike for the Dipper data, the

model with the fewest parameters is not the most parsimonious model. Again, ranking based on the

AIC balances fit and precision, given the data.

If you look closely, you’ll notice there is a column in the results browser labeled ‘model likelihood’.

Here, likelihood has a technical meaning, that can be quantified and should not be confused with

probability.∗ For example, if person A holds five raffle tickets and person B has one, person A is five

times more likely to win than person B. We do not know the absolute probability of either person winning

without knowing the total number of raffle tickets.The reported ‘model likelihood’ is the AIC (or BIC)

weight for the model of interest divided by the AIC (or BIC) weight of the best model in the browser.

For example, the model likelihood reported for model {ϕc p.} for our swift analysis (shown above)

is calculated as the ratio the AIC weight for model {ϕcp.} and the AIC weight for the model with the

smallest AIC, {ϕc pt}: (0.13345/0.85650) � 0.1558. In other words, the odds of model {ϕc p.} being the

K-L best model, rather than model {ϕt pt}, is given as (0.1558 : 1.000) – or, the likelihood that model

{ϕt pt} is the K-L best model is (1/0.1558) � 6.42 times greater than model {ϕc p.}.

∗ You can add a column to the browser showing the maximized likelihood for the model (i.e., −2 lnL) by selecting that option
in ‘File | Preferences’.
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This likelihood value is the strength of evidence of this model relative to the model with the lowest

AIC in the set of models considered, and is the reciprocal of the formal evidence ratio (discussed in the

following - sidebar -).

begin sidebar

AIC weights, evidence ratios, and ‘rules of thumb’

The likelihood of an approximating model, gi , given the data, is computed as:

L(gi |data) ∝ exp
(

−1

2
∆i

)

where ∆i is the difference in AIC between model gi and the model with the lowest AIC.

As introduced earlier, to better interpret the relative likelihood of a model, given the data and the

candidate set of models, we normalize the model likelihoods to be a set of “Akaike weights”, wi , which

sum to 1:

wi �

exp
(−∆AIC

2

)

∑ {

exp
(−∆AIC

2

)}

It is important to remember that the wi depend on the entire model set – if a model is added or

dropped, the wi must be recomputed for all the models in the modified model set. A given wi is

considered as the weight of evidence in favor of model gi being the actual K-L best model, given that

one of the models in the model set must be the K-L best model of that set of models.

For the estimated K-L best model, gmin , ∆AIC� 0. Thus, for that model,

L(gmin |data) ∝ exp
(

−1

2
∆i

)

≡ 1.

Thus, the odds for the ith model actually being the K-L best model are thus given by the ratio

1

e−1/2∆i

≡ e1/2∆i ≡
w1

wi

where w1 is the normalized AIC weight of the model with the smallest AIC value among the models in

the candidate model set. Such ratios are termed evidence ratios, and represent the evidence about fitted

models as to which is ‘better’ in the information theoretic sense. Evidence ratios provide a measure

of the relative likelihood of one hypothesis (model) versus another.

Evidence ratios are invariant to other models in the model set, whereas model weights depend on

all the other models in the candidate model set. Inference should be about models and parameters,

given data; however, we note that P-values are probability statements about data, given null models.

Model probabilities and evidence ratios provide a means to make inference directly about models and

their parameters, given data. For example, if we delete the 3 lowest-ranked models from our analysis

of the swift data,

we see that the AIC weights change, but not the model likelihoods, calculated realtime to the model

with the lowest AIC. Remember – AIC weights are calculated relative to all other models in the
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candidate model set, while model likelihoods are calculated for a given model relative to the model

with the lowest AIC. And, the reciprocal of the model likelihood is the evidence ratio.

Model likelhoods and evidence ratios are continuous measures. And, it is important to understand

that there is a marked nonlinearity in evidence ratios as a function of the ∆AICi values. If we consider

the ratio

w1

w j
≡ 1

e
−1/2∆ j

≡ e
1/2∆ j

as a comparison of the evidence for the best model (lowest AIC) compared with any other model j,

then we can generate following table:

∆ j 2 4 8 10 15

evidence ratio 2.7 7.4 54.6 148.4 1808.0

model likelihood 0.3704 0.1352 0.0183 0.0067 0.0006

It is just this nonlinearity in the relationship between ∆AIC and the evidence ratio which lead to

the ‘rules of thumb’ introduced by Anderson & Burnham. They suggested that when the difference

in AIC between two models (∆AIC) is < 2, then we are reasonably safe is saying that both models

have approximately equal weight in the data. If 2 <∆AIC< 7, then there is considerable support for

a real difference between the models, and if ∆AIC > 7, then there is strong evidence to support the

conclusion of differences between the models. From the preceding table, we see clearly that when

∆AIC ≤ 4, the model likelihood is≫ α � 0.05. Meaning, there is a strong probability that any model

with a ∆AIC ≤ 4 is, in fact, the K-L best model. Conversely, if ∆AIC ≥ 7, then there is a decreasing

probability that the model is in fact the K-L best model, and we would conclude that there is strong

evidence of real differences between the models.

Consider again the results from the swift example. Given the available data, a model where

survival is fixed (i.e., constant) among years, but which differs between colonies, and where encounter

probability varies over time, but not between colonies {ϕc pt } is (0.8565/0.1335) � 6.42 times more

likely than a model where survival is again fixed (i.e., constant) among years, but which differs between

colonies, and where encounter probability does not vary between colonies or over time {ϕc p.}.

From a practical standpoint, when reporting model selection results (in a paper, or report), it is

useful to report both AIC weights and either model likelihoods or evidence ratios (reporting both

would be redundant, since the evidence is simply the reciprocal of the model likelihood; for example,

in the swift analysis, the relative likelihood of model {ϕc p.} to model {ϕc pt } is 0.1558, from which we

calculate the evidence ratio as (1/0.1558) � 6.42).

end sidebar

However, while AIC weights, and model likelihoods, and ‘rules of thumb’ are convenient, they don’t

quantify the degree of uncertainty in our model selection, over all models in the model set.

What do we mean by ‘uncertainty’, in the context of model selection? In any analysis, there is

uncertainty in terms ofwhichmodel is the ‘bestmodel’. In ourswift analysis, forexample,we determined

which model is the most parsimonious, but how far from ‘truth’ is this model? The most parsimonious

model is merely the model which has the greatest degree of support in the data. It is not ‘truth’ – it

merely does somewhat better at explaining variation in the data than do other proposed models (we

add in passing that ‘All models are wrong, some are useful’ – G. Box). There is ‘uncertainty’ in terms of

which model is the ‘best model’.

How can we measure, or at least account for, this uncertainty? One approach to this problem is to

base the inference on the entire set of models – an approach termed multimodel inference, or model

averaging. We cover this in the next section.
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4.5. Model uncertainty: an introduction to model averaging

In the analysis of the swift data set we considered earlier in this chapter, we compared the survival

probability of birds as a function of the quality of their nesting colony (’good’ versus ‘poor’). We came

to the conclusion that there was some support in the data for a colony effect (the 2 most parsimonious

models both had a colony effect in survival, and the sum of their respective normalized AIC weights was

0.985, indicating ≈ 98.5% of the support in the data are for these 2 models). If we look at the estimates

from the most parsimonious model in our model set (model ϕc pt), we see that the estimate of survival

for the good colony was 0.77 (SE 0.041), while the estimate for the poor colony was 0.58 (SE 0.082). Our

previous analysis seems to support the contention that this was a meaningful difference between the

two colonies.

However, suppose you are charged with drafting a conservation plan for this population, and

want to condition your recommendations on the possibility of differences in survival between the 2

colonies. Perhaps you want to use the estimates of survival in some form of model, projecting the likely

consequences of one or more proposed actions. While how you might do this is obviously beyond the

scope of this book (since it has little to do with MARK directly), it does raise at least one issue which is

worth noting at this point. What should we use as the estimates of survival?

The obvious answerwouldbe to use the estimates from the mostparsimonious modelalone. However,

taking this approach clearly ignores one salient fact – the estimates of sampling variance from a given

model do not include model selection uncertainty – they are conditional only on the model used for the

estimation. In other words, using the estimates from a single model in the candidate model set, even

if it is the most parsimonious model in the set, ignores model uncertainty. For example, for the swift

analysis, model {ϕc pt} has a AICc weight of 0.8565, while model {ϕc p.} has a AICc weight of 0.1335.

While model {ϕc pt} is clearly better supported, there is still uncertainty – there is at least some chance

(approximately 13% chance) that in fact model {ϕc p.} is the correct model, relative to the other models

in the candidate model set.

Since there is uncertainty in which model is the correct model, we might consider accommodating

this uncertainty in the estimates we report (or use subsequently in some model). This is where ‘model

averaging’ comes in. The simplest way to think of what model averaging is all about is to recall the

concept of ‘weighted average’ from your basic statistical training. What we want to do is take the

estimates from our various models, and weight them by the relative support for that model in the

data. More precisely, we calculate an average value for a parameter θ by averaging over all models in

the candidate model set with common elements in the parameter structure, weighted by normalized

AIC model weights (sensu Buckland et al., 1997, Burnham & Anderson 2004):

avg
(

θ̂
)

�
ˆ̄θ

�

R∑

i�1

wi θ̂i

where wi is the Akaike weight for model i. Hopefully, this makes intuitive sense – we weight the

estimates of the various parameters by the model weights, which relate to how much support there

is in the data for that model. We want to give higher weight to estimates from models with greater

support in the data.

Let’s see how we actually do this in MARK. Suppose forexample we’re interested in reporting the live

encounter probabilities for each year in the swift study. What would our ‘best’ estimates be for annual

encounter probability? We see from the results browser that the most parsimonious model, {ϕc pt}, has

time-dependence in p (i.e., pt), while the next best supported model has constant p.
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If we were simply to report the estimates from the most parsimonious model, we would have:

year estimate SE

2 0.909 0.086

3 0.729 0.103

4 0.537 0.114

5 0.698 0.104

6 0.858 0.088

7 0.860 0.105

8 0.463 0.095

Now, what would our ‘model averaged values’ be for these estimates? To derive average values in

MARK, pull down the ‘Output’ menu, and select ‘Model averaging’, and then ‘Real parameters’.

This will spawn the following window:

Notice along the top there are 4 ‘tabs’, like the tabs on file folders. One tab for each of the 4 main
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parameters (survival for the poor colony, survival for the good colony, recapture for the poor colony,

and recapture for the good colony).

So far, so good. Notice also that there is a triangular matrix of ‘check boxes’ which is structurally

equivalent to the structure of the PIMs. Structurally equivalent, but...what do the numbers represent?

Clearly, they’re not equivalent to the indexing we used in our analysis of the swift data set – are they?

No, as written, they’re not, but...they’re directly related. The numbering you see in the model averaging

window corresponds to the index values that you would use in a PIM if the model had complete (cohort

× time) dependence.

Say...what?? Well, cohort models and other extensions of the simple time-dependent model is some-

thing we’ll get to in chapter 7. But, for now, simply think of the indexing you see in the model averaging

window as corresponding to the possibility that there is a different estimate for each time period (time-

dependence), and that within each time-period, the estimate might vary as a function of what year the

organism was marked and released (cohort-dependence). Since there are 28 combinations of time and

cohort in our swift data set, that is why the model averaging window has 28 cells, numbered 1 to 28.

The numbering is left to right within each cohort in succession.

Again, do not get too concerned at this point if the distinction between ‘time period’ and ‘cohort’ is

a bit confusing – by the time you reach the end of chapter 7, you’ll fully understand the distinction (we

hope!).

First, we need to ‘tell’ MARK we want to average the recapture estimates across models. We’ll start

by selecting the ‘recapture parameter (p) P’ tab, corresponding to the recapture probabilities for the

poor (P) colony. Do this by clicking on that tab in the model averaging window.

Now, you’ll see the triangular matrix is numbered 57 through 84 (shown at the top of the next page).

We’re interested in annual estimates of p. As such, we need to ‘tell’ MARK to derive average values for

each year. Note: make sure that the radio-button for ‘Revised model-averaging variance formulas’ is

checked.

How? Well, the first step is to think back to what the PIM for a time-dependent model looks like.

Recall from earlier in this chapter that the PIMs for time-dependent recapture,but no difference between

colonies, looked like:

15 16 17 18 19 20 21 15 16 17 18 19 20 21

16 17 18 19 20 21 16 17 18 19 20 21

17 18 19 20 21 17 18 19 20 21

18 19 20 21 18 19 20 21

19 20 21 19 20 21

recapture 20 21 recapture 20 21

‘poor’ 21 ‘good’ 21
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Within each column (corresponding to a particular year) the index values in the PIM are the same. In

other words, the survival probability in a given year does not depend on the year in which an individual

was first marked and released (i.e., does not depend on its cohort). Thus, within the triangular matrix

in the model averaging window, it doesn’t matter which element of a given column you ‘check’, since

all elements within a column are equivalent for our models!

Thus, checking each of the elements in the first row (as shown below) will yield exactly the same

results as clicking any one element in each of the columns. Having said that, it is probably a good idea

to be somewhat systematic about things (in this case, perhaps by checking each of the elements in the

first row of the matrix) – it will help you keep track of things later on.

Once you’ve specified the cells for the recapture parameter for the poor colony, do the same for the

good colony, by clicking on the tab for that parameter, and again checking one element of each column.

Once you’ve done so, you’re ready to click the ‘OK’ button to start the averaging. Before you do, note

that in the lower left hand corner, an option to ‘only select models for the current data type’ is

checked by default. This option will make more sense once we’ve introduced the idea of switching data

types, but we’re a fair way from that point at this stage.

So,go ahead and click the ‘OK’ button. You’ll see MARK very quickly jump back to the results browser,

and scroll through each of the models in the model set. Once it has done so, it will spawn the editor,

and present you with the ‘averaged’ results (the first 2 years from the output are shown below).
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Note that the output is arranged by the index value you selected from the model averaging window.

The first year corresponds to index value 57. Thus, you will need to ‘keep track’ of which index value

corresponds to which year. For each parameter, each of the models in the candidate model set is listed,

along with the model weight, the estimate from that model, and the standard error of the estimate.

At the bottom of the ‘Estimate’ and ‘Standard Error’ columns are the ‘averaged’ values. For

parameter 57 (corresponding to the recapture probability for the poor colony on the first occasion),

the model averaged value is 0.88047. The weighted SE is 0.08045. This is followed by something called

the ‘Unconditional SE’, which is somewhat larger (numerically) than the weighted SE. Below the

unconditional SE is a 95% CI for the model weighted average,and astatement concerning the percentage

of the variation attributable to model variation (43.71% for the present example). We’ll deal with the

distinction between the two SE’s, and the variation due to model variation, in a moment. Note that the

modelaveragedvalue of0.88047 is somewhat lower than the estimate from the single mostparsimonious

model (0.9089). That is because it has been ‘weighted down’ by the other models in the candidate model

set. Note also that only models with an AIC weight> 0 are shown (since only models with an AIC weight

> 0 contribute to the weighted average).

There is one additional point we need to make here – have a look at the model averaged estimate for

the final encounter probability (p8):

We see that the estimated SE is 2.547 (with an associated 95% CI of 0 → 1). Such a CI does not

inspire much confidence (pun intended). Clearly, there is a problem here. If you look closely at the

model averaging output for p8 (on the preceding page), you’ll see that the ‘culprit’ is the extremely high

conditional standard errors for models {ϕt pt} and {ϕg∗t pt}.

With a bit of thought – and perhaps a peek at the reconstituted estimates for both models – you

might be able to guess the underlying reason. The problem is that both of these models are fully time-

dependent for both parameters, and as such, the terminal ϕ and p parameters are confounded (i.e.,

not separately identifiable). One of the characteristics of such ‘confounded’ parameters is extremely

large (i.e., implausible) SE’s, which clearly have the potential to strongly influence the estimate of

the unconditional standard error (especially if the model(s) with confounded parameters have some

significant support in the data). In such cases there is no absolute rule on how to best handle model

averaging, but we suggest the following strategy: (i) if models with confounded parameters – or models

with parameters which are poorly estimated given the data – having little→ no support in the data, then

it is generally acceptable to drop those models from the candidate model set, and re-run the averaging.

However, (ii) if the ‘problem models’ have appreciable support in the data,you’ll need to be more careful.

You might choose simply to average only those ‘well-estimated’ parameters (for instance, in ourexample,

p2 → p7, leaving out p8), but you need to first confirm that those models aren’t well-supported simply

because of the poorly estimated parameters. Again, there is no perfect solution.
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What about survival? The model averaged estimates for survival are shown below:

year poor colony good colony

1 0.577354 0.768136

2 0.575062 0.765835

3 0.575294 0.766077

4 0.575638 0.766456

5 0.575610 0.766379

6 0.576261 0.766969

7 0.572892 0.763680

Recall that our 2 most parsimonious models (comprising ∼ 99% of the support in the data) had a

colony effect, but no time-dependence. We see from the model average values that there is little annual

variation in the estimates – not surprising given that the models with any time-dependence had very

little support in the data. However, there is a clear difference in the model averaged estimates between

colonies.

We will revisit model averaging again – it’s a very important concept, since it relates directly to the

important issue of ‘model selection uncertainty’.

begin sidebar

Non-interactive model averaging

Some problems are too large for the interactive interface (which we just introduced) for specifying the

parameters to be model averaged. An option is available in the ‘File | Set Preferences’ window to

change the default interface to a less interactive mode. To see how it works, select the ‘non-interactive’

option in the preferences window, and restart MARK. Pull up the same analysis we used to demon-

strate the interactive model averaging window (the Apus apus analysis). Again, select ‘Output | Model

averaging | Real’. This will bring up the ‘Non-interactive model averaging window’:
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As with the interactive model-averaging described earlier,makesure that the radio-button for ‘Revised

model-averaging variance formulas’ is checked.

Along the top of this window, you’ll see that there is a pull-down menu, which lets you select which

of the parameters you want to average (for this example, thereare 4 parameters you could select among:

ϕg , ϕp , pg and pp ). To the right of this pull-down menu is a box where you select the index number of

the parameter you want to average. Note that it defaults to 1-9999. However, as soon as you click inside

this box, it will update to indicate the range of index values used in the data set you’re analyzing (in

this example, 1-28).

Now, suppose you want to model average parameters 1→ 7, which correspond to ϕ1 → ϕ7 for the

good colony. You simply toggle through the numbers 1 → 7, selecting the ‘Add to list’ button for

each number in turn. As with the interactive model averaging window, you can output various aspects

of the averaging (e.g., into an Excel spreadsheet), simply by selecting the appropriate radio button on

the right-hand side. Note that two of the options (for printing and exporting the variance-covariance

matrix) are greyed out until you select at least two parameters for averaging.

end sidebar

4.5.1. Model averaging: deriving SE and CI values

In the preceding section, we noted that two different SE’s for a model averaged parameter estimate were

given by MARK: a weighted average SE (in effect, the average of the individual model SE’s weighted by

their respective AIC weights), and the ‘unconditional SE’. These in turn were followed by a 95% CI, and

a statement concerning the proportion of the variation due to model selection uncertainty. Why two

different SE’s? Which one is the ‘right one’ to report? Where does the 95% CI come from? And what

does ‘model selection uncertainty’ refer to in the context of model averaging?

In general, the precision of an estimator should ideally have 2 variance components: (1) the conditional

sampling variance, v̂ar
(

θ̂i
�� Mi

)

, given model i, and (2) variation associated with model selection

uncertainty. Buckland et al. (1997) provide an effective method to estimate an estimate of precision

that is not conditional on a particular model (the estimator was subsequently revised in Burnham &

Anderson 2004). Assume that some scalar parameter θ is in common to all models being considered in

the candidate model set. [If our focus is on a structural parameter that appears only in a subset of our

full set of models, then we must restrict ourselves to that subset in order to make the sort of inferences

considered here about the parameter of interest.]

So, estimates of the SE for a given model are conditional on that model. How do we get an unconditional

estimate of the SE for the parameter averaged over models?

From Burnham & Anderson (2004), we will take the estimated unconditional variance of θ̂ as

v̂ar
( ˆ̄θ

)

�

R∑

i�1

wi

[
v̂ar

(

θ̂i
�� Mi

)

+
(

θ̂i − ˆ̄θ
)2

]

where

ˆ̄θ �

R∑

i�1

wi θ̂i

and the wi are the Akaike weights (∆i) scaled to sum to 1. The subscript i refers to the ith model. The

value θ̄ is a weighted average of the estimated parameter θ over R models (i � 1, 2, . . . , R).
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This estimator of the unconditional variance is clearly the sum of 2 components: (1) the conditional

sampling variance
(

v̂ar(θ̂i
�� Mi )

)

and (2) a term for the variation in the estimates across the R models
(

θ̂ − ˆ̄θ
)2

. The estimated unconditional SE is given as

ŜE
(

θ̂
)

�

√

v̂ar
(

θ̂
)

It is this unconditional variance (and associated CI) that you would report, since it accounts for both

conditional model-specific variation, as well as variation resulting from model selection uncertainty

(i.e., among models in the candidate model set). MARK gives you an estimate of the proportion of the

variance in the model averaged parameter estimate owing to model selection uncertainty.

Let’s work through an example, using the model averaged estimates for p2 for the poor colony:

Start by taking a weighted average of the conditional (model-specific) SE’s, weighting by the model-

specific Akaike weights wi :

[

(0.08556× 0.8565) + (0.04947× 0.1335) + . . .
]

/1.0 � 0.08045

which is what is reported by MARK (as shown, above). Again, this is a simple weighted average, and

should not be reported as the SE for the model averaged parameter estimate.

Now, let’s calculate the unconditional SE, which MARK reports as 0.10723. We start by estimating the

unconditional variance of the parameter as

v̂ar
( ˆ̄θ

)
�

R∑

i�1

wi

[
v̂ar

(
θ̂i

�� Mi

)
+

(
θ̂i − ˆ̄θ

)2
]
, where ˆ̄θ �

R∑

i�1

wi θ̂i

To perform this calculation, we’ll need the model-specific estimates of the variance (on the normal

probability scale) for the parameter. These can be derived from the model averaging output by squaring

the reported condition SE for each model. Given the calculated model averaged value for the parameter,
ˆ̄p2,g � 0.88047, then

v̂ar
(
ˆ̄p2,p

)
�

R∑

i�1

wi

[
v̂ar

(
θ̂i

�� Mi

)
+

(
θ̂i − ˆ̄θ

)2
]
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� 0.85650
[
0.007321 + (0.90888− 0.88047)

2
]

+ 0.13345
[
0.002447 + (0.70714− 0.88047)

2
]

+ · · ·

+ 0.00002
[
0.011903 + (0.88220− 0.88047)

2
]

� 0.011498

So, our estimate of the unconditional variance of the encounter probability p2 for the poor colony is

0.011498. The standard error is estimated simply as the square-root of the variance:
√

0.011498 � 0.10723,

which is what is reported by MARK (to within rounding error). The 95% CI reported by MARK is

[0.5000, 0.9819]. How the reported 95% CI is calculated is discussed briefly in the following -sidebar-.

Confidence intervals can also be constructed using a profile likelihood approach, but this is beyond

the scope of our discussion at this point. In addition, we will leave the consideration of the reported

proportion of the variation due to model selection uncertainty (and variance components analysis) to

a later chapter.

begin sidebar

SE and 95% CI

The usual (familiar) approach to calculating 95% confidence limits for some parameter θ is θ̂ ± (1.96 × ŜE). Is this

how MARK calculates the 95% CI on the real probability scale? Take the example we just considered, above – the

estimated SE for ˆ̄ϕ � 0.88047 was
√

0.011498 � 0.10723. So, you might attempt to calculate the 95% CI on the

real probability scale simply as 0.88047 ± (1.96 × 0.10723) = [0.67030, 1.09064]. However, not only is this not what

is reported by MARK ([0.5000, 0.98191]), but it isn’t even ‘reasonable’, since the calculated UCL (1.09064) is > 1,

which is clearly not possible for a [0, 1] bounded parameter on the real probability scale.

Why the difference between what MARK reports and what we have calculated by hand using θ̂±(1.96 × ŜE)? The

difference is because MARK first calculates the model-averaged 95% CI on the logit scale, before back-transforming

to the real probability scale. Doing so ensures that the back-transformed CI will be [0, 1] bounded. The logit scale,

and back-transforming from the logit scale to the normal probability scale, is discussed in detail in Chapter 6. But,

to briefly demonstrate ‘what MARK is doing’, consider the following example.

Suppose that the candidate model set for the swift analysis (above) is reduced to just two models: {ϕt pt} and

{ϕgp·} (we do this only to make the demonstration simpler). Using the logit link for both models, the results

(deviance, AIC, AIC weights,...) for fitting these two candidate models to the data are shown at the top of the next

page.

If we next run through the model-averaging routine for (say) ϕ̂3 for the ‘good’ colony, MARK reports the

following:
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So, the model averaged estimate for ϕ3,p is 0.5741295, with an unconditional SE of 0.077461. The reported 95%

CI for the weighted average estimated, back-transformed from the logit scale, is [0.420134, 0.714973].

Now, let’s see if we can derive the reported 95% CI for the model-averaged estimate ‘by hand’. We’ll demonstrate

2 different approaches: one based on the Delta method, and one based on a straight application of the concepts of

‘model averaging’ introduced in the preceding.

We’ll start with the approach based on the Delta method, since this approach is in fact the one used by MARK.

In short, what we want to do is ‘take the model-averaged estimate and SE, transform them onto the logit scale,

calculate the 95% limits with ±1.96 × logit(SE), then back-transform the 95% limits from the logit scale→ the real

probability scale. While this sound easy, it is important to recall (from Chapter 1) that the variance for a parameter

can be estimated from the likelihood based on the rate of change in the likelihood at the MLE for that parameter

(i.e., the second derivative of the likelihood evaluated at the MLE). As such, you can’t simply back-transform from

the SE on the logit scale to the probability scale, since the different scalings influence the shape of the likelihood

surface, and thus the estimate of the SE.

To get around this problem, we make use of the Delta method. The Delta method is particularly handy for

approximating the variance of transformed variables (and clearly, that is what we are dealing with here). The

details underlying the Delta method are beyond our scope at this point (the Delta method is treated more fully

in Appendix B); here we simply demonstrate the application for the purpose of estimating the variance of the

back-transformed parameter.

For example, suppose one has an MLE γ̂ and an estimate of var(γ̂), but makes the transformation,

θ̂ � e γ̂
2

Then, using the Delta method, we can write

v̂ar(θ̂) ≈
(

∂θ̂

∂γ̂

)2

× v̂ar(γ̂)

So, all we need to do is differentiate the transformation function for θ with respect to γ, which yields 2γ.eγ
2

.

We would simply substitute this derivative into our expression for the variance, yielding

v̂ar(θ̂) ≈
(

2γ̂.e γ̂
2 )2
× v̂ar(γ̂)

Given values for γ̂, and v̂ar(γ̂), you could easily derive the estimate for v̂ar(θ̂).

What about the logit transform? Actually, it’s no more difficult, although the derivative is a bit ‘uglier’. Since

the logit transformation is given as

ϕ̂ �
e β̂

1 + e
β̂

then

v̂ar(ϕ̂) ≈ *,
∂ϕ̂

∂β̂
+-

2

× v̂ar(β̂)

�
*..,

e β̂

1 + e
β̂
−

(

e β̂
)2

1 +

(

e β̂
)2

+//-

2

× v̂ar(β̂)

�
*..,

e
β̂

(

1 + e β̂
)2

+//-
2

× v̂ar(β̂)

OK, now to the task at hand. First, we need the model-averaged estimate of ˆ̄ϕ3,p , which from the MARK output

(at the bottom of the preceding page), is reported as 0.5741287, with an unconditional SE of 0.0774609. So, the first

step is to transform the model-averaged estimate onto the logit scale: ln(θ/(1−θ) � ln(0.5741287)/(1−0.5741287) �

0.2987164.

The next step is to take the estimate of the unconditional SE, square it to get the variance (in other words, the

estimated variance is 0.07746092
� 0.00600019), and then use the Delta method to approximate the variance on the

logit scale. So, we’re actually going in the opposite direction to the preceding demonstration of the Delta method

(where the transformation was from the logit→ real scale; here we want to go from real→ logit).
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Since the logit transform is β � ln(θ/(1 − θ), then application of the Delta method yields

v̂ar(β̂) ≈ *,
∂β̂

∂ ˆ̄ϕ
+-

2

× v̂ar( ˆ̄ϕ)

�

(

1 − ϕ
)2

(

ϕ

(1−ϕ)
2 +

1
1−ϕ

)2

ϕ2
× v̂ar(ϕ̂)

�
1

(

ϕ − 1
)2 ϕ2

× v̂ar(ϕ̂)

So, substituting in our estimates for ˆ̄ϕ3,p and v̂ar � 0.0060019, the Delta method approximation to the variance

on the logit scale is

v̂ar(β̂) ≈ 1
(

ϕ − 1
)2 ϕ2

× v̂ar(ϕ̂)

� 0.10036674

and thus, the SE on the logit scale is
√

0.10036674 � 0.316807101.

All we need to do now is derive the 95% confidence limits on the logit scale: 0.2987164 ± (1.96 × 0.31687101) �

[−0.32222552, 0.919658318].

Final step – simply back-transform these 95% from the logit scale→ real probability scale. So,

e−0.32222552

1 + e−0.32222552
� 0.42013347, and

e0.919658318

1 + e0.919658318
� 0.71497248.

Thus, the back-transformed 95% CI is [0.42013347, 0.71497248], which is what is reported by MARK (top of

preceding page), to within rounding error. As noted earlier, this is the approach that MARK uses, regardless of

the actual link function used when fitting the models to the data – which is why the 95% CI reported by MARK is

always labeled as ‘95% CI for Wgt. Ave. Est. (logit trans.)’.

Now, the second approach to deriving the 95% CI which we’ll demonstrate uses a direct application of ‘model

averaging’ as introduced in this section. To do this, we need to first have a look at the β estimates (which were

estimated on the logit scale), and associated estimates of the SE (and thus, variances) of those estimates, reported

by MARK. The estimates are shown in the following table:

model β̂ ŜE v̂ar

{ϕg pt} 0.3107252 0.3161188 0.0999311

{ϕg p·} 0.2221574 0.3109805 0.0967089

From the preceding, we calculate the estimated unconditional variance of θ̂ – on the logit scale! – as

v̂ar
( ˆ̄θ

)

�

R∑

i�1

wi

[
v̂ar

(

θ̂i
�� Mi

)

+
(

θ̂i − ˆ̄θ
)2

]
, where ˆ̄θ �

R∑

i�1

wi θ̂i

where the wi are the Akaike weights (∆i ) scaled to sum to 1.

For our two candidate models, the model averaged estimate is

ˆ̄β � (0.86520 × 0.3107184) + (0.13480 × 0.2221763)

� 0.2987863

Thus, for our two candidate models,

v̂ar
(

ˆ̄ϕ3,p

)

�

R∑

i�1

wi

[
v̂ar

(

θ̂i
�� Mi

)

+
(

θ̂i −
ˆ̄θ
)2

]

� 0.86520
[
0.0999311 + (0.3107184 − 0.2987829)

2
]
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+ 0.13480
[
0.0967089 + (0.2221763 − 0.2987829)

2
]

� 0.10041161

So the estimated variance – on the logit scale! – is 0.10041161, so the estimated SE is
√

0.10041161 � 0.31687791.

Thus, the estimated 95% CI – on the logit scale! – is 0.2987863± (1.96×0.31687791) � [−0.3222944, 0.9198670]. Note

the close similarity of this 95% CI and the one calculated above using the Delta method.

Now, the final step – back-transforming the CI from the logit scale → real probability scale. As discussed in

detail in Chapter 6, the back transform of θ̂ estimated on the logit scale to the real probability scale is

e θ̂

1 + e θ̂

So,

e−0.3148382

1 + e−0.3148382
� 0.4201167, and

e0.912404

1 + e0.912404
� 0.71501500.

Thus, the back-transformed 95% CI is [0.4201167, 0.71501500], which is what is reported by MARK (top of

preceding page), to within rounding error, and is thus also quite similar to the one calculated above using the

Delta method.

A reasonable question at this point might be ‘why doesn’t MARK generate model-averaged estimates for the

β estimates on the link scale?’. The answer is largely technical (and at some levels, philosophical), but the ‘short-

form’ is because it is unclear how best to do this sort of averaging of β estimates in general (there are any number

of technical issues: what is β if a particular term isn’t included in a candidate model? Is the estimator of the

unconditional variance robust on the transformed scale, which might be strongly non-linear? And so on.).

In fact, some of these issues may in part explain the slight discrepancy in the CI between the two approaches

used above). While there is a ‘lively’ debate about the issue of ‘model averaging β estimates’, there is a fair consensus

that you should only model average the reconstituted ‘real estimates’, which is precisely what MARK does.

end sidebar

4.6. Significance?

OK, fine. What about ‘significance’? We’d hazard a guess that at this point, some (many?) of you may

be wondering – ‘OK – we can select a model, and can talk about the relative support of this model

versus another model, we can come up with good average values, but – based on structural differences

in the models, can we say anything about the significance of one or more factors?’. Often, this is the

question of primary importance to the analyst – is there a ‘significant’ sex difference? Do the colonies

differ ‘significantly’? Is there evidence for a ‘significant’ trend over time?

Clearly, any discussion of importance, or ‘significance’ (in a statistical or biological context) starts

with calculating the magnitude of the ‘effect’ – the difference in some parameter between 2 groups, or

time intervals, or some other axes over which you want to characterize differences in the parameter. The

question we face is ‘is the difference as estimated a ‘significant’ difference’? Note that for the moment

we’ve repeatedly referred to ‘significance’ parenthetically, since it might mean ‘biological significance’,

or ‘statistical significance’, or both. It is critical to think critically about which context is appropriate.

For example, if we simply look at the estimates for our most parsimonious model from our analysis

of the swift data, we see that the estimated survival for the ‘poor’ colony is 0.577, and for the good

colony is 0.770 – a difference of 20%. If the survival probabilities for both colonies were in fact constant

over time, then we can estimate lifespan as (1/ − ln(S)). Thus, estimated lifespan in the good colony

is 3.83 years, while in the poor colony, estimated lifespan is 1.82 years, less than 50% of the estimate

for the good colony. Whether or not x.xx years (or whatever time unit is appropriate for the organism

in question) is biologically significant is entirely dependent on the biology of the organism. Since this

example is dealing with birds, you can rest assured that a 50% difference in expected lifespan is likely to
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be highly significant in the biological sense. But, this is where the biologist must use his/her judgment

as to what is (or is not) a biologically meaningful difference.

Since the effect size is ‘estimated’, it will have an associated uncertainty which we can specify in terms

of a confidence interval (CI) (the theory and mechanics of the estimation of the effect size, and the SE

for the effect, are covered in Chapter 6). The question then becomes – what are the plausible bounds on

the true effect size, and are biologically important effect sizes contained within these bounds? Suppose

we consider a relative difference in survival of 15% or greater to be biologically important. Suppose the

estimated effect size for the difference in survival between the colonies was 19.3%, with a CI of 1.7%-

36.9% As such, we might consider the results as statistically ’significant’, since the CI doesn’t include 0,

but biologically inconclusive, because the CI includes values below 15%.

It is just these sorts of questions of ‘biological subjectivity’ which undoubtedly contributed to the

popularity of focussing on ‘statistical significance’, since it gives the appearance of being ‘objective’.

Putting aside the philosophical debate as to which type of ‘significance’ is more important, we’ll

introduce the basic mechanics for classical significance testing (in the statistical sense) as implemented

in MARK.

4.6.1. Classical significance testing in MARK

The classical ‘statistical’ approach focusses on assessing the ‘significance’ of one or more factors on

variation in a particular parameter of interest. You may recall from Chapter 1 that we can use the

properties of ML estimates as the basis for a number of different ‘statistical tests’ (Wald, Fisher’s score...)

to compare the relative fit of different competing models to the data.

One such test (the likelihood ratio test; LRT) is available in MARK. To apply an LRT, you take

some likelihood function L(θ1 , θ2 , . . . , θn ), and derive the maximum likelihood values for the various

parametersθi . Call this likelihoodL f . Then, fix some of the parameters to specific values, and maximize

the likelihood with respect to the remaining parameters. Call this ‘restricted’ likelihood Lr . The

likelihood ratio test says that the distribution of twice the negative log of the likelihood ratio, i.e.,

−2 ln(Lr/L f ) is approximately χ2 distributed with with r degrees of freedom (where r is the number

of restricted parameters). The LRT compares a restricted model which is ‘nested’ within the full model

(i.e, as is generally true with ‘classical hypothesis testing’, the LRT compares a pair of models).

begin sidebar

a (slightly) more technical derivation of the LRT

Consider some likelihood maximized for some true parameter value θ. If we write a Taylor expansion

around this value as

L(θ) � L(θ̂) +

(

∂L

∂θ

)

θ�θ̂

(θ − θ̂) +
1

2
*,
∂

2
L

∂θ2
+-θ�θ̂ (θ − θ̂)

2
+ O(θ − θ̂)

2

By definition,

(

∂L

∂θ

)

θ�θ̂

� 0

So, we can express the Taylor expansion as the difference between the true parameter and the

estimated parameter, as follows:

L(θ) − L(θ̂) �
1

2
*,
∂

2
L

∂θ2
+-θ�θ̂ (θ − θ̂)

2
+ O(θ − θ̂)

2
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−2
[

L(θ) − L(θ̂)
]

� *,−
∂

2
L

∂θ2
+-θ�θ̂ (θ − θ̂)

2
+ O(θ − θ̂)

2

Dropping off the residual term,

−2
[

L(θ) −L(θ̂)
] ∼� *,−

∂
2
L

∂θ2
+-θ�θ̂ (θ − θ̂)

2

Now, consider a simple binomial process, where we aim to estimate the parameter p̂. Then, we can

write

−2
[

L(p) − L(p̂)
] ∼�

(

−∂
2
L

∂p2

)

p�p̂

(

p − p̂
)2

Now, recall from Chapter 1 (and basic common sense) that the MLE for p̂ is (n/N ) (say, n successes

in N trials). Also recall that −∂2
L/∂p2 is an estimate of the variance of p̂.

Then,

−2
[

L(p) − L(p̂)
] ∼�

(

−∂
2
L

∂p2

)

p�p̂

(

p − p̂
)2

�
1

v̂ar
(

p̂
) ·

(

p − n

N

)2
�

p − E
(

p̂
)

v̂ar
(

p̂
)2

Now, some classical results show that as N →∞, then

p̂ → N
(

E(p̂),
√

var(p̂)

)

and

(

p − E
(

p̂
))2

v̂ar
(

p̂
) → N (0, 1)

2
� χ2

1

In other words, the parameter estimate is asymptotically normal convergent as sample size increases,

and (more to the point here), that −2(L(p) −L(p̂)) (i.e., the deviance) is χ2 distributed.

This is a very convenient result – it says that as the sample size n approaches ∞, the test statistic

−2 ln(Λ) will be asymptotically χ2 distributed with degrees of freedom equal to the difference in

dimensionality (number of parameters) of the two models being compared. This means that for a

great variety of hypotheses, a practitioner can take the likelihood ratio Λ, algebraically manipulate Λ

into −2 ln(Λ), compare the value of −2 ln(Λ) given a particular result to the χ2 value corresponding

to a desired statistical significance, and create a reasonable decision based on that comparison.

end sidebar

In practical terms, the first step in using the LRT with models fit using MARK is to determine which

models are nested. While this is not always as straightforward as it seems (see the - sidebar - a few

pages ahead), it is relatively straightforward for our present example. Consider the figure shown at

the top of the next page, which represents the hierarchical relationship of the 4 models we fit to the

male Dipper data. In this figure, ‘nested’ models are connected by the arrows. The direction of the

arrows leads from a given model to the model ’nested’ within it. Any two ‘nested’ models can be

compared statistically using a likelihood ratio test. Provided that the reduced (less parameterized)

model is satisfactory, the difference in deviances between two nested models is distributed as a χ2

statistic with n degrees of freedom, where n is the difference in the number of parameters between the

two models.
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ϕt pt

ϕpt ϕt p

ϕp

Now, we re-draw this figure below, showing the differences in deviance among ‘nested’ models, and

the difference in the number of parameters, we obtained from our Dipper analysis.
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The ‘significance’ of these differences (in the traditional sense) can be estimated from any standard

χ2 table, or directly using MARK. Recall from Chapter 3 that in MARK you can request a likelihood

ratio test (LRT) between any two models, using the ‘Tests’ menu. However, MARK doesn’t ‘know this’,

and performs LRT for all models with unequal numbers of parameters, and outputs results from all

these comparisons.

Clearly, the ‘unequal number of parameters’ criterion is not a particularly good one, so you’ll need to

pay attention. A significant difference between models means two things: (1) that there is a significant

increase in deviance with the reduction in the number of parameters, such that the reduced model fits

significantly less well, and (2) the parameter(s) involved contribute significantly to variation in the data.

As we can see from the figure, there is no significant difference in model fit (difference in deviance)

between the most parameterized model (the CJS model ϕt pt ) and any of the 3 other models. Thus, any

of the 3 other models would be a ‘better model’ than the CJS model, since they fit the data equally well

(statistically), but require fewer parameters to do so (i.e., are more parsimonious).

From the preceding figure and from the AICc values tabulated in the results browser (shown at the

top of the next page) we see that the most parsimonious model overall is model {ϕ.p.} – i.e., the model

where both survival and recapture probability are constant over years.
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However, before we go any further, what hypotheses have we just tested? Consider the test of the CJS

model {ϕt pt} versus {ϕ.pt}. In this comparison we are testing the following ‘hypothesis’: that there

is significant variation in survival over time. We are comparing the fit of a model where survival is

allowed to vary over time {ϕt pt} to one where it doesn’t {ϕ.pt}. Since the fit of these two models is not

‘significantly’ different in the classical statistical sense (χ2
� 3.05, d f � 4, P � 0.552), we might state

that ‘there is no evidence at a nominal α � 0.05 level of significant annual variation in survival’.

begin sidebar

Which models are nested?

While the preceding example was simple enough, determining which models are nested is not always

trivial. Here, we take a slightly more extended look at ‘nestedness’ and linear models.

Let’s begin with addressing the question of why aren’t models {ϕ.pt} and {ϕt p.} in the preceding

example nested? The easiest way to resolve which models of the models in this example are nested,

and which aren’t, is to try to answer the following question: ‘would starting model A be equivalent

to reduced model B if you eliminated one or more of the factors from model A?’ If so, then model B

is ‘nested’ within model A. For example, if we start with model {ϕt pt} (model A), we want to know

if model {ϕt p.} (model B) is nested within it. So, what happens if you ‘remove one or more of the

factors from model A’? Well, in this case we see that if we eliminate ‘time’ from capture in model A,

then model A is transformed into model B. Thus, we can say that model B {ϕt p.} is nested within

model A {ϕt pt}.

However, now compare models {ϕ.pt} and {ϕt p.}. If we consider these models as A and B

respectively, we see that there is no simple transformation of model A into model B; we would have

to drop the time-dependence from the recapture model, and add time to the survival model, to make

models A and B equivalent. Since nesting requires only addition or subtraction of parameters (but not

both), then these models are clearly not nested.

But, these examples are very simple. What about situations where ‘nestedness’ is not so obvious.

For example, are the models {Y � x} and {Y � ln (x)} nested? Clearly, we need a more general set of

rules. Let’s start by considering models which are nested.

nested models: Two models are nested if one model can be reduced to

the other model by imposing a set of linear restrictions on the vector of

parameters.

For example, consider models f and g, which we’ll assume have the same functional form and error

structure. For convenience, we’ll express the data as deviations from their means (doing so eliminates

the intercept from the linear model, since it would be estimated to be 0). These two models differ then

only in terms of their regressors.
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In the following

f : Y � β1x1 + ǫ0

g : Y � β1x1 + β2x2 + ǫ1

the model f is nested within model g because by imposing the linear restriction that β2 � 0, model g

becomes model f .

What about non-nested models? Things get a bit more complex here, but we’ll operationally define

non-nested models as

non-nested models: Two models are non-nested, either partially or

strictly (discussed below), if one model cannot be reduced to the other

model by imposing a set of linear restrictions on the vector of parameters

Examples of non-nested models include (but are not limited to):

• No linear restriction possible to reduce on model to another

Consider

f : Y � β1x1 + β2x2 + ǫ0

g : Y � β2x2 + β3x3 + ǫ1

Models f and g are non-nested because even if we impose the restriction on model

g that β3 � 0, model g does not become model f .

In fact, in this example, models f and g are partially non-nested, because they have one

variable in common (x2). If the two models didn’t share x2, then they would be strictly

non-nested.

However, you need to be somewhat careful in defining models as strictly non-nested.

There are, in fact, two cases where models with different sets of regressors may not be

strictly non-nested.

Consider the following two models:

f : Y � β1x1 + ǫ0

g : Y � β2x2 + ǫ1

If either β1 or β2 equals zero, then the models are nested. This is trivially true. Less

obvious, perhaps, is the situation where one of more of the explanatory variables in one

model may be written as a linear combination of the explanatory variables in the second

model.

For example, given the two models

f : Y � β1x1 + ǫ0

g : Y � β2x2 + ǫ1

consider a third model h where

h : Y � β3x3 + ǫ2 � β1x1 + β2x2 + ǫ2

Then, perform the following hypothesis tests: model h versus model f (i.e., β2 � 0

versus β2 , 0), and model h versus model g (i.e., β1 � 0 versus β1 , 0).
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• Different functional forms used in two models

The following are clearly different function forms

f : Y � Xβ + ǫ

g : ln(Y) � ln(X)γ + µ

end sidebar

4.6.2. Some problems with the classical approach...

Seems straightforward, right? Ah, but there are at least two ‘mechanical’ problems with this approach

(we’ll ignore the more philosophical questions concerning the apparent subjectivity of specifying the

nominal α-level for evaluating the ‘significance’ of an LRT, although it is clearly an important part of

the larger debate).

First, the LRT is only strictly appropriate when the models being compared are nested. Fornon-nested

models, you can use either the AIC, or approaches based on some sort of resampling (‘bootstrapping’)

approach.

Second, if you look (again) at the hierarchial diagram shown below, you should notice that there are

in fact 2 different pairs of nested models (joined by red arrows) we could compare (using an LRT) to

test for annual variation in survival: {ϕt pt} versus {ϕ.pt}, or model {ϕt p.} versus {ϕ.p.}.

ϕt pt

ϕpt ϕt p

ϕp

?

?

In both cases, we are testing for significant annual variation in survival (i.e., ϕt vs ϕ.). Do the two

different sets of model comparisons give the same results? Do both tests lead to the same conclusion

about annual variation in apparent survival, ϕ?

We’ll briefly explore this question using live encounter data contained in the file LRT-demo.inp – 5

sampling occasions. Here are the results of fitting models {ϕt , pt}, {ϕt , p.}, {ϕ.pt} and {ϕ.p.} to these

data:
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Our interest lies in comparison of model {ϕt , pt} with model {ϕ.pt}, versus a comparison of model

{ϕt , p.} with model {ϕ.p.}.

Using ‘Tests | LR Tests’, we generate the following test results:

The model comparisons of interest are shaded in the preceding figure. For the comparison of the

general model {ϕt , pt} with nested (reduced) model {ϕ.pt}, the LRT yields a χ2
2 � 1.158, which is not

close to significant at the nominal α � 0.05 level (P � 0.5604). versus a comparison of model {ϕt , p.}
with model {ϕ.p.}. Taken alone, this would suggest no strong evidence for annual variation in apparent

survival.

However, now consider the comparison of the general model {ϕt , p.} with nested (reduced) model

{ϕ.p.}. Here, the LRT yields a χ2
3 � 8.861, which is in fact significant at the nominal α � 0.05 level

(P � 0.0312). So, this comparison would suggest that there is evidence for annual variation in apparent

survival, opposite to what we concluded in the first analysis!

The observation that the differentmodel comparisons yieldedvery different results,and thus different

conclusions, is clearly a problem. In fact, for any typical candidate model set, there are likely to be > 1

pairs of nested models which could be compared using a LRT to test the same hypothesis. And there

is a fair likelihood that in many cases, these LR tests will yield different, often contradictory results (as

in our present example).

Thus, the obvious question is: which of the possible nested comparisons for a given hypothesis is the

‘right one’ to use? A commonly suggested approach (which is not without its critics) is to start from the

most parsimonious acceptable model still containing the effect you want to test, and then use the LRT to

test the nested model without this factor. You can use AIC (or sequential LRT tests where appropriate)

to identify the model which has the fewest parameters while still fitting the data and containing the

factor you are interested in. The advantage of using this model is that tests are generally most powerful

in a ‘parsimonious context’. In our example, model {ϕt , p.} is more parsimonious than model {ϕt , pt},

and thus we might conclude that the LRT between model {ϕt , p.} and nested (reduced) model {ϕ.p.}
is the more powerful of the two comparisons, and thus, supporting a conclusion of ‘significant’ annual

variation in apparent survival.

4.6.3. ‘Significance’ of a factor using AIC

Despite several difficulties with the classical approach to testing for ‘statistical significance’, there

would seem to be one singular advantage relative to multimodel inference based on an information

theoretic index like the AIC or BIC. Namely, that there is a relatively straightforward way (caveats

notwithstanding) to give some sort of statement about the ‘significance’ (importance) of some factor(s).

Is there something equivalent that can be done with the information theoretic approach?

Burnham & Anderson have noted that assessment of the relative importance of variables has often

been based only on the best model (e.g., often selected using a stepwise testing procedure of some sort).
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Variables in that best model are considered ‘important’, while excluded variables are considered ‘not

important’. They suggest that this is too simplistic. Importance of a variable can be refined by making

inference from all the models in the candidate set. Akaike weights are summed for all models containing

predictor variable (i.e., factor) x j , j � 1, . . . , R. Denote these sums as w+( j) . The predictor variable with

the largest predictor weight, w+( j) , is estimated to be the most important, while the variable with the

smallest sum is estimated to be the least important predictor.

Can we be somewhat more ‘formal’ about this? Consider the following example – a simple linear

model with three regressors, x1 , x2 and x3. The objective was to examine the eight possible models

consisting of various combinations of these regressors.

In the following table (shown below) are each of the possible models, along with hypothetical AIC

weights (in the table, a ‘1’ indicates that xi is in the model; otherwise, it is excluded).

x1 x2 x3 wi

0 0 0 0.00

1 0 0 0.10

0 1 0 0.01

0 0 1 0.05

1 1 0 0.04

1 0 1 0.50

0 1 1 0.15

1 1 1 0.15

The selected best model has a weight of only 0.5 (suggesting strong model selection uncertainty).

However, the sum of the weights for variable x1 across all models containing x1 is 0.79. This is evidence

of the importance of this variable, across all eight of the model considered. Variable x2 was not included

in the selected best model, but this does not mean that it is of no importance (which might be the

conclusion if you made inference only on the K-L best model). Actually, its relative weight of evidence

support is 0.35. Finally, the sum of AIC weights for x3 is 0.85.

Thus, the evidence for the importance of variable x3 is substantially more than just the weight

of evidence for the best model. We can order the three predictor variables in this example be their

estimated importance: x3 , x1 , x2 with importance weights of 0.85, 0.79, and 0.35, respectively. This basic

idea extends to subsets of variables. For example, we can judge the importance of a pair of variables,

as a pair, by the sum of the AIC weights of all the models that include that pair of variables. Similar

procedures apply when assessing the relative importance of interaction terms.

To demonstrate this in application to a mark-recapture analysis, consider the results from the swift

analysis:
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We notice that the two most parsimonious models in the candidate model set have colony differences

in the survival parameters – model {ϕc pt} and model {ϕc p.} have virtually all of the support in the

data. Moreover, the top two models, comprising (0.857+0.133) � 99% of the support in data, both have

ϕc in common for the survival parameter. Meaning, only models with a colony effect on the apparent

survival rate have any appreciable support in the data.

At this point,we mightconclude that there is considerable evidence ofa difference in survivalbetween

the 2 colonies. What about using cumulative support over all models in the model set? The summed

AIC weights for colony, time, and colony.time for survival are: 0.9896, 0.0098, and 0.0007, respectively.

Clearly, there is very strong support for a colony effect.

As suggested by Anderson & Burnham, summing support over models is regarded as superior to

making inferences concerning the relative importance of variables based only on the best model. This

is particularly important when the second or third best model is nearly as well supported as the best

model or when all models have nearly equal support. While this approach seems to have some merit,

there is by no means consensus that this is the ‘best approach’, or that it ‘works’ in all cases – see for

example Murray & Conner (2009).∗

Further, there are ‘design’ considerations about the set of models to consider when a goal is assessing

variable importance. For example, it seems to be particularly important is that the model set be ‘sym-

metrical’ or ‘balanced’ with respect to each factor of interest (i.e., that the model set has roughly the

same number of models with, and without a particular factor). This is not always easy to accomplish

(e.g., how do you balance models for interaction terms?). See Doherty, White & Burnham (2010)†, and

Arnold (2010)‡ for a discussion of this and related issues.

Clearly, the assessment of ‘relative importance’ of variables in complex models is a ‘work in progress’,

and you will need to make some efforts on your own to keep up with the literature.

4.7. LRT or AIC?

At this point, you’re probably mulling over a few things. First, we’ve covered a lot of ground – both

technically, and conceptually. We’ve seen how to build and fit various models to our data using

MARK. We’ve also introduced the important topic of ‘model selection’ – the use of LRT and AIC

(or BIC), counting parameters, and ‘hypothesis testing’. We’ve also considered the important idea of

‘model averaging’. You’re also probably thinking (hopefully) thats it’s about time for us to make broad,

categorical suggestions about what to do – AIC/BIC or LRT? Significance test, or effect size?

Alas, prepare to be disappointed. While we have our personal opinions, MARK itself is ‘politically

neutral’ on this one – you can choose to adopt an ‘information theoretic’ approach, or invoke a classic

LRT approach (but not combinations of the two – you have to pick either of the ‘two roads’, and not

mix and match the two), and talk about the significance of an effect based on a nominal P-value.

The whole issue of whether or not to use P-values, and ‘classical hypothesis testing’ is (and has been

for some time) the subject of much debate in the literature. The fairly recent advent of methods for

model selection based on information theory, and model averaging, has aded some additional nuance

to the discussion.§

∗ Murray & Conner (2009) Methods to quantify variable importance: implications for the analysis of noisy ecological data. Ecology,
90, 348-355.

† Doherty, White & Burnham (2010) Comparison of model building and selection strategies. Journal of Ornithology, DOI
10.1007/s10336-010-0598-5

‡ Arnold (2010) Uninformative parameters and model selection using Akaike’s Information Criterion. Journal of Wildlife
Management, 74, 1175-1178.

§ See, for example, the commentaries by Stephens et al. (J Appl Ecol 42: 4-12), and Lukacs et al. (J Appl Ecol 44: 456-460).
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We suggest you start by having a careful read some of the recent work on the AIC (and related issues)

by David Anderson and Ken Burnham. In particular, you are strongly encouraged to work through their

detailed but accessible text:

Model Selection and Multi-Model Inference (2nd

Edition) - Ken Burnham and David Anderson.

2002. Spring-Verlag. 496 pages.

and, quite recently, a very useful (and very accessible) primer by Anderson:

Model Based Inference in the Life Sciences: A Primer

on Evidence - David Anderson. 2007. Springer.

184 pages.

Finally, Hooten & Hobbs∗ have recently published a very thorough treatment of both Bayesian and

‘frequentist’ approaches to model selection (including the AIC). While likely a ‘tough slog’ for people

with limited technical background, well worth the effort given the importance of model selection.

4.8. Summary

This brings us to the end of Chapter 4. In this chapter, we looked at the basic mechanics of using MARK

to construct and evaluate several models. We’ve looked at the problem of staggered entry of marked

individuals into the population (and how this leads logically to the triangular parameters structures –

the PIMs). We’ve also considered (at an introductory level) the mechanics and theory of statistical tools:

the LRT and the AIC. In the next chapter, we’ll consider the issue of goodness of fit testing – an essential

step in evaluating models.

∗ M. B. Hooten & N. T. Hobbs. (2014) A guide to Bayesian model selection for ecologists. Ecological Monographs, 85, 3-28.
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Addendum – counting parameters

Although MARK does a good job of counting parameters, it is important that you understand how the

model structure determines the number of parameters that are theoretically estimable. What MARK

does is indicate (report) how many parameters are estimable, given the model, and the data. MARK

does not indicate how many parameters are theoretically estimable, given the structure of the model.

On occasion, there are discrepancies between the two.

There are 2 reasons why a particular model parameter might not be estimable. The first is because

the parameter may be confounded with 1 or more other parameters in the model. An example is

the last ϕ and p parameters in a time-specific Cormack-Jolly-Seber model, where only the product

of ϕ and p can be estimated, but not the unique values of each. In this case, the parameters are not

identifiable because of the structure of the model. This is referred to as intrinsic non-identifiability. The

second situation arises either because the data are inadequate, or as an artifact of the parameter being

‘poorly estimated’ near either the 0 or 1 boundaries. This is referred to as extrinsic non-identifiability. If

a parameter is extrinsically non-identifiable because of ‘problems’ with the data, then you may need to

manually increase the number of estimated parameters MARK reports (given the data) to the number

that should have been estimated (if there had been sufficient data). While there has been significant

progress in formal ‘analytical’ analysis of intrinsic identifiability, these methods are complex, and do

not apply generally to problems related to inadequate data or parameters estimated near the boundary.

A numerical approach based on data cloning which can be used generally to help identify parameters

that are not estimable is available in MARK is presented in Appendix F.

intrinsically non-identifiable parameters – an ad hoc approach

While there are methods (formal, numerical) for identifying intrinsically non-identifiable parameters,

it is important that you develop an ‘intuitive understanding’ of the how such parameters arise in the

first place. Let’s assume that our data are ‘good’ – there are no ‘structural problems’ and that the only

remaining task is to determine which parameters are separately identifiable. We’ll concentrate on the 4

models we’ve examined in this chapter. We’ll introduce an approach which is generally useful, if a bit

cumbersome. In future chapters, where we explore significantly more complex models, we’ll comment

as needed on how the number of parameters was determined. Our most complex model in this chapter

is the CJS model – complete time-dependence in both survival and recapture. In many ways, the most

fundamental difficulty in counting parameters in general is nicely contained in this model, so it is a

good starting point.

However, before we dive in, consider a much simpler situation. Consider the case of only 2 occasions,

a release occasion, where newly marked individuals are released, and a single recapture occasion. This

situation is common in short-term studies. In general, under this sampling scheme, what is done is

to express the proportion of the individuals marked and released on the first occasion captured on

the second occasion as a measure of the ‘survival probability’. This fraction, also known as the ‘return

probability’, is still widely found in the literature.

Unfortunately,naïve use of return probability poses real problems, since, in fact, it does not necessarily

estimate survival probability at all. As noted in Lebreton et al. (1992), the number of individuals seen

on the second occasion is the result of 2 events, not one; the frequency of individuals seen again on

the second occasion is defined by the product of the number released on occasion 1 (R1) times the

probability of surviving to occasion 2 (ϕ1), times the probability of being seen at occasion 2 given

that it is in fact alive at occasion 2 (the recapture probability, p2). Since the value of ϕ1 and p2 can

vary between 0 and 1, the observed number of individuals at occasion 2 could reflect an infinite set of
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different combinations of either survival or recapture probability. For example, suppose 100 individuals

are marked and released at occasion 1, and 50 of these marked individuals are seen subsequently at

occasion 2. The return probability is (50/100) or 0.5. However, does this really mean that ‘survival’ is

50%? Not necessarily. What it means is that (100×ϕ1p2) � 50, or (ϕ1p2) � 0.5. As you quickly see, there

is an infinite set of combinations of ϕ1 and p2 which, when multiplied together, lead to the product 0.5.

Thus,we can’tnecessarily say that ‘survival’ is 0.5,merely that the combinedprobability of surviving and

being recaptured is 0.5. In other words, with only 2 occasions, the survival and recapture probabilities

are not ‘individually identifiable’ – we cannot derive estimates for both parameters separately.

What do we need to do? Well, in order to separately derive estimates for these parameters, we need

more information. We need at least one additional recapture occasion. The reason is fairly obvious if

you look at the capture histories. As per Lebreton et al. (1992), let ‘1’ represent when an individual

is captured at a particular occasion, and ‘0’ represent when it is not captured. With only 2 occasions

and individuals released marked only on the first occasion, only 2 capture histories are possible: 10

and 11. As we just observed, with only two captures we can estimate only the product of survival and

recapture. What about three occasions? As noted in Chapter 1, under this sampling scheme, at least 4

capture histories are possible for individuals marked on the first occasion:

encounter history probability

111 ϕ1p2ϕ2p3

110 ϕ1p2

(

1 − ϕ2p3

)

101 ϕ1

(

1 − p2

)

ϕ2p3

100 1 − ϕ1p2 − ϕ1

(

1 − p2

)

ϕ2p3

The capture histories are given with the probability statements which, when multiplied by the

number released at occasion 1, define the number of individuals with a given capture history expected

at occasion 3. Concentrate for the moment on the third capture history in the table: ‘101’. You can see that

there is a fundamental difference in this capture history from the one preceding it (where individuals

are seen on each occasion). For capture history ‘101’, individuals were released on occasion 1, not seen

on occasion 2, but were seen again on occasion 3. What does this sort of individual tell us? Well, clearly,

if the individual was seen on occasion 3, then it must have been alive on occasion 2. The fact that we

didn’t see the individual at occasion 2 allows us to estimate the recapture probability, since recapture

probability is merely the probability of seeing an animal at a particular occasion given that it is alive.

Thus, because we have information from the third occasion, we can separately estimate the survival

and recapture probabilities ϕ1 and p2 respectively. Specifically,

N111
N101

�
ϕ1p2ϕ2p3

ϕ1

(

1 − p2

)

ϕ2p3

�
✚✚ϕ1 p2✚✚ϕ2✚✚p3

✚✚ϕ1

(

1 − p2

)

✚✚ϕ2✚✚p3

�
p2

1 − p2

Of course, MARK shields you from the complexities of the actual estimation itself, but in a very

broad sense, it is the presence of ‘101’ individuals along with the other capture histories that allows us

to estimate survival and recapture rate separately.

But, it is important to note that we can’t separately estimate all the parameters. Consider for instance

ϕ2 and p3. Can we separate them? No! In fact, the product of these two parameters is completely
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analogous to a return probability between occasions 2 and 3. If we wanted to separate these 2 parameters,

we’d need a fourth occasion, and so on. Thus, in such a model where both survival and recapture

probability are time-dependent, the terminal parameters are not individually identifiable – all we can

do is estimate the product of the 2. Lebreton et al. (1992) refer to this product term as β3.

Thus, we can re-write our table, and the probability statements, as:

encounter history probability

111 ϕ1p2β3

110 ϕ1p2

(

1 − β3

)

101 ϕ1

(

1 − p2

)

β3

100 1 − ϕ1p2 − ϕ1

(

1 − p2

)

β3

Now, we come to the original question: how many parameters do we have? In this case, with 3

occasions, and time-dependence in both survival and recapture, we have 3 estimable parameters: ϕ1,

p2, and β3. Do we always have a ‘beta’ parameter – a terminal product that cannot be separated into its

component survival and recapture elements? The answer is, ‘no’. Whether or not you have a ‘beta’ term

depends upon the structure of your model. We can demonstrate this by going back to the 4 models

used in this chapter. We start with the fully time-dependent CJS model. Clearly, from the preceding

discussion, you might expect that there is likely to be a ‘beta’ term, since we have time-dependence for

both parameters. Your intuition is correct. How can we count them? While there are a numberof possible

schemes you could use to count parameters (including rote memory of certain algebraic relationships

between the number of time units and the number of parameters for a given type of model – see Table

7 in Lebreton et al. 1992), we prefer a more cumbersome, but fairly fool-proof way of counting them

without resorting to memorization.

To use this approach, simply do the following. For a given model, write out all the saturated capture

histories, and their associated probability statements, for each cohort. A ‘saturated capture history’ is

the capture history where the individual was seen on each occasion following its release. In our Dipper

example, there are 7 occasions, so our table of saturated capture histories, and substituting β7 � ϕ6p7,

the associated probability statements, would look like :

encounter history probability

1111111 ϕ1p2ϕ2p3ϕ3p4ϕ4p5ϕ5p6β7

0111111 ϕ2p3ϕ3p4ϕ4p5ϕ5p6β7

0011111 ϕ3p4ϕ4p5ϕ5p6β7

0001111 ϕ4p5ϕ5p6β7

0000111 ϕ5p6β7

0000011 β7

Now, all you need to do is count how many unique parameters there are. A parameter is unique if

it occurs at least once in any of the probability statements. If you count the unique parameters in this

table, you will see that there are 11 of them: 5 survival probabilities (ϕ1 to ϕ5), 5 recapture probabilities

(p2 to p6), and one ‘beta’ term, β7, the product of ϕ6p7. Note, that this is only a technique to help you

count the number of ‘potentially’ identifiable parameters – this does not necessarily mean that all of

them are estimable. That is determined by the data. We introduce an approach (based on ‘data cloning’)

for handling this issue in Appendix F.
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Now,a fairquestion is ‘why do we need to write out the saturated capture histories and the probability

statements for all cohorts, since we could have used just the first cohort to count unique parameters?’.

Well, the answer is, in this case, you really didn’t need to. However, as you will see, this approach is

useful and necessary for more complicated models. We introduce it now just to get you in the habit.

Let’s consider the next two models: {ϕt p.} and {ϕ.pt}. From the results browser, we see that both

models have 7 parameters. Let’s confirm this. Again, we use the ‘saturated capture histories approach’.

Start with the model {ϕt p.}:

encounter history probability

1111111 ϕ1pϕ2pϕ3pϕ4pϕ5pϕ6p

0111111 ϕ2pϕ3pϕ4pϕ5pϕ6p

0011111 ϕ3pϕ4pϕ5pϕ6p

0001111 ϕ4pϕ5pϕ6p

0000111 ϕ5pϕ6p

0000011 ϕ6p

Now, in this case, we do not have a terminal β term. The terminal product is ϕ6p.. Are both parts

separately estimable? Yes. Since the constant recapture probability occurs at each occasion, we can use

the information from preceding occasions to estimate the value of p. And, if we know the recapture

probability p, then we can estimate any of the survival probabilities, including ϕ6. Specifically, ϕ6 is

estimated as

ϕ̂6 �
β̂7

p̂

under the assumption that p7 � p (this is clearly an untestable assumption). Thus, we have 7 identifiable

parameters: 6 survival rates (ϕ1 to ϕ6) and 1 recapture probability (p). For the model {ϕ.pt}, we have the

same situation (7 estimable parameters) but in reverse. Finally, for our model {ϕ.p.} (constant survival

and recapture), there are only two estimable parameters. By now, you should be able to prove this to

yourself. Try it!

How does MARK count parameters?

Needless to say, MARK uses a more ‘technical’ approach to counting the number of estimable param-

eters than the ad hoc approach described above. In Chapter 1, we considered the derivation of the MLE

and the variance for a simple example involving a model with only 2 parameters:ϕ and p. The likelihood

for the particular example was given as

lnL(ϕ, p) � 7 ln(ϕpϕp) + 13 ln(ϕp(1 − ϕp)) + 6 ln(ϕ(1 − p)ϕp) + 29 ln(1 − ϕp − ϕ(1 − p)ϕp)

We first derived the Hessian H as the matrix of second partial derivatives of the likelihood L with

respect to the parameters ϕ and p):

H �



∂
2
L

∂ϕ2
∂

2
L

∂ϕ∂p

∂
2
L

∂p∂ϕ
∂

2
L

∂p2


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Next, we evaluated the Hessian at the MLE for ϕ and p (i.e., we substituted the MLE values for our

parameters – ϕ̂ � 0.6648 and p̂ � 0.5415 – into the Hessian), which yielded the information matrix I

I �

[
−203.06775 −136.83886

−136.83886 −147.43934

]

The negative inverse of the information matrix (−I−1) is the variance-covariance matrix of the

parameters ϕ and p

−I−1
� −

[
−203.06775 −136.83886

−136.83886 −147.43934

]−1

�

[
−0.0122 0.0181

]
While deriving the variance-covariance matrix is obviously the basis for estimating parameter

precision, there is further utility in the information matrix: skipping the theory, the effective rank of

the information matrix is an estimate of the maximum number of estimable parameters (but this does

not account for confounded parameters). The effective rank of

−I−1
�

[
0.0131 −0.0122

−0.0122 0.0181

]

is 2, meaning, we have 2 estimable parameters (which by now we know to be true for this model).

What is the effective rank of a matrix? Technically, the rank of a matrix (or a linear map, to be complete)

is the dimension of the range of the matrix (or the linear map), corresponding to the number of linearly

independent rows orcolumns of the matrix (or to the numberofnonzero singularvalues of the map). The

details can be found in any introductory text on linear algebra, but the basic idea is easily demonstrated.

Consider the following (4 × 4) matrix



2 4 1 3

−1 −2 1 0

0 0 2 2

3 6 2 5


We see that the second column is twice the first column, and that the fourth column equals the sum

of the first and the third. Thus, the first and the third columns are linearly independent, so the rank of A

is two.

What about a less obvious case? For example, suppose we re-write the likelihood in terms of time-

specific ϕ and p parameters:

lnL(ϕ1 , ϕ2, p2 , p3) � 7 ln(ϕ1p2ϕ2p3) + 13 ln(ϕ1p2(1 − ϕ2p3))

+ 6 ln(ϕ1(1 − p2)ϕ2p3) + 29 ln(1 − ϕ1p2 − ϕ1(1 − p2)ϕ2p3)

We use MARK to find the MLE estimates as: ϕ̂1 � 0.6753, p̂2 � 0.5385, and ϕ̂2 � p̂3 � 0.5916. Now,

what is important here is that the terminal β3 term is estimated as the product of ϕ2 and p3 – in fact, the

estimates ofϕ2 and p3 could be any values from 0→ 1, as long as the product (ϕ2p3) � 0.59162
� 0.3500,

(where 0.3500 � β̂3 � (ϕ̂2 p̂2). This becomes important later on.
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For now, though, let’s concentrate on parameter counting. First, we derive the Hessian, which for this

model {ϕt pt} is given as

H �



∂
2
L

∂ϕ2
1

∂
2
L

∂ϕ1∂ϕ2

∂
2
L

∂ϕ1∂p2

∂
2
L

∂ϕ1∂p3

∂
2
L

∂ϕ2∂ϕ1

∂
2
L

∂ϕ2
2

∂
2
L

∂ϕ2∂p2

∂
2
L

∂ϕ2∂p3

∂
2
L

∂p2∂ϕ1

∂
2
L

∂p2∂ϕ2

∂
2
L

∂p2
2

∂
2
L

∂p2∂p3

∂
2
L

∂p3∂ϕ1

∂
2
L

∂p3∂ϕ2

∂
2
L

∂p2∂p3

∂
2
L

∂p2
3


Again, the variances of the parameters are along the diagonal, and the covariances are off the diagonal.

Next, we substitute in the MLE estimate for our 4 parameters. While we have unique estimates for ϕ̂1

and p̂2, what about the terminal β̂3 term? If we use the values MARK reports (ϕ̂2 � p̂3 � β̂3 � 0.5916),

then the resulting information matrix is singular (meaning: we can’t invert it to derive the variance-

covariance matrix). Is this a problem? Well, yes and no. A problem clearly if we want to estimate the

variance-covariance matrix for our parameters (which we obviously want to do for any model). But,

if the information matrix is singular, what can you do? Well, what if instead of ϕ̂2 � p̂3 � 0.5916, we

instead had used ϕ̂2 � 0.3500, p̂3 � 1.0 (such that β̂3 still equals 0.3500). Again, remember that the

estimates of ϕ2 and p3 could be any value from 0→ 1, as long as the product (ϕ2p3) � 0.59162
� 0.3500

(as noted above). Substituting these values into the Hessian yields the information matrix

I �



−108.121 −48.143 −67.802 −16.850

−48.143 −147.026 22.871 −51.459

−67.802 22.871 −117.246 8.005

−16.850 51.459 8.005 −18.011


If we take the negative inverse of this matrix, we see that the variance-covariance matrix is

−I−1
�



0.0235 −0.0082 −0.0156 −0.0056

−0.0082 318.191 0.0054 −909.091

−0.0156 0.0054 0.0191 0.0075

−0.0056 −909.091 0.0075 2597.417


Obviously, the variances for ϕ2 and p3 are ‘wonky’ (from the Latin). We discussed earlier how this

can (on occasion) be used as a rough diagnostic to when parameters are inestimable.

But, our main objective here is to determine how many parameters are estimable? If we take the rank

of this information matrix, we get 4 - which is correct, because in effect we’ve ‘manually separated’ the

elements of the β̂3 term. What if we had calculated the rank of the matrix substituting ϕ̂1 � 0.6753,

p̂2 � 0.5385, and ϕ̂2 � p̂3 � 0.5916? We noted already that the information matrix using these values

is singular, but...what about the rank? In fact, if we take the rank of the information matrix, we get 3,

which matches the number of estimable parameters.

But, how many parameters are actually estimated given the data? In MARK, computation of the

Hessian is performed with a finite central difference approximation for the second derivatives (i.e., the
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second derivatives are estimated numerically, not analytically). How does this work? Well, first define

L0,0 as the log likelihood computed for the maximum likelihood estimates of a βi and β j . Further define

L1,0 as the log likelihood computed with βi incremented by the amount h, and L2,0 as the log likelihood

computed with βi incremented by the amount 2h. Similarly, L−2,0 is the log likelihood computed with

decremented by the amount 2h. Using this notation, the second partial of the log likelihood for βi is

computed as:

∂
2
L0,0

∂β2
i

�
1

12h2

(

−L2,0 + 16L1,0 − 30L0,0 + 16L−1,0 − L−2,0

)

and the joint partial of the log likelihood for βi and β j is computed as:

∂
2
L0,0

∂βi∂β j

�
1

4h2

(

−L1,1 + L1,−1 − L−1,1 + L−1,−1

)

Given the number of function evaluations needed to compute these derivatives, it is obvious why the

computation of the variance-covariance matrix takes so long to calculate once the optimizations have

completed∗. However, a precise calculation of the information matrix is needed, not only to provide an

estimate of the variance-covariance matrix of the β estimates, but also to compute the estimated number

of parameters.

To invert and also compute the rank of the Hessian, a numerical approach based on a singular-value

decomposition is computed (foryou techno-philes – using the DSVDC algorithm of Dongarra et al. 1979).

This algorithm returns an array of singular values sorted into descending order of the same length as

the number of rows or columns of the Hessian. These values are then ‘conditioned’ by dividing through

by the maximum value, so that now the values range from a maximum of 1 to a value equivalent to

zero if there are more β parameters in the model than can be estimated (this is important).

The trick is to determine whether the smallest value(s) of the conditioned singular values is (are)

actually zero. Two rules are applied to make this decision. First, a threshold value is computed (and

printed in the full output file) that is a guess at what the minimum conditioned value would be smaller

than if there were more betas than can be estimated. This threshold is basedon the numberofparameters

used in the optimization and the value of h used to compute the Hessian. The precision of the numerical

estimates in the Hessian is a function of h, as well as the number of columns in the design matrix (the

number of β values).

Using this threshold value, all values of the conditioned singular values vector that are smaller than

the threshold are considered to be parameters that have not been estimated. Conversely, all values of the

conditioned singular value vector that are greater than the threshold are considered to be parameters

that were estimated, and are part of the parameter count.

The threshold condition may suggest that all of the β values were parameters that were estimated, i.e.,

the smallest conditioned singular value is greater than the threshold. An additional test is performed to

evaluate whether some of the β parameters were not actually estimated. The ratio of consecutive values

in the sorted conditioned singular value array is used to identify large jumps in the singular values.

Typically, the ratios of consecutive values decline slowly until a large gap is reached where parameters

are not estimated.

∗ All experienced MARK users have learned to be patient as the variance-covariance matrix is calculated, especially for complex
models
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As an example, consider the following portion of the output for the global model (i.e., model {ϕt pt})

of the male Dipper data, where the last ϕ and last p is identifiable only as a product (i.e., they are not

separately estimable – a point we’ve made before). Thus, instead of the 12 parameters that you might

have initially assumed are estimable, only 11 are actually estimated. The conditioned singular values

are identified as the S vector, with the condition index being the smallest value of the S vector.

Here are the relevant sections from the full MARK output:

Threshold = 0.2600000E-06 Condition index = 0.7594599E-08

Conditioned S Vector {phi(t)p(t)}:

1.000000 0.9393990 0.8540481 0.7733464 0.6198060

0.3407142 0.2980727 0.2426806 0.2241094 0.6495305E-01

0.6369173E-01 0.7594599E-08

Number of Estimated Parameters {phi(t)p(t)} = 11

In this output, 11 parameters are reported to have been estimated. The last value of the sorted S

vector is smaller than the threshold, and thus considered to have not been estimated. Also, this example

illustrates the major jump in the ratio of consecutive S values from the 11th to the 12th values that

corresponds to loss of estimability, i.e., a ratio of (0.7594599E−08/0.6369173E−01). In problems where

all of the S values are greater than the threshold, the ratio of consecutive values is computed for all

consecutive pairs, and a ratio >500 is assumed to have identified the breakpoint between estimable and

non-estimable parameters.

An important point is how the link function can play into this process. In the above example, the sin

link was used, so that parameters on their boundaries were still considered estimable. In contrast, with

the logit link, parameters on their boundary often appear to have not been estimated. The following

output is for the identical model, but now run using a logit link.

Threshold = 0.2600000E-06 Condition index = 0.2266159E-09

Conditioned S Vector {phi(t)p(t)}:

1.000000 0.8414351 0.7774529 0.7095102 0.6336003

0.1953204 0.8798561E-01 0.8716604E-01 0.8589297E-01 0.5509756E-01

0.5461554E-07 0.2266159E-09

Number of Estimated Parameters {phi(t)p(t)} = 10

Because p3 is estimated at its upper boundary of 1, a second value in the S vector is now less than the

threshold, and so the parameter count is 10 instead of 11. In this case, the threshold should have been

< 0.5461554E−07 but > 0.2266159E−09 to have achieved a correct parameter count.

The reason that the male p3 estimate appears to be singular and not estimable is that the β estimate

for this parameter was 23.19, which appears numerically (for the log likelihood) to have almost a zero

first and second derivative for this parameter. In fact, a graph of the β values over the range 20 to

25 would suggest the log likelihood is flat. As a result, this parameter is considered to not have been

estimated, even though it actually was estimated. The user must correct the parameter count manually.

Alternatively, use the sin link to avoid problems with highly parameterizedmodels (we’ll talk a lot more

about link functions in Chapter 6).

You may notice that MARK gives you the option of choosing between two different procedures to

estimate the variance-covariance matrix of the estimates. The first is the inverse of the Hessian matrix

obtained as part of the numerical optimization of the likelihood function. This approach is not reliable,

and should only be used when you are not interested in the standard errors, and already know the

number of parameters that were estimated. The only reason for including this method in the program

is that it is the fastest – no additional computation is required for the method.
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The second method (the default) computes the information matrix directly using central difference

approximations to the second partial derivatives. This method (labeled the 2ndPartmethod) provides

the most accurate estimates of the standard errors, and is the default and preferred method.

Because the rank of the variance-covariance matrix is used to determine the number of parameters

that were actually estimated, using different methods will sometimes result in a different number of

parameters estimated, which can have important implications for model selection.
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CHAPTER 5

Goodness of fit testing...

In the preceding chapter,we took our first look at a fundamental topic – comparing models. In particular,

we considered the different ‘paradigms’ of AIC, or LRT, as tools to allow us to robustly ‘select’ among a

candidate set of models. More generally, however, these approaches both rest fundamentally on issues

of fit – how well does a particular model fit the data. This is a very important consideration, regardless

of which ‘flavor’ of model selection you prefer both AIC comparisons, and LRT, require assessment of

model fit.

In this chapterwe will provide a brief introduction to this very important topic – goodness of fit testing

(GOF). All of the models and approaches we have discussed so far make very specific assumptions

(concerning model fit) that must be tested before using MARK – thus, as a first step, you need to

confirm that your starting (general) model adequately fits the data, using GOF tests. We will make

frequent reference to this, directly or indirectly, at several points throughout the book.

There are a number of ways in which GOF testing can be accomplished, and a variety of GOF

procedures have been implemented in several different CMR software applications. For example,

programs RELEASE, SURVIV, JOLLY, and JOLLYAGE all provide GOF statistics for various models.

Some applications do not provide any ‘built-in’ GOF testing. As a starting point, we will assert that

there are two primary purposes for GOF testing.

The first, which we’ve already noted, is that it is a necessary first step to insure that the most general

model in your candidate model set (see Chapter 4) adequately fits the data. Comparing the relative fit

of a general model with a reduced parameter model provides good inference only if the more general

model adequately fits the data.

However, suppose you construct a candidate model set, based on a priori hypotheses concerning

the data in hand. This model set contains at least one ‘general’ model, containing enough parameter

structure so that, you believe, it will fit the data. Suppose however, it does not – suppose you have a

means of assessing GOF, and that based on this ‘test’ you determine that the general model does not

adequately fit the data. What next?

Well, in addition to providing a simple ‘yes/no’ criterion for fit, the GOF testing procedure can in

itself reveal interesting things about your data. While significant lack of fit of your general model to

your data is in some senses a nuisance (since it means you need to carefully reconsider your candidate

model set), in fact the lack of fit forces you to look at, and think about, your data more carefully than you

might have otherwise – the key question becomes – why doesn’t the model fit the data? The answers to

this question can sometimes be extremely valuable in understanding your problem.
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What do we mean by ‘lack of fit’? Specifically, we mean that the arrangement of the data do not

meet the expectations determined by the assumptions underlying the model. In the context of simple

mark-recapture, these assumptions, sometimes known as the ‘CJS assumptions’ are:

1. every marked animal present in the population at time (i) has the same probability

of recapture (pi)

2. every marked animal in the population immediately after time (i) has the same

probability of surviving to time (i+1)

3. marks are not lost or missed.

4. all samples are instantaneous, relative to the interval between occasion (i) and (i+1),

and each release is made immediately after the sample.

We will generally assume that assumptions 3 and 4 are met (although we note that this is not always

a reasonable assumption. For example, neck collars, commonly used in studies of large waterfowl, have

a significant tendency to ‘fall off’ over time). It is assumptions 1 and 2 which are typically the most

important in terms of GOF testing.

In this chapter, we will look at GOF testing in two ways. First, we shall discuss how to do basic GOF

testing in program MARK, using a parametric bootstrapping approach. Then, we show how to use

program MARK to call another, vintage program (RELEASE) to more fully explore potential reasons

for lack of fit for the CJS model only. Then, we introduce two newer approaches to estimating lack of

fit. We finish by discussing how to accommodate lack of fit in your analyses.

5.1. Conceptual motivation – ‘c-hat’ (ĉ)

GOF testing is a diagnostic procedure for testing the assumptions underlying the model(s) we are trying

to fit to the data. To accommodate (adjust for, correct for...) lack of fit, we first need some measure of

how much extra binomial ‘noise’ (variation) we have. The magnitude of this overdispersion cannot be

derived directly from the various significance tests that are available for GOF testing, and as such, we

need to come up with some way to quantify the amount of overdispersion. This measure is known as

a variance inflation factor, or (hereafter, ĉ, or phonetically, ‘c-hat’).

We start by introducing the concept of a saturated model. The saturated model is loosely defined as

the model where the number of parameters equals the number of data points or data structures. As

such, the fit of the model to the data is effectively ‘perfect’ (or, as good as it’s going to get).

begin sidebar

saturated models in MARK

In the following, the method used to compute the saturated model likelihood is described for each type

of data. This is the method used when no individual covariates are included in the analysis. Individual

covariates cause a different method to be used for any data type.

Live Encounters Model. For the live encounters model (Cormack-Jolly-Seber model), the encounter

histories within each attribute group are treated as a multinomial. Given n animals are released

on occasion i, then the number observed for encounter history j [n j] divided by n is the parameter

estimate for the history. The−2 ln(L) for the saturated model is computed as the sum of all groups

and encounter histories. For each encounter history, the quantity (n j × ln[n j/n]) is computed,

and then these values are summed across all encounter histories and groups.

Dead Encounters Model – Brownie. The method used is identical to the live encounters model. For

this type of data, the saturated model can be calculated by specifying a different value in every
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PIM entry. The resulting−2 ln(L) value for this model should be identical to the saturated model

value.

Dead Encounters Model – Seber. For dead encounters models with S and f coding. The saturated

model for this data type is the same as the usual dead encounters model.

Joint Live and Dead Encounters Model. The method used is identical to the live encounters model.

Known Fate Model. The known fate data type uses the (group×time) model as the saturated model.

For each occasion and each group, the number of animals alive at the end of the interval divided

by the number of animals alive at the start of the interval is the parameter estimate. The −2 ln(L)

value for the saturated model is the same as the −2 ln(L) value computed for the (group× time)
model.

Closed Captures Model. The saturated model for this type of data includes an additional term over

the live encounters model, which is the term for the binomial coefficient portion of the likelihood

for N̂ . For the saturated model, N̂ is the number of animals known to be alive [Mt+1], so the log

of N̂! factorial is added to the likelihood for each group.

Robust Design Model. The saturated model for this data type is the same as the closed captures

model, but each closed-captures trapping session contributes to the log likelihood.

Multi-strata Model. The saturated model for this data type is the same as for the live encounters

model.

BTO Ring Recovery Model. The saturated model for this data type is the same as for the live

encounters data.

Joint Live and Dead Encounters, Barker’s Model. The method used is identical to the live encounters

model.

Pradel and Link-Barker Models. These models assume that an animal can enter the study on any

occasion, so the saturated model is computed with the parameter estimate as the number of

animals with the encounter history divided by the total number of animals encountered. The

same procedure is used for the Burnham Jolly-Seber model and the POPAN model, but because

these data types include population size, complications result.

All Data Types with Individual Covariates. For any of the models with individual covariates, the

sample size for each encounter history is 1. The saturated model then has a −2 ln(L) value of

zero. The deviance for any model with individual covariates is then just its −2 ln(L) value.

end sidebar

Consider the following example of a logistic regression of some medical data. Suppose there is a

sample of male and female cardiac patients. Interest is focussed on whether or not the amplitude (high

or low) of a particular waveform in an electrocardiograph test (EKG) was a good predictor of cardiac

disease (0 = no disease, 1 = disease), and whether the predictions were influenced by the gender of the

patient. Here are the data, presented as a frequency table:

female EKG male EKG

disease h l disease h l

0 10 15 0 12 11

1 16 9 1 9 17

If we use bothsex andEKG and their interaction in the model,we will use up all the degrees of freedom.

That is, we are fitting each cell in the contingency table with its own parameter, which constitutes a

saturated model:

disease = sex + EKG + (sex*EKG)
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If we fit this model to the data (using the logistic regression program from your favorite statistics

package), -2 times the model likelihood is given as−2 ln(L) � 132.604. The AIC for this model is 140.604

(132.604+ [2×4] � 140.604). Remember – the saturated model is the model where the model structure is

saturated with respect to the data. In other words, it is sufficiently parameterized that every data point

is effectively encompassed by the model. As such, the likelihood for the saturated model is as small as

it’s ever going to get.

Now, in this case, the parameter values for the terms in the saturated model are all estimable. This will

not generally be the case. Moreover, in many cases, the saturated model is not a plausible, or interesting

general starting model. For the moment, let’s pretend that is the case here. Suppose that instead of the

saturated linear model proposed above, our general starting model is

disease = sex + EKG

If we fit this model to the data, the model likelihood is −2 ln(L) � 136.939, with an AIC of 142.939.

As expected, the fit isn’t as good as the saturated model. But, the point of interest here is – how different

is the fit? The numerical difference between the likelihood for the saturated model and the general

model is (136.939 − 132.604) � 4.335. The difference in the degrees of freedom (number of estimable

parameters) between the two models is 1 (the interaction term).

Now, for the key conceptual step – the difference in fit (deviance) between the saturated model

and any other model (in this case, the general model in the candidate model set) is asymptotically χ2

distributed (at least, in theory). In MARK, the deviance (as reported in the results browser) is defined as

the difference in−2 ln(L) between the current model and the saturated model. For our example analysis,

χ2
1 � 4.335 is marginally significant (P � 0.0373) based on a nominal α � 0.05 level. This suggests that

the general model does not quite adequately fit the data.

So, why is this important? Well, suppose we didn’t know that the general model in our model set

has some lack of fit to the data (relative to the saturated model), and proceeded to compare the general

model with a reduced parameter model

disease = EKG

In other words, we’re comparing

disease = SEX + EKG + error

versus disease = EKG + error

SEX

which amounts to a test of the importance of SEX in determining the presence or absence of the

cardiac disease. The likelihood for the reduced model (disease=EKG) is −2 ln(L) � 137.052, with an

AIC=141.052. If we use a LRT to compare the fits of the general and reduced models,we get a test statistic

of χ2
1 � (137.052 − 136.939) � 0.0113, which is clearly not significant by usual statistical standards.

However, in making this comparison we’ve ignored the fact that our general model has marginally

significant lack of fit to the data (relative to the saturated model). Does this make a difference in our

analysis? In fact, the generally accepted approach to this would be to ‘adjust’ (correct) the likelihood of

both the general model and the reduced model to account for the lack of fit between the general and

saturated models.

For a correctly specified model, the χ2 statistic (or the deviance) divided by the degrees of freedom,

should be approximately equal to one. When their values are much larger than one, the assumption of
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simple binomial variability may not be valid and the data are said to exhibit overdispersion. Underdisper-

sion, which results in the ratios being less than one, occurs less often in practice.

The most common approach to correcting for overdispersion in linear models is to multiply the

covariance matrix by a dispersion parameter (note: this approach is most robust when the sample sizes

in each subpopulation in the analysis are roughly equal). In other words, we use a function of the lack

of fit (typically, some function of the χ2/d f for the general model), to adjust the fit of the general and all

other models in the candidate model set. For our present example, applying a χ2/d f ‘correction’ yields

−2 ln(L) � 31.590 for the general model, and −2 ln(L) � 31.616 for the reduced model.

Do we need to modify the LRT in any way? In fact, the LRT, which is normally a χ2 test between two

models, is transformed into an F-test, with (dfLRT ,dfmodel) degrees of freedom:

F �

(

χ2
LRT/dfLRT

)

ĉ

where

ĉ ≈
χ2

d f
� 1

For this example, no big difference in the subsequent LRT between the two models.

What about the AIC approach? Well, recall from Chapter 4 that the sample-size corrected AICc is

estimated as

AICc � −2 ln
(

L(θ̂)
)

+ 2K +

(

2K(K + 1)

n − K − 1

)

Do we need to adjust the AICc for lack of fit between the general model and the saturated model?

Perhaps given the preceding discussion it is not surprising that the answer is ‘yes’. We have to adjust

the likelihood term, yielding the quasi-likelihood adjusted QAICc

QAICc �
−2 ln(L)

ĉ
+ 2K +

(

2K(K + 1)

n − K − 1

)

where ĉ is the measure of the lack of fit between the general and saturated models.∗

Now, since

ĉ ≈
χ2

d f
� 1

for a saturated model, then as the general model gets ‘further away’ from the saturated model, ĉ > 1.

If ĉ � 1, then the expression for QAICc reduces back to AICc (since the denominator for the likelihood

term disappears). If ĉ > 1, then the contribution to the QAICc value from the model likelihood will

decline, and thus the relative penalty for a given number of parameters K will increase. Thus, as ĉ

increases, the QAICc tends to increasingly favor models with fewer parameters.

∗ Some people feel that every model should have one additional parameter included if a value of c is estimated for the set of
models. The is an option in MARK (under ‘File | Preferences’) to automatically add 1 to K, the number of parameters
estimated, for each model. However, the effect on model selection results is typically extremely small, and can result in errors
in the value of K. Use at your own risk.
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begin sidebar

What if ĉ is < 1?

What if ĉ < 1? In the preceding, we mention the case where ĉ > 1, indicating some degree of lack of

fit, reflecting (in all likelihood) overdispersion in the data. Now, if instead, ĉ < 1, then we generally

consider this as reflecting underdispersion. While the intuitive thing to do is to simply enter the ĉ

as estimated (discussed below), there is lack of unanimity on how to handle ĉ < 1. Some authors

recommend using the estimated ĉ, regardless of whether or not it is > 1 or < 1. However, still others

suggest that if ĉ < 1, then you should set ĉ � 1 (i.e., make no adjustment to various metrics). For the

moment, the jury is out – all we can recommend at this stage is – if ĉ > 1, then adjust. If ĉ < 1, then

set ĉ � 1, and ‘hold your nose’.

end sidebar

5.2. The practical problem – estimating ĉ

In a recent paper (Journal of Applied Statistics, 29: 103-106), Gary White commented:

“ The Achilles’ heel...in capture- recapture modeling is assessing goodness-of-fit (GOF).

With the procedures presented by Burnham & Anderson (1998), quasi-likelihood ap-

proaches are used for model selection and for adjustments to the variance of the estimates

to correct for over-dispersion of the capture-recapture data. An estimate of the over-

dispersion parameter, c, is necessary to make these adjustments. However, no general, ro-

bust, procedures are currently available for estimating c. Although much of the goodness-

of-fit literature concerns testing the hypothesis of lack of fit, I instead view the problem

as estimation of c.

”
So, the objective then becomes estimating the lack of fit of the model to our data. In other words,

how to estimate ĉ? The general challenge of estimating ĉ is the basis for a significant proportion of the

remainder of this chapter.

As we’ll see, there are a number of approaches that can be taken. The most obvious approach is to

simply divide the model χ2 statistic by the model degrees of freedom:

ĉ ∼�
χ2

d f

However, in many (most?) cases involving the sorts of multinomial data we analyze with MARK,

this approach doesn’t work particularly well. Although the distribution of the deviance between the

general and saturated models is supposed to be asymptotically χ2 distributed, for the type of data we’re

working with it frequently (perhaps generally) isn’t because of sparseness in the frequency table of some

proportion of the possible encounter histories. For example, for live encounter mark-recapture data, for

the CJS model (Chapter 4), there are [(2n − 1) − 1] possible encounter histories for n occasions, and for

typical data sets, many of the possible encounter histories are either rare or not observed at all. The

asymptotic distribution of the deviance assumes that all encounter histories are sampled (which would

be true if the sample were infinitely large, which is of course the underlying assumption of ‘asymptopia’

in the first place).

Given that the asymptotic assumptions are often (perhaps generally) violated for these sorts of data,

alternative approaches are needed. Moreover, the χ2 is not available for all models (in particular, for
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models where the saturated model is not defined),and there canbe some non-trivial difficulties involved

in the calculation of the χ2 statistics, especially for sparse data sets. On the other hand, the advantage

of using a χ2 approach is that the frequency tabulations used in deriving the χ2 statistic are often very

useful in determining the ‘sources’ of lack of fit.

In the following we’ll discuss two broadly different approaches for estimating ĉ. The first approach

we’ll describe, using program RELEASE, provides estimates of ĉ for CJS live-encounter data using a

contingency table (i.e., χ2) approach. However, this is not generalizable to other data types, so other

approaches are required.

The second approach we’ll discuss (the bootstrap, and median-ĉ) uses simulation and resampling to

generate the estimate of ĉ. Rather than assuming that the distribution of the model deviance is in fact χ2

distributed (since it generally isn’t for typical ‘MARK data’, as noted above), the bootstrap and median-ĉ

approaches generate the distribution of model deviances, given the data, and compare the observed

value against this generated distribution. The disadvantage of the bootstrap and median-ĉ approaches

(beyond some technical issues) is that both merely estimate ĉ. While this is useful (in a practical sense),

it reveals nothing about the underlying sources of lack of fit. In a similar vein, we’ll also introduce an

approach (the Fletcher-ĉ) that is somewhat similar to the approach based on program RELEASE, but

is more general.

Each approach has different strengths and weaknesses, so a good understanding of each of these

procedures is important to robustly assessing model fit using MARK.

5.3. Program RELEASE – details, details. . .

For testing the fit of the data to a fully-time-dependent CJS model, program RELEASE has been the

de facto standard approach for many years. In the following, we describe the use of RELEASE for GOF

testing (and estimation of ĉ). We will discuss the use of RELEASE to generate specific GOF statistics,

and give some broad suggestions for how to interpret lack-of-fit (from both a statistical and biological

point of view), and what remedies are available. Note, RELEASE is primarily intended for standard live-

recapture models, although it can be tweaked to handle some recovery models as well. While this may

not be appropriate for your particular analysis (e.g., if you’re working with telemetry, for example), there

is still value in understanding how RELEASE works, since the principles underlying it are important

for all analyses, not just standard live-recapture studies.

5.4. Program Release – TEST 2 & TEST 3

Program RELEASE generates 3 standard ‘tests’, which are given the absolutely uninformative names

‘TEST 1’, ‘TEST 2’, and ‘TEST 3’. The latter 2 tests, TEST 2 and TEST 3, together provide the GOF

statistics for the reference model (the time-dependent CJS model). TEST 1 is an omnibus test that is

generated only if you are comparing groups, and tests the following hypothesis under model {ϕg∗tpg∗t}:

Ho : all parameters ϕi and pi have the same value across treatment groups (i.e., there is no

difference in survival (ϕi) or recapture (pi) considered simultaneously among groups).

Ha : at least some values for either ϕi or pi (or both) differ among groups.

The big advantage of using MARK or one of the other applications available for CMR analysis, is

that you can separately model differences in either survival or recapture rate independently. TEST 1

does not do this – it only tests for an ‘overall’ difference among groups. Since this severely limits its

Chapter 5. Goodness of fit testing...



5.4. Program Release – TEST 2 & TEST 3 5 - 8

utility, we will not discuss use of TEST 1 – in fact, we actively discourage it’s use, since it is possible

to do far more sophisticated analysis if you have capture histories from individually marked animals

(although TEST 1 may still be of use when complete capture histories are not available – see the ‘blue

book’ for use of RELEASE and TEST 1 under alternative capture protocols).

While TEST 1 may be of limited use, TEST 2 and TEST 3 together are quite useful for testing the

GOF of the standard time-dependent CJS (Cormack-Jolly-Seber) model to the data (this model was first

presented in detail in Chapter 4). What do we mean by ‘lack of fit’? As noted previously, we mean that

the arrangement of the data do not meet the expectations determined by the assumptions underlying

the model. These assumptions, which we also noted earlier in this chapter, sometimes known as the CJS

assumptions are:

1. Every marked animal present in the population at time (i) has the same probability

of recapture (pi)

2. Every marked animal in the population immediately after time (i) has the same

probability of surviving to time (i+1)

3. Marks are not lost or missed.

4. All samples are instantaneous, relative to the interval between occasion (i) and (i+1),

and each release is made immediately after the sample.

For now, we will assume that assumptions 3 and 4 are met. It is assumptions 1 and 2 which are

typically the most important in terms of GOF testing. In fact, TEST 2 and TEST 3 in RELEASE, as well

as the GOF tests in other software, directly test for violations of these two assumptions (in one form or

another).

Let’s expand somewhat on assumptions 1 and 2. Assumption 1 says that all marked animals in

the population have the same chances of being captured at any time (i). What would be the basis for

violating this assumption? Well, suppose that animals of a particular age or size are more (or less) likely

to be captured than animals of a different age or size? Or, suppose that animals which go through the

process of being captured at occasion (i) are more (or less) likely to be captured on a later occasion than

animals who were marked at some other occasion? Or, what if some marked individuals temporarily

leave the sample area (temporary emigration)? Or what if animals always exist in ‘pairs’? For estimation

of survival in open populations, marked animals have the same probability of recapture. For estimation

of population size (abundance), both marked and unmarked animals must have the same probability

of capture.

What about assumption 2? Assumption 2 says that, among the marked individuals in the population,

all animals have the same probability of surviving, regardless of when they were marked. In otherwords,

animals marked at occasion (i-1) have the same probability of surviving from (i) to (i+1) as do animals

marked on occasion (i). When might this assumption be violated? One possibility is that individuals

caught early in a study are more (or less) prone to mortality than individuals caught later in the study.

Or, perhaps you are marking young individuals. An individual captured and marked as an offspring

at (i-1) will be older, or larger, or possibly of a different breeding status, at occasion (i), while offspring

marked at occasion (i) are just that, offspring. As such, the offspring marked at (i-1) may show different

survival from (i) to (i+1) than offspring marked at (i), since the former individuals are older, or larger,

or somehow ‘different’ from individuals marked at (i).

For both TEST 2 and TEST 3 we have noted several reasons why either TEST 2 or TEST 3 might

be violated. The examples noted are by no means an all-inclusive list – there are many other ways

in which either or both tests could be violated. While violation of the underlying model assumptions

has a specific statistical consequence (which we will deal with shortly), it may also serve to point out
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something interesting biologically. Forexample,suppose all animals are not equally likely to be captured

at any occasion. We might ask ‘why? Does this reveal something interesting about the biology?’.

We’ll approach GOF testing in 2 steps. First, we’ll describe the ‘mechanics’ of how to run RELEASE

to generate the TEST 2 and TEST 3 results. Then, we’ll discuss the mechanics of how these two tests

are constructed, and how to interpret them.

5.4.1. Running RELEASE

Running RELEASE from within MARK is easy. Running it as a standalone application is also fairly

straightforward – more on this in a moment. For now, we will restrict our discussion to running

RELEASE from within MARK, although there may be a few instances where it may become necessary

to run RELEASE as a stand-alone application.

To run RELEASE from within MARK, simply pull down the ‘Tests’ menu, and select ‘Program

RELEASE GOF’. This option is available only if you selected ‘Recaptures’ as the data type. That’s it.

RELEASE will run, and the results will be output into a Notepad window.

At the top of this output file there will be some information concerning recent updates to the

RELEASE program, and some statement concerning limits to the program (maximum number of

groups,or occasions). Then,you will see a listing of the individual capture histories in your data set,plus

a summary tabulation of these histories known as the reduced m-array. The m-array contains summary

information concerning numbers of individuals released at each occasion, and when (and how many)

of them were captured at subsequent occasions. The reduced m-array will be discussed in more detail

later. These m-array tabulations are then followed by the TEST 2 and TEST 3 results for each group

(respectively), followed in turn by the summary statistics.

TEST 2

TEST 2 deals only with those animals known to be alive between (i) and (i+1). This means we need

individuals marked at or before occasion (i), and individuals captured at or later than (i+1). If they

were alive at (i), and captured at or later than (i+1), then they must have been alive in the interval from

occasion (i) to (i+1).

In other words, ‘is the probability of being seen at occasion (i+1) a function of whether or not you

were seen at occasion (i), given that you survived from (i) to (i+1)?’. Under assumption 1 of the CJS

assumptions,allmarkedanimals shouldbe equally ‘detectable’ atoccasion (i+1) independentofwhether

or not they were captured at occasion (i). TEST2.C has the following general form: of those marked

individuals surviving from (i) to (i+1), some were seen at (i+1), while some were seen after (i+1). Of

those not seen at (i+1), but seen later, does ‘when’ they were seen differ as a function of whether or not

they were captured at occasion (i)?

In other words:

when seen again?

seen at (i) (i+1) (i+2) (i+3) (i+4) ... (i+5)

no f f f f f f

yes f f f f f f

So, TEST2 asks ‘of those marked animals not seen at (i+1), but known to be alive at (i+1) (since they

were captured after i+1), does when they were next seen (i+2, i+3...) depend on whether or not they were

seen at (i)?’. Again, we see that TEST2.C deals with capture heterogeneity. For most data sets, pooling
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results in a (2 × 2) matrix.

TEST2 (in general) is sensitive to short-term capture effects, or non-random temporary emigration.

It highlights failure of the homogeneity assumption (assumption 1), among animals and between

occasions. In practice, TEST 2 is perhaps most useful for testing the basic assumption of ‘equal

catchability’ of marked animals. In other words, we might loosely refer to TEST 2 as the ‘recapture

test’.

TEST 3

In general, TEST 3 tests the assumption that all marked animals alive at (i) have the same probability

of surviving to (i+1) – the second CJS assumption.

TEST 3 asks: ‘of those individuals seen at occasion (i), how many were ever seen again, and when?’.

Some of the individuals seen at occasion (i) were seen for the first time at that occasion, while others

had been previously seen (marked). Does whether or not they were ever seen again depend on this

conditioning? The first part of TEST 3, known as TEST3.SR, is shown in the following contingency

table:

seen before (i) seen again not seen again

no f f

yes f f

In other words, does the probability that an individual known to be alive at occasion (i) is ever seen

again depend on whether it was marked at or before occasion (i)? If there is only a single release cohort,

then ‘seen before i?’ becomes ‘seen before i, excluding initial release?’.

TEST3.SR is what is presented for TEST 3 in the version of RELEASE bundled with MARK. There

is also a TEST3.Sm, which asks ‘...among those animals seen again, does when they were seen depend

on whether they were marked on or before occasion (i)?’. TEST3.Sm is depicted in the following

contingency table:

when seen again?

seen before (i) (i+1) (i+2) (i+3) (i+4) ... (i+5)

no f f f f f f

yes f f f f f f

If there is only a single release cohort, then ‘seen before i?’ become ‘seen before i, excluding initial

release?’. So, in a very loose sense, TEST 2 deals with ‘recapture problems’, while TEST 3 deals with

‘survival problems’ (although there is no formal reason to make this distinction – it is motivated by our

practical experience using RELEASE). If you think about it, these tables should make some intuitive

sense: if assumptions 1 and 2 are met, then there should be no difference among individuals if or when

they were next seen conditional on whether or not they were seen on or before occasion (i).

Let’s consider a simple example of GOF testing with RELEASE. We simulated a small data set – 6

occasions, 350 newly marked individuals released alive at each occasion. First, let’s look at something

call the reduced m-array table RELEASE generates as the default (the other m-array presentation you

can generate running RELEASE as a stand-alone application is the full m-array – this will be discussed

later). Examination of the m-array will give you some idea as to ‘where the numbers come from’ in the

TEST 2 and TEST 3 contingency tables.
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Here is the reduced m-array:

The main elements of interest are the Ri, mi , j , and ri values. The Ri values are the number of

individuals in total released on each occasion. For example, R1 � 350 equals 350 individuals released on

the first occasion – all newly marked. At the second occasion (R2), we released a total of 428 individuals

– 350 newly marked individuals, plus 78 individuals from the first release which were captured alive

at the second occasion. The mi , j values are the number of individuals from a given release event which

are captured for the first time at a particular occasion. For example, m1,2 � 78. In other words, 78 of

the original 350 individuals marked and released at occasion 1 (i.e., R1) were recaptured for the first

time at occasion 2. At the third occasion (m1,3), 41 individuals marked and released at occasion 1 were

recaptured for the first time, and so on.

The ri values are the total number of individuals captured from a given release batch (see below). For

example, from the original R1 � 350 individuals, a total of 157 were recaptured over the next 5 capture

occasions. Neither the mi , j , or ri values distinguish between newly marked or re-released individuals

– they are simply subtotals of all the individuals released at a given occasion. As we’ll see shortly, this

limits the usefulness of the reduced m-array.

begin sidebar

Batch release??

What do we mean by a ‘batch release’? Historically, a cohort referred to a group of animals released at

the same occasion – whether newly marked or not. However, when using MARK, we refer to a cohort

as all animals marked at the some occasion. In this context, an animal does not change cohorts – it is

a ‘fixed’ characteristic of each marked individual. In the RELEASE context, cohort changes with each

capture occasion. To prevent confusion, we use the term ‘release batch’, or simply ‘batch’, to refer to

all individuals (marked and unmarked) released on a given occasion.

end sidebar

Following the reduced m-array are the results for TEST 3. Since there are 5 recapture occasions there

are as many as 7 total TEST 3 tables (4 for TEST3.SR and 3 for TEST3.Sm). Let’s consider just one of
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these tables – the first TEST3.SR table, for individuals captured on occasion 2.

Why is this the first table? Well, recall what TEST3.SR compares – seen before versus not seen before

– obviously, at occasion 1, no animals were seen before. Thus, we start at occasion 2.

Look closely at the table. Note that the table starts with a ‘loose’ restatement of what is being tabulated

– in this case ‘goodness of fit test of seen before versus not seen before against seen again versus not

seen again by capture occasions’. You will also see comments concerning which group is being tested,

and possibly something concerning the ‘control’ group. By default, if you’re working with only one

group, RELEASE assumes that it is a ‘control group’ in a ‘control vs. treatments’ experiments. Then,

comes the contingency table itself. First, note the labeling: TEST3.SR2. The ‘TEST.3SR’ part is obvious,

the ‘2’ simply refers to the second occasion (so, TEST3.SR3 for the third occasion, TEST3.SR4 for the

fourth occasion, and so on). At occasion 2, a total of 428 individuals were released. Of these, 78 had

been seen before, and 350 were newly marked individuals. In the first row of the contingency table,

we see that of the 78 individuals seen before, a total of 52 (or 67%) of these individuals were ever seen

again. In the second row of the table, we see that of the 350 newly marked individuals, a total of 250

(or 71%) were ever seen again. Where did the numbers 52 and 250 come from? Can we tell from the

reduced m-array? Unfortunately, the answer is ‘no’. Why? Because the reduced m-array does not ‘keep

track’ of the fates of individuals depending on when they were marked. For this, you need a different

type of m-array, known as the full m-array. To generate the full m-array, you need to run RELEASE as a

standalone application, and modify a specific control element to generate the full m-array.

5.4.2. Running RELEASE as a standalone application

To run RELEASE as a stand-alone application, you first need to make a simple modification to the INP

file containing the encounter history data. You simply need to add a single line to the top of the INP file.

The ‘additional’ line is the PROC CHMATRIX statement. Here is the minimal PROC CHMATRIX statement for

our example data set:

PROC CHMATRIX OCCASIONS=6 GROUPS=1;

The PROC CHMATRIX statement must include (at least) the GROUPS and OCCASIONS statements. However,

there are a number of other options which can also be applied to this procedure. One of these options is
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DETAIL – as its name implies, the DETAIL option provides ‘detailed’ information about something. The

DETAIL option is the default in the version of RELEASE which comes with MARK. The ‘something’

is in fact detailed information concerning TEST 2 and TEST 3. When the DETAIL option is in effect,

RELEASE provides the individual contingency tables (including observed and expected frequencies)

upon which they are based (discussed below), as well as the summary statistics for all batches pooled.

If you have a data set with a large number of occasions, this can generate a very large amount of output.

The opposite to the DETAIL option is the SUMMARY option, which forces RELEASE to print only the

summary TEST 2 and TEST 3 results for each batch separately and all batches pooled.

You choose either the DETAIL or SUMMARY option as follows:

PROC CHMATRIX OCCASIONS=6 GROUPS=1 DETAIL;

To use the SUMMARY option (instead of DETAIL), you would type

PROC CHMATRIX OCCASIONS=6 GROUPS=1 SUMMARY;

To generate a full m-array (below) you would simply write:

PROC CHMATRIX OCCASIONS=6 GROUPS=1 DETAIL FULLM;

How do you run RELEASE? Simply shell out to DOS, and type:

REL_32 I=<INPUT FILE> O=<OUTPUT FILE> <enter>

If nothing happens, it probably means that REL_32 isn’t in the PATH on your computer. Make sure it
is, and try again. If our RELEASE file is called TEST.REL, and we want our results to be written to a file
called TEST.LST, then we would type:

REL_32 I=TEST.REL O=TEST.LST <enter>

The output would be in file TEST.LST, which you could examine using your favorite text editor. Now,
for the present, we’re interested in considering the full m-array. Assume that we’ve successfully added
the appropriate PROC CHMATRIX statement to the INP file for our simulated data, and successfully run
RELEASE. In the output, we see something that looks quite different than the simple, reduced m-array.
This is the full m-array, and is shown at the top of our next page for our simulated example data.

As you can readily see, the full m-array contains much more information than the reduced m-array.
In fact, it contains the entire data set!! If you have the full m-array,you have all the information you need
to run a CMR analysis. If you look closely at the full m-array, you’ll see why. Let’s concentrate on the
information needed to generate TEST3.SR2. From the preceding page, recall that of the 78 individuals (i)
markedatoccasion 1,that (ii) were also capturedandre-releasedatoccasion 2,52 were seen again at some
later occasion. What would the capture history of these 78 individuals be? – obviously ‘11’ – marked
at the first occasion, and recaptured at the second occasion. The ‘11’ capture history is represented as
{11} in the full m-array. Find this capture history in the 3rd line. To the right, you will see the number
78, indicating that there were 78 such individuals. To the right of this value are the totals, by capture
occasion, of individuals from this group of 78 ever seen again. For example, 29 of this 78 were seen
again for the first time at occasion 3, 15 were seen for the first time at occasion 4, and so on. In total, of
the 78 {11} individuals released, a total of 52 were seen again. You should now be able to see where the
values in the TEST3.SR2 table came from.
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Now, consider the ‘statistical results’. Although the proportions seen again appear to differ between
the two groups (68% for previously marked vs 71% for the newly marked), they are not statistically
different (χ2

1 � 0.696, P=0.412). What are the other 2 numbers in each of the cells? Well, if you look
down the left side of the table you’ll get a hint – note the 3 letters ‘O’, ‘E’ and ‘C’. ‘O’ = the observed
frequencies, ‘E’ = the expected frequencies (under the null hypothesis of the test), and ‘C’ represents the
contribution to the overall table χ2 value (summing the ‘C’ values for all four cells yield 0.696. The ‘C’
values are simply (O−E)

2/E). So, for individuals released at the second occasion, there is no significant
difference in ‘survival’ between newly marked and previously marked individuals.

Following the last table (TEST3.SR5 – individuals released at occasion 5), RELEASE prints a simple
cumulative result for TEST3.SR – which is simply the sum of the individual χ2 values for each of the
individual TEST3.SRn results. In this case, χ2

� 2.41, df=3, P � 0.492. What if TEST.3SR had been
significant? As we will see shortly, examination of the individual tables is essential to determine the
possible cause of lack of fit. In this case, since we have no good ‘biological explanation’ for TEST3.SR3

Chapter 5. Goodness of fit testing...



5.4.2. Running RELEASE as a standalone application 5 - 15

(obviously, since this is a simulated data set!), we accept the general lack of significance of the other
tables, and conclude that there is no evidence over all occasions that ‘survival’ differs between newly
marked and previously marked individuals.

Now let’s look at TEST3.Sm2 (i.e., TEST3.Sm for occasion 2). Recall that this test focuses on ‘of
those individuals seen again, when were they seen again, and does when they were seen differ among
previously and newly marked individuals?’. As with TEST3.SR, there is a contingency table for each
of the batches, starting with the second occasion, and ending with occasion 4.

Why not occasion 5? Well, think about what TEST3.Sm is doing – it is comparing when individuals
are seen again (as opposed to are they seen again). At occasion 5, any individual if seen again must
have been seen again at the last occasion (6), since there are no other occasions! So, it doesn’t make
much sense to create TEST3.Sm for the penultimate occasion. Let’s consider TEST3.Sm2 – the second
occasion.

At occasion 2, a total of 428 individuals were released – 78 that had been seen before, and 350 newly
marked individuals. Of these 428 individuals, 302 were seen again. From the TEST3.Sm2 table (above),
250 of this 302 were newly marked individuals, and 52 were previously marked. You should be able to
determine where these totals come from, using the full m-array (shown on the preceding page).

However, we’re now faced with a different puzzle – why only two columns? If TEST3.Sm considers
‘when’ individuals were seen again, then unless all individuals seen again were seen on only the next
two occasions, then there should be more than two columns.

Look at the full m-array (on the preceding page). We see that of the 428 individuals marked and
released at occasion 2, 350 were newly marked and released (the {01} individuals), while 78 were
previously marked at occasion 1, and released (the {11} individuals). Of the 350 {01} individuals, 141
were seen again for the first time at occasion 3, 77 were seen again for the first time at occasion 4, and
so on. Among the 78 {01} individuals, 29 were seen again for the first time at occasion 3, 15 were seen
again for the first time at occasion 4, and so on.
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Thus, if we were to construct our own TEST3.Sm2 table, it would look like:

TEST3.Sm2 when seen again?

seen at (2) (3) (4) (5) (6)

{01} 141 77 28 4
{11} 29 15 8 0

So why doesn’t the RELEASE table for TEST3.Sm2 look like this? It doesn’t, because RELEASE is
‘smart’ enough to look at the ‘true’ table (above) and realize that the data are too sparsely distributed for
the later occasions for a contingency test to be meaningful. RELEASE has simply pooled cells, collapsing
the (2 × 4) table to a (2 × 2) table.

Now consider TEST 2, starting with TEST2.C. Recall that in TEST2.C, we are ‘using’ individuals
that are known to have survived from (i) to (i+1). TEST2.Ct tests if the probability of being seen at
occasion (i+1) is a function of whether or not the individual was seen at occasion (i), conditional on
surviving from (i) to (i+1). TEST 2 differs from TEST 3 somewhat in that we are not considering when
an individual was marked, but rather on when it was recaptured. The result for TEST.2C2 is shown
below:

Once each of the component tests TEST 3 and TEST 2 are finished, RELEASE presents you with
a convenient tabulation of all of the individual TEST 3 and TEST 2 results. It also gives you some
indication as to whether or not there was sufficient data in a given test for you to be able to ‘trust’ the
result. Using our simulated data, we have no significant TEST 2 or TEST 3 result. Thus, the overall
GOF result (TEST 2 + TEST 3 = 6.34) is also not significant (P � 0.898). This is perhaps not surprising,
since we set up the simulation so that the data would follow the CJS assumptions! Our purpose here
was simply to introduce TEST 2 and TEST 3.

One thing you might be asking yourself at this point is ‘since RELEASE gives me these nice summary
tables, why do I need so much detail?’. The answer – if your data do fit the CJS model, then you clearly
don’t. But if your data don’t fit the model (i.e., if any of the tests is rejected), then the only chance you
have of trying to figure out what is going on is to look at the individual contingency tables. We got some
sense of this when we looked at TEST3.SR in our simulated data set – one of the batches had results
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quite different from the other batches, leading to a near-significant TEST3.SR result overall. Further,
even if the 4 tests are accepted (no significant differences) you should remember that these tests are for
simple heterogeneity – they do not test specifically for systematic differences. Again, the only clue you
might have is by looking at the individual tables.

5.5. Enhancements to RELEASE – program U-CARE

Recently, Rémi Choquet, Roger Pradel, and Olivier Gimenez have developed a program (known as U-

CARE, for Unified Capture-Recapture)which provides several enhancements to program RELEASE. In
its previous versions, U-CARE provided goodness-of-fit tests for single-site models only. Recently, new
tests have appeared for the multistate JollyMoVe (JMV) and Arnason-Schwarz (AS) models (Pradel,
R., C. Wintrebert and O. Gimenez, 2003) and those tests have been incorporated in the current version
of U-CARE (for discussion of the use of U-CARE for GOF testing for multi-state models, see the last
section(s) of Chapter 8). Here, we concentrate on using U-CARE for GOF testing for single-state models
only.

U-CARE contains several tests which are similar to those found in RELEASE, but in many cases
using slightly different strategies for pooling sparse contingency tables (and thus, the results may differ
slightly from those from RELEASE – we’ll see an example of this shortly). More importantly, however,
U-CARE incorporates specific ‘directional’ tests for transience (Pradel et al., 1997) and trap-dependence
(trap-happiness or trap shyness; Pradel 1993) derived from the contingency tables used in the GOF tests
in RELEASE. Forthcoming versions of U-CARE are anticipated to incorporate further specialized tests
and appropriate treatment of sparse data together with indications on the recommended model from
which model selection can start.

At present, U-CARE cannot be run from within MARK, and so must be run separately, as a stand-
alone program. When you start U-CARE, you will be presented with two windows : one, a ‘black DOS
window’ (which is where evidence of the numerical estimations can be seen – you may have already
noticed that MARK uses a similar ‘command window’ during its numerical estimations), and the main
‘graphical’ front-end to U-CARE – clearly, it’s pretty ‘minimalist’:

Initially, only one menu is available: the ‘File’ menu. As you might expect, this is where you tell
U-CARE where to find the data you want to perform a GOF test on.
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However, if you access the ‘File’ menu,

you will see a number of options: you can open encounter history files in one of two formats: a format
used in program SURGE (and derivatives) known as Biomeco, and the one we’re familiar with, the
MARK format (the distinctions between the formats are minor – in fact, U-CARE provides you the
utility function of being able to read in data in one format, verify it, and write it out in another format.

To demonstrate using U-CARE, let’s test the fit of a familiar data set – the European dippers. We’ll
focus for the moment on the males only (i.e., a single group). This file is called ed_males.inp. We simply
select this file using the ‘Open (MARK Format)’ file option in U-CARE.

Once you’ve selected the MARK input file, U-CARE responds with a small ‘pop-up’ window which
is asking you (in effect) if there are any external covariates in the file (see Chapter 2). In this case, with
the male Dipper data, there are no covariates included in the data set, so U-CARE informs you that, as
far as it can tell, there are 0 covariates:

If this is correct (which it is in this case), simply click the ‘OK’ button to proceed. You’ll then be
presented with 2 new windows: one window shows the encounter histories themselves (if they look
‘strange’ – specifically, if you’re wondering why the columns are separated by spaces – not to worry. This
is Biomeco format, and is functionally equivalent to MARK’s input format in how U-CARE processes
the data).

The other window (shown at the top of the next page) is the main U-CARE window, but with many
more options now available, plus a window showing you some details about the file you just read in.
Note that U-CARE assumes that the number of occasions in the data file is the number of occasions
you want to test GOF over. In MARK, recall that you must ‘tell MARK’ how many occasions there are
(or, that you want to use).
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If you pull down each of the menus in turn, you’ll see that there are a lot of options in U-CARE. The
‘Transform Data’ menu provides a set of convenient ways in which to split or pool data (e.g., pooling
multiple strata into a single stratum), according to various criterion, reverse the encounter histories, and
so forth.

The other two menu options are clearly relevant for GOF testing. There is a GOF menu, and then one
specific to multi-state models. For the moment, since our example data have only one ‘state’ (multi-state
models is something we cover is some detail in Chapter 8), we’ll consider only the ‘Goodness-of-Fit’
menu. If you access this menu, you’ll see several options.

The first (‘M-ARRAY’) allows you to generate the reduced m-array for your data. Recall that the reduced
m-array is a summary table, and does not represent all of the details concerning the encounter histories,
which are contained in the full m-array. The m-array is useful for ‘visual diagnosis’ of some aspects of
your data.

Nextare 4 component tests: two for ‘Test 3’,and two for ‘Test 2’. The use of ‘Test 3’ and ‘Test 2’ indicates
clearly thatU-CARE is builton the underlying principles (andcode base) ofprogram RELEASE. In some
cases, the tests are identical (for example, TEST3.SR). In other cases, they are somewhat different (e.g.,
there is no TEST2.CL in the version of RELEASE distributed with MARK). More on these individual
component tests in a moment. Finally, there is an option (at the bottom of the menu) to sum the tests
over groups. This option basically gives you the summary results of the individual component tests, in
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a single output.

To explore the individual component tests in U-CARE, let’s proceed to do the GOF testing on the
male dippers. We’ll start with TEST3.SR. Recall from the earlier discussion of program RELEASE

that TEST3.SR tests the hypothesis that there is no difference among previously and newly marked
individuals captured at time (i) in the probability of being recaptured at some later time > i (i.e., that
whether or not an animal is ever encountered again is not a function of whether or not it is newly
marked). If you select TEST3.SR from the menu, U-CARE will respond with a window showing the
contributions of each cohort to the overall χ2 statistic for this test:

One of the first things we notice from the output for TEST3.SR (and all the other tests, which will get
to shortly) is that U-CARE provides a fair number more ‘statistical bits’ than you find in the output from
program RELEASE. Forexample,you’ll recall from ourpreceding discussion of program RELEASE that
by careful examination of the individual contingency tables of TEST3.SR, you might be able to ‘visually’
detect systematic departures from expectation in the contingency tables,which might be consistent with
transient effects (or age effects). However, U-CARE formalizes this level of analysis (while also making
it much simpler), by providing a test specific for ‘transience’ (or, perhaps more accurately, directionality).
In fact, U-CARE gives you 2 different approaches to this statistic (the second one based on a log-odds-
ratio), as well as both a two-tailed and one-tailed significance test. U-CARE also provides two test
statistics for overall heterogeneity (the quadratic and likelihood-based G test). The table-like material
at the top of the output is the contribution of each cohort to the various statistics (the additivity of the
various statistics is quite useful, since it can help you identify particular cohorts which might be having
undue influence on the overall fit).
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How do these results compare to those from RELEASE? Recall we mentioned in passing that U-

CARE uses a slightly different pooling algorithm than does RELEASE, and as such, there will be
occasions where U-CARE and RELEASE give slightly different answers. Here are the results from
TEST3.SR from program RELEASE.

We see that the overall heterogeneityχ2 statistic from RELEASE (which is based on a Pearson statistic)
is 5.2759, with 5 df. Based on a two-tailed test, the calculated probability is 0.3831. From U-CARE, there
are two test statistics: 6.7776 and 6.8491, both with the same degree of freedom (5). Both of these values
are somewhat higher than the value from RELEASE. These differences come from differences in how
pooling in sparse cohort-specific contingency tables is handled between the two programs. You can get
a sense of this by comparing the contributions from each cohort to the overall χ2 statistic between the
two programs. Note that the differences are quite striking in this example: many of the cohorts have
very sparse data.

What about the other component tests? In RELEASE, there is a companion test forTEST3.SR, referred
to as TEST3.Sm (recall that TEST3.Sm tests the hypothesis that there is no difference in the expected
time of first recapture between the ‘new’ and ‘old’ individuals captured at occasion i and seen again at
least once). This test is also available in U-CARE.

However, there are some notable differences between MARK and U-CARE when it comes to TEST2.
In MARK, there is only a single TEST2 provided (TEST2.C), whereas in U-CARE, TEST2 is divided
into two component tests: TEST2.CT, and TEST2.CL. TEST2.CT tests the hypothesis that there is no
difference in the probability of being recaptured at i+1 between those captured and not captured at
occasion i, conditional on presence at both occasions. TEST2 differs from TEST3 somewhat in that we
are not considering when an individualwas marked,but ratheron when itwas recaptured. The TEST2.C

in MARK is equivalent to TEST2.CT in U-CARE. But, what about TEST2.CL, which is presented in
U-CARE? TEST2.CL, based on the contingency table where individuals are classified on whether or
not they were captured before (or at) occasion i, and after (or at) occasion i+2 (and thus known to be
alive at both i, and i+1). The null hypothesis being tested in TEST2.CL is that there is no difference in
the expected time of next recapture between the individuals captured and not captured at occasion i

conditional on presence at both occasions i and i+2. To date, this test has no ‘simple’ interpretation, but
it is a component test of the overall TEST2 fit statistic.

5.5.1. RELEASE & U-CARE – estimating ĉ

OK, so now we have several TEST3 and TEST2 component statistics. What do we need these for? Well,
clearly one of our major motivations is assessing fit, and (more mechanically) deriving an estimate of
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the ĉ value we’ll use to adjust for lack of fit. Using either U-CARE, or RELEASE, one estimate for ĉ is to
take the overall χ2 (sum of the TEST 2 and TEST 3 component tests), and divide by the overall degrees
of freedom. If we use RELEASE, we see that the overall TEST 3 statistic is 5.276 (for TEST3.SR), and
0.000 (for TEST3.SM), for an overall TEST 3 χ2

� 5.276. For TEST 2, there is only one value reported
in RELEASE: TEST2.CT χ2

� 4.284. Thus, the overall model χ2
� (5.276 + 4.284) � 9.56, with 9 df.

The probability of a χ2 value this large, with 9 df, is reported as 0.3873. Thus, the estimate for ĉ, based
on the results from RELEASE, is (9.56/9) � 1.06, which is close to 1.0. From U-CARE, we can get the
‘overall’ statistics quite easily, simply by selecting ‘Sum of tests over groups’. When we do so, we get
the following output:

The overall test statistic is reported as 11.0621, with 9 df, yielding an estimate of ĉ � (11.062/9) � 1.23,
which is somewhat larger than the value calculated from the RELEASE output. But, note that U-CARE

also provides some furtherdiagnostics: specifically, tests of transience,and trap-dependence. In this case,
for the male dipper data, there is no compelling evidence for either transience, or trap-dependence.

What else can we use the component tests for? As described above, we’ve used the sum of TEST3

and TEST2 test statistics, divided by model df, to derive an estimate of ĉ. But, remember that the model
we’re testing here is the fully time-dependent CJS model (i.e., {ϕt pt}). But, what do we do if the time-
dependent CJS model isn’t our general model – what if we want to ‘start’ with some other model? As it
turns out, the components of TEST 3 and TEST 2 are still useful in assessing fit, and providing estimates
of ĉ, for a variety of models. The following table indicates some of the ways in which components can
be used in this way. Note that we haven’t covered some of these models yet (but will in later chapters).

components used model detail

TEST3.SR+TEST3.SM+TEST2.CT+TEST2.CL ϕt pt fully time-dependent CJS model

TEST3.SM+TEST2.CT+TEST2.CL ϕa2−t/t pt two age-class for survival, time-

dependence in both age-classes (also

know as the ‘transience’ models in

some references)

TEST3.SR+TEST3.SM+TEST2.CL ϕt pt∗m immediate trap-dependence in rec-

pature rate (see Pradel 1993)

Thus, using RELEASE, and U-CARE, goodness-of-fit tests are available readily for 3 models – which,
as it turns out,are often the starting points for many single-site recapture analyses. Among them,{ϕt pt},
which makes the assumptions that survival and capture probabilities are solely time-dependent, is the
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most restrictive because it does not permit survival to differ between newly marked and previously
marked animals contrary to {ϕa2−t/t pt}, nor capture to differ between animals captured at the previous
occasion and those not captured then, contrary to model {ϕtpm∗t}. In fact, {ϕtpt} is nested within each
of the two other models. Models {ϕt pm∗t} and {ϕa2−t/t pt} are not directly related (i.e., are not nested).

As a consequence of this hierarchy, the goodness-of-fit test of {ϕt pt} involves more component tests
(because more assumptions are to be checked) than the goodness-of-fit tests of {ϕt pm∗t} or {ϕa2−t/tpt}.
In fact, the goodness-of-fit test of {ϕtpt} can be decomposed into two steps, in either of two ways:

1. via {ϕa2−t/tpt}: the goodness-of-fit test of {ϕa2−t/t pt}; then, if and only if {ϕa2−t/tpt}
appears valid, the test of {ϕt pt} against {ϕa2−t/tpt}

2. via {ϕt pm∗t}: the goodness-of-fit test of {ϕtpm∗t}; then, if and only if {ϕtpm∗t} appears
valid, the test of {ϕt pt} against {ϕt pm∗t}

Thus, RELEASE and (especially) U-CARE provide very good capabilities for GOF testing for several
important live-encounter ‘mark-recapture’ models. But, notice that the models being tested are all ‘time-
dependent’. While it is true that in many cases the most general model in a candidate model set (and
the model for which ĉ is estimated) is a time-dependent model, this is not always the case. What if your
data are too sparse to ever support a time-dependent model? Or, what if your data don’t involve live
encounter data? Is there a more generic approach to GOF testing that can be used for any kind of data?

At the risk of oversimplifying, we note that GOF testing for ‘typical’ data from marked individuals
is a form of contingency analysis – do the frequencies of individuals exhibiting particular encounter
histories match those expected under a given null model, for a given number released on each occasion?
You have probably already had considerable experience with some forms of GOF testing, without
knowing it. For example, in some introductory class you might have had in population genetics, you
might recall that deviations from Hardy-Weinberg expectations were ‘established’ by GOF testing –
through comparison of observed frequencies of individual genotypes with those expected under the
null model.

In general, the goodness-of-fit of the global model can be evaluated in a couple of ways: traditionally,
by assuming that the deviance for the model is χ2 distributed and computing a goodness-of-fit test
from this statistic, and using RELEASE (for live recapture data only) to compute the goodness-of-fit
tests provided by that program (as described previously). However, this approach is generally not valid
because the assumption of the deviance being χ2 distributed is seldom met, especially for multinomial
data. Program RELEASE, which is only applicable to live recapture data, or dead recovery data under
some simplifying assumptions, suffers from the same problem to some degree – but usually lacks
statistical power to detect lack of fit because of the amount of pooling required to compute χ2 distributed
test statistics. RELEASE also is only really appropriate for simple variations of the time-dependent CJS
model.

An alternative, and conceptually reasonable approach, is to use an approach based on ‘resampling’
the data. In addition to providing a basic GOF diagnostic, such approaches also enable you to ‘estimate’
the magnitude of the lack of fit. As we shall see, this lack of fit becomes important in assessing
‘significance’ of some model comparisons. In the following sections, we’ll introduce two resampling-
based approaches to GOF testing and estimation of ĉ currently available in MARK: the bootstrap, and
the median-ĉ.
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5.6. MARK and bootstrapped GOF testing

As noted in the MARK help file, with the bootstrap procedure, the estimates of the model being
evaluated for goodness of fit are used to generate data, i.e., a parametric bootstrap. In other words,
the parameter estimates (survival, recapture, recovery rate...) for the model in question are used to
simulate data. These simulated data exactly meet the assumptions of the model, i.e., no over-dispersion
is included, animals are totally independent, and no violations of model assumptions are included. Data
are simulated based on the number of animals released at each occasion. For each release, a simulated
encounter history is constructed.

As an example, consider a live recapture data set with 3 occasions (2 survival intervals) and an animal
first released at time 1. The animal starts off with an encounter history of 1, because it was released on
occasion 1. Does the animal survive the interval from the release occasion until the next recapture
occasion? The probability of survival is ϕ1, provided from the estimates obtained with the original
data. A uniform random number in the interval [0, 1] is generated, and compared to the estimate of
ϕ1. If the random number is less than or equal to ϕ1, the animal is considered to have survived the
interval. If the random value is greater than ϕ1, the animal has died. Thus, the encounter history would
be complete, and would be ‘100’. Suppose instead that the animal survives the first interval. Then, is it
recaptured on the second occasion? Again, a new random number is generated, and compared to the
capture probability p2 from the parameter estimates of the model being tested. If the random value is
less than p2, the animal is considered to be captured, and the encounter history would become 110. If
not captured, the encounter history would remain 100. Next, whether the animal survives the second
survival interval is determined, again by comparing a new random value with ϕ2. If the animal dies,
the current encounter history is complete, and would be either ‘100’ or ‘110’. If the animal lives, then
a new random value is used to determine if the animal is recaptured on occasion 3 with probability
p3. If recaptured, the third occasion in the encounter history is given a ‘1’. If not recaptured, the third
occasion is left with a zero value.

Once the encounter history is complete, it is saved for input to the numerical estimation procedure.
Once encounter histories have been generated for all the animals released, the numerical estimation
procedure is run to compute the deviance and its degrees of freedom. In other words, suppose there
are a total of 100 individuals in your sample. Suppose you are testing the fit of model {ϕt pt}. What
MARK does is, for each of these hundred animals, simulate a capture (encounter) history, using the
estimates from model {ϕt pt}. MARK takes these 100 simulated capture histories and ‘analyzes them’
– fits model {ϕtpt} to them, outputting a model deviance, and a measure of the lack of fit, ĉ (or, ‘c-hat’),
to a file. Recall from our early discussion of the AIC (Chapter 4, earlier in this chapter) that ĉ is the
quasi-likelihood parameter. If the model fits perfectly, ĉ � 1. c is estimated (usually) by dividing the model
deviance by the model degrees of freedom. The quasi-likelihood parameter was used to adjust AIC
for possible overdispersion in the data (one possible source of lack of fit). Later in this chapter, we will
discuss the use of this parameter more fully. The entire process of ‘simulate,estimate,output’ is repeated
for the number of simulations requested. When the requested number of simulations is completed, the
user can access the bootstrap simulations results database to evaluate the goodness of fit of the model
that was simulated.

Let’s look at an example of doing this in MARK. We will assess the GOF of the fully time-dependent
CJS model {ϕt pt} to the male European Dipper data set. If you still have the database file from your
earlier analyses of this data set go ahead and open it up in MARK. If not, start MARK, open up a new
project using the male Dipper data, and fit model {ϕt pt} to the data.

Now, to perform a bootstrapped GOF test on model {ϕt pt}, highlight it in the results browser by
clicking on the model once. Right-click with the mouse, and ‘retrieve’ the model. Once you have
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selected the appropriate model, pull down the ‘Tests’ menu, and select ‘Bootstrap GOF’.

You will then be presented with a new window, where you are asked if you want to output just
the model deviance from the simulated data, or the deviance, deviance degrees of freedom, and the
quasi-likelihood parameter c. As noted in the window, outputting the deviance alone is the fastest, but
we suggest that you go for all three – it takes longer computationally, but ultimately gives you all the
information you need for GOF testing, as well as a robust estimate of c which, ultimately, is necessary
for adjusting the models fits in your analysis.

You will then be prompted for a name for the file into which the bootstrapped estimates are to be
output. The default is BootstrapResults.dbf.

Finally, you will be asked to specify the number of simulations you want to make (the default is
100), and a random number seed (the default is to use the computer system clock to generate a random
number seed). While using the same seed is useful on occasion to diagnose particular problems, in
general, you should always use a new random number seed. Once you have entered an appropriate
number of simulations (more on this below), and a random number seed, click ‘OK’. MARK will then
spawn a little ‘progress window’, showing you what proportion of the requested number of simulations
has been completed at a given moment.

Remember, that for each iteration, MARK is (1) simulating capture histories for each individual in
the original sample, and (2) fitting model {ϕt pt} to these simulated data. As such, it will take some
time to complete the task. What do we mean by ‘some’? Well, this depends on (1) how big the original
data set is, (2) the ‘complexity’ of the model being fit (i.e., the number of parameters), (3) the number
of bootstrapped samples requested, and (4) the computing horsepower you have at your disposal.

OK – now the big question: how many simulations do we need? To answer this question, you first
have to understand how we use these simulated data, and the estimated deviances and quasi-likelihood
parameters we derived from them. We’ll start with the deviances. In essence, what we try to do with
the bootstrapped values is to ‘see where the observed model deviance falls on the distribution of all
the deviances from the simulated data’. In other words, plot out the distribution of the deviances from
the data simulated under the model in question, and look to see where the observed deviance – the
deviance from the fit of the model to the original data – falls on this distribution. Suppose for example,
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the deviance of the original model was 104.5, whereas the largest deviance from 1,000 simulations was
only 101.2. Then, you would conclude that the possibility of observing a deviance as large as 104.5 was
less than 1/1,000 (i.e., P < 0.001). Or, suppose that you sorted the deviances from the simulated data,
from lowest to highest, and found that the 801th deviance was 104.1, and the 802nd value was 105.0. In
this case, you would conclude that your observed deviance was ‘reasonably likely’ to be observed, with
a P < 0.198 (198/1,000), because 198 of the simulated values exceeded the observed value.

MARK makes it easy to do this. Once your simulations are complete, pull down the ‘Simulations’
menu, and select ‘View Simulation Results’. You will then be asked to pick the file containing the
results of the simulations (the default was ‘BootstrapResults.dbf’). Select the file. A window will pop
up that bears a fair resemblance to an Excel spreadsheet (in fact, you can read it into Excel if needed).

In the spreadsheet, you will see the number of the simulation, the name of the model being simulated,
the number of estimable parameters in the model (in this case, the number of parameters is the number
determined by the rank of the variance-covariance matrix – see the addendum in Chapter 4 for technical
details). Next, the model deviance, and depending upon which option you selected when you ran the
simulations, the deviance degrees of freedom and the ĉ values. To sort the data in order of ascending
deviances, simply click the ‘A-Z’ icon on the toolbar, and then select the deviances (you can sort by any
or all the elements in the spreadsheet – we’re only after the deviance at this stage).

First, the deviances of the simulated data can be ranked (sorted into ascending order), and the relative
rank of the deviance from the original data determined. In this example, we note from the results
browser that the deviance for model {ϕt pt} for the male dipper data is 36.401. Sorting the deviances
from the simulated data, we find that the 917th deviance is 36.344, while the 918th deviance is 36.523.
The rank of the sorted deviances can be determined using one of the tools on the spreadsheet toolbar.

Thus, the probability of a deviance as large or greater than the observed value of 36.401 is approxi-
mately 0.082. So,depending upon your ‘comfort level’ (afterall, selection of an α-level is ratherarbitrary),
there is probably fair evidence that model {ϕt pt} adequately fits the male Dipper data. On the other
hand, some people might argue (reasonably) that P � 0.082 isn’t particularly ‘comforting’, so perhaps
in fact there is some evidence of lack of fit.

However, this leads us back to the following question – how many simulations do you need? In our
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experience, a two-stage process generally works well. Run 100 simulations, and do a rough comparison
of where the observed deviance falls on the distribution of these 100 values. If the ‘P-value’ is > 0.2, then
doing more simulations is probably a waste of time – the results are unlikely to change much (although
obviously the precision of your estimate of the P-value will improve). However as the value gets closer
to nominal significance (say, if the observed P-value is < 0.2), then it it probably worth doing ≫ 100

simulations (say, 500 or 1000). Note that this is likely to take a long time (relatively speaking, depending
on the speed of your computer).

What else can we do with these bootstrapped simulations? Well, perhaps the most useful thing we
can do is to estimate the over-dispersion parameter, c. Why? Well, recall that if the model fits the data
‘perfectly’, then we expect the value of ĉ to be 1.0; ĉ is estimated as the ratio of the model χ2 divided by
the model df. When the value of ĉ > 1, this is consistent with the interpretation that there is some degree
of overdispersion. With a P � 0.082, perhaps we might believe that there is some marginal evidence
for lack of fit of the general model to the data. As noted in the MARK helpfile, two approaches are
possible, based on the deviance directly, and on ĉ. For the approach based on deviance, the deviance
estimate from the original data is divided by the mean of the simulated deviances to compute ĉ for the
data. The logic behind this is that the mean of the simulated deviances represents the expected value
of the deviance under the null model of no violations of assumptions (i.e., perfect fit of the model to
the data). Thus, ĉ = observed deviance divided by the expected deviance provides a measure of the
amount of over-dispersion in the original data. The second approach is to divide the observed value of
ĉ from the original data by the mean of the simulated values of ĉ from the bootstraps. Again, we use
the mean of the simulated values to estimate the expected value of ĉ under the assumption of perfect
fit of the model to the data. Mean values of both ĉ and deviance are easily obtained by simply clicking
the ‘calculator’ icon on the toolbar of the spreadsheet containing the simulated values.

begin sidebar

Careful!

Remember, the simulation results browser allows you to derive a mean ĉ simply by clicking a button.

However, remember that this mean ĉ value is not the ĉ you need to use. Rather, if you want to use

the bootstrapped estimates of ĉ’s (the 2nd of the two approaches described above), then you take the

observed model ĉ and divide this value by the mean ĉ from the bootstraps.

end sidebar

As noted in the MARK helpfile, there is no good understanding at present of the relative merits of
these two approaches. For the example of the male Dipper data, using the observed deviance divided by
the mean deviances of the simulated data yields a value of (36.401/25.673) � 1.418. To use the second
approach, we first derive the observed ĉ value – the model deviance divided by the deviance degrees
of freedom. While the model deviance can be read directly from the results browser, the deviance
degrees of freedom is obtained by looking in the complete listing of the estimation results – immediately
below the print-out of the conditioned S-vector (which is described in the addendum to Chapter 4) In
this example, observed ĉ is (36.401/7) � 5.20. Dividing this observed value by the mean ĉ from the
bootstrapped simulations yields (5.20/3.396) � 1.531, which is slightly higher than the value obtained
dividing the observed deviance by the mean deviance.

Which one to use? Until more formal work is done, it probably makes sense to be conservative, and
use the higher of the two values (better to assume worse fit than better fit – the further ĉ is from 1, the
bigger the departure from ‘perfect fit’). On a practical note, because the observed deviance divided by
the mean of the bootstrap deviances does not rely on estimating the number of parameters, it is typically
much faster. ‘Bootstrap Options’ allows you to specify that you are only interested in the deviance, and
not ĉ, from the bootstrap simulations. Generally, the results are often about the same between the two
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approaches, but can be different when the degrees of freedom of the deviance varies a lot across the
bootstrap simulations (caused by a small number of releases).

5.6.1. RELEASE versus the bootstrap

When ‘true’ ĉ is 1 (i.e., no extra-binomial variation), both RELEASE and the bootstrap do equally well
(equivalent bias, which was very low in both cases). However, when data were simulated with a ‘true’ ĉ

of 2 (i.e., considerable extra-binomial variation), the bootstrap was found to perform less well than did
RELEASE (negatively biased), with the magnitude of the bias increasing with increasing numbers of
occasions.∗

This seems to imply that RELEASE is your best option. Arguably, it might be for standard capture-
recapture data (live encounters), but will clearly be of limited utility for data types which are not
consistent with RELEASE (live encounter/recapture data only). So, are we stuck? Well, perhaps not
entirely.

5.7. ‘median ĉ’ – a way forward?

A new approach (which has been implemented in MARK) has recently been described, and appears
quite promising. As with all good ideas, it is based on a simple premise: that the best estimate of ĉ

is the value for which the observed ‘deviance ĉ’ value (i.e., the model deviance divided by the model
degrees of freedom) falls exactly half-way in the distribution ofallpossible ‘deviance ĉ values’,generated
(simulated) under the hypothesis that a given value of c is the true value. As such, 50% of the generated
‘deviance ĉ’ values would be greater than the observed value, and 50% would be less than the observed
value. The half-way point of such a distribution is the ‘median’, and thus, this new approach to GOF
testing is referred to in MARK as the ‘median-ĉ’ approach.

We’ll introduce this approach by means of a familiar example – the male European dipper data set
we analyzed in the preceding chapter (ed_males.inp). Using program RELEASE, the estimate of ĉ for
our general model {ϕt pt} was (9.5598/9) � 1.0622. Based on a bootstrap GOF test, using 500 bootstrap
samples, the estimate of ĉ is ∼ 1.53.

Now, what about this new approach – the ‘median-ĉ’? Well, to run the median GOF test, we simply
select this option from the ‘Tests’ menu. Doing so will spawn the following new window:

∗ For details, see White, G. C. (2002) Journal of Applied Statistics, 29, 103-106.
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At the top,the observeddeviance is noted: 5.20 (actually, it’s the observeddeviance ĉ: the modeldeviance
divided by the deviance degrees of freedom: (36.401349/7) � 5.20). Next, you’re presented with a lower
and upper bound. The lower bound defaults to 1, since a deviance ĉ of 1.0 indicates ‘perfect’ fit of the
model to the data. The upper bound (5.5) is slightly larger than the observed deviance ĉ.

Next, you’re asked to specify the number of intermediate ‘design’ points between the lower and upper
bound, and the number of replicates at each ‘design point’.

What do these refer to? Well, first, MARK is going to (ultimately) fit a regression line to some
simulated data – for a series of different values of ĉ (i.e., the number of intermediate points), simulate
some data – each time you do so, output the calculated deviance ĉ for those simulated data. The number
of ‘replicates’ is the number of simulations you do for each value of c you simulate, between the lower
and upper bound. Just like with all regressions, the more points you have between the lower and upper
bound, and the greater the number of replicates at each point, the better the precision of your regression.
MARK defaults to 10 for each, since this represents a good compromise in most cases between precision
(which is always something you want to improve), and time (increasing the number of intermediate
points and/or the number of replicates at each design point, will take a very long time to run for most
problems – yet another reason to start agitating for a faster computer).

OK, so far, so good. But what is this ‘regression’ we’ve mentioned a couple of times? Basically,
it’s a logistic regression – a regression where the response variable is a binary state variable, suitably
transformed (usually using the logit transform – hence the name logistic regression). In this case, the
binary state is ‘above the observed deviance ĉ’ or ‘below the observed deviance ĉ’. So, for each value
of ĉ in the simulation, we generate a sample of deviance ĉ’s. We count how many of these values are
‘above’ or ‘below’ the observed value, and regress this proportion on ĉ (using the logistic regression).
Then, all we need to do is use the regression equation to figure out what value of ĉ corresponds to the
situation where the proportions of the simulated deviance ĉ’s are equal (i.e., where the number ‘above’
the observed value is exactly the same as the number ‘below’ the observed value. This, of course, is the
median of the distribution). If the number ‘above’ and ‘below’ is the same, then this is our best estimate
of ĉ, since values above or below the observed value are equally likely.

begin sidebar

median-ĉ and logistic regressions in MARK

The logistic regression analysis is performed by MARK as a known-fate model; known-fate models are

discussed in a later chapter. For now, it is sufficient to consider that ‘fate’ in this case is the ‘known’

proportion of c values above – or below (doesn’t matter) – the observed deviance ĉ.

Output consists of the estimated value of c and a SE derived from the logistic regression analysis,

with these estimates provided in a notepad or editor window preceding the known fate output. In

addition, a graph of the observed proportions along with the predicted proportions based on the

logistic regression model is provided. The initial dialog box where the simulation parameters are

specified also has a check box to request an Excel spreadsheet to contain the simulated values. This

spreadsheet is useful for additional analyses, if desired.

end sidebar

Let’s try this for the male dipper data. The default upper bound is 5.5. We’ll change this upper bound
to 3.0, for both convenience (i.e., to save time) and for heuristic reasons (if ĉ is > 3.0, we may have more
fundamental problems; Lebreton et al. 1992). We set the number of intermediate points (i.e., c values)
to 3 (so, 5 total design points on the function), and the number of iterations (replicates) at each value of
c to 100. If you’re trying this on your own, this might take some time.
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A plot of the ĉ values simulated by MARK for the male dipper data is shown below.
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Each of the open circles in the plot represents the deviance ĉ for one of the bootstrapped replicates,
at each of the 5 design points (i.e., values of c) in the simulation (in this case, 1.0, 1.5, . . . , 3.0). The solid
horizontal line represents the observed deviance ĉ for the general model (5.2002). Remember, what
we’re after is the value of c for which the number of open circles above the observed value is equal to
the number of open circles below the observed value.

From the figure, we see clearly that this occurs somewhere in the range 1.0 → 1.5; for all values of
c > 1.5, there are clearly far more values above the observed value, than below it.

In fact, if we calculate the frequency of ‘above’ and ‘below’ for each value of c, we get the following
contingency table (based on 100 replicates in each column – note, your numbers may differ):

1.0 1.5 2.0 2.5 3.0
above observed 11 66 94 99 100
below observed 89 34 6 1 0

Again, we see clearly that the ‘median’ will occur somewhere between ĉ � 1.0 and ĉ � 1.5. Applying
a logistic regression to these data (where the logit transformed proportion is the response variable, and
the value of c is the independent variable), we get an estimate of the intercept of β̂0 � 6.7557, and an
estimate of the slope of β̂1 � −4.8476. Since we’re interested in the point at which the proportion above
and below is equal at 50% (i.e., 0.5), then we simply take the logistic equation, set it equal to 0.5:

0.5 �
e−4.8476(c)+6.7557

1 + e−4.8476(c)+6.7557
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Solving for c (not to worry – MARK handles all this for you) yields our estimate of ĉ � 1.3936 (with a
SE of 0.033, based on the number of intermediate points and replicates used in our simulation). That’s
it! So, based on the median approach, the estimate of ĉ is 1.3936, which is intermediate between the
value reported by RELEASE, and the bootstrapped estimate.

So, which one to use? Well, the median-ĉ GOF approach is a ‘work in progress’, but preliminary
assessment indicates that it appears to work well. In comparisons for the CJS data type to the RELEASE

model, the median-ĉ is biased high, as much as 15% in one case of ϕ � 0.5 with 5 occasions. However,
the median-ĉ has a much smaller standard deviation for the sampling distribution than the ĉ estimated
by RELEASE. That is, the mean squared error (MSE) for the median-ĉ is generally about 1

2 of the MSE
for the RELEASE estimator. Thus, on average, the median-ĉ is closer to ‘truth’ than the RELEASE ĉ,
even though the median-ĉ is biased high.

One of the current limitations of the median-ĉ goodness-of-fit procedure is that individual covariates
are not allowed – but unlike the bootstrap, it can be used for most of the other models in MARK. Further,
it can be applied to any model you want – RELEASE (and U-CARE) requires you to use the fully time-
specific model as the general model, which may not always be ideal depending on your particular
circumstances.

Overall, the median-ĉ GOF approach seems promising. However, be advised that no GOF test is
perfect – the median GOF approach is a ‘work in progress’, and its performance compared to other
GOF approaches has not been fully evaluated in all situations (e.g., multi-state models). For the moment,
we’d suggest, where possible, running as many of the GOF tests as are available – each has different
strengths and weaknesses. Hopefully, there will be reasonable agreement among them. If not, then you
need to decide on the choice of which ĉ estimate to use (largest, smallest, or otherwise, recognizing that
the larger the value of ĉ used, the more support simpler models will get relative to more complicated
models in your candidate model set, and that the relative scaling of AIC itself will change), and the
reason for the choice should be communicated.

begin sidebar

The bootstrap and/or median-ĉ won’t give me an estimate for ĉ! Now what?

In some cases, when you run either the bootstrap or median-ĉ goodness of fit tests, some/many/all

of the simulations will have ‘problems’ – failure to converge, nonsense values, incorrect parameter

counts, and so forth. In virtually all cases, this is not a problem with MARK, but, rather, with the

general model you are trying to fit your data to (and which MARK is attempting to use to simulate

data).

Remember, that the general approach to model selection involves multi-model inference over the set

of candidate models,under the assumption that at least one of the models adequately fits the data. And

of course, this is what you are using the GOF test to assess – the adequacy of fit of your ‘general model’

to the data. In many cases, your general model will be a time-dependent model in one or more of the

parameters. However, you need to be aware that for some sparse data sets, a fully time-dependent

model is unlikely to fit your data well – many/most of the parameters will be poorly estimated, if they

are estimated at all. And, if one or more parameters can’t be estimated – because of sparseness in the

data – then MARK will not be able to successfully simulate data under that model.

The solution is to accept – grudgingly, perhaps – that your data may simply be inadequate to fitting

a time-specific general model. There is nothing particularly wrong with that – you simply need to find

a more reduced parameter model which satisfies your needs (i.e., which adequately fits the data). Of

course, using anything other than a time-dependent model precludes use of RELEASE or U-CARE

for GOF testing, but that is not a particular problem if the goal is estimation of ĉ (and not looking in

detail at the underlying sources of lack of fit).

end sidebar
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Now it is very important that you realize that both the bootstrap and the median-ĉ approaches we’ve
just described assume that the source of lack of fit is simple extra-binomial noise. In fact, this is precisely
how the simulations work. For example, to simulate a data set with a ĉ � 2.0, the frequency of each
observed encounter history is simply doubled.

What this means is that the estimated ĉ is robust (more or less) if and only if the primary source of
lack of fit is extra-binomial. If the lack of fit is due to something else (say, structural problems in the
model), then the estimated ĉ may not be particularly useful. Some of these issues are addressed in the
following section.

5.8. The Fletcher ĉ

Estimation of overdispersion (i.e., ĉ) from the observed number of individuals associated with each
possible capture history will be tricky, due to the potentially large number of capture histories with
very low expected frequencies. Neither estimates based on the deviance, nor those based on Pearson’s
statistic will perform well. The former will tend to be strongly negatively biased, while the latter will be
less biased but much more variable. In the context of fitting a generalized linear model, David Fletcher
proposed∗ a modification to the estimator that is based on Pearson’s statistic, which is some cases may
provide a robust (and much more computationally efficient) alternative to the median-ĉ.

This new estimator can also be used in the product-multinomial setting, and is given by

ĉ �
ĉX

r̄
, where r̄ �

1

N

N∑

i�1

yi

µ̂i

.

Here, ĉX is the Pearson χ2 statistic, yi and µ̂i are the observed and expected number of individuals with
capture history i, respectively, and N is the total number of observable histories. One of the problems
with using Pearson’s statistic for sparse data is that the ith term involves dividing by µ̂i, which will
often be very small. The new estimator makes an allowance for this, as the ith term in the denominator
also involves dividing by µ̂i. Simulations suggest that this new estimator also performs better than
those based on the deviance. However, there will still be many situations where this modification has
non-negligible negative bias.

In MARK, the Fletcher-ĉ is computed from the Pearson χ2 statistic, (obs− exp)
2/exp. For each cohort

of marked/released animals, the sum of the Pearson statistic is computed for all of the observed unique
encounter histories. In addition, a term for all of the unobserved (i.e., observed = 0) encounter histories
must be added, which is equal to the sum of their expected values (thus the sum of the observed - the
sum of the expected for the observed histories).

The Pearson ĉ is then computed as the χ2-squared statistic divided by its df, which for the Pearson
statistic is the total number of possible encounter histories minus the number of parameters estimated
in the model minus 1 df for each cohort. This estimate is then corrected based on Fletcher (2012; above)
to obtain the Fletcher-ĉ, as the Pearson ĉ, ĉX , divided by the mean of the observed/expected values for
all possible encounter histories, r̄.

The Fletcher-ĉ is calculated automatically for each model in the candidate model set, although
use/interpretation is only appropriate for the most parameterized model in the model set. The Fletcher-
ĉ, and the values used in its calculation, are printed in the full output for a given model, right above the
tabulation of the β estimates.

∗ Fletcher, D. (2012) Estimating overdispersion when fitting a generalized linear model to sparse data. Biometrika, 99, 230-237.
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For example, for the male Dipper data

Pearson Chisquare {phi(t)p(t)} = 75.282108

Possible Encounter Histories {phi(t)p(t)} = 126

Pearson Chisquare df {phi(t)p(t)} = 109

Pearson chat {phi(t)p(t)} = 0.6906615

Sum(Observed/Expected) {phi(t)p(t)} = 86.307388

Fletcher chat {phi(t)p(t)} = 1.0082955

Here, Fletcher-ĉ is calculated as 1.0083. It is interesting to note that this value is quite close to the
value calculated for these data using RELEASE, (9.5598/9) � 1.0622.

While the Fletcher-ĉ shows considerable promise, several problems can cause this estimate to be
incorrect. First, losses on capture or dots in the encounter history will create encounter histories that are
not considered in the total number of possible encounter histories. That is, the total number of possible
encounter histories is based on no missing data. Second, parameter values that cause a reduction in
the total number of encounter histories will bias the chat estimate. Examples of such reductions are an
occasion in the CJS data type with p � 0, or transition probabilities fixed to 0 or 1 in the multi-state data
types.

5.9. What to do when the general model ‘doesn’t fit’?

We began this chapter by noting that model selection (whether it be by AIC, or some other procedure) is
conditional on adequate fit of a general model to the data. As such, the ability to assess goodness of fit is
important. As mentioned earlier, there are at least 2 classes of reasons why a model might not adequately
fit the data. The first is the ‘biologically interesting’ one – specifically, that the structure of the general
model is simply inappropriate for the data. In subsequent chapters, you’ll see how we might have to
radically alter the basic ultrastructure of the model to accommodate ‘biological reality’. For example,
if you are marking both juveniles and adults, then there is perhaps a reasonable expectation that their
relative survival rates may differ, and thus, one of the assumptions of CJS (specifically assumption 2)
– that every marked animal in the population immediately after time (i) has the same probability of
surviving to time (i+1) has been violated. The second, perhaps less interesting reason is the possibility
that the data are over or under-dispersed for the CJS model – extra-binomial variation. In this section,
we will briefly discuss both cases.

5.9.1. Inappropriate model

Your most immediate clue to lack of fit will be a high ĉ value. The ‘challenge’ will be to determine
whether or not this is because you have an inappropriate model, or extra-binomial ‘noise’. In some
cases, this is fairly straightforward. For example, to confirm that the basic live-encounter CJS model has
been rejected because the model is ‘biologically unrealistic’ for your data, you simply need to carefully
examine the detailed TEST 2 and TEST 3 contingency tables in your RELEASE output file (or, more
conveniently, look at it directly with U-CARE). What are you looking for? Well, in general, the thing
you’re looking for is a ‘systematic’ rejection (or bias) in the individual tables. You need to see if the
failure of TEST 2 or TEST 3 is ‘driven’ by a few ‘strange’ batches, or is due to a ‘systematic’ bias. What
do we mean by ‘systematic’ bias? Well, by ‘systematic’, we refer to a bias which occurs consistently at
each occasion – a bias in the sense that a particular cell (or cells) in one of the test tables is consistently
over or underpopulated.
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An example will help make this clear. Suppose you run RELEASE, and find that TEST 3 is rejected,
but not TEST 2. You say to yourself, ‘OK, recapture seems to be OK, but something is wrong with the
survival assumption, under the CJS model’. You proceed to look carefully at each of the TEST3 tables
for each batch. You note that TEST3.SR is rejected, but that TEST3.SM is accepted. Now, what does
this mean? Recall that TEST3.SR simply asks, of those individuals seen either on or before occasion
(i), what proportion were ever seen again? If TEST3.SR is rejected, then this suggests that there is a
difference in ‘survival’ among individuals, depending on whether or not they were seen for the first
time either on or before occasion (i). However, TEST3.Sm only looks at individuals who WERE seen
again. Among these individuals, when they were seen again does not depend on whether or not they
were seen for the first time at occasion (i).

Suppose you look at each individual TEST3.SR table, and find the following – a ‘+’ indicates more
individuals than expected (based on the null hypothesis of no differences between groups), and a ‘-’
indicates fewer individuals than expected (under the same hypothesis). Since U-CARE provides you
with the overall ‘directional’ test, you can make this determination very quickly. Let’s say we have
10 occasions, and we find that this pattern seems to be present in the majority of them (you might use
some statistical test, for example a sign test, to determine if the frequency of tables exhibiting a particular
pattern occurs more often than expected by random chance). Say, 8/10 contingency tables show this
pattern (which will clearly be statistically significant). What does this suggest? Well, among individuals
seen for the first time at occasion (i), significantly more are never seen again than expected, relative to
individuals who had been seen before occasion (i). In other words, newly marked individuals showed
a consistently lower probability of ever being seen again than previously marked individuals.

What could lead to this pattern? One possibility we suggested at the beginning of this section was age
effects. Lower survival of newly marked juveniles (relative to adult survival) would lead to this pattern
in TEST3.SR. Is this the ‘only’ plausible explanation? Unfortunately, no. Life would be simpler if there
was only ever one possible explanation for anything, but, this is generally not the case. This example is
no exception. Rejection of TEST3.SR could also reflect (1) a marking effect (where the act of marking
causes an increase in immediate mortality), (2) presence of transients (migratory individuals leaving
the sampling area shortly after marking), or (3) heterogeneity in capture rates (some individuals have
low capture rates, some high).

The point here is that there may be more than one possible answer – it is at this point you’ll need to
use your ‘biological insight’ to help differentiate among the possible explanations. The other, perhaps
more important point is that the presence of a consistent difference in one of the major tests (TEST2.Ct,
TEST2.Cm, TEST3.SR, and TEST3.Sm) each suggest the possibility of one or more effects which violate
the basic CJS assumptions. You will have to rely on your insight to help you identify possible ‘biological’
explanations for violation of any of these 4 tests – each of them might refer to something completely
different.

What can you do if you do reject CJS? Well, the solution depends on what, exactly, ‘has gone wrong’.
In general, if the individual TEST 2 or TEST 3 results seem to show systematic deviations among
occasions, the most likely solution will be to reject the CJS model as the ‘correct’ starting model for your
analysis – it clearly doesn’t fit, because the inherent assumptions aren’t met by the data. In this case,
where TEST3.SR is rejected, but the other tests are accepted, then the solution is to add age-structure
to the model (this will be presented in Chapter 8).

However, simply recognizing that a ‘different’ starting model (say, a 2-age class model) may be more
appropriate is only the first step. You still need to confirm that the data fit your ‘new’ model. You must
go through analogous GOF tests for the ‘new’ starting model, just as we have done for the CJS model
(as discussed earlier in this chapter).
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What if your data type is one that can’t be handled by RELEASE (which, in effect, is every data
type other than live-encounter mark-recapture data)? One option is to examine deviance residual plots.
If you click the ‘Graph Deviance Residuals’ button on the main MARK toolbar, residuals are plotted
against their capture history number to assess the fit of the model. The default for the residual plot icon
is deviance residuals. However, either deviance residuals or Pearson residuals are available from the
‘Output | Specific Model Output’ menu of the results browser.

A deviance residual is defined as

sign
(

obs-exp
)

√

2
[

(exp-obs) + obs × ln
(

obs/exp
) ]

ĉ

where ‘sign’ is the sign (plus or minus) of the value of (obs-exp).

A Pearson residual is defined as

(

obs-exp
)

√

(exp × ĉ)

Take for example the swift analysis we introduced in Chapter 4. If we run a bootstrap analysis on our
general model {ϕc∗tpc∗t}, we get an estimate of ĉ � 1.00. So, pretty good fit!

This is reflected in the deviance residual plot shown below:

If the model was a ‘good-fitting model’ (as suggested by our estimated ĉ), we would expect that there
would be no ‘trend’ (non-randomness) in the pattern of the residuals - roughly half of the residuals
should be above the 0.000 line, and half should be below. Further, if there is no extra-binomial variation,
then most of these residuals should be fairly close to the 0.0000 line (between the two horizontal dashed
lines in the preceding figure).

In the plot (above), there is little apparent trend, although most of the extreme residual are ‘on the
high side’ (large positive deviance – to see which observation is causing a particular residual value, you
can place your mouse cursor on the plotted point for the residual, and click the left button. A description
of this residual will be presented, including the group that the observation belongs to, the encounter
history, the observed value, the expected value, and the residual value). However, the residuals are
roughly randomly distributed above and below 0.
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Here is an example of a deviance residual plot which seems to indicate lack of fit.

In the second plot, notice both a clear asymmetry in the residuals (greater proportion of positive
to negative residuals) as well as some suggestion of a trend (although most residuals are positive, the
magnitude of the deviation above zero seems to decline from left to right). Both suggest strongly that
there is a structural problem with the fitted model. In fact, this particular plot was generated by fitting a
{ϕ.}model structure to data where in factϕ increased linearly over time (a topic we discuss in Chapter6).
So, clearly, the fit model was not structurally appropriate, given the underlying model used to generate
the data. We will re-visit the use of residual deviance plots to help evaluate lack of fit as we introduce
new data types.

5.9.2. Extra-binomial variation

If there are systematic deviations in your contingency tables, or if there is some other indicator of
structural causes of lack of fit (say, from a deviance residual plot), then changing the structure of the
general model is the appropriate step to take next. However, what do you do, if the deviations in the
contingency tables are not ‘consistent’ among batches – what if (say) 5/10 tables are biased in one
direction, and 5/10 are biased in the other direction?

In such cases,where there seems to be no clear ‘explanation’ (biological or otherwise) for the violation
of TEST 2 or TEST 3, you then have only a few options. As you’ve no doubt gathered if you’ve read this
far into this chapter, the most common ‘solution’ (although it is only a partial solution) is to ‘adjust’ your
statistics to account for the ‘extra noise’, or (for the statistically inclined) the extra-binomial variation.
Remember that the conceptual basis of all models is ‘data = structure + residual variation’. In general,
the structure of the residual variation is unknown, but for multinomial distributions, it is known. If the
model structure is ‘correct’, then the variance of the residual ‘noise’ is 1 (where variance is defined as the
expected value of the GOF χ2 divided by its degrees of freedom). However, even if the residual variation
> 1, the structural part of the model can be ‘correct’. In simplest terms, if there is ‘excess variation’ it
will show up in the model GOF χ2 (since this value is essentially a ‘residual SS’). Thus, what we need to
do is ‘correct’ everything for the magnitude of this extra variation. To do this, we derive what is known
as a variance inflation factor, ĉ. The larger the value of ĉ, the greater the amount of ‘extra’ variation.
We have already presented this basic idea earlier in the chapter, as well as the mechanics of how to get
MARK to adjust things.
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Consider, for example, the dipper data set, where we can estimate ĉ in several different ways: using
the bootstrap, median-ĉ, or by using a χ2/df approach in RELEASE and U-CARE. Recall that from our
bootstrap fit of {ϕtpt} to the male European Dipper data set yielded an estimate of ĉ of either 1.418, or
1.531 (depending on whether or not you calculated ĉ using the bootstrapped distribution of deviances,
or ĉ values). The mean of these two values is 1.475. Now, in both RELEASE and U-CARE, the sum of
the overall results of TEST 2 and TEST 3 is (in effect) the overall model χ2. This is provided for you
directly in the RELEASE and U-CARE output. For the male dipper data, RELEASE gives the sum of
TEST 2 + TEST 3 = 9.5598. The model df = 9, and thus from RELEASE, ĉ is estimated as (TEST 2 +
TEST 3)/df = (χ2/df) = 1.0622. From U-CARE, (TEST 2 + TEST 3)/df = (χ2/df) � (11.0621/9) � 1.229.
Now, in fact, there does seem to be some variation in estimates of ĉ, depending on the method selected,
with the estimates from the bootstrap approach being the highest, and that from program RELEASE

being the lowest.

In fact, the reason (in this example) is because the male dipper data has ‘a problem’ – the data are
somewhat sparse – so much so that many of RELEASE tests (especially TEST 3) are reported as ‘invalid’
(insufficient data to make the particular contingency test(s) valid). This is also reflected in the fact that
one parameter (recapture rate p3) that is not particularly well-estimated (this can either be because
the parameter is estimated near the boundary, or because of ‘weirdness’ in the data). However, these
nuances notwithstanding, if you have good data (i.e., not so sparse that RELEASE has to do a lot of
pooling over cells in the contingency tables), then the estimate of ĉ using the bootstrap or the median-ĉ
in MARK should be very close to the estimate using the (χ2/df) approach in RELEASE or U-CARE.

OK – so now what do we do with our measure of the fit of the CJS model to the male Dipper data? Our
estimate of the significance of departure from ‘adequate fit of the model to the data’ was P � 0.08. As
noted, our estimate of ĉ varied depending upon how it was derived: for now, we’ll use ĉ=1.531 (the value
from the bootstrap). Now what? Well, think a moment about what we’re doing when we do the model
fitting – we want to compare the relative fit of different models in the model set. If there is ‘significant
lack of fit’, then intuitively this may influence our ability to select amongst the different models. Also
intuitively, we’d like to adjust our model fits to compensate for the lack of fit. How do we accomplish
this?

First, look at the ‘original results’:

These AICc weights were calculated using the default ĉ value of 1.0. As such, we would have
concluded that the best model in the model set was ∼ 43 times better supported by the data than
was the next best model.

What happens if we adjust the values in the results browser using ĉ=1.51? MARK makes such an
‘adjustment’ very easy to do. Simply pull down the ‘Adjustment’ menu, and select ‘c-hat’. Enter the
new value for ĉ (in this example, use 1.51). As soon as you’ve entered the new ĉ, the various AIC and
AIC weighting values in the results browser are converted to QAICc values (note that the column labels
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change in the results browser to reflect this change).

For example, consider the original AIC and AIC weight values for the 4 simplest models we applied
to these data:

Now, we see that the degree of support for the best model has increased substantially – the best
model is now > 70 times better supported than the next best model. In this case, it didn’t change our
final conclusions, but it is not hard to imagine how changes of this magnitude could make a significant
difference in the analysis of the data.

Does anything else happen to ‘our results’? The answer is ‘yes’, but it isn’t immediately obvious –
adjusting ĉ also changes the estimated standard errors for each of the parameters in each of the models.
Try it and confirm this for yourself. However, there is a subtle catch here – the estimated standard errors
are changed only in the output of the estimates, not in the general output. Don’t ask! :-)

5.10. How big a ĉ is ‘too big?’

When should you apply a new ĉ? Is 1.51 really different than the null, default value of 1.0? At what
point is ĉ too large to be useful? If the model fits perfectly, then ĉ � 1. What about if ĉ � 2, or ĉ � 10?
Is there a point of diminishing utility? As a working ‘rule of thumb’, provided ĉ ≤ 3, you should feel
relatively safe (see Lebreton et al. 1992 – pp. 84-85).

However, there are a couple of fairly important ‘philosophical’ considerations you’ll need to keep
in mind. First, for some analysts, the most important thing is adjusting for fit to make the parameter
estimates as robust and valid as possible. However, for others, the question of ‘why’ there is lack of fit
is important. Consider, for example, the standard ‘CJS assumptions’. In particular, the assumption that
all individuals are equally likely to be caught. In truth, there may very often be considerable variation
among individuals in the probability of capture – a clear violation of the CJS assumptions.

The question, then, is whether the lack of fit is due to these sorts of violations (strictly speaking, this
is referred to as the problem of individual heterogeneity in capture probability), or structural problems
with the general model. Clearly, by adjusting ĉ, you can accommodate lack of fit up to a certain degree,
but if the ĉ is fairly large (> 2) then this might be a good indicator suggesting a careful examination
of the structure of the model in the first place is needed. So, yes, you can ‘adjust’ for lack of fit simply
by adjusting the ĉ value used. However, be advised that doing so ‘blindly’ may obscure important
insights concerning your data. It is always worth thinking carefully about whether your general model
is appropriate. Moreover, as ĉ increases≫ 1, interpretation of some of the metrics we’ll use for model
selection (something we cover in later chapters) becomes more complicated.

Second, as noted earlier, the bootstrap and median-ĉ resampling approaches estimate ĉ under the
assumption that the source of the lack of fit is strictly extra-binomial ‘noise’ – as you might see, for
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example, if your sample consisted of male and female pairs, where the fate of one member of the pair
was not independent of the other. The more ‘behavioral structure’ you have in the biology (or process)
underlying your data, the more likely this is to be the case. A method to evaluate whether theoretical
variance estimates are valid when the individuals are considered statistically independent, or whether
variance inflation procedures are required to account for dependence among (say) siblings, is described
in Appendix G. However, if the source of lack of fit is structural, and not due to extra-binomial noise,
then adjusting for a ĉ estimated using either of the resampling approaches may not do you much good.
In such cases, your best option is to (i) work hard at trying to identify the structural problems in your
model, and (ii) see how sensitive your model weights are to manual adjustments (in small increasing
increments) in ĉ. This basic process is also discussed below.

Finally, and perhaps most importantly, remember that we are estimating c. And as with any estimate,
there is uncertainty about our estimate of ĉ. As such, if you derive an estimate of c that is (say) ĉ � 1.4,
there may be a significant probability that in fact the true value of c is 1.0 – but, because of the uncertainty
in your estimate of c, you can’t be sure.

We can demonstrate this fairly easily, using some data simulated under a true model {ϕt pt}. We will
do this using the RELEASE simulations capability in MARK (see Appendix A). We will simulate 8
occasions in the simulated data set, with 250 newly marked and released individuals on each occasion
(clearly, a much bigger data set than the male dipper data). For 1,000 simulations, the mean ĉ (estimated
as the TEST 2 + TEST 3 χ2 divided by the df) was 0.997, which is very close to the expected ĉ of 1.00.
However, a couple of points to make. While the mean is very close to the expected value, there is a fair
bit of variation around this value. For example, when we ran the simulation (as described), we get a
variance of 0.102, with a 95% CI of [0.543, 1.57].

This is reflected in the following histogram of ĉ estimates:

Note that there is a fair chance that for a given simulated data set, that the observed estimate of ĉ is
considerably less than, or greater than, 1.0 – even though the true value is 1.0 for these data! This is not
really a problem, but one you need to be aware of: it is possible that you are fitting the correct model to
the data (such that the true ĉ is 1.0), but because each data set you collect is simply one realization of
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an underlying stochastic probabilistic process, there is some chance that the ĉ you observe will differ
– sometimes markedly so – from 1. We still use a quasi-likelihood adjustment to account for lack of fit,
since we cannot be certain we have the correct model. (Note: the histogram should be approximately χ2

distributed for the given df, as it appears to be for this example).

5.10.1. General recommendations

OK, some general recommendations:

1. identify a general model that, when you fit it to your data, has few or no estimability
problems (i.e., all of the parameters seem adequately estimated). Note that this general
model may not be a fully time-dependent model, especially if your data set is rather
sparse. If there is ‘biological’ justification for suspecting non-independence among indi-
viduals in your data, then you should evaluate whether theoretical variance estimates
are valid when the individuals are considered statistically independent, or whether
variance inflation procedures are required to account for dependence among (say)
siblings. A procedure for performing such an evaluation is introduced in Appendix G.

2. estimate ĉ for this general model, using whichever method is most robust for that
particular model. While the median-ĉ and Fletcher-ĉ approaches show considerable
promise to be generally robust approaches to estimate ĉ, for the moment it is perhaps
worth generating ĉ using all of the available approaches, and comparing them. If you
have some estimates marginally above 1.0,andsome marginally below 1.0, it is probably
reasonable to assume the ĉ ∼� 1.0. Alternatively, you could choose to be conservative,
and select the largest ĉ, which provides some protection (in a sense) against selecting
overly parameterized models.

3. remember that the estimate of c is just that – an estimate. Even if the true value of c

is 1.0, we use the estimate of ĉ to account for model selection uncertainty (since we
cannot be certain we have the correct model). Moreover, as noted earlier, the bootstrap
and median-ĉ resampling approaches estimate ĉ under the assumption that the source
of the lack of fit is strictly extra-binomial ‘noise’ – where the fate of one individual
may not be independent of the other. However, if the source of lack of fit is structural,
and not due to extra-binomial noise, then adjusting for a ĉ estimated using either of the
resampling approaches may not do you much good. In such cases, your best option
is to (i) work hard at trying to identify the structural problems in your model, and (ii)
see how sensitive your model weights are to manual adjustments (in small increasing
increments) in ĉ (see next point).

4. it is also worth looking qualitatively at the ‘sensitivity’ of your model rankings to
changes in ĉ, especially for models (data types) for which no robust GOF test has been
established (i.e., most open population models). Manually increase ĉ in the results
browsers from 1.0, 1.25, 1.5 and so on (up to, say, 2.0), and look to see how much the
‘results’ (i.e., relative support among the models in your candidate model set) changes.
In many cases, your best model(s) will continue to be among those with high AIC
weight, even as you increase ĉ. This gives you some grounds for confidence (not much,
perhaps, but some). Always remember, though, that in general, the bigger the ĉ, the
more ‘conservative’ your model selection will be – AIC will tend to favor reduced
parameter models with increasing ĉ (a look at equation for calculating AIC will show
why). This should make intuitive sense as well – if you have ‘noise’ (i.e., lack of fit),
perhaps the best you can do is fit a simple model. In cases where the model rankings
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change dramatically with even small changes in ĉ, this might suggest that your data are
too sparse for robust estimation, and as such, there will be real limits to the inferences
you can make from your candidate model set.

This final point is related to what we might call the ‘wince’ statement: if you are sure your model
structure is correct, and despite you’re finer efforts, your ĉ is ≫ 3, or if your model rankings change
radically with even small changes in ĉ, then you might just have to accept you don’t have adequate data
to do the analysis at all (or, perhaps in a more positive tone, that there are real limits to the inferences you
can draw from yourdata).Unfortunately,your ‘time,effort,and expense’ are not reasonable justifications
for pushing forward with an analysis if the data aren’t up to it. Remember the basic credo. . .‘garbage
in...garbage out’.

Last words – for now (remember, GOF testing is very much a work in progress). If your data are based
solely on live encounter data, then it appears that for the moment, for most data sets, using estimates
of ĉ derived from (χ2/df) calculations (using either RELEASE or U-CARE) is more robust (less biased)
than bootstrapped or median-ĉ estimates. But, what if you don’t have live encounter data, or perhaps
some mixture of live encounter with other types of encounter data (e.g., perhaps dead recovery)? For
other data types (or mixtures), in some cases GOF tests have been suggested (e.g., contingency GOF
testing for dead recovery data is implemented in program MULT), but the degree to which estimated of
ĉ from these approaches may be biased is unknown. However, in many cases, the bootstrap or median-ĉ
can be run, which does provide some estimate of ĉ, albeit potentially biased in some cases.

5.11. Summary

That’s the end of our very quick stroll through the problem of GOF. In this chapter, we have focussed
on using program MARK and programs RELEASE and U-CARE to handle this task. Remember – the
bootstrap, median-ĉ and Fletcher-ĉ approaches provides omnibus techniques for assessing GOF for any

model, as well as providing robust estimates of ĉ (at least, in theory – GOF testing is still very much a
work in progress). RELEASE, which should be applied to live-recapture models only, is a good tool for
examining ‘where’ the departures occur. Residual plots can also be quite helpful.
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CHAPTER 6

Adding constraints: MARK and linear models

Up until now, we’ve used MARK to build relatively simple models. We’ve seen how to use MARK

to help with model selection, and how the process of model selection can be viewed in an analysis of
variance context, by comparing models with and without grouping factors (Chapter 4).

However, suppose, for example, you want to build a model where annual variation in survival is
‘related’ to some weather variable. How would you construct a model where survival was constrained
to be a function of ‘weather’? The concept of ‘constraints’, and how to use them to apply linear models
to MARK, is one of the most important and powerful extensions of what we have covered so far.

What do we mean by ‘constraint’? Here, we are referring to a mathematical constraint – ‘forcing’
MARK to estimate survival and recapture probabilities after imposing a specific set of linear constraints
on the structure of the underlying model. While the concept is simple, the ability to construct linear
models gives you considerable flexibility in addressing a very large numberof questions and hypotheses
with your data; if you can conceive of a linear model (ANOVA, ANCOVA, multiple regression etc), you
can apply it to mark-encounterdata using MARK. The only thing you’ll need to know is how to construct
the ‘linear constraint’ – the linear model. This is the subject of the present chapter.

6.1. A (brief) review of linear models

If you have a background in linear models, then much of the following material will be familiar. Our
purpose is to provide a ‘minimum level’ of background. If you are new to linear models, we strongly
suggest you supplement your reading of this chapter by having a look at one of the many good textbooks
on this subject. McCullagh & Nelder (1989) and Dobson & Barnett (2008) are particularly good.

The basic idea underlying linear models can be stated quite simply: the response variable in many
statistical analyses can be expressed as a linear regression function of 1 or more other factors. In fact,
any ANOVA-type design can be analyzed using linear regression models (although interpretation of
interactions is sometimes complex). In general, fordata collected from marked individuals, the ‘response
variable’ is oftena probability orproportion (e.g., survival or recapture rate),which must be transformed
prior to analysis using a linear models approach (we’ll get to that in a moment). For the moment, assume
the response variable has been suitably transformed.

We begin by demonstrating this relationship between ‘regression’ and ‘ANOVA’ by means of a simple
example. Consider data from a study where the skull circumference of young pre-school children is
measured, and we’re interested in knowing if this structure is on average larger in males than in females
(we’ll assume for the moment that all of the children were the same chronological age). Let’s suppose
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we measure 7 male and 7 female children, and analyze our data using a normal single-classification
ANOVA. Here are the data:

male 7.2 7.1 9.1 7.2 7.3 7.2 7.5

female 9.8 8.5 8.7 8.6 8.4 7.7 8.2

First, the results from a ‘standard ANOVA’ (as you might generate using some statistical analysis
software), which indicate a marginally significant difference between male and female children.

Source df SS MS F P

SEX 1 3.806 3.806 8.33 0.0137

Error 12 5.485 0.457

Total 13 9.292

However, what if our statistics package was limited only to a regression subroutine? Could we have
analyzed our data using a linear regression model, instead of ANOVA, and arrived at the same result?
The answer is, indeed, yes, we can. What we do is simply take the classification factor (SEX) and ‘code’
it as a ‘0’ or ‘1’ dummy variable (we’ll see why in just a moment). For example, let ‘0’ represent females,
and ‘1’ represent males. Thus, every individual in our data set is assigned a ‘0’ or a ‘1’, depending upon
their gender. Let’s call this dummy variable SEX. Now, all we need to do is regress our response variable
(the skull circumference) on the dummy variable for SEX. Here are the results of the regression analysis:

Source df SS MS F P

SEX 1 3.806 3.806 8.33 0.0137

Error 12 5.485 0.457

Total 13 9.292

No, it’s not a typo – it is in fact the exact same table as above. The two approaches are functionally
equivalent, yielding identical results. How can this be? The answer lies in the structure of the models
actually being tested. So, let’s step back to the beginning, and look at things a bit more formally.

In general, a linear model can be expressed in matrix form as

y � Xβ + ǫ

where y is a vector of responses (i.e., a vector of the response variables), β is a vector of parameters
(e.g., the intercept and 1 or more ‘slopes’), X is a matrix with either ‘0’ or ‘1’ elements, or values of
‘independent’ variables, and ǫ is a vector of random error terms.

In cases of analysis of variation of the response variable among different levels of one or more
classification (i.e., ‘treatment’ or ‘factor’) levels, there is a parameter β in the vector β to represent each
level of a factor. The elements of X (which is generally referred to as the design matrix – discussed below)
are chosen to exclude or include the appropriate parameters for each observation. These elements are
often referred to as either ‘dummy’ or ‘indicator’ variables (‘indicator’ generally being used when only
‘1’ or ‘0’ are used as the coding variables).

The following simple example will make this clear, and will illustrate the underlying connection
between a linear regression model and analysis of variation (ANOVA). Suppose you have collected
data on the scutum width of male and female individuals of some insect species. You are interested
in whether or not the difference in mean scutum width between the sexes differs more than would
be expected by random chance. Normally, you might consider using a single-classification (Model I)
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ANOVA for this sort of analysis. Recall that for this sort of analysis, any single variate Y (in this case, Y

= f [scutum width]), can be decomposed as:

Yi j � µ + αi + ǫi j

In other words, each individual variate Yi j is the sum of the global mean (µ), the deviation of the
individual from that mean due to the ‘classification’ factor (sex; αi ), and the random error term (ei j)
In this example, with 2 levels of the classification factor (i.e., males and females), we would be testing
for differences of the type (α1 − α2). If (α1 − α2) � 0 (the null hypothesis), then we would conclude no
significant group effect (i.e., no significant difference in group means between the sexes).

How could we use linear regression to approach the same analysis? In a regression analysis, each
individual variate Yi would be decomposed as:

Yi � β1 + β2xi + ǫi

In this case, each variate Yi is the sum of the product of the slope (β2) and the variable x, the intercept
(β1), and a random error term (ǫ). In this case, the hypothesis being tested is whether or not the estimate
of the slope is significantly different from 0 (Ho: β2 � 0).

However, what is the variable ‘x’? In fact, this is the key to understanding the connection between
the regression model and the ANOVA analysis. In the regression formulation, x represents a coding
(‘dummy’) variable specifying male or female (i.e., sex, the classification variable in the ANOVA
analysis). The coding variable takes on the value of ‘0’ or ‘1’ (‘0’ for females, ‘1’ for males). We regress
the response variable Y (scutum width) on the coding variable for sex. If the slope (β2) is not different
from 0, then we interpret this as evidence that the numerical value of the coding variable does not
significantly influence variation in our data. Put another way, if the slope does not differ from 0, then
this indicates no significant difference between the sexes. This is entirely analogous to test of the (α1−α2)
hypothesis in the ANOVA analysis.

Recall that we can express a linear model in matrix form as

y � Xβ + ǫ

where y is a vector of responses (i.e., a vector of the response variables), β is a vector of parameters
(e.g., the intercept and 1 or more ‘slopes’), X is a matrix with either ‘0’ or ‘1’ elements, or values of
‘independent’ variables, and ǫ is a vector of random error terms. For our present example, the design
matrix X consists of 2 columns of ‘0’ and ‘1’ dummy variables (the first column corresponding to the
intercept, β1, and the second column corresponding to dummy variable coding for a given sex, β2).

Given K individuals in each sex (although a balanced design is not required), y � Xβ + ǫ can be
written as



Y11

Y12

...

Y1K

Y21

Y22

...

Y2K



�



1 0

1 0

...
...

1 0

1 1

1 1

...
...

1 1



[
β1

β2

]
+



ǫ11

ǫ12

...

ǫ1K

ǫ21

ǫ22

...

ǫ2K


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In fact, in this case, if we used ‘1’ to code for males, and ‘0’ to code for females, then the intercept (β1)
would represent the estimate for female survival (since if the dummy variable is ‘0’, then all that remains
in the model is the intercept, and the random error term). The β2 term actually reflects (male survival -
female survival), such that β1 + β2 � (female) + (male − female) � male survival. The structure of the
design matrix is discussed in more detail in the next section.

It is perhaps worth noting that models of the form ‘y � Xβ + ǫ’ are called linear models because
the non-error part of the expression Xβ is a linear combination of the parameters (and not specifically
because of the relationship of ANOVA to linear regression). MARK uses this general linear models
approach as the basis for all of the analysis (data) types available.

begin sidebar

matrix approach to linear regression & ANOVA: simple introduction

Here, we provide a very simple example of a matrix approach to linear regression (and, by extension,

to linear models in general). For deeper understanding, you are strongly urged to consult one of the

several very good textbooks which give much fuller treatments of the subject.

Consider the linear model, say of individual (i) with mass (Yi) relative to sex (Xi , where X � 0

or X � 1 for female or male, respectively), measured with Gaussian (normally) distributed random

variation (ǫi ) about the mean. We’ll assume the following ‘fake’ data:

mass (Y)

male (X � 1) 11 12 11 14

female (X � 0) 8 11 12 10

The mean mass for males (x̄m � 12) is larger than the mean mass for females (x̄ f � 10.25) – the

usual question being, is the difference between the two larger than expected due to random chance?

We could adopt a linear models approach to answering this question – first, we could write the

relationship between mass and sex in linear model form as

Yi � β1 + β2Xi + ǫi

The null hypothesis of ‘no difference between sexes’ can be expressed formally in terms of the β

term for sex; i.e., Ho : β2 � 0. The technical problem then is estimating the βi coefficients in the linear

model. To do this, first define a vector y for all the Yi , a matrix X for a vector of 1s and all the Xi , a

vector ǫ for all the ǫi , and further define a vector β for the coefficients β1 and β2.

Then (for our ‘fake’ data set) we get

Y �



11

12

11

14

8

11

12

10



�



1 1

1 1

1 1

1 1

1 0

1 0

1 0

1 0



[
β1
β2

]
+



ǫ11
ǫ12
ǫ13
ǫ14

ǫ21
ǫ22
ǫ23
ǫ24



� Xβ + ǫ

Note that the matrix X is referred to as the design matrix – the construction of the design matrix

is fundamental to using linear models in MARK, as we will cover in considerable detail later in this

chapter. So, to derive estimates of the βi coefficients, we need to find a vector β such that y � Xβ.

Is this possible? The answer is clearly ‘no’, because that would require the points to lie exactly on

a straight line. A more modest (and tractable) question is: can we find a vector β̂ such that Xβ̂ is in a
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sense ‘as close to y as possible?’. The answer is ‘yes’. The task is to find β̂ such that the length of the

vector ǫ � y − Xβ is as small as possible (i.e., ǫ → 0).

How do we get there from here? Fairly easily. First, we note that what we’re trying to do is solve for

β in the linear model. The first step is to let ǫ � 0 (such that it drops out of the equation – this should

make sense, if you keep in mind that what we’re trying to do is to find β̂ such that the length of the

vector ǫ is, in effect, 0). This leaves us with

y � Xβ

Then, a few steps of algebra to solve for the vector β:

y � Xβ

X
T

y � X
T

Xβ

(

XTX
)−1

XTy �

(

XTX
)−1

XTXβ

(

X
T

X
)−1

X
T

y � β

β̂ �

(

XTX
)−1

XTy

In words, we multiply both sides of the initial equation by the transpose of X to get the crossproduct

X
T

X, which is a square matrix (note: the square matrix (XT
X) is called the pseudo inverse of X. We cannot

use the true matrix inverse of X (i.e., X
−1) because it generally does not exist as X is not generally a

square matrix; m , n). We then find the inverse of this cross-product matrixand multiply both sides by

that. This allows us to cancel out the term involving X on the right-hand side of the equation, allowing

us to find an estimate of β, which we call β̂, in terms of the original data.

It is worth noting that we could also approach this problem using the more familiar method of least

squares. Recall that least squares involves minimizing the sum of the squared residuals between the

observed and expected values. More formally, we want to minimize the Euclidean norm squared of

the residual (y − Xβ), that is, the quantity

‖y − Xβ‖2 �

(

[Y1 − (Xβ)1]
)2

+

(

[Y2 − (Xβ)2]
)2

+ · · · +
(

[Yi − (Xβ)n]
)2

where (Xβ)i denotes the ith component of the vector (Xβ).

We could also rewrite this as

‖y − Xβ‖2 �
(

[Y1 − (Xβ)1]
)2

+
(

[Y2 − (Xβ)2]
)2

+ · · · +
[

Yi − (Xβ)n]
)2

�

n∑

i�1

(
Yi − (β1 + β2xi )

)2

You might recall (from some linear algebra class you might have taken) that for some vector θ

θTθ �

[
θ1 θ2 · · · θn

]


θ1
θ2

...

θn


� θ2

1 + θ2
2 + · · · + θ2

n �

n∑

i

θ2
i

Thus, if θ �
(

y − Xβ
)

, then we can write

‖y − Xβ‖2 �
(

y − Xβ
)T (

y − Xβ
)

� y
T

y − 2βT
X

T
y + βT

X
T

Xβ
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All that’s left is to differentiate this expression with respect to β, set to 0, and solve. Let

S � ‖y − Xβ‖2 �
(

y − Xβ
)T (

y − Xβ
)

Thus,

∂S

∂β
� −2X

T
y + 2X

T
Xβ � 0

X
T

Y � X
T

Xβ

β̂ �
(

X
T

X
)−1

X
T

y

Note this resulting algebraic solution is identical to that obtained earlier.

In fact, we could show that both solutions are equivalent to the MLE estimates for β (the Gaussian

linear model is nice in the sense that the parameter estimates – namely the solution to the linear set

of equations, the least squares estimate, and the maximum likelihood estimate – are all the same). For

our ‘fake’ data:

β̂ �
(

X
T

X
)−1

X
T

Y

�


10.25

1.75


Thus, our estimates for the intercept and slope are β̂1 � 10.25 and β̂2 � 1.75, respectively.

We would next estimate the error variance for β̂1 and β̂2. First, we derive an estimate of the variance-

covariance matrix for the vector β estimates as

var(β̂) �
(

X
T

X
)−1σ2

e

We can estimate σ2
e from the residual sums of squares (RSS) as

RSS �
(

y − Xβ
)T (

y − Xβ
)

If the model estimates p parameters, then the estimate of σ2
e is simply RSS/(N − p) where N is the

number of data points. Thus,

var(β̂) �
(

X
T

X
)−1 RSS

(N − p)

�

(

X
T

X
)−1

(

y − Xβ
)T

(y − Xβ)

(N − p)

So, for our ‘fake’ data (where N � 8 and p � 2), and our vector β̂,

RSS �
(

y − Xβ
)T (

y − Xβ
)

� 14.75

and thus

var(β̂) �
(

X
T

X
)−1 (

y − Xβ
)T

(y − Xβ)/(N − p)

�


0.6146 −0.6146

−0.6146 1.2292


From this, we can calculate ŜE(β̂1) �

√
0.6146 � 0.7840, and ŜE(β̂2) �

√
1.2292 � 1.1087. And, since
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a 95% CI for β̂2 (approximately β̂2 ± 2SE; [−0.4674, 3.9674]) clearly includes 0, we would conclude no

significant sex effect at a nominal α � 0.05 level.

Our ‘hand calculated’ estimates of slope and intercept, and variances for both parameters, are

identical to the values returned by fitting the linear model in any statistical software package (below):

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 10.25000 0.78395 13.07 <.0001

sex 1 1.75000 1.10868 1.58 0.1655

end sidebar

6.2. Linear models and the ‘design matrix’: the basics

In program MARK, the default design matrix for a given model is determined by the parameter
structure of the model you are trying to fit (number of groups, and the number and structure of the
parameters; i.e., the PIMs). This design matrix is then modified in various ways to examine the relative
fit of different models to the data. In order to understand this process, it is essential that you understand
how the design matrix is constructed.

We’ll introduce the concept of a design matrix by means of an example. Suppose you are doing a
‘typical’ ANOVA on data with a single classification factor (say, ‘treatment’). Suppose that there are 4
levels for this factor (perhaps a control, and 3 different levels of the ‘treatment’). You want to test the
hypothesis that there is no heterogeneity among ‘treatment’ levels (Ho: µ1 � µ2 � µ3 � µ4). Recall from
the preceding discussion that this problem can be formulated as an applied linear regression problem
using ‘0/1 dummy variable’ coding for the different levels of the ‘treatment’.

Recall the previous example (above) which had 1 ‘treatment’ or classification factor (sex), with 2
levels (male and female). The corresponding regression model was

Yi � β1 + β2xi + ǫi

where x represented a coding variable specifying male or female (i.e., sex, the classification variable in
the ANOVA analysis). The coding variable took on the value of ‘0’ or ‘1’ (‘0’ for females, ‘1’ for males).

What would the regression model look like for our present example, with 4 levels of the treatment
factor instead of 2? How can we use a simple ‘0’ or ‘1’ dummy variable coding scheme (which clearly
has only 2 ‘levels’) to accommodate a treatment factor with 4 levels? The key is to consider the answer
to the following question: if xi can take on 1 of 2 values (0 or 1), then how many values of xi do we need
to specify k levels of the classification variable (i.e., the treatment variable)? If you think about it for a
moment, you should realize that the answer is k − 1 (which, of course, corresponds to the degrees of
freedom for a single-classification ANOVA).

Thus, for the present example, x1, x2 and x3 could be:

x1 �

{

1 if trt 1

0 if other
x2 �

{

1 if trt 2

0 if other
x3 �

{

1 if trt 3

0 if other

Clearly, when the coefficients for x1, x2 and x3 are all 0, then the treatment level must be 4 (‘other’).
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Thus, our regression equation for this example would be:

Yi � β1 + β2x1 + β3x2 + β4x3 + ǫi

In this case, β1 is the intercept, while β2, β3 and β4 correspond to the slopes for each of the levels of
the treatment factor. Since there are 4 levels of the treatment, 3 slopes are needed to code 4 levels of
the treatment, because 1 of the levels of the treatment corresponds to the case where all 3 slopes are 0.
Parameters β2, β3 and β4 refer to treatment levels 1, 2, and 3, respectively. If x1 � x2 � x3, then β1 refers
to treatment level 4. In other words, the intercept corresponds to treatment level 4.

begin sidebar

why is level 4 the intercept?

Choosing the intercept to specify treatment 4 was entirely arbitrary – we could for example have used

any other level of the treatment as the intercept, and adjusted the coding for the remaining levels

according. For example, we could have used used level 1 of the treatment as ‘other’ (i.e., the intercept),

as follows:

x1 �

{

1 if trt 2

0 if other
x2 �

{

1 if trt 3

0 if other
x3 �

{

1 if trt 4

0 if other

In this case,when the coefficients for x1 , x2 and x3 are all0, then the treatment levelmustbe 1 (‘other’).

Our regression equation would stay the same

Yi � β1 + β2x1 + +β3x2 + β4x3 + ǫi

but now, parameters β2 , β3 and β4 refer to treatment levels 2, 3, and 4, respectively. If x1 � x2 � x3,

then β1 refers to treatment level 1.

What is important to note here is that in either case, one of the levels is specified by the intercept

(i.e., β1). This level is referred to as the ‘control’ or ‘reference’ level. In this design, then, the other levels

(β2 → β4) are ‘offsets’ from this reference (control) level (i.e., theother β terms represent the magnitude

that a particular level of the treatment differs from the control). We will discuss this and related issues

in much more detail later.

end sidebar

From this step, it is fairly straightforward to derive the design matrix (so-called because it fully
represents the design of the analysis). The design matrix is simply a matrix showing the structure
of the ‘dummy’ coding variables in the analysis. Because there are 4 parameters being estimated in the
equation (β1, β2, β3 and β4), each corresponding to the 4 levels of the main effect, then the design matrix
will be a (4 × 4) square matrix.

To help construct the design matrix, we can decompose the general regression equation for this
analysis (above) into n regression equations, where n is the number of parameters in the regression
equation (i.e., the number of levels of the main effect; n � 4).

treatment equation

1 Yi � β1(1) + β2(1) + β3(0) + β4(0)

2 Yi � β1(1) + β2(0) + β3(1) + β4(0)

3 Yi � β1(1) + β2(0) + β3(0) + β4(1)

4 Yi � β1(1) + β2(0) + β3(0) + β4(0)
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The design matrix X is simply the matrix of the coefficient multipliers (shown in bold) in these
equations:

X �



1 1 0 0

1 0 1 0

1 0 0 1

1 0 0 0


While this seems logical enough, there are, in fact, a number of alternative parameterizations of the

design matrix, each of which yields the same ‘model fit’, but which have different interpretations.

For example, all 6 of the following design matrices (X1, X2 and X3) give equivalent model fits for our
example problem:

X1 �



1 1 0 0

1 0 1 0

1 0 0 1

1 0 0 0


X2 �



1 0 0 0

1 1 0 0

1 0 1 0

1 0 0 1


X3 �



1 1 0 0

1 0 0 0

1 0 1 0

1 0 0 1



X4 �



1 1 0 0

1 0 1 0

1 0 0 0

1 0 0 1


X5 �



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


X6 �



1 1 0 0

1 0 1 0

1 0 0 1

1 −1 −1 −1


X1 (above) is the design matrix we derived previously; we estimate an intercept term for the last

‘treatment’ level (4), and then an additional ‘treatment’ effect for ‘treatment’ levels 1, 2 and 3. Matrices
X2 → X4 are based on the same underlying idea, except that the intercept specifies a different ‘reference’
level in each case (see preceding -sidebar-). For example, in X2, the intercept corresponds to treatment
level 1. In X3, the intercept corresponds to treatment level 2. And, in X4, the intercept corresponds to
treatment level 3.

The matrix X5 is an identity design matrix. Here, each row corresponds to a parameter, and each
column corresponds to a parameter. Thus, each parameter represents a treatment estimate directly, not
as an ‘offset’ (deviation) from the ‘control’ or ‘reference’ (i.e., the intercept).

In matrix X6, we estimate a mean parameter among treatment levels, and then an ‘offset’ for each
of the 4 levels; the first column corresponds to the mean treatment value, and the remaining columns
provide the treatment effects.

We’ll consider these different design matrices later in the chapter. Note that the choice of the structure
of the design matrix doesn’t affect the estimates of the parameters (ϕ, or p, for example) – but it does
change how estimates of the individual slope parameters in the linear model are interpreted. We will
see many examples of this later in the chapter.

Perhaps the most important thing to remember in considering design matrices is that the number
of rows corresponds to the number of parameters in your PIMs, whereas the number of columns
corresponds to the number of these parameters you are trying to individually estimate. As we will
see in the next section, this distinction becomes important when fitting models where parameters are
constrained to be functions of 1 or more effects.

Finally, a more complex example, using 2 groups (say, males and females), with multiple levels of a
treatment within group (i.e., within sex). This example is clearly analogous to a 2-way ANOVA, with 2
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main ‘effects’ (treatment, and sex). Again, assume there are 4 possible treatment levels. The response
variable Y can be decomposed as:

Yi jk � µ + αi + β j + (αβ)i j + ǫi jk

where αi is the sex (group) effect, β j is the treatment effect, and (αβ)i j is the interaction of the two.

The corresponding regression equation would be:

Yi j � β1 + β2(SEX) + β3(t1) + β4(t2) + β5(t3)

+ β6(SEX.t1) + β7(SEX.t2) + β8(SEX.t3) + ǫ

If we derive the design matrix directly from this expression, then we see that we have 8 rows: 2 levels
for SEX (male or female) multiplied by 4 treatment levels within sex (remember, (n − 1) � 3 columns).
The design matrix X (shown below) would also have 8 columns, corresponding to the intercept, the SEX
(group effect), and the treatment and interaction terms, respectively

X �



1 1 1 0 0 1 0 0

1 1 0 1 0 0 1 0

1 1 0 0 1 0 0 1

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 0 0 1 0 0 0 0

1 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0


The first column represents the intercept, the second column the group (SEX) effect (1=male,0=female;

i.e., the additive effect of males-females), columns 3-5 represent the treatment effect (t1 → t3), and
columns 6-8 represent the interactions of SEX (male) and treatment. Why male, and not female? It
depends on the coding – in this case, we’re using ‘0’ to represent females, and thus the interaction
columns have non-zero elements for males only.

Suppose, for example, rather than the full model (with interactions), you wanted to fit the additive
model consisting simply of the 2 main effects (no interaction term):

Yi jk � µ + αi + β j + ǫi jk

which, in regression form, is

Yi j � β1 + β2(SEX) + β3(t1) + β4(t2) + β5(t3) + ǫ

Using the design matrix X (above), this is easily accomplished by simply deleting the columns corre-
sponding to the interaction terms:

X �



1 1 1 0 0

1 1 0 1 0

1 1 0 0 1

1 1 0 0 0

1 0 1 0 0

1 0 0 1 0

1 0 0 0 1

1 0 0 0 0


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Got it? As we work through this chapter, we’ll come back to the concept of a ‘linear model’ and the
‘design matrix’ with considerable frequency, but hopefully you have the basic idea. In the examples
we will explore in this chapter, you will learn the basic steps of creating these linear ‘dummy variable’
models, design matrices, and how to use them with MARK to test a variety of hypotheses.

The only thing we now need to consider is – how can we use ‘regression models’ for analysis of mark-
recapture data, since both survival and recapture are not ‘normal’ response variables – normal in the
sense that they are both constrained to be values from 0→ 1? If you simply regressed ‘live � 1/dead � 0’
or ‘seen � 1, not seen � 0’ on some set of explanatory variables x, it is quite conceivable that for some
values of x the estimates value of survival or recapture would be > 1 or < 0, which clearly can’t be
correct! However, we clearly want to be able to bring the full power of ANOVA-type analyses to bear
on capture-recapture studies.

As mentioned earlier in this chapter, the way around this problem is to transform the probability of
survival or recapture, such that the transformed probabilities have been mapped from [0, 1] to [−∞,+∞],
which is of course the ‘assumption’ for normal linear regression models. To accomplish this, MARK

uses a link function (see the following -sidebar- for more general background on link functions). In
fact, MARK allows you to choose among a number of different link functions (some of which are more
appropriate for certain types of analyses than others). The default link function is the sin link, which has
very good properties for analyses that use what is known as the ‘identity matrix’ (much more on this
matrix in a minute. . .). For models which don’t use the identity matrix (such as constrained models),
the logit link function is preferred (this is discussed later on in this chapter). Using these transformed
probabilities, we can use linear regression models analogous to the one we just considered in the skull
circumference example. We will now consider a simple example in detail, based on live encounter data
from the European Dipper, to demonstrate how linear models are constructed using MARK.

begin sidebar

What is a link function?

In the context of analysis of data from marked individuals, a link function is a transformation of

probability such that the transformed probability is mapped from [0, 1] to [−∞,+∞]. For example,

suppose you want to express a dichotomous (i.e., binary) response variable Y (e.g., survival or

recapture) as a function of 1 or more explanatory variables. Let Y � 1 if alive or present; otherwise

Y � 0. Let x be a vector of explanatory variables, and p � Pr(Y � 1 | x) is the probability of the

response variable you want to model. We can construct a linear function of this probability by using

a certain type of transform of the probability, p.

For example, the logit transformation (one of several transformation or link functions you can use

with MARK) is given as:

logit(p) � ln

(
p

1 − p

)

� β1 + β2x

where β1 is the intercept, and β2 is the vector of slope parameters. Since θ � ln(p/(1− p)) has inverse

p � eθ/(1 + eθ ) � 1/(1 + e−θ), then the back-transformed estimate of p̂ (i.e., back-transformed to the

[0, 1] probability scale) is

p̂ �
e β̂1+β̂2x

1 + e β̂1+β̂2x
�

1

1 + e−β̂1−β̂2x

In other words,we can express the probability of the event (survival or recapture) as a linear function

of a vector of explanatory variables. The logit (or logistic) model is a special case of a more general class

of linear models where a function f � f (m) of the mean of any arbitrary response variable is assumed

to be linearly related to the vector of explanatory variables. The function f is the ‘link’ between the
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random component of the model (the response variable) and the fixed component (the explanatory

variables). For this reason, the function f (m) is often referred to as a ‘link function’.

MARK allows you to choose among a number of different link functions (we will discuss the various

link functions later in this chapter), some of which are more appropriate for certain types of analysis

than others. MARK estimates the intercept and vector of the slope parameters, using the specified

link, and then reconstitutes the values of the parameter from the values of the explanatory variables, x.

MARK does this in 2 steps: (1) first, MARK reconstitutes estimates of the parameter from β̂1, β̂2 and

x, and then (2) MARK computes values of the parameter from f using the back transform f −1. There

are several examples of this in the text.

end sidebar

6.3. The European Dipper – the effects of flooding

We return to our analysis of the European Dipper data set. Now, we will examine the effects of a specific
climatic event (flood conditions on the breeding ground) on survival and recapture estimates.

As you may recall from Chapter 3 and Chapter 4, this data set involves 7 occasions of mark-recapture,
of both male and female individuals. In those earlier chapters, we focussed on the males exclusively. In
this chapter, we’ll reanalyze this data set including both males and females. Each year in the study was
characterizedby the presence orabsence offloodconditions. Are years withhigh(or low) values of either
survival or recapture (or both) associated with years when there was a flood? Does the relationship
between flood and either survival or recapture differ significantly between male and female Dippers?
In order to address these questions, we will use the following ‘logic sequence’:

step 1 - is there support for an interaction of sex and the covariate (flood) on variation in either

survival or recapture?

step 2 - if there is no strong support for such an interaction, then is there evidence supporting a

difference between the sexes in survival?

step 3 - in the absence of an interaction between sex and flood, is there any evidence supporting a

linear relationship between survival (or recapture) and the covariate (flood)?

This is the same sequence of steps used in analysis of covariance (ANCOVA). This is a very basic (and
hopefully familiar) analytical design in statistical analysis, and we will demonstrate that the very same
approach can be used to analyze variation in survival or recapture. Before we begin, let’s recast our
analysis in terms of linear models. For the moment, let’s use the simplified expression of linear models
used in earlier chapters. Our basic model, including our classification variable (SEX) is

ϕ (or p) = SEX + FLOOD + SEX.FLOOD + error

One thing you might ask at this point is – why isn’t TIME included in the model? The answer lies in the
fact that when we talk about constraints, we are speaking about ‘applying’ a constraint to a particular
starting model. For example, we could start with the standard CJS model, with time-dependence of
both survival and recapture probabilities. Then, we could apply a specific constraint to this model. In
this example, we replace the ‘random’ effect of time in the CJS model by the ‘specific’ temporal effect of
FLOOD. FLOOD is a particular case of time-dependence, because years with the same flood condition will
share the same survival value. Thus, models with the FLOOD factor are ‘nested’ in the corresponding
CJS model with the ‘random’ TIME factor. Of course, FLOOD, just like TIME, can be crossed (interaction)
with SEX.
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Our first step in this analysis is to test for the significance of the interaction term: SEX.FLOOD. If the
interaction term is not significant, we can proceed to test for the significance of the other factors.

How do we test for significance of the interaction term? Clearly, we test the model with the interaction
against the same model without the interaction – using either relative model support (the QAIC
approach), or (if you prefer) a LRT. The difference in fit of these two models is a ‘test’ of the interaction
term.

ϕ (or p) = SEX + FLOOD + SEX.FLOOD + error
versus ϕ (or p) = SEX + FLOOD + error

SEX.FLOOD

How do we do this? The basic mechanics are the same as were described in earlier chapters – we use
MARK to fit the 2 models we want to compare. But, in this case, there is a subtle difference; although the
SEX term clearly corresponds to the 2 groups on our analysis, how do we incorporate the information
specified by the FLOOD variable? In other words, how do we ‘constrain’ our estimates for either sex to
be a linear function of flood? What about the design matrix?

OK – here we go – step by step...

Step 1 – reading in the data

Start MARK, and create a new project. The data file for this example is the full Dipper data set
(ED.INP). Select it, and label the 2 groups ‘males’ and ‘females’. [Reminder, you are expected to know
or remember which columns in the .INP file correspond to which groups]. There are 7 occasions in the
Dipper data set.

Step 2 – identify the parameters you want to constrain

In any typical analysis, your next step would be to decide on your starting, underlying model. For
example, your starting model might include simple time-dependence in both parameters. Remember,
this fully time-depedent model is the default starting model for MARK.

How do you decide on the structure for the starting model? By using the techniques discussed
in the preceding chapters, and the GOF procedures outlined in Chapter 5. Remember – you apply a
constraint to a particular underlying (or starting) model – if this model doesn’t adequately fit the data,
then applying a constraint will not yield a particularly powerful test.

For the moment, let’s assume that the model {ϕg∗tpg∗t} (i.e., time and group effects for both survival
and recapture) is a good (and valid) starting model. Once you’ve determined the starting model, you
need to determine the parameter indexing that MARK will use. For the Dipper data set, we have 2
groups, and 7 occasions.

Thus, the PIMs for this model would look like the following:

survival

1 2 3 4 5 6 7 8 9 10 11 12

2 3 4 5 6 8 9 10 11 12

3 4 5 6 9 10 11 12

4 5 6 10 11 12

5 6 11 12

males 6 females 12
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recapture

13 14 15 16 17 18 19 20 21 22 23 24

14 15 16 17 18 20 21 22 23 24

15 16 17 18 21 22 23 24

16 17 18 22 23 24

17 18 23 24

males 18 females 24

Remember, this is the default model that MARK will start with, so there is no need to modify the
PIMs at this stage. A GOF test (using the parametric bootstrap – see chapter 5) yields a ĉ value of 1.183
(remember, your estimate of ĉ might differ somewhat from this value, since the actual estimate of ĉ will
depend upon the number of bootstrap simulations you run). Adjust the ĉ in the results browser from
1.000 (the default) to 1.183 (remember, this means we’re now changing from AICc to QAICc).

This model represents our ‘starting point’. Note that there are 24 structural parameters – 6 survival
parameters for each sex (12 total), and 6 recapture parameters for each sex (12 total). However, recall
that there are a couple of non-estimable β-terms here, one for males and females, respectively, so 22
total estimable parameters (10 survival, 10 recapture, 2 β-terms). Go ahead and fit this model to the data.
Call it ‘phi(g*t)p(g*t) - PIM’ (we’ve added the PIM label so that when we look at the model in the
browser, we’ll know that this model was constructed using PIMs only).

Now, we’ll fit a ‘constrained model’ to these data. For the moment, we’re concentrating on survival in
our analysis of these data, so the parameters we’re interested in are in ‘survival’ matrices, the survival
PIMs. Thus, we want to constrain 12 parameters: 6 survival estimates for males, and 6 for females. How
do we do this? In other words, we want to make the probability of survival a linear function of other
factors. In this particular example, the ‘other factors’ are SEX, and FLOOD.

Step 3 – defining the model structure of the linear constraint (modifying the design matrix)

As suggested earlier, linear models are specified via a ‘design matrix’. In fact, this is precisely what
we’ll do in MARK – specify a particular design matrix, corresponding to the particular linear model
we want to apply to the data. Again, recall that the name ‘design matrix’ reflects what it does – it is a
matrix containing the dummy variable structure which ‘codes’ the design of the linear model you are
fitting to the data. What would the design matrix corresponding to model

ϕ (or p) � SEX + FLOOD + SEX.FLOOD + error

look like? As a first step, we generally rewrite this model expression more formally. If we consider FLOOD
as a simple binary variable (a year is either ‘flood’ or ‘non flood’), then the corresponding linear model
equation would be:

Yi j � β1 + β2(SEX) + β3(FLOOD) + β4(SEX.FLOOD) + ǫ

Recall that each column in the design matrix corresponds to each ‘β’ term in the model. In the
model, we have 4 different ‘β’ terms – the intercept, the term for SEX, the term for FLOOD, and the term
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corresponding to the (SEX.FLOOD) interaction. So, the design matrix will have 4 columns. Now we need
to create, or modify, the design matrix for this model in MARK. You may have noticed that there is a
menu in MARK called ‘Design’. If you pull down the ‘Design’ menu, you’ll see that you are presented
with several options: full, reduced, and identity.

Understanding the distinction between the various options in the ‘Design’ menu will take a few steps,
so for the moment, we’ll start by selecting the ‘Design | Full’ menu option from the ‘Design’ menu.
Once you select ‘Full’, a new window will pop up on the MARK desktop, looking like the following:

This new window is the ‘Design Matrix Specification’.∗ Here we are using the full Dipper data,
consisting of 2 groups (males, females), and 7 sampling occasions). For larger data sets (more groups,
more occasions), you may only see parts of it, so you need to get familiar with the basic layout. First, and
most obviously, the matrix is split into a series of columns. In this example, there are in fact 25 columns,
1 each for each of the 24 ‘potentially’ estimable parameters (remember, this is the CJS model, with 12
survival and 12 recapture parameters), and 1 ‘parameter label’ column (the grey one in the middle of
the matrix, labeled ‘Parm’). At the top of each of the columns representing the 24 parameters, you’ll see
headers like ‘B1’, ‘B2’ and so forth. Recall that ‘B’ stands for ‘β’ – thus, the columns ‘B1’, ‘B2’, ‘B3’ refer to
‘β1’, ‘β2’ and ‘β3’, respectively.

How many rows in the design matrix? You might guess 24. You would be correct! The design matrix
– the full design matrix – for the CJS model for this data set is (in effect) a (24× 24) matrix (we’ll ignore
the parameter column for the moment).

∗ Here is where it helps to have a big monitor!
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If you look at the design matrix for this model carefully, you’ll see that it has the following general
structure:

survival
dummy

variables

recapture
dummy

variables

null

null

In the upper-left and lower-right quadrants, we have the ‘dummy variable coding’ for survival and
recapture, respectively. In the upper-right and lower-left quadrants, we have what we’ll refer to as the
‘null’ coding.

Whatare these codings? Let’s lookat the upper-leftquadrantfirst– the dummy coding for the survival
parameters. This quadrant is shown below:

First – how big (number of rows,number of columns) is the quadrant? Since the full matrix is (in effect)
(24 × 24), then 1/4 of this is a (12 × 12) matrix. Thus, the upper-left quadrant are the first 12 columns
and rows (going from left to right, top to bottom). In this quadrant (pictured on preceding page), we
see a column of 12 ‘1’s (the column labeled ‘B1 - Phi Int’), a second column of 6 ‘1’s followed by 6
‘0’s, then a series of columns with ‘1’s going down along a diagonal. (Note: the column shows a label
of ‘B1 - Phi Int’. MARK provides the indicated column labels by default for the full design matrix
corresponding to a fully time-dependent model structure, as specified by the PIMs. For other models,
the default column labels are simply Bn (e.g., B1, B2, B3...). To change the label for a particular column in
the design matrix, simply right-click within any cell in a particular column. This will spawn a series of
options you can select from – one of which is to label the column. Meaningful (to you) column labeling
is very useful until you’ve developed some experience with design matrices – the labels will help you
keep track of things.)

Chapter 6. Adding constraints: MARK and linear models



6.3. The European Dipper – the effects of flooding 6 - 17

Remember, what is pictured here is the part of the design matrix which corresponds to the survival
parameters for the ‘full’ general model - model {ϕg∗t pg∗t} (where g = SEX). In other words the basic CJS
model for 2 groups. This is what ‘Full’ refers to when you select that option from the ‘Design’ menu -
‘Full’ means the fully time-dependent model, as specified by the PIMs.

Second, the actual structure of this part of the design matrix reflects the linear model corresponding
to model {ϕg∗t} (remember, we’re only considering the survival part of the design matrix for now). Now,
given that there are 7 occasions, and 2 groups (males and females), the linear model corresponding to
model ϕg∗t is (wait for it. . . )

Yi j � β1 + β2(SEX) + β3(t1) + β4(t2) + β5(t3) + β6(t4) + β7(t5)

+ β8(SEX.t1) + β9(SEX.t2) + β10(SEX.t3) + β11(SEX.t4) + β12(SEX.t5) + ǫ

Pretty cumbersome looking, but not too hard if you go through it slowly. One term for the intercept
(β1), one term for the ‘group’ effect (i.e., sex, β2), 5 terms for the 6 time intervals over which we hope to
estimate survival (β3 to β7), and then 5 terms for the interaction of sex and time (β8 to β12) – a total of
12 parameters. Thus, 12 columns for this part of the design matrix, just as we observe in the preceding
figure. Remember – even though there are 6 time intervals for survival (7 occasions = 6 intervals), we
need only 5 columns – 5 parameters – to code them. So, for 6 intervals (which is analogous to 6 levels
of a ‘time’ treatment), you need (6 − 1) � 5 parameters. This is precisely where the ‘n − 1’ degrees of
freedom bit comes from in ANOVA (and which is almost never explained to you in your basic stats
class – they simply teach you ‘rules’ like ‘n − 1 degrees of freedom. . .’ without explaining why. Now
you know why! – it relates to how the linear model is set up and reflects the number of columns needed
to code for a ‘treatment’ in the design matrix).

However, note that the columns of the design matrix are labeled ‘B1’ to ‘B12’. MARK defaults to
labeling the first column (the ‘intercept’ column) as ‘B1’, which seems counter to the (fairly) standard
linear models convention of using β0 for the intercept. While you can always change it in the MARK

preferences if you want, we will adopt the convention of using β1 for the intercept. Doing so makes it
much easier to relate the terms of the linear model to specific columns in the design matrix (column B1
in the design matrix corresponds to β1 in the linear model, column B2 corresponds to β2, and so on).

OK, so that’s the basic structure – 12 columns, and 12 rows (12×12): 12 columns for the 12 parameters
of the linear model, and 12 rows for the (2 groups × 6 occasions). Remember – the number of columns
in the design matrix represents the number of parameters we want to estimate, while the number of
rows in the design matrix reflects the number of parameters in the underlying model (i.e., the parameter
indexing specified in the PIMs). If the number of columns is < the number of rows, then this implies
that we are applying a constraint to the underlying model structure.

What about the actual dummy variable coding? Well, the intercept column should be straightforward
– it’s all ‘1’s. Next – the column coding for ‘SEX’. Here it is arbitrary which dummy variable you use to
code for ‘males’ and for ‘females’ (there is a fairly common convention for using ‘1’s for males, and ‘0’s
for females, but it makes absolutely no difference at all). Again, there are 2 levels of this effect – 2 sexes.
So, we need 1 column of dummy variables to code for sex (that old ‘n − 1 degrees of freedom’ thing
again). So far, so good – and hopefully, pretty easy stuff.

What about time? Well, if you remember the introduction to linear models and the design matrix
from earlier in this chapter, you realize that what MARK does is use a row of all ‘0’s to code for the last
time interval, and then ‘1’s along the diagonal to code for the preceding intervals. The choice of using
‘0’s first, then the diagonal, is entirely arbitrary (you could, for example, use a diagonal set of ‘1’s, with
the last row being all ‘0’s – makes little difference to the overall model fit, or the reconstituted estimates)
– it is a MARK default. Note that this pattern is repeated twice – once for the males, and once for the
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females. Look closely – make sure you really do get it. Finally, the interaction terms. Pretty easy – just
multiply the ‘SEX’ column by the ‘TIME’ columns to generate the ‘SEX.TIME’ interaction columns. Got it?
Good!

Now, what about recaptures? So far, we’ve been talking only about modeling survival. Well, since the
general model is {ϕg∗t pg∗t}, then the structure for the design matrix for recaptures should be identical to
the one for survival, except it is located in the lower right quadrant of the design matrix – the recapture
part of the design matrix is pictured at the top of the next page. Before we proceed, what about the 2
‘null’ quadrants? Well, since ‘null’ generally refers to ‘0’, you might suspect that the ‘null’ quadrants are
filled entirely with ‘0’s. You would be correct.

begin sidebar

changing the default reference level

In the preceding, we’ve used the default coding system in MARK to specify the ‘full’ design matrix.

The default uses the last time interval or occasion as the reference (i.e., the last time interval or occasion

is represented by the intercept). As will be discussed later in this chapter (p. 77), there may be reasons

why you don’t want to use the last interval or occasion as the intercept – in particular, if it involves

confounded parameters. For example, in a fully time-dependent CJS model, the final ϕ and p estimates

are confounded. In such cases, it may make sense to change the default reference level to (say) the first

interval or occasion. MARK makes it easy to do so – simply access ‘File | Preferences’, and check the

box ‘For time effects in the using matrix, make the first row the reference value’. Recall

that the first row corresponds to the first interval or occasion.

end sidebar

Back to the problem at hand – we want to constrain the survival estimates – the first 12 parameters
(rows 1 → 6 for the males, and rows 7 → 12 for the females). In MARK, you constrain parameters by
‘modifying’ the design matrix. For our present example, we want to constrain survival to be a function
of SEX, FLOOD, with a SEX.FLOOD interaction. Recapture probability we’ll leave as is – with simple SEX
and TIME differences, with a SEX.TIME interaction. Simple designs tend to be very easy, more complex
designs obviously less so. So, we really need to consider only the structure of the design matrix for
survival.

In fact, all you really need to do is write out the linear model equation for survival. In this case, it
would be:

Yi j � β1 + β2(SEX) + β3(FLOOD) + β4(SEX.FLOOD) + ǫ

A term for the intercept (β1), a term for the sex effect (β2), a term for the flood effect (β3 – remember
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that flood is a simple binary state variable – either ‘flood’ or ‘no flood’), and a term for the interaction
of the two (β4). So, the survival part of the design matrix would consist of 4 columns, corresponding
to this linear model. The number of rows? Again, the number of rows is the product of the number of
time intervals specified in the PIMs, and the number of groups (so, 6 × 2 � 12 rows).

We already know how to code the intercept term, and the SEX term. What about the FLOOD term? Well,
since flood state is a binary variable, we can use ‘1’ to indicate a flood year, and ‘0’ to indicate no flood.
In this study, the flood occurred during the 2nd and 3rd breeding seasons only.

Thus, the design matrix for the survival parameters will be – for males:

INTERCEPT SEX FLOOD SEX.FLOOD

1 1 0 0

1 1 1 1

1 1 1 1

1 1 0 0

1 1 0 0

1 1 0 0

and for females

INTERCEPT SEX FLOOD SEX.FLOOD

1 0 0 0

1 0 1 0

1 0 1 0

1 0 0 0

1 0 0 0

1 0 0 0

Note that since the SEX column is now all ‘0’, the interaction column will also be a column of ‘0’s,
regardless of what is in the FLOOD column. Thus, putting the two sexes together, the design matrix for
survival would be (top of the next page):

INTERCEPT SEX FLOOD SEX.FLOOD

1 1 0 0

1 1 1 1

1 1 1 1

1 1 0 0

1 1 0 0

1 1 0 0

1 0 0 0

1 0 1 0

1 0 1 0

1 0 0 0

1 0 0 0

1 0 0 0

Got it? Now, all that’s left is to translate this design matrix into MARK. There are a couple of ways
to do this, but since we have the ‘full design matrix’ open already, we’ll go ahead and modify it. Now,
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recall that in the unmodified full design matrix, we have 12 columns for the survival parameters, and
12 columns for the recapture parameters (we’re ignoring the recapture parameters for the time being).
So, we want to reduce the number of columns for the design matrix for survival from 12, to 4. It is this
reduction that leads us to say that a model where survival is constrained to be a function of SEX and
FLOOD is a ‘reduced parameter model’. It is reduced because the number of columns (i.e., the number
of parameters) is reduced, relative to the starting model.

Now, MARK makes it easy to manipulate the design matrix. But, for the moment, we’ll do it
‘manually’, without some of the ‘way cool and nifty’ shortcuts that MARK offers. After some practice,
you’ll probably skip the manual approach, but then...the manual approach almost always works, even
if it takes a bit longer. Basically, we want to keep the column corresponding to the intercept (the B1
column in the matrix MARK presents). We also want to keep the SEX column (column B2). Then, we
want 2 columns: one for the flood dummy variable, and one for the interaction. The simplest approach
to doing this is to manually edit the cells in columns 3 and 4 of the existing design matrix, entering
the dummy variable coding for FLOOD, and the SEX.FLOOD interaction, as described earlier. All that’s left
after that is to delete the other 8 columns, which are no longer needed (there are lots of ways to delete
or add columns to the design matrix – note the various menus specifically for this purpose. You can
also right-click your way to the required structure). The final design matrix, showing both survival and
recaptures, is shown below:

Again, we now have 4 columns coding for the survival parameters, and 12 columns for the recapture
parameters. Study this design matrix carefully – make sure you understand how it is constructed, and
(obviously) why it has the structure it does.
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Note: You may have noticed the grey-shaded column in the various design matrices we’ve examined
thus far. This is a handy little feature of the presentation of the design matrix in MARK, which helps
you remember which rows of the design matrix correspond to which parameters. This ‘guide column’
(for lack of a better name) can be dragged left or right within the design matrix – this is convenient since
you can drag it to a point which conveniently separates the survival and recapture parameters to the
left or right of the guide column, respectively (as we’ve shown in this example).

6.3.1. Design matrix options: full, reduced, and identity

For the preceding example, we started by generating the ‘full design matrix’, corresponding to the
general time-dependent model {ϕg∗tpg∗t}. We did this by selecting the ‘Full’ option from the ‘design
matrix’ menu. You might have noticed two other options – one for a ‘reduced’ design matrix, and the
other for an ‘identity’ design matrix. The distinctions among the three options are:

1. The ‘full’ design matrix corresponds to a fully ‘group × time’ model. If the underlying PIM
structure is fully ‘group × time’, then selecting the design matrix option ‘full’ from the
menu will generate the standard ‘group× time’ design matrix, based on intercept (reference)
coding – MARK defaults to using the last time interval as the reference cell (this is discussed
elsewhere). If you select the ‘full’ design matrix option when the underlying PIM structure
is not fully ‘group × time’, then MARK will respond with an error box. The ‘full’ design
matrix option applies only if the underlying PIM structure, is fully ‘group × time’ – if the
PIM structure is anything else, then you need to use the ‘reduced’ option (see 2, below).

2. If either (i) the underlying PIM structure does not represent a fully ‘group× time’ model (e.g.,
if the PIM structure represents a reduced parameter structure – fewer parameters than the
‘group × time’ structure, or more parameters than a ‘group × time’ structure – for example,
for a TSM model; Chapter 7), or (ii) you want to build a design matrix which constrains the
underlying PIM structure (e.g.,applying a constraint to a ‘group× time’ PIM structure where
time might be constrained to be a linear function of some environmental covariate), then
you would select the ‘reduced’ design matrix option (note: the term ‘reduced’ is perhaps
somewhat misleading, since in fact you would use it for a model with more parameters than
a ‘group× time’ model – the word ‘reduced’ would suggest fewer parameters). The ‘reduced’
option is the option you use whenever you want to construct a design matrix which does
not correspond to a full ‘group × time’ model. When you select ‘reduced’, MARK presents
you with a popup window which asks you to specify the number of columns you want in
the design matrix, MARK defaults to the number of columns represented in the PIMs (i.e.,
if the PIMs specify n parameters, then the default design matrix will have n columns). If
you want to start with fewer columns, you simply change the value in the popup window.

3. The ‘identity’ matrix is the default design matrix in MARK – The ‘identity’ option results
in the number of columns in the matrix equaling the number of rows, with the diagonal
filled with ones and the rest of the matrix zeros. This is an identity matrix, and provides no
constraints on the parameters. The identity matrix can be selected for any model, regardless
of the underlying PIM structure.

6.4. Running the model: details of the output

Go ahead and run this model – call it ‘Phi(sex*flood)p(sex*time)’. Now, before you submit this model,
something important to notice (top of the next page) – the sin link is no longer the default. In fact, as
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you can see, the sin link is not even available. The default (and generally preferred) link function when
you change the design matrix from the default identity matrix is now the logit link.

begin sidebar

available link functions in MARK, and...why no sin link with a design matrix?

MARK currently supports 8 different link functions: 4 which constrain parameters to the interval [0, 1]

(logit, log-log, complementary log-log, and the default sin link), and 4 which either do not restrict the

parameters to be in the [0, 1] interval (identity and log), or which are constrained versions of the logit

transform (cumulative and multinomial logit; these will be introduced later).

Although the logit function is commonly used for statistical analysis of [0, 1] bounded parameters,

this function presents some problems during the numerical optimization because as the parameter

estimates for β approach±∞ (i.e., as the real parameter values approach either 0 or 1), both the first and

second derivatives of the function approach 0. As a result, determining the rank of the information

matrix (see Chapter 4) is not a reliable method for determining the number of parameters estimated

when using the logit link. In contrast, the sin link function is much better behaved numerically for the

optimization – not only does this function require less computer time for the optimization (for some

technical reasons), but because the second derivative is not zero when the value of the link function

approaches either 0 or 1. As a result, the rank of the information matrix is a reliable estimator of the

number of parameters estimated. Thus, the default link function in MARK is the sin link.

The following tabulates many of the more commonly used link functions and back-transformations

in MARK, presented assuming a simple linear function θ � β1 + β2(x), where θ is some parameter

bounded [0, 1] (e.g., encounter probability).

link function back-transform

sin arcsin(2θ − 1) � β1 + β2(x) θ �
[

sin
(

β1 + β2 (x)
)

+ 1
]

/2

logistic log
(
θ

1 − θ

)

� β1 + β2(x) θ �
exp

(

β1+β2 (x)
)

1 + exp
(

β1+β2(x)
) (∗)

log ln(θ) � β1 + β2 (x) θ � exp
(

β1 + β2(x)
)

log-log log
(

− log(θ)
)

� β1 + β2(x) θ � exp
(

− exp(β1 + β2(x)
)

complementary log-log log
(

− log(1 − θ)
)

� β1 + β2(x) θ � 1 − exp
[

− exp
(

β1 + β2(x)
) ]

identity θ � β1 + β2(x) θ � β1 + β2(x)

∗
Note the equivalence of the following:

eXβ

1 + eXβ
�

1

1 + e−Xβ

Among the 6 standard link functions (excluding the cumulative and multinomial logit links), the log

and identity link functions do not constrain the probability to the interval [0, 1], which can occasionally

cause numerical problems when optimizing the likelihood. The log link does constrain real parameter

values >1 (which is clearly useful for parameters which are naturally ≥ 0). For the log and identity

link functions used with an identity design matrix, MARK uses the sin link function to obtain initial

estimates for parameters, then transforms the estimates to the parameter space of the log and identity

link functions when they are requested.
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A common question – why is the sin link ‘not available’ (i.e., is ‘greyed out’) when the design

matrix is modified (i.e., when the design matrix is not an identity matrix)? As it turns out, the sin link

should only be used with design matrices that are identity matrices, or when only one column in each

row has a value not equal to zero, because the sin link will reflect around the parameter boundary,

and not enforce monotonic relationships. In other words, despite some numerical advantages, the sin

link function can produce biologically unrealistic models when the range of the covariate and/or the

parameter estimates cause the link function to straddle 0. The logit link is better for non-identity design

matrices.

The underlying reason has to do with the fact that the logit function is monotonic, whereas the sin

function is not. Multiple values of the sin function will produce exactly the same transformation. For

example, sin(x), sin(x + 2π), and sin(x + 4π) all result in the same value, given x. Such is not the

case for the logit function. Thus, although the sin link is the best link function to enforce parameter

values in the [0, 1] interval and yet obtain correct estimates of the number of parameters estimated,

you need to be careful: in fact, because the sin link is not monotonic, the sin link is simply not available

whenever you manipulate the design matrix (i.e., MARK is protecting you from making a possible

mistake if you try to use the sin link).

Here is a worked example demonstrating the problem. Consider the survival of some organism

deliberately exposed to a potentially toxic chemical. The data set (sin_example.inp) consists of 6

sampling occasions, and 2 groups (treatment and control). Analysis of this data set provides a very

interesting example of the misbehavior of the sin link function. Fit the model {ϕt+g pt} using a sin

link. MARK will not let you do this directly – you’ll need to use a ‘parameter-specific’ link, which

we’ll discuss later), and examine the parameter estimates:

Sin Link Logit Link

Treatment Control Treatment Control

Interval Estimate Estimate Estimate Estimate

1 0.693804 0.809271 0.723796 0.786824

2 0.966087 0.901265 0.913274 0.936837

3 0.902766 0.966995 0.921747 0.943152

4 0.908336 0.817021 0.846637 0.886047

5 0.684043 0.800919 0.700348 0.767003

The differences in survival of the treatment and control groups are not consistent between the two

link functions, i.e., compare the survival estimates from the sin link function with those from the logit

link:
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Using the sin link, the control group is not consistently larger than the treatment group, or vice

versa. In contrast, note how this constraint is enforced with the logit link function, i.e., the control
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estimate is always greater than the treatment estimate. The survival probabilities are parallel on the

logit scale, but not on the sin scale.

How can this be? The answer lies in the fact that the logit function is monotonic, whereas the sin

function is not. Thus, the message is clear – beware when using the sin function in MARK for design

matrices other than an identity matrix. You can get burned badly, as this example shows. The biological

interpretation of the sin model is nonsense, yet, interestingly, this model provides the minimum AIC

by 3 units. Further, the treatment effect would appear to be significant with this model. Because of

the non-monotonic relationship provided by the sin link function, the sin link function is not easily

available in MARK for design matrices where a row in the matrix has non-zero values in more than

1 column.

end sidebar

Go ahead and run this model, and add the results to the results browser. The QAICc for this model
(given the value for ĉ we specified at the outset) is 584.77, which is approximately 15 less than our
starting, general model. Thus, based on these 2 models, we would conclude that our ‘constrained’ (i.e.,
reduced parameter) model is many times better supported by the data than was our general starting
model. However, note that our constrained model is reported to have 15 estimated parameters. And yet,
if you look at the design matrix, you’ll see that we have 16 columns, meaning 16 parameters.

So why does MARK only report 15, and not 16? In this case, the problem is with the data. MARK

reports the numbers of parameters that it can estimate, given the data, not the number of parameters
that are theoretically available to be estimated. If you look at the parameter estimates for the constrained
model, you see that the recapture probability for males for the third occasion (reconstituted parameter
14) is estimated with a standard error of 0, which is usually diagnostic of there being a problem. As
such, MARK doesn’t ‘count it’ in the parameter total.

It is worthnoting thatone of the big differences between the logit linkand the sin link is that the sin link
generally does ‘better’ when dealing with parameters near the boundaries – meaning that it will often
‘succeed’ at estimating a few more of these ‘problem’ parameters than the logit link. However, you need
to use the logit link if you modify the design matrix. So, keep it in mind. In this case, MARK reports only
15 parameters, not 16. So, you need to manually adjust the number of parameters to reflect the ‘missing’
parameter. You do this with the ‘Adjustments’ menu. Simply change the number of parameters for this
model from the 15 that are reported to the 16 that are structurally estimable.

Now, let’s look at the estimates for survival:
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Couple of things to notice. First, the parameters 1→ 6 correspond to males, 7→ 12 to females. This is
what we specified in the PIMs for the underlying model, to which you applied the constraint reflected
in the linear model. Now, remember that there was a flood over the second and third intervals only.
This is seen in the estimates – for males, for example, survival in the 2 flood years is 0.4725, while in the
non-flood years, survival is 0.5970. For females, the survival during the 2 flood years is 0.4537, while
for the non-flood years, it is 0.6403.

Where do these ‘estimates’ come from? Notice that these are labeled as ‘Real Function Parameters’
– what does that mean? The answer is found if you look in the ‘full output’. Scroll down until you get
past the section containing the details about the numerical estimation procedure. It is what comes after
this ‘summary’ section which we’re going to focus on for the moment. This next section is broken up
into 2 distinct pieces: the link function parameters of the model, and the real function parameters
of the model.

Very briefly, the ‘link function parameters’ are the estimates of the ‘slope parameters’ in the linear
model. Remember, we’re fitting what is in effect a regression model to the data, a regression model that
contains estimated parameters – these are the β values referred to earlier. In this example, they are logit
link function parameter estimates. More about the linear model and the β-parameters in a moment. The
real function parameters are the estimates of the survival and recapture parameters themselves. These
values are estimated from the linear model. Think of it this way. The link function parameters define a
linear equation, which is then used to estimate the corresponding values of survival and recapture.

6.5. Reconstituting parameter values

Let’s look at the link function parameter estimates a bit more closely. Recall that for the constrained
model, 15 parameters were estimated. Can we confirm this by looking at the link function parameter
estimates? You can look at the ‘Beta’ estimates by clicking on model ‘Phi(SEX*FLOOD)p(SEX*time)’ in
the browser (to make it active), and then clicking on the third icon from the left in the browser toolbar.

This will open up a notepad window with the β-estimates (i.e., the estimates of the intercept and
slopes):

We see that there are 16 β-estimates, but that only 15 of them are actually estimable (note the standard
error for parameter 13). This is why MARK reports 15 estimable parameters. No confounded β-terms
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here (more on why in a minute). So we see again that the number of estimable parameters MARK

reports in the browser corresponds to the number of estimable ‘slopes’ in the linear model.

But let’s explore what these link function parameterestimates actually mean. This will make explicitly
clear what link functions are all about. Let’s consider the {SEX FLOOD SEX.FLOOD} model. The first 4 link
function parameter estimates are:

Parameter β̂

1 0.576929
2 -0.183767
3 -0.762691
4 0.259347

These values are the coefficients (‘slopes’) for each of the terms in our linear model: one each for the
INTERCEPT, SEX, FLOOD, and the SEX.FLOOD interaction (parameters 1→ 4, respectively). It is from these
slopes and intercept (or, rather, from the linear model they define), that we ‘reconstitute’ our estimates
for survival.

A simple example will make this clear. Suppose you were given the equation Y � 3.2x+4. If you were
then given some value x, you could interpolate what the value of Y will be (on average, if the equation
is a regression line). For example, if x � 4, then Y � 16.8. The same thing applies in our constraint
analysis. We now have an equation of the form:

logit(ϕ) � β1 + β2(SEX) + β3(FLOOD) + β4(SEX.FLOOD)

Now, from this equation, we can predict, or ‘reconstitute’ estimates of survival for any value of SEX,
FLOOD and the interaction (SEX.FLOOD).

To make sure you really understand what is happening, let’s consider how the reconstituted estimate
for male survival over the fifth interval (i.e., ϕ̂5) is obtained. We must first compute the estimate of
survival on the logit scale using the linear formula noted above, where the values of β1 , β2 , β3 and β4

are parameters (‘beta’) 1, 2, 3 and 4 (respectively). For males, SEX is coded ‘1’. As the fifth interval is a
‘non-flood’ year, FLOOD is ‘0’, and thus the interaction term (SEX.FLOOD) is also ‘0’.

Therefore,

logit(ϕ̂5) � 0.576929+ (−0.18377) × (1) + (−0.76269) × (0) + (0.25935) × (0)

� 0.393159

The reciprocal of the logit transform is

elogit(ϕ5)

1 + elogit(ϕ5)

Thus, the ‘reconstituted’ value of

ϕ̂5 �
e0.393159

1 + e0.393159

� 0.5970429

This is the result given by MARK (up to the level of the rounding error).
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begin sidebar

reconstituting standard error of estimate

In the preceding, we saw how we can ‘back-transform’ from the estimate of β on the logit scale to an

estimate of some parameter θ (e.g., ϕ or p) on the probability scale (which is bounded on the interval

[0, 1]). But, we’re clearly also interested in an estimate of the variance (precision) of our estimate,

on both scales. Your first thought might be to simply back-transform from the link function (in our

example, the logit link), to the probability scale, just as we did above. But, does this work?

Consider the male Dipper data. Using the logit link, we fit model {ϕ.p.} to the data – no time-

dependence for either parameter. Let’s consider only the estimate for ϕ̂. The estimate for β for ϕ is

0.2648275. Thus, our estimate of ϕ̂ on the probability scale is

ϕ̂ �
e0.2648275

1 + e0.2648275
�

1.303206

2.303206
� 0.5658226

which is exactly what MARK reports (to within rounding error).

But, what about the variance? Well, if we look at the β estimates, MARK reports that the standard

error for the estimate of β corresponding to survival is 0.1446688. If we simply back-transform this

estimate of the SE from the logit scale to the probability scale, we get

ϕ̂ �
e0.1446688

1 + e0.1446688
�

1.155657

2.155657
� 0.5361043

However, MARK reports that the standard error for ϕ is 0.0355404, which isn’t even remotely close

to our back-transformed value of 0.5361043.

What has happened? Well, remember (fromChapter 1) that the variance for a parameter is estimated

from the likelihood based on the rate of change in the likelihood at the MLE for that parameter (i.e., the

second derivative of the likelihood evaluated at the MLE). As such, you can’t simply back-transform

from the SE on the logit scale to the probability scale, since the different scalings influence the shape

of the likelihood surface, and thus the estimate of the SE. To get around this problem, we make use

of something called the Delta method. The Delta method is particularly handy for approximating the

variance of transformed variables (and clearly, that is what we are dealing with here). The details

underlying the Delta method are beyond our scope at this point (the Delta method is treated more

fully in Appendix B); here we simply demonstrate the application for the purpose of estimating the

variance of the back-transformed parameter.

For example, suppose one has an MLE γ̂ and an estimate of var(γ̂), but makes the transformation,

θ̂ � e γ̂
2

Then, using the Delta method, we can write

v̂ar(θ̂) ≈
(

∂θ̂

∂γ̂

)2

× v̂ar(γ̂)

So, all we need to do is differentiate the transformation function for θwith respect to γ, which yields

2γ.eγ
2

. We would simply substitute this derivative into our expression for the variance, yielding

v̂ar(θ̂) ≈
(

2γ̂.e
γ̂2 )2

× v̂ar(γ̂)

Given values for γ̂, and v̂ar(γ̂), you could easily derive the estimate for v̂ar(θ̂).
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What about the logit transform? Actually, it’s no more difficult, although the derivative is a bit

‘uglier’. Since

ϕ̂ �
e β̂

1 + e
β̂

then

v̂ar(ϕ̂) ≈ *,
∂ϕ̂

∂β̂
+-

2

× v̂ar(β̂)

�
*..,

e β̂

1 + e
β̂
−

(

e
β̂
)2

1 +

(

e
β̂
)2

+//-

2

× v̂ar(β̂)

�
*..,

e β̂

(

1 + e β̂
)2

+//-
2

× v̂ar(β̂)

It is worth noting that if

ϕ̂ �
e β̂

1 + e
β̂

then it can be easily shown that the derivative of ϕ with respect to β is:

ϕ̂(1 − ϕ̂) �
e
β̂

(

1 + e β̂
)2

So, we could rewrite our expression for the variance of ϕ̂ conveniently as

v̂ar(ϕ̂) ≈
*..,

e β̂

(

1 + e
β̂
)2

+//-
2

× v̂ar
(

β̂
)

�
(

ϕ̂(1 − ϕ̂)
)2 × v̂ar

(

β̂
)

From MARK, the estimate of the SE for β̂ was 0.1446688. Thus, the estimate of v̂ar(β̂) is calculated

simply as (0.1446688)
2

� 0.02092906. Given the estimate of β̂ of 0.2648275, we substitute into the

preceding expression, which yields

v̂ar(ϕ̂) ≈
*..,

e β̂

(

1 + e
β̂
)2

+//-
2

× v̂ar
(

β̂
)

� (0.0603525 × 0.02092906)

� 0.001263

So, the estimated SE for ϕ̂ is
√

0.001263 � 0.0355404, which is what is reported by MARK (again,

within rounding error).

Note: The standard approach to calculating 95% confidence limits for some parameter θ is θ ±
(1.96 × SE). However, to guarantee that the calculated 95% CI is [0, 1] bounded for parameters (like ϕ)

that are [0, 1] bounded, MARK first calculates the 95% CI on the logit scale, before back-transforming
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to the real probability scale. However, because the logit transform is not linear, the reconstituted 95%

CI will not be symmetrical around the parameter estimate, especially for parameters estimated near

the [0, 1] boundaries.

end sidebar

We further distinguish between ‘reconstituted’ parameter estimates and ‘free parameters’ in the next
section. In MARK, the output file does not distinguish between ‘reconstituted parameters’ and ‘free
parameters’. In fact, MARK arguably makes it a bit more difficult to see the correspondence between
the number of constrained and free parameters. In MARK, all the parameters are printed in sequence –
your only clue as to which are ‘constrained’ and which are ‘free’ is to look at the link function parameter
estimates. This can be somewhat confusing for beginners. Recall that in this example, we applied the
constraint to the survival estimates only. Thus, the recapture probabilities were estimated ‘the normal
way’, although their value reflects the influence of the constrained survival estimates – this is why they
are not the same as the estimates from the preceding CJS analysis. Got it?

If we follow the classical iterative modeling procedure discussed in earlier chapters,we might proceed
to test reduced parameter versions of the ‘flood model’ by sequentially eliminating various terms in
the model. For example, given the structure of the starting model, the first step would be to test for
‘significance’ of the interaction term. In other words, does the effect of flood on survival differ as a
function of the sex of the organism? Recall that this is the prerequisite analysis in either multi-factorial
ANOVA or ANCOVA.

We would do this by comparing the following models:

ϕ = SEX + FLOOD + SEX.FLOOD + error
versus ϕ = SEX + FLOOD + error

SEX.FLOOD

So, from top to bottom, we see that we first fit the ‘full model’, with both main effects and the
interaction. We then follow this by fitting the reduced model without the interaction term. This model
is what we refer to as an additive model – something we’ll speak more about later in the chapter. The
comparison of the fit of these models is a test of the significance of the interaction term.

We’ve just finished fitting the full model, so we’ll proceed directly to fitting the second model –
without the interaction term. This analysis is very similar to what we’ve just done. All we need to do is
modify the design matrix. Again, remember we are still applying the constraint to the underlying CJS
time-dependent model. In fact, in MARK, this is very easy. All you need to do is drop the interaction
term (in other words, delete the column containing the dummy variable coding for the interaction term
– the fourth column, in our case) from the design matrix. That’s it! Isn’t that easy?

Go ahead and delete the interaction column from the design matrix, and then run this reduced model.
Name it ‘Phi(SEX+FLOOD)p(SEX.TIME)’. Note we change the syntax from ‘SEX.FLOOD’ to ‘SEX+FLOOD’ – a
fairly standard convention to indication we’ve dropped the interaction term from the model. The newly
modified design matrix (for the survival parameters) should now look like the figure shown at the top
of the next page.

Look closely at this new model. First, instead of 3 slopes and 1 intercept, we now only have 2 slopes
and one intercept. The slopes correspond to the SEX and FLOOD terms in our model, respectively. We
have 1 fewer slope parameters since we eliminated the interaction term (SEX.FLOOD) from the model.

Since we’ve dropped the interaction term, how many parameters should we have? Well, if we had 16
for the model with the interaction (remember – 15 were originally reported, but we manually adjusted
this ‘up’ to 16 – see above), then we should have (at least in theory) 15 for the model without the
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interaction (since the interaction term corresponds to 1 link function parameter estimate). Note from
the results browser that MARK reports 14 parameters – again, because of the fact that MARK was
unable to correctly estimate p3 for males, we need to adjust the number of parameters for this model
‘up’, from 14 to 15.

Next, we examine the ‘reconstituted’ survival estimates (shown at the top of the next page). Again,
we notice that there are effectively 2 estimates for each sex: one each for the flood or non-flood years
(1→ 6 for males, 7→ 12 for females). Notice that the estimates are similar to, but not exactly the same,
as the estimates with the full constraint (i.e., including the interaction term). In fact, on the logit scale, we
see that the parameters parallel each other – with a constant difference between the males and females
for a given year (again, on the logit scale).

However, the key question is, is this difference ‘large enough’ to be ‘biologically meaningful’? If we
follow the ‘classical’ paradigm of model testing , we can compare the relative fits of the two models,
keeping track of the number of parameters difference between the 2 models. From the results browser,
we see that the QAICc for the reduced model is 585.01, and for the full model, 586.93. Using the Akaike
weights, the model without the interaction is approximately 2.6 times as well supported as the model
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with the interaction term – supporting the conclusion that there is no strong support for an interaction
of SEX and FLOOD. The LRT results are consistent with this – the difference in deviance is not statistically
significant by usual standards (χ2

1 � 0.242, P > 0.5). Since the interaction term is not significant, we
could next proceed with testing the significance of the main effects: SEX and FLOOD. We can do so easily
by using exactly the same process as we just completed above: we modify the constraint to include one
of these two remaining terms, and compare the fit.

However,while this allows us to test for significance of both terms,we must remember that we will not
be able to use LRT to determine if the model containing SEX alone is a better model than one containing
FLOOD alone. Why? Because these are not nested models. Thus, for comparison of these 2 models, we
will have to use the QAICc comparison approach. Even if the nesting isn’t obvious (if it isn’t, think
about it! We will reconsider ‘nestedness’ in the context of linear models later in this chapter; see the
-sidebar- beginning on p. 41), the necessity of using QAICc for these 2 models will be obvious when
you compare the number of parameters. In fact, this was one of the original motivations for use of
the QAICc . However, as discussed in earlier chapters, the utility of QAICc exceeds far beyond simple
comparison of non-nested models.

Ifwe were to proceed througheachof the ‘nested’ models,we wouldsee that the modelwhere survival
is constrained to be a function of FLOOD alone is the most parsimonious model, and is approximately
2.8 times better supported by the data than the next best model (SEX+FLOOD). No other model in the
model set is adequately supported by the data. In other words, we conclude that there is no support
for a ‘significant’ difference between the sexes, and that flooding significantly influences variation in
survival.

Does this mean that this is our best model overall? The answer to this question is ‘no’. What we have
done is simply to test a set of hypotheses under specific conditions. What were our main conditions?
The conditions in this example were the use of the CJS model structure for both survival and recapture,
prior to adding the constraints. The remaining question is – would we have come up with a different
result if we had made the recapture probability constant? What if we had left time-dependence in
recapture probability, but used the same parameter values between the sexes? How does our current
model compare to one where survival is assumed to be constant?

Where we go from here, then, very much depends upon what we’re after. We have to keep in mind
the various purposes of model testing. At one level, we are seeking to test specific biological hypotheses.
At the other, we may also be trying to find the most parsimonious model, which will provide us with
the most precise and least biased estimates for modeling purposes.

Again, our recommended strategy is to use the process of model selection to identify the most
parsimonious acceptable model containing the effect(s) that you want to test, and then proceed to use
LRT or QAICc to compare this model with reduced parameter models where one or more of these terms
have been eliminated. Remember, by ‘acceptable’ we mean a model which fits the data (Chapter 5). In
fact, we can’t emphasize this enough – the first step in analyzing your data must be to ensure that your
starting model (CJS, for example) adequately fits the data.

How would we derive the design matrix for the next 2 models – {SEX} and {FLOOD}? We can do
this easily in MARK, using one of a couple of different approaches. The most intuitive approach is to
simply modify the design matrix manually. Start with the design matrix for the most general model,
{SEX+FLOOD+SEX.FLOOD}, shown at the top of the next page.
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To create model {SEX+FLOOD}, we simply take the design matrix for {SEX+FLOOD+SEX.FLOOD} (above),
and delete the column corresponding to the interaction term:

Using the same approach, to fit model {SEX} all we’d need to do is take the design matrix for
{SEX+FLOOD} and drop the FLOOD column, leaving {SEX}. But, once we’ve dropped the FLOOD column,
how can we go from the design matrix for {SEX} back to {FLOOD}?

Do we have to manually re-enter the appropriate dummy-variable coding? No! In MARK, all you
need to do is click on any ‘more saturated’ model containing the terms you want in the results browser,
and then ‘retrieve’ its design matrix. For example, if we want to fit model {FLOOD}, simply (a) click on
the model {SEX+FLOOD} in the browser (this model is more saturated because it contains the factor of
interest – FLOOD – plus one or more other terms), then (b), pull down the ‘Retrieve’ menu and retrieve
the ‘Current model’. This causes MARK to extract the design matrix for the model you’ve selected.
Once you have this design matrix (in this case, corresponding to model {SEX+FLOOD}), all you need to
do is delete the SEX column to yield the design matrix for model {FLOOD}. Pretty slick!
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6.5.1. Subset models and the design matrix

In the preceding example, we used the full design matrix from our general model {ϕsex. f loodpsex.time},
and built the reduced parameter models by deleting one or more columns from this design matrix. In
this example, all of the remaining models in the candidate model set were nested within the general
model.

While this is relatively straightforward to do ‘by hand’ for simple models, it can quickly become
tedious for more complicated analysis, where the design matrices can be very large. MARK has an
option referred to as ‘subset models’ to automate much of the process of constructing various nested
models from the design matrix for some more general model.

As the first step,you first construct the design matrix for the full model which contains all the variables
(i.e., columns in the design matrix of interest). Note that the full model may not have actually been run,
i.e., the saved structure of the full model can be used to construct the subset models. Then, using the
‘subset models’ feature, you simply select the columns from the full model design matrix to be used in
a nested set of models.

To start the process, in the ‘Results Browser Window’, highlight (retrieve) the model with the design
matrix that contains all the variables that you want to use in all possible subset model combinations
– in this case, model {ϕs . f ps .t}. Then, select the menu choices ‘Run | Subset of DM Models’ to create
and run all possible models. This will bring up the interactive interface window shown below:

The interactive interface gives you a list of all the columns in the design matrix for the selected model.
If you pull down any of the drop-down menus shown beside each parameter,you will see a set of options:
‘Always’, ‘Never’, followed by the letters A→ J.
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The ‘subsetting’ of different variables (columns) in the design matrix is accomplished by selecting
elements from these drop-down lists for each parameter. Some of these options are relatively self-
explanatory. For example, columns in the design matrix corresponding with a model ‘intercept’ (which
we’ve designated in the label) we will generally keep in all models in the candidate model set, and
so would be assigned the value ‘Always’ to designate this status. For parameters (columns) which will
never show up in any of the other models in the candidate model set, you would select the value ‘Never’.

The meaning and use of the values A→ J requires a bit more explanation. Columns in the models
which are neither ‘always present’ or ‘never present’ will be given values of A, B,...,J, designating up
to 10 variables, either singly or jointly. Currently, the upper limit is set to 10 variables, which produces
210

� 1,024 possible models. If you think you need to run more that 1,024 models, we suggest you think
harder about the list of variables you are considering!

The letters A → J identify how columns in the design matrix are related to each other and how
they will be combined in subsets of models. So, as an example, suppose as in the Dipper example
you have 4 columns for apparent survival (ϕ) (the intercept column, the sex column, the flood
column, and the (sex.flood) interaction column), and 12 columns for the encounter probability (p) (the
intercept and sex columns, the 5 columns for time, and the 5 columns representing the interaction
of (sex.time). In our candidate model set, we focus only on a series of 4 nested models for apparent
survival: {ϕsex+ f lood}, {ϕ f lood}, {ϕsex}, {ϕ.}. Recall that our general model is {ϕsex. f lood}. Thus, the
structure for our encounter probability {psex.time} occurs in every model – in other words, it is ‘always’
there. So, as a first step, we simply select the value ‘Always’ for the encounter parameters (columns).

Now, for the apparent survival parameters. Clearly, the intercept is in each model, so we select
the value ‘Always’ for the intercept. The variables sex and flood are ‘stand alone’ variables – i.e., each
defines a category with a single column in the design matrix. Each variable could appear alone in the
model, so each is assigned its own letter. We’ll use A for sex, and B for flood (it doesn’t much matter
which letters you use, so long as they are different).

What about the interaction term (sex.flood)? We need to use the value ‘Never’, for two reasons:
first, because the interaction model cannot enter the model without the two interacting variables also
included in the model (i.e., model Y � A+ B+ A.B is valid, but Y � A.B is not), and moreover, there is no
direct way to conditionally subset columns (i.e., select C if only A and B are present; discussed in more
detail below). But second, and perhaps most obviously, we don’t need the interaction column because
that column is already present in the general model we started with. Think about it for a moment.

Here is what the variable definition screen should look like so far:
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Now, before running the models, note the additional options which are available at the bottom of
the model specification screen. Instead of running the models immediately, the model structure can be
saved and then all of the models run later in batch model. The second option is to use the β estimates
from the full model as initial values for the subset models. However, these estimates may not be great,
depending on the collinearity among the variables. Note that this option does not appear if the full
model has not actually been run (i.e., only the saved structure is used to specify the full model).

Once you hit the ‘OK’ button, another window will pop up asking if you want to change (specify)
variable names:

The naming of models fit using the ‘subset models’ approach defaults to listing all of the columns
which were ‘always’ included in the model. This can often result in very long model names (as we will
see). This windows gives you the opportunity of overriding the default naming convention, but that
places the burden of responsibility on you to remember which columns were included in your models.

Once you hit the ‘OK’ button, a little popup window will inform you that you’re going to run 4 models.
But, before you simply click the ‘OK’ button – think a bit. What are the 4 models? If you understand what
we just did (above), then you’ll know that the 4 models (in terms of ϕ) are {ϕs+ f }, {ϕs}, {ϕ f }, {ϕ·}.

Here is the results browser, showing each of the models in the candidate model set fit by manually
modifying the design matrix, and the 4 fit using the ‘subset models’ approach, as well as the general
model.

As noted earlier, the models fit using the ‘subset models’ approach have very long model names –
the naming syntax explicitly indicates which columns were included in the model. In particular, pay
attention to the right-hand side of the default model names – this is where the ‘variable’ columns that
are included in a given model are indicated. For example, model

{Phi Int+p Int+p g1+p t1+p t2+p t3+p t4+p t5+p g1*t1+p g1*t2+p g1*t3+p g1*t4+p

g1*t5+sex+flood}
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The last two terms (i.e., sex+flood) indicate that this model is the additive {ϕs+ f } model.

More importantly, notice that the model deviance values are identical for a given model regardless of
whether or not it was generated by modifying the design matrix manually, or using the ‘subset models’
approach.

The preceding analysis was very simple, and the cost savings for using the ‘subset models’ approach
might not be particularly significant in this instance. But, that will generally not be the case.

A common issue alluded to earlier occurs when you only want to include a particular column when
another column is included in the model. An example would be for linear trend (T) and the associated
quadratic trend (TT). As an example, suppose that there are two additional variables, age and gender.
One approach to only including TT when T is in the model is to do 2 sets of models. For the first set,
only the T variable would be used:

intercept Always

age A

gender B

T C

TT Never

Then, a second set of models are constructed to always include TT with T:

intercept Always

age A

gender B

T C

TT C

Each set would produce 8 models, for a total of 16. However, the user will have 4 sets of duplicates
when neither T or TT are included:

intercept

intercept + age

intercept + gender

intercept + age + gender

Sorting (ordering) the list of models by model name may help find the duplicates.

A second issue is that the user never wants 2 particular variables in the model at the same time.
Suppose this is the case for length and weight. Again, a simple solution is to run 2 sets of models,
specifying the ‘Never’ key word first for length, and then for weight. However, again, some duplicate
models will have to be removed.

begin sidebar

subset models and factor importance – a mechanical shortcut

As introduced in Chapter 4 (section 4.6.3), assessment of the relative importance of variables has often

been based only on the best model (e.g., often selected using a stepwise testing procedure of some

sort). Variables in that best model are considered ‘important’, while excluded variables are considered

‘not important’. Burnham & Anderson have suggested that this approach is too simplistic. Importance

of a variable can be refined by making inference from all the models in the candidate set. Akaike
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weights are summed for all models containing predictor variable (i.e., factor) x j , j � 1, . . . , R. Denote

these sums as w
+( j) . The predictor variable with the largest predictor weight, w

+( j) , is estimated to

be the most important, while the variable with the smallest sum is estimated to be the least important

predictor.

As suggested by Anderson & Burnham, summing support over models is regarded as superior to

making inferences concerning the relative importance of variables based only on the best model. This

is particularly important when the second or third best model is nearly as well supported as the best

model or when all models have nearly equal support.

The robustness of the use of cumulative AIC weights appears to be strongly conditional on the

‘symmetry’ of the candidate models set. A ‘symmetrical’ model set is one which has roughly the

same number of models with, and without a particular factor. While this can sometimes be difficult to

accomplish, especially for models involving interaction terms, for models where the factors of interest

are entered into the models as independent factors (covariates), the ‘Subset of DM models’ option

makes generating symmetrical model sets straightforward. In additional, there is an option in MARK

to automatically calculate the cumulative AIC weights over models built using the ‘Subset of DM

models’ approach.

We’ll demonstrate this approach using some simulated data contained in var-importance.inp.

The data consist of live encounter data, 6 occasions. Time-varying apparent survival ϕ, and constant

encounter probability, p. We’re interested in the relative ‘importance’ of 3 different environmental

covariates (cov1, cov2, cov3). Here are the covariate values corresponding to each interval:

1 2 3 4 5

cov1 4 2 2 3 2.5

cov2 0.3 0.7 0.7 0.1 0.6

cov3 12 14 14 17 11

Here is the DM corresponding to the most ‘general’ model, containing all 3 covariates:

We’ll go ahead and run this model – give it a temporary name like ‘hold’, or some such. Now, we’ll

use the ‘Subset of DM models option to build a model set symmetrical for all three environmental

covariates. As shown below, we want to ‘always’ include the intercepts for ϕ and p. We have three

covariates (cov1,cov2,cov3), which we’ll label A, B, C, respectively.
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We will accept the default variable names, as shown below:

Once you click the ‘OK’ button, MARK will pop-up a window informing us that we have specified

8 models. With a bit of thought, you’ll see that this set of 8 models consists

• 3 models containing a single covariate (cov1, cov2 or cov3),

• 3 models consisting of 2 of the factors (cov1+cov2, cov1+cov3, or cov2+cov3),

• 1 model consisting of all 3 factors (cov1+cov2+cov3)

• 1 model not containing any of the 3 factors (i.e., intercepts only)

Go ahead and run the 8 models – the results are automatically added to the results browser. Note

that the 8 models in the browser match the structures we anticipated, above.

Before we interpret the results in the browser, notice that the highlited model (which contains all

3 covariates) is redundant to the model right below it – the one was started with which we called

‘hold’. For the ‘Subset of DM models’ option, MARK needs a model to ‘start from’ (model ‘hold’, in

this example), but now that we’ve run the models, we no longer need it. Go ahead and delete the model

named ‘hold’ from the browser.

The most parsimonious model in the candidate model set contains both cov2 and cov3, but the

support for this model is only marginally greater than for the second-best model, which contains cov2

only. This is a good example where model selection uncertainty makes it somewhat more difficult to

establish the relative importance of the 3 different covariates.

We can calculate cumulative AIC weights in MARK by selecting ‘Run | Variable weights’, which

outputs the weights to both the editor (shown below), and an Excel spreadsheet:

We see clearly that cov2 is ‘more important’, relative to the other 2 covariates.

end sidebar
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6.6. Some additional design matrix tricks

In a moment, we’ll continue with the next ‘analytical question’ we might be interested in – are the
differences between flood and non-flood significant? Is there an interaction of flood, sex and survival?
And so on. For the moment, though, let’s consider a couple of the ‘mechanical’ aspects of modifying the
design matrix which are worth knowing. In the preceding, we modified the design matrix manually. As
you probably realize by now, MARK often gives you more than one way to do things (this is generally
a good thing!). What could we have done other than manually editing the design matrix. A perhaps
more elegant, and (with some practice) faster way, is using some of MARKs nifty menu options.

For example, pull down the ‘FillCol’ menu. You’ll see two intercept options – the ‘Intercept’ itself,
and something called the ‘Partial Intercept’. Since in our example we only wanted to modify ‘part’
of the design matrix, we would select ‘Partial Intercept’. This causes MARK to spawn a window
asking you the number of rows in the design matrix you want to add the intercept coding to. In this
example, with 12 rows (corresponding to the 12 survival parameters – 6 for males, 6 for females), we
would have responded with ‘12’. Anything else we could do with the ‘FillCol’ menu? Well, you might
notice that there is an option to specify a ‘Group Effect’ item on the menu. If you select this option,
another child menu will pop up, giving you several options for the kind of group effect you want to code
(broadly dichotomized into discrete or continuous). Now, within the discrete or continuous groupings,
you’ll see options for ‘partial’.

What does this mean? Well, ‘partial’ simply means we want whatever it is we’re going to do to be
applied only to ‘part’ of the design matrix. Since in our example we’re only interested in the first 12
parameters, corresponding to the first 12 rows and columns, we clearly would want ‘partial’ – a piece
of the whole matrix. If we select ‘Partial Discrete’, MARK would immediately fill in the first column
of the design matrix, with 6 ‘1’s followed by 6 ‘0’s. MARK is clever enough to remember that (a) you
have 2 groups, and (b) that there are 7 occasions (and therefore 6 parameters) for each group. In fact, it
‘learned’ this when you filled in the model specification window for this analysis. Pretty slick, eh? At
any rate, go ahead and ‘play around’ a bit with the various menus available for modifying the design
matrix.

One last thing – remember at the beginning of our example – we started with the ‘Full’ design
matrix? Recall that there were 2 other options in the ‘Design Matrix’ menu - ‘Reduced’, and ‘Identity’.
The ‘Reduced’ option allows you to tell MARK exactly how many columns to put into the design matrix
– this can be useful (and can save you some time) if you know how many columns you need – which you
might if you’ve carefully thought through the linear model, and corresponding design matrix, for your
analysis. The ‘Identity’ matrix is simply a matrix of the same dimension as the ‘Full’ design matrix,
but with ‘1’s along the diagonal. Some people prefer modifying the identity matrix, since most of the
matrix elements are ‘0’s – fewer cells to modify. Pick whichever approach works best for you.

6.7. Design matrix...or PIMs

In the preceding, we fit the ‘flood model’ by modifying the design matrix. Remember, the design matrix
reflects the underlying structure of the model, which is specified by the PIMs. When we modify the
design matrix, for a given set of PIMs, we’re applying a constraint to the model specified by those PIMs.

This is a very important point – so important, that we’re now going to force you to think about it
carefully, by pointing out that we could have fit a ‘flood’ model to the Dipper data without using a linear
model at all – simply by using a different set of PIMs!
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How? Recall that our original starting model was the fully time-dependent CJS model with two
groups (the two sexes, males and females). There were 7 occasions in the data set, so the PIMs reflecting
this starting model were

survival

1 2 3 4 5 6 7 8 9 10 11 12

2 3 4 5 6 8 9 10 11 12

3 4 5 6 9 10 11 12

4 5 6 10 11 12

5 6 11 12

males 6 females 12

recapture

13 14 15 16 17 18 19 20 21 22 23 24

14 15 16 17 18 20 21 22 23 24

15 16 17 18 21 22 23 24

16 17 18 22 23 24

17 18 23 24

males 18 females 24

These PIMs specified the model that we then constrained – they indicate 6 survival parameters for
each sex, which we then constrained to be a linear function of flood. Remember, the actual linear model
we fit initially was:

logit(ϕ) � β1 + β2SEX + β3FLOOD + β4SEX.FLOOD

Now...is there any way we could have fit this model without modifying the design matrix? The answer
is...‘yes’. How? A couple of hints: PIM’s, and the fact that flood is a binary state variable.

Remember, a year is classified as either a flood year, or a non-flood year. In our original survival PIMs,
we had 6 parameters for each sex, respectively, which allowed survival to vary among years. However,
if we want survival to vary only as a function of whether or not a year is a ‘flood year’, then in fact we
need only 2 parameters for each sex!

Thus, we could have specified model

logit(ϕ) � β1 + β2SEX + β3FLOOD + β4SEX.FLOOD

using the following PIMs for survival:

survival

1 2 2 1 1 1 3 4 4 3 3 3

2 2 1 1 1 4 4 3 3 3

2 1 1 1 4 3 3 3

1 1 1 3 3 3

1 1 3 3

males 1 females 3
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What would the recapture PIMs look like? Well, if we use model {pg∗t} for recapture, the PIMs for
the recapture parameters would look like:

recapture

5 6 7 8 9 10 11 12 13 14 15 16

6 7 8 9 10 12 13 14 15 16

7 8 9 10 13 14 15 16

8 9 10 14 15 16

9 10 15 16

males 10 females 16

Try it! You’ll see that you get the same results as you did when you modified the design matrix – IF

you specify the logit link function. In fact, one advantage of this approach is that you can use whatever
link function you want. Note also that the PIMs specify 16 parameters,which is exactly the same number
of parameters as there were in the design matrix approach (although only 15 of them were estimable
using the logit link – if you run this PIM-based model using the sin link, all 16 parameters are estimated,
and reported as estimated by MARK).

Pretty slick, eh? Make sure you understand this. If not, go through it again. Now, if this approach
works, why not use it all the time? The reason is, because it has limited flexibility in the ability to specify
certain kinds of models – you can’t use this approach to build additive models (something we’ll address
later), or to constrain estimates to follow a trend (the next section). There are limits – but it is useful to
know that you can sometimes ‘get where you need to go’ by modifying the PIMs directly, rather than
using the design matrix. This is important both conceptually, and practically, in some cases. However,
we generally recommend that you use the design matrix approach the majority of the time, since it gives
you the greatest flexibility. In fact, in many cases, the design matrix is your only option – the additive
(SEX+FLOOD) model is a good example of this. There is no way you could build this additive model using
PIMs alone.

So, as a general recommendation, we suggest the following sequence (which we’ll revisit again in
this chapter, and elsewhere in the remainder of the book):

step 1 - Build your general model using PIMs, if you can. Recall that models with multiple groups

based on PIMs assume interaction effects among levels of your groups. This is often – but

not always – the basis for the general model in your candidate model set

step 2 - Once you have the general model constructed using PIMs, then try to build the exact

same model using the design matrix approach. Run this model. You’ll know your design

matrix is correct if the deviance for the model fit with the design matrix approach is the

same as the deviance for the same model constructed using PIMs (note: the deviances

should be the same – but the number of estimated parameters MARK reports might differ

due to differences in the link function used).

step 3 - Once you’ve successfully built your general model with the design matrix, delete the same

general model you built with PIMs – you don’t want two copies of the same model in your

results browser. Then, build all other models in the candidate model set by manipulating

the design matrix of your general model.

These 3 steps are good, general recommendations on where to start. Once you’ve built your general
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model using the design matrix, you can quickly and easily construct reduced parameter models –
including models with additive effects – simply by manipulating the design matrix. This invariably
means deleting or modifying one or more columns in the design matrix. Once you get the hang of this
approach, it will become fairly automatic to you.

6.8. Constraining with ‘real’ covariates

In the previous sections, we’ve considered variation in one parameter or another over time – implicitly,
we’ve been treating time as a ‘classification’ variable (or ‘factor’), and looking for heterogeneity among
‘time intervals’ in a particular parameter. Generally, though, we’re not interested in whether or not there
is variation over time, but whether this variation over time corresponds to one or more ‘other variables’
(covariates) which we think might cause (or contribute to) the variation we observe. In other words, our
interest is typically in the causes of the temporal variation, not the variation itself.

We can address this hypothesis (i.e., that variation in some parameter over time reflects variation
in some covariate) by building a linear model where the parameter estimates are constrained to be
linear functions of one or more covariates. This is the subject of this section – constraining parameters
to be functions of ‘real’ variables (in the mathematical sense of real), as opposed to simple ‘dummy’
or other integer variables. For example, suppose we have measured some other variable, such as total
precipitation, or measures of annual food abundance, which can take on ‘real’ or ‘fractional’ values.
Clearly, we might want to test the hypothesis that a model where one or both parameters are constrained
to be linear functions of this type of covariate might be extremely useful. Fortunately, we have to learn
nothing new in order to do this in MARK – all we need to do is put our ‘real’ covariates into our design
matrix.

Consider the following example. Suppose you believe that capture rate is a function of the number of
hours spent by observers in the field. This makes good intuitive sense – the more hours spent in the field,
the more likely you might be to see a marked individual given that it is still alive. So, one way we might
increase the precision of our estimate of recapture probability is to constrain the recapture parameters to
be linear functions of numberof observations hours at each occasion. Recall that parsimonious modeling
of recapture probability will also influence our estimates of survival probability as well.

These data are unavailable for the Dipper data set, so we’ll ‘make up’ some values, just for purposes
of illustrating this. Here are our ‘data’:

Occasion 2 3 4 5 6 7

hours 12.1 6.03 9.1 14.7 18.02 12.12

Now, we simply need to construct the correct design matrix. One slight twist here is that for the
first time we’re going to apply a constraint to the recapture probabilities, rather than the survival
probabilities. This is no more difficult than what we’ve already done – all you need to do is identify the
index values of the parameters you want to constrain. Recall that for the Dipper data set,with 2 sexes and
7 occasions, parameters 1 → 6 are male survival, parameters 7 → 12 are female survival, parameters
13→ 18 are male recapture probability,and finally,parameters 19→ 24 are female recapture probability.
Thus, if we want to constrain our recapture probabilities to be linear functions of observer hours, we’re
going to constrain parameters 13 → 24. This means that we’re working in the lower-right quadrant of
the design matrix.

Next, we need to decide on the model we want to test. Let’s test the model where we allow the sexes
to potentially differ, with full interaction. In other words,

logit(p) � β1 + β2(SEX) + β3(HOURS) + β4(SEX.HOURS)
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As you can see, it is exactly the same qualitative model ‘structure’ as in our earlier ‘flood’ example,
with a different ‘covariate’ (HOURS instead of FLOOD). Given this similarity, you might guess the design
matrix should look similar as well. In fact, as shown below, it is virtually an inverted mirror image of
the design matrix you used for the flood analysis – now the upper-left quadrant has the time-specific
coding we’ve seen before, and the lower-right quadrant (pictured) has the dummy variable coding for
INTCPT, SEX, HOURS, and the SEX.HOURS interaction.

The only real difference (other than being in the lower-right quadrant) is that instead of ‘0’ or ‘1’ to
represent FLOOD states, we replace that column of ‘0’ and ‘1’ values with the ‘real’ number of observer
hours. And, since these are simply different levels of a single factor (HOURS), we need only one column
to code for HOURS.

However, as you’ll remember from our earlier examples, if you change either of the 2 columns
contained in the interaction term, you also need to change the values in the interaction term itself.
The recapture portion of the design matrix (i.e., the lower-right quadrant) is shown above. Note we
still have 12 rows, and 4 columns for the recapture parameter (reflecting the number of variables in the
constraint). Once you have the design matrix constructed, you proceed in precisely the same fashion as
you did with the ‘flood’ example we just covered – the only difference is that, in this example, you’re
concentrating on recapture probabilities, rather than survival.

begin sidebar

linear covariates and nested models: LRT revisited

You may recall that in Chapter 4, we introduced two different approaches to model selection – one

basedon classical ‘hypothesis testing’ (e.g., the likelihoodratio test– LRT),and the other on information

theoretic approaches (AIC, BIC). Recall that the classical LRT requires that models be nested. What

constitutes ‘nested’ in the case of models with one or more linear covariates? What are the options if

models are not strictly nested?

In Chapter 4, we defined nested models as follows:

nested models: Two models are nested if one model can be reduced to

the other model by imposing a set of linear restrictions on the vector of

parameters.

For example, consider models f and g, which we’ll assume have the same functional form and error
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structure. For convenience, we’ll express the data as deviations from their means (doing so eliminates

the intercept from the linear model, since it would be estimated to be 0). These two models differ then

only in terms of their regressors.

In the following

f : Y � β1x1 + ǫ0

g : Y � β1x1 + β2x2 + ǫ1

the model f is nested within model g because by imposing the linear restriction that β2 � 0, model g

becomes model f .

What about non-nested models? Again, in Chapter 4 we defined non-nested models as

non-nested models: Two models are non-nested, either partially or

strictly (discussed below), if one model cannot be reduced to the other

model by imposing a set of linear restrictions on the vector of parameters

Consider the following two models:

f : Y � β1x1 + β2x2 + ǫ0

g : Y � β2x2 + β3x3 + ǫ1

Models f and g are non-nested because even if we impose the restriction on model g that β3 � 0,

model g does not become model f .

In fact, in this example, models f and g are partially non-nested, because they have one variable in

common (x2). If the two models didn’t share x2, then they would be strictly non-nested.

However, you need to be somewhat careful in defining models as strictly non-nested. There are, in

fact, two cases where models with different sets of regressors may not be strictly non-nested.

Consider the following two models:

f : Y � β1x1 + ǫ0

g : Y � β2x2 + ǫ1

If either β1 or β2 equals zero, then the models are nested. This is trivially true.

Less obvious, perhaps, is the situation where one of more of the explanatory variables in one model

may be written as a linear combination of the explanatory variables in the second model. For example,

given the two models

f : Y � β1x1 + ǫ0

g : Y � β2x2 + ǫ1

consider a third model h where

h : Y � β3x3 + ǫ2 � β1x1 + β2x2 + ǫ2

Then, perform the following hypothesis tests: model h versus model f (i.e., β2 � 0 versus β2 , 0),

and model h versus model g (i.e., β1 � 0 versus β1 , 0).

OK, what about the situation we’re considering here – linear models with one or more linear

covariates?
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Consider the following linear model for some parameter θ corresponding to a 5 occasion study:

θ � β0 + β1(interval1) + β2(interval2) + β3 (interval3)

Remember: 5 occasions = 4 intervals = (4−1) � 3 columns of dummy variables coding for the intervals

(β1 → β3).

Here is the design matrix (DM) corresponding to this time-dependent linear model:

intcpt β1 β2 β3

1 1 0 0

1 0 1 0

1 0 0 1

1 0 0 0

Now, suppose we wanted to constrain this model such that the estimate of the parameter in the

first and third intervals was equal. How would we modify the DM to achieve this constraint? The key

is remembering what each βi column represents: β1 represents the first interval (between occasion 1

and 2), β2 represents the second interval (between occasion 2 and 3), and so on. So, to constrain the

estimates for θ̂ to be the same for the first and third intervals (i.e., θ1 � θ3), we have to (i) eliminate

one of the two columns corresponding to these intervals (either the β1 or β3 columns), and (ii) add a

‘1’ dummy variable in the appropriate row to the remaining column. For example, in the following

DM

intcpt β1 β2

1 1 0

1 0 1

1 1 0

1 0 0

we have eliminated the β3 column from the original DM, and added a dummy ‘1’ in the 3rd row of

column β1 – recall that row 3 corresponds to interval 3. The presence of a ‘1’ in the first and third rows

in the β1 column is what constrains θ1 � θ3. This is essentially the same sort of thing we did for the

flood example we considered earlier in this chapter. We have constrained our time-dependent model

in a particular way – using the linear constraint θ1 � θ3.

Similarly, what if we want to constrain θ̂ to be a linear function of some continuous covariate (say,

rainfall). Our DM might now look like

intcpt β1

1 2.3

1 4

1 1.2

1 5

Here, we’ve constrained the estimates for each interval to be a linear function of the rainfall covariate

– one β column. So, based on the criterion for ‘nestedness’ – where two models are nested if one model

can be reduced to the other model by imposing a set of linear restrictions on the vector of parameters

– these two constrained models we’ve just constructed are both nested within the more general time-

dependent model. And, as such, these models could both be compared to the time-dependent model

using an LRT.

end sidebar
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6.8.1. Reconstituting estimates using real covariates

Here, we continue with our example analysis, using the full dipper data (i.e., including both males and
females),where detection probability is being modeled as a linear function of the number of observation
hours. For purposes of demonstrating how to reconstitute parameter estimates on the real probability
scale, we’ll first fit the following linear model to the dipper data:

logit(p) � β1 + β2(SEX) + β3(HOURS) + β4(SEX.HOURS)

As noted earlier, it is exactly the same qualitative model ‘structure’ as in our earlier ‘flood’ example,
with a different ‘covariate’ (HOURS instead of FLOOD). For present purposes, we’ll assume simple time-
dependence for survival, with no sex differences. So, our overall model is {ϕtpS+H+S.H}.

Recall that our ‘fake’ observation hour covariates were:

Occasion 2 3 4 5 6 7

hours 12.1 6.03 9.1 14.7 18.02 12.12

After fitting our model to the data, we see that the reconstituted estimate for p for males (first group),
third encounter occasion, is 0.9373487. Where did this value come from?

As with the earlier ‘flood’ example, we’ll need the parameterized linear equation for p on the logit
scale. If we look at the β estimates for p, we see that the parameterized linear model is

logit(p̂) � β̂1 + β̂2(SEX) + β̂3(HOURS) + β̂4(SEX.HOURS)

� 1.4116023+ 1.4866125(SEX) + 0.0463456(HOURS) + (−0.0783096)(SEX.HOURS)

So, the coding for males (SEX) is ‘1’. The HOURS covariate for the third encounter occasion is 6.03. The
interaction of the two, SEX.HOURS, is simply (1)(6.03) � 6.03. So,

logit(pm ,3) � 1.4116023+ 1.4866125(1) + 0.0463456(6.03) + (−0.0783096)(6.03)

� 2.70547188

So, back-transforming

p̂m ,3 �
e2.70547188

1 + e2.70547188
� 0.9373487

which is exactly what is reported by MARK.

6.8.2. Plotting the functional form – real covariates

In the preceding example, we modeled encounter probability as a linear function of the number of
observation hours. But,what is the actual relationship between ‘encounter probability’ and ‘observation
hours’? If you look at the parameter estimate for β̂3 � 0.0463456, the interpretation seems easy enough
– the estimated slope is positive, meaning that as the number of hours of observation increases, so does
the probability of detection. Which of course, seems somewhat intuitive (i.e., ‘more hours looking’→
‘higher probability of detection’), and so perhaps nothing much more to say here.
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But, suppose you decide to go ahead an ‘plot the relationship’. In principle, this is straightforward.
First, you have to decide whether you want to plot the relationship for males, or females. Let’s assume
our interest is in males – recall that the dummy coding for males is ‘1’. Then, you simply need to derive
the estimate of logit(p) for males, over a range of hours (say, from 5 → 20), and then back-transform
from the logit scale to the real probability scale.

Given our estimated linear model,

logit(p̂) � 1.4116023+ 1.4866125(SEX) + 0.0463456(HOURS) + (−0.0783096)(SEX.HOURS)

then the estimates of logit(p) for males (SEX � 1), for 5 → 20 hours of observation, are (for each hour
increment):

[1] 2.738395 2.706431 2.674467 2.642503 2.610539 2.578575 2.546611 2.514647

[9] 2.482683 2.450719 2.418755 2.386791 2.354827 2.322863 2.290899 2.258935

which when back-transformed to the real probability scale yields

[1] 0.9392546 0.9374050 0.9355031 0.9335474 0.9315368 0.9294699 0.9273455

[8] 0.9251623 0.9229189 0.9206140 0.9182463 0.9158145 0.9133171 0.9107529

[15] 0.9081205 0.9054185

which, when plotted, yields a function that...
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...doesn’t even remotely suggest increasing encounter probability with increasing hours – in fact, it
suggests the opposite of what we concluded.

So, have we made a mistake? Well, yes, in the sense that did not fully interpret all of the β terms in
our linear model:

logit(p̂) � 1.4116023+ 1.4866125(SEX) + 0.0463456(HOURS) + (−0.0783096)(SEX.HOURS)
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While the coefficient for ‘HOURS’ (β̂3) does clearly suggest that as hours of observation increases, en-
counter probability increases, look carefully at the equation – recall that ‘HOURS’ is also included in the
interaction term, and that the estimated β̂4 for the interaction term is negative.

To illustrate the impact that this negative interaction term has, let’s now estimate logit(p), but this
time for females. Given our β estimates, then the estimates of logit(p) for females, for 5 → 20 hours of
observation, are (for each hour increment):

[1] 1.643330 1.689676 1.736022 1.782367 1.828713 1.875058 1.921404 1.967750

[9] 2.014095 2.060441 2.106786 2.153132 2.199477 2.245823 2.292169 2.338514

which when back-transformed to the real probability scale yields

[1] 0.8379876 0.8441815 0.8501810 0.8559889 0.8616083 0.8670425 0.8722949

[8] 0.8773692 0.8822690 0.8869983 0.8915610 0.8959611 0.9002026 0.9042896

[15] 0.9082264 0.9120169

which, when plotted against the estimates for males, yields a function that...
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...shows a classical ‘interaction’ – with increasing observation hours,male encounter probability↓,while
female encounter probability ↑. So – plotting your linear model is always a good idea, since it can be
tricky to try to interpret the individual β terms, and embarrassing if you get it wrong (which is quite
easy to do in complex models).

Now, one thing that is missing in our plot is any indication of parameter uncertainty. We recall that
our estimates of each β term in our model are estimated with a SE, and thus, our reconstituted parameter
estimates (in this case, on the real probability scale) are also estimated with uncertainty. How can we
add confidence bands to our plots?

The short answer is, you can’t. While MARK makes it possible to plot (or export) the β estimates, and
the reconstituted parameter values for each occasion, it does not have the capability to directly generate
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a plot of the parameter estimates (of uncertainty in those estimates) as a function of a real covariate,
over a range of values of that covariate. Meaning, MARK can’t generate the plots we just made above,
with or without confidence bands, simply by ‘clicking a button or two’.

However, there are two ways you can generate the desired plot,albeit with a bit of work.One approach
is to get MARK to treat environmental covariates as individual covariates, and then use the individual
covariate plotting capabilities in MARK to generate the plot we want – predicted values for given values
of the covariate, plus confidence bands. Using individual covariates in MARK is covered in Chapter 11.
The specific details of using the individual covariate plotting tools in MARK to plot real ‘environmental’
covariates is covered in a - sidebar - in section 11.5.

The other approach is to make use of the Delta method – see the following -sidebar-.

begin sidebar

Calculating SE of predicted values from linear model

As briefly introduced earlier in this chapter (-sidebar- starting on p. 26), the Delta method is a

relatively straightforward way for approximating the variance of transformed variables. The details

underlying the Delta method are beyond our scope at this point (the Delta method is treated more

fully in Appendix B); here we simply demonstrate the application for the purpose of estimating the

variance of the prediction from a linear model.

Without proof, we can approximate the variance of some multi-variable function Y as

v̂ar(Ŷ) ≈ DΣD
T

where D is the matrix of partial derivatives of of the function Y with respect to each parameter, and Σ

is the variance-covariance matrix for the parameters in the function.

In other words, to approximate the variance of some multi-variable function Y, we (i) take the vector

of partial derivatives of the function with respect to each parameter, βi , in turn (i.e., the Jacobian), D, (ii)

right-multiply this vector by the variance-covariance matrix, Σ, and (iii) right-multiply the resulting

product by the transpose of the original vector of partial derivatives, D
T.

For the dipper example (above), the ‘function’ (i.e., the linear model fit to the data) is

logit(p̂) � β̂1 + β̂2 (SEX) + β̂3(HOURS) + β̂4 (SEX.HOURS)

Forconvenience,we’ll refer to this function as Y. So, to derive an estimate of the variance forany value

predicted by this function, on the logit scale, we first need to generate the vector of partial derivatives

of the function with respect to each parameter, βi in turn, D:

D �

[
∂Y

∂β1

∂Y

∂β2

∂Y

∂β3

∂Y

∂β4

]

�

[
1 SEX HOURS SEX.HOURS

]
The variance-covariance matrix among the parameters, Σ, is given as

Σ �



v̂ar
(

β̂1

)

ĉov
(

β̂1 , β̂2

)

ĉov
(

β̂1 , β̂3

)

ĉov
(

β̂1 , β̂4

)

ĉov
(

β̂2 , β̂1

)

v̂ar
(

β̂2

)

ĉov
(

β̂2 , β̂3

)

ĉov
(

β̂2 , β̂4

)

ĉov
(

β̂3 , β̂1

)

ĉov
(

β̂3 , β̂2

)

v̂ar
(

β̂3

)

ĉov
(

β̂3 , β̂4

)

ĉov
(

β̂4 , β̂1

)

ĉov
(

β̂4 , β̂2

)

ĉov
(

β̂4 , β̂3

)

v̂ar
(

β̂4

)


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After a little bit of matrix algebra, we can ‘easily show’ that

v̂ar(Ŷ) ≈ DΣD
T

� SEX
(

(HOURS · SEX) · v̂ar
(

β̂4

)

+ ĉov
(

β̂4 , β̂2

)

· SEX + ĉov
(

β̂4 , β̂3

)

· HOURS + ĉov
(

β̂4 , β̂1

))

+ HOURS
(

HOURS · v̂ar
(

β̂3

)

+ ĉov
(

β̂3 , β̂4

)

· (HOURS · SEX) + ĉov
(

β̂3 , β̂2

)

· SEX + ĉov
(

β̂3 , β̂1

))

+ SEX
(

SEX · v̂ar
(

β̂2

)

+ ĉov
(

β̂2 , β̂4

)

· (HOURS · SEX) + ĉov
(

β̂2 , β̂3

)

· HOURS + ĉov
(

β̂2 , β̂1

))

+ v̂ar
(

β̂1

)

+ ĉov
(

β̂1 , β̂4

)

· (HOURS · SEX) + ĉov
(

β̂1 , β̂2

)

· SEX + ĉov
(

β̂1 , β̂3

)

· HOURS

Admittedly, this looks a little ugly, but most computer algebra systems (like Maple, Mathematica,

Maxima...) handle this sort of thing very easily.

OK, now what do we do with this BUE (‘big ugly equation’)? Simple – we substitute in our estimates

for the various parameters in this equation (i.e., β̂1 , v̂ar(β̂1), ...), leaving out the parameter we wish to

plot predictions against. In our example, we’re interested in plotting predicted encounter probabilities

as a function of HOURS of observation in the field.

Let’s say for the moment we’re interested in the relationship between HOURS of observation and

predicted detection probability, for male dippers (i.e., for SEX=1). All we do next is to substitute the

following into the BUE shown on the preceding page:

• SEX � 1

• β̂1 � 1.4115995, β̂2 � 1.4866175, β̂3 � 0.0463458, β̂4 � −0.0783100

• Σ �



v̂ar
(

β̂1

)

ĉov
(

β̂1 , β̂2

)

ĉov
(

β̂1 , β̂3

)

ĉov
(

β̂1 , β̂4

)

ĉov
(

β̂2 , β̂1

)

v̂ar
(

β̂2

)

ĉov
(

β̂2 , β̂3

)

ĉov
(

β̂2 , β̂4

)

ĉov
(

β̂3 , β̂1

)

ĉov
(

β̂3 , β̂2

)

v̂ar
(

β̂3

)

ĉov
(

β̂3 , β̂4

)

ĉov
(

β̂4 , β̂1

)

ĉov
(

β̂4 , β̂2

)

ĉov
(

β̂4 , β̂3

)

v̂ar
(

β̂4

)



�



1.4707909088 −1.3489390733 −0.1048562399 0.0965896636

−1.3489390733 4.4087794743 0.0978171691 −0.3077306503

−0.1048562399 0.0978171691 0.0084589932 −0.0079429315

0.0965896636 −0.3077306503 −0.0079429315 0.0237105215


After the substitution, the BUE is not nearly so ‘big’ or ‘ugly’:

v̂ar(Ŷ) ≈ 0.0162836517(HOURS)
2 − 0.436360115(HOURS) + 3.1816922365

All you need to do at this point is use this equation to generate the estimated uncertainty for

the encounter probability predicted for a given value of the covariate HOURS. The following R script

demonstrates one approach for generating predicted encounter probabilities, and estimated SE and

95% CI for those predictions, for 1→ 20 HOURS.

# initialize hours vector for 1 -> 20 hours

h <- seq(1:20);

# generate estimates of var + SE on logit scale as a function of hours

logit_var <- 0.0162836517*h^2-0.436360115*h+3.1816922365;

logit_se <- sqrt(logit_var);

# generate estimated encounter probability on logit scale

b1=1.4115995; b2=1.4866175; b3=0.0463458; b4=-0.0783100; sex=1;

logit_p <- b1+b2*sex+b3*hours+b4*hours*sex;

p <- exp(logit_p)/(1+exp(logit_p));
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var <- (p*(1-p))^2*logit_var; # Delta method for var on prob scale

se <- sqrt(var)

# now derive LCI and UCI

uci <-exp(logit_p+1.96*logit_se)/(1+exp(logit_p+1.96*logit_se));

lci <-exp(logit_p-1.96*logit_se)/(1+exp(logit_p-1.96*logit_se));

# put everything together

results <- cbind(p,se,lci,uci)

print(results);

Note that the SE and 95% CI are derived on the logit scale, and then back-transformed. This is done

to guarantee that the calculated 95% CI is [0, 1] bounded for parameters (like ϕ or p) that are [0, 1]

bounded. Because the logit transform is not linear, the reconstituted 95% CI will not be symmetrical

around the parameter estimate, especially for parameters estimated near the [0, 1] boundaries.

The first 5 (of 20) values generated from this script are shown below:

p se lci uci

[1,] 0.9461528 0.08466548 0.4035014 0.9978138

[2,] 0.9445008 0.08076792 0.4537064 0.9971406

[3,] 0.9428013 0.07662883 0.5043041 0.9962693

[4,] 0.9410530 0.07225869 0.5540990 0.9951479

[5,] 0.9392546 0.06767696 0.6019307 0.9937149

We can use the full output from the script to plot predicted encounter probability with 95% CI to

those predictions:
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As mentionedearlier, the reconstituted 95% CI willnotbe symmetrical around the parameterestimate,

especially for parameters estimated near the [0, 1] boundaries, as is clearly the case here. Also, we note

that as the value for the covariate HOURS is much greater or lesser than the mean value (≈ 12 hours),

the 95% CI gets progressively larger. This is expected as there is less ‘information’ at either end of the

distribution of HOURS on which to base our inference, and thus, more uncertainty in our estimate.

end sidebar
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6.9. A special case of ‘real covariates’ – linear trend

Although we are not usually interested in a simple demonstration of temporal variation in ourparameter
estimates (as discussed in the preceding section), there is one ‘special’ case where we might be. If our
estimates are believed to be increasing or decreasing over time (i.e., showing a trend). We will now
explore how to use MARK to test for ‘trend’ in the data – linear increase or decrease in survival or
recapture. We created a simple data set (LINEAR.INP), which contains simulated data which we will
use for our analysis of linear trend. There are 8 occasions in the data set. Assume that the ‘simulated
animals’ are all marked as adults. We started with fitting the basic CJS, time-dependent model. Since
the data were simulated, we can safely assume that this is an acceptable model, and fits the data (i.e.,
you can leave ĉ at the default value of 1.000). Since there is only one group, this analysis is very easy,
and should take you only a few minutes with MARK. At this stage, we’ll assume you know the steps
for fitting this model, so we’ll proceed directly to the results. The deviance of the CJS model for these
data was 185.388, and the AICc value was 7980.78.

The estimates for both survival and recapture probabilities are tabulated below:

survival recapture

Parm Estimate Parm Estimate

1 0.7237 8 0.5492
2 0.7022 9 0.5040
3 0.6280 10 0.5403
4 0.5836 11 0.5256
5 0.6267 12 0.4316
6 0.4586 13 0.5428
7 0.5027 14 0.5027

Note that the value of the last estimate forboth survival and recapture is the same (0.5027) – remember,
this is the β8 term. Thus, for this model, we have 13 total potentially identifiable parameters. The
deviance for the model was 185.39, and the AICc for this model is therefore 7980.78. Note that the
time-specific estimates show a clear trend (not surprising, since they were simulated this way).

Now, let’s proceed to see how to use MARK to fit a model with a linear trend – this will allow us to
formally test our hypothesis that there may be a decline in survival over time. Doing this in MARK is
very straightforward. Mechanically, we again make some simple modifications to the CJS design matrix.
First, what are the index values of the survival parameters we want to constrain (i.e., constrain to be a
linear function of time)? Clearly, parameters 1→ 7.

Now, as hinted in the last section, to fit a linear trend model, we need to modify the design matrix –
how would we do this? Think back to the first example using the Dipper data set – the FLOOD analysis.
Recall that in the design matrix, we had 4 columns of numbers in that file: one for the intercept, one
for SEX, one for FLOOD, and one for the interaction term (SEX.FLOOD). Concentrate on the FLOOD column.
We coded FLOOD as a simple binary variable: there was either a flood (‘1’) or there wasn’t (‘0’). In our
present example, however, things aren’t quite so simple. We are trying to build a model with a linear
trend. In other words, a systematic change in survival (up or down) through time.

What do we know about a ‘trend’, and how does it differ from the flood example? By definition, a
trend has a slope which is significantly different from 0. Given that the slope differs from 0, then on
average, y(i−1) < yi < y(i+1) for an increasing trend with (i), and the reverse for a decreasing trend.
Second, a trend (if linear) is ‘continuous’ through time – it is not a simple binary condition, as was
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the case with flood. Thus, we need to code a ‘trend’ through time in such a way that it meets these 2
conditions.

As it turns out, it is very simple to do this, although you may have to take a few minutes to grasp
the logical connection. To code for a linear trend, all you need to do is write a series of ordinal, evenly
spaced increasing (or decreasing) numbers, 1 through n (where n is the number of occasions you want
to fit the ‘trend’ to). You don’t have to start with the number 1, but you do need to use the sequence
{starting value}+1, {starting value}+2, and so on. So, what would the survival elements of the design
matrix look like for this 8 occasion study?

Just like this:

1 1

1 2

1 3

1 4

1 5

1 6

1 7

Hmmm. . .pretty strange looking (perhaps) – what do we have here? The first column corresponds
to the intercept, while the second column is the dummy variable coding for the linear trend. In other
words,

logit(ϕ) � INTERCEPT + β1(T)

where T (commonly referred to as ‘cap T’) indicates a linear trend (we use a capital T for trend, to
distinguish a trend model from a simple time-dependent model, which is usually indicated using a
lower-case t).

So, only 2 β terms: one for the intercept, and one for the linear relationship between the response
variable (ϕ, in this case), and the value for ‘trend’. You should see the connection (at least structurally)
between this linear model, and how we coded for the ‘effort’ covariate in the previous section. The order
of the numbers (1 to 7, or 7 to 1) makes no difference – MARK will simply use the numbers to fit a linear
trend – it will let the data determine if the trend is up or down (if any trend exists). Get it? The design
matrix for this model (‘Phi(linear)p(t)’) is shown below:
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Note that this model has 9 parameters (1 for the intercept, 1 for the slope of the ‘regression’ of survival
on time as a linear covariate, and 7 recapture parameters – no non-identifiable product β terms. Make
sure you know why!). The deviance was 189.53, and the AICc was 7976.88. The model where survival
was constrained to vary linearly with time (note we do not specify increase or decrease) is a more
parsimonious model than the initial time-dependent model – in fact, it is approximately 7 times better
supported by the data. This is perhaps not surprising – the data were simulated with a decline in
survival!

Now, one subtle variation in this theme: suppose that we want to test for a non-linear trend. How
would we do this? Well, there are several ways to analyze non-linear relationships. Perhaps the easiest
is to use multiple regression, fitting a series of power terms to the function. For example, a comparison
of the model Y � X + X2 to model Y � X is a formal test of the significance of the X2 term. If the X2

term is not significant, and if the model Y � X fits the data, then we can conclude that the relationship
is linear. How would we do this? In fact, it is very simple. All you need to do is add another column to
your design matrix file to accommodate the X2 term. It’s that easy!

Warning: While the mechanics of what we’ve just demonstrated for fitting a ‘trend’ model appear
straightforward, there is a conceptual limitation to this particular approach which you need to consider.
Fitting a linear trend model using the approach we described in this section ‘forces’ the parameter
estimates to fall precisely on a line. Clearly, this ‘statistical constraint’ enforces a ‘biological’ hypothesis
which is implausible – the estimates are no more likely to fall precisely on a line than they are to be
exactly the same in a ‘constant over time’ model. In addition, inference concerning the estimated ‘slope’
of the trend from a ‘cap T’ model is problematic – in such models, the estimated standard errors are based
only on sampling variation, and would be biased low compared to a direct regression on true estimates
(which is clearly not possible because the true estimates are not known). However, an approach based
on random effects solves this problem. In this context, random effects models assume that ‘true’ annual
estimates do not fall exactly on any simple, smooth model; the deviation of estimates of some parameter
from such models are treated as random. So, rather than assume the estimates fall precisely on a straight
line (i.e., applying a simple ‘cap T’ model approach), the random effects regression assumes that the
actual ‘true’ estimates vary randomly around some trend line (where the trend line represents the mean
estimate if multiple samples were available from the same range of years in the data). Random effects
models in MARK are covered in detail in Appendix D.

begin sidebar

Another type of ‘trend’: the cumulative logit link

The cumulative logit link (CLogit) function is useful for constraining a set of parameters to monoton-

ically increase. Suppose that you desire the relationship of S1 ≤ S2 ≤ S3, but do not want to enforce

the relationship on the logit scale that

logit[S2] − logit[S1] � logit[S3] − logit[S2]

as a trend model (discussed in the preceding section) would do.

The CLogit link would generate this relationship as:

S1 �
eβ1

1 + eβ1 + eβ2 + eβ3

S2 �
eβ1 + eβ2

1 + eβ1 + eβ2 + eβ3

S3 �
eβ1 + eβ2 + eβ3

1 + eβ1 + eβ2 + eβ3

To use the CLogit link, you have to specify a separate CLogit link for each set of parameters that

are to be constrained. In addition, you also have to specify the order of the parameters for the set.
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For the preceding example, the link function for each of the 3 survival probabilities would be:

S(1): CLogit(1,1)

S(2): CLogit(1,2)

S(3): CLogit(1,3)

If you have a second set of parameters (in the same model) that you also want to enforce a monotonic

increase on, say S4 ≤ S5 ≤ S6, the appropriate links would be:

S(4): CLogit(2,1)

S(5): CLogit(2,2)

S(6): CLogit(2,3)

Note that you can force a monotonic decrease by reversing the order of the real parameters in the

CLogit set. For example, to enforce a monotonic decrease on parameters S1, S2, and S3, you would use

S(1): CLogit(1,3)

S(2): CLogit(1,2)

S(3): CLogit(1,1)

You specify these link functions by selecting the ‘Parm-Specific’ choice from the ‘Run Window’ list

of link functions, and then entering the appropriate specification in the edit box next to the parameter

name.

We’ll demonstrate the use of the CLogit link by means of a worked example, based on simulated live

encounter data (6 occasions, 250 individuals marked and released at each occasion), where apparent

survivalϕ tends to increase monotonically, while the encounter probability p is constant over time (the

simulated data are contained in clogit_demo.inp). The true values for the survival parameters are:

S1 � 0.500, S2 � 0.600, S3 � 0.625, S4 � 0.700 and S5 � 0.725. Note that S2
∼� S3, and S4

∼� S5. Thus,

even though there is an obvious tendency for survival to increase over time, the increase is clearly not

strictly linear, as indicated by the square symbols in the following figure:

interval
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However, the question is whether a model which constrains the estimates to be strictly linear (red line)

is a better fit to the data than one which allows for possible equality between some of the estimates

(darker line).
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Recall that fitting a linear trend using the design matrix forces the reconstituted estimates to fall on

a perfectly straight line. So, in this example, it might seem possible (perhaps likely) that a model based

on the cumulative logit link (which allows for possible equality between some of the estimates) may

prove to be more parsimonious than a strictly linear trend model (even though the latter will often

have fewer parameters).

First, build model {ϕt p·}, and add the results to the browser. Note that the real parameter estimates

from this model (shown below)

are not particularly close to the true parameter values used to simulate the data. Given the small

sample size of newly marked individuals released at each occasion, this is perhaps not surprising.

Now, let’s fit two additional models: model {ϕtrendp·} (simple linear trend on apparent survival),

and model {ϕCLogitp·}, where we use the cumulative logit link to impose an increasing, ordinal

– but not strictly linear – structure on the apparent survival values. If you followed the material

covered in this section, fitting the simple linear trend model should be easy. Here is the design matrix

corresponding to the trend model:

Go ahead, fit this model, and add the results to the browser:

We see clearly that model {ϕtrendp·} is not particularly well-supported by the data (at least, relative

to model {ϕt p·}).

Now, let’s fit model {ϕCLogitp·}, where we impose an increasing, ordinal constraint on the estimates

of apparent survival. In other words, we’re constraining the estimates of S1 , S2, · · · , S5 such that

S1 ≤ S2 ≤ S3 ≤ S4 ≤ S5
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Now, if you look closely at the above, you’ll see that there are a very large number of possible

models which would satisfy this constraint – MARK will effectively test all of them, and select the

most parsimonious of the set.

To build this model in MARK, first retrieve model phi(t)p(.) from the browser. You can do this

easily by selecting the model in the browser, right-clicking, and selecting ‘Retrieve’. Then, select ‘Run’

again, and change the name of the model to phi(CLogit)p(.). Now, before clicking the ‘OK to Run’

button, we need to specify the cumulative logit link for the 5 apparent survival parameters. To do this,

you need to select the ‘Parm-specific’ radio button option in the list of link functions. Now, when you

click the ‘OK to Run’ button,MARK will respond with a window where you will specify the parameter

specific link functions you want to use (shown below). Note that in in this case, MARK defaults to

the logit link for all parameters (the default link for each parameter will either be the sin or logit link,

depending on whether or not you are using an identity design matrix).

To fit our model, we need to change from the default logit link to the cumulative logit link, for

parameters 1→ 6, corresponding to ϕ1 → ϕ5. To enforce a monotonic increase in apparent survival,

subject to the condition that

S1 ≤ S2 ≤ S3 ≤ S4 ≤ S5

we simply specify the CLogit link for each of the survival parameters. For this example, here the

completed link specification window:
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Note that you cannot select the CLogit link function from the drop-down list of link functions like as

with all of the other link functions, because you have to specify the set and the order of the parameter

within the set. Therefore, you have to manually enter the link function in each edit box next to the real

parameter value to which it pertains. This is the most logical method to provide the user the flexibility

needed to select the parameters for each CLogit set, and still specify the order of the increase of the

real parameters.

Once you’ve specified the link functions, go ahead and run the model, and add the results to the

browser:

We see clearly that the model using the cumulative logit link has considerable AIC weight in the

data, relative to the other models in the model set. The estimates from this model are shown below:

You see that the results follow the basic constraint specification

S1 ≤ S2 ≤ S3 ≤ S4 ≤ S5

In this case, the most parsimonious model was one where

S1 ≤ S2 � S3 ≤ S4 � S5

whichseems quite reasonable given that for the true parametervalues (noteda fewpages back),S2
∼� S3,

and S4
∼� S5.

So, how many parameters are estimated, subject to the constraint that

S1 ≤ S2 ≤ S3 ≤ S4 ≤ S5

Given that the most parsimonious ML estimates for these simulated data subject to this constraint

are

S1 ≤ S2 � S3 ≤ S4 � S5

it is clear that 3 parameters are estimated.
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Now, it is worth noting here that what we have done is essentially equivalent to a ‘all subsets’

regression – MARK has simply found the most parsimonious model from the set of models specified

by the constraint that

S1 ≤ S2 ≤ S3 ≤ S4 ≤ S5

This may be potentially usefully for finding a parsimonious model for improving precision of recon-

stituted parameter estimates, or if you believe that there is a general monotonic increase or decrease in

some parameter, where you have no a priori expectation to the particular form of the function (other

than it being monotonic in one direction or the other). In this case, the most parsimonious model was

one where

S1 ≤ S2 � S3 ≤ S4 � S5

was not motivated by a particular a priori hypothesis.

If in fact you had reason to include a model with this constraint in your model set (i.e., if you

had an a priori expectation that S2 � S3 and S4 � S5, with a monotonic increase from S1 → S2 �

S3 → S4 � S5), then it would be more appropriate to (i) first construct a PIM with the basic structure

{S1, S2 � S3, S4 � S5} (shown below) to which you then (ii) apply a cumulative logit constraint to

parameters 1 → 3. If you try it for this example problem, you’ll see that you generate exactly the

same reconstituted parameter estimates as you did from the cumulative logit link applied to the fully

time-dependent PIM.

However, by applying the cumulative logit to the PIM that reflects our a priori beliefs about equality

of certain parameters, then we avoid the risk of having to concoct a post hoc ‘story’ (not withstanding

their frequent entertainment value) to explain the particular CLogit model that MARK has found to

be most parsimonious. The distinction here is subtle, but important.

end sidebar

6.10. More than 2 levels of a group

It is not uncommon to have more than 2 levels of a classification variable in an analysis. For example,
you may have a control and 2 or more treatment groups. How would you code the design matrix for
such a situation? In fact, it’s easy (well, relatively), if you remember some basic principles from analysis
of variance (ANOVA). The number of columns used to characterize group differences (e.g., belonging
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to one group or not) will always equal the number of dummy variables (coded ‘0’ or ‘1’) that you need
to characterize group differences. For any variable that we treat as ‘categorical’ or ‘classification’ (i.e.,
both COLONY and TIME in the swift example) with k levels, the number of columns needed is (k−1), which
happens to be the numbers of degrees of freedom associated with a factor in a standard ANOVA (note –
it’s not a coincidence). In short, the number of columns (hence, the number of dummy variables) needed
equals the degrees of freedom associated with that variable. So, the minimum number of columns of
dummy variables needed to specify our model are defined by the number of degrees of freedom for
each factor, plus any interaction terms.

Of course, it is possible to specify a model with more columns than the minimum set we’ve just
described. Would this be wrong? Not exactly – your estimates would be ‘correct’, but it becomes very
difficult to count (separately) identifiable parameters. And since counting parameters is essential to
model testing, using more columns than necessary in your design matrix to specify the model should
be avoided.

Consider an example of a study over 5 occasions, where we have 3 ‘groups’, or levels of our ‘main
effect’. Thus, we need (3 − 1) � 2 columns of ‘dummy variables’ to specify group association. Again, it
is important to understand the logic here: we need (n − 1) � (3 − 1) � 2 columns, because we have an
intercept in the model – the intercept codes for one level of the treatment, and the other two columns
code for the remaining two levels of the treatment.

Suppose we also have a quantitative covariate (say, hours of observation). Linear terms have 1 degree
of freedom, so one column of covariate values. Finally, for the interaction, we need (3 − 1) × (1) � 2

columns.

Here is the design matrix – we have formatted it slightly to emphasize the ‘logical connection’ amongst
the columns.

INTCPT GROUP HOURS GROUP.HOURS

1 0 0 1.1 0 0

1 0 0 0.2 0 0

1 0 0 3.4 0 0

1 0 0 4.1 0 0

1 0 1 1.1 0 1.1

1 0 1 0.2 0 0.2

1 0 1 3.4 0 3.4

1 0 1 4.1 0 4.1

1 1 0 1.1 1.1 0

1 1 0 0.2 0.2 0

1 1 0 3.4 3.4 0

1 1 0 4.1 4.1 0

The first column is the intercept. The next 2 columns on the left indicate group: group is identified
depending upon the pair of dummy variables across these 2 columns: ‘0 0’, ‘0 1’, and ‘1 0’. The middle
column (of the 5 total columns), is the ‘covariate’ column. The last 2 columns are the interaction
columns (interaction of group and covariate). Remember, the interaction term can be thought of as
a ‘multiplication term’ – the product of the various factors contained in the interaction. Since this
interaction is the interaction of ‘group’ (2 columns) and ‘covariate’ (1 column), then we have (2× 1) � 2

columns for the interaction. We simply multiply each element of the group column vectors by its
corresponding element in the ‘hours’ column vector. Therefore, 6 columns total.

Now, if we were applying this design matrix, and we wanted to test for the significance of the
interaction term, we would first run the constraint using all 6 columns in the matrix, and then a second
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time using only the first 4 columns – 4 because we want to drop the interaction term, which is ‘stored’
in columns 5 and 6.

Note that it is important to use the minimum number of columns of ‘0’ or ‘1’ dummy variables
to characterize your groups. Why? Because each column in your matrix becomes a slope, which is
an estimated parameter. Our goal is to use as few parameters as possible to specify a model. Extra
columns wouldn’t make your model ‘wrong’, but would make the counting of (separately) identifiable
parameters more difficult.

It is also important to note that all that is necessary is that you use n − 1 columns to code the ‘group’
variable (in this case, (3 − 1) � 2 columns). However, the actual ‘dummy variable’ coding you use to
specify group is arbitrary. For example, in the preceding example, we used ‘0 0’ for group 1, ‘0 1’ for
group 2, and ‘1 0’ for group 3. However, we could have used ‘1 1’ for group one, ‘1 0’ for group 2,
and ‘0 1’ for group 3, or any of a number of other combinations. They would all yield the same results
(although, clearly, the coding in the interaction columns will change from the preceding example to
reflect whatever coding you use for group columns). Try a few examples to confirm this for yourself.

6.11. > 1 classification variables: n-way ANOVA

Back in Chapter 2, we briefly considered the formatting of the INP file for situations where you have > 1

classification factors. We considered an example where both males and females were sampled at each of
two colonies: a good colony, and a poor colony. Thus, two classification factors: SEX and COLONY. Recall
that in the input file, we included a frequency column for each (SEX.COLONY) combination: one frequency
column for females from the good colony, one frequency column for females from the poor colony, one
frequency column for males from the good colony, and finally, one frequency column for males from
the poor colony. We simulated a simple data set (MULTI_GROUP.INP) including these 4 combinations. A
portion of the INP file is shown below:

Here, we focus on building models which have both SEX and COLONY effects. Suppose, for example,
we want to build the following linear model for ϕ:

ϕ � SEX + COLONY + TIME + SEX.TIME + COLONY.TIME + SEX.COLONY + SEX.COLONY.TIME

In other words, a 3-way ANOVA (in effect, TIME is the third classification variable in this analysis).

How do we go about building this model? Start program MARK, and begin a new project. Select
MULTI_GROUP.INP. Specify 5 occasions. Now, for your first challenge – how many attribute groups? You
might think either 2, or 3. Well, perhaps you’re comfortable enough now with MARK to think just two
– SEX and COLONY (realizing that TIME is an implicit attribute, and doesn’t need to be counted).

Unfortunately, you’d not be correct. In fact, there are 4 attribute groups – corresponding to each of
the 4 SEX.COLONY combinations (i.e., the number of frequency columns in the INP file). So, you need to
tell MARK that there are 4 attribute groups.
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Next, what to call them? In the INP file (above) we see that the first two frequency columns are for
females sampled at the good and poor colonies, respectively, and the last two frequency columns are
for males, sampled at the good and poor colonies, respectively. So, let’s label the 4 attribute groups as
FG, FP, MG, and MP, respectively.

Now, let’s build our model – to simplify, let’s assume that the encounter probability p is the same
for both sexes and both colonies, and constant over time. The PIM chart corresponding to this model is
shown below:

Make sure you see the connection between the PIM chart, and the model we’re trying to build. Go
ahead and run the model – call it ‘phi(S.C.T)p(.) - PIM’. We add the PIM label to the model name to
remind us that the model was built using the PIM chart.

The real estimates from this model are shown below:
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Now, we want to try to construct this model using the design matrix approach (since we want to be
able to use the flexibility of the design matrix to build models we can’t build with the PIMs).

First – how many columns should the design matrix have? Well, if you ‘cheat’ and look at the results
browser, you might guess 17 – one column for each of the estimated parameters. But, we want to confirm
our hunch – we do this by writing out the linear model in full. Remember, SEX has two levels (male and
female), so 1 column for sex. Similarly, COLONY has two levels (good and poor), so again, 1 column for
COLONY. There are 5 occasions, so 4 TIME intervals, and thus we need 3 columns to code for TIME. Finally,
we need to code for the various interaction terms as well. Remember, there are interactions of SEX.TIME,
COLONY.TIME, SEX.COLONY and SEX.COLONY.TIME.

Here is the linear model:

logit(ϕ) � β1 + β2(SEX) + β3(COLONY)

+ β4(T1) + β5(T2) + β6(T3)

+ β7(S.T1) + β8(S.T2) + β9(S.T3)

+ β10(C.T1) + β11(C.T2) + β12(C.T3)

+ β13(S.C)

+ β14(S.C.T1) + β15(S.C.T2) + β16(S.C.T3)

So, we see that there are 16 β terms for ϕ, plus 1 β term for the constant encounter probability p, for
a total of 17 columns (looks like our guess was correct). Now, let’s build the design matrix.

We’ll start by adding the INTCP, SEX, COLONY and TIME columns to the design matrix. As you no doubt
by now realize, there is no ‘hard rule’ for how you code the various effects in the design matrix – as
long as the coding, and the number of columns, are consistent with the model you’re trying to fit, and
the data in the INP file.

Here is one possible dummy variable coding for these terms:

Look closely. The INCTP is coded by a column of 16 ‘1’s. There are 4 intervals, and 4 attribute groups,
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so 16 underlying ϕ parameters. Next, the SEX column (labeled S). We’ll let ‘1’ represent males, and ‘0’
represent females. Since the first 2 frequency columns in the INP file represent females, then the first 8
elements of the SEX column are 0’s, followed by 8 1’s for the males. Next, the COLONY column (labeled
C). Now, remember that in the INP file, the frequency columns were ‘good’ and ‘poor’ colonies for the
females, followed by ‘good’ and ‘poor’ colonies for the males. Here, we’ve used a ‘1’ to indicate the
‘good’ colony, and a ‘0’ to represent the ‘poor’ colony, alternating for each sex. Next, the 3 columns
coding for TIME (labeled T1, T2 and T3), in the standard way (using reference cell coding) – here, we’ve
set the final time interval (between occasion 4 and 5) as the reference interval.

What about interactions? Well, let’s start with the easy ones: S.T, C.T, and S.C. Look closely at the
following figure:

For convenience, we’ve labeled the columns in the design matrix so you can see which columns
correspondto which interaction terms: columns 7→ 9 correspondto the SEX.TIME interactions,columns
10 → 12 correspond to the COLONY.TIME interactions, and column 13 corresponds to the SEX.COLONY
interaction.

Finally, the S.C.T interaction, indicated in columns 14→ 16 in the following:
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The element in the lower right-hand corner of the completed design matrix codes for the constant
encounter probability, p.

Now, go ahead and run this model, and label it ‘phi(S.C.T)p(.) - DM’, with DM indicating it was
constructed using a design matrix. Add the results to the browser:

As expected, the two models yield identical results: the numberofparameters and the modeldeviance
is the same, regardless of whether or not the model was built using the PIMs, or via the design matrix.

As a final check, though, we want to look at the real estimates (below) for our parameters from the
model constructed using the design matrix. We see that the results are identical, as expected.

Handling > 1 classification variable can sometimes be a bit tricky – but most of the challenges
are ‘book-keeping’. Just remember that the dummy variable coding in the design matrix needs to be
consistent with both the linear model you’re trying to fit, and the structure of the .inp file.

6.12. Time and Group – building additive models

Most newcomers to MARK find building design matrices the most daunting part of the ‘learning curve’.
However, if you’ve understood everything we’ve covered up to now, you should find building design
matrices for additive models very straightforward. What do we mean by an ‘additive model’? As you
may remember from earlier chapters, an additive model is one where we express variation in survival
or recapture as a function of the additive contributions of 2 or more factors.
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Recall our comparison of the ‘good’ and ‘poor’ swift colonies (Chapter 4). Our linear model was
represented by

logit(ϕ) � β1 + β2(COLONY) + β3(TIME) + β4(COLONY.TIME)

In this model, we have two ‘factors’ – COLONY (‘good’ and ‘poor’) and TIME (ϕ1, ϕ2 . . . ϕ7). Each ‘time
interval’ is considered as a different level of the TIME factor. In this case, we are treating time as a
‘categorical’ variable, as opposed to a quantitative covariate as we did in the ‘trend’ example presented
earlier.

You may have noted that this is, in fact, the default MARK CJS model with 2 groups – as long as you
tell MARK to use the same parameter structure between groups, but let the parameter values differ (i.e.,
same qualitative structure between the PIMs, but different indexing), then MARK uses the ‘full model’,
with both factors (COLONY and TIME), and the interaction term (COLONY.TIME). When we run MARK, but
set the PIMs for the 2 groups to be the same (same structure, same index values), we are testing model

logit(ϕ) � β1 + β2(TIME)

The difference between these two models is, in fact, the effect of COLONY + COLONY.TIME, not just
COLONY alone. As noted in Chapter 4, we are, in fact, leaving out the ‘intermediate model’:

logit(ϕ) � β1 + β2COLONY + β3TIME

In this model, we are considering the additive effects of the 2 factors – hence, we refer to it as an
‘additive’ model. To fit this model we simply need to take our design matrix for the fully time-dependent
model

logit(ϕ) � β1 + β2(COLONY) + β3(TIME) + β4(COLONY.TIME)

and delete the interaction columns! It’s that easy! In fact, we already saw this earlier when we analyzed
the Dipper data with the flood model. Go back to the swift analysis, pull up the design matrix for the
full model {ϕg∗tpg∗t}, and simply delete the columns corresponding to the interaction of group and
time (for survival). The design matrix (the upper-left quadrant for survival) should look like:

What MARK does with this design matrix is to estimate a coefficient (‘slope’) for each dummy
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variable. This coefficient tells us how any one particular level differs from the baseline level (i.e., the last
time interval). We can put all the coefficients together in one regression equation (for COLONY and TIME):

logit(ϕ) � β1 + β2(COLONY) + β3(t1) + β4(t2) + β5(t3) + β6(t4) + β7(t5) + β8(t6)

In this expression,β1 tells us how much,on average, survival in the ‘good’ colony differs from survival
in the ‘poor’ colony. Note that when COLONY=0 (say, for the ‘poor’ colony), the β2 term drops out of the
regression equation, resulting in our estimating survival in the ‘good’ colony. Each of the remaining
β-terms specifies how much survival in one year period (average over both colonies) differs from the
baseline year. The greater the magnitude of a particular β the greater that year’s survival probability
differs from the baseline year, and the greater the statistical significance of a particular β, the greater
the contribution to the overall significance of the TIME factor.

It should be easy to see that, for example, for the ‘poor’ colony (COLONY=0) in year 3, the β2 term drops
out of the equation, and we are left with

logit(ϕ) � β1 + β5

because t3 � 1, and all other t values (t1, t2, . . . t6) are equal to zero. Thus, β5 tells us how much survival
in year 3 differed from the baseline year (year 7).

Similarly, the equation for year 5 in the ‘good’ colony (COLONY=1) would be

logit(ϕ) � β1 + β2 + β7

One last thing to consider. Counting parameters for the additive model (model {ϕg+t pg∗t}) is not
quite as simple as for other models. First, we’ll consider how to count the number of potentially available
parameters in an additive model. The easiestway to do it is to rememberwhatwe’re after– we’re testing a
model where there is time variation in survival forboth colonies,but that the difference between colonies
is due to a constant, additive, component. This additive component is simply 1 more parameter (like
estimating a constant). This should be surprising, especially if you think of the additive model in the
ANCOVA example we dealt with earlier – in the Lebreton et al. (1992) monograph, they give you an
explicit ‘hint’ when they use the word ‘parallelism’. If any pair of lines in an X − Y plane are parallel
then for any value X, the two lines differ in Y by some constant amount. It is the constant ‘difference’
between the lines which constitutes one of the estimable parameters. So, for our present example, simply
count the number of parameters you would expect for 1 colony alone, for the underlying model (CJS –
13 parameters for either colony alone). Then, add 1 for the additivity (i.e., the ‘constant difference’) in
survival (you would add 2 if you had additivity in survival and recapture simultaneously).

Now, the tricky part (potentially) – if survival in one colony is simply survival in the other colony
plus a constant, then the survival probability is identifiable (by linear interpolation) for all intervals in
the second colony, and thus all of the recapture probabilities are estimable (no confounding of terminal
p and ϕ parameters). So, since there are 7 recaptures, we add 7, bringing our total to (13 + 1 + 7) � 21

total parameters.

Still don’t get it? Here’s another way to think of it. First, in this example, we are constraining the CJS
model by colony. What was estimable in this starting model will remain estimable in the same model
with a constraint – in this case, the additive model. Thus, if some parameters are not identifiable in the
additive model, they must be those from the last time interval: ϕ7,g and ϕ7,p and p8,g and p8,p (where
‘g’ = good, and ‘p’ = poor). Let’s focus our attention on them. In the unconstrained CJS model, we could
identify the products β9,g �

(

ϕ7,g p8,g

)

and β9,p �

(

ϕ7,p p8,p

)

. In essence, we had 2 equations and 4
unknowns. If we pick some value for (say) ϕ7,g , then we can solve for p8,g . Similarly, we could pick an
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arbitrary value for ϕ7,p and solve for p8,p . Thus, we have 2 arbitrary parameters to discount from the
initial total of 28 parameters in the model – in other words, (28 − 2) � 26 identifiable parameters. Of
course, we knew this already – we simply want to confirm that this approach yields the same results.

Now, let’s apply this same line of reasoning to the additive model case. We still have the same 2
equations as before, plus 1 new one; ϕ7,g � ϕ7,p + c (from the constraint). ‘c’ is a known constant,
because ‘c’ is common to all intervals. Therefore, if we pick a value for ϕ7,g then ϕ7,p is known, and thus
also both p8,g and p8,p . Thus, we have just one arbitrary parameter to discount from the total number
of parameters originally included in the additive model; for survival, 7 slopes + 1 intercept = 8, and for
recapture, 14. Thus, (8 + 14) � 22 − 1 (the arbitrary parameter) = 21 identifiable parameters. However,
if we run the additive model, we find that MARK has estimated only 19 parameters. It has 1 intercept,
and 7 slopes, but of the recapture parameters, 2 are not identifiable – so (1 + 7 + 12) � (20 − 1) (the
arbitrary parameter) = 19.

In fact,Lebreton et al. (1992) analyzed a large number of different models for this data set (see Table 14).
They found that the most parsimonious model has constant survival within colony, but different colony
values, and additivity (‘parallelism’) in recapture probabilities (ϕc pc+t).

Before we leave this chapter, it is worth noting that the ‘parallelism’ we have been discussing refers
only to the logit scale – i.e., it is not linear parallelism, but logit parallelism. Thus, if you plot the
reconstituted values from an additive model, they may not ‘look’ to be parallel, but on the logit scale,
they indeed are. Suppose we had found additivity of survival between colonies for the swift data. What
would this mean? It would mean that whatever factor made the survival differ overall between the
colonies had a constant additive effect over time. This would imply that there is some ‘real difference’,
possibly genetic or age, between the two colonies such that, although both of them are subject to
fluctuations over time, one colony always does relatively better (or worse) than the other.

6.13. Linear models and ‘effect size’: a test of your understanding. . .

Recall that in chapter 4, we introduced the question of ‘significance’ and ‘effect size’. We considered
the ‘swift analysis’, and asked the question: is there a difference in survival between the colonies (good
colony versus poor colony), and is it ‘significant’? In addressing these questions, we considered the
matter of ‘effect size’. In the swift analysis, we concluded that there was good support for the contention
that there is a difference in survival between the two colonies, based on relative AIC model weights. The
remaining questions were – how big is this difference, and is the difference ‘biologically meaningful’?
As we note in chapter 4, the first question relates to ‘effect size’ – we consider colony as an ‘effect’, strictly
analogous to an ‘effect’ in ANOVA. The ‘effect size’ is the estimate of the magnitude of the difference in
survival between the two colonies. Further, since the effect size is ‘estimated’, it will have an associated
uncertainty which we can specify in terms of a confidence interval (CI).

The key question then becomes

‘what are the plausible bounds on the true effect size, and are

biologically important effects contained within these bounds?’

In chapter 4, we concentrated on simple interpretation of effect size. Here, we explore this a little
more deeply, introducing some of the considerations involved in estimating effect size in the first place.
This exercise will also serve as a test of your basic understanding of linear models (the subject of this
chapter).

We’ll consider a situation similar to the ‘swift analysis’ we introduced earlier. We’ll imagine there
are 2 colonies (good and poor), and that survival over a given interval in the poor colony is 10% lower
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than survival in the good colony over that same interval (warning: keep awake for scaling issues here!).
We simulated some data, 8 occasions, 150 newly marked birds released in each colony on each occasion.
We assumed a constant survival probability over time for each colony: 0.80 for the poor colony, and
(0.80 + 10%) = 0.88 for the good colony. We also assumed a constant recapture probability of 0.75 for
both colonies. The simulated data are contained in effect_size.inp (where the first frequency column
corresponds to the poor colony, and the second frequency column corresponds to the good colony).
Again, 2 groups (poor and good) and 8 occasions.

While you could fit this model by (i) building the fully time-dependent model {ϕg∗t pg∗t} using
PIMs, (ii) constructing the corresponding design matrix, and then (iii) reducing the design matrix by
eliminating the columns involving TIME for ϕ, and the columns involving both TIME and COLONY for p,
for this demonstration it’s easier to simply start with a PIM structure that corresponds to our underlying
model, {ϕgp.}.

Here are the PIMs for survival

1 1 1 1 1 1 1 2 2 2 2 2 2 2

1 1 1 1 1 1 2 2 2 2 2 2

1 1 1 1 1 2 2 2 2 2

1 1 1 1 2 2 2 2

1 1 1 2 2 2

1 1 2 2

poor 1 good 2

and recapture

3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

3 3 3 3 3 3

3 3 3 3

poor 3 good 3

For this analysis, we’re primarily interested in estimating the ‘effect size’ – effect of colony on survival.
How do we do that? The answer in this case is fairly easy if you consider the linear model corresponding
to this particularanalysis. We have 2 groups (COLONY),withno variation over time. Thus,our linearmodel
for survival would be:

logit(ϕ) � β1 + β2(COLONY)

If you’ve read this far, and understood the theory behind linear models, you’ll recall that β1 and β2

together code for the colony effect. How this coding works depends on the design matrix used.

For example, if you use the design matrix coding shown at the top of the next page, then how do we
interpret the intercept (β1) and the first slope (β2)? If the poor colony is coded in the 2nd column (B2
column) of the design matrix as ‘0’, and we use ‘1’ for the good colony, then if the colony is poor, the
intercept gives the survival for the poor colony (since the β2 term drops out of the equation). So, if the
intercept is the estimate for the poor colony, then when the dummy variable is ‘1’ (specifying a good
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colony), then β1 + β2 = (poor) + (good-poor) = good. Clearly – the β2 value is the effect of colony – it is
the degree to which estimated survival for the poor colony differs from estimated survival for the good
colony. In other words, the estimate for β2 is the estimate of the effect size.

How do we actually get an estimate of the effect size on the familiar probability scale (i.e., in the range
[0, 1])? In fact, we can do this in a couple of ways. Let’s start by using the identity link function. Recall
that in many (perhaps most) cases, we fit models using either the logit or sin link functions. For now,
though, let’s re-run our model, using the identity link, which you select during the numerical estimation
part of the run. Our general starting model will be {ϕcolon yp.}. Go ahead and run it using either the
default sin link, or the logit link. Then, run the model a second time using the identity link.

Note for these data that the model fit is identical regardlessof whether you use the logit, sin or identity
link (although by now you probably appreciate that this is not always the case).

OK, on to the next step. We want the estimate for β2 – the slope for the colony term in the design
matrix, which we understand to be the effect size – in this case, the difference between the good and
poor colonies. All you need to do is look at the ‘beta estimates’ for the model with the identity link.
The estimated value for β̂2 � 0.0845106, with a 95% CI of [0.0635335, 0.10548780]. For completeness, the
estimate of the intercept is β̂1 � 0.7897399. So, the linear model is

’survival’ � logit(ϕ̂) � β̂1 + β̂2(’colony’)

� 0.7897399+ 0.0845106(’colony’)

Now, what do these numbers tell us? Well, recall that the estimate for β̂1 is the estimate of survival
for the poor colony. Look back at the parameter values used in the simulation for the poor colony: the
‘true’ value for the survival probability for the good colony is 0.8 – our estimated value for the intercept,
β̂1 � 0.79, is very close. What about effect size? Well a 10% difference in survival corresponds to an
absolute difference of 0.08 (since 0.8 is 10% smaller than 0.88, the true survival probability of the good
colony). Since β1 corresponds to the poor colony, then β2 is the deviation (‘effect’) of the good colony on
survival – in this case, β̂2 � 0.0845106 (the positive sign indicating an increase in survival for the good

Chapter 6. Adding constraints: MARK and linear models



6.13. Linear models and ‘effect size’: a test of your understanding. . . 6 - 71

colony, relative to the poor colony). The estimate of β̂2 � 0.0845106 is quite close to the true difference
(effect size) of 0.08 (the true difference clearly falls within the 95% CI for the estimate). Recall that these
are simulated data, so we anticipate some difference between estimated and ‘true’ parameter values.

OK – so the estimate of the effect of colony on survival is β̂2 � 0.0845106. Is this ‘significant’? The
more appropriate phrasing of the question is, again:

‘what are the plausible bounds on the true effect size, and are

biologically important effects contained within these bounds?’

The 95% CI for the estimate of the effect size ranges approximately from 0.064 to 0.105. Since this
95% CI doesn’t bound 0, then we can conclude that there is a ‘statistically significant’ effect of colony on
survival. But, as every experienced analyst knows, if you have a big enough sample size, even minute
differences can be ‘statistically significant’. What about ‘biologically significant’ – isn’t that more relevant
than ‘statistical’ significance?

Here is where ‘biological insight’ comes into play. Whether or not the effect estimated in this study
is ‘significant or not’ depends on your thoughts on what is or is not ‘biologically significant’. Suppose,
for example, that you decide a priori that a difference in survival between the colonies of ≥ 10% to be
‘biologically significant’, then in this case, our results would be considered as ‘biologically inconclusive’
(despite being ‘statistically significant’), since the 95% CI includes values <10%. If instead we believed
that a difference in survival of 5% was ‘biologically important’, then we could conclude with 95%
confidence that in this case there was a biologically significant result, since the 95% CI do not include
this value (since the lower CI is >5%).

Some additional comments. In the preceding, we used the identity link. We did so for convenience
– the identity link gave us an estimate of the absolute value of the effect size directly, on the [0, 1]

probability scale we’re typically interested in. But, what if the numerical estimation ‘doesn’t work’ with
the identity link (typically, because of difficulties with convergence)? Can we use the logit or sin link
to get estimates of the effect size, and the standard error? The answer is ‘yes’, but it does require a bit
more work. Let’s run the analysis of the simulated data using the logit link. The estimates for β̂1 and β̂2

on the logit scale are 1.3233584 and 0.6157168, respectively. Remembering that the linear model we’re
fitting is

logit(ϕ̂) � β̂1 + β̂2(colony)

then since β1 = (poor), and β1+ β2 = (poor + effect of good), we can write

effect of ‘good’ � *,
e β̂1+β̂2(1)

1 + e β̂1+β̂2(1)

+-−*,
e β̂1

1 + e β̂1

+-
� 0.8742505− 0.789740

� 0.0845106

which is exactly the same value as the one estimated (for β2) using the identity link.

What about the SE of the estimated effect size? As noted earlier, the discussion of effect size is really
a discussion of whether or not the confidence limits on the effect size bound a difference that we think
is ‘biologically significant’. From the identity link analysis, we know that the SE and confidence limits
to our effect size are 0.0107 and [0.0635, 0.1055], respectively.
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We can derive the same values using the estimates from the logit link analysis, but it requires a few
more steps. First, recall that the variance of a difference (of say two parameters θi and θj) is

var
(

θi − θj

)

� var
(

θ̂i

)

+ var
(

θ̂j

)

− 2 cov
(

θ̂i , θ̂j

)

Thus, the estimated SE for the difference (i.e., effect size) between the ‘good’ and ‘poor’ colony is

√

var(good) + var(poor) − 2cov(good,poor)

where the variance and covariances of the two estimates can be output directly in MARK. To do this,
simply select the appropriate model in the results browser (in this case, the logit link model). Then, select
‘Output | Specific Model Output | Variance-Covariance matrices | Real Estimates’, and then
output to a Dbase file (to maintain full numerical precision). The variance-covariance values for the
estimates of interest (i.e., good and poor) on the real probability scale are: v̂ar(poor) � 0.00007377,
v̂ar(good) � 0.00004534, and ĉov(poor,good) � 0.0000022834.

Thus, our estimate of the SE for the effect size is
√

0.00004534+ 0.00007377− 2(0.0000022834) � 0.0107

which is the same as the estimate using the identity link (to within rounding error). The estimated 95%
CI would then be (effect size±2SE), or 0.0846± 2(0.0107) � [0.0632, 0.1060], which is virtually identical
to the estimated 95% CI derived using the identity link (to within rounding error).

begin sidebar

Variance of a difference – say what??

Where does this formula for the variance of a sum, or a difference, come from? Well, if A � X1 + X2
for example, then

s2
A �

1

n

∑

(A − Ā)
2
�

1

n

∑ [
(X1 + X2) − 1

n

(

X1 + X2

)]2

�
1

n

∑ [
(X1 + X2) − 1

n

∑

(X1) +
1

n

∑

(X2)

]2

�
1

n

∑ [
(X1 + X2) − X̄1 − X̄2

]2

�
1

n

∑ [
(X1 − X̄1) + (X2 − X̄2)

]2
�

1

n

∑ [
x1 + x2

]2

�
1

n

∑ [
x2

1 + x2
2 + 2x1x2

]
� s2

1 + s2
2 + 2s12

� var(X1) + var(X2) + 2cov(X1 ,X2)

Similarly, if D � (X1 − X2) (i.e., a difference rather than a sum), then

s2
D � var(X1) + var(X2) − 2cov(X1 ,X2)

Bet you’re glad you asked!

Well, now that we’ve impressed ourselves, a more intuitive explanation. You may recall that the

variance of a sum is equivalent to the sum of the variances, if the elements are independent (you should

be able to prove this to yourself fairly easily).

We can write this as

var
(∑

x̂i

)

�

∑

var
(

x̂i

)

Chapter 6. Adding constraints: MARK and linear models



6.13. Linear models and ‘effect size’: a test of your understanding. . . 6 - 73

But, if there is any sampling covariance (i.e., if the terms are dependent), then we write

var
(∑

x̂i

)

�

∑

var
(

x̂i

)

+

∑

i

∑

j

cov
(

x̂i , x̂ j

)

Thus, ‘intuitively’, given two values xi and x j , we write

var
(

x̂i + x̂ j

)

� var
(

x̂i

)

+ var
(

x̂ j

)

+ 2 cov
(

x̂i , x̂ j

)

or, equivalently for a difference,

var
(

x̂i − x̂ j

)

� var
(

x̂i

)

+ var
(

x̂ j

)

− 2 cov
(

x̂i , x̂ j

)

We can also derive this expression using the Delta method (Appendix B). Forexample, if D � (X1−X2)

(i.e., the difference between X1 and X2), then we can show that if the variances of the Xi are small,

then to first-order

var(Y) � DΣD
T

where D is a row-vector of the partial derivative of the function (in this case, D � X1−X2) with respect

to each variable (i.e., X1 and X2, respectively), D
T is the column-vector transpose of D, and Σ is the

variance-covariance matrix of X1 and X2 . The concepts underlying this expression are presented in

detail in Appendix B.

Thus,

var(D) � DΣD
T

�

[
∂D

∂X1

∂D

∂X2

] 
var

(

X1

)

cov
(

X1 ,X2

)

cov
(

X2 ,X1

)

var
(

X2

)




∂D

∂X1
∂D

∂X2


� [1 − 1]


var

(

X1

)

cov
(

X1 ,X2

)

cov
(

X2 ,X1

)

var
(

X2

)


[

1

−1

]

� var
(

X1

)

+ var
(

X2

)

− 2 cov
(

X1 ,X2

)

which is identical to the expression we introduced on the preceding page.

end sidebar

Now, let’s consider a slightly more complex example – same basic scenario, but now with 3 colonies,
instead of 2. Again, we simulate a data set (effect_size3.inp) with 3 colonies. Assuming constancy
of survival over time for all 3 colonies, but let the survival differ among the colonies: for colony 1, 0.65,
for colony 2, survival is 10% higher (i.e., 0.715), and in colony 3, survival is 15% higher than in colony
1 (i.e., 0.7475). Thus, colony 3 has a survival probability that is 4.55% higher than colony 2. Please note
the scale – we’re speaking of differences in terms of percentages – not arithmetic differences. So, for
example, is a 10% difference in survival between colony 1 and colony 2 biologically meaningful? You
need to think carefully about scaling, since a 10% increase in survival from a reference value of 0.5 (to
0.55) is different (arithmetically) than a 10% increase from a reference value of (say) 0.7 ( to 0.77). The
arithmetic difference is 0.05 in the first case, and 0.07 in the second case.

However, the effect size we’re working with (as in the preceding example) is on the ‘real’ scale – it is
not proportional (or, in terms of percent differences). So, for the present example, the effect (difference)
between colony 1 and colony 2 is (0.715 − 0.650) � 0.065, between colony 1 and colony 3 is (0.7475 −
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0.65) � 0.0975, and between colony 2 and colony 3 is (0.7475 − 0.715) � 0.0325. We set p � 0.75, and
released 500 individuals on each occasion, for 8 occasions.

Let’s see if we can derive estimates for the effect sizes. We’ll save ourselves a few steps by simply going
ahead and fitting the true model, which is {ϕcolon yp.}. If we do this using the PIM chart approach (the
quickest way to fit this model), we get estimates of survival of 0.6600 for colony 1, 0.7211 for colony 2,
and 0.7447 for colony 3, which are all fairly close to the ‘true’ values specified in the simulation. So, if we
wanted to quickly derive estimates of the effect size, we have to do no more than pull out our calculator,
and take the pair-wise differences among these 3 values: so the effect size between colony 1 and colony
2 is (0.7211−0.6600) � 0.0611, between colony 1 and colony 3 is (0.7447−0.6600) � 0.0847, and between
colony 2 and colony 3 is (0.7447 − 0.7211) � 0.0236. Again, these are all close to the ‘true’ differences
expected given the values using in the simulations.

How would we get these estimates in a more ‘elegant’ fashion (i.e., other than by simply calculating
the arithmetic difference)? Well, first, we need to specify the model using a design matrix. But, as we’ve
seen earlier, there are a number of ways in which such a design matrix could be constructed. In this
case, we’re interested in looking at the magnitude of differences among levels of an effect. This is most
easily done using an intercept-based model (remember the preceding example where the effect size was
measured as the relative difference between the intercept term and the colony factor term in the linear
model). In this example,we have 3 levels of the ‘colony’ effect, so we need 2 columns of dummy variables
to code for this. Thus, our linear model would have an intercept term, plus 2 other terms to specify the
colony. This much should be familiar (given that you’ve made it this far in the chapter). However, how
should you code the different colonies? The following 3 design matrices (for the survival parameter;
for now, we’ll ignore recapture rate) are all equivalent in terms of the ‘results’ (i.e., the colony-specific
estimates of survival), but have different interpretations:

β1 β2 β3 β1 β2 β3 β1 β2 β3

1 0 0 1 1 0 1 1 0

1 1 0 1 0 0 1 0 1

1 0 1 1 0 1 1 0 0

The differences among these design matrices have to do with what colony is used as the ‘reference’
or ‘control’ colony. In the left-most matrix, the design matrix corresponds to a coding scheme wherein if
both β2 and β3 are 0, then the intercept corresponds to colony 1. Why? Well, here you need to remember
that in the .INP file, colony 1 was the first group, colony 2 was the second group, and colony 3 was the
third group. In effect, each row in the design matrix corresponds to each of the different colonies. Thus,
if both β2 and β3 are 0, then the intercept corresponds to colony 1, and as such, both colony 2 and colony
3 are then estimated ‘relative’ to colony 1 (remember the basic structure of the linear model: intercept +
effect terms). Thus, in this case, colony 1 (given by the intercept) is the ‘reference’ colony – in fact, this
sort of design matrix coding is often referred to as ‘reference cell’ coding, since whichever level of a
given treatment is coded by ‘all zeros’ is the ‘reference’ (or control) level of the treatment. Got it? If so,
then you should see that for the middle matrix, where the row representing colony 2 (the second row)
is the reference colony. Finally, in the right-most matrix, colony 3 is the reference colony. Make sure
you see this. Note that there is an interaction of the design matrices, and the order in which groups are
presented in the .INP file.

Why do we care in this case? We care because the effect size in the linear model is calculated relative
to the reference level – in this example, relative to the reference colony. Let’s see how this works. We’ll
start by fitting the data to our model, using a design matrix with colony 1 designated as the reference
colony (i.e., making use of the structure in the left-most of the 3 example matrices noted above). Since
by now you can probably do this in your sleep (hopefully a state you are not in at this stage), we’ll jump
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right to the ‘results’. Using the logit link (the default link whenever the design matrix is modified from
the identity matrix), the ‘beta’ estimates are: β̂1 � 0.6635, β̂2 � 0.2863, and β̂3 � 0.4070. The signs of
the estimates indicate that the ‘effect’ for colony 2 and colony 3 are both positive with respect to colony
1 (the reference colony given our design matrix). Thus, the estimate of survival for both colony 2 and
colony 3 are both expected to be bigger than for colony 1 (which is exactly what we expect). What about
the estimates of effect size? Well, here, we need to be somewhat careful. First, recall that if both β2 and
β3 are 0, then the intercept refers to colony 1. Thus, the effect size between colony 2 and colony 1 is
‘colony 2’ - ‘colony 1’ = (β1 + β2) − (β1). Why does (β1 + β2) correspond to colony 2? Note that there
is no β3 term – indicating that β3 � 0. Thus, if β3 � 0, but both β1 and β2 are not 0, then this refers to
colony 2.

OK,so the estimate of the effect size for the difference between colony 2 andcolony 1,back-transformed
from the logit scale, is

e β̂1+β̂2

1 + e β̂1+β̂2

− e β̂1

1 + e β̂1

� (0.7211− 0.6600) � 0.0610

which is precisely what we calculated ‘by hand’ from the real estimates of survival for both colonies.
We could do the same thing to calculate the difference between colony 1 and colony 3 (try it as a test
of your understanding – the effect size (difference) should be 0.0942). But, what about the difference
between colony 2 and colony 3? Well, there are a couple of approaches. First, you could change the
design matrix, setting colony 2 or colony 3 as the reference, and then using the same approach as just
described, except that you have a different reference colony. But, in fact, you don’t need to go to all that
trouble; simply remember that colony 2 is (β1 + β2) and that colony 3 is (β1 + β3). Thus, the difference
between colony 2 and colony 3 is

e β̂1+β̂2

1 + e β̂1+β̂2

− e β̂1+β̂3

1 + e β̂1+β̂3

� (0.2553 − 0.2789) � −0.0236

So, estimated survival for colony 2 is −0.0236 lower than estimated survival for colony 3 – exactly
what we ‘calculated by hand’ using the real estimates of survival for colonies 2 and 3. So, obviously, you
can get the estimate of ‘effect size’ right from the ‘real estimates’, without going through all the effort
of getting the β estimates, and back-transforming the equation (as we have done here).

But, what about the SE for the estimates of effect size? Again, since we’re dealing with the variance (or
SE) of a difference (in this case, between any pair of colonies), we simply output the variance-covariance
values for the real estimates. For this example, the variance for β1 is 0.00004, for β2 is 0.00003, and for β3

is 0.00003. Since each of the colonies is ‘independent’ of each other, we don’t anticipate any sampling
covariance – this is what we see: Cov(colony 1, colony 2) = Cov(colony 1, colony 3) = Cov(colony 2,
colony 3) = 0. Thus, given the variances, the SE for the difference between colony 1 and colony 2 (for
example) is

√

(0.00004 + 0.00003− 0) � 0.0084

And thus, the approximate 95% CI for the effect (difference) between colony 1 and colony 2 is
[0.0442, 0.0778]. In fact, if you fit these data using the identity link, you’ll see that this estimated SE
matches that given by the identity link almost exactly (remember – while the identity link is generates
estimates of the effect size and the SE directly on the normal [0, 1] probability scale, not all data sets can
be fit using the identity link – usually due to convergence issues. In such cases, a transformation – like
a logit or sin transform – is required).

So, we see that we can fairly easily come up with estimates of the effect size, and the SE of these
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estimates. We leave it to you to tackle the more difficult (at least conceptually) question of what
constitutes a ‘biologically meaningful’ effect size. However, that ’debate’ notwithstanding, we suggest
that you routinely consider – and report – effect size where possible.

6.13.1. Linear models: β estimates and odds ratios

The β terms in the linear model are interpretable as the natural log of the odds ratios. The odds of
‘success’ (e.g., survival, movement) is the ratio of the probability of ‘success’ (say, θ, where θ is some
[0, 1] bounded parameter) to the probability of ‘failure’ (given by the complement, 1 − θ). Note we
assume binary states – success or failure (live or die, move or stay...).

In other words, the ‘log-odds of success’ is given by

ln
(
θ

1 − θ

)

which you should by now recognize is the logit transform of θ.∗

The log-odds ratio between (say) two levels of some classification (treatment) variable, would be

ln

(
θ1/

(

1 − θ1

)

θ2/
(

1 − θ2

)

)

As written, we see that the odds ratio is a way of comparing whether the probability of a certain event
is the same for two groups. A log-odds ratio of 0 implies that the event is equally likely in both groups.
A log-odds ratio > 0 implies that the event is more likely in the first group. Conversely, a log-odds ratio
< 0 implies that the event is more likely in the second group.

Consider the following example – males and females marked with a radio-telemetry device, which
allows us to know the fate of the marked individual with certainty (known-fate analysis is covered
in detail in chapter 16). Suppose we mark 60 males, and 45 females. Over the sampling interval, 9
males and 11 females died. Thus, the estimated survival for males is Ŝm � (51/60) � 0.85, and for
females is Ŝ f � (34/45) � 0.756, with corresponding log-odds of a male surviving the interval is
ln(0.85/0.15) � 1.735 (i.e., the odds of a male surviving the interval is 1.735 to 1), with the log-odds of
a female surviving the interval given as ln(0.756/0.244) � 1.131.

The difference in the odds ratio of survival between the two sexes is

ln

(
Ŝm/

(

1 − Ŝm

)

Ŝ f /
(

1 − Ŝ f

)

)

� ln

(

0.85/0.15

0.756/0.244

)

� ln(1.829)

� 0.604

Since the log-odds ratio is > 0, then the odds of survival is greater for males than for females.

OK,fine,buthow do log-odds ratios connect to the β estimates in a linearmodel? Let’s revisit the ‘good
colony’ versus ‘poor colony’ analysis we introduced earlier in this section. Recall that we simulated data
where survival in the ‘good’ colony was 0.88, and 0.8 in the ‘poor’ colony (a 10% difference). Assuming a
time-invariantmodel (whichwas the true modelunderwhich the data were simulated),this corresponds
to an expected log-odds of survival in the ‘good’ colony of ln(0.88/0.12) � 1.992, and an expected log-odds
of survival in the ‘poor’ colony of ln(0.80/0.20) � 1.386.

∗ In fact, the logit transform is so named because it transforms probabilities into log odds: log odds→ logit; ‘log it’.
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Recall that we fit the following linear model to those simulated data:

logit(ϕ) � β1 + β2(COLONY)

The actual estimates for β̂1 and β̂2 were 1.3234 and 0.6157, respectively.Since β1 = (poor), then the estimated

log-odds for survival in the ‘poor’ colony is simply 1.3234 (remember, this parameter is estimated on
the logit scale), which is fairly close to the expected value of 1.386. For the ‘good’ colony, the estimated

log-odds ratio for survival is (β̂1 + β̂2) � (1.3234 + 0.6157) � 1.9391, which again is quite close to the
expected value of 1.992.

Final step – the expected log-odds difference between the two colonies is ln[(0.88/0.12)/(0.80/0.20)] �

ln(1.833) � 0.606 – meaning, that for a unit change in ‘colony’ (whatever that might actually mean – here
it means ‘poor’ to ‘good’), the log-odds of survival increases by 0.606 (which when back-transformed
from the log scale, means a change in the odds of survival of 1.833). Since β1 = (poor), and β1+ β2 =
(poor + effect of good), then β2 is the effect of the ‘good’ colony. Notice that β̂2 � 0.6157, which is close
to the expected log-odds ratio of 0.606.

Coincidence? No! The natural log of the odds ratio between the ‘good’ and ‘poor’ colonies is a measure
of the difference between the two colonies – i.e., the effect size. Since the log-odds ratio in this example
is >0, we conclude that the event (survival) is more likely in the ‘good’ colony (numerator) than in the
‘poor’ colony (denominator).

It can be helpful to remember that we can easily shift between ‘odds’ and ‘probability’. Go back to the
telemetry survival example introduced earlier. For males, we observed 51 individuals surviving over an
interval out of 60 released at the start of the interval. Thus, Ŝm � (51/60) � 0.85, while the log-odds of a
male surviving the interval is ln(0.85/0.15) � 1.735 (i.e., the log-odds of a male surviving the interval is
1.735 to 1 – when back-transformed from the log scale, this corresponds to 5.6̇ to 1). So, given the odds
of survival of 5.6̇ : 1, we can transform this into a probability as (5.6̇/(5.6̇ + 1)) � 0.85.

In the preceding examples, we considered effect sizes and odds ratios for discrete levels of a factor
(e.g., ‘good’ versus ‘poor’ colony). What about interpreting β coefficients for continuous covariates? In
fact, there is nothing particularly new to consider – the β estimates give you information about change
in log-odds for a unit change in the particular covariate.

But, what about models with interaction terms? Let’s re-visit the example introduced in section 6.8
– encounter probability of European dippers was hypothesized to vary as a function of the number
of hours of observation in the field, and that the relationship between hours of observation and the
encounter probability might differ between males and females. For our analysis, we used the following
‘fake’ observation data:

Occasion 2 3 4 5 6 7

hours 12.1 6.03 9.1 14.7 18.02 12.12

We assumed that survival varied over time, but did not differ between the sexes,ϕt . For the encounter
probability, we fitted the following linear model:

logit(pi ) � β1 + β2(SEX) + β3(HOURS) + β4(SEX.HOURS)

which yielded the following estimates

logit(p̂i ) � 1.4115996+ 1.4866142(SEX) + 0.0463413(HOURS) − 0.0783021(SEX.HOURS)

What is of note, here, is the interaction between SEX and HOURS. As shown in the figure at the top
of the next page, encounter probability decreases with increasing hours of observation for males, but
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increases for females (before you start trying to come up with some clever ‘biological explanation’ for
this result, remember the observation hours covariate data are ‘fake’).

What is important to remember about interactions such as shown above is that is makes consideration
of the ‘significance’ of main effects difficult at best – whether encounter probability is higher or lower
for (say) males is a function of the value of the HOURS covariate.

But, suppose you were interested in the odds ratio between the sexes for some specific value of
HOURS. Or, flipped around, suppose you were interested in the change in odds for a given sex, given a
unit change in hours of observation – how would you handle the calculations? In fact, it really isn’t much
more difficult that what we’ve already looked at. First, remember that the odds ratio reflects change in
odds for a unit change in some variable. Let’s consider the case where we’re interested in a change in
odds of detection for a particular sex, given a unit change in the number of hours of observation.

Recall that the log-odds ratio is given as

ln

(
θ1/

(

1 − θ1

)

θ2/
(

1 − θ2

)

)

We’ll modify this expression slightly, using p(H) to indicate the probability of encounter, p, as a
function of the number of hours of observation, H. Let p(H) be the probability of encounter given
observation hours H, and let p(H+1) be the probability of encounter given (H+1) hours of observation
(i.e., a 1 unit change in HOURS).

ln

(
p(H+1)/

(

1 − p(H+1)
)

p(H)/
(

1 − p(H)
)

)

Next, recall that the log-odds for some parameter θ is simply the logit transform for θ:

ln
(
θ

1 − θ

)
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Thus, we can write out the numerator and denominator terms of the log-odds ratio expression (above)
in terms of the linear model corresponding to both.

In other words, for the numerator,

ln
(

p(H+1)/
(

1 − p(H+1)
))

� β1 + β2

(

SEX
)

+ β3

(

H+1
)

+ β4

(

SEX.(H+1)
)

while for the denominator

ln
(

p(H)/
(

1 − p(H)
))

� β1 + β2

(

SEX
)

+ β3

(

H
)

+ β4

(

SEX.H
)

Remembering that we can write the log of a fraction as the difference of the log of the numerator and
denominator,

ln

(
p(H+1)/

(

1 − p(H+1)
)

p(H)/
(

1 − p(H)
)

)

� ln
[

p(H+1)/
(

1 − p(H+1)
) ]

− ln
[

p(H)/
(

1 − p(H)
) ]

then given the linear model expressions for the numerator and denominator (above), we can show (with
a bit of algebra) that the log-odds ratio given a unit change in hours of observation is

ln
[

p(H+1)/
(

1 − p(H+1)
) ]

− ln
[

p(H)/
(

1 − p(H)
) ]

�
[

��β1 +✘✘✘✘β2

(

SEX
)

+ β3

(

H+1
)

+ β4

(

SEX.(H+1)
) ]

−
[

��β1 +✘✘✘✘β2

(

SEX
)

+ β3

(

H
)

+ β4

(

SEX.H
)]

� β3

(

H+1
)

+ β4(SEX.(H+1)) − β3

(

H
)

− β4(SEX.H)

� ✟✟✟β3(H) + β3 +✘✘✘✘✘β4(SEX.H) + β4(SEX) −✟✟✟β3(H) −✘✘✘✘✘β4(SEX.H)

� β3 + β4(SEX)

� 0.0463413− 0.07830219(SEX)

So, for males (SEX=1), the log-odds for the probability of encounter is calculated simply as

0.0463413− 0.07830219(1) � −0.0319608

Negative log-odds, indicating that the log-odds decrease – slightly – with each unit increase in the
hours of observation, as expected given the figure at the top of p. 78. If we back-transform from the log
scale, e−0.0319608 ≈ 0.969, i.e., the odds of detection of a male with an additional hour of observation are
0.969 : 1, which is less than 1 : 1, so...decreasing odds.

For females, (SEX=0),

0.0463413− 0.07830219(0) � 0.0463413

Positive log odds, indicating that the log-odds for detecting a female increase – again slightly – with
each unit increase in the hours of observation, consistent with the figure at the top of p. 78.

Finally, if you wanted to express the uncertainty in your estimate of the log-odds, you can do this
relatively simply using the Delta method. From the preceding, recall that the function relating the
change in the log-odds of detection with increasing hours of observation, for a given sex, was given as

ln(ÔR) � ln
[

p(H+1)/
(

1 − p(H+1)
) ]

− ln
[

p(H)/
(

1 − p(H)
) ]

� β̂3 + β̂4(SEX)

In other words, the RHS is the sum of 2 correlated random variables, β̂3 and β̂4, where the correlation

Chapter 6. Adding constraints: MARK and linear models
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structure is determined by the variance-covariance matrix for these 2 parameters (i.e., randomvariables).
On p. 72, we showed that the estimated variance of a sum of correlated random variables is given as

s2
A � var(X1) + var(X2) + 2 cov(X1, X2)

So, for the present example,

v̂ar
(

ln(OR)
)

� v̂ar
(

β̂3

)

+ v̂ar
(

β̂4

)

+ 2 cov
(

β̂3 , β̂4

)

where the needed estimates of the parameter variances and covariances can be output directly from
MARK.

begin sidebar

AIC, P-Values and effect size – a tautology?

Hmmm...you might suspect that you smell a tautology here (it’s either that, or the aroma of your frying

brain cells). Up until now, we’ve considered the use of AIC as a robust means of model selection – part

of the motivation being to avoid the use (and abuse) of classical ‘P-value’ approaches to doing science.

While there are very good motivations for doing this (see relevant sections of the Burnham & Anderson

text), one of the motivations was to force us (biologists, analysts) to focus our attention more on the

‘biological significance’ of the effect size, rather than on some nominal ‘P-value’. We all know that it

is not hard to generate a situation where we can show ‘statistical significance’ that has no biological

meaning (this commonly occurs with very large data sets). So, we consider the effect size. Recall that

our purpose is

‘what are the plausible bounds on the true effect size, and are

biologically important effects contained within these bounds?’

The potential problem is with the word ‘plausible’. In theory, we are supposed to decide, a priori,

on what the biologically plausible bounds are. And yet, in practice, to determine whether or not a

calculated effect size falls within those bounds is based on assessing the confidence bounds estimated

for the effect size, relative to the plausibility bounds designated by the scientist. Herein is the problem

– we use ‘biological insight’ to determine what we think a plausible (or biologically meaningful) effect

should be, and yet we end up relying on use of 95% CI to test whether or not the effect size is plausible.

And what do we base the 95% CI on? You got it – a nominal α � 0.05 value.

Remember, that it is in part the arbitrariness of selecting the appropriate α level which underlies one

of the several criticisms of the ‘P-value’ approach. And yet, we potentially use the same underlying

logic to derive the 95% CI for the effect size. There is good reason to wonder if we’re not engaged in

some sort of circular thinking here...stay tuned.

end sidebar

6.13.2. ĉ and effect size: a cautionary note

In the preceding, we illustrate the basic idea (and some of the mechanics) for estimating effect size.
As we noted in Chapter 4, model selection (whether you use an information theoretic approach based
on AIC, or the more traditional approach based on LRT) is conditional on adequate fit of the model
to the data. Some degree of lack of fit can be accommodated using a quasi-likelihood approach. This
involved estimation of c, perhaps by using a bootstrap, for example. However, one thing which may not
be immediately obvious is the effect that using a quasi-likelihood adjustment has on model selection.

Consider, for example, what adjusting model fit using a ĉ > 1. One of the things you’ll quickly
notice if you progressively experiment by increasing ĉ from 1, 1.25, 1.5, and so on, is that as you do so,
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the rankings of the models changes. Invariably, as ĉ increases, models with fewer parameters take on
progressively more support in the data, as indicated by the normalized AIC weights. This should make
some intuitive sense: a large value of ĉ indicates significant lack of fit of the data to the general model.
As such, increasing ĉ is analogous to ‘taking a more conservative’ view of the data. The general model
doesn’t fit, so you tend to favor the more parsimonious model. Try it – pick a model set, and slowly,
progressively, try increasing ĉ from the default of 1. Watch closely to see how the model weights change,
such that (typically) reduced parameter models get increasing amounts of weight.

However, what is not so intuitive is that changing ĉ also changes the relative scaling of differences
in model support. In short form, if 2 models differ in normalized AIC weights by some factor x for
ĉ � 1, then this same difference x is not the same difference if ĉ > 1; it is less. For example, suppose you
have 2 models, with ĉ � 1.0,where the difference in relative weight is (say) 2.5 times (in other words,
one model has 2.5 times more weight than the other model). At this point, you look at effect size, and
interpret the biological plausibility of this difference, given that one model has 2.5 more support in the
data. However, suppose instead that ĉ � 1.5, instead of 1. With increasing ĉ, a difference of 2.5 times
support in the data is scaled differently, and must be interpreted differently, than it would be if ĉ � 1.
Since increasing ĉ increases the degree of ‘conservatism’ in the analysis, a difference of 2.5 times model
support with ĉ � 1.5 is ‘less of a difference’ than the same 2.5 times difference would be with ĉ � 1.0.

Confused? Fair enough – it is rather non-intuitive, at first. Give it some thought. For those who
want all the details, we suggest you have a look at Richard Royall’s 1997 text on ‘Statistical Evidence:

A Likelihood Paradigm’ (a Chapman & Hall publication – part of the Monographs Series on Statistics and

Applied Probability). In short – be a little cautious in how you interpret relative differences in normalized
AIC weights if ĉ > 1.

6.14. Pulling all the steps together: a sequential approach

Hopefully, everything we’ve covered up until now makes reasonable sense. Here, we summarize the
basic sequence of steps of building design matrices, and interpreting the values of the estimate β terms
(the ‘slopes’ of the linear model).

We’ll introduce the approach using a very simple model: assume we have collected live mark-
encounter data from 2 groups, over 4 time periods (i.e., 5 sampling occasions). To simplify the pre-
sentation somewhat, we’ll focus only on the survival parameter ϕ (but clearly, the same basic idea
holds for the recapture parameter p as well).

Step 1: decide which model you want to fit.

For now, let’s assume the model we’re interested in is model {ϕg} – in other words, a model where
survival varies only as a function of the GROUP, but not TIME.

Step 2: set up PIMs for general model

For a starting model {ϕg∗t} (i.e., a model with a full interaction of GROUP and TIME) our PIMs would
look like

1 2 3 4 5 6 7 8

2 3 4 6 7 8

3 4 7 8

group 1 4 group 2 8
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Step 3: set up the linear model equation for model you want to fit

We want to fit model {ϕg}, which we write in our symbolic linear model notation as

logit(ϕ) � β1 + β2(GROUP)

Step 4: set up the design matrix

In the following (shown at the top of the next page), the rows of the table correspond to the PIM
index values for each time interval. The design matrix corresponding to logit(ϕ) � β1 + β2(GROUP) is
given by the columns labeled β1 and β2.

INTCP GROUP

PIM Param β1 β2

group 1 1 ϕg1,1 1 1

2 ϕg1,2 1 1

3 ϕg1,3 1 1

4 ϕg1,4 1 1

group 2 5 ϕg2,1 1 0

6 ϕg2,2 1 0

7 ϕg2,3 1 0

8 ϕg2,4 1 0

Note that as written, we have specified GROUP 2 to be the reference group (i.e., if β2 � 0, then the
intercept, β1, corresponds to GROUP 2).

Step 5: confirm the design matrix with the equations

Here, we simply take the dummy coding for each GROUP and TIME combination, and substitute into
the linear model equation logit(ϕ) � β1 + β2(GROUP).

group 1 logit(ϕg1,1) � β1(1) + β2(1) logit(ϕg1,1) � β1 + β2

logit(ϕg1,2) � β1(1) + β2(1) logit(ϕg1,2) � β1 + β2

logit(ϕg1,3) � β1(1) + β2(1) logit(ϕg1,3) � β1 + β2

logit(ϕg1,4) � β1(1) + β2(1) logit(ϕg1,4) � β1 + β2

group 2 logit(ϕg2,1) � β1(1) + β2(0) logit(ϕg2,1) � β1

logit(ϕg2,2) � β1(1) + β2(0) logit(ϕg2,2) � β1

logit(ϕg2,3) � β1(1) + β2(0) logit(ϕg2,3) � β1

logit(ϕg2,4) � β1(1) + β2(0) logit(ϕg2,4) � β1

On the right hand side we see the result of substituting in the dummy variables. We see clearly that
GROUP 2 is coded by the intercept: thus, β2 represents the difference (‘effect size’) between GROUP 2 and
GROUP 1.
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Step 6: plot a graph to illustrate the model

Plotting a graph of the model is a very useful way to visualize (and thus, truly understand) the
structure of the model, and what the individual βi terms represent.

For this model, the graph of the β terms is shown below. Note that the meaning of the βi terms is
explicitly represented, as is the effect size (which, in this case, is the value of β2, which is the difference
between the two horizontal lines on the logit scale).

Got it? Well, let’s test our understanding by trying several more scenarios.

Let’s take the same basic data model (2 groups, 5 occasions), and now consider fitting model ϕt –
TIME variation in ϕ, but no GROUP effect (i.e., essentially the opposite of the model we just considered).

Step 1: decide which model you want to fit.

As noted, let’s consider model {ϕt} – in other words, a model where survival varies only as a function
of the TIME, but not GROUP.

Step 2: set up PIMs for general model

As above, our general model would still be {ϕg∗t} (i.e., a model with a full interaction of GROUP and
TIME). For this model, our PIMs would look like the following

1 2 3 4 5 6 7 8

2 3 4 6 7 8

3 4 7 8

group 1 4 group 2 8
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Step 3: set up the linear model equation for model you want to fit

We want to fit model {ϕt}, which we write in our symbolic linear model notation as

logit(ϕ) � β1 + β2(t1) + β3(t2) + β4(t3)

Now, make sure you understand why this is the appropriate linear model. We have 5 sampling
occasions, which means 4 intervals. To uniquely code the intervals, we need (n − 1) � (4 − 1) � 3

columns of dummy variables, or (more specifically) 3 βi ,i,1 terms in addition to the intercept term β1.

Step 4: set up the design matrix

In the following table the rows correspond to the PIM index values for each time interval. The design
matrix corresponding to logit(ϕ) � β1 + β2(t1) + β3(t2) + β4(t3) is given by the columns labeled β1 →
β4. Note that as written, we have specified TIME 4 (i.e., the intervals between sampling occasion 4 and
5) to be the reference group (i.e., if β2 � β3 � β4 � 0, then the intercept – β1 – corresponds to TIME 4).

INTCPT TIME1 TIME2 TIME3

PIM Param β1 β2 β3 β4

group 1 1 ϕg1,1 1 1 0 0

2 ϕg1,2 1 0 1 0

3 ϕg1,3 1 0 0 1

4 ϕg1,4 1 0 0 0

group 2 5 ϕg2,1 1 1 0 0

6 ϕg2,2 1 0 1 0

7 ϕg2,3 1 0 0 1

8 ϕg2,4 1 0 0 0

Step 5: confirm the design matrix with the equations

Here, we simply take the dummy coding for each GROUP and TIME combination, and substitute into
the linear model equation logit(ϕ) � β1 + β2(t1) + β3(t2) + β4(t3).

group 1 logit(ϕg1,1) � β1(1) + β2(1) + β3(0) + β4(0) logit(ϕg1,1) � β1 + β2

logit(ϕg1,2) � β1(1) + β2(0) + β3(1) + β4(0) logit(ϕg1,2) � β1 + β3

logit(ϕg1,3) � β1(1) + β2(0) + β3(0) + β4(1) logit(ϕg1,3) � β1 + β4

logit(ϕg1,4) � β1(1) + β2(0) + β3(0) + β4(0) logit(ϕg1,4) � β1

group 2 logit(ϕg2,1) � β1(1) + β2(1) + β3(0) + β4(0) logit(ϕg2,1) � β1 + β2

logit(ϕg2,2) � β1(1) + β2(0) + β3(1) + β4(0) logit(ϕg2,2) � β1 + β3

logit(ϕg2,3) � β1(1) + β2(0) + β3(0) + β4(1) logit(ϕg2,3) � β1 + β4

logit(ϕg2,4) � β1(1) + β2(0) + β3(0) + β4(0) logit(ϕg2,4) � β1

On the right hand side we see the result of substituting in the dummy variables. We see clearly that
TIME 4 is coded by the intercept: thus, β2 → β4 represents the various differences (‘effect sizes’) between
the different TIME intervals, and the final TIME interval (TIME 4).
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Step 6: plot a graph to illustrate the model

Note (in the figure, below) that the meaning of the βi terms is explicitly represented, as are the effect
sizes (which, in this case, is the value of the difference

(

β1 + βi,1

)

and β1.

Now, for a final test, to really make sure you’ve got it. You’ve probably anticipated model {ϕg∗t}. Here
it is!

Step 1: decide which model you want to fit.

For our final example, let’s consider model {ϕg∗t} – in other words, a model where survival varies
as a function of the both GROUP and TIME, with full interaction between the two.

Step 2: set up PIMs for general model

Clearly, our general model must be {ϕg∗t} (i.e., a model with a full interaction of GROUP and TIME),
since this is in fact the model we’re trying to fit! For this model, our PIMs are, again

1 2 3 4 5 6 7 8

2 3 4 6 7 8

3 4 7 8

group 1 4 group 2 8

Step 3: set up the linear model equation for model you want to fit

We want to fit model {ϕg∗t}, which we write in our symbolic linear model notation as
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logit(ϕ) � β1 + β2(GROUP) + β3(t1) + β4(t2) + β5(t3)

+ β6(GROUP.t1) + β7(GROUP.t2) + β8(GROUP.t3)

Now, make sure you understand why this is the appropriate linear model. We have 2 groups, and
5 sampling occasions, which means 4 intervals. To uniquely code the for intervals, we need (n − 1) �

(4−1) � 3 columns of dummy variables for TIME, (n−1) � (2−1) � 1 column for GROUP, and (3×1) � 3

columns for the interaction of GROUP.TIME. So, a total of (1 + 3 + 1 + 3) � 8 columns (βi terms).

Step 4: set up the design matrix

In the following, the rows of the table correspond to the PIM index values for each time interval. The
design matrix corresponding to

logit(ϕ) � β1 + β2(GROUP) + β3(t1) + β4(t2) + β5(t3)

+ β6(GROUP.t1) + β7(GROUP.t2) + β8(GROUP.t3)

is given by the columns labeled β1 → β8. Note that as written, we have specified GROUP 2 during TIME 4
to be the reference group and time (i.e., if β2 � β3 � . . . β8 � 0, then the intercept – β1 - corresponds to
GROUP 2 during TIME 4).

INTCPT GROUP TIME1 TIME2 TIME3 G.T1 G.T2 G.T3

PIM Param β1 β2 β3 β4 β5 β6 β7 β8

group 1 1 ϕg1,1 1 1 1 0 0 1 0 0

2 ϕg1,2 1 1 0 1 0 0 1 0

3 ϕg1,3 1 1 0 0 1 0 0 1

4 ϕg1,4 1 1 0 0 0 0 0 0

group 2 5 ϕg2,1 1 0 1 0 0 0 0 0

6 ϕg2,2 1 0 0 1 0 0 0 0

7 ϕg2,3 1 0 0 0 1 0 0 0

8 ϕg2,4 1 0 0 0 0 0 0 0

Step 5: confirm the design matrix with the equations

Here, we simply take the dummy coding for each GROUP and TIME combination, and substitute into
the linear model equation, which again is

logit(ϕ) � β1 + β2(GROUP) + β3(t1) + β4(t2) + β5(t3)

+ β6(GROUP.t1) + β7(GROUP.t2) + β8(GROUP.t3)

gr 1 logit(ϕg1,1) � β1 (1) + β2 (1) + β3 (1) + β4 (0) + β5 (0) + β6 (1) + β8 (0) + β8 (0) logit(ϕg1,1) � β1 + β2 + β3 + β6

logit(ϕg1,2) � β1 (1) + β2 (1) + β3 (0) + β4 (1) + β5 (0) + β6 (0) + β7 (1) + β8 (0) logit(ϕg1,2) � β1 + β2 + β4 + β7

logit(ϕg1,3) � β1 (1) + β2 (1) + β3 (0) + β4 (0) + β5 (1) + β6 (1) + β7 (0) + β8 (1) logit(ϕg1,3) � β1 + β2 + β5 + β8

logit(ϕg1,4) � β1 (1) + β2 (1) + β3 (0) + β4 (0) + β5 (0) + β6 (0) + β7 (0) + β8 (0) logit(ϕg1,4) � β1 + β2

gr 2 logit(ϕg2,1) � β1 (1) + β2 (0) + β3 (1) + β4 (0) + β5 (0) + β6 (0) + β7 (0) + β8 (0) logit(ϕg2,1) � β1 + β3

logit(ϕg2,2) � β1 (1) + β2 (1) + β3 (0) + β4 (1) + β5 (0) + β6 (0) + β7 (0) + β8 (0) logit(ϕg2,2) � β1 + β4

logit(ϕg2,3) � β1 (1) + β2 (1) + β3 (0) + β4 (0) + β5 (1) + β6 (1) + β7 (0) + β8 (0) logit(ϕg2,3) � β1 + β5

logit(ϕg2,4) � β1 (1) + β2 (1) + β3 (0) + β4 (0) + β5 (0) + β6 (0) + β7 (0) + β8 (0) logit(ϕg2,4) � β1
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On the right hand side we see the result of substituting in the dummy variables. We see clearly that
GROUP 2 at TIME 4 is coded by the intercept: thus, β2 → β8 represents the various differences (‘effect
sizes’) between the different TIME and GROUP combinations intervals, and GROUP 2 during TIME 4.

Step 6: plot a graph to illustrate the model

The figure for model {ϕg∗t} is shown below – pay close attention to all the interactions, and effects.

Got it? Hopefully you’ve now got the basic idea. Going through some version of this sequence for
any model you might want to build will build understanding, and confidence.

begin sidebar

Design matrix coding and estimability

Earlier in this chapter, we noted that there are any number of ways to code the design matrix, each

yielding equivalent estimates, but differing in how the individual β terms of the linear model are

interpreted.

However, sometimes, there are some subtle steps to constructing a design matrix which are well

worth keeping in mind. For example, consider the basic structure for the recapture part of the design

matrix – up until now, we’ve used a reference coding scheme where we usually make the final element

of the matrix the reference element.

For example, if we had the following matrix for (say) ϕt for a design with 4 time intervals

1 1 0 0

1 0 1 0

1 0 0 1

1 0 0 0
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we’re specifying that the last time interval is used as the reference (such that the intercept β1 is the

estimate of survival (on some scale) for this interval, and all the other β terms represent deviations

from this reference.

But, suppose instead we had constructed our design matrix using

1 0 0 0

1 1 0 0

1 0 1 0

1 0 0 1

such that the estimate of survival over the first interval is now the reference value. We know from

everything we’ve covered up until now that changing the reference coding scheme used in the design

matrix will change the interpretation of the βi terms, but does it change anything else?

The general answer is, ‘no’ – it shouldn’t. At least, most of the time. In general, the model deviance

(fit) and the reconstituted estimates should not be influenced by the choice of the coding scheme used

in the design matrix. But, there are some somewhat ‘pathological’ cases where it might. We’ll have

a quick look at one example, if only to prove a point, and give you another reason to exercise your

understanding of the design matrix, and how the dummy-variable coding works.

Consider the European Dipper (yes, again) – this time,using the input file containing data from both

males and females (ed.inp). We fit model {ϕg∗t pg∗t} to these data, using the design matrix shown at

the top of the next page (which you’ll recall is the default full ‘time × group’ design matrix in MARK).

Look closely at the coding. We see that we’ve made the terminal time periods the reference cell. This

is the default in MARK (which you can change by selecting the appropriate option under ‘File |

Preferences’).

OK – so what’s wrong with that? Well, perhaps nothing obvious, but what do we know about this

analysis: 2 groups, 7 occasions, so 24 columns in the design matrix (as shown).

But, how many parameters are estimable? Well, if you remember when we first introduced this

data set, you might recall that the final ϕ6p7 values for both sexes aren’t separately identifiable (the

so-called ‘beta’ parameters). So, (24 − 2) � 22 estimable parameters. But, if you run this model, using

this design matrix and the logit link function, MARK reports only 21 parameters. Why? Because with

the logit link, MARK was unable to estimate the second encounter probability for males (pm ,3).
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The relevant sections of the full output for this model are shown at the top of the next page. We

see clearly that from the conditional S-vector that 3 parameters are below the threshold (24 − 3 � 21

estimated parameters, as indicated).

So, what does this have to do with how we coded the design matrix? Well, think about what this

design matrix does – it makes the final time step the reference. And this might be a problem...because?

Because the final time step involves a non-identifiable β term. So, we’re using for our reference a term

which can’t be separately identified anyway! Perhaps this isn’t such a good idea.

What happens if instead we make the first time step the reference. We show this in the following

design matrix:

Look closely, and compare it to the default coding (on the preceding page). Make sure you see the

differences.
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Now, does this subtle change in what we use for the reference change our results? In this case,

yes – if you fit a model using this design matrix to the Dipper data, MARK will correctly report 22

parameters. The offending parameter pm ,3 is now estimated and counted properly.

Here is the conditional S-vector for this model:

Note that in the results browser (shown at the top of the next page), the two models have exactly

the same model deviance – the two models have the identical likelihood and deviance values, but

different conditional S-vectors – leading MARK to conclude they have a different number of estimable

parameters, which they clearly should not (since they are equivalent models).

While we selected this ‘pathological’ example intentionally, the general point we want to make is

that you probably should not make a non-identifiable parameter the reference cell in your design matrix. Doing

so can have unintended results, as this example shows. As noted earlier (- sidebar -, p. 18) you can

set a preference in MARK to use the first row (i.e., first interval or occasion) as the reference by default.

end sidebar

6.15. A final example: mean values

A final example to emphasize the power and flexibility of design matrices in MARK. Suppose you’re
working on a final report for some study of some organism. In your report, you’ve been asked to report
the ‘average’ survival value over the years of the study. Now, if a model where apparent survival is
constant over time (i.e., ϕ.) fits the data much, much better than the model where survival is allowed to
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vary over time (i.e., ϕt), then it might be reasonable to simply report the constant survival estimate as
the mean. However, suppose instead that the model with time-specific variation in survival is strongly
supported – what do you do then? Well, the obvious answer might be to simply add up the individual
time-specific estimates, and take the arithmetic average. Is this correct? What about the SE for this
average?

In fact, the mostdirect (andrigorous) way to estimate the mean survivalover time,and the appropriate
standard error, is to fit a model with an appropriately coded design matrix. To show how this might
be accomplished, assume a design matrix with 4 estimates of survival. The default in MARK for a
time-specific estimate of survival would be a (4× 4) identity matrix. Recall that for the identity matrix,
each row corresponds to a real parameter, and each column corresponds to a β parameter. Thus, each β
parameter represents a treatment estimate (where in this case, each level of the ‘treatment’ corresponds
to a different time interval). Alternatively, we could use the intercept-based ‘reference’ coding we’ve
used throughout most of this chapter – for this example, with 4 intervals, we would use

X �



1 1 0 0

1 0 1 0

1 0 0 1

1 0 0 0


Now recall from earlier in the chapter we saw that there was yet another way we could modify the

design matrix:

X �



1 1 0 0

1 0 1 0

1 0 0 1

1 -1 -1 -1


With this design matrix, the back-transformed β1 provides the mean of the survival estimates. The

estimates of β2 through β4 provide the time variation around the estimated mean. To see how this works,
compute the mean of the rows of the matrix: [(β1 + β2) + (β1 + β3) + (β1 + β4) + (β1 − β2 − β3 − β4)]/4 �

4β1/4 � β1. Pretty nifty!

Now, to obtain the estimate of mean survival, the estimate of β1 must be transformed using the link
function used for the model. For example, with the logit link, we write

ˆ̄S �
e β̂1

1 + e β̂1

≡ 1

1 + e−β̂1

So, again we see that by use of the design matrix, we can estimate many things of interest.

begin sidebar

Caution 1: estimating the mean

Now, while the preceding discussion seems fairly straightforward, there is a small little problem

involving ‘bias’. It turns out that estimates of the mean are potentially biased as a result of transforming

back and forth from the non-linear link function. For example, suppose Si are 0.5, 0.6, 0.7 and 0.8. The

arithmetic mean of these 4 values is 0.65. With the logit link, the transformed values are 0, 0.40547,

0.8473 and 1.38629, respectively, giving an intercept of 0.659765. Back transforming from this value

gives 0.6592, not 0.6500. Thus, all of the link functions in MARK, except the identity link (the only

‘linear’ link function), will provide slightly biased estimates of the mean value. (Note: the direction of
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the bias in the logit link will vary depending on whether the mean parameter value is above or below

0.5). Because the identity link is a linear function, estimates of the mean calculated using the identity

link will be unbiased; however, the identity link doesn’t always work. In most cases, standard errors of

the estimates will typically dominate such transformation bias, so that the bias in the back-transformed

estimate of the mean is usually ignored.

Caution 2: ‘dot’ models and other approaches

You might wonder ‘why not fit a time-invariant ‘dot model’ to derive mean values for the vital rates?’.

After all, a ‘dot model’ yields the same value for all intervals.

Unfortunately, this approach, while simple to implement, is not strictly correct. While the estimated

‘mean’ from the ‘dot’ model will be relatively robust (i.e., fairly unbiased), the estimated SE will be

negatively biased wrt to the true process variance – often by a considerable amount. Here is a simple

example – we simulated a data set of live-encounter data (calc_mean.inp), 16 occasions (15 intervals;

250 newly marked individuals released at each occasion), where ‘true survival’ over a given interval

was generated by selecting a random normal deviate drawn from N(0.7, 0.005) (in the generating

model, encounter probability p was constant; p � 0.35).

Here is the set (i.e., ‘sample’ from the underlying random distribution) of the 15 parameter values

we used for simulating survival for each of the 15 intervals:

{0.66, 0.62, 0.78, 0.69, 0.72, 0.71, 0.80, 0.76, 0.87, 0.72, 0.74, 0.76, 0.70, 0.68, 0.59}.

Based on these values, the true sample mean survival is S̄ � 0.72, with a true sample process variance

of σ2
� 0.005 (convenient that it matches the variance of the distribution used to generate the values

in the first place).

We’ll consider 3 different approaches to estimating the mean survival probability: (i) using the

estimate of ϕ̂ from a ‘dot’ model, {S.p.}, (ii) using the estimates from a design matrix for a {St p.}
model constructed such that one of the estimated β terms (the intercept) corresponds directly to the

mean, and (iii) a variance components decomposition (for the purposes of demonstrating the most

appropriate approach – the subject of random effects models and variance components analysis is

considered in some detail in Appendix D).

Fitting the ‘true’ (generating) model, {St p.}, to the data yielded the following estimates of survival:

The simple arithmetic mean from these estimates was ˆ̄S � 0.7219,quite close to the true sample mean

of S̄ � 0.72. The naïve estimate for the variance is 0.0078, somewhat higher than the true underlying

process variation σ2
� 0.005. As discussed in Appendix D, this is because the naïve estimate includes

sampling as well as process variation (and thus will generally be larger than process variation alone).
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If we fit the data using the ‘dot’ model, {S.p.}, the estimate for survival was ˆ̄S � 0.7325, while the

variance of the estimates was σ̂2
� 0.0000304. The estimate for survival is relatively close to the true

value of the mean (perhaps within comfort limits), but the estimated variance is now very strongly

negatively biased. So, the ‘dot’ model does reasonably well at estimating the mean, but fails miserably

at estimating the correct precision of the mean.

Next, we try fitting the data using the PIM for the true model {St p.}, using a design matrix

constructed such that one of the estimated β terms (the intercept) corresponds directly to the mean

(shown below):

When run using an identity link, the estimate for the first β term in this design matrix (β1) is the

estimated mean survival probability. For our simulated data, the estimated mean was β̂1 � 0.7219,

which is identical to the arithmetic mean of the individual estimates derived from the ‘dot’ model,

{ϕt p.} (above). However, the estimated variance was σ̂2
� 0.00004. Again, much too small.

The reason for the difference is that the variance estimates from both the ‘dot’ model and DM

approach include only the sampling variation, and do not include the process variance associated

with the set of estimates (the ‘dot’ model is the smaller of the two since in effect it represents a fixed

effects design with only one replicate, whereas the DM approach has k − 1 replicates). The sampling

variance is expected to be quite small (relative to process variance) because the sample size is relatively

large for this example.

Finally, we apply a variance components approach (based on a random effects intercept only model).

While variance components and random effects models is presented in more detail in Appendix D,

for now we’ll demonstrate the simple mechanics of deriving an estimate of the mean, and process

variation using the variance components capabilities in MARK. In fact, for the simple objective at

hand, the mechanics are very easy.

First, retrievemodel{ϕt p.} in the browser. Then, select the menu option ‘Output | Specific Model

Output | Variance Components | Real Parameter Estimates’. This will spawn another window

(shown at the top of the next page) asking you to select the parameter(s) you want to work with,

plus some other options. On the right hand side, we’ve selected ‘intercept only’ (corresponding to

the mean only model), plus various output options. We’ll defer ‘deep understanding’ of what the

various options in this window ‘do’ for now.
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Once you hit the ‘OK’ button, MARK will dump various ‘estimates’ into the editor. The estimates

for our example data are shown below:

The top line gives the estimated mean (‘Beta-hat’) as 0.7280, which is close to (but slightly different

than) the simple arithmetic mean. Both are very close to the true sample mean of 0.72. More important,

here, is the reportedSE(Beta-hat) of 0.0215. SE(Beta-hat) is the standard error of the estimated mean

and includes both process and sampling variance. We use this estimated SE in the usual way to derive

95% CL to the estimated mean.

The table immediately below these two values represent the interval-specific estimates, their

standard errors, and correspondingshrinkage estimates (if you don’t know what a ‘shrinkage’ estimate
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is, don’t worry at this stage). Skipping the technical details, these shrinkage estimates are part of the

calculation(s) MARK uses to separate the process and sampling variance.

This table is followed by two ‘estimates’ of the process variance (i.e., the total variance minus the

sampling variance) – the ‘naive estimate of sigma^2’ (which is an estimate of the total variance

minus the sampling variances), and the ‘estimate of sigma^2’ (from Burnham’s ‘moments’ estima-

tor). These are the estimates we’re after – for various technical reasons (see Appendix D), the second

estimate is preferred. For our simulated data, the process variance is calculated as 0.0063, which is

fairly close to the true value 0.005.

Note that the reported values for our ‘variance components’ analysis of our simulated data were

very close to the true values, because we applied the decomposition to the true generating model. If

we had used a different model, we would generate different estimates of the process variance. In fact,

in general, you would normally want to estimate the mean of a parameter with full time-dependence

in the other structural parameters (i.e., model {ϕt pt} in this case). We used the reduced parameter

model here only because it was the true generating model under which the data were simulated.

In conclusion, to get a robust estimate of the process variance, and a less-biased estimate of the

mean, you’d need to use a random effects (variance components) approach.

end sidebar

6.16. Model averaging over linear covariates

As introduced in Chapter 4, model averaging is a very important concept. Deriving model averaged
estimates of different parameters explicitly accounts for model selection uncertainty. In many cases,
the mechanics of model averaging are pretty straightforward. Let’s consider, again, the full Dipper
data set, where we hypothesize that the encounter probability, p, might differ as a function of (i) the
sex of the individual, (ii) the number of hours of observation by investigators in the field, with (iii)
the relationship between encounter probability and hours of observation potentially differing between
males and females.

Recall that our ‘fake’ observation hour covariates were:

Occasion 2 3 4 5 6 7

hours 12.1 6.03 9.1 14.7 18.02 12.12

Now, when we introduced this example earlier in this chapter, we fit only a single model to the data:

logit(p) � β1 + β2(SEX) + β3(HOURS) + β4(SEX.HOURS)

But, here, we acknowledge uncertainty in our candidate models, and will fit the following candidate
model set to our data:

model M1 logit(p) � β1 + β2(SEX) + β3(HOURS) + β4(SEX.HOURS),

model M2 logit(p) � β1 + β2(SEX) + β3(HOURS),

model M3 logit(p) � β1 + β2(HOURS),

model M4 logit(p) � β1 + β2(SEX).

There are a couple of things to note. First, this is not intended to be an ‘exhaustive, well-thought-out’
candidate model set for these data. We’re using these models to introduce some of the considerations for
model averaging. In particular, we’re using this example where encounter probability is hypothesized
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to be a function of a continuous environmental covariate, to force us to consider how – and what – we
model average when some models include the environmental covariate (HOURS), and some don’t.

Let’s fit these 4 candidate models (M1 → M4) to the full Dipper data set. We’ll build all of the models
using a design matrix approach. Note that models M2 → M4 in the model set are all nested within
the first model, M1. For all 4 models, we’ll assume that apparent survival, ϕ, varies over time, but not
between males and females.

Here are the results of fitting our 4 candidate models to the full Dipper data:

We see from the AICc weights that there is considerable model selection uncertainty. In fact, the
∆AICc values among all models is < 4.

Now, if we simply wanted to generate a ‘time-’ and ‘sex-specific’ average encounter probability, for
each time interval and sex, we can use the standard model averaging routine(s) in MARK, as introduced
in Chapter 4. MARK allows you to model average for each combination of classification factors in the
model – for this analysis, that would include TIME (which is implicitly included in all models) and SEX
(which was specified as a ‘grouping’ variable’ when you set up the analysis.

For example, for males, we would simply select any one element in each of the ‘PIM columns’ (each
of which corresponds to a particular time interval) in the model averaging interface, as shown below:

Here is the model averaged estimate for p̂2,males for the first encounter occasions, for males:
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In looking at the output, we’re reminded about the basic mechanics for model averaging. The actual
estimate, p̂2,males � 0.9152981, is simply the average of the estimate from each of the 4 candidate models,
weighted by the normalized AIC weights. This is a straightforward calculation.

You might recall, though, that the calculation of the ‘correct’ standard error for the weighted average
is somewhat more involved. The SE for each estimate from each model is called the conditional standard
error. While it might seem intuitive to simply take the AIC weighted average of these model-specific
conditional standard eros (which results in an esteem of 0.0341803), doing so ignores variation among
models. As introduced in Chapter 4, the correct way to calculate the unconditional SE (i.e., the standard
error for the average that is not conditional on a particular model) is

v̂ar
(

ˆ̄p
)

�

R∑

i�1

wi

[
v̂ar

(

p̂i
�� Mi

)

+
(

p̂i − ˆ̄p
)2

]
, where ˆ̄p �

R∑

i�1

wi p̂i ,

and the wi are the normalized Akaike weights. The subscript i refers to the ith model. The value, p̄, is the
model averaged estimate of p over R models (i � 1, 2, . . . , R). While this isn’t that difficult to do by hand,
it isn’t necessary in this case, since MARK handles the calculation for you. In this case, the unconditional

SE of p̂m ,2 is ŜE � 0.0358703. To this point, nothing new beyond what we already introduced earlier in
Chapter 4.

But, what if instead of sex- and time-specific model averaged estimates for p, which you can generate
by clicking a few buttons in MARK, you instead want the model averaged estimate of p as a function
of the environmental covariate, HOURS? Here is where things get more interesting. You want to derive
the model averaged estimate of the encounter probability, as a function of the number of hours of
observation. You might appear to have a couple of options. First, you might be interested in the model
average of the β parameter in each model for the HOURS covariate. That seems quite reasonable –
the β coefficient for HOURS is the measure of the effect of a unit change in HOURS of observation on
encounter probability. You average over models to generate an average of the effect of HOURS on detection
probability.

But, while this seems reasonable, there are in fact a couple of problems with this approach. First, and
perhaps most obviously, what do you do for models where HOURS is not a term in the model? For our
present example, model M4 does not include HOURS as a term in the model – how would we account for
this model when averaging over all models in the model set?

One approach which at first seems reasonable (and somewhat clever) is to use the logical argument
that ‘if a model doesn’t contain HOURS as a term, then the β coefficient for HOURS is logically 0’. Let’s adopt
this approach, and create a table of the model-specific estimates for the β coefficient, corresponding to
the HOURS covariate, from each of our 4 candidate models:

model β̂ AIC weight

M1 0.0463428 0.06378
M2 0.0195470 0.15968
M3 0.0169393 0.33773
M4 0.0000000 0.43880

At this point, you might simply take a weighted average of the model-specific estimates for β (which

for this example, would be ¯̂β � 0.01180).

But, there are at least two important issues which we need to consider. First, recall from earlier in this
chapter that the interpretation of β does not directly take into account the other terms in the model. For
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example, consider model M1, which corresponds to

logit(p) � β1 + β2(SEX) + β3(HOURS) + β4(SEX.HOURS)

The estimate for β̂3(HOURS) � 0.0463428, which suggests that as the hours of observation increases,
then so too does the probability of encounter. But, what about the interaction of HOURS and SEX? Recall
from section 6.8.2 that there is a strong interaction between SEX, HOURS, and encounter probability. As
shown in the figure shown below, encounter probability increases with HOURS, but only for females! For
males, encounter probability actually declines with more HOURS of observation.
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The point we’re trying to make here is that considering a β estimate ‘by itself’, without taking the
other terms of the model into account, can lead to all sorts of conclusions which may not actually reflect
reality. And, as such, model averaging over those estimates is subject to the same problem.

The second potential problem concerns the standard error calculation. While β for model M4 is
logically 0, what is the SE for this ‘value’? We say ‘value’, because it is not an ‘estimate’, and thus, it isn’t
immediately obvious how to include (or not) the conditional SE for model M4 (which we might set to
0) into our calculation of the unconditional SE for β̄.

So, in short summary, don’t try to model average β’s – it will get you into trouble, and there are a
number of technical considerations which are not solved. In fact, these are some of the reasons that
MARK does not have an option for model averaging β terms.

But, what if you really want a model averaged estimate of the relationship between HOURS and
encounter probability? In your mind you might be imagining a plot of HOURS on the horizontal axis,
encounter probability, p, on the vertical axis (like the figure shown above), but averaged over all models.
Are you stuck?

Actually, not entirely. You can generate exactly what you want, albeit with a bit of work. The first part
of the process, deriving model averaged estimates of p as a function of the HOURS covariate is easy – you
simply take the estimated linear model for each of the candidate models, and derive estimates for p as
a function of different values for the covariate HOURS. Then, simply take the average over models for a
given covariate value, weighting by the model-specific normalized AIC weights.
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In the following table, we show the calculated average accounter probability, ¯̂p, for each of 4 different
values of the HOURS covariate (5, 10, 15, and 20 hours). In order to make the calculations for this example,
we either need to (i) pick one sex or the other (SEX=1, or SEX=0), or (ii) use the average value for sex
(based on the proportion of males and females in the sample). In other words, we need to specify (or
‘control for’) the other variables in the models. We’ll use SEX=1 (males) for our demonstration:

HOURS

model AIC weight 5 10 15 20

M1 0.0638 0.9392547 0.9294700 0.9182464 0.9054185
M2 0.1600 0.9111449 0.9187497 0.9257566 0.9322038
M3 0.3377 0.8894343 0.8974927 0.9050265 0.9120609
M4 0.4388 0.9227652 0.9227652 0.9227652 0.9227652

¯̂p 0.91098 0.91429 0.91724 0.91983

To make sure you know how the numbers in this table are generated, take the estimated linear model
for model M1:

logit(p̂) � β̂1 + β̂2(SEX) + β̂3(HOURS) + β̂4(SEX.HOURS)

� 1.4115973+ 1.4866197(SEX) + 0.0463460(HOURS) + (−0.0783101)(SEX.HOURS)

If we substitute in SEX=1, and HOURS=5, we get the value

logit(p̂) � 1.4115973+ 1.4866197(1) + 0.0463460(5) + (−0.0783101)(5)

� 2.738396

which, when back-transformed from the logit scale, yields 0.9392547, which is the value shown in the
table, above. We leave it as an exercise to confirm the remaining values in the table (for each model, and
each value of the HOURS covariate), and weighted averages over those models.

So, let’s plot these model averaged values.
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The figure looks a bit ‘out of scale’, but that’s only because we’re ‘leaving enough room’ on the
vertical axis, for what comes next – the SE calculations! What we want to add to the plot now are the
unconditional SE for each point on the line (which we’ll calculate for the 4 points only – 5, 10, 15 and
20 HOURS. Normally, you would use more points, but our intent is only to demonstrate the mechanics).

How do we derive the unconditional SE for each model average estimate of p? The steps are easy
in principle, but somewhat laborious in practice. First, we derive the conditional SE for p̂ for different
values of the covariate HOURS, for a given model, using the approach outlined in the -sidebar- back on
p. 49 (if you skipped reading it before, you might need to go back and have a look at it now). Then, once
you’ve calculate the conditional SE for each value for HOURS, for each model, you (ii) use the normalized
AIC model weights to generate unconditional SE estimates using the formula noted earlier:

v̂ar
(
ˆ̄p
)

�

R∑

i�1

wi

[
v̂ar

(

p̂i
�� Mi

)

+
(

p̂i − ˆ̄p
)2

]
, where ˆ̄p �

R∑

i�1

wi p̂i .

The laborious part of all this is deriving the conditional SE’s for each estimate of p for a given value of
HOURS, for each model. As noted on p. 49, this involves application of the Delta method, for each model
in turn. In fact, because the models in our candidate model set are all nested within the most general
model (M1), this process can be automated fairly well.

Let’s run through the complete calculations for HOURS � 5. As noted on p. 49, we can approximate
the variance of some multi-variable function Y as

v̂ar(Ŷ) ≈ DΣDT

where D is the matrix of partial derivatives of of the function Y with respect to each parameter, and Σ
is the variance-covariance matrix for the parameters in the function.

So, all we need to do is (i) take the vector of partial derivatives of the function (i.e., the linear
model) with respect to each parameter in turn (i.e., derive the Jacobian of the model with respect to the
model parameters), D, (ii) right-multiply this vector by the variance-covariance matrix,Σ, and (iii) right-
multiply the resulting product by the transpose of the original vector of partial derivatives, DT. Step (i)
involves trivial calculus, step (ii) involves extracting the variance-covariance matrix from MARK output
for that model, and step (iii) involves a bit of linear algebra. No one step in this process is particularly
difficult – there are simply lots of steps.

Here are the Jacobians for our 4 models:

model model structure Jacobian

M1 β1 + β2(SEX) + β3(HOURS) + β4(SEX.HOURS) [1 SEX HOURS SEX.HOURS]

M2 β1 + β2(SEX) + β3(HOURS) [1 SEX HOURS]

M3 β1 + β2(HOURS) [1 HOURS]

M4 β1 + β2(SEX) [1 SEX]

You should notice immediately that the Jacobian for the linear model is simply the linear model
without the β coefficients, using a ‘1’ for the intercept, β1. As a result, depending on your facility with
a computer, you might be able to generate the Jacobians very quickly over your model set. For smaller
model sets, even doing it ‘by hand’ should only take a few minutes.

The next step is to extract the variance-covariance matrix, Σi , for the βi coefficients, for each model
Mi in the model set. This is quite straightforward to do in MARK – all you need to do is select the
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model from the results browser, and then ‘Output | Specific Model Output | Variance-Covariance
Matrices | Beta Estimates’.

You may recall that your preferred options are to output to the clipboard (as show), or a dBase file
(which you can open in Excel). In general, do not use the ‘Editor’ output option, since outputting to
the editor will truncate (round) the values in the matrix to degree that your results might be suspect.

Beyond that, the only challenge is in figuring out which rows and columns in the variance-covariance
matrix you need to extract. In other words, which rows and columns correspond to the βi coefficients
in your linear model.

Consider for example, model M2, which corresponds to

model M2 logit(p̂) � β̂1 + β̂2(SEX) + β̂3(HOURS)

We see there are 3 coefficients (β1 , β2 and β3) in this model, and thus the variance covariance matrix
for model M2,Σ2, would be a (3×3) matrix, with the variances for each βi parameter along the diagonal,
and the covariances between parameters off the diagonal:

Σ2 �



v̂ar
(

β̂1

)

ĉov
(

β̂1 , β̂2

)

ĉov
(

β̂1 , β̂3

)
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(

β̂2 , β̂1

)

v̂ar
(

β̂2

)
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β̂2 , β̂3

)
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β̂3 , β̂1

)

ĉov
(

β̂3 , β̂2

)

v̂ar
(

β̂3

)


However, when you output the variance-covariance from MARK, it outputs the matrix over all of the

β terms, not just the ones you are interested in. You will need to keep track of which rows and columns
correspond to the parameters you are interested in. For model {ϕt pS+H}, there are 9 total β parameters
(6 for apparent survival probability, and 3 for the encounter probability). So, MARK outputs a (9 × 9)

matrix. We want the variance-covariance matrix for the encounter probability parameters only, which
corresponds to the (3×3) sub-matrix in the lower right-hand corner of the full matrix output by MARK

(shaded, below):

You simply need to extract this (3 × 3) sub-matrix, and ‘paste it’ in some fashion into the software
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application you might use for the final step, which involves the ‘linear algebra’ of multiplying the
Jacobian and variance covariance-matrices together.

Now, at this point, you have a decision to make – the variance-covariance matrix output by MARK is
‘numeric’, whereas in the first step, we derived the Jacobians for each model ‘symbolically’. While there
are many available software applications that can handle mixing numeric and symbolic calculations
(e.g., Maple, Mathematica, Maxima...), it is mechanically simpler to use one or the other (i.e., numeric,
or symbolic). Since the variance-covariance matrix output by MARK is numeric, it is probably simplest
to translate our Jacobians from ‘symbolic’ to ‘numeric’. All this translation requires is entering the
appropriate numeric value(s) into the symbolic Jacobian vector.

For our present example, we’re considering males (SEX � 1) and 5 hours of observation (HOURS � 5).
Thus, our translation of the Jacobians from symbolic→ numeric for our 4 models would look like:

model symbolic Jacobian numeric Jacobian

M1 [1 SEX HOURS SEX.HOURS] [1 1 5 5]

M2 [1 SEX HOURS] [1 1 5]

M3 [1 HOURS] [1 5]

M4 [1 SEX] [1 1]

Make sure you understand how the numerically evaluated Jacobians were derived.

All that’s really left is to take the numeric Jacobians, Di , and the variance-covariance matrices,Σi , for
the different models, and ‘do the linear algebra’. In other words, calculate

DiΣiD
T
i

For example, for model M2 (SEX+HOURS), that might be executed in an R script as follows:

# enter numeric Jacobian vector

jac <- matrix(c(1,1,5),1,3,byrow=T);

# transpose Jacobian vector

t_jac <- t(jac);

# enter variance-covariance matrix (cut and paste from MARK)

vc <- matrix(c( 1.1435035261, -0.1827007130, -0.0749623706,

-0.1827007130, 0.4077519211, 0.0016836049,

-0.0749623706, 0.0016836049, 0.0057802739),3,3,byrow=T);

# multiply jac x vc matrix x transpose(jac)

var_logit <- jac %*% vc %*% t_jac;

print(var_logit);

If we run this script, we find that the approximate variance for our estimate of p̂HOURS=5,SEX=1 from
model M2, on the logit scale, given SEX � 1, HOURS � 5, is

v̂ar ≈ DiΣiD
T
i

� 0.5975732

with ŜE �
√

0.5975732 � 0.773029.
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All we really need to do next is (i) repeat this calculation of the conditional variance and SE for each
of the remaining models, and then (ii) from these estimates, derive the estimate of the unconditional

variance and standard error, over all the candidate models.

The following tabulates the conditional variances for p̂SEX=1,HOURS=5, on the logit scale, for all 4 candidate
models:

model AIC weight logit(p̂) conditional variance

M1 0.0638 2.7383960 1.4069833
M2 0.1600 2.3276955 0.5975763
M3 0.3377 2.0849753 0.4738056
M4 0.4388 2.4805252 0.2573784

Now, at this point, you could either (i) derive the unconditional variances on the logit scale, and then
back-transform everything, or (ii) back-transform the conditional variances each individual model from
the logit scale to the real probability scale, and then do the calculations of the unconditional variance
on the real scale. While this seems almost like a semantic point, it isn’t – because of Jensen’s inequality.
The finer points are discussed in the following -sidebar-. Since the 95% CI are derived on the logit scale,
and then back-transformed, perhaps it makes sense to use the value of the model-averaged value on
the logit scale. We’ll adopt this convention here.

begin sidebar

Jensen’s inequality – logit or probability scale?

Jensen’s inequality says that the expected value of the function is not (in general) equal to the function of the

expected value, E[ f (x)] , f (E[x]). If you take the average of the data and then apply the function to it, you’ll get

a different (usually wrong, i.e., not what you meant) answer than if you apply the function to each data value first

and then take the average of the values.

For example, let the function of x be f (x) � x2. Let the set of x be (3, 2, 4, 6, 3). The mean of the set is 3.6. The

function applied to the mean is 3.62
� 12.96. The set of the function of x is (9, 4, 16, 36, 9). The average of this set

of the function of x is 14.8. So, we see that, as per Jensen’s inequality, the expectation (average) of the function is

different than the function of the average – in fact, as expected the mean of the function of x is greater than the

function of the mean of x.

In the present context, the back-transform of the model averaged value of logit(p̂), for example, is not the same

as the model averaged value of the back-transforms of the individual estimates of p̂ from each model. In other

words, if the model-averaged value for p on the logit scale is

logit( ¯̂p) � w1logit
(

p̂M1

)

+ w2logit
(

p̂M2

)

+ w3logit
(

p̂M3

)

+ w4logit
(

p̂M4

)

where wi is the normalized AIC weight for model i, and if the model averaged value for p on the normal probability

scale is
¯̂p � w1 p̂M1

+ w2 p̂M2
+ w3 p̂M3

+ w4 p̂M4

then

e
(

logit( ¯̂p)
)

1 + e
(

logit( ¯̂p)
) , ¯̂p

Even though the SE are calculated on the logit scale before back-transforming to the real scale, because the

calculation of the unconditional SE is a function of the model average of the parameter, which model averaged

value you use (the back-transform of the model averaged value of logit(p̂), versus the model averaged value of the

back-transforms of the individual estimates of p̂ from each model), will make a difference in your calculations.

While the difference between the two is generally quite small, you do need to decide which model averaged

parameter to use.

end sidebar
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The model averaged estimate of ¯̂p, on the logit scale, is 2.339692.

Given

v̂ar
(
ˆ̄p
)

�

R∑

i�1

wi

[
v̂ar

(

p̂i
�� Mi

)

+
(

p̂i − ˆ̄p
)2

]
,

then we can show that for SEX=1,HOURS=5,

logit(v̂ar
(

ˆ̄p
)

) �

R∑

i�1

wi

[
v̂ar

(

p̂i
�� Mi

)

+
(

p̂i − ˆ̄p
)2

]
� 0.0638

[

1.40698 + (2.73840 − 2.33969)
2]

+ 0.1600
[

0.59758 + (2.32770 − 2.33969)
2]

+ 0.3377
[

0.47381 + (2.08498− 2.33969)
2]

+ 0.4388
[

0.25738 + (2.40538 − 2.33969)
2]

� 0.499097

with logit(ŜE) �
√

0.499097 � 0.70647.

Finally,we want to use ourestimatedvariance to derive a 95% confidence intervalaroundourestimate,
and we want both the estimate and the 95% CI for the estimate on the normal probability scale.

# estimate encounter probability on logit scale - parameter estimates from MARK

logit_avg_p <- 2.33969

logit_var <-0.499097; logit_se <- sqrt(logit_var);

# now derive LCI and UCI on logit scale

logit_uci <- logit_avg_p+1.96*logit_se;

logit_lci <- logit_avg_p-1.96*logit_se;

# back-transform everything from logit -> probability scale

p <- exp(logit_avg_p)/(1+exp(logit_avg_p));

uci <- exp(logit_uci)/(1+exp(logit_uci));

lci <- exp(logit_lci)/(1+exp(logit_lci));

# put everything together

results <- cbind(p,lci,uci)

print(results);

The output from this script is

[1,] 0.9121112 0.7221222 0.9764401

In other words, the back-transformed estimate of p̂SEX=1,HOURS=5 on the normal probability scale is
0.9121112, with estimated 95% CI of [0.7221222, 0.9764401]. Again, note that the SE and 95% CI are first
derived on the logit scale, and then back-transformed. This is done to guarantee that the calculated 95%
CI is [0, 1] bounded for parameters (like ϕ or p) that are [0, 1] bounded. And, a reminder that because
the logit transform is not linear, the reconstituted 95% CI will not be symmetrical around the parameter
estimate, especially for parameters estimated near the [0, 1] boundaries.

Taking this approach, and replicating it for the other values of the HOURS covariate (i.e., repeat the
preceding, but for HOURS � 10, HOURS � 15, and HOURS � 20), we can derive estimates of the model
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averaged values for p, for 5, 10, 15 and 20 observation HOURS, and their unconditional 95% CI. These
estimates are tabulated here: ∗

HOURS ¯̂p L̂CI ÛCI

5 0.91211 0.72212 0.97644
10 0.91480 0.79678 0.96711
15 0.91742 0.81080 0.96644
20 0.92000 0.76477 0.97598

Here is a figure of these model averaged estimates for male encounter probability as function of HOURS
of observation, and their associated confidence intervals (extrapolated over a more continuous range
from 5→ 20 HOURS):
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The calculated 95% CI will not be symmetrical around the parameter estimate – as the value for the
covariate HOURS is much greater or lesser than the mean value (≈ 12 hours), the 95% CI gets progressively
larger. This is expected as there is less ‘information’ at either end of the distribution of HOURS on which
to base our inference, and thus, more uncertainty in our estimate.

Now, while this approach involves a lot of ‘manual work’ (although some facility with programming
can speed things up considerably), the basic procedure can largely be automated to some extent,
and executed within program MARK. Recall from section 6.8.2 that we mentioned that if we treat
environmental covariates as individual covariates, then we can use the individual covariate plotting (and
model averaging) capabilities in MARK, to generate the model averaged values, and the confidence
limits for these averaged values, as we’ve done ‘by hand’ in the preceding. The use of individual
covariates in MARK is covered in Chapter 11 (section 11.8 specifically deals with the topic of model
averaging).

∗ We’ll leave it to you as an exercise to check these values on your own.
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6.17. RMark – an alternative approach to linear models

If you’ve made it this far, then you probably have a pretty good feel for the relationship between the
design matrix and linear models in MARK. Good! But, by now, you may have already run into a few
instances – even with our relatively simple practice examples – where you’ve made a typo (or several)
in entering the appropriate design matrix. Or, in some cases, it may not be clear how to construct the
design matrix corresponding to the linear model of interest. While you will get better with practice, it is
also probably true that the ‘mechanics’ of designing and building design matrices in MARK is the single
greatest source of ‘frustration’. This is especially true for very large design matrices, which may include
a large number of parameters, and complicated ultrastructural relationships within a parameter.

Jeff Laake (NOAA – National Marine Mammal Laboratory) has developed a comprehensive library of
functions for the R statistical package called RMark (naturally), which allow you to build, and analyze,
linear models in MARK – without ever having to ‘get your hands dirty’ with design matrices. In effect,
what RMark does is provide a logically consistent ‘natural language’ (well, the R scripting language is
becoming sufficiently familiar that it is relatively ‘natural’) way of building models – analogous to what
you might do in SAS (or, in the current context, M-SURGE). RMark is a very robust, and elegant way
to build a large number of complex models, quickly, and relatively easily. There is a fair learning curve
(somewhat conditional on how much prior experience you may have with R, if any), but once you’ve
mastered the conceptual material presented in this book, it is well worth exploring RMark – details and
full documentation are provided in Appendix C.

6.18. Summary

We’re done...at last! Chapter 6 is a long chapter, with many concepts and technical details. However, it
is also one of the most important chapters, since it covers one of the most useful tools available with
MARK. It is very important that you understand this material, so if you’re at all unsure of the material,
go through it again. Your efforts will ultimately be rewarded – you’ll find that using the linear models
approach with MARK will enable you to fit a wide variety of complex analytical models, quickly and
(relatively) easily.
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CHAPTER 7

‘Age’ and cohort models...

Up until now we have assumed that our ‘underlying’ model has been the CJS time-dependent model.
However, there are many instances when the ‘ typical assumptions’ are not met. By ‘typical assumptions’
we are referring to the assumptions concerning independence of fate and identity of rates among
individuals. More specifically, the CJS model generally assumes that ‘all individuals, whatever their
age or capture history, should have the same probabilities of capture and survival’.

Clearly, we do not expect this to be generally true. In this chapter, we consider models which account
for two common sources of differences among individuals: one that changes over the course of an
individuals life (age), and one that does not (cohort). In both cases, we anticipate that differences in
the age or cohort of an individual may influence its survival or encounter probability. For example, we
might have strong reason to suspect that the survival of a young individual may generally be lower
than the survival of an older individual.

We begin by reviewing the standard CJS model structure for a simple live encounter study. Recall
the basic structure of the CJS time-dependent model – shown below for apparent survival ϕi :

cohort 1 1
ϕ1−→ 2

ϕ2−→ 3
ϕ3−→ 4

ϕ4−→ 5

cohort 2 2
ϕ2−→ 3

ϕ3−→ 4
ϕ4−→ 5

cohort 3 3
ϕ3−→ 4

ϕ4−→ 5

cohort 4 4
ϕ4−→ 5

and for recapture (encounter) probability, pi

cohort 1 1 −→ 2 −→ 3 −→ 4 −→ 5

p2 p3 p4 p5

cohort 2 2 −→ 3 −→ 4 −→ 5

p3 p4 p5

cohort 3 3 −→ 4 −→ 5

p4 p5

cohort 4 4 −→ 5

p5
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Under the ‘standard assumptions’, we assume that survival and recapture potentially vary only as a
function of the time interval (as indicated by the shaded columns in the preceding figures). However,
clearly this might not always be the case – both the time interval relative to when the individual was
marked, and the time at which the individual was marked, may also be important. We start with the
former – ‘time since marking’ (TSM).

7.1. ‘Age’ models

It is perhaps exceedingly obvious to most biologists that individuals of different age classes (or devel-
opmental stages) are likely to differ in the probability of surviving to the next age or stage. In fact, life
history theory is to a large degree focussed on analysis of such differences. The reasons for this are well-
established. Organisms of a given age (for simplicity, we will refer only to age transitions – the logic
applies reasonably well to simple stage-structured systems as well) may be more or less vulnerable to
sources of mortality than are individuals of different age(s). The reasons for these differences might
reflect differences in size, behavior, or physiological maturation. It is probably safe to say that there
have been as many papers in the ecological and evolutionary literature devoted to ‘age-dependence’
of one trait or another as any other subject. So, we need to be able to address the question: are there
age-specific differences in survival? To do that, we need to consider the construction of ‘age’ models
(the reason for referring to ‘age’ parenthetically will become clear later in the chapter).

First, some definitions. Clearly, the ageing process begins when individuals are born. All individuals
born in a given breeding season can be said to belong to the same birth cohort. A cohort is simply some
criterion by which individuals are grouped together (birth year, in this case). Within a birth cohort, age
and time are logically synonymous. In fact, age, time (e.g., year) and cohort are related by the following
expression:

age = current year - birth cohort

Consider the first row (i.e., first cohort) extracted from the triangular matrix (PIM) of a simple CJS
time-dependence survival model (say, those shown on the previous page):

cohort 1 1
ϕ1−→ 2

ϕ2−→ 3
ϕ3−→ 4

ϕ4−→ 5

The first row also corresponds to the first release cohort. Let’s assume that this is a ‘birth’ cohort.
All individuals that are newly marked and released at occasion 1 were marked as newborns. Let’s also
assume (for simplicity) that the sampling occasions correspond to ‘years’. Thus, individuals marked at
occasion 1 (0 years of age) are, if they survive, 1 year of age at occasion 2, 2 years of age at occasion 3,
and so forth.

Now, the parameters shown in this table (ϕ1 → ϕ6) were originally written to show simple time-
dependence. But, since individuals also age through time, we cannot differentiate between age-specific
differences in survival, and simple time-specific differences. They are entirely confounded.

How do we then separate age and time effects? Clearly, this cannot be accomplished using a single
cohort alone. However, what happens if we use multiple birth-cohorts? To examine this situation, let’s
make the following assumptions about some arbitrary population. First, let’s assume that all individuals
in each cohort are marked as newborns. Let’s also assume that survival between age 0 and age 1 year
is different from survival after age 1 year. For simplicity, let’s call the survival from 0 → 1 ‘juvenile’
survival, and survival from any age x (where x ≥ 1 year) to x + 1 ‘adult’ survival.
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If you think about it, this is not at all an uncommon situation. However, let’s make it even simpler.
Let’s assume for the time being that juvenile survival is constant among cohorts, and that adult survival
is constant both within cohorts and among cohorts. What would the parameter structure of this model
look like? Let’s use the ‘j’ subscript for juvenile survival, and the ‘a’ subscript for adult survival.

cohort 1 1
ϕ j

−→ 2
ϕa−→ 3

ϕa−→ 4
ϕa−→ 5

cohort 2 2
ϕ j

−→ 3
ϕa−→ 4

ϕa−→ 5

cohort 3 3
ϕ j

−→ 4
ϕa−→ 5

cohort 4 4
ϕ j

−→ 5

Now, let’s look at this table and see how it makes sense. The best starting point is to look at each
cohort separately. Within a cohort, we see that between the first occasion (in the cohort), and the second
occasion after marking, individuals survive with probability ϕ j . However, from the second occasion
after marking onwards (within a cohort), they survive with probability ϕa .

Now, as we discussed previously, within a cohort we cannot differentiate between ‘time’ and ‘age’.
However,note that we can test whether a model with this structure differs from one where (say) survival
is constant (no age or time effect). But what we’re really after is ‘age’ as separate from ‘time’. Here is
where multiple cohorts come in. By contrasting parameter estimates among cohorts, but within a time
interval, we can differentiate age and time effects. For example, concentrate on the interval between
occasion 2 and occasion 3 (shaded area – below).

cohort 1 1
ϕ j

−→ 2
ϕa−→ 3

ϕa−→ 4
ϕa−→ 5

cohort 2 2
ϕ j

−→ 3
ϕa−→ 4

ϕa−→ 5

cohort 3 3
ϕ j

−→ 4
ϕa−→ 5

cohort 4 4
ϕ j

−→ 5

In terms of time, both cohorts 1 and 2 are experiencing the same ‘temporal effect’. In other words, all
individuals, whether they were newly marked at occasion 1 or occasion 2, are experiencing the aspects
or characteristics of the ‘environment’ causing mortality during this interval. However, in cohort 1, the
individuals at occasion 2 are 1 year of age, while those from cohort 2 are newborn. Thus, for cohort 1
individuals, they will survive from 2→ 3 with probability ϕa . In contrast, for cohort 2 individuals, they
are surviving from 2→ 3 with probability ϕ j .

If there were no age-specific differences in survival, then the ratio of survival of cohort 1 individuals
over this interval would be the same as the survival of cohort 2 individuals over this interval. In other
words, the ratio of ϕa/ϕ j would equal 1. Again, it is the contrast among cohorts (i.e., rows), but within

columns (i.e., intervals between occasions) that allows us to test for age differences in survival. This is
a very important concept to grasp, so it is critical that you spend the time now to make sure you do.

Let’s start to formalize our notation a bit. First, consider the question ‘what is the time axis of our
model?’. The time axis which we need to follow in an age-structured model is along the diagonal. For
example, consider again our model with constant juvenile and constant adult survival, we essentially
have 2 parameters. The differently shaded areas of our model (top of the next page) show the juvenile
(along the diagonal) and adult age classes (above the diagonal), respectively.
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cohort 1 1
ϕ j

−→ 2
ϕa−→ 3

ϕa−→ 4
ϕa−→ 5

cohort 2 2
ϕ j

−→ 3
ϕa−→ 4

ϕa−→ 5

cohort 3 3
ϕ j

−→ 4
ϕa−→ 5

cohort 4 4
ϕ j

−→ 5

The juvenile age class in this example spans one time interval (e.g., one year). The adult age class
(above the diagonal) spans n − 1 years, where n is the number of occasions, and ‘1’ is the duration of
the juvenile age class. If we re-write the matrix using numbers for subscripts instead of letters (let ‘1’ =
‘j’, and ‘2’ = ‘a’), then our model with constant juvenile and adult survival would be

cohort 1 1
ϕ1−→ 2

ϕ2−→ 3
ϕ2−→ 4

ϕ2−→ 5

cohort 2 2
ϕ1−→ 3

ϕ2−→ 4
ϕ2−→ 5

cohort 3 3
ϕ1−→ 4

ϕ2−→ 5

cohort 4 4
ϕ1−→ 5

Now, if we simplify this and re-write the parameter structure the way that MARK interprets it (using
only the subscripts), this 2 age-class model (juvenile, adult) is written as:

1 2 2 2

1 2 2

1 2

1

OK, now let’s expand our model somewhat, adding some more ‘flexibility’. Suppose for example
that juvenile survival varies over time, but that adult survival is constant through time.

If we now add time-dependence to the juvenile survival probability, but leave adult survival constant,
the model structure would now look like:

cohort 1 1
ϕ1−→ 2

ϕ5−→ 3
ϕ5−→ 4

ϕ5−→ 5

cohort 2 2
ϕ2−→ 3

ϕ5−→ 4
ϕ5−→ 5

cohort 3 3
ϕ3−→ 4

ϕ5−→ 5

cohort 4 4
ϕ4−→ 5

In the MARK parameter (PIM) format, this would reduce to:

1 5 5 5

2 5 5

3 5

4
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Let’s extend it one more step: let’s add time dependence to adult survival as well. This particular
model is important since 2 age-class models, with a juvenile age-class spanning one year, and a single
adult age class, with time-dependence in both, are very commonly seen in analysis of mark-recapture
data from wild populations.

Here is what the 2 age-class model with time-dependence in both age classes would look like:

cohort 1 1
ϕ1−→ 2

ϕ5−→ 3
ϕ6−→ 4

ϕ7−→ 5

cohort 2 2
ϕ2−→ 3

ϕ6−→ 4
ϕ7−→ 5

cohort 3 3
ϕ3−→ 4

ϕ7−→ 5

cohort 4 4
ϕ4−→ 5

As a final test, to see if you really understand the structure of these models, consider the following
situation. We have a 5 occasion study of a long-lived organism with indeterminate growth, and we
believe that survival may be age-dependent. We decide to model survival in the following way. 3 age
classes, the first age class spanning 1 year, the second age class spanning 1 year, and the final age class
spanning all remaining years. In other words, a single-year duration ‘juvenile’ phase, a 1-year duration
‘sub-adult’ phase, and the final ‘adult’ phase. Juvenile and sub-adult survival are time-dependent, but
adult survival is constant over time.

Here is the structure for this model:

cohort 1 1
ϕ1−→ 2

ϕ5−→ 3
ϕ8−→ 4

ϕ8−→ 5

cohort 2 2
ϕ2−→ 3

ϕ6−→ 4
ϕ8−→ 5

cohort 3 3
ϕ3−→ 4

ϕ7−→ 5

cohort 4 4
ϕ4−→ 5

With a bit of thought, you should be able to see how this model was constructed (look carefully at the
ordering of the parameter subscripts). If not, go back through the preceding few pages, and try again.
Age models are very important.

If you do ‘get the basic idea’, then let’s proceed to analysis of some simple 2 age-class models. We
will examine how to modify the standard CJS PIMs different for types of age models – modifying the
PIMs will let you construct an age (or cohort) model of arbitrary design. We will use the sample data
set AGE.INP. We ‘suspect’ that there are 2 age-classes in these data. We want to ‘confirm’ our suspicion
by using MARK to test the fit of various 2 age-class models versus the standard time-dependent CJS
model with no age effects. There is only one group in the data set, and 7 occasions (1 marking occasion
and 6 recapture occasions).

Our candidate models (i.e., the list of those models that we believe, based on our biological expecta-
tions, might be appropriate to these data) is shown at the top of the next page. Note the subscripting
conventions – with more ‘structure’ in our models (i.e., time, age, cohort), the subscripting can get a bit
tricky to handle in any intelligible fashion.
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model description

ϕt pt standard CJS model - no ‘age structure’ - time dependence in both survival and

recapture

ϕa2−./.pt 2 age-classes for survival (a2) - both age classes constant (./.) through time.

Time-dependent recapture.

ϕa2−t/tpt 2 age-classes for survival (a2) - both age classes time-dependent (t/t) through

time. Time-dependent recapture.

ϕa2−t/.pt 2 age-classes for survival (a2) - juvenile (first) age classes time-dependent, adult

age class constant over time (t/.) through time. Time-dependent recapture.

Clearly, we are focussing only on the survival side of things with these 4 models. However, do not get
the idea that age-effects are only relevant to survival. They’re not, and are equally as likely to show up
in recapture probabilities as well. As a general ‘rule’ – do not overlook modeling the recapture side of
things with as much interest and care as you do the survival side. We often tend to focus on the ‘finality’
of a survival analysis (since death has rather obvious fitness consequences), but why an individual isn’t
seen on a given occasion can be of equal interest.

By now, you should be able to start MARK and run the standard CJS model almost by reflex – go
ahead and do so, and add the results to the browser. Clearly, the CJS model makes a reasonable ‘null’ to
test against – it is well-parameterized, but has no ‘age structure’. Once the CJS model run is complete,
we’ll proceed and run the other 3 candidate models, in order, starting with {ϕa2−./.pt} – 2 age-classes
for survival, constant over time for both ages, and time-dependent recapture probability.

How do we run this in MARK? By now, you should recognize that virtually all models in MARK

are set by manipulating the PIMs and/or the design matrix, either alone or in combination (if you
don’t realize this, for shame – and go back and re-read Chapter 6). In this case, since all we’re doing
is changing the way in which the parameters are indexed (to reflect the age-structure), we modify the
PIMs. So, bring up the survival and recapture PIMs.

Obviously, the recapture PIM will ‘look’ like the standard CJS PIM we’ve seen many times already
– full time-dependence (this is what MARK defaults to). But what about the survival PIM? How do
we modify to reflect the model structure {ϕa2−./.pt}? Actually, for this particular model, it’s pretty easy.
MARK will let you construct this model using one of its built-in menu options. As a first step, you
should be able to write out what the PIM should look like before you construct it.

In this case, with 7 occasions, the PIM should reflect the following structure:

cohort 1 1
ϕ1−→ 2

ϕ2−→ 3
ϕ2−→ 4

ϕ2−→ 5
ϕ2−→ 6

ϕ2−→ 7

cohort 2 2
ϕ1−→ 3

ϕ2−→ 4
ϕ2−→ 5

ϕ2−→ 6
ϕ2−→ 7

cohort 3 3
ϕ1−→ 4

ϕ2−→ 5
ϕ2−→ 6

ϕ2−→ 7

cohort 4 4
ϕ1−→ 5

ϕ2−→ 6
ϕ2−→ 7

cohort 5 5
ϕ1−→ 6

ϕ2−→ 7

cohort 6 6
ϕ1−→ 7
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which corresponds to...

1 2 2 2 2 2

1 2 2 2 2

1 2 2 2

1 2 2

1 2

1

Make sure you understand the connection. Pay particular attention to the parameter subscripting
(which of course leads to the parameter indexing you need to keep track of when constructing the
PIMs, and reading the output).

Again, while it would be relatively straightforward to modify the survival PIM to reflect this structure
by manually editing each cell, MARK makes it much easier for you than that. As we’ve seen in earlier
chapters, one of the handy features of MARK is the ability to modify the PIMs through the ‘Parameter
Index Chart’ (PIM chart). Open up the PIM chart,which initially reflects the CJS time-dependent model.

Moving the cursor over the survival ‘blue box’ in the PIM chart (the one in the lower left-hand
corner), right click the mouse. This will spawn a menu allowing you to select from a variety of ‘built-in’
parameter structures. Obviously, the ‘Age’ model is the one we’re interested in here, so go ahead and
select ‘Age’ from this menu.
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You will then be presented with a small dialogue window asking you to define the age of the oldest
age class. Now, this is potentially confusing. If each age class spans one year, this is the same as asking
‘how many age classes do you want’? For example, if the oldest age class is 3 years, then there will be
3 age classes, each spanning one year in length. Seems reasonable enough. In our analysis, we want 2
age classes: one for ‘juveniles’ or ‘young’ (i.e., the first year after marking as offspring), and ‘adult’. So,
the oldest age class is 2 years.

Once you’ve clicked ‘OK’, the PIM chart will reflect this change. To eliminate any ‘gap’ between the
two parameters in the PIM chart, you can simply left-click and drag the box corresponding to recaptures
over to the left. Ultimately, the PIM chart should look like:

Now, in some senses, the PIM chart doesn’t give you the best indication of the actual PIM structure.
To look at it (and to confirm the PIM is structured correctly), right-click again over the survival ‘box’
in the PIM chart, and open the corresponding PIM window (one of the menu options). Then, close the
PIM chart and have a look at the survival PIM (shown at the top of the next page).
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As you can see, it looks exactly as we wanted it to (check back earlier in this chapter if you don’t
remember the details for this model). Go ahead and run this model – we’ll use the default sin link, and
name the model ‘phi(a2-./.)p(t)’. Add the results to the browser.

The next model is {ϕa2−t/tpt} – 2 age-classes, but this time with full time-dependence within each
age-class. Time-dependent recapture.

Here is the structure of this model (and the corresponding PIM):

cohort 1 1
ϕ1−→ 2

ϕ7−→ 3
ϕ8−→ 4

ϕ9−→ 5
ϕ10−→ 6

ϕ11−→ 7

cohort 2 2
ϕ2−→ 3

ϕ8−→ 4
ϕ9−→ 5

ϕ10−→ 6
ϕ11−→ 7

cohort 3 3
ϕ3−→ 4

ϕ9−→ 5
ϕ10−→ 6

ϕ11−→ 7

cohort 4 4
ϕ4−→ 5

ϕ10−→ 6
ϕ11−→ 7

cohort 5 5
ϕ5−→ 6

ϕ11−→ 7

cohort 6 6
ϕ6−→ 7

which corresponds to...

1 7 8 9 10 11

2 8 9 10 11

3 9 10 11

4 10 11

5 11

6

How do you get the PIM to look like this in MARK? There is no simple menu option for this model
(the menu we used for the previous model only allows you to build age models which are constant over
time in each age class).

However, there is a relatively simple way to construct the PIM. First, you need to pay attention to the
parameter indexing. Note that the largest value on the diagonal representing the first age-class is ‘6’,
and the first adult parameter value is (therefore) ‘7’.
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So, here’s what you do:

1. make the first cell value ‘6’, instead of ‘1’

2. pull down the ‘Initial’ menu,and select ‘Time’. This will create a PIM that is a standard
CJS time-dependent PIM, but one that starts with ‘6’.

3. next, go back to the first cell, and click it again. Pull down the ‘Initial’ menu, and
select ‘Diagonal’. When you do, MARK will present you with a window asking you
which diagonal you want to modify – since you’ve clicked in the first cell, it will default
to the first diagonal, but you can always change this. It will also ask you what you want
the starting parameter value to be. Change it to ‘1’, and click ‘OK’.

Now, have a look at the PIM – it should look exactly like we want it to – time-dependent indexing
along the first diagonal from 1 → 6, and then time-dependence for the second ‘adult’ age class, from
7→ 11.

What we just did makes use of the fact that this model is basically a modification of the CJS model
– in fact, the classic time-dependent structure within cohort is maintained for the second age-class, so
all you do is figure out what the first parameter value would need to be for this age class, and go from
there. With a bit of thought, we think you’ll get the hang of it.

Now, before you run this model – have a look at the relative indexing of the survival and recapture
PIMs. You can do this easily by using the ‘Parameter Index Chart’, from the ‘PIM’ menu.

What do we see? The PIM chart is shown at the top of the next page. We see that the parameter
indexing is ‘overlapped’ between the 2 parameters – this is not good, and is not something that MARK

will ‘fix behind the scenes’. As such, you must correct this problem yourself. The easiest way to do this is
by modifying the ‘overlap’ via the PIM chart itself. You can either (i) drag the recapture ‘box’ to the right,
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or (ii) use the ‘Renumber without overlap’ option. Simply right-click anywhere in the PIM chart, and
select ‘Renumber no overlap’. This will do the trick. But double-check your indexing – we can’t stress
this enough. The PIM chart can be very useful for doing this. If your parameters are overlapped (as
above), MARK might run successfully (i.e., it won’t crash, burn, fold and mutilate your computer), but
your estimates won’t reflect the model you’re really after. There are cases where overlap is desired, but
not here. Once you’ve corrected the indexing, go ahead and run the model – name it ‘Phi(a2-t/t),p(t)’,
and add the results to the browser.

The final model is {ϕa2−t/.pt} – 2 age-classes, with time-dependence in the first age-class, but constant
survival in the second age-class. This model is very common foranalysis of individuals marked as young
– temporal variation in the first age class, but no variation among ‘adults’. The idea, of course, is that
individuals may be more susceptible to annual variation in conditions affecting survival in their first
year than they are if they survive to adulthood.

Here is the structure and PIM for this model:

cohort 1 1
ϕ1−→ 2

ϕ7−→ 3
ϕ7−→ 4

ϕ7−→ 5
ϕ7−→ 6

ϕ7−→ 7

cohort 2 2
ϕ2−→ 3

ϕ7−→ 4
ϕ7−→ 5

ϕ7−→ 6
ϕ7−→ 7

cohort 3 3
ϕ3−→ 4

ϕ7−→ 5
ϕ7−→ 6

ϕ7−→ 7

cohort 4 4
ϕ4−→ 5

ϕ7−→ 6
ϕ7−→ 7

cohort 5 5
ϕ5−→ 6

ϕ7−→ 7

cohort 6 6
ϕ6−→ 7
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which corresponds to...

1 7 7 7 7 7

2 7 7 7 7

3 7 7 7

4 7 7

5 7

6

We’ll leave it to you to figure out how to construct this PIM in MARK – all you need to do is modify
the logic used for the last PIM a bit. Again, check your parameter indexing. Since the largest value in the
survival PIM is 7, the first value in the recapture PIM must be at least 8. Go ahead and run the model,
name it ‘Phi(a2-t/c),p(t)’, and add the results to the browser. There should now be 4 model results
in the browser.

We see from the results browser that the CJS model is clearly inappropriate for these data – any of
the models with age-structure fit better, by any criterion you want to use (no pun intended). In fact, you
might want to run these data through RELEASE – by looking carefully at the results from TEST 3, you
should see some clue as to the ‘sources of lack of fit to the CJS model’ – in this case, the source being
significant age structure. (By the way, you might be – or should be – asking yourselves about doing
a GOF test for the general model, to derive an estimate of ĉ. The general model in this case is model
{ϕa2−t/tpt}. While we could use the bootstrap, median-ĉ or Fletcher-ĉ here, there is no need, since the
data are simulated under this model with ĉ � 1.0).

Among the age models, the model with time-dependence in the first age class, but constant survival
among the ‘adults’ has the lowest AIC value, and is a little over twice as well supported by the data
than the next best model (the model with time-dependence in both age classes). The LRT comparison
of these 2 best models shows that the difference in fit is not significant (χ2

3 � 4.57, P > 0.2). In other
words, the addition of time-dependence to the ‘adult’ class did not significantly improve the fit – thus
we select the more parsimonious model with constant survival in this age class.

Now, before we go much further, how did MARK count the parameters for these models? Again,
although MARK does very well in parameter counting, it is always a good idea to know yourself how
many potential parameters there are – if for no other reasonthan to be able to spot discrepancies between
the ‘potential’ and ‘actual’ number of parameters estimated given the data. Let’s consider the model
with the most parameters – model {ϕa2−t/t pt}, with time-dependence in both age-classes.

How many individually identifiable parameters are in this model? The saturated capture histories,
and their associated probability functions, are shown at the top of the next page. Make sure you see
how these functions were derived from the survival and recapture matrices.
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capture history probability

1111111 ϕ1p2ϕ7p3ϕ8p4ϕ9p5ϕ10p6ϕ11p7

0111111 ϕ2p3ϕ8p4ϕ9p5ϕ10p6ϕ11p7

0011111 ϕ3p4ϕ9p5ϕ10p6ϕ11p7

0001111 ϕ4p5ϕ10p6ϕ11p7

0000111 ϕ5p6ϕ11p7

0000011 ϕ6p7

Now, of course, the next step is to determine which of the parameters in this table are individually
identifiable. By now you may have realized that the ‘critical’ part of this process typically involves
looking at the terminal products. In this case, we have 2 different products: ϕ11p7 and ϕ6p7. Are these
β terms? If you think about it for a moment, you might realize that the answer is ‘yes‘ – since p7 is
not identifiable. Thus, 16 identifiable parameters. This model corresponds to Table 7D in Lebreton et al.
(1992). They note that for this model, the number of identifiable parameters is given as (3k − 5), where k

is the number of occasions. Since k � 7 in this example, we see that (3k − 5) � (21− 5) � 16 parameters.
Which is exactly what MARK gives us in the results browser.

What about the 2 other age models – {ϕa2−./.pt} and {ϕa2−t/.pt}? Start with the first one – since
both adult age classes have constant survival, the saturated capture-histories and their corresponding
probability statements are:

capture history probability

1111111 ϕ1p2ϕ2p3ϕ2p4ϕ2p5ϕ2p6ϕ2p7

0111111 ϕ1p3ϕ2p4ϕ2p5ϕ2p6ϕ2p7

0011111 ϕ1p4ϕ2p5ϕ2p6ϕ2p7

0001111 ϕ1p5ϕ2p6ϕ2p7

0000111 ϕ1p6ϕ2p7

0000011 ϕ1p7

Make sure you can derive the the probability statements for this model yourself. How many estimable
parameters? MARK tells us there are 8 estimable parameters for this model. Is this consistent with the
probability statements? There are clearly 2 potential survival parameters (ϕ1 and ϕ2), and 6 potential
recapture parameters (p2 to p7) – 8 total potential parameters. Are they all estimable? If you recall
from earlier chapters where we deal with models where one or more parameters were held constant, in
such cases, there are generally no confounded terminal p and ϕ since some parameters are estimable
because other parameters are held constant across occasions. This is the case here – all 8 parameters
are estimable, so MARK is correct.

What about the other model – model {ϕa2−t/.pt} – which has both a constant survival (the ‘adult’
age-class) and time-dependent survival term (the ‘juvenile’ age class)? Are all terms estimable? Yes!
How many? 13 – exactly what MARK tells us: 7 survival parameters, and 6 recapture parameters. Why
are ϕ6 and p7 separately estimable? Simply because one of the elements (p7) is estimable from earlier
cohorts.

So, we see that MARK has correctly calculated the number of estimable parameters for all 3 age
models. However, the only way to know if MARK is ‘correct’ is to know how to count the parameters
yourself. It can be a somewhat laborious process (admittedly), but it is probably worth the effort.
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7.2. Constraining an age model

Constraining an age model is not much more difficult than constraining a model without age structure,
but there are a few things you need to keep in mind. We’ll start by looking at how we would construct
the design matrix to correspond to the PIM for survival for a simple age model, with 7 occasions, 2 age
classes, and time-dependence in each age class. We’ll analyze some simulated data, which are contained
in age_2class.inp, with the following parameter structure for ϕ and p, respectively:

1 7 8 9 10 11

2 8 9 10 11

3 9 10 11

4 10 11

5 11

ϕ 6

12 13 13 13 13 13

12 13 13 13 13

12 13 13 13

12 13 13

12 13

p 12

So, 2 age-classes for survival, with full time-dependence in each age class, while for the encounter
probability, 2 age-classes, but no time variation within each age class.

Here are the results of fitting this model (based on PIMs), using a logit link, to the data:

Now, the linear models/design matrix approach - we’ll focus mainly on modeling survival. Based
on the number of indexed parameters in the survival PIM (above), we know that our design matrix for
survival will need to have 11 rows and 11 columns.

What does the linear model look like? Again, writing out the linear model is often the easiest place to
start. In this case we see that over a given time interval, we have, in effect, 2 kinds of individuals: juveniles

(individuals in their first year after marking), and adults (individuals at least 2 years after marking).

Thus, for a given TIME interval, there are 2 groups: juvenile and adult. If we call this group effect AGE,
then we can write out our linear model as

logit(ϕ̂) � AGE + TIME + AGE.TIME

� β1 + β2(AGE) + β3(T1) + β4(T2) + β5(T3) + β6(T4) + β7(T5)

+ β8(AGE.T2) + β9(AGE.T3) + β10(AGE.T4) + β11(AGE.T5)

Whoa – wait a minute! How did you get this linear model from the survival PIM? If you look closely
at the equation, you’ll see that there is no (AGE*TIME1) interaction term. What’s going on here?

OK. . .step by step. The first term (β1) is the intercept. Easy enough. The second term (β2) corresponds
to the AGE effect (where in this case we have 2 age classes, juvenile and adult – think of the different ages
as different levels of a grouping factor AGE). Thus, one ‘slope’, since the 2 levels of the AGE effect require
only 1 column of dummy variables.

The next 5 terms (β3 → β7) correspond to the first 5 levels of TIME. Recall that there are 6 intervals,
but that we need only 5 columns to code for these intervals (since if T1 � T2 � T3 � T4 � T5 � 0, then the
time interval must be 6). Thus, only 5 ‘slopes’ coding for the 6 different time intervals.
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Now, the potentially ‘tricky’ part – the interaction terms. If you look carefully – very carefully – at
the linear model equation

logit(ϕ̂) � AGE + TIME + AGE.TIME

� β1 + β2(AGE) + β3(T1) + β4(T2) + β5(T3) + β6(T4) + β7(T5)

+ β8(AGE.T2) + β9(AGE.T3) + β10(AGE.T4) + β11(AGE.T5)

you’ll notice that it did not include a term for an (AGE.T1) interaction. Why? You need to think a bit
carefully here. Remember, we’re treating the two age classes as (in effect) different groups. If you look
back at the examples in Chapter 4, you’ll notice that, in those cases, the groups being compared (male vs.
female, good vs. poor) were ‘temporally symmetrical’ – i.e., had the same number of sampling occasions
for both groups. In our present age-structured example, however, this is not the case. Look closely at
the survival PIM –

1 7 7 7 7 7

2 7 7 7 7

3 7 7 7

4 7 7

5 7

6

Note that we have 6 parameters for the juvenile age class (1→ 6, corresponding to the first 6 intervals
of the study) but only 5 parameters for the adult age class (7→ 11, corresponding to intervals 2→ 6).

If you look closely, you’ll see that we don’t have an ‘adult’ estimate over the first interval for the first
cohort, since there were no ‘known’ adults at that point in the study. Thus, in the first time interval,
there are no adults, and thus, there is no logical interaction of the AGE and TIME factors in this interval
(since there is only one age class!). In other words, no (AGE.T1) term. The first time interval for which
there is a potential interaction of AGE and TIME is interval 2 (look at the PIM again to confirm this for
yourself). If you don’t see the connection between the PIM, and the linear model, take some time now
to work through everything, to make sure that you do. It’s a very important concept.

Here is the design matrix for our age model, with time-dependence in both age classes for survival
(we’ll use a simple identity structure for p):

Make sure you see the connection between the linearmodel,and this design matrix. Note in particular
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that (i) there are 6 rows corresponding to intervals 1 → 6 for juveniles, with 5 rows corresponding to
intervals 2→ 6 for adults, and (ii) that the time indexing (along the diagonal) starts at interval 2 for the
adults, and for the interaction columns.

Go ahead an run this model, and add the results to the browser (below). As expected, the fits of both
the PIM- and DM-based models to the data are identical.

To test your understanding, let’s consider a couple of more examples. First, consider a model with
2 age-classes for apparent survival, with time-dependence for the first (juvenile) age-class only (adult
survival is held constant over time). The PIM structure for ϕ for this model is shown below:

1 7 7 7 7 7

2 7 7 7 7

3 7 7 7

4 7 7

5 7

6

Let’s first build this model {ϕa2−t/.pt} using PIMs, and add the results to the browser:

Now, let’s try building this same model, but using a DM approach. Start by retrieving model
{ϕa2 t/t pt} from the browser – the DM for that model is shown below:

In this design matrix we have time-variation for both juvenile and adult age classes.
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However, here we are trying to build model {ϕa2 t/.pt} – time-variation in juvenile survival only. So,
we need to modify the DM such that survival is held constant for the adult age class. It might help to
consider the linear model for the TIME factor, for the two age classes separately. For juveniles, with time
variation, the linear model would consist of 5 β terms, coding for the 6 time intervals. In contrast, for
adults, survival is constant over time. Recall from chapter 6 that such a constant (‘dot’) model can be
modeled by using a simple ‘intercept’ – i.e., a single column of 1’s.

Keeping this in mind, here is the DM modified to represent model {ϕa2−t/.pt}:

Note that we no longer have any interaction of age with time (since there is no longer time variation
for the adults), and that we have eliminated all the time indexing for the adults (parameters 7→ 11).

If we run this model, and add the results to the browser (shown at the top of the next page), we see
that it yields results which are identical to that from the model built using PIMs (which indicates that
the two models are equivalent; i.e., that our DM is correct).

A final example. Consider a model with 2 age-classes, with time-dependence in each age class. In
this example, we have some reason to believe that there is a linear change in survival over time in both
age classes (i.e., that survival is varying systematically – increasing or decreasing – over time).

How would we fit this model? Well, if you think about it, it is very similar in structure to a classical
ANCOVA, except that here our two groups represent the two age classes. In other words, we want to
compare the slopes of the linear trend in survival between young and old individuals. If the slopes are
not significantly different, we could test against a model with a common slope for both age classes.

First, we need to know the index values of the parameters we’re going to constrain. We are going to
constrain survival. From the preceding example, we know that for ‘juveniles’, the parameters of interest
are 1→ 6, and for ‘adults’, the parameters are 7→ 11. So, all we need to do is modify the design matrix
we just created accordingly.

How do we handle the vector of increasing values to handle the trend? Recall from Chapter 6 that
we could ‘model’ trend simply by specifying an ordinal sequence of numbers in the design matrix. But,
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should we use 1 → 6 for juveniles, and 2 → 6 for adults (which corresponds to where the overlap
occurs), or is it equivalent to use 1→ 6 and 1→ 5 respectively?

As it turns out, it doesn’t matter at all to MARK – at least not mechanically (i.e., MARK will run
just fine in either case). However, note that in the second case you would, in effect, be coding each time
step differently for each group, which makes the intercepts no longer comparable. Thus, if you choose
to accommodate the overlap, the first coding scheme (1→ 6 for juveniles, and 2→ 6 for adults in this
example) is preferred. Another possibility, of course, is to drop the first juvenile parameter altogether
from our constraint. In other words, to include only those parameters which ‘overlap’ (i.e., 2 → 6 and
7→ 11).

For our trend analysis, we’ll use the former approach, which includes survival for the first age class
over the first interval. In this case, the design matrix for the survival elements would look like:

All you need to do now is run MARK, and apply the constraint to the underlying model (2 age-
classes with time-dependence for survival, simple time-dependence for recaptures). And, as discussed
in detail in Chapter 6, by varying which columns of the design matrix you use in the constraint, you
can test hypotheses concerning equivalence of slope between age classes, equivalence of intercepts,
and so forth. You could also test for additivity (parallelism) in survival for a time-dependent model.
Everything covered in Chapter 6 in terms of constraining an underlying CJS model applies equally well
to age models (or cohort models, or any models).

An important ‘nuance’ – continuous covariates

In the preceding, we considered the construction of the interaction terms for 2 types of models: one
where ‘age’ and ‘time’ were both (classification) factors, and one where ‘age’ interacted with ‘time’
constrained to follow a linear trend over time. In the first case, we considered the complication that
there is no logical interaction of ‘age’ and ‘time’ for the first interval, since only the first juvenile age
class is present in our marked sample over the first interval (i.e., no adults). In this case, we only included
time intervals 2→ 6 in the interaction of ‘age’ and ‘time’, as shown (again) in the DM at the top of the
next page.

Chapter 7. ‘Age’ and cohort models...



7.2. Constraining an age model 7 - 19

In the second case, where ‘time’ was constrained to follow a linear trend within each age class, we
used the following DM:

While this seems reasonable enough at first glance, you might now wonder why we included the
interaction for the first time interval, since there are only juveniles present during that interval. For
example, why didn’t we use something like the following:

where we put a ‘0’ in the first row of the interaction column?
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Well, as it turns out, if we try this approach, MARK will give us the wrong answer. How do we know
this?

Well, let’s first start by considering a different approach to modeling trend within each age classes,
with interaction between the age classes. Rather than use a common intercept (which we prefer in
general because it allows us to build the additive models introduced in Chapter 6), we’ll use a DM
where each age class has it’s own intercept:

If we run this model, we see that in fact it yields the same deviance and parameter estimates as the
model we fit originally, using a common intercept (i.e., the DM at the bottom of the preceding page).

What is important here is that in this case, ‘time’ is no longer a simple, unconstrained factor, but is
being constrained as a linear function – in this case,constrained to follow a linear trend. When ‘time’ is an
unconstrained factor, we need to only include interactions where both ‘time’ and ‘age’ occur. However,
when ‘time’ is constrained to be a linear function of something (say, a trend, or some environmental
covariate), then we need to include all time steps in the interaction.

We can demonstrate this by means of another example. Suppose that instead of constraining variation
in ‘time’ to follow a trend, we constrain variation to be a linear function of some environmental
covariate (say, average temperature). Suppose that the average temperature over each of 6 intervals
is: {10, 14, 22, 11, 15, 17}.

Here is the DM using a separate intercept for each age class, where survival within a given age class
is constrained to be a function of the average temperature:

The model deviance for this DM fit to the data (with full time-dependence in p) is 5102.437.
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Now, if we try a DM with separate intercepts for each age class, and leave out the interaction for the
first time interval for juveniles

yields a model deviance of 5088.601, which is not the same. And, clearly, then, it isn’t the same model
we constructed initially using separate intercepts for each age class.

However, if we include the first interval for juveniles in the interaction

the model deviance is 5102.437, identical to the model we fitting using a DM with separate intercepts.

The reason for the difference here – needing to include the covariate interaction for all time intervals
is we need to fully specify the linear relationship between the parameter and the covariate. Leaving
out one covariate for a particular age class, and replacing it with a 0, would change the nature of the
linear model for the covariate. In contrast, for ‘time’ as a factor, there is no underlying linear model for
time. This is a subtle point of distinction, and one you need to think about a bit, whenever you have a
‘grouping’ factor (like ‘age’) with unequal number of time intervals (say, between juveniles and adults).

7.2.1. DM with > 2 age classes: ‘ugly’ interaction terms

As noted in the preceding examples involving 2 age classes, the key consideration to building the
design matrix for age models in general are (i) keeping track of the asymmetry of which age classes in
the marked sample are represented at each occasion, and (ii) how to handle the interactions among age
classes. These challenges are compounded for analysis involving > 2 age classes.
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Consider the following PIM, for (say) apparent survival, ϕ:

1 7 12 13 14 15

2 8 13 14 15

3 9 14 15

4 10 15

5 11

6

Here, we have specified 3 age classes with time-dependence within each age class: parameters 1→ 6

for the first age class (for the first 6 time intervals), parameters 7→ 11 for the second age class (for time
intervals 2→ 6), and parameters 12→ 15 for the third and final age class (for time intervals 3→ 6).

With > 2 age classes, we’ll need to have > 1 β parameter (slope) in the linear model to code for ‘age
group’: (k − 1) � (3 − 1) � 2 parameters, in fact. In addition, for 7 occasions (6 time intervals) we need
(k − 1) � (6 − 1) � 5 parameters for time.

Thus, our linear model starts with the following structure

logit(ϕ̂) � β1 + β2(AGE1) + β3(AGE2) + β4(T1) + β5(T2) + β6(T3) + β7(T4) + β8(T5)

+ ‘numerous interaction terms’

The challenge, then, are the interaction terms, and we’ll need to be somewhat careful in constructing
them. Since there are 2 columns of dummy variables for ‘age’ (β2 and β3), and 5 columns for ‘time’
(β4 → β8), then you might thinkwe’dneed (2×5) � 10 columns for the interactions,and thus (8+10) � 18

total parameters (i.e., β terms) in our linear model.

However, if you look back at the PIM at the top of the page, you might realize that this conclusion
would be incorrect. How many parameters are there in the PIM? Clearly, there are 15 parameters. As
such, the linear model for this parameter structure can only have 15 parameters, not 18. In fact, the linear
model must have exactly 15 terms – one for each parameter in the PIM.

Clearly, our initial conclusion was incorrect – but, why? The problem is that when we calculated
the number of interaction columns, we neglected to account for the fact that in an ‘age’ model, not all
interactions between ‘age’ and ‘time’ are plausible. Have another look at the PIM structure. What are the
intervals for which there are interactions between age-class 1 individuals (first diagonal) and age-class
2 individuals (second diagonal)? In other words, in what intervals might the estimates differ between
these 2 age classes?

1 7 12 13 14 15

2 8 13 14 15

3 9 14 15

4 10 15

5 11

6

The shaded parts of the PIM indicate clearly where these interactions occur – they occur in intervals
(2→ 6). There is no interaction of age-class 1 and age-class 2 individuals in the marked population for
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interval 1, since there are no age-class 2 individuals in interval 1! This is exactly the same situation we
saw for the simpler 2 age-class model introduced at the start of this section.

Let’s add terms to the linear model to reflect these plausible interactions between these 2 age classes
(i.e., age-class 1 and age-class 2). We enter a term in the linear model (below, second line of the equation)
for each of the intervals for which there is a logical (possible) interaction of these two age classes
(intervals 2→ 6); k = 5 intervals, 4 β terms):

logit(ϕ̂) � β1 + β2(AGE1) + β3(AGE2) + β4(T1) + β5(T2) + β6(T3) + β7(T4) + β8(T5)

+ β9(AGE1 · T2) + β10(AGE1 · T3) + β11(AGE1 · T4) + β12(AGE1 · T5)

+ ‘remaining interaction terms’

If you looked at the equation closely, you might have noticed that we used the subscript ‘1’ for AGE for
these new interaction β terms. Why? Remember that we have 3 age classes here, so we need 2 columns
of dummy variables to code for it. If we use

β2 �

{

1 if age = 1
0 if other

β3 �

{

1 if age = 2
0 if other

then AGE3+ is the reference age class (for individuals age ≥ 2 years), AGE1 corresponds to age-class 1 year
individuals, and AGE2 corresponds to age-class 2 year individuals. So, for the first interaction, you’re
multiplying the column for β2 against the (5 − 1) � 4 columns for those time intervals where the
interaction between age-class 1 and age-class 2 occurs, which yields 4 β terms for that interaction.

What about for the interactions between age-class 2 and age-class 3+ individuals? Again, have a
careful look at the PIM (below):

1 7 12 13 14 15

2 8 13 14 15

3 9 14 15

4 10 15

5 11

6

The shaded parts of the PIM indicate where (i.e., over which time intervals) the interactions of age-
class 2 and age-class 3+ individuals occur – over intervals (3→ 6).

So, as above, we enter a term in the linear model (below, third line of the equation) for each of the
intervals for which there is a logical (possible) interaction of these two age classes (in this case, intervals
(3→ 6); k � 4 intervals, (k − 1) � (4 − 1) � 3 separate β terms):

logit(ϕ̂) � β1 + β2(AGE1) + β3(AGE2) + β4(T1) + β5(T2) + β6(T3) + β7(T4) + β8(T5)

+ β9(AGE1 · T2) + β10(AGE1 · T3) + β11(AGE1 · T4) + β12(AGE1 · T5)

+ β13(AGE2 · T3) + β14(AGE2 · T4) + β15(AGE2 · T5)

For these interactions, you’re multiplying the column for β3, reflecting AGE2, against the (4 − 1) � 3

columns for those time intervals where the interaction between 2 and 3+ occurs, which yields 3
additional β terms for that interaction.
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Note that our linear model (bottom of the previous page) now has 15 terms (β1 → β15), matching
the number of parameters in the underlying PIM. This would imply that in fact, our linear model must
be ‘complete’.

But, this explanation, while logically consistent, is perhaps not particularly satisfying. Another
approach which might help here is to look closely at the dummy variable coding for the different AGE
groups in the DM (shown below), which corresponds to the structure of the linear model shown at the
bottom of the previous page (and which we’ve claimed is ‘complete’):

If you look at the DM closely, you’ll recall that a few pages back, we made the arbitrary (in this
example) choice that age-class 3+ individuals are coded as ‘0’ for β2 and ‘0’ for β3, and thus – since
the product of 0 with anything is still 0 – there are no possible interaction terms possible. So, in fact,
the preceding design matrix (above) is the final, finished design matrix, and our linear model is in fact,
complete.

As a final check, we’ll demonstrate this empirically (in other words, let’s prove to ourselves that
we’ve got it right). We’ll use some simulated live encounter data (age_3class.inp), generated from the
following ‘true’ parameter structure for ϕ and p, respectively:

1 7 12 13 14 15

2 8 13 14 15

3 9 14 15

4 10 15

5 11

ϕ 6

16 17 18 18 18 18

16 17 18 18 18

16 17 18 18

16 17 18

16 17

p 16

So, 3 age-classes for survival, with full time-dependence in each age class, while for the encounter
probability, 3 age-classes, but no time variation within each age class.
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So, we’ll start by building the model using PIMs (based on the preceding). We’ll fit this model using
the logit link, and add the results to the browser:

Now, we construct the same model, using the DM we developed on the previous page. For modeling
encounter probability, we’ll use a simple identity matrix:

As we expected, the results are identical between the two models:

Now, for a real test – how would the design matrix change if you had made age 1 the reference age
class in your dummy variable coding scheme?

β2 �

{

1 if age = 2
0 if other

β3 �

{

1 if age = 3
0 if other

Would the linear model itself change, or just the structure of the design matrix (or both)? We’ll leave
that to you as an ‘exercise’. Of course, you should realize by now that while changing the reference age
class will change your interpretation of the β’s, it won’t change the overall fit of the model to the data.
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7.3. Using data where both young and adults are marked

Everything we have covered concerning age models has to this point assumed that we were dealing
with individuals all marked as young (or, at the least, at a common age). However, very commonly when
we take samples from populations we sample individuals from several age classes, and individually
mark any unmarked individuals. For example, if our sample contains both newborns and adults, we
will mark both age classes. Of course, we could choose to just mark the young, but this is often not
desirable. Analytically, the question becomes – how to deal with data from both groups of newly marked
individuals? In fact, the use of the word ‘group’ was intentional – the solution is simply to treat both
types of individuals as different groups with MARK.

Previously, we have compared males and females, or controls and treatments, or good and poor
colonies. In this case we simply have ‘marked as young’ versus ‘not marked as young’. In this case, we
are testing the hypothesis that survival within an age-class over a given interval doesn’t depend upon
the age at which the individual was marked.

How do we do this in MARK? Easy – in fact, it requires only a slightly more involved application
of what we’ve already done. In effect, the analysis becomes one of comparing survival over a given
interval between these two ‘groups’ (marked as young and marked as adult)- we condition our data
based on the age at which the individual was marked: young or adult. For the birds marked as young,we
clearly anticipate the possibility of age-specific differences in survival. Let’s assume time-dependence
in survival in the first age-class (spanning one year), with time variation in the adult age classes – for
this group (i.e., marked as young). Assume 5 occasions. Thus, our PIM for birds marked as young would
have the following structure:

1 5 6 7

2 6 7

3 7

4

Butwhatabout the individuals marked as adults? Well, foradults we assume simple time-dependence.
We don’t expect any age-specificity in adult survival.

So, our PIM file for adults would be:

8 9 10 11

9 10 11

10 11

11

What comes next? Well, basically what we want to determine is whether or not the ‘adult survival’
differs between the 2 groups. In other words, do the estimates for parameters 5 → 7 (adult survival
probabilities for birds marked as young) differ significantly from estimates for parameters 9→ 11 (adult
survival for individuals marked as adults).

Why is parameter 8 not included in our comparison? If you think about it for a moment, you’ll realize
why. Parameter 8 is the probability of a bird marked as an adult at occasion 1 surviving to occasion 2. It
cannot be compared with the estimate for parameter 1, which is the survival of an individual marked
as a juvenile at occasion 1 to occasion 2. So, we would be comparing ‘apples and oranges’ – a juvenile
survival probability with an adult survival probability. By now, you should know exactly how to do
this comparison.
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In fact, you should realize that there are several ways you could do this – you could modify the
PIMs, or modify the design matrix. The most straightforward approach is to modify the PIMs – simply
setting the various parameters equal to each other, by using the same index value. Which parameters?
5 � 9, 6 � 10, 7 � 11.

So, the PIMs would then look like:

1 5 6 7 8 5 6 7

2 6 7 5 6 7

3 7 6 7

4 7

Got it? Make sure you do! Notice that there the main difference is that with individuals marked
as both young, and adults, there are both young and adults in the first interval. Thus, the parameter
indexing in the PIMs must (in general) reflect this – note that we’ve used 1 for marked as young, and 8
for marked as adults. The actual indexing (numbering) isn’t as important as the structural differences
in the PIMs. Since it is very common to work with data containing individuals marked both as young,
and as adults, it’s important you truly understand what we’re doing here.

7.3.1. Marked as young and adult: the design matrix. . .

Now, for the big test of your understanding of design matrices, and age models. Consider the following
problem – again, we focus on a situation where individuals are marked as both young and adults.
Assume that our general model is a model with 2 age classes for individuals marked as young, 1 age
class for individuals marked as adults. Assume full time-dependence for apparent survival, with no
time variation in encounter probability between adults or young, but different encounter probabilities
between the two groups. Assume we have 7 occasions. The data for this ‘test’ are contained in
AGE_YA.INP.

Now, we could build our general model using PIMs – here are the apparent survival PIMs, for marked
as juveniles, and marked as adults, respectively.

1 7 8 9 10 11 12 13 14 15 16 17

2 8 9 10 11 13 14 15 16 17

3 9 10 11 14 15 16 17

4 10 11 15 16 17

5 11 16 17

6 17

Parameters 1 → 6 represent first-year survival among those marked as young, parameters 7 → 11

corresponds to adult survival for individuals marked as young (remember, for such individuals, there
is no adult survival for the first interval, since there are no adults yet!). Parameters 12→ 17 correspond
to adult survival for individuals marked as adults, and (finally) parameters 18 and 19 correspond to
encounter probability for individuals marked as young, and adult, respectively. Got it? Make sure you
do.

Now, while this is all well and good, and we could build our general model this way, using the PIM
chart, we realize by now (you should!) that this is ultimately limiting, since there are some models we
can’t build using the PIM’s. For example, additive models (such as, a model where adult survival and
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offspring survival for individuals marked as young differed by an additive constant). So, in general, it
is recommended you try to build your general model using the design matrix. Your challenge, then, is
how to build a design matrix which corresponds to this PIM chart.

Actually, it’s not too bad, if you think it through logically. First, we’ll start with writing out the linear
model for survival: it’s pretty ugly (since it has 17 terms), but it is a useful exercise. We’ll let M represent
‘age at marking’ (one level of grouping), and A represent the age of the individual (note that A is nested
within M). As per usual, we’ll let ‘T’ represent TIME.

To help you follow along, we’ve put main effects and each of the two interactions on separate lines
of the equation.

logit(ϕ̂) � β1 + β2(M) + β3(A) + β4(T1) + β5(T2) + β6(T3) + β7(T4) + β8(T5)

+ β9(M.T2) + β10(M.T3) + β11(M.T4) + β12(M.T5)

+ β13(A.T1) + β14(A.T2) + β15(A.T3) + β16(A.T4) + β17(A.T5)

A couple of comments are needed here. First, why no ‘3-way interaction term’ (i.e., why no M.A.T
columns?). Simple – there are no young individuals within those marked as adults, so there is no logical
3-way interaction. The same logic applies for ‘why no (A.M) column?’.

Second, why do the interactions of age at marking (M) and time (T) start with the second time interval,
whereas the interaction of age within age at marking (A) and time (T) start with the first time interval?
This is a subtle point – but an important one. If you look closely at the PIM structure for marked as
juveniles, and as adults, respectively

1 7 8 9 10 11 12 13 14 15 16 17

2 8 9 10 11 13 14 15 16 17

3 9 10 11 14 15 16 17

4 10 11 15 16 17

5 11 16 17

6 17

you’ll see that there are logical interactions of age (A, juvenile or adult) for all time intervals (thus,
interactions for A.T1 → A.T5), while for age at marking (M), there are really interactions starting only
with the second interval – there is no logical interaction for parameters 1 and 12 in the PIMs (thus,
interactions for M.T2 → M.T5). This is a bit tricky, so make sure you understand it.

OK, given this linear model, let’s start building our design matrix. We know we need an intercept
column (representing β1). Then, a column indicating whether the individuals were marked as young,
or adults (representing β2). Then (and perhaps the only tricky bit) another column which indicates the
‘age class’ (young or adult) within ‘marking’ group (for example, young or adult among those marked
as young, and obviously adult only for those marked as adults). This represents β3 in the linear model.

Our DM so far is shown at the top of the next page – make sure you study it carefully. Here, column
B1 is the intercept, B2 is a dummy variable for ‘marking’ group (M): marked as young (first eleven 1’s) or
marked as adult (the next six 0’s), and B3 is a column indicating ‘age class’ at time of encounter (young
or adult) within ‘marking’ (A) – we’ve used 1 for young, and 0 for adults. Obviously, marked as adult
individuals are going to be all 0’s.
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What comes next? Well, our general model has time-dependence for all groups/age classes, so we
need to add some dummy variables for time. Look closely again at the linear model:

logit(ϕ̂) � β1 + β2(M) + β3(A) + β4(T1) + β5(T2) + β6(T3) + β7(T4) + β8(T5)

+ β9(M.T2) + β10(M.T3) + β11(M.T4) + β12(M.T5)

+ β13(A.T1) + β14(A.T2) + β15(A.T3) + β16(A.T4) + β17(A.T5)

In the linear model, we have five β terms to code for the 6 intervals (remember, n − 1 columns). Now,
we’ve seen time coding for ‘age’ models several times already, so you might think this should be fairly
straightforward. It is – but you need to be careful (very), and think about when the time intervals start
for individuals of a given age, as a function of the age at which they were marked.

Here is the design matrix with the time-coding entered:
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The time indexing for the adult age class for individuals marked as young starts in the second interval,
not the first. Again, this is because for such individuals (marked as young) there are no adults in the
first interval (obviously – if they’re marked as young, they can’t be adults). But, for adults marked as
adults, all 6 intervals in the 7 occasion study are represented. Thus, the time coding is the same for
first-year survival of individuals marked as young, and adult survival for individuals marked as adults.
The design matrix with the time-coding entered is shown at the top of the next page. Make sure you
understanding the coding for each level of A and M.

Now, for the final steps – building the interaction terms. The key to remember is that (i) we have
two grouping variables (age of marking, and age-class within age of marking), and (ii) we can’t have
an interaction between a grouping variable and a time-period, if the time-period is not logically part
of the group. In this case, it makes no sense to have an interaction of time and age for interval 1 for
individuals marked as young, since there are no adults in interval 1 for individuals marked as young.
Thus, for these individuals, the interaction terms start with the first interval where both age classes are
represented.

Got it? Well, it might help to see the full design matrix, with the interaction terms in place. Here it is:

Again, it is worth referring back to the linear model we’re trying to build:

logit(ϕ̂) � β1 + β2(M) + β3(A) + β4(T1) + β5(T2) + β6(T3) + β7(T4) + β8(T5)

+ β9(M.T2) + β10(M.T3) + β11(M.T4) + β12(M.T5)

+ β13(A.T1) + β14(A.T2) + β15(A.T3) + β16(A.T4) + β17(A.T5)

The interaction of ‘age of marking‘ (M, in column B2) and time (B4→ B8) is shown in columns B9→
B12. Note that the coding indicates that the interactions start with interval 2. The reasons for this were
presented in the previous section (7.1).

The interaction of ‘age within age of marking’ (A, in column B3) and time is shown in columns B13→
B17. The two blue boxes along the diagonal in the lower right corner (columns B18 and B19) code for the
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group-specific recapture probabilities, for marked as young and marked as adults, respectively – single
values since we’re assuming only differences between age of marking classes, but no time variation.

Here are the results of fitting the models using the PIM and DM approaches – the fits of both models
to the data are identical (meaning, our DM is correct, assuming our PIM model is correct):

Study the preceding design matrix carefully. If you understand it, great! This is perhaps one of the
more difficult design matrices you can build – but a very common one. If you don’t understand it, go
back through the preceding page or so, and try again (and, failing that, work through Chapter 6 again).
Understanding how to construct design matrices in general is critical to understanding how to use
MARK at a high level.

OK, to make sure, a final test (and you thought we were done...). Same data set as above, but now you
want to build a particular reduced model, corresponding to the following PIM structure for survival
(again we assume 7 occasions in the study).

1 8 9 10 11 12 7 8 9 10 11 12

2 9 10 11 12 8 9 10 11 12

3 10 11 12 9 10 11 12

4 11 12 10 11 12

5 12 11 12

6 12

The structure of the first PIM (representing individuals marked as young) should be familiar – the
diagonal represents the first year after marking, and the off-diagonal represents time-varying survival
for these individuals as adults. The second PIM (representing marked as adults) requires a bit of care.
Here, we use the same indexing (8 → 12) in both PIMs, for adult survival for the 2nd through 6th
intervals. In other words, here, we’re assuming that adult survival is the same, regardless of whether
or not the individuals were marked as your, or marked as adults (whereas earlier, we allowed for adult
survival to differ as a function of age at which the individual was marked).

But,what about the use of the index 7 in the first column? We need to come up with a coding reflecting
that for those marked as adults, we do in fact have an adult survival estimate over the first interval. But,
since there are no adults in that interval for individuals marked as young, we can’t constrain the two
PIMs to have the same indexing for that interval. If this isn’t clear, go through it again.

Let’s start by building this model using the PIMs themselves (above). We’ve added the results of
fitting this model (which we’ve labeled simply as ‘phi(t/t - same adult)’) to the browser:
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While we can build this model using PIMs, we should be able to construct the identical model by
modifying the design matrix corresponding to our most general model.

Look closely again at the design matrix for our general model (below):

The interaction of ‘age of marking‘ (M, column B2) and time (columns B4→ B8) is shown in columns
B9→ B13. The interaction of ‘age within age of marking’ (A, column B3) and time is shown in columns
B14→ B17.

So, how do we build our reduced model, where adult survival is constrained to be the same for
individuals marked either as young or adults? Simple, if you realize that our reduced model does not

have an interaction between time and ‘age at marking’ (M). In other words, we simply need to eliminate
any effect of ‘age at marking’. So, we (1) delete the column corresponding to the ‘age at marking’ factor, M
(i.e., column 2, B2), and then (ii) delete the columns corresponding to the interaction of ‘age at marking’
(M) and time (i.e., columns B9→ B13).
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Go ahead an build this design matrix, and fit the model to the data. You should see (browser, below)
that it produces the identical fit as did the equivalent model we constructed using the PIMs:

7.4. ‘Time since marking’ – when is an age model NOT an ‘age’

model?

In the preamble to this chapter we noted that ‘age’ models are generally motivated by the fact that
we expect that individuals of different ages might have different survival or recapture probabilities.
Also recall that we noted that within a cohort, age and time were synonymous (and thus, age and time
effects could not be separately estimated, at least within a cohort). In fact, the age of an animal is always
defined as the time since the animal was marked. If the animal was marked as a newborn, then the time
since marking is equivalent to true chronological age. But, what if the animal was marked as an adult
– say, as a 3 year old? If the year of marking is year (t), and it is currently year (t+5), then the animal is
chronologically 8 years old, but it is 5 years old, relative to the age at which is was marked.

Why do we care? We care because in many instances, we do not expect to detect true age differences,
but rather, differences among individuals as a function of the relative time since marking. Recall that in
a true age model, we anticipate that the survival (for example) of newborns might be different (typically
lower) than the survival of adults. Structurally, this is equivalent to saying that we anticipate that the
survival the year after marking (which in this case refers to the first year of life) will differ from the
survival in subsequent years of life (i.e., among those individuals surviving the first year of life, we
expect these surviving individuals – now adults – to have different survival in all subsequent years). So,
in essence,we are considering variation in survival (in this example) as a function of ‘time since marking’
(which we will refer to as ‘TSM models’). So, hereafter, we distinguish between ’true’ age models (where
we are interested in true, chronological age effects) from TSM models, where we’re not interested in
age, per se, but the time elapsed since the animal was marked (i.e., relative age).

A reasonable question at this stage is, ‘Why do we need to considerTSM models at all?’. As mentioned,
there are a number of common situations where it is the time since marking which influences various
parameters. We’ll introduce one fairly well-studied example to illustrate the use of TSM models: the
presence of transient individuals in marked samples. The consideration of transience in marked samples
begins with the seminal paper by Pradel and colleagues.∗ We follow Pradel et al. and define a transient
individual as ‘an individual that is marked, released, and which then permanently emigrates from the
sample, such that it is no longer available for encounter in the future’.

In other words, a transient is an individual that is seen once (the marking event), then never
seen again, because it has emigrated from the population. Recall that in a classic live encounter
study, we cannot separate true death from permanent emigration (they are confounded). Thus, a
transient individual, which by definition permanently emigrates from the population, will appear
to have ‘died’. (We realize that some of the more biologically-minded readers will at this point be
wondering about ‘temporary emigration’ – the case where an individual leaves the sample, but not

∗ Pradel, R., J. E. Hines, J-D. Lebreton, and J. D. Nichols. 1997. Capture-recapture survival models taking account of transients.
Biometrics 53:60-72.
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permanently. Temporary emigration is dealt with in a subsequent chapter (15) on the ‘robust design’.

We differentiate transient individuals (as defined previously) from resident individuals, which are
those individuals that are marked, released, and stay in the sample. Conditional on remaining alive,
these resident individuals thus have the potential to be encountered again, after the initial marking
event. The presence of both resident and transient individuals in the sample is a clear violation of one
of the assumptions of the classical CJS model – namely, that all individuals have the same probability
of subsequent encounter. The presence of residents and transients violates this assumption, since
transients (which have an encounter probability after marking of 0) do not have the same probability
of encounter as do residents. Thus, the population is said to show heterogeneity among individuals, in
one or more parameters. Earlier in the chapter, we allowed for differences among individuals in terms
of true chronological age. But, how do we account for differences among residents and transients in the
present example?

The clue to answering this is to recall that a transient is an individual which permanently emigrates
after marking. If we start by assuming that this emigration ‘event’ occurs during the interval after
marking, we might start to see a connection with TSM models. If not, the following numerical example
should make this clear. Suppose that we have a population of some bird species, where the annual
survival of residents is a constant, ϕR � 0.8. Suppose that the encounter probability for this population
is also constant, and equal to 1.0 (i.e., there is perfect, complete registration of all living resident
individuals). Now, what about transients? Well, if a transient permanently emigrates immediately after
marking, then its apparent survival probability is ϕT � 0.

Now, imagine we start with a sample of 100 individuals from some population. Assume that they are
all adults of the same age at the time of marking (thus, no heterogeneity in true age). Suppose that 50%
of them are resident, and 50% are transient. Of course, in the ‘real world’ we wouldn’t know this, but for
the moment, we’ll assume that we do. So, R1 � 100. Given that p � 1, then how many individuals from
this release cohort would we expect to see at occasion 2? Fairly easy calculation, if you remember that
the apparent survival probability for residents is 0.8, and for transients is 0. Since 50 individuals in R1

are residents, then we expect that 80% of them (40/50) and be encountered at occasion 2. In contrast, of
the 50 transient individuals in R1, all of them will emigrate, and thus no transients will be encountered
at occasion 2.

Thus, what we would ‘see’ in our data is R1 � 100, and the number encountered at occasion 2 is 40.
If we didn’t know the starting, true proportions of residents and transients in the population, then our
estimate of survival for the 100 marked and released individuals would be (40/100) � 0.4. Obviously,
this is not a good estimate of true resident survival probability. It is biased low – we estimate an apparent
survival probability of 0.4, but the true survival probability is 0.8! Clearly, our estimate is negatively
biased.

What about the interval between occasion 2, and occasion 3. Recall that at occasion 1, our release
sample R1 consisted of both residents and transients. However, by occasion 2, our sample consists
entirely of residents (since by definition the transients all emigrated during the interval between
occasion 1 and 2). Thus, over the interval from occasion 2 to occasion 3, we would expect the estimated
survival to reflect that for residents (i.e., ϕR � 0.8), since there are only residents released at occasion 2.
And so on for the interval from occasion 3 to occasion 4, occasion 4 to occasion 5. . .

Now, what does this have to do with TSM models? Well, from the preceding, it is clear that during
the interval after marking, the marked sample is a mixture of residents and transients – let’s call the
apparent survival probability estimated over this interval ϕM1, where ‘M1’ refers to the first year after
marking – the M indicating ‘marking’. LetϕM2+ be the survival rate estimated during the intervals after
the first interval following marking, where ‘M2+’ refers to years 2 and over after marking).
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Thus, for a single release cohort, we could write:

1
ϕM1−→ 2

ϕM2+−→ 3
ϕM2+−→ 4

ϕM2+−→

Now, suppose that we release R newly marked individuals at each occasion – if we have 5 total
occasions, we could write

cohort 1 1
ϕM1−→ 2

ϕM2+−→ 3
ϕM2+−→ 4

ϕM2+−→ 5

cohort 2 2
ϕM1−→ 3

ϕM2+−→ 4
ϕM2+−→ 5

cohort 3 3
ϕM1−→ 4

ϕM2+−→ 5

cohort 4 4
ϕM1−→ 5

Which, in MARK (PIM) format, is equivalent to

1 2 2 2

1 2 2

1 2

1

Look familiar? It should – it’s identical to the PIM for a 2 age-class model, with no time variation
in either age class! Here, though, we are not dealing with true ‘age’ differences, but an effect of
heterogeneity in the sample. And yet, the PIM is identical to what we might use for an ‘age’ model.
And, therein lies the potential for confusion – if you use a PIM with ‘age’ structure to analyze a data set
that doesn’t have real age effects (say, a data set where everyone is marked as an adult), you are bound
to confuse someone who may not know that an ‘age’ model refers to a particular model structure, and
not necessarily to true age. So, we recommend use of ‘TSM models’ as the generic name for such models
– if you really are dealing with ‘true’ age effects (such as might be the case when you have individuals
marked as young), then you probably should call them ‘age models’.

To reinforce the utility of TSM models, let’s consider an example of some simulated live encounter
data which contains both resident and transient animals (transient.inp). At each of 8 occasions, we
simulated the release of 500 newly marked individuals. To keep things simple, we assumed that at each
occasion, the sample consisted of the same proportion of residents to transients (70% residents, 30%
transients). We assumed that survival of residents was constant, 0.8, and that the encounter probability
of residents (conditional on surviving) was 0.7.

To reinforce the typical steps in an analysis, we’ll start with a GOF test of a general model to these
data. Now, you might have reason to suspect transients in this population, enough that you might make
an a priori decision to fit a general model with structure which accounts for transients (the TSM models
we’re introducing here, for example). But, for the moment, let’s ‘pretend’ we know nothing about these
data – under such circumstances, we typically would start with a standard ‘time-dependent’ model.
We’ll do so here – we’ll fit model {ϕt p.} to the data.

Go ahead and run this model in MARK. If we run a median ĉ GOF test, we find that the estimated
ĉ is ∼ 1.9. While this is not unreasonably large (i.e., it does fall below our rule-of-thumb ĉ ≤ 3), it does
give us some indication of lack-of-fit of this model to the data. This might suggest that we need to find
a better general starting model.
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As well, we might examine the deviance residual plot for model {ϕt p.}:

If the model was a ‘good-fitting model’, we would expect that there would be no ‘trend’ (non-
randomness) in the pattern of the residuals - half of the residuals should be above the 0.000 line, and
half should be below. Further, if there is no extra-binomial variation, then most of these residuals should
be fairly close to the 0.0000 line (between the two horizontal dashed lines in the preceding figure).

However, in this case (above), our estimate of ĉ suggested pretty strongly that there is lack-of-fit of
this model to the data. We see graphical support for this in the residual plot, since (i) there is a clear
asymmetry of distribution of the points around the 0.000 line (in this case, more of the residuals are
above the 0.000 than are below it), and (ii) a fair number of the residuals are well above/below the
dashed lines. So, clearly, model {ϕt p.} is not a model that fits the data particularly well.

So, let’s try fitting a TSM model – we ‘suspect’ this is likely to be a better model structure for these
data (OK, we know it is, because these are simulated data). We’ll fit the TSM model with 2 M-classes,
constant over time in each class (call this model {ϕM2−./.p.}).

Here are the results:

Clearly, the model with 2 M-classes is the best model – it has 100% of the weight! Of course, this isn’t
surprising since it is the ’true’ model for the simulated data. The point of note, however, is that a model
with ‘age’ in the structure fits these data better than a simple time-dependent model, even though all
the simulated individuals are of the same chronological age (i.e., even though there are no true age
effects in the data).

We can confirm this by looking at the estimate of ĉ for this model (∼ 1.01; estimation of ĉ is discussed
in the next section), and by looking at the residual plot (shown at the top of the next page). We see that
in this case, the data are distributed evenly above/below the 0.000 line, indicative of pretty good fit of
the model to the data.
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If we look at the estimates from the most parsimonious model

we see that the estimate of survival of the first M-class (i.e., in the interval following marking) is
negatively biased, 0.5612 (as expected),whereas the estimate of survival for subsequent intervals, 0.8067,
is very close to the ‘true’ underlying parameter value 0.8.

Recall that after the first interval, the marked sample for a given cohort consists entirely of residents,
who will survive at the resident survival probability (0.8, in this case). The estimate of p is not influenced
by transient individuals (since they are all out of the sample by the second occasion) – remember that
p is estimated conditional on surviving and remaining in the sample. So, clearly, transient individuals
do not influence the estimate of p.

So, by fitting a TSM model to these data, we were able to derive an unbiased estimate of resident
survival probability – we accomplish this by accounting for differences in survival as a function of
time since marking-in this case, time since marking corresponds to changes not in age, but in the
heterogeneity of the marked individuals in the sample.

begin sidebar

proportion of transients in newly marked sample

For completeness, we note that from the estimates of survival for the 2 M-class, we can derive an

estimate of the proportion of residents in the ’newly marked’ sample of individuals for a given interval

by taking ϕ̂T+M (i.e., estimated survival over the a particular interval where both residents and

transients are in the marked sample) and dividing it by ϕ̂R (i.e., the estimate of survival over the

same interval when only residents are in the sample). In other words, the estimates along the diagonal

divided by the off-diagonal estimates, for a given interval – i.e., within a column of the PIM.

In this case, where the underlying probabilities and proportions of residents and transients in the

newly marked sample were constant over time (since we simulated them that way), the proportion

of residents would be given as 0.561/0.807 � 0.695 ∼ 70%, which was the true value used in the
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simulation. Clearly, 1 − (0.561/0.807) gives the proportion of transients in the sample (note: in the

sample, not necessarily in the population).

Why does this work? Simple algebra. Let the total number of birds released at occasion 1 for a given

cohort be (NT + NR ), where NT = number of transients in the sample, and NR = number of residents

in the sample. Since only residents will be encountered at occasion 2 (conditional on surviving), then

the number of individuals expected alive at occasion 2 is ϕR NR (where ϕR is the survival probability

of residents). Thus, the apparent survival probability over the first interval is ϕR NR/(NR +NT ). From

occasion 2 to occasion 3, within the same cohort, the population consists entirely of residents. The

survival probability of residents is ϕR . Thus, the survival in the first interval divided by the survival

after the first interval is [ϕR NR/(NR +NT )]/ϕR � NR/(NR +NT ), which is the proportion of residents

in the sample! For details, see the Pradel et al. (1997) paper.

To get an estimate of the SE for the proportion of residents (or transients), we could use the Delta

method (described in Appendix B).

end sidebar

7.4.1. Age, transience and the DM – a complex example

We end this section with consideration of a more complex example. The purpose of this example is to
reinforce our understanding of building design matrices for TSM models. Such models are arguably
among the most complicated you are likely to work with in practice, and if you are able to work through
this example, you can be fairly confident that you’re likely to be able to handle even complex problems.

Here we imagine a 6 occasion study where where have individuals marked as young, and adults.
Amongst those marked as young, we anticipate temporal variation in survival over the first year (i.e.,
within the first TSM class), but constant among individuals surviving to become adults. Among those
marked as adults, we suspect that the first TSM class consists of some temporally variable mixture
of resident and transient individuals (defined as in the preceding example). After the first year after
marking (i.e., after the first TSM class), we anticipate adult survival is constant over time.

However, we have some reason to suspect that survival of adults may differ as a function of the age at
which individuals were initially marked and released. We expect that encounter probability is constant
over time, with no TSM structure, and does not differ as a function of age at marking. The data for this
example problem are contained in age-transients-full.inp. Note that in this input file, the encounter
frequencies for the ‘marked as adult’ group come first, followed by the encounter frequencies for the
‘marked as young’ group).

Start a new project, remembering that you have 2 attribute groups, which we’ll label ‘ma’ and ‘my’
(corresponding to ‘marked as adult’ and ‘marked as young’, respectively). Since this is a fairly complex
problem, we’ll start by constructing our general model using PIMs. For our general model, we’ll assume
full time dependence throughout. We’ll label as {ϕma:t/t my:t/t ,∆adtp.}, where ma refers to ‘marked as
adults’, my refers to ‘marked as young’, and ∆adt refers to ‘adult survival differing as a function of age
of marking’.∗ The PIMs corresponding to apparent survival ϕ for ‘marked as adults’ and ‘marked as
young’ are shown at the top of the next page.

For the ‘marked as adults’ group (left-hand PIM), parameters 1→ 5 correspond to the first TSM class
(which contains a mixture of transients and residents),while parameters 6→ 9 correspond to ‘adult’ (ie.,
resident) survival. For the ‘marked as young’ group (right-hand PIM), parameters 10→ 14 correspond
to the first TSM class (i.e., age 0→ 1), while parameters 15→ 18 correspond to the adults. With constant
and equal encounter probability for both groups, we have 19 total parameters in our model.

∗ Clearly, coming up with a ‘naming convention’ for TSM models can prove somewhat of a challenge.
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Run this model, and add the results to the browser. Note that we add the word ‘PIM’ to the model
name to indicate that this version of the general model was constructed using PIMs. We will use this
model to ‘confirm’ that the we have constructed the equivalent DM-based model correctly.

Let’s start the construction of the DM corresponding to the parameter structure specified by these
PIMs by writing out the first few terms in our linear model, corresponding to the ‘main effects’:

ϕ � intcpt + M + A + T

where M refers to the ‘age of marking’, A refers to ‘age’ (or TSM class) within age of marking group), and
T refers to time. Since there are 2 age of marking groups, then we need one column in the DM to code
for M. Since there are 2 age (TSM) classes within each age of marking group, we need one column in the
DM to code for A. And finally, since there are 6 occasions, there are 5 intervals, so we need four columns
in the DM to code for T. So, our linear model so far is

ϕ � intcpt + M + A + T

� β1 + β2(M) + β3(A) + β4(T1) + β5(T2) + β6(T3) + β7(T4)

Let’s start our DM by coding these 8 terms (shown at the top of the next page). After the single column
for the intercept, we code the M effect: we use 1’s to indicate ‘marked as adult’, and 0’s to indicate ‘marked
as young’. This is followed by the column coding for the A effect – here we use 1’s to code for the first
TSM class within each age of marking group, and 0’s to code for the second TSM class. Recall that for
‘marked as adults’ the first TSM class reflects a mixture of residents and transients, whereas for the
‘marked as young’ group, the first TSM class are juveniles. Finally, 4 columns to code for each of the
time intervals (here we use the final time interval as the reference interval). Note again that the second
TSM class is not represented in the first time interval (and thus the time coding for the second TSM
class begins with the second interval).
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Now, for the interactions of the main effects. We know from earlier in the chapter that in general,
it is the construction of the various interaction terms which poses the largest challenge. The key is in
remembering that coded interactions must be ‘plausible’. So far, we have 7 parameters for ϕ in our DM,
meaning, we have (18 − 7) � 11 parameters remaining for the interaction terms. Which in turn means
that if we have more or less than 11 columns for our interactions, we’ve made a mistake somewhere.

What are the ‘possible’ interactions? For a model with 3 main effects (M, A and T), there are clearly
3 possible two-way interactions (M.A, M.T, and A.T), and 1 possible three-way interaction (M.A.T).
Remember, if any of the two-way interactions aren’t plausible, then neither is the three-way interaction
(since the three-way interaction consists of the product of a given two-way interaction and the remaining
effect).

So, in theory, our linear model could look like

ϕ � intcpt + M + A + T

+ M.A + M.T + A.T

+ M.A.T

So, which of the ‘possible’ interactions are ‘plausible’? Start with the (M.A) interaction. We see from
the DM (above) that there is ‘symmetry’ between the two groups (‘marked as adult’ and ‘marked as
young’) in the TSM structure. So, there is a plausible (M.A) interaction term. Since the (M.A) interaction
is the product of two single columns, then clearly the (M.A) interaction is coded as a single column. So,
that would give us (7 + 1) � 8 columns; 10 remaining.

What about the (M.T) interaction? Again, we see that the time columns are symmetrical between the
two age of marking groups. In other words, the time coding for ‘marked as adults’ is perfectly replicated
for the ‘marked as young’ group. So, we have a full (M.T) interaction (1 column for Mwith 4 columns for
time, yield 4 columns for the M.T interaction term). So, (8 + 4) � 12 columns coded so far; 8 left.

Next, the (A.T) interaction. Here,we simply need to remember that an (A.T) interaction is not plausible
for all time steps. Since there are no individuals representing the second TSM class in the first time
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interval foreither the ‘markedas adult’ or ‘markedas young’ groups,then (A.T) interactions are plausible
only for time intervals 2 → 5. So, 3 columns for the (A.T) interaction. So, to this point, (12 + 3) � 15

columns; so, 3 left.

Finally, the three-way interaction, (M.A.T). All we need to do at this point is take the (A.T) interaction,
and multiply through by the M term. We know that we have 3 columns left to code for the three-way
interaction. Fortunately 1 (for M) times 3 (for the (A.T) interaction columns) = 3! Nice when things ‘add
up’.

The completed design matrix for our general model is shown below:

To confirm that we’ve have correctly constructed the DM, run the model, making sure to change the
model name to indicate that we’re using the DM, and add the results to the browser:

Notice that the model deviances between the model built with PIMs, and the one we just fit using
the DM approach, are identical. This indicates that our DM is correct.

A final test of our understanding. Suppose we want to build a reduced parameter model, where
survival varies temporally for the first TSM class for both ‘marked as adult’ and ‘marked as young’
groups, but with no time variation in the second TSM class, and the same value between marking
groups (in other words, time-invariant survival of the second TSM class that does not vary as a function
of the age of marking). The PIM structure for this model would look something like that shown at the
top of the next page.
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But, recall that we’d like to build these models by modifying the DM of our general model. Here is
the modified DM which corresponds to this reduced parameter model

Pay particular attention to the way we’ve modified the M coding: since we’ve eliminated any effect of
age of marking on survival for the second TSM class, we eliminate the 1’s coding for the second TSM
class for the ‘marked as adults’ group. The rest of the DM should be fairly self-explanatory.

7.5. Age/TSM models and GOF

If you remember back to Chapter 5, you may recall that there are various ways to test for GOF for a given
model. Looking at deviance residual plots was described above. Note that because age/TSM models
have more parameters than standard time-dependent CJS models, then in fact age/TSM models are
more ‘general’ than CJS models, and as such, should be models for which you assess fit (if such models
are included in your candidate model set). You can use either RELEASE (for model with 2 ‘classes’,
by adding some of the individual component tests – discussed in Chapter 5), the bootstrap, median-ĉ
or Fletcher-ĉ methods, or program U-CARE, which has a large number of component tests specific for
age/TSM models (including transience testing, for example).
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7.6. Cohort models

The time-dependent CJS model assumes that neither survival nor recapture differamong release cohorts.
Is this a reasonable assumption? Suppose, for example, that animals newly marked on occasion 3 were
present in the population on occasion 1, but were simply ‘missed’ from the marking sample. Perhaps
there is a ‘reason’ why these animals were missed – and this reason might influence subsequent survival
or (perhaps more likely) recapture probability. Another common example is that cohorts differ in
the environmental conditions experienced by the individuals during marking, such that subsequent
survival, or recapture, or both, are affected.

In essence then, a cohort model is simply one where survival and/or recapture probabilities differ as
a function of the cohort an animal is first released into. In its simplest form, a cohort model for survival
(but not recapture) can be represented as:

cohort 1 1
ϕ1−→ 2

ϕ1−→ 3
ϕ1−→ 4

ϕ1−→ 5

cohort 2 2
ϕ2−→ 3

ϕ2−→ 4
ϕ2−→ 5

cohort 3 3
ϕ3−→ 4

ϕ3−→ 5

cohort 4 4
ϕ4−→ 5

For recapture, we still maintain the usual time-dependent parameter structure:

cohort 1 1 −→ 2 −→ 3 −→ 4 −→ 5
p2 p3 p4 p5

cohort 2 2 −→ 3 −→ 4 −→ 5
p3 p4 p5

cohort 3 3 −→ 4 −→ 5
p4 p5

cohort 4 4 −→ 5
p5

In this case, survival is constant over time, but differs among cohorts. How would this be represented
by MARK? In other words, what would the PIMs look like?

For survival,

1 1 1 1

2 2 2

3 3

4

and for recapture

5 6 7 8

6 7 8

7 8

8
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Of course, we could add time-dependence within-cohort, but this will substantially increase the
number of parameters. For example, consider the following (cohort × time) model for survival (shown
at the top of the next page) – estimates differ over time within cohort, but over a given interval, they
differ among cohorts.

cohort 1 1
ϕ1−→ 2

ϕ2−→ 3
ϕ3−→ 4

ϕ4−→ 5

cohort 2 2
ϕ5−→ 3

ϕ6−→ 4
ϕ7−→ 5

cohort 3 3
ϕ8−→ 4

ϕ9−→ 5

cohort 4 4
ϕ10−→ 5

Not only is the number of parameters increased significantly, but the number of estimable and non-
estimable parameters is also changed. For example, suppose that the preceding model is applied to
survival, but simple time-dependence for recaptures.

cohort 1 1 −→ 2 −→ 3 −→ 4 −→ 5
p2 p3 p4 p5

cohort 2 2 −→ 3 −→ 4 −→ 5
p3 p4 p5

cohort 3 3 −→ 4 −→ 5
p4 p5

cohort 4 4 −→ 5
p5

How many estimable parameters would there be? As discussed in Chapter 4, one way to count the
number of estimable parameters for any single-group model is to write out the probability statements
for each of the ‘saturated’ capture histories.

For this example, the saturated histories, and their corresponding probability statements are:

encounter history probability

11111 ϕ1p2ϕ2p3ϕ3p4ϕ4p5

01111 ϕ5p3ϕ6p4ϕ7p5

00111 ϕ8p4ϕ9p5

00011 ϕ10p5

How many unique, identifiable parameters are there? Clearly, the key to answering this question lies
in the terminal product terms (i.e., ϕ4p5, ϕ7p5 . . .). Each of these β terms contains p5. Is p5 estimable?
No – not without more information! As such, we have 4 different β terms – and thus 13 parameters.

As you might imagine, with progressively complex models, it can be more work to count the number
of parameters. And, clearly, knowing the number of parameters is essential for model selection.
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begin sidebar

cohort models with individuals marked as young

What about cohort models where individuals are marked as young? Well, in such cases, you run into

an interesting consideration: for animals marked as young, as time passes, they get older. Thus, within

a cohort, age and time are the same (as we’ve discussed previously). In fact, age, time and cohort are

collinear, since

age = time - cohort

As such, you can’t consider all 3 factors simultaneously (i.e., you can look at age and cohort, or age

and time, or cohort and time, but not all 3 together).

end sidebar

7.6.1. Building cohort models: PIMS and design matrices

The preceding suggests pretty strongly that in most cases, you’ll build cohort models using PIMs. But,
as you by now no doubt realize, if you want to apply any constraints to the model, or build additive
models, then you’ll need to use the design matrix.

Although the basic ideas behind building design matrices for cohort models are pretty much the
same as we’ve seen before, you need to think a bit when it comes to (cohort × time) models. Let’s have
a quick look at a couple of them.

Suppose you have a 5 occasion mark-recapture study, and you are interested in building a series of
cohort models for survival. Suppose your candidate model set consists of

{ϕcohort}
{ϕcohort.time}

The basic PIM structure for ϕcohort (i.e., cohort effects only, no time variation) is

1 1 1 1

2 2 2

3 3

4

whereas the PIM structure for ϕcohort.time is

1 2 3 4

5 6 7

8 9

10

Now, there are a couple of equivalent design matrices for both of these models. Recall from Chapter 6
that we can often use the identity matrix to code for certain linear models in place of the intercept-based
approach. The advantage of the latter, however, is that it allows for easy testing of certain constrained
models.
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For the first model ϕcohort , the two equivalent design matrices would be

X1 �



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


X2 �



1 1 0 0

1 0 1 0

1 0 0 1

1 0 0 0


The first design matrix (X1) is the standard identity matrix. In the second design matrix (X2), the first

column is the intercept, while the next 3 columns code for the level of the ‘treatment’, cohort. Since there
are 4 cohorts in a 5 occasion study, then we need 3 columns. Each row of the matrix corresponds to a
different cohort.

OK, probably pretty straightforward, at this point. What about model {ϕcohort.time}? Well, as it turns
out, this is somewhat more complicated, for some of the same reasons building the design matrix for
the fully time-dependent age model was a few pages back: because there are some ‘cohort × time’
interactions which do not occur. As such, it turns out there are several equivalent intercept-based linear
models that will yield the same fit. We’ll spend just a moment here on this – if for no other reason that
it forces us to think a bit more deeply about design matrices.

Now, for model ϕcohort.time , the (10× 10) identity matrix design structure corresponding to the PIM
would look like:

1 2 3 4

5 6 7

8 9

10

D �



d1,1 0 . . . d1,10

0 d2,2 . . . d2,10

...
...

. . .
...

0 0 . . . d10,10


�



1 0 . . . 0
0 1 . . . 0

...
...

. . .
...

0 0 . . . 1


What about the intercept-based design matrix? Obviously, we need a column for the intercept. The

cohort and time columns should be pretty straightforward: we have 4 cohorts, so 3 columns: let ‘1 0
0’ be the coding for cohort 1, ‘0 1 0’ be the coding for cohort 2, ‘0 0 1’ be the coding for cohort 3, and
‘0 0 0’ be the coding for cohort 4.

But, recall that the number of time intervals (parameters) for each cohort decrements by one with
each successive cohort (i.e., for cohort 1 there are 4 intervals, for cohort 2 there are 3 intervals, for cohort
2 there are 2 intervals, and for cohort 4, there is only the final interval).

So, thus far, our design matrix looks like



1 1 0 0 . . .
1 1 0 0 . . .
1 1 0 0 . . .
1 1 0 0 . . .
1 0 1 0 . . .
1 0 1 0 . . .
1 0 1 0 . . .
1 0 0 1 . . .
1 0 0 1 . . .
1 0 0 0 . . .


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Now, for time, the approach is similar: we have 5 occasions (4 intervals), so therefore, we need
3 columns. We let ‘1 0 0’ be the first time interval, ‘0 1 0’ be the second time interval, ‘0 0 1’ be
third interval, and ‘0 0 0’ the final time interval. This is the usual ‘reference cell’ coding approach we
discussed at length in Chapter 6.

Adding these time columns to the design matrix gives us



1 1 0 0 1 0 0 . . .
1 1 0 0 0 1 0 . . .
1 1 0 0 0 0 1 . . .
1 1 0 0 0 0 0 . . .
1 0 1 0 0 1 0 . . .
1 0 1 0 0 0 1 . . .
1 0 1 0 0 0 0 . . .
1 0 0 1 0 0 1 . . .
1 0 0 1 0 0 0 . . .
1 0 0 0 0 0 0 . . .


How big does the design matrix need to be? Well, there are 10 parameters, so the full ϕcohort∗time

model corresponds to a (10 × 10) design matrix. Thus, we have 3 more columns to complete. OK, now
the challenge. How can we code an interaction of (cohort× time) in only 3 columns, if there are 4 cohorts!

Normally, we think of the interaction term(s) as products of the main factors in the linear model: in
this case, the product of the 3 columns for ‘cohort’, and the 3 columns for ‘time’, which would yield
9 columns, not 3! But, if you look closely at the PIM (below), you’ll see that not all interactions are
possible. This is exactly the same issue we faced earlier when we were looking at interactions in models
for analysis of data of individuals marked as both young, and adults – not all interactions were possible.

Here again is the PIM for model ϕcohort∗time

1 2 3 4

5 6 7

8 9

10

We see that for cohort 1, time interval 1 does not interact with any other cohort. We also see that
cohorts 1 and 2 interact in both time interval 2, interval 3, and time interval 4. We see that cohort 3 only
interacts with any other cohort (cohorts 1 and 2) in time intervals 3 and 4. For cohort 4, there appears
to be an interaction in time interval 4, but, parameter 10 is not identifiable, so in fact, it doesn’t really
interact with anything!

So, we really have only 2 interaction blocks (indicated in the shaded ‘blocks’ in the following):

1 2 3 4

5 6 7

8 9

10

1 2 3 4

5 6 7

8 9

10

As it turns out, you only need to code either of these ‘interaction blocks’ to get the appropriate model
fit (and parameter estimates).
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So, for example, for the second of these two ’interaction blocks’:



1 1 0 0 1 0 0 0 0 0

1 1 0 0 0 1 0 0 1 0

1 1 0 0 0 0 1 0 0 1

1 1 0 0 0 0 0 0 0 0

1 0 1 0 0 1 0 0 1 0

1 0 1 0 0 0 1 0 0 1

1 0 1 0 0 0 0 0 0 0

1 0 0 1 0 0 1 0 0 1

1 0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0


Try it and see! A bit tricky at first, but hopefully you’ll see the basic logic. Again, full (cohort ×

time) models are relatively rare, owing to significant identifiability problems, but constrained models,
especially where constraints are applied within cohort, are not uncommon. And to do this, you need
to be able to build the design matrix for the full (cohort × time) model(s) first.

7.7. Model averaging and age/cohort models

In chapter 4 we introduced the important concept of ‘model averaging’. However, as you may recall,
there were a few parts of the description of the ‘mechanics’ of model averaging in MARK that were
somewhat ‘obtuse’. That’s because back in chapter 4 we had to make vague references to these things
called ‘age models’ and ’cohort’ models. New stuff in chapter 4, but by this point you’re expert in both
concepts, so we can re-visit some of the ‘model averaging mechanics’ and clear up a few points.

First, recall that for the swift data set, the model averaging window looked like the following:
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For that data set, there were 2 groups (good colony, poor colony), and two parameters (survival
probability, and recapture probability). Thus, 4 tabs along the top of the model averaging window (one
for each group and parameter combination). In addition, for the swift data set, there were 8 occasions,
so 7 intervals for survival.

Now, if we look carefully at the ‘triangular matrix’ structure that the model averaging window
presents us with (bottom of the previous page), we see something that at this point should be a bit
more understandable. What would a full (time × cohort) PIM look like for a data set with 8 occasions?
Answer: just like the triangular matrix pictured at the bottom of the preceding page!

To make sure you understand model averaging, let’s analyze some simulated data (contained in
age2_avg.inp). These simulated data consist of 7 occasions, 2 age-classes for survival, and a sin-
gle age-class for encounter probability. We’ll fit 4 approximating models to these data: {ϕa2:t/t pt},
{ϕa2:t+t pt}, {ϕa2:t/.pt},and{ϕa2./.pt}. Note that model{ϕa2:t+tpt}has additive temporal effects between
the 2 age classes, so we’ll construct all 4 models using a design matrix approach.

Here are the results from our model fitting:

We see that the most parsimonious model (model {ϕa2:t/.pt}) – time-varying survival for the first age
class, time-constant survival for the second age-class) is a bit less than twice as well supported as the
next best model (0.636/0.346 � 1.84).

What are the model averaged survival valuesfor each interval for thefirst age-class? Again, remember
that the first age-class is one-year in duration. To derive the model averaged survival probabilities for
the first age-class, select ‘Model Averaging’ from the ‘Output’ menu in MARK. Note that this time, the
model averaging window (top of the next page) has only 2 tabs: for survival and recapture, respectively.
The triangular matrix (which you now recognize as the corresponding (time × cohort) PIM structure)
that the model averaging window presents is indexed from 1 to 21. The only thing you need to do at
this stage is check the elements of this matrix corresponding to the first-year survival probabilities.

What would they be? Yes! – the elements along the diagonal – {1, 7, 12, 16, 19, 21} – as shown below:
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These correspond to the diagonal elements of the following PIM structure:

Once you’ve satisfied yourself that this is correct – and makes sense – then click the ‘OK’ button. The
model averaged survival values are:

What about ‘adult’ survival? Again, the only trick is to remember that adult survival is ‘above the
diagonal’ (look at the PIM schematic above; the adult ‘elements’ are the shaded elements above the
diagonal). So, you simply need to check the appropriate elements of the triangular PIM structure in the
model averaging window.

But do you need to check all of them (i.e., 2 to 6, 8 to 11, 13 to 15, 17 to 18 and 20)? If we remind
you that our models have time-structure only, but no cohort structure, you should realize with a bit of
thought that the answer is ‘no’. You simply need to check at least one of the ‘above diagonal’ elements
in each column (each column where there is an above-diagonal element).

Thus, the following two model averaging windows shown below

or
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will yield entirely equivalent results. Try it and see! Make sure you understand why they are equivalent.

Model averaging is an important technique, so make sure you really understand what’s going on
here. The model averaging window also forces you to come to grips with your understanding of age,
cohort, and time models (remember, age � (cohort − time)). So, make sure you do ‘get it’.

7.8. Summary

That is the end of Chapter 7. We have considerably expanded the range of ‘underlying’ models we can fit
to mark-recapture data, by developing age/TSM and cohort models. We have also seen how constraints
can be applied to these models as easily as we did with CJS models. We also revisited the idea of model
averaging. These models are very widely used (the basic structure shows up various ways for a number
of data types), so make sure you thoroughly understand the material in this chapter. In the next chapter
we look at a very different data type – ‘dead recoveries’.
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CHAPTER 8

‘Dead’ recovery models

The first chapters in this book focussed exclusively on live encounter ‘mark-recapture’ models,where the
probability ofan individualbeing seen (encountered) on a particularsampling occasion was determined
by 2 parameters: the probability the animal survived and the probability that an animal alive in state r

at time i is alive and in state s at time i+1.

In this chapter, we move in a new direction altogether. We recall that ‘classic’ mark-recapture focuses
on the problem of differentiating between (i) not seeing an animal because it is ‘dead’ (or permanently
emigrated from the sample area) and (ii) simply ‘missing’ it, even though it is alive and in the sample
area. In contrast, with ‘dead recovery’ analysis we are dealing with animals known to be dead (because
they are recovered in the ‘dead state’, frequently in the process of harvest).

Echoing the seminal text by Brownie et al. (1985), it is sufficiently important to clearly distinguish
between these two broad classes of sampling method (recovery and recapture) that we’ll take a moment
to elaborate on them. In the case of a recapture analysis, a single marked individual is potentially
available for ‘multiple encounters’ – i.e., the individual may be ‘seen’ or ‘recaptured’ on more than one
occasion. If you’ve worked through the preceding chapters of this book, this is entirely obvious to you.
In contrast, in a recovery analysis, data are available on only a single, terminal ‘encounter’ (generally, the
recovery event). Unlike recapture data, recovery data are treated as independent, mutually exclusive
outcomes (i.e., a marked individual could be recovered in year 1, year 2, or not at all during the duration
of the study). While this is a clear difference from a live encounter study, in fact, close examination shows
deep similarity between the two models. The distribution of ‘dead recoveries’ reflects the realization
of a series of probabilistic events. Just as each live encounter in a live encounter history reflects the
underlying survival and encounter processes, so too does the distribution of ‘dead recoveries’.

8.1. ‘Brownie’ parameterization

Consider the following example. An individual of a harvested species is marked and released alive.
It can then experience one of 3 fates: (1) it can survive the year with some probability, (2) it can be
‘harvested’ (i.e., some ‘action’ leading to permanent removal) with some probability, or (3) it can ‘die’
from ‘natural’ causes (i.e., it might actually die from some reason other than harvest, or permanently
emigrate the sampling area, at which point it appears dead. More on what constitutes the ‘sampling
area’ for a dead recovery analysis in Chapter 9).

However, before this individual becomes ‘dead recovery data’, something else needs to happen –
the ‘harvest’ needs to be ‘reported’. This event reflects several underlying probabilistic events. Suppose
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you’re a waterfowl hunter, and you shoot a bird from your blind (or ‘hide’ for much of the world). This
in itself does not constitute a recovery, since simply shooting the bird does not give us the information
on who it is (i.e., its identification number). For this to happen, minimally (in most cases), the marked
bird needs to be retrieved (i.e., physically handled, typically). Of course, there is some chance it won’t be
retrieved. If it is retrieved, however, then it might be ‘reported’ (i.e., the identification number submitted
to some monitoring agency), or not. We’ll let S equal the probability that the individual survives the year.
We separate sources of mortality into ‘hunter’ and ‘natural’. The probability that the individual dies
from either source is simply 1− S. The probability that it dies due to hunting is K. Thus, the probability
that it dies from natural causes is (1 − S − K).

Now for the only real complication (that is simple enough in principle, but has several interesting
implications we will discuss later in this chapter). Conditional on being shot (i.e., killed by hunting, with
probability K), then one of 3 things can happen. The individual may not be retrieved (a fairly common
occurrence with some types of harvest – individuals are in fact killed by harvest, but the dead animal
is not physically retrieved). The probability of being retrieved is c – thus, the probability of not being
retrieved is (1 − c). Conditional upon being retrieved, the hunter can either report the identification
number (with probability λ), or not report the identification number (with probability 1 − λ).

Let’s put these probabilities together, using a ‘fate diagram’ (following Brownie et al. 1985).

Thus, recovery data supplies information directly (and directly is the key operative word here) about
only those birds which are shot and reported. Thus, under this parameterization, not everything is
estimable – only the product Kcλ is estimable, but the component probabilities K, c and λ are not.
Generally, the product Kcλ (often written as Hλ, where H � Kc = harvest rate; the probability of being
killed and retrieved by a hunter during the year) is referred to as the recovery rate, f.∗ Using these
‘product’ (summary) parameters, we can modify the preceding ‘fate diagram’ as follows:

∗ We note that neither ‘harvest rate’ or ‘recovery rate’ are ‘rates’ in the strict sense of the word (which implies instantaneous
rates of change). Strictly speaking, they should be referred to as ‘harvest probability’ and ‘recovery probability’, respectively.
However, the use of the word ‘rate’ is traditional for these models.
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Different assumptions about the parameters f and S give rise to the different models. In this sense,
you can loosely (very loosely) think of f and S as the equivalents of p and ϕ for a live recapture analysis –
clearly not in terms of what they represent, but in the fact that the ‘encounter history’ is defined by these
2 probabilities. Remember, the components of the recovery probability f (i.e., Kcλ) are not estimable
without additional information (discussed later).

Let’s see how these two primary parameters (f and S) combine to determine the expected numbers
of bands recovered in a particular time period. The process is analogous to expressing the expected
numbers of individuals with capture history ‘101101’ as a function of the number released (R) and the
underlying survival and recapture probabilities.

Suppose N1 individuals are marked. How many recoveries are expected during the next year? Note,
we’re not asking specifically how many individuals are alive at the end of the 12 months following
marking (although this can be derived, obviously), but rather, how many individuals will be (i) shot by
hunters, (ii) retrieved,and (iii) reported? Look at the fate diagram on the preceding page. The probability
that an individual is harvested, retrieved and reported (i.e., the individual is recovered) is simply f.
Thus, the expected number of the N1 released individuals we expect to be recovered in the first interval
after marking is given simply as N1 f . If we assume for the moment that both survival and recovery
probabilities are time-specific, then the expected number of recoveries are given as follows:

year recovered

year marked number marked 1 2 3 l � 4

1 N1 N1 f1 N1S1 f2 N1S1S2 f3 N1S1S2S3 f4

2 N2 N2 f2 N2S2 f3 N2S2S3 f4

3 N3 N3 f3 N3S3 f4

k � 4 N4 N4 f4

Make sure you understand the connection between f, S, and the expected number of recoveries. Si is
the probability of surviving from time (i − 1) to time (i), whereas f (recovery rate) is the probability of
being shot (i.e., not surviving), and then being retrieved and reported. So, f (recovery rate) combines the
mortality event with two other events (retrieval and reporting). For example, for individuals marked in
year 1, the number of expected dead recoveries in the second interval after marking is given as N1S1 f2.
Why? Well, recall that the recovery parameter f is the probability of the mortality event. In order for
the individual to be a dead recovery in the second interval, it has to survive the first interval (with
probability S1), and then be harvested, retrieved and reported (with probability f2). Note that survival
S does not appear on the diagonal.

Now, if you’ve already worked through the earlier chapters on mark-recapture, in looking at the table
of expected number of recoveries (above), you probably recognize right away that there are reduced
parameter models which can be fit. The expected recoveries shown in the preceding table reflect
the expectations from a time-dependent model {St ft}. Of course, you could fit model {St f.} – time
dependence in survival only, or model {S. f.} – constant survival and recovery probabilities, or a whole
host of additional models. For the moment, let’s quickly run through how you would fit the following
4 models:

{

St ft

}

,
{

S. ft

}

,
{

St f.
}

and
{

S. f.
}

.

Historically, a subset of these models have been referred to by generic model names (for example,
model {St ft} is referred to in Brownie et al. (1985) as Model 1). In the following, we note this historical
connection – we suggest that in general you use a explicit model naming convention as we’ve used
throughout the book (and as suggested in Lebreton et al. 1992). However, it is important to understand
the historical naming conventions to allow you to easily read and interpret earlier papers and texts.
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For individuals marked as adults, our models (and their corresponding legacy names) are:

model legacy name reference

{St ft} Model 1 Brownie et al. (1985) pp. 15-20

{St f.} none

{S. ft} Model 2 Brownie et al. (1985) pp. 20-24

{S. f.} Model 3 Brownie et al. (1985) pp. 24-30

You might be wondering about model
{

St f.
}

? There is no corresponding model in Brownie et al. (1985)
because this model (which assumes the recovery probability f is constant over time, while survival S

varies) is seldom applicable to the waterfowl data sets for which the model set in Brownie et al. (1985)
was developed.

To demonstrate how to fit these models using MARK, we’ll use data set BROWNADT.INP (a subset of the
BROWNIE.INP data file distributed with MARK). BROWNADT.INP contains the recovery data for adult male
mallards marked in the San Luis Valley in Colorado, from 1963 to 1971. The full data set (BROWNIE.INP)
contains data for both the adults and juveniles. For the moment, we’ll look only at the adults.

Start MARK, and begin a new project by pulling down the ‘File’ menu and selecting ‘New’. Select
the file BROWNADT.INP. Before we go any further, let’s have a look at the file. Again, the easiest way to do
this is to click the ‘View file’ button. Here’s what BROWNADT.INP looks like:

We see that the data are stored in ‘classic’ recovery matrix form. It is not necessary to format the data
this way for a recovery analysis, but it is a traditional summary format. However, remember that using
any sort of summary format, whether for a recovery analysis or for (say) mark-recapture analyses has
the major disadvantage of not allowing individual covariates (since all individuals are lumped together
in the summary). The other approach is to use the familiar encounter history format. MARK makes
use of what we refer to as the ‘LDLD’ format to code dead recovery data (and joint live encounter-dead
recovery data – this data type is covered in chapter 9). For more details on the LDLD data format, see
Chapter 2.

There are 9 ‘sampling occasions’ in this data set, although we submit that occasions is not particularly
useful as a reference term, since it is not accurate. In mark-recapture, the occasion is used to refer to
the point in time (i.e, the occasion) upon which a marked individual was encountered. Occasions were
separated by intervals. In recovery analysis, the data refer to the total number of individuals recovered
during the interval, and not at a particular occasion. Thus, it is probably more appropriate to refer to the
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intervals themselves. In this example, we have 9 years (l � 9) of recovery data (as it turns out, ranging
from 1963 to 1971). The bottom row indicates the number of newly marked individuals released at the
start of each year (note that the year doesn’t necessarily start with January 1 – it could be that ‘year’
refers to the 12-month interval between hunting seasons, for example). So, at the start of what we refer
to as 1963, 231 newly marked adult mallards were released. Of these, 10 were recovered during the first
12 months following this release, 13 were recovered the next year, and so forth. Birds were marked and
released each year of the study – in other words, there are k � 9 rows of recovery data in the data file
(i.e., the recovery matrix is symmetric, k � l). This becomes important later on, so keep the fact that
‘k � l’ in the back of your mind. Set the number of encounter occasions in MARK to 9.

Now we need to select the data type. Remember, MARK ‘can’t tell’ the sort of data (or analysis)
you are interested in from the data – you have to ‘tell it’. Now, if you look at the data type list in the
MARK specification window, you’ll see a radio-button corresponding to ‘Dead Recoveries’. If you
select this radio-button, a small window will pop up as you to pick a dead recovery data type. Three are
listed: ‘Dead Recoveries (Seber)’, ‘Dead Recoveries (Brownie et al.)’, and ‘BTO Dead Recoveries
and Unknown Ringings’.

We’re starting with the ‘Brownie’ approach, even though it is not the first one presented in the MARK

data type menu,simply because it is the ‘classic’ approachused in the vastmajority ofpublishedrecovery
analysis. So, as shown, select the ‘Dead Recoveries (Brownie et al.)’ data type from the list, and then
click the ‘OK’ button. You should now see the survival (S) PIM on the screen (just as with live encounter
– recapture – data, MARK defaults to opening up the ‘survival’ PIM). However, there are some subtle
but important differences between the survival and recovery PIMs, at least when using the Brownie
parameterization. To explore this, let’s also open up the recovery (f ) PIM for comparison.
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Woah – wait a second! These two PIMs don’t have the same number of rows and columns – is this
a mistake?! No! This is exactly the way it should be. Of course, now you need to consider why this is
true. Look again at the table of expected recoveries, and the associated probability expressions – below
(here, we are considering only 4 years (l � k � 4), but the principle is exactly the same):

year recovered

year marked number marked 1 2 3 l � 4

1 N1 N1 f1 N1S1 f2 N1S1S2 f3 N1S1S2S3 f4

2 N2 N2 f2 N2S2 f3 N2S2S3 f4

3 N3 N3 f3 N3S3 f4

k � 4 N4 N4 f4

The key is to look carefully at the probability expressions in each cell. Remember that in the case of
live mark-recapture, the PIMs are (in effect) constructed from the subscripts of the parameters in the
corresponding probability expressions. What about for dead recovery analysis? Look at the subscripting
of the two primary parameters, S and f. If you look along the first row (the row with the greatest number
of columns – years), we see that the subscripting for recovery probability f ranges from ‘1’ to ‘4’. In
contrast, we see that the subscripting for survival, S, ranges from ‘1’ to ‘3’ only. Thus, the PIM for S will
necessarily be ‘smaller’ (i.e., reduced dimension) than the PIM for recoveries.

Make sure you understand why – the key is in the first year following the release of newly marked
individuals. Consider the first cohort, where N1 individuals are marked and released. As noted earlier,
during that first year after marking and release, the expected number of individuals recovered is N1 f1
– there is no S term since S denotes survival. An individual cannot survive the interval and also be
recovered during the interval (since a recovery implies mortality). The survival term S shows up only
in years after the first year following marking (i.e., years 2, 3, 4...). Why? Again, as noted earlier, this is
because in order to be recovered in (say) year 2 after marking, the individual must have survived year
1 (thus, the expected number of recoveries in the second year after marking is N1S1 f2).

Now, with a bit of thought, you might think that these ‘asymmetric’ PIMs might have implications for
which parameters are individually identifiable. You would be correct – more on parameter identifiability
in a moment. For now, let’s proceed and run this model (we’ll call it model ‘S(t)f(t)’).

If you’ve worked through the preceding chapter of this book, it should be immediately obvious how
to fit the other models in our candidate model set (again, the most efficient way is by manipulating the
PIM chart). Go ahead and run the remaining 3 models, and add the results to the browser.

We see clearly that model {S. ft} (Model 2 sensu Brownie et al. 1985) and model {St ft} (i.e., Model 1
sensu Brownie et al. 1985) are the ‘best’ two models out of the four in the model set (since they are clearly
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better supported by the data than are the other two models). Among these two models, model {S. ft} is
almost 4 times better supported by the data than is the fully time-dependent model {St ft}. Using the
classical ‘model comparison’ paradigm, the LRT between these two models confirms the ‘qualitative
result’ from comparisons of the Akaike weights; the fit of model {S. ft} was not significantly different
from that of model {St ft} (χ2

� 11.42, P � 0.121), so we accept model {S. ft} as our most parsimonious
model, and conclude there is no ‘significant’ evidence of time-dependence in survival in these data.

Now we come to to the first challenge of the exercise – which we hinted at somewhat in the discussion
of the ‘asymmetry’ of the PIMs (above). How are the number of parameters determined? Which
parameters are identifiable in each of the models?

8.2. Counting parameters – Brownie parameterization

Let’s start by having yet another look at the table of expected recoveries for the simpler 4 year study.

year recovered

year marked number marked 1 2 3 l � 4

1 N1 N1 f1 N1S1 f2 N1S1S2 f3 N1S1S2S3 f4

2 N2 N2 f2 N2S2 f3 N2S2S3 f4

3 N3 N3 f3 N3S3 f4

k � 4 N4 N4 f4

As structured, this corresponds to model {St ft} – full time-dependence in both parameters. How
many of these parameters are identifiable? The key to answering this question is to see whether or not
there are any ‘groups’ of parameters that always occur together, and never apart. In the preceding table,
we see that no such ‘groups’ exist – every parameter (S1 → S3) and ( f1 → f4) occurs either alone or
in unique combinations. As such, all 7 parameters are identifiable. In general, for model {St ft}, the
number of identifiable parameters is 2k − 1 (where k is the number of release cohorts). However, as
we’ll see in a minute, this isn’t always the case.

What about model {S. ft}? The probability statements for this model are:

year recovered

year marked number marked 1 2 3 l � 4

1 N1 N1 f1 N1S f2 N1SS f3 N1SSS f4

2 N2 N2 f2 N2S f3 N2SS f4

3 N3 N3 f3 N3S f4

k � 4 N4 N4 f4

In this case, all 5 parameters are identifiable – S and ( f1 → f4).

Now, at this point you might be saying ‘Gee...in both cases, all the parameters are identifiable...is this
always the case?’. If only life were that simple! Consider the situation shown at the top of the next page.
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year recovered

year marked number marked 1 2 3 l � 4

1 N1 N1 f1 N1S1 f2 N1S1S2 f3 N1S1S2S3 f4

2 N2 N2 f2 N2S2 f3 N2S2S3 f4

k � 3 N3 N3 f3 N3S3 f4

The first notable feature is that k , l (i.e., the number of rows in the recovery matrix, k � 3, is less
than the number of columns – years of the study, l � 4). This sort of situation is not that uncommon.
Marking individuals can be time consuming, and expensive, but collecting the recovery data is passive,
inexpensive (generally), and continues as long as there is hunting – often long after the marking is
completed. In this case, recovery data were collected for s � 2 years (s � l − k) after the cessation of
marking.

begin sidebar

Formatting the recovery matrix when k , l

When k , l (typically when the number of years of marking is less than the number of years over

which recovery data are collected – i.e., k < l), does this influence the structure if the data .INP file?

The answer, as you may recall from Chapter 2, is ‘yes’. You need to add ‘0’s for the ‘missing elements’

of the recovery matrix. For example, if k � 3, l � 5, the recovery matrix would look like:

R1 R2 R3 R4 R5;

R2 R3 R4 R5;

R3 R4 R5;

0 0;

0;

N1 N2 N3 0 0;

end sidebar

Now, if you read Brownie et al. (1985), you’d eventually come to a point where you’re told

‘In general, under Model 1 (i.e., St ft ), the parameters f1 , f2 , . . . , fk and S1 , S2, . . . , Sk−1 are sepa-

rately estimable, but if s > 0 (where s � l−k), only products such as Sk fk+1, SkSk+1 fk+2, . . ., SkSk+1,

. . . ,Sk+s−1 fk+s are also estimable, not the individual parameters Sk+ j−1, and fk+ j, j � 1, . . . , s.’

OK, now to translate – look carefully at the table of probability expressions at the top of this page (for
the time-dependent model {St ft}, where k < l). We mentioned previously that the key to identifying
inestimable parameters is to look for ‘groups’ of parameters that are never separated. Do we have any
in this table? In fact, we do in this case. Notice that the parameters S3 and f4 always occur together as
the product S3 f4 (i.e., whenever you find f4 you always find S3). So, they are not separately identifiable.

But you might say ‘Well, S2 and f3 always occur together, as do S1 and f2, so are they identifiable?’.
The answer in those cases is ‘yes’, because for those years (3 and 2, respectively), the last element of the
column is simply the product of the number released and the recovery probability – no survival term.
In contrast, in column 4, every element of the column has the products of the survival and recovery
probabilities. Why does this matter? It matters because it is these final elements of the columns 2 and
3 which allow you to estimate the various parameters. Also, with k � 3, columns 1 to 3 correspond to
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l � 3 (i.e., form a symmetrical recovery matrix), and thus all parameters are identifiable. In column 4,
this is not the case, since all elements of column 4 contain at least one product in common (S3 f4).

Thus, in this example, S1 and f2 are separately identifiable, as are S2 and f3, but only the product
S3 f4 is identifiable, so 5 parameters in total (4 individual, and 1 product). In general, estimates of the
products are not of particular interest, since, for example, S3 f4 is the probability of surviving year 3 and
being shot and reported in year 4.

However, non-identifiability can ‘vanish’ with a reduction in complexity of the model. You may recall
this from the mark-recapture chapters, where non-identifiability did not occur in reductions from the
fully time-dependent model. The same is true here. If survival probability S is constant over time, for
example, then

year recovered

year marked number marked 1 2 3 l � 4

1 N1 N1 f1 N1S f2 N1SS f3 N1SSS f4

2 N2 N2 f2 N2S f3 N2SS f4

k=3 N3 N3 f3 N3S f4

In this case, because estimation of S is based on data from all years, there is no problem on non-
identifiability – both S and all of the recovery parameters are estimable.

However, although everything is estimable, Brownie et al. (1985) notes that for years > k, estimates
of recovery probability tend to be poor, because they are based on so few data. So, in this example, f4
would likely be poorly estimated, since they are based entirely on recoveries from > 1 year after marking.
At this point, we’ll introduce some nomenclature in common use in the literature. Recoveries that occur
during the year following marking are referred to as direct recoveries, while those that occur > 1 year
after marking are referred to as indirect recoveries.

begin sidebar

Counting parameters in Brownie models: a different approach

If you’re still confused about how to determine which parameters are estimable in Brownie models,

here is another way of approaching the problem which might be more intuitive. Consider the following

example recovery matrix, which is based on 4 release occasions:

year recovered

year marked number marked 1 2 3 l � 4

1 N1 N1 f1 N1S1 f2 N1S1S2 f3 N1S1S2S3 f4
2 N2 N2 f2 N2S2 f3 N2S2S3 f4
3 N3 N3 f3 N3S3 f4

k=4 N4 N4 f4

We’ll introduce the approach by considering two ‘problem’ situations – (1) no recoveries in a given

year, and (2) no mark-release effort in a given year.

We’ll consider the problem of no recoveries in a given year first. For the preceding recovery matrix,

the most direct way to get an estimate of S1 is algebraically, by comparing the two cells in column 2 of

the recovery matrix (above). You have information on f2 from direct recoveries (along the diagonal),

and information on the product of S1 f2 (based on the indirect recoveries from the first release cohort).

This constitutes two equations in two unknowns, which is easily solved for S1. If f2 � 0 (as would

be the case if there were no recoveries in year 2 of the study), then there is no information on S1 in

column 2. However, looking at column 3, you can derive an estimate of S1 from the combination of
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data from the top two cells in this column, and derive an estimate of S2 from the combination of data

from the bottom two cells in that column, assuming that there were recoveries in year 3. Normally you

would not do these things, because S1 and S2 are also found in other cells in the model. The Brownie

models use all information from all of the cells in the recovery matrix, to maximize precision. However,

this ‘algebraic’ approach at least tells you whether the minimum data necessary for estimation of a

particular parameter are available, given the absence of recoveries in one or more years of the study.

A somewhat more difficult problem arises when you also have years where you do not release any

animals. In this case you are taking out an entire row of the recovery matrix – for example, as shown

in the following recovery matrix:

year recovered

year marked number marked 1 2 3 l � 4

1 N1 N1 f1 N1S1 f2 N1S1S2 f3 N1S1S2S3 f4
2 N2 0 0 0

3 N3 N3 f3 N3S3 f4
k � 4 N4 N4 f4

In this example, we did not release any animals in year 2, and thus an entire row of the recovery

matrix is set to 0. In this case, if you use the same algebraic approach described above, you will see

that you lose your ability to estimate S1 and S2. You don’t have direct recovery information on f2 and

therefore cannot use it to extract S1 from the product S1 f2. In addition, you lose information on the

product S2 f3, and therefore again cannot use it to algebraically ‘solve’ for S2. The best you can do in

this case is estimate the product S1S2. In general, then, when you do not release animals in year t, you

cannot get separate estimates of St−1 and St .

end sidebar

Now that we’ve had a brief look at some of the considerations for counting parameters under the
Brownie parameterization, let’s return to the adult mallard example we have been working with. At this
point, you should be able to figure out why model {St ft} (for example) has 17 identifiable parameters.
Since (k− l) � 9, then we have (k+ l−1) identifiable parameters: 9 recovery probabilities, and 8 survival
rates. For model {S. ft} we have 10 identifiable parameters: 1 survival, and 9 recovery probabilities.

8.3. Brownie estimation: individuals marked as young only

In the preceding mallard example, we noted in passing that the data set consisted entirely of individuals
marked as adults. What happens if you face the situation where you have only individuals marked as
young? Can you still estimate survival and recovery probabilities? Are all parameters identifiable?

This general question is dealt with thoroughly in Brownie et al. (1985), pp. 112-115, and the associated
paper by Anderson, Burnham & White (1985), reprinted in full as an Appendix in Brownie et al. (1985).
These references should be consulted for a full treatment of the problem. Our motive here then is to ‘test
you’ on your ability to determine which parameters are identifiable, and which are not. Paraphrasing
Brownie et al. (1985), marking of young individuals only is often popular because it is often easier,
and less expensive (young are typically easier to catch than adults or sub-adults). However, in most
cases (perhaps even in all cases), survival of young individuals is typically lower than the survival
of older age classes, Also, first year (direct) recovery probabilities are typically higher than for older,
adult individuals (this is to some degree a logically consistent statement, since some mortality, the
complement of survival, is ‘hidden’ in recovery rate).

Given this, we first need to consider what an appropriate model would be for modeling recoveries
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from a sample of individuals marked as young. Brownie et al. (1985) describe a ‘model H1’ as an
appropriate model for these sorts of data (pp. 59-62). Its structure is shown below for a situation where
k � l � 4.

year recovered

year marked number marked 1 2 3 l � 4

1 N1 N1 f ∗1 N1S∗1 f2 N1S∗1S2 f3 N1S∗1S2S3 f4

2 N2 N2 f ∗2 N2S∗2 f3 N2S∗2S3 f4

3 N3 N3 f ∗3 N3S∗3 f4

k � 4 N4 N4 f ∗4

Basically, model H1 is model {Sa2−t/t fa2−t/t} – an age structured model with 2 age-classes with time-
dependence for each class. If you worked through the preceding chapters on mark-recapture (Chapter
7 in particular), you should quickly recognize this structure, at least qualitatively. Along the diagonal,
the recovery probabilities (denoted with an asterisk, *) reflect the recovery probabilities for young
individuals, whereas the off-diagonal recovery probabilities (no asterisk) refer to recovery probabilities
for adult age classes (remember that time, and thus age, increase going from left to right within a cohort
– along a row). The survival rates marked with an asterisk (which form an internal diagonal within each
column) represent survival during the first year of young individuals.

Now, what (if anything) can be estimated here? With a bit of thought, and looking carefully at the
preceding table, you should see that the direct recovery probabilities f ∗ are estimable (recall that
direct recovery probabilities are the recovery probabilities estimated for the first interval following
marking). However, without extra information, S∗ – the survival probabilities of young over the interval
following marking – are not estimable, no matter what simplifying assumptions are made about how
the probabilities vary over time.

Remember the trick is to look for parameter ‘groups’ that always occur together. Consider the
following attempt to simplify the structure of this model in an attempt to ‘make the parameters
identifiable’. Assume that none of the 4 parameters (S, S∗, f and f ∗) vary over time (i.e., model
Sa2−./. fa2−./.). The structure of this model would be (again assuming k � l � 4):

year recovered

year marked number marked 1 2 3 l � 4

1 N1 N1 f ∗ N1S∗ f N1S∗S f N1S∗SS f

2 N2 N2 f ∗ N2S∗ f N2S∗S f

3 N3 N3 f ∗ N3S∗ f

k � 4 N4 N4 f ∗

Note that the parameters S∗ and f always occur together as a product. In fact, this demonstrates why,
even in this simple model, these two parameters cannot be separately estimated – only the product S∗ f

can ever be estimated if no adults are marked. Moral: don’t mark only young individuals if you plan on
using a recovery analysis alone to estimate parameters of interest – it is doomed to fail. (An approach
combining data from dead recoveries and live encounters applied to individuals marked as young only
is described in the next chapter).
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8.4. Brownie analysis: individuals marked both as young + adults

One of the unintended (yet important) messages of the preceding section was that recovery analysis
of only individuals marked as young is ultimately futile. Of course, you should also understand that
this statement is true only for recovery analysis – at least when contrasted to standard mark-recapture
analysis, which has no such structural limits.

But, the question remains – how can you get age-specific estimates from a recovery analysis? The
answer is, in fact, fairly straightforward – you mark both young and adults, and analyze their recovery
data together. The reason we do this (as we’ll see in a moment) is that the ‘extra information’ provided
from the adults allows us to estimate some parameters we wouldn’t be able to estimate using young
alone.

The background for analyzing individuals marked both as young and adults using the Brownie
parameterization is found in Brownie et al. (1985) – see pp. 56-115. As in Brownie et al. (1985), we’ll start
with a very general model – what is referred to as ‘Model H1’ in the Brownie text (which we introduced in
the preceding section). Model H1 assumes (1) that annual survival, reporting and harvest probabilities
are year-specific, (2) annual survival and harvest probabilities are age-dependent for the first year of
life only, and (3) reporting probabilities are not dependent on the time of release.

As with the preceding discussion on individuals marked as young only, we’ll let f ∗i be the recovery
probability in year (i) for individuals marked and released as young in year (i). S∗i will represent the
survival rate for year (i) for individuals marked and released as young in year (i). fi and Si will represent
the adult recovery and survival rates in year (i), respectively. Now, let’s examine the structure of Model
H1, again using a table of the probability expressions corresponding to the number of expected direct
and indirect band recoveries.

year recovered

Year marked Number marked 1 2 3 l � 4

marked and released as adults

1 N1 N1 f1 N1S1 f2 N1S1S2 f3 N1S1S2S3 f4

2 N2 N2 f2 N2S2 f3 N2S2S3 f4

3 N3 N3 f3 N3S3 f4

k � 4 N4 N4 f4

marked and released as young

1 M1 M1 f ∗1 M1S∗1 f2 M1S∗1S2 f3 M1S∗1S2S3 f4

2 M2 M2 f ∗2 M2S∗2 f3 M2S∗2S3 f4

3 M3 M3 f ∗3 M3S∗3 f4

k � 4 M4 M4 f ∗4

For marked adults, the assumptions of Model H1 are the same as those of Model 1 (i.e., model St ft ), so
the expected recoveries from individuals marked as adults are the same under Model H1 and Model 1.

For individuals marked as young, if M1 are marked and released in the first year, then on the average
we would expect M1 f ∗1 recoveries in the first year after marking, and M1S∗1 of the release cohort to
survive to adulthood (i.e., to survive the year). At the start of the second year, M2 new individual young
are marked and released. In addition, the M1S∗1 survivors from the first release cohort (now adults) are
also released. The important thing to remember is that in the second year, these M1S∗1 survivors will
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reflect the adult probabilities f2 and S2, giving on average M1S∗1 f2 recoveries and M1S∗1S2 survivors.
And so on for each successive cohort and recovery year.

From the table of expected recoveries for Model H1 we see that the off-diagonal elements of the
recovery matrix for individuals marked as young provide information about the adult probability
parameters.

year recovered

Year marked Number marked 1 2 3 l � 4

marked and released as young

1 M1 M1 f ∗1 M1S∗1 f2 M1S∗1S2 f3 M1S∗1S2S3 f4

2 M2 M2 f ∗2 M2S∗2 f3 M2S∗2S3 f4

3 M3 M3 f ∗3 M3S∗3 f4

k � 4 M4 M4 f ∗4

It is the presence of the ‘adult’ parameters in the off-diagonal cells that can be exploited to provide
extra information needed to estimate parameters that might not be estimable otherwise.

Let’s now turn our attention to running Model H1 in MARK. In fact, when you installed MARK,
you’ll find that this model (and 2 others) have already been ‘done for you’. During the installation, a
set of files named BROWNIE.xxx were extracted into the \examples sub-directory where MARK was
installed. Open up BROWNIE.DBF. The results shown in the browser were derived by fitting the 3 models
listed to the data in BROWNIE.INP, which are in fact the mallard data from San Luis Valley, California
we considered before – only now we’re looking at both the recoveries for individuals marked as young
and adults.

Before we continue, let’s have a quick look at the INP file format for these data – how do we put both
the adult and young recovery matrix into the same input file? As it turns out, it is very simple.

Chapter 8. ‘Dead’ recovery models



8.4. Brownie analysis: individuals marked both as young + adults 8 - 14

Near the top of the file, you’ll see the two recovery matrices, for individuals marked as adults and
young, respectively (the order is arbitrary, as long as you remember which one comes first). Note that
the two recovery matrices are simply entered sequentially, each one preceded by a ‘RECOVERY MATRIX
GROUP=n’ statement. That’s really all that’s needed. The text that is /* commented */ out is a holdover
from the days when these data were run through BROWNIE (one of the original programs for running
these sorts of data). MARK simply ignores the commented out text (as it should).

Now let’s look at the models themselves. You might guess from inspection of the expected recoveries
under model H1 that this model is in fact model {Sg∗(ta2−t/t)−t/t fg∗(ta2−t/t)} – two age classes for both
parameters, with time-dependence in each age class. This is model ‘S(a*t)f(a*t)’ in the browser
(although we prefer a more informative subscripting). The PIMs are shown below starting with survival,
S, for adults and young respectively:

Now, the recovery PIMs, again for adults and young, respectively.

Note that there is no ‘age structure’ to the adult survival or recovery PIMs. This is because we
do not expect differences in the direct recovery or survival rate from the indirect probabilities for
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individuals marked as adults. In contrast, note the age-structure for survival and recovery PIMs for
individuals marked as young. Again, the age-structure here is because we believe, a priori, that survival
(and recovery) in the year following marking (i.e., the direct rates), will differ from the probabilities > 1

year after marking (when the surviving individuals are adults).

However, what is important to note here is that the parameter values appear to overlap. Consider
the survival PIMs. For individuals marked and released as adults, it is a simple time-dependent PIM,
with parameter indexing from 1 → 8. For individuals marked and released as young, there are 2 age-
classes. The indexing for the first age-class (along the diagonal) goes from 9 → 16. However, off the
diagonal, the indexing ranges from 2→ 8. In other words, off the diagonal, the indexing for the young
individuals is the same as that for the adults. Why? Because off the diagonal, individuals marked as
young are adults! Remember, time (� age) within cohort goes left to right. You have actually seen this
before – it was discussed in some detail in Chapter 7.

Now, implicit in how the PIMs are indexed is the assumption (in this case) that adult survival Si does
not depend on whether or not the individual adult released (or entering) at occasion (i) was originally
marked as an adult or not. As we will discuss in the next chapter, this may be a ‘strong’ (i.e., debatable)
assumption in some cases.

What about the recovery PIMs? Again, much the same thing – simple time-dependence for adults
(indexing ranging from 17→ 25), and age-structure with time-dependence in both age classes for young
(26 → 34 along the diagonal for direct recovery probabilities, and 18 → 25 for the adult age-class). To
get a different (and perhaps more intuitive view) of the overlapping structure of the PIMs, simply take
a look at the PIM chart (shown below), where you can see clearly the overlap between the adult and
young PIMs.

Now, let’s have a look at the results. Close the PIM chart and click on the ‘View estimates’ button on
the results browser toolbar. Note from the browser that 34 parameters were estimated for this model
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(Model H1). If you look at the PIMs,you’ll see that this is the total numberof parameters in the structure of
the model. Thus,underModel H1,when k � l (as it does in this example),all the parameters are estimable
– including the young survival and recoveryprobabilities. Clearly, this is a significant improvement over
the case using only individuals marked as young, where essentially nothing was estimable!

8.5. A different parameterization: Seber (S and r) models

In this section we turn our attention to a rather different approach to the same questions, and the same
data type – recoveries, but using a different parameterization, first described by Seber (1970) and later
by Anderson et al. (1985) and Catchpole et al. (1995).

Recall that in the Brownie parameterization we’ve just covered, marked individuals are assumed
to survive from one release to the next with survival probability Si . Individuals may die during the
interval, either due to hunting or due to ‘natural’ mortality. Individuals dying due to hunting (with
probability Ki) may be retrieved and reported with some probability (ci and λi , respectively).

Here, however, we introduce a new parameter ri , for recovery probability, defined as the probability
that dead marked individuals are reported during each period between releases, and (most generally)
where the death is not necessarily related to harvest. Note that the recovery parameter ri we’re talking
about here is not the same as the Brownie recovery probability fi , which is the probability of being
harvested, retrieved and reported during the period between releases.

Thus, a marked individual either (i) survives (with probability S – encounter history ‘10’), (ii) dies
and is recovered and reported (with probability r(1 − S) – encounter history ‘11’), or (iii) dies and is
not reported (either because it was not retrieved, or if retrieved, not reported), with probability in either
case of (1 − S)(1 − r) – encounter history ‘10’).

Before we look at how to implement this parameterization in MARK, let’s take a moment to compare
this parameterization with the Brownie parameterization we looked at earlier. First, clearly there must
be some logical relationship between r and f. Recall that in the Brownie parameterization,
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Consider the encounter history ‘11’. In the Brownie parameterization, the expected probability
of this event is Kcλ, which we refer to collectively as f, the recovery rate. In the present, modified
parameterization, the probability of the encounter history ‘11’ is given as r(1 − S).

Thus,

fi � ri

(

1 − Si

)

ri �
fi

(

1 − Si

)

Based on these algebraic connections, we can derive the expected cell probability expressions under
the Seber parameterizations by simply substituting fi � ri

(

1− Si

)

into the expressions for the Brownie
parameterization we developed at the start of this chapter:

Brownie

year recovered

number marked 1 2 3 l � 4

N1 N1 f1 N1S1 f2 N1S1S2 f3 N1S1S2S3 f4

N2 N2 f2 N2S2 f3 N2S2S3 f4

N3 N3 f3 N3S3 f4

N4 N4 f4

Seber

year recovered

number marked 1 2 3 l � 4

N1 N1r1

(

1 − S1

)

N1S1r2

(

1 − S2

)

N1S1S2r3

(

1 − S3

)

N1S1S2S3r4

(

1 − S4

)

N2 N2r2

(

1 − S2

)

N2S2r3

(

1 − S3

)

N2S2S3r4

(

1 − S4

)

N3 N3r3

(

1 − S3

)

N3S3r4

(

1 − S4

)

N4 N4r4

(

1 − S4

)

The preceding illustrates the algebraic and conceptual connection between the two parameterizations.
In simplest terms, the parameter ri is a reduced parameter – and is a function of two other parameters
normally found in the Brownie parameterization. But, more pragmatically, what is the impact of the
two parameterizations? Why use one over the other, or does it matter?

The primary motive for the reduced parameterization (using only Si and ri) is so that the encounter
process can be separated from the survival process, entirely analogous to what was seen in ‘normal’
mark-recapture. With the Brownie parameterization, the 2 processes are part of the fi parameter (i.e.,
there is ‘some survival’ and ‘some reporting/encounter’ information included in recovery rate). As
such, developing certain advanced models with MARK (by modifying the design matrix) is difficult,
even illogical (on occasion) using the Brownie parameterization.

So, we should drop Brownie and use the Seber parameterization right? Well, perhaps not quite. First,
under the reduced parameterization the last Si and ri are confounded in the time-dependent model, as
only the product (1−Si )ri (analogous to the confounding of the finalϕi pi+1 term in fully time-dependent
model for live encounter analysis). This has some implications for comparing and contrasting survival
estimates for some constrained models – we’ll deal with this in a moment.

Chapter 8. ‘Dead’ recovery models



8.5. A different parameterization: Seber (S and r) models 8 - 18

Second, all the parameters are bounded [0, 1], which outwardly might seem like a benefit. However,
parameter estimates at the boundary do not have proper estimates of the standard errors. The Brownie
parameterization overcomes both these technical difficulties (for details, see the Brownie text).

But finally, and perhaps more importantly (at least for some applications), the reduced parameteri-
zation does not allow you to separate ‘hunter’ or ‘harvest’ mortality from ‘natural’ mortality, whereas
the Brownie parameterization does. The Seber parameterization basically deals with ‘mortality’ as a
whole, with no partitioning possible. In many cases, this can be an important limitation that you need
to be aware of.

For the moment, though, we’ll leave the comparison of these two models (and their respective
pros and cons) for you to explore, and will concentrate on showing how to implement the reduced
parameterization in MARK. In fact, if you’ve understood the way in which we applied the Brownie
parameterization in MARK, you’ll find this new approach very easy. We’ll demonstrate this using the
BROWNADT.INP data set we analyzed earlier in the chapter. To specify the new parameterization, select
‘Dead recoveries (Seber)’:

Look at the PIMs for the two parameters under the fully time-dependent model:

Note that unlike the Brownie parameterization, there are the same number (in absolute terms) of
parameters (9) for each (S1 → S9 and r1 → r9).

Since the parameterization is analogous to ‘normal’ mark-recapture, then the identifiability of pa-
rameters should pose no significant challenges for you at this stage. For example, for the fully time-
dependent model {Strt} with 9 occasions, we expect 17 estimable parameters – S1 → S8 and r1 → r8,
and the final product r9(1 − S9). If you run this model in MARK, you’ll see that in fact, 17 parameters
are modeled.
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8.5.1. Seber vs. Brownie estimates in constrained models: careful!

In the preceding section, we noted that under the Seber parameterization, the last Si and ri are con-
founded in the time-dependent model (analogous to the confounding of the final ϕi pi+1 term in fully
time-dependent model for live encounter analysis). Recall that in live encounter models, the estimate
of survival over the final interval can be obtained if the encounter probability on the last occasion is
known. We saw that in models where survival varied over time, but encounter probability was held
constant (i.e.,

{

ϕt p.
}

), all of the survival values were estimable, since a common, constant value for p

was estimated for all occasions, including the terminal occasion.

However, while it would seem reasonable to use the same logic for recovery analysis using the Seber
parameterization, care must be exercised – especially if you’re comparing estimates from a model based
on the Seber parameterization with those from a Brownie parameterization. Why? Simple – because
the number of survival parameters estimable using the Brownie parameterization is always one less
than the Seber parameterization! As such, comparing estimates from a model parametrized using the
Seber parameterization can, for some models, be quite different than those from seemingly equivalent
models parametrized using the Brownie parameterization.

This can be easily demonstrated by means of a numerical example. Consider the analysis of a
simulated data set, 8 occasions, where K � 0.2, c � 1.0, and λ � 0.4. In other words, the probability
of being harvested (‘killed’) over a given interval is 0.2, probability of the harvested individual being
retrieved is 1.0, and the probability that the harvested, retrieved individual is reported is 0.4. We’ll
assume all 3 parameters are constant over time. Under the Brownie parameterization, then, the recovery
probability is f � Kcλ � (0.2)(1.0)(0.4) � 0.08.

Given these values, what is the recovery probability r under the Seber parameterization? Recall that

fi � ri

(

1 − Si

)

ri �
fi

(

1 − Si

)

So, given f from the Brownie parameterization, then we can solve for r provided we have an estimate
of S. Since K � 0.2, we know that survival probability is at least (1 − 0.2) � 0.8. However, this value is
derived assuming the only source of mortality is harvest. What if there is some level of natural mortality,
say E � 0.1? If we assume that harvest and natural mortality events are independent (i.e., temporally
separated, or additive), then S � (1 − K)(1 − E) � (0.8)(0.9) � 0.72. So, given f � 0.08, and S � 0.72,
then

ri �
fi

(

1 − Si

) �
0.08

(1 − 0.72)
� 0.286

We’ll assume no age structure, and 5,000 newly marked individuals on each occasion – the recovery
data (in LD format) are contained in the file seber-brownie.inp. We’ll start our analysis by specifying
the Brownie data type in the data type specification window. If we examine the default starting PIMs for
the two parameters, we see that the survival PIM has 7 columns (corresponding to parameters S1 → S7),
while the recovery PIM has 8 columns (corresponding to parameters f1 → f8). We run this model (i.e.,
model

{

St ft

}

), and add the results to the browser.

Then, by modifying the PIMs, we construct a ‘constrained’ model,
{

St f.
}

, where survival is allowed to
vary over time, while the recovery probability is constant (remember – recovery probability under the
Brownie parameterization includes information about mortality, since it is the product of kill probability
K with the retrieval and reporting parameters c and λ, respectively. As such, a model where recovery
probability is held constant, but where survival is allowed to vary over time has likely implications for
how ‘other sources of mortality’ must vary). Model

{

St f.
}

then has only one recovery estimate, but the
same 7 estimates for survival. So, constraining recovery f to be constant over time does not change the
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number of survival parameters S which are estimable. Here are the results for both models:

We see thatmodel
{

St ft

}

has 15 estimable parameters (8 recovery parameters + 7 survivalparameters),
whereas model

{

St f.
}

has only 8 estimable parameters (1 recovery parameter + 7 survival parameters).
If we look at the parameter estimates from model

{

St f.
}

we see that the survival estimates are all fairly close to the true value of 0.72 (recall that in the true
model under which the data were simulated, the true value for survival did not vary over time), and
the estimated recovery probability is very close to the true value of 0.08. This is perhaps not surprising
given the size of the data set, and that our fitted model is fairly close to the true model underlying these
simulated data.

OK – fine. But now let’s fit these same data using the Seber parameterization. We can do this easily
in MARK by changing the data type from ‘Brownie’ to ‘Seber’. We do this by selecting ‘Change Data
Type’ from the PIM menu:

and selecting the ‘Dead recoveries’ data type from the list.

Now, if we examine the PIMs for the fully time-dependent model (i.e., model
{

St rt

}

), we see that the
PIMs for both parameters have 8 columns, corresponding to 8 parameters for survival, and 8 parameters
for reporting rate, respectively. However, we also recall that the final two estimates of survival and
reporting probabilities are confounded under the Seber parameterization, so we in fact have only 15
estimable parameters in this model. Fit this model to the data, and add the results to the browser (shown
at the top of the next page).
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Notice that models
{

St ft

}

(Brownie) and
{

Strt

}

(Seber) have exactly the same model deviances
(19.8253), and number of estimated parameters (15). And, not surprisingly perhaps given this, you’ll
see that the estimates of survival from the Seber model are identical to those from the Brownie model,
for the first seven estimates; the final estimate of survival from the Seber model is confounded with the
final estimate of the reporting rate.

OK – so far, it seems as if the two parameterizations are equivalent. But now, let’s try model
{

St r.
}

using the Seber parameterization. Recall that for this model, there are 9 estimable parameters (8 survival
estimates + 1 reporting probability estimate). In contrast, for the ‘equivalent’ Brownie model

{

St f.
}

there
are only 8 estimable parameters (7 survival estimates + 1 recovery probability estimate). So, unlike the
case where we contrasted the fully time-specific models between the two parameterizations, here, the
actual number of estimable parameters differs between the two models. This should suggest fairly
strongly that these are not, therefore, equivalent models. As we can see after adding the results to the
browser

that models
{

Seber -St r.
}

and
{

Brownie -St f.
}

are not equivalent; they have different deviances, and
different numbers of estimable parameters. If we compare our reconstituted parameter estimates from
the Seber model (below) with those from the ‘equivalent’ Brownie model (preceding page),
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we see that all of the survival estimates differ between the two models. (Note that the reporting
probability estimate is fairly close to the true value of 0.286).

Now, in this particular example, you might suspect that the differences in the survival estimates
between the two models (Brownie versus Seber) are ‘not that big’. In fact, the relative ‘closeness’ of
the estimates in this example owes more to the fact that the simulated data set is very large, and the
underlying (generating) model is very simple (no time variation in any of the parameters).

To demonstrate this more graphically, let’s reanalyze the recovery data for adult male mallards
banded (marked) in the San Luis Valley we considered earlier (contained in BROWNADT.INP). For these
recovery data, fit models

{

St r.
}

(Seber) and
{

St f.
}

(Brownie), and add the results to the browser:

We see that the model fits are not even remotely similar. This is reflected both in terms of the model
deviances,but also (and more to the point we’re trying to make here) in terms of the parameter estimates.
Here are the reconstituted estimates from the Seber and Brownie models, respectively:

Several things to note. First, there is one more survival parameter estimated for the Seber model,
corresponding to the final interval (which is not estimable under the Brownie parameterization).

Second, and of particular note, the estimates of survival for the first 8 intervals which are estimable
under both models are quite different – often dramatically so. For example, under the Seber model, the
estimated survival probability for the first interval is 0.7344, whereas under the Brownie model, the
estimate for the same interval is 0.625, a value which is almost 15% smaller!

So, which model yields estimates of survival which are ‘closest to truth’? Well, there are a couple
of things to keep in mind. First, for the Brownie model, the recovery probability f contains some
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information about mortality, and thus constraining either S or f to be constant while allowing the
other parameter to vary with time makes implicit assumptions about the pattern of variation in other
parameters. For example, for Brownie model

{

St f.
}

, if K (kill rate) varies with time, then parameters c

and λ must covary in such a way that the product Kcλ (which equals the recovery probability f ) does
not vary. More likely, if c and λ are constant (as is often assumed), then constant S implies either that K

is constant, or that natural mortality is compensatory (and not additive). Thus, it might be reasonable
to wonder if model

{

St f.
}

is a reasonable model under the Brownie parameterization.

Second, and perhaps more practically, it is important to remember that in the end, these are not the
same models – the Seber model is more general (i.e., has more parameters) than the Brownie model,
and thus will ‘fit the data better’ (i.e., have a smaller deviance).

And this is key – for most of our models, the Brownie and Seber parameterizations are effectively
equivalent – and yield the same model fits and estimates for survival. For example, in the following
(below) we show the model fits for our 4 standard models (models

{

St ft

}

,
{

S. ft

}

,
{

St f.
}

and
{

S. f.
}

):

Looking closely, we see that:

Brownie Seber
{

St ft

}

≡
{

Strt

}

{

S. ft

}

≡
{

S.rt

}

{

S. f.
}

≡
{

S.r.
}

{

St f.
}

6≡
{

St r.
}

In other words, only models
{

St f.
}

(Brownie) and
{

Str.
}

(Seber) are not equivalent – because these are
the only two models which do not have the same number of estimable parameters. And, thus, comparing
survival estimates from these two models is analogous to comparing ‘apples and oranges’. We leave
the question of which set of estimates (Brownie or Seber) is least biased for you to explore – however, it
is clear that you need to pay careful attention to the number of estimable parameters for a given model
type if comparing estimates generated using either the Brownie or Seber parameterization.

8.6. Recovery analysis when the number marked is not known

If you look back in this chapter, you’ll see that under the ‘typical’ application of recovery analysis, the
number of recoveries expected over a given interval is equal to the number marked and released (Ni)
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times the survival and recovery probabilities.

However, under some marking schemes (for example, the marking or ‘ringing’ scheme that was used
by the British Trust for Ornithology - the ‘BTO’), the number marked and released is often unknown.
What can you do in these cases?

To circumvent this problem, a ring recovery model is formulated where the recovery probability
(using ri from the reduced parameterization) is assumed constant by age class and year. Under this
assumption, the survival probability can be estimated from the observed recoveries. How does this
work?

If we assume that ri is a constant, then the cell probability for the j year of recoveries given k years of
recoveries is

S1S2S3 . . . S j−1

(

1 − S j

)

1 − S1S2S3 . . . Sk

where the denominator is 1 minus the probability of still being alive. Note in particular that recovery
(ri) does not appear in this expression.

Of the k survival probabilities, only (k−1) are identifiable. Common approaches to achieve identifia-
bility are to set Sk−1 � Sk or to set Sk equal to the mean of S1, S2, . . . , Sk−1 using appropriate constraints
in the design matrix. This model should only be used when you do not know the number of animals
marked because you cannot evaluate the assumption of constant recovery probabilities with this model.
If you know the number of individuals marked, use one of the ‘normal’ dead recovery models (Brownie
or Seber) described earlier in this chapter.

To implement a BTO recovery analysis, simply select ‘BTO Dead Recoveries and Unknown Ringings’:

What about the data file itself? Consider a ‘typical’ recovery matrix (in fact, the BROWNADT.INP file
we’ve looked at previously). The last row of the INP file in this case reflect the number released in each
year (cohort). What would you do to modify the format for the ‘BTO’ data type? Simple – delete the
last line!

Let’s run this analysis using MARK, to get a more ‘hands-on’ sense of how the BTO data type analysis
differs from the ‘normal’ dead recovery analyses we’ve already discussed. Start up MARK, and select
BROWNADT.INP. View the file, which opens the file in the Windows Notepad. Edit the file by deleting the
last row (so that it looks like the above). Save the file from the Notepad – calling it BTO.INP. Re-select
the file to analyze, this time picking BTO.INP. Set the number of occasions to 9, and then make sure the
‘BTO Ring Recoveries’ data type is selected.

To see quickly that we’re working with something distinct from ‘normal’ recovery analysis, have a
look at the PIM chart. The first thing you’ll notice immediately is that there is only one parameter –
S (survival). Why? Because recovery (r) is assumed to be constant, and is therefore not estimated. Or,
in other words, since the recovery probability (i.e., ri) does not factor in the expected cell probabilities,
then you clearly don’t need to estimate it (in fact, you can’t!).

With only one parameter, then obviously all constraints are placed on survival only. Clearly, this
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is a significant limitation in your ability to analyze these data, since you cannot test any hypotheses
concerning variation in recovery rate. Assuming a constant recovery rate is a necessary step to do
anything with data collected in this way (under the premise that a little knowledge is better than total
ignorance). Since the BTO has collected a lot of data over the past many decades, there has been a fair
amount of work devoted to the theory of analyzing data of this type, where the number marked and
released is unknown. However, despite those efforts, there are going to be unavoidable limits to what
you can do.

How do the estimates from this analysis,using the BTO data type,compare to those using the ‘normal’
recovery analysis, where the number marked and released is known (recall that for these data, we
actually do know the number marked and released)?

The results from model {St} for the BTO data type are shown below:

First, notice that there are no standard errors. Error variance around the estimates of Si cannot itself
be estimated under the constraint (assumption) of constant recovery rate.

How do these estimates of Si compare to the values from the most parsimonious model fit to these
data when number marked and released was known? Recall that we analyzed these data earlier in this
chapter – referring back to that analysis, we see that the most parsimonious model was model {S. ft}.
For this model, S was estimated as 0.638. For the most parsimonious model with time dependence in S

(model St ft), the estimates of survival are
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We quickly see that the estimates are markedly different. Why? Because, as it turns out, the most
parsimonious model(s) had time-dependence in the recovery parameter – clearly a ‘violation’ of the
assumption of constant recovery probability required by the BTO data type analysis.

8.7. Recovery models and GOF

First the good news – GOF testing for recovery models is possible, and quite straightforward. Now
the bad news (well, perhaps not ’bad’ news, but something to note) – the type of GOF tests that are
available to you depends on which parameterization you use (Brownie, or Seber). If you want to use the
‘Brownie’ parameterization, you can test goodness of fit of the data to your general model using program
ESTIMATE. Program ESTIMATE can be called from within MARK (much as you can invoke program
RELEASE from within MARK). Alternatively, if you’re using the ‘Seber’ parameterization, you can use
either the bootstrap or median-ĉ approaches (but not program ESTIMATE) for GOF testing.

But, suppose you’ve already fit your model set using the ‘Brownie’ parameterization, but instead of
using program ESTIMATE for the GOF, you’d like to estimate ĉ using either the bootstrap or median-ĉ
approaches. Do you need to ‘start over’, and re-construct all your ‘Brownie’ models using the equivalent
‘Seber’ parameterization? The answer (thankfully) is ‘no’. All we need to do is change the data type
from ‘Brownie’→ ‘Seber’ for the general model, which we can do directly within MARK (see below).

In the following, we’ll demonstrate the various steps needed to do GOF testing for dead recovery
models. We’ll use the BROWNADT.INP data file we analyzed earlier in the chapter. Recall that the results
of our analysis for these data, based on the ‘Brownie’ parameterization, and using the default ĉ of 1.0
were:

Remember we want to derive the measure of fit (estimate of ĉ) for our general model, which in this
case is model {St ft}.

As noted above, for the ‘Brownie’ parameterization, our only option for GOF testing is to run program
ESTIMATE from within MARK. Program ESTIMATE provides basic GOF testing for several of the
‘classic’ models under the ‘Brownie’ parameterization (think of ESTIMATE in some senses as the
recovery equivalent of RELEASE). Program ESTIMATE uses the ‘classical’ naming convention for
models we noted earlier in this chapter:

model legacy name reference

{St ft} Model 1 Brownie et al. (1985) pp. 15-20

{St f.} none

{S. ft} Model 2 Brownie et al. (1985) pp. 20-24

{S. f.} Model 3 Brownie et al. (1985) pp. 24-30
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Under this convention, model {St ft} is Model 1. To run ESTIMATE, you don’t need to make any
particular model in the browser ‘active’, since ESTIMATE simply fits a series of ‘built-in’ models,
regardless of the models you have in your browser.∗ One of these models is Model 1.

To run ESTIMATE, simply pull down the ‘Test’ menu, and select ‘Program Estimate’. After a few
seconds, you’ll be dumped into the Notepad, which will present the results of the ESTIMATE analysis.
You’ll want to find the part of the output pertaining to Model 1.

After a bit of searching, you’ll find the following results for Model 1:

The observed χ2 statistics for Model 1 is 31.57, with 25 df. The P-value of observing a χ2-value
larger than 31.57 is 17.1%. If we use the model (χ2/df) as an estimate of ĉ, then our estimate would
be (31.57/25) � 1.263.

But, what if we wanted to use either the bootstrap or median-ĉ approaches, rather than program
ESTIMATE? Recall that both the bootstrap or median-ĉ GOF tests are available only for the ‘Seber’
parameterization. If your models are already constructed using the ‘Seber’ parameterization, then you
simply make the general model active in the browser (by right-clicking and retrieving it), and then
proceeding as per normal.

However, if your models are constructed using the ‘Brownie’ parameteriztion, as in the present
example, then you first need to change the data type for the general model from ‘Brownie’ → ‘Seber’.
As demonstrated earlier in this chapter, this is easy to do – simply make the general model active in the
browser (by right-clicking and retrieving it), and then select ‘PIM | Change data type’. MARK will
present you with a selection of data types which are consistent with the data contained in the PIM. In

∗ This means that unless your general model is one of the ‘built-in’ models that ESTIMATE is running, you’re out of luck.
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this case, there are only two such data types: the ‘Dead recoveries (Seber)’ (i.e., the S and r Seber
parameterization, and the ‘Dead recoveries (Brownie et al.)’ (our current data type). We want to
switch to the Seber ‘S and r’ data type, so pick the ‘Dead recoveries (Seber)’ option from the list. You
won’t see anything happen, but you’ll now be able to run a model under the ‘S and r’ parameterization.
The model we want to run is model {Strt}, which is equivalent to model {St ft}. If you want to check to
see that the underlying parameterization has now changed to ‘Seber’, look at the PIM chart (you’ll see
that the general model is now parameterized in terms of S and r – i.e., the ‘Seber’ parameterization).

Once you’ve confirmed you changed the data type, go ahead and run the model, and call it model
‘S(t)r(t)’. Add the results to the browser. You should observe that the AIC, deviance and the number
of parameters are identical to that reported for model {St ft}. Now, all you need to do is run a bootstrap
or median-ĉ GOF test on this new model {St rt}. The mechanics for both tests were covered in detail in
Chapter 5.

Based on 1,000 bootstraps, we found that approximately 21% of the bootstrapped deviances were
greater than the observed deviance for model {St rt}, indicating adequate fit. Recall from our program
ESTIMATE GOF analysis that the observed χ2 statistics for Model 1was 31.57, with 25 df. The P-value
of observing a χ2-value larger than 31.57 is 17.1%, which is comparable to the 21% value observed from
the bootstrap analysis. Further, both our bootstrapped and median-ĉ estimates for ĉ (1.153, and 1.110,
respectively) are consistent with the estimate of ĉ from the ESTIMATE analysis (31.57/25 � 1.263).

Taken together, this wouldsuggest some levelof equivalence between the approachbasedon program
ESTIMATE, applied to the general model under the ‘Brownie’ parameterization, and the bootstrap and
medianĉ approaches, under the ‘Seber’ parameterization. Such a conclusion should be approached
cautiously. One thing the ESTIMATE output does give you is the relative contribution of each element
of the recovery matrix to the overall model χ2. This is analogous to partitioning the data into the
contingency tables that we used with program RELEASE for live encounter data. The contributions for
this data set are shown at the top of the next page. Careful examination of these tables can sometimes
help you diagnose lack of fit for recovery data.

8.8. Summary

That’s it! Recovery models are more common than you think, and not simply restricted to ‘harvested’
species. It is worth spending some time getting comfortable with the theory, and the different imple-
mentation of recovery analysis in MARK. In the next chapter, we’ll actually combine ‘dead recovery’
models with ‘live encounter’ models. As you’ll see, this ‘joint’ estimation allows you to tease apart
sources of apparent mortality in novel and potentially useful ways.
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CHAPTER 9

Joint live encounter & dead recovery data

The first chapters in this book focussed on ‘typical’ open population mark-recapture models, where
the probability of an individual being seen was defined by 2 parameters: the probability the animal
survived and the probability that an animal alive in state r at time i is alive and in state s at time i + 1. In
Chapter 8, we considered the situation where individuals are ‘found dead’ (or, recovered), asopposed to
‘encountered alive’. In all cases, we model the probability of being encountered (either alive or dead) as
a function of underlying parameters. However, up until now, we’ve only considered what we might call
‘either or’ models – the marked individuals is either resighted alive, or it isn’t. The marked individual
is found dead and reported, or it is not. And so forth.

However, clearly there can arise situations where one sort of encounter precludes (or determines or
otherwise affects) the probability of an encounter of another kind. The simplest example of this (and the
one we will focus on to begin this chapter) is the situation where an individual is found dead. Clearly,
if the individual is dead, then it cannot be subsequently resighted as a living individual – the fact that
it is dead precludes any other encounter process.

The technical issue (and the major theme of this chapter) is – ‘how do we use this extra information in
our analysis?’. In fact, this ‘theme’ of ‘using extra information’ is currently an area of very active research.
As we will see, there are many situations in which data of various types (e.g., recoveries, recaptures,
telemetry) can be used simultaneously, to provide estimates of parameters that are not estimable using
only one source of data, to improve precision of parameter estimates beyond what can be achieved using
data from one source only, and to provide some ‘flexibility’ in accommodating encounter data which
might have been collected ‘opportunistically’ throughout the year. As we will see, the basic ideas for
using data from various sources are merely extensions to what we’ve already discussed. Of course, the
‘challenge’ is in the details.

9.1. Combining live encounters and dead recoveries – first steps. . .

In 1993, Ken Burnham of Colorado State University published a seminal paper outlining an approach
for combining dead recovery and live encounter data into a single analysis – we encourage you to read
the original text (K. P. Burnham – A theory for combined analysis of ring recovery and recapture data. In
‘Marked Individuals in the Study of Bird Population’ (J-D. Lebreton & P. M North, Eds) – Birkhäuser-Verlag,
Basel). Here, we summarize some of the basic results presented in Burnham (1993), and discuss how
the approach is implemented in program MARK.

First, we need to identify the basic elements of where the two types of data differ, and where they are
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the same. For both dead recoveries, and live encounters, there is some underlying probability that the
marked individual will survive over a specified time interval, and that there is some probability that
the marked individual will be encountered, either conditional on being alive and in the sample at the
end of the interval (in the case of a typical recapture analysis), or dead, recovered and reported during
the interval (in the case of a typical dead recovery analysis). Clearly, an individual cannot be recaptured
(or otherwise encountered) alive subsequent to being found and reported dead.

However, it is important to remember that the probability of recapture is conditional on (i) being
alive, and (ii) remaining in the sampling region (or, as you’ll recall from earlier chapters – permanent
emigration and mortality are inexorably confounded in a standard recapture study). But what about
recoveries? Clearly, it might be reasonable to assume that an individual is equally like to be recovered
dead and reported regardless of whether it is in the sample or not. Of course, it is possible under some
circumstances that the probability of mortality (recovery) and being reported is dependent on whether
or not the marked individual is in or out of the sample area,but for now,we’ll assume that the probability
of recovery and reporting is independent of sampling location. In other words, we assume that dead
recoveries can occur – and be reported – from ‘anywhere’.

Given this assumption, then you might have already noted that the addition of recovery data to
our analysis gives us something we didn’t have before – the ability to separate ‘true’ mortality from
‘apparent’ mortality. In simplest terms, in a ‘live-encounter’ recapture study, the estimate of ϕ is an
estimate of a product of two different events: survival, and fidelity. More formally, we can write

ϕi � Si Fi

where Si is the probability of survival from (i) to (i+1), and Fi is the probability of remaining in the
sample area (F for ‘fidelity’) between (i) and (i+1).

As we discussed in Chapter 8, Si can be estimated directly using analysis of data from dead recoveries.
As such, we might derive an estimate for Fi given estimates for Si and ϕi (i.e., F̂i � ϕ̂i/Ŝi). Of course,
an ad hoc way to accomplish this would be to run separate recovery and recapture analysis, and take
the estimates from each and ‘do some algebra’. However, such an ad hoc approach provides no means
for estimating the precision of the estimated fidelity parameter, nor the covariance of Fi with the other
parameters.

Further, the assumption of permanent (as opposed to temporary or transient) emigration is not a
prerequisite. The ‘location’ of a live individual during a capture occasion could be random with respect
to whether or not it is in the sampling region (and thus at risk of being captured). In this case, the
parameter Fi is the probability at time (i) that the individual is at risk of capture given that it is alive,
pi is the probability of capture given that the individual is alive and in the sample (i.e., at risk of
capture). What does this mean? Basically, it means that under a ‘random’ emigration model, ϕi is
the true survival probability (Si), and pi is the product of Fi and the traditional conditional capture
probability. Questions concerning permanent versus temporary emigration, availability for encounter,
and so on, are treated more fully in Chapter 15 (which addresses the ‘robust design’). Here, we consider
one particular approach to separately estimating survival and fidelity.

9.1.1. Estimating fidelity rate, F i: some key assumptions. . .

The combined ‘live encounter-dead recovery’ approach originated with considerations of sampling
from harvested species. In such cases, the dead recoveries are assumed to occur over a spatial scale that
is larger than the scale over which live encounters occur. This is shown in the diagram at the top of the
next page.
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Live encounter
sampling area

Dead recovery
sample area

The dark, smaller area is the area where the marking and subsequent live encounters occur. Dead
recoveries occur anywhere outside the darker area, but within the area bounded by the dotted line. The
key, though, is that the original assumption in Burnham (1993) was that all the dead recoveries occur
outside the area where live encounters occur (i.e., outside the dark area, but within the dotted line). If
this assumption is met, and if emigration from the sampling area is permanent, then you can partition
ϕ as the product of true survival and fidelity, since in this case, all of the recoveries occur outside of the
live encounter sampling area.

Clearly, this is not always going to be the case – especially for non-game species. In such cases,
interpretation of the various parameters is potentially not so simple. If all dead recoveries and live
encounters occur in the same sampling area, then clearly realized fidelity F for the marked sample is
1. So, you can use the same approach, except you fix F � 1. But, in general, you need to think hard
about what the parameters mean, and how the sampling assumptions (and whether or not they are
met) influence the interpretation of the parameter estimates.

9.2. Survival, fidelity + encounter probability: underlying

probability structure

For now, we’ll assume that if an individual emigrates from the sampling area, it is a ‘permanent’
emigration, such that if the analysis were based entirely on recapture data, an emigrated individual
would appear ‘dead’. (Note: the situation when emigration from the sampling is not permanent, but
instead is temporary, is considered in Chapter 15, where we develop the ‘robust design’). How would
such a model be parameterized? Using the ‘fate-diagram’ graphical approach we have used in previous
chapters, consider that fate of a newly marked individual released alive into the population – shown at
the top of the next page.

The fate of this individual is governed by several probabilities: S (the probability of surviving the
interval), r (the probability of being found dead and reported – the recovery probability using the Seber
parametrization discussed in Chapter 8), F (the probability of fidelity to the sampling region – i.e.,
remaining in the sample. 1 − F is the probability of permanently emigrating), and p (the probability of
recapture, conditional on being alive and in the sampling region).
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Here is the ‘fate diagram’ for the ‘permanent emigration’ model. Note that the sequencing of survival
before emigration is arbitrary – we could just as easily (and equivalently) place the fidelity ‘decision’ first.
However, the ordering does affect how the probability expressions corresponding to a given encounter
history are written.

individual caught,

marked and released

alive at start of interval

survives

dies

returns to

sample

disperses from sample

(permanent emigration)

alive and

encountered

alive but not

encountered

S

F

p

1-S

1-F

1-p

dead and

reported

dead but

not reported

r

1-r

It is important to keep time-scale in mind when considering this diagram. First, live encounters occur
at (i), (i+1)...(i+n), while recoveries occur between (i), (i+1)...(i+n). Second, the number of estimated live
recapture-based or dead recovery-based parameters depends on when you end your study. You might
recall from Chapter 2 (‘data formatting’) that joint live-dead analysis uses the ‘LD’ encounter history
format,where the L refers to ‘live’ and D to ‘dead’ encounters, respectively. Thus, a history of ‘1011’ refers
to an individual marked and released on the first occasion, that survives the interval between occasion 1
and occasion 2 (since it was subsequently encountered) and then recaptured at occasion 2 and recovered
dead during the interval following occasion 2. The ‘LD’ format assumes that each recapture occasion is
followed by a recovery interval. If your study terminates with the final recapture occasion, and you do
not collect recovery data during the following interval, you need to ‘code the terminal recovery column
(the terminal ‘D’ column) as zero, and fix the recovery probability for this interval to 0.

There are several important points to make here. First, the assumption that the terminal live encounter
(recapture) occasion is followed by a period (interval) when the individual may be recovered (i.e.,
encountered dead) means that for standard LD analysis where all parameters are fully time-dependent,
the number of parameters for survival (S) and recovery (r) will be one greater than the number of
parameters for fidelity (F) and recapture (p). So, the PIMs for survival and recovery parameterswill have
one more column than will the PIMs for fidelity and recapture. The second point concerns the structural
equivalence of the Seber ‘S and r’ parametrizationand the CJS parametrization for live encounter studies
(see Chapter 8). As such, you’ll need to remember that, as with a CJS analysis of live encounter data,
although there are more S parameters than F parameters, the last S is not estimable in a fully time
specific model. Its presence is an artifact of modeling recoveries as (1−S)r (using the Seber convention)
instead of as f (using the Brownie convention).

Consideration of the probability statements corresponding to various encounter histories will give
you a better idea of what is going on. In the table at the top of the next page, we indicate the history in
both LD format (using L and D to indicate live encounter or dead recovery, respectively), and the actual
binary (0 or 1) coding used in the input file. Each probability statement refers to a different path by
which the encounter history could be realized, and assumes that survival occurs before the fidelity
‘decision’ (as shown in the fate diagram on the preceding page). The total probability of the particular
encounter history is the sum of the individual probabilities.
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LD history binary history probability

LD00 1100
(

1 − S1

)

r1

L0L0 1010 S1F1p2S2 + S1F1p2

(

1 − S2

) (

1 − r2

)

L00D 1001 S1F1

(

1 − p2

) (

1 − S2

)

r2 + S1

(

1 − F1

) (

1 − S2

)

r2

L0LD 1011 S1F1p2

(

1 − S2

)

r2

L000 1000
(

1 − S1

) (

1 − r1

)

+ S1

[ (

1 − F1

)

+ F1

(

1 − p2

)] [

S2 +
(

1 − S2

) (

1 − r2

)]

Take a moment to make sure you see where the probability statement comes from – they’re clearly
more involved than those for recapture or recovery analyses alone. For example, consider history ‘1001’
(corresponding to ‘L00D’). There are two ways this history could be achieved: the individual clearly
survives the first interval (since it is recovered during the second interval, but it could either (1) remain
in the sample, and not be seen at occasion 2, and then die and be recovered, or (2) leave the sample
area (after which p � 0; it cannot be recaptured if it is outside the sample area), and then die and be
recovered. The key to remember is that (in theory) a dead recovery can occur whether the individual
is in the sample area or not – the same cannot be said for live encounters, which require the marked
individual be in the sampling region.

9.3. Combined recapture/recovery analysis in MARK: marked as

adult + young

We now address the more practical issue of using program MARK to simultaneously analyze dead
recovery and live encounter data. To demonstrate the mechanics, we simulated a data set (LD1.INP)
with the following structure. We assumed 2 age-classes (young, and adult), with the young age class
spanning the first year of life. Within an age class, parameter values were held constant over time – any
variation in the parameter values was among age classes. We assume that individuals are marked as
both young and as adults at each occasions (recall from Chapter 8 that we suggested that for recovery
analyses,we must at least mark adults as well as young. But what about for combined recovery-recapture
analyses? More on that later.). The parameter values used in simulating the data set were:

age class S p r F

young 0.4 0.5 0.6 0.6

adult 0.8 0.5 0.6 0.9

Thus, in the simulated data set, younger individuals had lower survival (Sy < Sa), and were less likely
to remain in the sampling region during the first year of life (conditional on remaining alive; Fy < Fa).
Recapture and recovery probabilities were equal for both age classes. There were 8 ‘occasions’ in the
simulated data set (where each ‘occasion’ consists of the recapture event followed by the full year after
the recapture event during which recoveries might occur), and 1,500 individuals newly marked and
released in each age class on each occasion. The simulated data were constructed using the ‘probability
sequence’ depicted in the figure shown on the previous page.

Start MARK, and select the data file LD1.INP. We noted already that there were 8 occasions in the
data set. However, to remind ourselves about the somewhat different structure of an ‘LD’ data set, let’s
have a look at the INP file (shown at the top of the next page).
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Again, given the LD data format, for 8 capture occasions, we have 8 corresponding intervals over
which recoveries can occur – thus, 16 columns in total. Each consecutive pair of values denotes the
encounter history for a given year (‘11’ – seen and recovered in the same year, ‘10’ – seen but not
recovered in a given year, and ‘01’ – not seen but recovered in a given year). Note also that we have two
’groups’ individuals marked as young (first frequency column),and marked as adults (second frequency
column), respectively. For example, 5 individuals marked as young and 23 individuals marked as adult
had encounter history ‘1010110000000000’.

Next, we need to pick the ‘Data Type’. The third item on the list in the model specification window
is ‘Joint Live and Dead Encounters (Burnham)’. This is the one we’re after – both live recaptures and
dead recoveries, using the approach first described by Burnham (1993). Go ahead and select this data
type.

However, before proceeding, one important note: Burnham originally used the ‘classic’ Brownie
parametrization for the ‘dead recovery’ side of things – specifically,he used the Brownie parametrization
of survival (S) and recovery probability (f ). Recall from Chapter 8 that under this parametrization,
recovery probability is defined as the product of the kill probability (K), the retrieval probability (c),
and the reporting probability (λ) – in other words, f is the probability that the marked individual will
be harvested (killed), the mark retrieved and then reported. You may also recall from Chapter 8 that
MARK also allows you to specify a different parametrization (the Seber parameterization) for recovery
probability (r, rather than f ), wherein

fi � ri

(

1 − Si

)

For the joint analysis of dead recovery and live encounter data, MARK uses the Seber parame-
terization (based on parameters ‘S and r’), and not the Brownie parametrization originally used by
Burnham, primarily to take advantage of increased modeling flexibility this parametrization provides.
It is important to keep this in mind.

Once you’ve confirmed that you’ve set up the specifications for 8 occasions, two attribute groups
(marked as adults and marked as young), and have correctly selected the joint data type (Burnham), click
the ‘OK’ button to continue. As usual, you’re presented with the open PIM for the survival parameter
(survival is always the first parameter MARK considers). To see the other parameters, open up the
PIM chart (shown at the top of the next page). Again, note immediately that the model is specified by 4
parameters (8 ‘blue’ boxes in total – 4 for marked as young, 4 for marked as adult). MARK indexes them
starting with survival (S), then recapture probability (p), then recovery probability (r), and finally the
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fidelity parameter (F). As your reading of previous chapters has hopefully made clear, it is essential to
know the sequence that MARK uses in ‘treating’ (indexing) the parameters in the model. Also, confirm
that the number of columns in the PIMs for F and p is one less than the number of columns for S and
r – make sure you understand why!

Since our purpose here is not to conduct a ‘real analysis’ (since the data are, after all, completely artifi-
cial),we’ll only run the ‘true’ model (underwhich the data were simulated) – model{Sg−−a2/.p.r.Fg−.a2/.}.
Recall that the quickest way to accomplish this is to modify the PIM chart directly. This is especially true
in this case since the ‘age structure’ we want to impose on the survival, recovery and fidelity parameters
is ‘constant’ (i.e., no temporal variation within age class). This is easily accomplished by right-clicking
each of the blue-boxes in the PIM chart (note also that if there had been temporal variation within age
class, we’d have to resort to modifying the PIM for each parameter independently, outside the PIM
chart – the right-click menu accessible through the PIM chart only allows you to specify a ‘constant’
age model).

Right-click each of the parameters we want to add age-structure to (S, r and F respectively, for
individuals marked as young) , and select 2 as the maximum age (since there are only 2 age classes
– young, spanning one year, and adult, spanning the rest of the years in the study). For the parameters
corresponding to individuals marked as adults, and for recapture rate for both age classes, we want a
constant value – right-click the ‘blue-box’ for these parameters and select ‘constant’.

Also, for recapture, make the recapture probability the same for both age classes by ’stacking’ the
boxes over each other. Finally, note that survival and fidelity probabilities for ‘adults’ is the same,
regardless of whether the individual was marked as young or adult. Thus, the blue box for ‘adult’
survival and fidelity should overlap the corresponding parameter in the blue box for individuals marked
as you.
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Then, somewhere in the PIM chart, but not over one of the blue-boxes, right-click and select ‘renumber
with overlap’ – remember that this eliminates ‘gaps’ in the parameter indexing, but allows for overlap-
ping for some parameters.

Your PIM chart should look like the following – make sure you see the correspondence between this
PIM chart and the true model:

Go ahead and run this model, and add the results to the browser. Here are the parameter estimates for
this model (we’ve added a couple of blank lines to more logically highlight the respective parameters).

Parameter 1 is the juvenile survival probability (i.e., age 0 → 1 year), for individuals marked as
juveniles (obviously!). Parameter 2 is the survival probability for adults (including individuals marked
as young, and as adults). Both estimates are quite close to the ‘true’ values of 0.4 and 0.8, respectively.
Parameters 3 and 4 are the common recapture and recovery probabilities, which are also very close to
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the ‘true’ values of 0.5 and 0.6, respectively. Finally, parameters 5 and 6 are the fidelity probabilities for
juveniles and adults, and again, both are close to the ‘true’ fidelity probabilities of 0.6 and 0.9.

Wile this concordance is perhaps unremarkable given we fit the ‘true’ generating model to the
simulated data, for comparison, let’s re-run these same data through MARK, using ‘Dead recoveries
(Seber)’ and ‘Live recaptures (CJS)’. We can do this by first editing the LD1.INP file for each data
type. Can you think of how we would do this? If you can, then you clearly have a fair understanding of
the LD data format. For the live encounters only analysis, you could extract all the L columns, yielding an
8 occasion INP file. If you have some facility with programming, this is in fact relatively straightforward.
For example if you had the following LD encounter history

101010000010

then you could use the basic ideas represented in the following R script to extract every odd element
(since for an LD history, the odd elements represent of the live encounters):

LD <- "101010000010"

L_hist <- paste(unlist(strsplit(LD,""))[seq(1,nchar(LD),2)],collapse="")

print(L_hist)

[1] "111001"

Alternatively,you could simply make all of the D columns have a 0value (i.e.,discarding all of the dead
recovery data), and use a ‘multi-state approach’, setting the probability of encounter in the ‘dead state’
to 0. For this latter approach, we treat dead recoveries as an ‘unobservable state’ (we cover multi-state
models in Chapter 10).

What about for the ‘dead recoveries only’ analysis? Recall from Chapter 2 and Chapter 8 that there
are, in fact, two ways to code recovery data. The ‘classic’ approach is to use a recovery matrix. However,
while traditional, the recovery matrix ‘lumps’ individuals, and inhibits the ability to constrain estimates
as functions of individual covariates (discussed in Chapter 11). Conveniently, the encounter history
format for ‘dead recoveries only’ is also an LD format – except that all L’s after the initial marking event
are coded as ‘0’ (check Chapter 2 to make sure you understand this).

For example, given the following LD history, which has both live encounters and one dead recovery,
which occurs after the liver encounter during LD interval 5:

101010001100

then you could use the basic ideas represented in the following R script to change every odd element,
after the initial marking event, to a ‘0’ (since for an LD history, the odd elements represent the live
encounters):

LD <- "101010001100"

LD_list <- as.list(substring(LD, seq(1,nchar(LD),1), seq(1,nchar(LD),1)) )

LD_list[seq(3,length(LD_list),2)] <- "0"

D_only <- paste(LD_list, collapse=’’)

print(D_only)

[1] "100000000100"
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For our analysis of LD1.inp, modified as described to include ‘live encounters only’, we fit model
{ϕa2./.p.}. For our analysis of LD1.inpmodified to include ‘dead recoveries only’, we fit model {Sa2./.r.}
– using the Seber parametrization.

Start with the recaptures only analysis. The results for model {ϕa2./.p.} are shown below:

Hmmm. . .are these estimates right? The estimate of ϕ̂Y � 0.2237 doesn’t seem particularly close to
the value of Sy � 0.4 used in the simulation – is there a problem? No! The key is remembering that,
under the assumption of permanent emigration, ϕi � SiFi . In the simulation, Fy � 0.6, and thus the
expectation for ϕy � SyFy � (0.4)(0.6) � 0.24, which is quite close to the estimated value of 0.2237. In

fact, if we take Ŝy � 0.3916, and multiply it by F̂y � 0.5773, we get (0.3916 × 0.5773) � 0.2261, which
is very close to our estimate of ϕ̂Y � 0.2237. Similarly, the estimate of ϕ̂a � 0.6985, is quite close to
the expectation of ϕa � (0.8)(0.9) � 0.72, and the product of Ŝa � 0.7949 × F̂a � 0.8812 � 0.7005. The
estimate for recapture probability (p̂ � 0.51) is also close to the true parameter value (p � 0.50).

Thus,as expected,a recaptures-only analysis provides robustestimates forapparent (or local) survival
(ϕ), and recapture rate. However, since permanent emigration and mortality are confounded in a
recaptures-only analysis, the estimate of ϕ represents only a minimum estimate of true survival, and
will generally be lower than the true survival probability (by a factor corresponding to the fidelity rate).

What about the recoveries-only analysis? Clearly, estimates of survival from a recoveries only analysis
are anticipated to be more accurate estimates of ‘true’ survival, since they deal directly with dead
individuals (i.e., are not confounded by emigration). The estimates from our analysis (below) are close
to the ’true’ values for both survival and recovery probabilities, as expected.

It is worth noting that these estimates are not identical to those from the joint live-dead analysis
presented a few pages back. Forexample,our recoveries only estimate for Ŝy � 0.3684 is somewhat lower

than the estimate from the joint live-dead analysis, Ŝy � 0.3916. This is to be expected, since restricting
the analysis to ‘dead recoveries only’ ignores the additional information from the ‘live encounter data’
which is included in the joint analysis.
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9.4. Marked as young only: combining live encounters + dead

recoveries

As we discussed at length in Chapter 8, there are significant difficulties in recovery analysis with data
from individuals marked as young only (this is probably a good point to go back and review). Does the
‘extra information’ from live encounters help us at all?

We can explore this by simply deleting the frequency column for adults from the LD1.INP file, and
running the analysis. For the recoveries only analysis, using just the data from individuals marked as
young, our estimates of survival and recovery probability are:

Superficially, these estimates for Ŝy and Ŝa don’t seem too bad, but they are clearly different from the
true values of Sy � 0.4 and Sa � 0.8.

However, our main objective here is to see how much improvement there is, if any, if you use the
combined live encounter-dead recovery models, if the data are restricted to marked as young only?
Here are the estimates from fitting the ‘true’ live encounter-dead recovery model to the ‘marked as
young only’ joint live capture-dead recovery data:

In this case, the estimates are much closer to the true parameter estimates. This suggests that by
combining data from dead recoveries and live recaptures, everything is estimable, with less bias and
better precision (whereas with a recoveries only analysis from individuals marked as young, everything
is not estimable, or if it is, with significant bias and loss of precision).

As noted by Brownie, depending on what assumptions are made concerning constancy of some
parameters (as in our example), a few of the parameters in an analysis of recoveries from individuals
marked as young are estimable (for example, if we assume constant adult recovery probabilities,
adult survival probabilities are estimable, but juvenile survival and both juvenile and adult recovery
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probabilities are confounded). So, think carefully. But – as this simple example demonstrates, there is
great utility in combining data from different sources.

9.5. Joint live-recapture/live resight/tag-recovery model

(Barker’s Model)

Consider a study where once a year, over (say) a few days each summer, you capture and recapture,
mark,and release individuals in some population of interest. These data might form the basis of a typical
mark-recapture analysis. But, suppose that during the interval between summer sampling occasions,
you potentially ‘encounter’ marked individuals from your study population. For example, you might
have reports from the public (‘citizen science’) that someone has ‘encountered’ one of your marked
individuals. This encounter might be a ‘dead recovery’. The preceding parts of this chapter addressed
the joint use of live-encounter and dead recovery data (sensu Burnham 1993).

Richard Barker extended Burnham’s (1993) live/dead model to the case where both dead encounters
+ live resightings are potentially reported during the open period between live recapture occasions (as
shown in the following diagram). The population is not assumed to be closed while encounters are
being obtained and recoveries of tags from dead animals (dead resightings) may be reported.

1 2 3

live encounter live encounter live encounter

occasion 1 occasion 2 occasion 3

live+dead encounters live+dead encounters

Because the encounter interval between live encounter sampling occasions is open, it is possible for
an animal to be resighted alive several times within an interval then be reported dead. For these animals,
only the last dead sighting is used in the model, the earlier live resightings in that period are ignored.
Therefore the status of an animal on resighting (live or dead) is determined on the last occasion on
which it was resighted in the open interval.

Although the model is complicated and involves 4 sets of nuisance parameters for the recapture
and resighting/recovery process, the additional data from resightings and tag recoveries can lead to
substantial gains in precision on survival probability estimates. Currently, the model does not allow
estimation of abundance or recruitment. For a detailed description of the models, see Barker (1997,
1999).∗

Parameters in the model are:

pi � the probability an animal at risk of capture at i is captured at i

ri � the probability an animal that dies in i, i + 1 is found dead and the band reported

Ri � the probability an animal that survives from i to i + 1 is resighted (alive) some time
between i and i + 1

R′i � the probability an animal that dies over the interval from i to i + 1, without being
found dead, is resighted alive in i, i + 1 before it died

∗ Barker, R. J. 1997. Joint modeling of live-recapture, tag-resight, and tag-recovery data. Biometrics, 53, 666-677.

Barker, R. J. 1999. Joint analysis of mark-recapture, resighting and ring-recovery data with age-dependence and marking-effect.
Bird Study, 46, 82-91.
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Fi � the probability an animal at risk of capture at i is at risk of capture at i + 1

F′i � the probability an animal not at risk of capture at i is at risk of capture at i + 1 (NB:
this differs from the definition in Barker, 1997)

The resighting parametrization used in MARK differs from that described by Barker (1997). An
advantage of the parametrization used by MARK is that it enforces certain internal constraints that
arise because the joint probability Pr(A and B) should always be less than or equal to the unconditional
probabilities Pr(A) and Pr(B). For example, the MARK parametrization ensures that the probability an
animal is resighted alive over the interval from i to i + 1, and survives from i to i + 1, is less than the
probability it is resighted alive over the interval from i to i+1. It also ensures that Pr(resighted alive and
dies over the interval from i to i + 1 without being reported), is < the Pr(dies over the interval from i to
i + 1 without being reported). These internal constraints are not enforced by the other parametrization.

9.6. Barker Model – ‘movement’

Between trapping sessions, animals are permitted to leave the study area then return. If an animal is in
the study area then it is considered ‘at risk of capture’. If it leaves the study area it is considered ‘not
at risk of capture’. Animals that are at risk of capture at time i, leave the study area with probability
(1 − Fi). Thus Fi has the same interpretation as in Burnham’s (1993) live-dead model as the fidelity to
the study area. Animals not at risk of capture are permitted to return to the study area with probability
F′i . In Barker (1997) F′i was the probability that an animal out of the study area at i remained out of the
study area at i + 1, but the definition has been changed in the interest of having a parametrization in
common with the robust design model (see Chapter 15).

constraints model

F′i � 0 permanent emigration

Fi � 1, F′ � 0a random emigration

Ri � R′i � 0, F′i � 0 Burnham’s (1993) model under permanent emigration

Ri � R′i � 0, Fi � 1, F′i � 0 Burnham’s (1993) model under random emigration

ri � Ri − R′i � 0, Fi � 1, F′i � 0 Cormack-Jolly-Seber model (CJS)

pi � 0, Ri � R′i � 0, Fi � 1, F′i � 0 Model M1 ({Strt}) from Brownie et al. (1985)

Under this parametrization there are 3 types of emigration:

Random (F′i � Fi)

Permanent (F′i � 0)

Markov (no constraint.)

A complication is that in the random emigration model the parameters Fi � F′i are confounded with
the capture probability pi+1. By making the constraint Fi � F′i � 1 in MARK the random emigration
model is fitted, but now the interpretation of pi is the joint probability that an animal is at risk of capture
and is caught, Fi−1pi .
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Under Markov emigration there tends to be serious confounding of the movement and capture
probabilities. In a model with time-dependent capture probabilities, it is usually necessary to constrain
Fi � F. and F′i � F′. for all i. Even then, the Markov emigration model may perform poorly. In practice
the parameters F and F′ are usually estimable only if the movement model is markedly different from
the random emigration model, that is, if there is a large difference between Fi and F′i .

To illustrate the meaning of the emigration parameters, suppose the animal is captured during the
first trapping session, not captured during the second trapping session, and then captured during the
third trapping session. One of several encounter histories (again, using the LD history format – more on
formatting Barker model histories later in this section) that would demonstrate this scenario would be:
‘100010’. The probability of observing this particular encounter history can be broken into 4 factors:

P1 � Pr(animal survives from time 1 to time 3 | released at 1)

P2 � Pr(animal is not resighted between 1 and 3 | released at 1 and survives to 3)

P3 � Pr(animal is not captured at 2 but is captured at 3 | released at 1 and survives from
1 to 3 without being resighted)

P4 � Pr(encounter history after trapping period 3 | events up to trapping period 3)

For describing movement, the relevant factor is P3. An animal captured at time 1 is known to be at
risk of capture at time 1. Because it was captured at time 3 we also know it was at risk of capture at
time 3.

There are two possible histories that underlie this observed history:

1. The animal was at risk of capture at time 2 and was not captured, but was captured
at time 3

2. The animal left the study area between time 1 and 2 but then returned and was
captured.

Because we do not know which one actually occurred we instead find the probability that it was
either of the two, which is:

P3 �
[

(1 − F1)F′2 + F1(1 − p2)F2

]

p3

The complicated term in the square brackets represents the probability that the animal was not
captured during the second trapping session but is at risk of capture at time 3. The first product within
the brackets (1 − F1)F′2 is the joint probability that the animal emigrated between the first 2 trapping
sessions (with probability 1 − F1) and then immigrated back onto the study area during the interval
between the second and third trapping sessions (with probability F′2). However, a second possibility
exists for why the animal was not captured – it could have remained on the study area and not been
captured. The term F1 represents the probability that it remained on the study area between time 1 and
2 and the term (1− p2) is the probability that it was not captured at time 2. The final term F2 represents
the probability that the animal remained on the study area so that it was available for capture during
the third trapping session.

9.6.1. formatting encounter histories for the Barker model

Encounter histories for the Barker model are coded as ‘LDLD’. Because animals can be encountered in
this model as either alive or dead during the interval between capture occasions (see figure at the start
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of section 9.5), 2 different codes are required in the encounter histories to provide information:

• A ‘1’ in the D portion of an encounter history means that the animal was reported dead
during the interval. A ‘2’ in the D portion of an encounter history means that the animal
was reported alive during the interval.

• A ‘1’ in the L portion of an encounter history means that the animal was alive on the study
area during a live capture occasion.

The following are valid encounter histories for a 5-occasion example: ‘1010101002’. The animal was
captured on the first occasion, and recaptured again on the 2nd, 3rd, and 4th occasions. It was not
captured on the 5th occasion, but was seen alive during the last interval.

Consider the history ‘0000120100’. In this case, the individual was captured on the 3rd occasion, and
seen alive during the 3rd interval. It was reported dead during the 4th interval. Note that there can be
multiple occasions with a ‘1’ in the L columns, and multiple occasions with a ‘2’ in the D columns, but
only one D column can have a ‘1’.

9.7. Live encounters, dead recoveries & multi-state models

The multi-state model with live and dead encounters is a generalization of the multi-state model that
allows inclusion of recoveries of marks from dead animals. Multi-state models are covered in great
detail in the next chapter, but we’ll introduce some of the basic concepts here.

So what are multi-state models? A simple example will make the basic concepts a bit clearer. Suppose
you are conducting a study of some harvested species that is either marked and/or recovered (dead) in
any one of three discrete geographical locations. Let the locations (stratum) have the less-than-inspired
names of ‘region A’, ‘region B’, and ‘region C’. Each individual, given that it is alive, will do so on
one of these three islands. You are fortunate enough to find sufficient funding so that you are able
to mount capture (or resight) operations in all three locations simultaneously. On each occasion, you
record encounters with marked individuals, the type of encounter (live, or dead), and in which region
the individual was encountered. The information contained in these encounter data allow us to not
only estimate survival, but movement/fidelity among regions.

9.7.1. Barker model: assumptions

In addition to the usual assumptions of the multi-state model, this model assumes that apart
from group and time effects, the reporting rate of marks from dead animals depends only on the
stratum (location) that the animal was in at the immediately preceding live-capture occasion. In some
applications, it may be reasonable to also assume that the state of the animal at the time of the dead
recovery can be used to determine the state of the animal at the previous live-recapture occasion. This
assumption is not included in the model so any such information is ignored.

Model structure and likelihood

If there are S strata, define the following:

ϕh is an S × S matrix with s,t’th element = Pr(animal alive at time h in stratum s is
alive at time h + 1 in stratum t)

ψh is an S × S matrix of transition probabilities with s,t’th element = Pr(animal moves
from s to t | alive at h and h + 1)
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Ph is an (S × 1) matrix with s’th element = Pr(animal alive at time h in stratum s is
captured)

S j is an (S× 1) vector with s’th element = Pr(animal alive at time j in stratum s is alive
at time j + 1)

r j is an (S × 1) vector with s’th element = Pr(animal in stratum s that dies between j

and j + 1 is found and reported)

D(x) is a diagonal matrix with vector x along the diagonal, 1 = a (s × 1) vector of ones

Yh is an indicator variable that = 1 if the animal was caught at time h, and 0 otherwise.

Note that ϕh � D(Sh)ψh . The animals in the study can be categorized according to whether their
last encounter was as a live recapture or as a dead recovery

Animals last encountered by dead recovery

For an animal first released in stratum s at time i, that was found dead between samples j and j + 1,
and was last captured alive at in stratum t at time k the likelihood, conditional on the first release, is
factored into two parts:

1. Pr(encounter history between i and (including) k | first released at time i in stratum s) is
the s,t’th element of the matrix formed by taking the product from h � i to h � k − 1:

∏

ψhϕhD(Ph+1) + (1 − Yh)ϕh D(1 − Ph+1)

We take the s,t’th element because we know that the animal was in stratum s at time i and
in stratum t at time k.

2. Pr(not caught between k and (including)j and found dead between j and j + 1 | released
at time k in stratum t) is the sum across the t’th row of the matrix formed by taking the
product from h � k to h � j − 1:

∏

ϕhD(1 − Ph+1)D(1 − S j )D(r j )

Although we know that the animal was in stratum t at time k, we do not know which
stratum the animal was in at time j. However it must have been in one of the strata and
therefore we can find the probability we require by taking the sum across the t’th row of
this matrix.

Animals last encountered by live recapture

Foran animal first released in stratum s and sample i and last encountered by live-recapture in stratum
t and sample j, the likelihood, conditional on the first release, is factored into the two parts:

1. Pr(encounter history between i and (including) j | first released at time i in stratum
s) is the s,t’th element of the matrix

ϕ j−1D(P j )
∏

YhϕhD(Ph+1) + (1 − Yh)ϕh D(1 − Ph+1)

where the product is taken from h � i to h � j − 2.
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2. Pr(Not encountered again | released alive at j in stratum t). This is found by finding
the probability that the animal i encountered at least once after sample j using the
above expressions, and then subtracting this probability from 1.

Parameter identifiability

If the capture occasions are indexed up to sample t and the dead recovery occasions up to sample l,
then in addition to the parameters that can be estimated using the multi-strata model, we can also
estimate ψt−1, Pt , St−1 and r j ( j � 1, ..., t). If l > t then (complicated) confounded products of stratum-
specific survival and reporting probabilities can also be estimated.

9.8. Summary

One of the recent trends in analysis of data from marked individuals is the increasing focus on using
data from a variety of sources. In this chapter, we’ve looked at simultaneously using data from live
encounters and dead recoveries. However, the principles are general - we could also use live encounters
combined with known-fate telemetry data, and so on. These developing approaches will increasingly
allow us to address several interesting questions which previously were not possible when data from
only a single source was used. Next up, multi-state models. . .
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CHAPTER 10

Multi-state models...

Many of the first chapters in this book focussed on ‘typical’ open population mark-recapture models,
where the probability of an individual being seen was defined by 2 parameters: the probability
the animal survived and remained in the sample area (ϕ), and the probability that the animal was
encountered (p), conditional on being alive and in the sample area.

In this chapter, we extend this simpler paradigm by (in effect) considering a third parameter – a
‘movement’ parameter (ψ). We’ll defer formal definition of this parameter for a moment, since the
definition changes somewhat depending on one or more assumptions. However, to foreshadow, let
ψ represent the probability of moving between states in which the marked individual may potentially
be encountered, conditional on being alive and in that state. The fact that there may be more than a
single state (i.e., more than one location, or condition, or state) is what leads to the models we describe
in this chapter being referred to generally as multi-state models.

Most of this chapter is a synthesis of the basic ideas behind multi-state models, with particular focus
on how to implement them in MARK. The concepts and ideas are derived from seminal work by Neil
Arnason, Carl Schwarz, Cavell Brownie, Ken Pollock, Bill Kendall, Jim Hines and Jim Nichols, who have
been exploring the mechanics and application of these models. Critical in this early evolution was the
advent of software to fit multi-state models, most notably program MS-SURVIV, created by Jim Hines.
More recently, the development of programs M/E-SURGE by Rémi Choquet, Roger Pradel and Jean-
Dominique Lebreton. Multi-state models have been shown to be an extremely rich class of models,
with broad applications to many important questions in evolutionary ecology, population dynamics
(especially metapopulation dynamics), and conservation biology and management. At best, we hope
to provide you with the essence of multi-state models as implemented in MARK, sufficient to convince
you of the importance of more careful study of this class of models.

So what are multi-state models? A simple example will make the basic concepts a bit clearer. Suppose
you are conducting a study of some seabird that breeds on any one of three discrete islands far offshore
from any large land mass. Let the islands have the less-than-inspired names of ‘Island A’, ‘Island B’,
and ‘Island C’. Each individual bird, given that it is alive and breeding, will do so on one of these three
islands. You are fortunate enough to find sufficient funding so that you are able to mount capture (or
resight) operations on all three islands simultaneously. On each occasion (say, each year at the end of
the breeding season), you capture, mark and release unmarked individuals, and record recaptures of
previously marked individuals. On each occasion, you record the fact that the marked individual was
reencountered, and on which island (i.e., the state).

Let’s consider what factors will define the probability of encounter. In the ‘typical’ mark-recapture
context, with one sampling location, the probability of encountering the individual in the sample was
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defined by the probability that it was alive and in the sampling area (ϕ), and the probability of encounter
conditional on being alive and in the sample area (p).

In our ‘island’ example, though, we have more than one sampling state – we have 3 islands (A, B

and C). Suppose you are working on island B. You capture an unmarked bird, individually mark and
release it. You come back next year, and look for this bird. What determines whether or not you will
find it? In effect, a re-reading of the definitions of the parameters for the single-state model provides
a clue – the marked bird might be encountered on island B, conditional on (a) it surviving to the next
occasion, and (b) it not moving to either of the other two islands. As originally described by Arnason
(1972, 1973), and later by Brownie et al. (1993) and Schwarz et al. (1993), the transition probabilities (i.e.,
making the transition from live to dead, or from one island to another) represent what is known as a
first-order Markov process. Such a process is defined as one in which the probability of making a given
transition between occasion (i) and (i+1) is dependent only on the state at time (i).

Under this assumption, we can now define the parameters which jointly define the probability of
encountering a marked individual in a given state on a given occasion:

ϕrs
i � the probability that an animal alive in state r at time i is alive and

in state s at time i+1

ps
i � the probability that a marked animal alive in state s at time i is

recaptured or resighted at time i.

As written, ϕ reflects the joint probability of both surviving and making a transition. Let’s consider
this schematically. In Fig. (10.1), we show the 3 islands, with arrows indicating the possible transitions:

A

B C

j
BB j

CC

j
CB

j
BC

j
BA

j
AB

j
AA

j
CA

j
AC

Figure 10.1: Schematic representing typical multi-state model. Here, there are 3 states (A B and C), with the
arrows indicatingdirectional movement between states over a given time interval. The probability of moving,

conditional on survival, between state i and j is determined by parameter ϕi j .

Remember, the ϕ values are the probabilities of both surviving and moving. Now, at this point some
of you are probably already leaping ahead to the question ‘...is there any way to separate these two
probabilities – survival and movement?’. We’ll come to that in a moment. For now, let’s stick with
these 2 parameters (ϕ and p), as defined above. What do our capture (or encounter) histories look like,
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and what are the associated probability statements? In fact, as discussed briefly in Chapter 2 (‘Data
Formatting’), the format of the encounter history for multi-state models is qualitatively identical to the
‘normal’ mark-recapture history – a contiguous series of variables indicating whether or not the marked
individual was encountered on a particular occasion. For ‘normal’ mark-recapture, this is typically a
contiguous series of ‘1’s and ‘0’s.

For multi-state models, instead of ‘1’s to indicate an encounter, we use variables (letters or numbers∗)
which reflect the particular state in which the individual was encountered. We continue to use ‘0’s to
indicate if the individual wasn’t encountered in any of the states on a particular occasion.

For example:

encounter history interpretation

AAB0CC marked on A at occasion 1, seen again on A at occasion 2, seen on

B at occasion 3, not seen on any of the islands on occasion 4, seen

on C at occasion 5 and occasion 6...

BABA00 marked on B at occasion 1, seen on A at occasion 2, returned to B

on occasion 3, back to A on occasion 4, and not seen on any island

at either occasion 5 or occasion 6

ACAAAA seen on A on occasion 1, moved to C on occasion 2, then back to

A and seen on all subsequent occasions in the study

Of course, as we’ve seen from earlier chapters, each of these encounter histories reflects a particular
realization of a probabilistic series of events. It is the relative frequency of each history in the data set
which provides the basis for parameter estimation.

Consider a simpler case, with only 2 states: A and B. What does the encounter history ‘AAB’ tell us?
In this case, the individual was marked and released on A, seen again on A on the next occasion, and
then seen on B on the final occasion. What is the corresponding probability expression? Clearly, the
organism survived from occasion 1 to occasion 2, and remained on A. It also survived from occasion
2 to occasion 3, but in the process, moved from A to B. Thus, for the encounter history ‘AAB’, the
corresponding probability expression is ϕAApAϕABpB (note that for convenience we do not show the
subscripts corresponding to the occasions – normally we would do so. The absence of subscripting
normally would indicate that the probabilities do not change through time).

What about something slightly more complex – like ‘A0B’? In this case, the individual was marked
in state A on occasion 1, released, not seen in either state A or B on the second occasion, and then seen
again on the third occasion in state B. What would the corresponding probability statement look like?
In this case, the trick is to realize that there are 2 ‘probability paths’ by which this encounter history
could occur:

encounter history interpretation

ϕAA (

1 − pA)

ϕABpB
survived and stayed in state A, but not seen in A on occasion 2,

survived and moved from A to B and seen in B on occasion 3

ϕAB (

1 − pB)

ϕBBpB
survived and moved from A to B during first interval, not seen in

B at occasion 2, stayed in state B and seen in B on occasion 3

∗ We hope it is obvious to you that ‘0’ (zero) is not a valid variable to use to indicate a particular state. We hope the reason why
is also sufficiently obvious.
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The trick is to realize that (i) the individual clearly survives from occasion 1 to occasion 3 – it is simply
‘missed’ (not encountered) at occasion 2 in either state, and (ii) since we don’t know where the individual
was at occasion 2 (i.e., in which state), we must accommodate both possibilities – that it stayed in state
A (where it was originally marked), or that it moved from A to B during the first interval. As such, the
expected frequency of individuals with encounter history ‘A0B’ would be:

RA
1

[
ϕAA

1

(

1 − pA
2

)

ϕAB
2 pB

3 + ϕAB
1

(

1 − pB
2

)

ϕBB
2 pB

3

]
where RA

1 is the number marked and released in state A on occasion 1.

10.1. Separating survival and movement

Now, while the ability to estimate the combined probability of surviving and moving is useful for
some purposes, it is ultimately limiting for others. For example, suppose that the states don’t consist of
physical locations (like islands), but breeding states (say, breeder andnon-breeder). There is no shortage
of literature on whether or not mortality selection operates on individuals as a function of their breeding
status (does ‘cost of reproduction’ ring a bell, or two?). In a typical analysis of the cost of reproduction,
we might want to know (1) is survival dependent upon breeding state, and (2) given that the individual
survives, is breeding state at time (i) a significant determinant of breeding state at time (i+1)? In other
words, can we separate ‘survival’ from ‘movement’?

The answer is a qualified ‘yes’ – qualified, because the separation of ‘survival’ and ‘movement’
requires making a particular assumption.

Specifically

If we assume that survival from time i to i+1 does not depend on state at time i+1, then

we can write

ϕrs
i � Sr

i ψ
rs
i

where (i) Sr
i is the probability of survival from time i to i + 1, given that the individual

is in state r at time i , and (ii) ψrs is the conditional probability that an animal in state

r at time i is in state s at time i+1, given that the animal is alive at i+1

Read it again – slowly. The basic idea is to ‘separate’ the two events – survival, and moving. Think of
it this way – the individual is in state A. It survives from (i) to (i+1) with probability SA based solely on
the fact that it was in state A at time (i). Then, immediately before (i+1), it either moves to another state,
or stays, with probability ψAx (where x=A, B, or C in our example). If the independence assumption is
met, then the ordering here (survive and move, or move and survive) is arbitrary.

Now, if we make these assumptions, then the sum of the survival/transition probabilities for a given
state is equal to the survival probability for that state. In other words,

∑

s

ϕr_
i � Sr

i

Consider the following example – assume there are just two states: s and r. Since ϕrs
� Srψrs and

since ϕrr
� Srψrr , then

∑
ϕr_

� Srψrr
+ Srψrs

� Sr (

ψrr
+ ψrs) . Since

(

ψrr
+ ψrs)

� 1, then
∑
ϕr_

�
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Sr (

ψrr
+ ψrs

)

� Sr
(1) � Sr . The same logic is true (obviously) for

∑
ϕs_

� Ss .

In the following (Fig. 10.2), we re-draw the early multi-state figure (10.1), decomposing ϕ into the
survival (S) and movement (ψ) parameters:
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B C
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B
y

BB S
C
y

CC

S
C
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S
B
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S
C
y

CA

S
A AC
y

Figure 10.2: Re-parameterization of Fig. (10.1), where ϕi j is partitioned as the product of survival (S) and
movement (ψ).

If you’ve followed the earlier chapters on standard mark-recapture approaches,youmight be thinking
that ‘while this is a neat trick, the parameters are probably not separately identifiable’. In fact, they are,
because of the constraint that

∑
ψr_

i � 1. In other words, the transition (movement) parameters ψrs
i are

conditional on survival – and hence, on being present in the study area. The effect of this constraint
is that animals that move out of all the states in the study, i.e., move outside the study area, cause
the estimates of survival to be biased in the same sense that ‘apparent survival’ is estimated. That is,
emigration off (or, out of) all the states in the study results in ‘apparent survival’ being ‘true survival’
times the probability that the animal remains on the study area.

A simple example will make this clearer. Assume that 3 states are sampled: A, B, and C. As noted
earlier, the encounter histories must include the information indicating which state an animal was
encountered in. For 5 encounter occasions, a history such as ‘BCACC’ could result. That is, the animal
was initially captured in state B, captured in state C on the second sampling occasion, captured in state
A on the third occasion, captured in state C on the fourth occasion, and then again in state C on the
fifth occasion. The cell probability describing this encounter history is

[
SB

1 ψ
BC
1 pC

2

]
×

[
SC

2 ψ
CA
2 pA

3

]
×

[
SA

3 ψ
AC
3 pC

4

]
×

[
SC

4

(

1 − ψCA
4 − ψCB

4

)

pC
5

]
where encounter occasions are separated within the square brackets. Note that for the fourth interval,
the probability of remaining in state C is just 1 minus the sum of the probabilities of leaving state C.

This cell probability demonstrates a key assumption of this model: survival is modeled with the
survival probability for the state where the animal was captured, and then movement to a new state takes
place. That is, as implemented in MARK, all mortality takes place before movement. An animal cannot move
to a new state where a different survival probability applies, and then die. If it dies, it must do so on (or,
as a function of) the current state. If it lives, then it can move to a new state. This assumption is critical
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if survival probabilities are different between the states. If survival is constant across states, then the
assumption is not important. Biologically, this assumption may not always be reasonable.

begin sidebar

Another assumption for MS models...

Previously, we noted one of the key assumptions which we need to make in order to partition ϕ into

subcomponents S and ψ - specifically, that survival from time i to i+1 does not depend on state at time

i+1. Obviously, if this assumption is not met, then the estimates of S and ψ may be strongly biased.

Although the preceding assumption is well-known (and usually mentioned at least once in most

papers using MS approaches), there is another assumption which has not received as much attention:

MS models assume that all individuals make the transitions at the same time (relative

to the start or end of the time interval), or if not, that the distribution of the transition

times is known.

The consequences of violating this assumption are treated in depth in a paper by Joe & Pollock:

Joe, M. & Pollock, K.H. (2002) Separation of survival and movement rates in multi-state

tag-return and capture-recapture models. Journal of Applied Statistics, 29, 373-384.

This is a useful paper to read – Joe & Pollock discuss the possible biases caused by violation of this

assumption.

end sidebar

10.2. A worked example: cost of breeding analysis

Consider the following example. You are studying a single cohort of individually marked adult deer,
for 8 years (i.e., you mark a sample of deer on the first occasion, and then simply follow them for 7 more
years). On each occasion, the breeding status of the deer can be determined without error (all individuals
can be assigned either breeder or non-breeder status). You want to examine the possibility that survival
is influenced by breeding status. This example is analogous to an important paper published by Nichols
et al. (1994) on estimating breeding proportions and costs of reproduction with capture-recapture data
(Ecology 1994: 2052-2065). Normally, we might consider breeding status as a ‘trait’, but clearly this is an
annually variable phenotypic trait for most organisms. As such, the classic approach of subdividing the
sample along trait-lines and looking for differences among the trait groups will not work here. We need
another approach. In fact, the multi-state models are just such an approach – we model the movement
between breeding states just as we would model movement among physically discrete states.

To demonstrate the point without the complications of ‘messy real world data’, we’ve simulated a
data set for this ‘virtual deer’ (DEER.INP), using the parameter values tabulated at the top of the next
page. There are 500 total individuals to start in the simulated data – 250 in the breeding state, and 250
in the non-breeding state. If you look carefully at the parameter values, you’ll see we’re creating a data
set where it is ‘costly’ to breed – the survival from (i) to (i+1) for individuals in the breeding state at
(i) is lower than for non-breeders at (i). However, the probability of switching states (moving from one
state to the opposite state) is higher for non-breeders than for breeders (i.e., individuals aren’t likely to
stay non-breeders for very long).
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parameter value

Sbreeder 0.7

Snon−breeder 0.8

ψbreeder→non−breeder 0.4

ψnon−breeder→breeder 0.8

pbreeder 0.7

pnon−breeder 0.7

Begin a new project in MARK. For the multi-state analysis of the ‘virtual deer’, we want to select
‘Multi-strata Recaptures only’ (about half-way down the list of different data types). Once you select
the multi-strata option, you may have noticed that the option to ‘Enter State Names’ has now become
active (lower-right corner of the specification window). This will become important in a minute.

Next, enter a title for the project (say, ‘Analysis of virtual deer’), and then select the file (DEER.INP).
Note that the encounter histories in DEER.INP look virtually identical to the histories we used for typical
mark-recapture analysis – a contiguous string 8 characters long (i.e., 8 occasions), followed by the
frequency of individuals having that particular history. But remember – rather than ‘1’s and ‘0’s, we
now have ‘N’s, ‘B’s and ‘0’s. In this case, the ‘N’ value represents individuals in the non-breeding state
at a particular occasion, and the ‘B’ values are for breeding individuals. The ‘0’s represent occasions
when the individual was not seen. Thus, the history ‘NBNN0BB’ indicates an individual marked as a
non-breeder on the first occasion, seen as a breeder on the second occasion, seen as a non-breeder on
occasions 3 to 4, not seen at all on occasion 5, and then seen as a breeder for the final two occasions. The
use of ‘N’ and ‘B’ in this example is entirely arbitrary – you can use anything you want to indicate state
(numbers, letters). The only condition is that it can be only one character wide (e.g., ‘N’ for non-breeders,
not ‘NB’).

Next, tell MARK that DEER.INP has 8 occasions.∗ Finally, we need to tell MARK how the states are
coded in the input file. To do this, click on the ‘Enter State Names’ button we referred to earlier (MARK

defaults to 2 states, so we don’t need to change anything there).

This will cause MARK to spawn a new window which lets you set the labels (codes) for the different

∗ Here, time intervals are assumed to be equal, 1.0. However, if you have unequal intervals in a multi-state analysis, you need to
be very careful. See section 10.6.
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states, and their respective names.

Once you’ve entered the appropriate codes, and state names, click ‘OK’, which will bring you back to
the Specification window. Once you’re sure everything in this window is correct, click ‘OK’.

As with our standard mark-recapture analysis in MARK, what you’ll see first is the PIM for the
survival parameters for Group 1 (in this example, we have only one group). But, within a group, you
might have 2 or more states. If you look at the PIM chart, you should recognize that the PIM reflects a
time-dependent structure for survival for individuals in breeding state.

To get a quick sense of the way MARK lays out the parameters for this model, let’s look at the PIM
chart (by clicking the ‘PIM Chart’ button in the PIM itself):

Clearly, there are 6 parameters involved here. Right away this should tell you something. Six pa-
rameters means that MARK is making the assumption that survival is dependent only on the state at
occasion (i), and is not influenced by the state entered at occasion (i+1). In other words, we’re using the
identity we introduced earlier.

ϕrs
i � Sr

i ψ
rs
i .
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Recall that this identity is true only under this stated assumption. The fact that MARK defaults to
this assumption becomes important later on. Thus, each of the ‘blue boxes’ in the PIM chart refers to
(respectively, going from the lower-left to the upper-right) SB , SN , pB , pN , ψBN and ψNB. Examination
of the horizontal axis of the PIM chart shows that the current model has time-dependence for each
parameter, and that there are 42 total parameters. Even though we know that for these simulated data
the parameters are constant through time (no time-dependence), let’s pretend we’re approaching these
data naïvely, and go ahead and run this model (call it ‘S(g.t)p(g.t)psi(g.t)’, where the ‘g’ refers to
group – or state, breeder or non-breeder in this case).

The first thing you might notice, especially if you’re using a computer of ‘average’ processing power,
is how much longer this model takes to run than analysis of typical mark-recapture data. The reason
is fairly straightforward – the more parameters, the longer it takes to reach the solution (although the
increase in time taken does not scale as a simple linear function of the number of parameters). We have
3 parameters (S, p and ψ), so it takes longer than models with only 2 (say, ϕ and p). Once the estimation
is complete, add the results to the browser.

Before we look at the results of this analysis, let’s run another model – ‘S(g)p(g)psi(g)’ – constancy
for all parameters, but allowing for possible differences among groups (breeding states). Obviously,
the first thing we need to do is modify the parameter structure. As you may have gathered from earlier
chapters, this is most easily done using the PIM chart. Recall from earlier chapters that we could modify
the parameter structure from within the PIM chart (at least for certain models) by simply right clicking
on each of the ‘blue boxes’ on the PIM chart. In this case, you could move the cursor over each of the
‘blue boxes’ and right-click with the mouse. This causes a menu to pop up which lets you select among
various parameter structures. One of the options is ‘Constant’. By selecting the ‘Constant’ option for
each blue box in turn, we could build our model. Then, to eliminate the ‘gaps’ between the ‘blue boxes’
(i.e., to make the parameter index values contiguous), you could either drag each box manually, or right-
click anywhere in the PIM chart, and select ‘Renumber no overlap’. This will cause the PIM chart to
reformat without any gaps between any of the blue boxes.

While this works, in this case, for this particular model (where the structure is the same for all 6 blue
boxes), there is a much faster way – simply select the ‘Initial | All | Constant’ menu option from
within the PIM chart. If you do this, your PIM chart will be quickly reformatted to the model we’re after,
which looks like the following:
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Note that, superficially, this looks identical to the PIM chart we saw for the fully time-dependent
model discussed earlier, but if you look carefully at the horizontal axis, you’ll see it now has many fewer
parameters – 6 (instead of 42). Go ahead and run this model, and add the results to the browser.

Inspecting the results browser shows us immediately that the model with constant parameter values
is a much more parsimonious model of these data than is the fully time-dependent model. Before we go
much further, let’s have a look at the real parameter estimates for the constant model – ‘S(g)p(g)psi(g)’
– more formally, model {Sgpgψg}.

We can see that the estimates are quite close to the parameters used to simulate the data set. Since the
constant model is clearly much better supported than the fully-time-dependent model, let’s delete the
time-dependent results from the browser (by highlighting the time-dependent model and then clicking
on the trash can icon in the toolbar of the browser window). We will use the constant model {Sg pgψg} as
the general model in our candidate model set. We’re interested in examining two questions: (1) is there
a difference in survival among breeders and non-breeders, and (2) does the probability of transition
between breeding states depend on breeding state at occasion (i)?

Let the following represent the candidate model set:

{Sgpgψg}, {Spgψg}, {Sgpgψ}, {Spgψ}

In other words, (1) constant over time,but with group (g; breeding state) differences for all parameters,
(2) equal survival between breeding states, but differences in recapture and movement, (3) differences
in survival and recapture, but no differences in transitions probabilities between breeding states, and
(4) differences in recapture probability among breeding states only.

At this point, you should be able to run the 3 new models fairly easily – it should take you only a
few seconds to construct each model using the PIM chart approach. The results for all 4 models in the
candidate model set are shown at the top of the next page. We see that the model with differences in
both survival and movement rates between breeders and non-breeders is 10-times better supported
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by the data than the next best model, where survival is the same between breeding states, and both
recapture and movement probability differ (0.915/0.085 � 10.8).

Let’s re-examine the estimates from our best model,{Sgpgψg}. While survival is clearly estimated for
each state separately, the question is, which ‘movement’ parameter gets estimated? For example, among
individuals in breeding state (B) at time (i), they can either move to the other state (with probabilityψBN),
or stay in the breeding state (ψBB). Which one do we estimate?

Well, at this point, we take advantage of the logical necessity that the sum of ψBN andψBB must equal
1.0 (i.e., an animal in a given state, must either remain in that state or move to another state, conditional
on remaining alive). As such, one of the movement parameters is redundant (if you know the value of
one, you know the other as 1 minus the first one). As such, any one of the movement parameters for a
given state could be omitted. For example, our estimate for ψNB

� 0.8274. Thus, ψNN is estimated as
ψ̂NN

� (1 − 0.8274) � 0.1726, which is fairly close to the parameter used in the simulation (0.2).

Fortunately, MARK gives you some flexibility as to what movement parameters are estimated – the
default is to estimate the probability of moving from one state to another (i.e.,ψ i j; probability of moving
from i to j). However, you might instead want to estimate the probability of remaining within a state
(ψ i i; probability of moving from i to i). You can ‘tell’ MARK to estimate ψ i i simply by changing the
definition of the PIM. Returning back to our previous deer example, we can simply retrieve a model
from the browser, and then select ‘Change PIM definition’ from the PIM menu, and run it (or you can
change the PIM structure before running the model).

Go ahead and try it – doing so will bring up a window showing you the non-default transitions that
are available – in this case, there is only one other possibility (i.e., the non-default ψ i i):

Now, you need to be a bit careful here – read the text at the top of this window carefully. It’s asking
you to tell MARK which of the transitions you want to estimate by subtraction. For example, MARK

defaults to estimating the transitionψ i j . So,you’d normally (by default) have to deriveψ i i by subtraction.
So, if you want MARK to estimate ψ i i, you need to tell it you want to estimate ψ i j by subtraction. So, in
our example, with two states (N and B), MARK defaults to estimating ψNB and ψBN . So, if you want
MARK to estimate (for example) ψBB, you need to tell MARK you want to estimate ψBN by subtraction,
as shown at the top of the next page:
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If you run this model, you’ll see that it gives you the estimate of ψBB you want. And, changing the
specification of which transitions are estimated does not (and should not) change anything else about
fitting the model – the model deviance, and AIC value, should be unchanged.

There are several potential advantages to being able to specify which transition parameters are
estimated. First, the optimization routine in MARK is known to work better if the parameters are
not close to the boundaries (i.e., not close to 0.0 or 1.0). Second, you are likely not to want estimates
of the estimated parameters to be ‘too big’, because if their sum is > 1, then the remaining probability
is estimated as < 0. The idea, then, is to pick transition probabilities that are likely to be small, giving
you the best chance that the remainder transition probability will be > 0 (although as we will see, we
can circumvent this particular problem by specifying a different link function – the multinomial logit
link). Third, being able to specify which movement parameter you want to use gives you the ability
to build specific constrained models. For example, suppose you are working with a 3-island system,
and wanted to assess whether the probability of returning to a given island (i.e., philopatry) was equal
for the various islands, but did not want to assume that the probabilities of movement to other islands
was also equal. You could do this by constraining the probability of remaining on a given island. Note
that for a 2-state model, setting the probabilities of leaving for the other state equal is also setting the
probability of remaining equal. With > 2 states, this is not true.

However, it is important to remember that you can change the PIM definition only in terms of the
‘recipient’ state. The ‘donor’ state at the time of the transition is fixed, whereas the ‘recipient’ state is
dynamic, since it is the outcome of a probabilistic process determined by the parameterψ. You have one
ψ parameter for movements from each state, not movements to a given state. So, for our 2 state ‘breeder’
(B) or ‘non-breeder’ (N) example, we could change the PIM definitions to (say) ψNB and ψBB, or ψBN

and ψNN . In either case, we’re estimating the probabilities of moving into a common ‘recipient state’,
each as a function of the different ‘donor’ states. Note that the sum of ψNB

+ psiBB (for example) does
not necessarily equal 1. In contrast, ψBN

+ψBB
� 1. As noted earlier, since the movement is conditional

on survival, then the sum of all movement probabilities from a given state must equal 1 (if you’re alive
at the end of the interval, you must be in one of the available states, with probability 1).

Why is this distinction important? It is important because being aware of it gives you some additional
flexibility to test various hypotheses. For example, suppose for our ‘cost of breeding’ analysis we wanted
to test a model where the probability of breeding next time step is potentially a function of whether
or not you breed this time step. In other words, you might be interested in constructing a null model
where ψBN

� ψBB . In other words, a model where the probability of breeding next year is random
with respect to breeding state this year. The problem is, the two parameters are constructed based on
a common ‘donor’ state (breeder, B), which is not possible by simply changing the PIM definition. But,
if you remember that ψBN

+ psiBB
� 1, then if ψBN

� ψBB, then ψBN
� ψBB

� 0.5. Which of of course
is the expected probability fo either transition of the movement is strictly random. So, you simply need
to build a model where you first fix the estimate of either ψBN or ψBB (whichever one you’ve defined
in your PIM) to be 0.5. Alternatively, you might interested in whether or not breeding next year is a
function of not breeding this year You would exactly the same logic – you build a model where you
first fix the estimate of either ψNN or ψNB to be 0.5. As noted above, for a 2-state model, setting the
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probabilities of leaving for the other state equal is also setting the probability of remaining equal. Also
as noted, this is not true with > 2 states, at which point, things get somewhat more complicated.

What about ϕrs? Recall that as originally described, the multi-state models focussed on estimation of
the ‘combined’ probability of survival and movement. MARK assumes that survival is dependent only
on state at time (i) – this allows MARK to separate ϕ into its component parts S and ψ. Can we estimate
ϕ using MARK? Yes, but only by hand. Consider the results of our analysis so far. ψBN is estimated as
0.4263. SB is estimated as 0.6997. Thus, ϕBN is estimated as ϕ̂BN

� ŜBψ̂BN
� 0.2983. Given the standard

errors for both SB and ψBN from MARK, it is possible to derive standard errors for ϕ̂BN using the Delta
method (see Appendix B).

Are there further limitations imposed by MARK? In fact, there may be one more, stemming from
the underlying ‘assumption’ MARK defaults to – the assumption that survival depends only on state
at time (i). While this is perhaps reasonable in many ‘real world’ situations, what if it isn’t? Nichols and
colleagues have extensively explored models where the transition probabilities depend on state both
at time (i) and (i-1). While the recapture parameters remain the same, they introduced a new transition
parameter:

ϕrst
i−1,i � the probability that an animal alive in state r at time i-1 and state

s at time i is in state t at time i+1.

They referred to this as a ‘memory model’ (technically, it is a second order Markov model), suggesting
that the ‘history’ of events experienced by the marked individual leading up to its state at time (i)
might influence the transition probability between (i) and (i+1). These ‘memory’ models were coded
into MS-SURVIV∗, and allow for testing hypotheses that the transition ϕ is first-order Markovian (i.e.,
dependent only on state at time i) versus those in which the transition ϕ is dependent on the state at
both (i) and (i-1) (i.e., second-order Markovian).

At present, MARK is unable to handle ‘memory’ models, in part since they clearly violate the
assumption MARK makes that survival is dependent only on state at time (i). These models may prove
increasingly important tools to explore questions concerning life-history decisions over the lifetime
of the organism. Much theory exists suggesting that the optimal decisions at age x (e.g., breed or not,
emigrate or not) are likely to reflect the sequence of decisions experienced (or made) at age< x. However,
such memory models are extremely ‘data hungry’, and much work remains to be done to develop
extensions of such models to relevant biological questions.

But while this is a limitation of MARK when compared to MS-SURVIV, for Markovian models,
MARK adds significant flexibility for many models, particularly through use of the design matrix. In
the next section, we shall explore examples showing how we can use the design matrix to constrain the
estimates of survival and movement.

10.3. States as ‘groups’ – multi-state models and the DM

In the preceding, we fit a series of ‘dot’ models to the data – there was no need to build a design matrix
(DM) for the models in our candidate model set. But, it is important to understand how the DM is built
for multi-state models. It is really not much different from what you’ve already seen – all you need to
do is remember that states are, in effect, treated like groups. But, with a catch you need to be aware of.

Consider the deer data we just analyzed, and consider fitting a fully time-dependent model, for all
parameters (S, p and ψ). If we set the PIM structure to {S

g
t p

g
t ψ

g
t }, and then pull up the design matrix

∗ MS-SURVIV is developed and maintained by Jim Hines, USGS-Patuxent Wildlife Research Center
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using ‘Design matrix | Full’, this is what we see (if we ‘zoom in’ in on the part of the DM coding for
variation survival, S).

If you look closely, you’ll see that columns 1 → 7 correspond to survival for breeding individuals,
while columns 8 → 14 correspond to survival for non-breeding individuals. What is important to
note here is that each parameter has a separate intercept. In other words, MARK is treating the same
parameter (S) for different levels of the state (breeding, non-breeding) as if in fact they were separate
parameters.

While there is nothing wrong with this in terms of the reconstituted parameter values, it does limit
the models you can build. For example, you would not be able to construct an additive model in any
obvious way, since there are no explicit interaction columns. In fact, the interaction is implicit in the
fact that the two parameters do not share a common intercept. So, in order to have more flexibility, we
generally choose to re-code the DM such that parameters share a common intercept across levels of the
state variable. To demonstrate this, we first go ahead and run this model (using the default ‘fully time-
dependent’ DM with a separate intercept for each parameter/state combination. The reported model
deviance is 680.054.

Now, how would we modify the DM with a common intercept? Simple:

Here, we have a column for the common intercept, a single column for state (since there are 2 states,
we need only a single column), and then 6 columns for time, and 6 additional columns for state.time
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interactions (for a total of 14 columns, identical to the number of columns in the original DM, and equal
to the number of parameters specified in the PIMs for survival, S). If you run this modified DM (shown
below), the resulting deviance is 680.054, identical to the value reported for the original DM.

Here is another DM example, again using the deer data. Suppose we decided to fit model {S
g
t p g

. ψ
g
. }

– in other words, time varying survival as a function of breeding state (g), with constant encounter and
movement probabilities which differ between breeding states. First, build the model using PIMs – here
is the PIM chart corresponding to our model:

Run this model, and add the results to the browser. Now, let’s build this same model using a design
matrix approach. Based on the PIM chart, we see that we have 18 structural parameters in the model.
We select ‘Design | Reduced’, and specify 18 covariate columns in the design matrix. We will follow
the convention introduced above, and treat ‘state’ as a grouping or classification factor. In other words,
we’ll use a common intercept for modeling differences in survival among states. In this example, we
have 2 levels of ‘state’, so we need one column to code for it.

Here is the design matrix corresponding to our model:
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Again, this structure is identical to what you have seen before for a single classification factor with 2
levels of the factor. Run this model (label it with DM), and add the results to the browser:

Note that the models have different AICc values. Is our design matrix wrong? No! Look at the
deviances. Note that they are exactly the same. If the deviances are the same, then the models are
the same.

So, why the difference in the AICc values? Remember, the AIC is calculated as a function of the fit
(deviance), and the number of parameters. If the AIC values differ, but the fit is the same (i.e., same
model deviances), then it is the number of estimated parameters which differ. You see in the browser
that this is indeed the case – the model built with the PIM chart (which defaults to using the sin link
function) shows 18 estimated parameters,whereas the model we just built using the DM (which defaults
to the logit link function) reports only 17 parameters. This explains why the two models have different
AICc values. You can confirm this was indeed the problem by re-running the model you built with
PIMs, but first specifying the logit link, instead of the default sin link. If you do so, you’ll see that the
PIM model run using the logit link reports 17 parameters. Meaning, the problem (difference) is due to
the link function, not ‘errors’ in your DM.

What about time-varying movement parameters,ψi? Let’s consider model {S
g
t p g

. ψ
g
t } – time variation

in survival and movement, but constant encounter probability.

Here is the PIM chart corresponding to this model.

What is the structure of the design matrix corresponding this parameter structure?
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We covered the construction of the DM for the survival and encounter parameters for a multi-state
design earlier. The DM for these 2 parameters should look like:

For the movement parameters,ψ, the structure is essentially the same as what we used for the survival
parameter:

Note that is is not necessary to use a common intercept, but it can be convenient to do so for models
where you may want to create a structural relationship between the parameters.

10.3.1. A simple metapopulation model – size, distance & quality

In this example, we go back to the hypothetical model we considered right at the beginning – 3 islands
with colonies of a particular species of sea-bird, with the potential for exchange among some or all
of the islands. For this example, we’ll add some complexity to the model, by introducing a number
of factors which might potentially influence any of the 3 parameters, either individually or together –
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factors which are fairly representative of ‘real-world’ data.∗

In our example, we’ll vary 2 main factors: (1) the size of individual islands, and (2) the spacing
(distance) among the islands. Here is a graphical representation of our ‘island system’:
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j
AA

j
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A B C

We see that the islands are clearly not equally spaced: as drawn, island B is closer to island A than it is
to islandC. And, the islands are not the same size: islandA is the largest, followedby islandC,with island
B the smallest. The islands might differ in terms of some characteristic (say, some limiting resource).
Sometimes this might scale with the size of the island. For our example, we’ll simplify somewhat: we’ll
assume that island A has the highest ‘quality’, while island B and island C have equivalent quality. As
indicated, all transitions among islands are possible. The question we have then is – are there differences
in survival, movement probability or recapture probability among the 3 islands? Further, might any
differences correlate with differences in spacing, size or quality of the islands?

Based on this ‘metapopulation structure’, we simulated a 6 occasion study, with capture, mark and
release occurring simultaneously on all three islands in all years. In other words, in this example, we’re
not simply following a single marked cohort through time, but are releasing recaptures and newly
marked birds on each occasion. We simulated 250 newly marked individuals on each island at each
occasion. The encounter data are contained in the file ISLAND.INP.

Rather than tell you a priori what the parameter values were in the simulation, let’s see how well we
can do by building a candidate model set, and using Akaike weights to select the best model. Based
on our description of the system, we have good reason to expect that island quality might influence
survival. Further, distance among islands, and differences in island size, might influence movement
probabilities.

Of course, we might also hypothesize that island size could influence both survival and movement
if we invoked density-dependent effects (which will tend to lead to departures from the ideal free
distribution based on simple differences in quality). For now, let’s say that, based on earlier studies of
this species, we have no evidence for density-dependent effects.

Next, assume there is a fixed number of investigators on each island capturing and releasing the
birds. Assume also that, all other things being equal, colony size is proportional to the size of the island.
Thus, since island A is the largest, you might anticipate that for a constant level of capture effort, that
recapture probability should be smaller on island A than on (say) island B, which is the smallest of the
three islands.

Finally, we assume that environmental conditions during the 6 years of the study have been near-
constant.

∗ In fact, our example is qualitatively quite similar to a classical study of a metapopulation of roseate terns (Spendelow et al. 1995
Ecology 76: 2415-2428).
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Based on these a priori hypotheses, we construct our candidate model set (shown below). Given the
detail of our background knowledge, and our insight about these birds, we start with a general model
which allows for ‘group’ differences (i.e., differences among islands), but one that is constant over time.
We include several plausible reduced parameter models starting from this general model.

model description

Sgp gψg
general model – all groups (states) different – constant over time

Sp gψg
constant survival – group difference in recapture and movement

Sgpψg
constant recapture – group differences in survival and movement

Sgp gψ constant movement (inter-island all equal) – group differences in

survival and recapture

Squalit yp gψg
survival constrained to be a function of island quality – group

differences in recapture and movement

Sgps izeψg
recapture constrained as a function of island size – group

differences in survival and movement

Sgp gψdistance
inter-island movement a function of inter-island distance – group

differences in survival and recapture

Sps izeψdistance
recapture a function of island size, movement a function of inter-

island distance – constant survival

Squalit yps izeψdistance
survival a function of island quality, recapture a function if island

size, and inter-island movement a function of inter-island distance

Open up the PIM chart, and change the default (time-dependent) parameter structure to one that
has group (i.e., island) differences, but that is constant over time for each parameter, as shown below:
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Go ahead and run the model, and add the results to the results browser. The AICc for this model is
19703.54, with 12 estimated parameters. Since this is our general model, let’s have a preliminary look
at the parameter values. To make it easier to relate the estimates to the model, we’ll add the estimates
to our ‘model diagram’, shown below:

Clearly, there is some heterogeneity among islands for recapture and movement probability, but not
survival. The question is, are the apparent differences in recapture or movement significant, and does
the pattern of variation correlate with one or more of the covariates in our model(s)? Since the 2nd
through 4th models in the model set (preceding page) are straightforward (hopefully!), we’ll skip the
mechanics of setting them up and running them, and go ahead and consider the results:

The best model {Sp gψg} is not appreciably better supported by the data than is the next best model
{Sgp .ψg}. As such,we could only say that these two models are probably equally likely. So,our tentative
conclusion at this point is that there is some evidence of equivalence (in some senses) of survival among
islands. The movement probabilities clearly differ. This would seem to be concordant with our casual
inspection of the estimates from the most general model (shown in the schematic diagram, above).

What about GOF (goodness of fit)? Normally, at this stage, we’d be thinking about fit of our general
model – in part for the purposes of deriving an estimate of ĉ. We discuss GOF testing for multi-state
models at the end of this chapter – for this example, we’ll assume the general model fits the data, and
leave ĉ at the default value of 1.0.

Can we improve our understanding by constraining the general model to be a function of one or more
of the ‘potentially relevant’ covariates? At this point we need to modify the design matrix to constrain
the general model. Click once on model {Sgp gψg} in the browser – to make it the active model. Then,
right-click this model, and select the ‘Retrieve’ option. Since we want to constrain model {Sgp gψg},
we want the design matrix to initially reflect its parameter structure.

Before we actually look at the design matrix, what would the linear model look like for the model you
just retrieved? Remember, the retrieved model was {Sgp gψg}. Since ‘group’ = ‘island’, then there are 3
levels of group (i.e., 3 islands). Thus, we need (3 − 1) � 2 columns, plus a column for the intercept, to
code for the various group effects for survival and recapture. The structure of the design matrix for the
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S and p parameters is (hopefully) straightforward – a column for the intercept, followed by 2 columns
of dummy variables, ‘1 0’ for island A, ‘0 1’ for island B, and ‘0 0’ for island C. For this model, we’ll use
the same basic linear structure for both parameters (S and p). Remember, these codings are arbitrary
– we could have just as easily used ‘1 0’ for A, ‘1 1’ for B, and ‘0 1’ for C. The important point is that
what is required is 2 columns for the coding, and that the coding is based on 0 or 1 dummy variables.

What about the ψ (movement) parameters? A little trickier, since there are several equivalent coding
schemes which would accomplish the same thing. Note that there are 3 groups of movement parameters
– those involving movements from island A, those involving movements from island B, and those
involving movements from island C – 2 parameters for each group. Thus, following the standard
linear models paradigm, we could also use 1 intercept column, and 1 column to indicate which of the 2
transitions within each of the 3 movement groups. For example, as shown below, for the parametersψAB

and ψAC , we could have a column of intercept, followed by a column with a ‘0’ indicating movement
from A to B, and a ‘1’ indicating the A to C movement.

The design matrix for all 3 parameters is shown below:

Try running this design matrix – the estimates are identical to the estimates for the model you created
initially simply by modifying the PIMs.

Now that we have built our general model using the design matrix, let’s build the next model in the
set, model {Squalit yp gψg}. For model {Squalit yp gψg} , we want to constrain survival to be a function of
island ‘quality’. Recall that in this example, island A is believed to be of better quality than island B or
C, but that island B and C are believed to be of equal quality. Thus, we need a single column for the
intercept, and a single column coding for quality. We’ll let ‘1’ represent ‘good quality’, and ‘0’ represent
‘poor quality’.

Thus, the design matrix corresponding to the survival parameters would look like:
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Go ahead and run this model, and add the results to the browser. Before we examine the results of this
model, let’s go ahead and fit the next 2 models in the list – model{Sgps izeψg} and model{Sgp gψdistance}.

Since we need some ‘numbers’ to represent island size and inter-island distance, we used the
following values for each, respectively:

island size island A B C

A 10 A 0 5 12
B 3 B 0 7
C 6 C 0

Since models {Sgps izeψg} and {Sgp gψdistance} are both structurally similar to model {Squalit yp gψg},
you should be able to quickly see how to modify the design matrix (basically, as we just did, but for
different parameters).

For example, consider model {Sgps izeψg}, where we want to constrain the probability of recapture to
be a function of the size of the island (where it might be reasonable to assume that the bigger the island,
the lower the recapture probability for a given marked individual, all other things being equal). To fit
this model, you simply need to modify the part of the design matrix corresponding to the recapture
probabilities.

Given the ‘island size data’ in the preceding table, here is the design matrix for model {Sgps izeψg}
(only that part of the design matrix corresponding to the survival and recapture parameters is shown).

Pretty straightforward. Potentially the only tricky one is model {Sgp gψdistance}. Again, the key is to
look closely at the coding for the movement parameters, ψ. If you’re constraining ψ to be a function
of the distance, then you would replace the ‘1’ and ‘0’ dummy variables in the design matrix with
the actual distance values themselves (remember: the ‘0’ and ‘1’ coding treated islands as levels of a
classification factor, while using the distances directly is considering them as linear covariates). Sounds
reasonable.

However, this is a good example of a problem that is in fact a bit trickier than it might seem at first.
For example, you need to decide if you want the probability of moving from A to C (ψAC) to be the
same as the probability of moving from C to A (ψCA), since clearly the distance is the same between the
same two islands, regardless of the direction you’re moving. Is this a reasonable constraint?

Let’s assume we want to allow the movement probabilities to differ, even among ‘complementary’
transitions (i.e., we’ll let ψAC differ from ψCA). How would we set that up? Well, the most flexible way
would be to categorize each of the movement transitions according to the donor island. For example,
treating movements from island A as one group, from island B as one group, and so on. Since there
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are 3 island groups, then 1 intercept column, and 2 columns of dummy variables to code for island.
Then, a single covariate column coding for the linear distance among islands. Finally, 2 columns for the
interaction of ‘island group’ with linear distance.

The relevant portion of the design matrix we need for this model is shown below. The values of the
covariates are the inter-island distance values listed in the table at the top of this page:

Now, it is important here to understand what we’ve done in the design matrix. The intercept is in the
first column, the dummy variables for ‘island grouping’ are in columns two and three, and the linear
covariate (distances among islands) is in column four. The interaction of ‘island’ and ‘distance’ is shown
in columns five and six. Remember, the interaction means that the estimate of movement rate varies as
a unique function of island and distance among islands. Go ahead and run the model corresponding
to this design matrix, and add the results to the browser. See if you can build all the candidate models
listed earlier at the start of this example.

begin sidebar

The multinomial logit link and MS models

Logically, the transitions from a given state must logically sum to 1.0. However, for reasons related

to how MARK numerically calculates the estimates of the various parameters, this logical constraint

isn’t always met – in other words, the sum is occasionally > 1, which is clearly not logically feasible.

This tends to happen (if it happens at all) if some of the transitions are close to the [0, 1] boundary.

One solution is to change the link function MARK uses – from the sin or logit link, to what is known

as the multinomial logit link function (MLogit). We will introduce the MLogit link here with respect

to multi-state models, but it is also frequently used in POPAN (J-S) models (Chapter 13), and open

robust design models (Chapter 15).

The multinomial logit works as follows. Assume that each of the transition parameters from state

A have their own β value, so that A to B is β1, A to C is β2, and A to D is β3. To constrain these 3

parameters to sum to ≤ 1, the multinomial logit link works as follows:

ψAB
�

eβ1

1 + eβ1 + eβ2 + eβ3

ψAC
�

eβ2

1 + eβ1 + eβ2 + eβ3

ψAD
�

eβ3

1 + eβ1 + eβ2 + eβ3

To create this set of links, you need to tell MARK to use a Mlogit link. You do this by first selecting

the ‘Parm-Specific’ link function from list of link options on the ‘Run’ window:
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When you hit the ‘OK to run’ button, you’re presented with a second window, which allows you to

specify the link function for each parameter in your model (this window was first described in Chapter

6 when we introduced the cumulative logit link).

For example, in the deer example, for model {Sg pgψg} you have 6 parameters, so the relevant part

of the window looks like:

Here, we’ve selected MLogit(1) for ‘Psi B to N’, and MLogit(2) for ‘Psi N to B’. Basically, the

number inside the parentheses is a simple indexing for state (2 states – index 1 and index 2). So, if we

had 3 states (A, B and C), we’d need 3 levels of indexing. Thus, for example, if we use MLogit(1) for

all of the A state transitions, we might use MLogit(2) for state B transitions, and MLogit(3) for state

C transitions.

In summary, for each set of parameters where you want the constraint that the parameters sum to

≤ 1, you must specify a MLogit(x) function, where ‘x’ represents the set number of the MLogit link

function.

Still not clear? Here is a simple demonstration, unrelated to MS models, but using a very familiar

example – the male Dipper data. Recall that there are 7 sample occasions for the Dipper data – so 6

intervals. Suppose for some reason you wanted the sum of the estimates ϕ1 + ϕ2 � 1, ϕ3 + ϕ4 � 1,

and ϕ5 + ϕ6 � 1.

All you need to do to enforce these constraints using the MLogit is start with a model where apparent

survival (ϕ) is time-dependent, then specify the ‘Parm-Specific’ option from the ‘Setup Numerical

Estimation Run’ window. Since there are 3 sets of parameters we want to constraint (i.e., ϕ1 and ϕ2,

ϕ3 and ϕ4 and ϕ5 and ϕ6), then we use indexing 1 → 3 when we specify the MLogit link for each

successive pair of parameters (MLogit(1) for ϕ1 and ϕ2, MLogit(2) for ϕ3 and ϕ4, and MLogit(3) for

ϕ5 and ϕ6):
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Looking at the reconstituted estimates on the real probability scale

we see that ϕ̂1 + ϕ̂2 � 0.5949 + 0.4051 � 1.0000, ϕ̂3 + ϕ̂4 � 0.4438 + 0.5562 � 1.0000, and ϕ̂5 + ϕ̂6 �

0.4893 + 0.5107 � 1.0000, as expected.

While constructing the MLogit link is straightforward, you need to be careful. Consider the

following set of parameters in a PIM for the survival probability for the male Dipper data:

The parameter-specific link would be selected in the ‘Setup Numerical Estimation Run’ window,

and the MLogit(1) link would be applied to parameters 1→ 6 to force these 6 estimates to sum to ≤ 1.

But suppose that instead you wanted to force all of the 6 survival probabilities to be the same, and

have the sum of all 6 be ≤ 1? You might be tempted to specify a PIM such as

(i.e., simply use the same index value for all the parameters in the PIM, which would result in the

same estimate for each interval), and apply the MLogit link to parameter 1, but that would be incorrect.

Changing the PIM and selecting the MLogit link for parameter 1 would result in parameter 1 alone

summing to ≤ 1 (i.e., just like a logit link), but would not force the sum of the 6 values of parameter 1

to sum to ≤ 1. Go ahead and try it for yourself – you’ll see that whether or not you use the MLogit or

logit link, parameter 1 is estimated (for a model with time-varying encounter probability) as 0.5561.

Clearly, (6 × 0.5561) ≫ 1.

But, what if you want the sum of the 6 estimates to be 1.0? To implement such a model, the PIM

should not be changed from a time-dependent PIM (i.e., it should maintain the indexing from 1→ 6);

instead, the design matrix should be used to force the same estimate for parameters 1 → 6. Then the

MLogit(1) link should be specified for all 6 parameters for apparent survival, 1 → 6. The result is

Chapter 10. Multi-state models...



10.3.1. A simple metapopulation model – size, distance & quality 10 - 26

that now all 6 parameters have the same value (ϕ̂ � 0.166̇ for the model specified in this DM – with

time-dependent encounter probability), where (6 × 0.166̇) � 1.

Another example – suppose you wanted parameters 1 and 4→ 6 (non-flood years) to be the same

value, and parameters 2 and 3 (flood years) to be the same value. Obviously, there are multiple ways to

implement such a model in MARK – the approach you use will be determined by what constraints you

want to implement. If you want to have a separate estimate of apparent survival for flood and non-flood

years, and (i) have the same estimate for all flood and non-flood years, and (ii)have the estimates within

a flood-type sum to 1.0, then you need to use the design matrix, and apply the MLogit link function to

the appropriate parameters. If we apply MLogit(1) to flood years (parameters 1, 4→ 6), and MLogit(2)

to non-flood years (parameters 2 and 3), we end up with estimates of apparent survival of 0.25 for each

of the 4 flood years (4× 0.25 � 1.0), and 0.4965 for each of the 2 flood years (2× 0.4965 � 0.9930 ≤ 1.0).

What happens if we apply a single MLogit constraint to all 6 parameters (i.e., MLogit(1) to

parameters 1→ 6)? As you might expect, applying this constraint will still yield separate estimates of

apparent survival for all flood and non-flood years, but now, the sum of estimates over all 6 parameters

will be ≤ 1. What we see if we run this model, with MLogit(1) applied to parameters 1 → 6 is

ϕ̂ f lood � 0.1857, and ϕ̂non− f lood � 0.1286. Summing over all estimates, (4×0.1857)+ (2×0.1286) � 1.0.

Now, final test – what if you want to have a single separate estimate for flood and non-flood years,

and have them sum to 1.0? In other words, instead of generating an estimate for each year subject to

the constraint, you want to generate an estimate for each flood type subject to the constraint (so, 2

estimates, not 6, with the sum of the estimates ≤ 1). With a bit of thought, you should realize that to

fit this particular model, you do, in fact, need to first modify the PIM –

which ultimately controls the number of estimated parameters – and then apply the Mlogit constraint

to the 2 parameters specified in the PIM.

Here is the modified PIM – parameter 1 indicating the flood years, and parameter 2 indicating the

non-flood years:

If we run this model without applying the MLogit constraint, using instead the standard logit link,

we see that we obtain estimates of ϕ̂ f lood � 0.5970, and ϕ̂non− f lood � 0.4725. Note that the sum of

these estimates 0.5970 + 0.4725 � 1.07 > 1.0.

Now, if we re-run the analysis, but apply the MLogit constraint to both parameters (i.e., MLogit(1)
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for both parameters 1 and 2), we obtain estimates of ϕ̂ f lood � 0.5728, and ϕ̂non− f lood � 0.4272 – the

sum of these constrained estimates is (0.5728 + 0.4272) � 1.0, as expected.

The key point with these examples is that the PIM cannot be used to constrain parameters if you

want the entire set of parameters (i.e., over all intervals) to sum to ≤ 1. Rather, the design matrix has

to be used to make the constraints, with each of the entries in the PIM given the same MLogit(x) link.

end sidebar

10.4. Multi-state models as a unifying framework

Multi-state models offer great potential to increase our understanding of complex, structured systems
– systems with multiple states, and stochastic (or probabilistic) transitions among states. MARK makes
it fairly straightforward to fit some relatively complex models to the underlying multi-state structure.

This point was first noted in a paper by Lebreton, Almeras & Pradel (1999)∗, who pointed out that
multi-state modeling does, in fact, have the potential to be a common, unified ‘framework’ under which
a large variety of models can be fit – including those combining information from multiple sources.
Using data from multiple types will be discussed in a later chapter – for the moment, we’ll introduce
the conceptual framework described by Lebreton et al., to give you the sense of ‘how it is done’, and
(with a bit of thought) how easy it is to implement.

10.4.1. Simple example (1) – CJS mark-recapture as a MS problem

We’ll start by considering a simple mark-recapture analysis, based on live-encounter data. While we
already have plenty of tools to handle these sorts of data, the simplicity of this data type, and your
familiarity with it, make it a good starting point. First, keep in mind that the multi-state approach
considers multiple states. In a mark-recapture analysis (or any simple survival analysis), there are 2
states of interest: live, and dead. As noted by Lebreton et al, the interesting ‘paradoxical’ issue with
mark-recapture analysis is that the information on survival (or, equivalently, mortality) is not based on
observations of dead animals. Some animals are in fact in the ‘dead’ state, but are never seen. So, if
a ‘dead’ state animal is never seen, then clearly, the recapture probability for this state is 0. This leads
quite logically to a fairly straightforward representation of the CJS model as a 2-state model (Alive=1,
Dead=2), with a 0 probability of capture in the second state (i.e., when dead, or state 2, p=0).

As such, we can define the following transition probabilities. Let ϕi = probability of surviving from
time i to i+1. Thus, the probability of surviving and moving from state 1 to 1 (i.e., from live → live)
is clearly ϕ. The probability of moving from state 1 to 2 (live → dead) is (1 − ϕ). The probability of
moving from dead to live is clearly 0. And the probability of moving from dead to dead is 1 (i.e., if
you’re already dead, then you will be dead at the next occasion also). Now, if you’re in state 1 (live), the
recapture probability is p, while if you’re in state 2, the recapture probability is 0.

We can express these transitions in a 2-state transition matrixΨ, and the recapture probabilities in a
2-state vector, p:

1 2

p =
[
p 0

] 1 2

Ψ=
1

2

[
ϕ 0

1 − ϕ 1

]

For the transition matrix Ψ, the rows correspond to the state at time i+1 (live and dead for rows 1

∗ Lebreton, Almeras & Pradel (1999) Competing events, mixtures of information and multi-stratum recapture models. Bird Study,
46 (supplment), S39-S46.
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and 2), and the columns correspond to the state at time i (live and dead for columns 1 and 2). Note that
the matrix must be constrained to have the sum of each column be equal to 1. Using ‘Alive’ = state 1,
and ‘Dead’ = state 2, a typical capture history might be ‘00110100’. No ‘2’ ever appears since that state
is never observed.

To demonstrate this analysis, we simulated a basic CJS data set (CJS_MS.INP) – 8 occasions, big sample
sizes, with the following parameter values:

occasion

1 2 3 4 5 6 7

ϕ 0.5 0.85 0.85 0.65 0.50 0.60 0.85
p 0.45 0.45 0.55 0.75 0.75 0.45 0.55

So, basic time dependence in both survival and recapture probability – model {ϕt pt}.

Estimates from fitting this model to the data using a ‘normal’ live-encounter CJS approach are shown
below:

Now let’s analyze these data using a multi-state approach. Start MARK, and select the ‘multi-state
data type’. Specify 8 occasions, and 2 states – the .INP file uses classic ‘0’ or ‘1’ coding for a recapture
data set, so change state A to 1, and label it ‘live’, and state B to 2, and label it ‘dead’:

Now, the only potentially ‘tricky’ part of the analysis. Open up the PIM chart. You’ll see that there
are the 6 blue boxes – 2 for survival, 2 for recapture, and 2 for movement, for the 2 states, respectively.
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Now, some thinking. Based on the preceding page, we know that recapture probability for dead
individuals (state 2) is 0 (in other words, we assume that we never see dead individuals. In effect,
we’re modeling movement into an ‘unobservable state’). So, right click the blue box corresponding to
recapture probability for that state, and set it ‘constant’ – we will fix the parameter value later, during
the numerical estimation run. Renumber it with (or without) overlap – doesn’t much matter in this case.

Next, we know that the probability of moving from dead to live is 0. So, we set this transition (from
state 2 to state 1) constant – again, we will fix the value of this parameter to be 0 during the numerical
estimation run. We also need to set the survival of state 2 individuals (i.e., dead individuals) constant –
once dead, always dead, so the probability of surviving and staying in this state is clearly 1. Now, while
this might seem a bit strange at first, remember that we are considering probabilities of survival and
movement between states. Go ahead and modify the PIM chart, followed by renumbering to eliminate
the ‘spaces’ between the blue boxes (alternatively,you can manually drag the boxes so they are effectively
contiguous).

Now, for the last step – and one you might have to think about for a minute. What about the movement
parameter from state 1 to 2 (i.e, live to dead)? Clearly this movement (from live to dead) is a logical
complement to the probability of dying, which is defined as (1 − ϕ). So, in order for an individual
to enter state 2, it must die. State 2 is clearly an ‘absorbing state’ – once entered, it can’t be left. Thus,
the probability of moving from state 1 to state 2, conditional on surviving from i to i+1 (which is the
assumption we’re making throughout) is clearly 0 in this case. If you survive from i to i+1, then you
clearly can’t move from state 1 (live) to state 2 (dead)! Read this section again - a couple of times if
needed – to make sure you have the logic down. Once you’ve gotten a good grip on the idea, simply
modify the PIM chart accordingly – set the parameter structure for the movement probability from state
1 (live) to state 2 (dead) to be constant.

The PIM chart is shown below:

That’s about it. Now, the only thing we need to do is run the model,afterfixing some of the parameters.
Which ones? From the PIM chart,we want to set parameter8 (the ‘survival’ probability of the individuals
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in the dead state) to be 1, and parameters 16, 17, and 18 (the encounter probability for dead individuals,
and the movement probabilities – which are conditional on survival) to be 0. To do this, run the model,
and click the ‘Fix Parameters’ button. This will bring up a small dialog window which will ask you to
enter the value to which you want certain parameters to be fixed:

Note that we fix a parameter to a certain value (on the real probability scale) simply by entering the
desired value in the appropriate space.

Go ahead, run the model, and look at the reconstituted estimates:

The estimates for survival and recapture probability are identical to what we observed earlier, using
a ‘normal’ CJS approach to this analysis.

Again, at this point, you might be asking yourself – why bother with a multi-state approach to this
analysis, when we could have just as easily done it (in fact, more easily) using the standard ‘recapture’
analysis? The reason is – if you understand this multi-state approach in this simple case, then it won’t
be too difficult to see how it can be applied to other data types – for example, dead recovery data, our
next example.
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10.4.2. Simple example (2) – dead-recovery analysis as a MS problem

Lebreton, Almeras & Pradel (1999) showed that analysis of dead recoveries can be naturally reframed as
multi-state capture-recapture models with two discrete states (live and dead). When framing recovery
models as multi-state models,death (mortality) is representedby the transition between ‘live’ and ‘dead’,
where the ‘dead’ state is then an ‘absorbing state’ (meaning, entry into the ‘dead’ state is permanent).
The main challenges in implementing them in MARK are to some degree ‘conceptual’, and ‘mechanical’
(in particular, the re-formatting of the .inp file that will be required).

In multi-state models, animals move and are potentially detected (‘encountered’ in the broad sense)
in 1 of N possible states. They are parameterized in terms of an (N ×N) transition matrixΨ, an (N × 1)

vector p of capture probabilities, and a (N × 1) vector S of survival probabilities. This is the (S,Ψ, p)
parametrization. This framework can be used for band-recovery models if one defines 2 discrete states:
newly marked (say, ‘banded’) alive (state B) and newly-dead (state N).

However, for multi-state analysis of dead recovery data, building encounter histories takes a bit of
thought. While marking and live re-encounters occur during discrete, short periods (i.e., at discrete
‘encounter occasions’), dead recoveries occur throughout the interval between discrete live marking/en-
counter occasions. of the interval between two occasions.

Consider the following diagram – dead recoveries occur between discrete sampling occasions (1, 2,
3...).

1 2 3

occasion 1 occasion 2 occasion 3

dead recoveries dead recoveries

Since MS models are used to estimate transition probabilities among discrete states, then we clearly
need to ‘discretize’ time of entry into the ‘newly dead’ state. To do this, individuals recovered between
occasion i and i + 1 will be coded as entering the state ‘newly-dead’ (N) at the discrete occasion i + 1.
For instance, with a study of 4 occasions, the capture history for an animal marked and released alive at
occasion 1 and recovered dead between time 2 and 3 would then be ‘A0N0’. Note that if we were using
standard LDLD coding (chapter 2, chapter 8), then this individual history would be coded ‘10000100’.
And, in fact, this is the first challenge in using a MS approach to analyze dead recovery data in MARK

– you first need to reformat your data such that dead recoveries are coded as entering the new state (in
this case, the newly dead state N) at the end of the interval during which they were recovered. If you
have some ‘programming skills’, this isn’t perhaps too difficult. But, it is necessary.

To give you a sense of what is required, consider the first few lines of a data set (recovery-LDLD.inp)
coded in standard LDLD format: the data consists of 5 occasions of mark and release, and 5 intervals
during which dead recoveries can occur.

1000000000 1649;

1001000000 74;

1000010000 61;

1100000000 134;

1000000001 40;

1000000100 42;
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So, how do we ‘transform’ these LDLD encounter histories to MS format? The first thing we have to
remember is that individuals recovered between occasion i and i + 1 will be coded as entering the
state ‘newly-dead’ (N) at the discrete occasion i + 1. Sounds straightforward, but what about the final
occasion/interval?

In fact, with 5 mark and release occasions, we will need to restructure our MS encounter histories
to have 6 occasions – 5 true mark and release occasions (1 → 5), and one ‘virtual’ occasion (6) which
represents the ‘occasion’ on which the newly dead and recovered during the interval following sampling
occasion 5 are tabulated (as entering the newly dead state N):

1 2 3 4 5 (6)

occasion 1 occasion 2 occasion 3 occasion 4 occasion 5 occasion 6

recoveries recoveries recoveries recoveries recoveries

Once you grasp the basic idea, the next steps needed to re-format the encounter history data are
relatively easy. Take, for example, the LDLD history Take the LDLD encounter history ‘1001000000’. For
this history, there are 5 LD pairs (‘10 01 00 00 00’) – live mark and release at the first sampling occasion,
dead recovery over the second interval, and then never encountered again. How do we transform this
to the MS format?

The key step is to remember that we’re discretizing the interval over which dead recoveries occur,
such that a dead recovery occurring over the interval i → i + 1 is coded as entering the ‘newly dead’
state (N) at i + 1. The trick, then, is to correctly assign evens for a given LD pair to the appropriate single
occasion in the encounter history reformatted for a multi-state analysis.

One way to ‘get events lined up’ with the correct discrete occasion is to re-write the contiguous
encounter history by first separating the initial 1 from the rest of the history – recall that for any history
the first ‘1’ will always represent the newly marked individuals.

So, for example,

‘1001000000’→ ‘1 001000000’.

Next, split the contiguous part of the history into consecutive pairs:

‘1 001000000’→ ‘1 00 10 00 00 00’.

Now, here is the key – each of these ‘pairs’ represent events that occur at a particular discrete occasion,
with the final ‘0’ representing a virtual occasion 6 (to allow for dead recoveries after the final marking
event at occasion 5 – we simply add a ‘0’ to complete the ‘pair’ at occasion 6).

So, the initial ‘1’ is the initial mark and release event at occasion 1, the first pair, ‘00’, refers to events
that will be coded as if they occurred at occasion 2, then the next pair, ‘10’, refers to events that will be
coded as if they occurred at occasion 3, and so on. The basic idea is represented in the following:

‘1’ ‘00’ ‘10’ ‘00’ ‘00’ ‘00’

1 2 3 4 5 (6)

occasion 1 occasion 2 occasion 3 occasion 4 occasion 5 occasion 6
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What next? Well, the initial ‘1’ for any history will always represent the newly marked individuals –
so, we simply change the initial ‘1’ to ‘B’:

‘1 00 10 00 00 00’→ ‘B 00 10 00 00 00’

Next, for a ‘dead recovery’ study, (i) the dead recovery only occurs once, and (ii) there can only be
one event at a given occasion – and, other than the release occasion that event is the transition to ‘newly
dead’ (N).

Thus, a ‘00’ pair indicates ‘no event’ (0), whereas a ‘10’ pair indicates ‘newly dead’ (N), and our
encounter history would be rewritten as

‘B 00 10 00 00 00’→ ‘B 0 N 0 0 0’

which, after removing the spaces, yields

‘B 0 N 0 0 0’→ ‘B0N000’

Let’s try another one: consider the encounter history ‘1100000000’. Here, we have both the ‘live
marking event’ and the ‘dead recovery event’ occur in the same LD pair. But, the key is remembering
that we associate the dead recovery with sampling occasion 2. Thus, the transformation would go

‘1100000000’→ ‘1 10 00 00 00 00’→ ‘B N 0 0 0 0’→ ‘BN0000’

Finally, what about ‘1000000001’? For this history, we have a dead recovery in the final LD pair, of the
5 LD pairs in the history. But, as noted earlier, since a ‘dead recovery event’ over interval i → i + 1 is
associated with occasion i + 1, then we need to add a 6th occasion (even though it didn’t really exist in
our data).

Here, the transformation would go

‘1000000001’→ ‘1 00 00 00 00 10’→ ‘B 0 0 0 0 N’→ ‘B0000N’

So, here (below) are the first few lines of the transformed input file (recovery-MS.inp). Make sure
you see the connection between each of these transformed encounter histories and the same lines for
the corresponding history in LDLD format shown a few pages back:

B00000 1649;

B0N000 74;

B00N00 61;

BN0000 134;

B0000N 40;

B000N0 42;

OK – now that we have our ‘transformed’ data file ready, what next? Well, now we move from a
‘mechanical’ consideration (data formatting) to a ‘conceptual’ one.

Here is the 2-state transition matrixΨ, and the 2-state survival and encounter vectors, S and p:

B N

Ψ =
B

N

[
ψ11 1 − ψ11

0 1

]
S =

B

N

[
1
0

] B N

p =
[
0 r

]
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By fixing the first entry of the S vector to 1, then the elements of the first row ofΨ represent survival
S (element ψ11) and mortality 1− S (element 1−ψ11), respectively. In the second row of the matrix, the
transition from state N→ B is logically fixed to 0, and thus its complement (i.e., the transition from state
N→ N) is by default 1.

Now, a subtle point. In theory, a third state (which we might call ‘permanently dead’) is needed
because an animal can be recovered only once in the N state (i.e., the year it dies). Failing to consider
such a ‘permanently dead’ state would mean that an individual entering the N state could be recovered
forever, which is clearly a logical impossibility. However, because such a ‘permanently dead’ state to
which individuals move immediately after death contributes no information (i.e., it is never encountered
and transitions to this state are all fixed), it can be ignored. We simply need to fix the survival of the
state N to 0 in the S matrix.

Now, we’re ready to proceed with the analysis. First, for purposes of comparison, we’ll start with a
‘classical’ dead recovery analysis of these data, using the Seber parameterization. We’ll fit the default
time-dependent model {Strt} to these data. The model deviance was 5.8316. Parameter estimates are
shown below:

As expected for a fully time-dependent model, the final estimates of S and r are confounded.

Now, let’s fit these data using a MS approach. We have to start a new project in MARK, specifying a
multi-state data type with 2 states (B and N), and 6 occasions. Since we want to estimate survival (and
not mortality), we want to change the default PIM definition so that ψBD is estimated by subtraction.

Next, we need to modify the PIM structure to represent the transition structure for the 3 parameters
in our model. Recall that the model we’re trying to fit is {Strt}.

B N

Ψ =
B

N

[
ψ11 1 − ψ11

0 1

]
S =

B

N

[
1
0

] B N

p =
[
0 r

]

The multi-state PIM structure for this model (given these transitions) is shown at the top of the next
page. As a check,notice that the PIM structure has only 2 time-dependent parameters (ψBB, representing
survival, and pN , represent the recovery probability r) – all the other parameters are fixed constants.
This makes sense, since the model we’re trying to fit {Strt} clearly has only two parameters, both time-
dependent.
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Before running the model, we need to fix some parameters. From the transition structures on the
preceding page, we see that we fix survival for the newly banded individuals in state B (i.e., parameter
1) to 1, and the survival for newly dead individual in state N (i.e., parameter 2) to 0. Clearly, the encounter
probability for the newly banded individuals (i.e., parameter 3) is fixed to 0. Finally, the probability of
moving from state N to B (i.e., from dead to live; parameter 14) is fixed to 0. After fixing the parameters,
we run the model. Model deviance is reported as 5.8316, which is identical to the deviance reported for
the same model using the classical dead recovery analysis.

The parameter estimates from the MS analysis are shown below:

If you compare these estimates to those from the classical dead recovery analysis (on the preceding
page), you’ll see they are identical (at least for the non-confounded parameters).

Pretty slick, eh? We’ll leave it to you to figure out how to extend this approach to a joint live encounter-
dead recovery analysis (see Lebreton et al. 1999 and Lebreton & Pradel 2002∗ for details).

∗ Lebreton, J-D., Pradel, R. (2001) Multi-state recapture models: modelling incomplete individual histories. Journal of Applied
Statistics, 29, 353-369.
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10.4.3. A more complex example – recruitment probability

To really make the flexibility of this approach clear, we’ll now look at an example related to the earlier
question concerning different breeding states (breeding,and non-breeding),but with a twist – here we’re
going to look at recruitment, which we’ll define as the probability of moving between a non-breeder to
a first time breeder. Now, unlike the analysis of breeding state we presented earlier in the chapter, but
analogous to the multi-state approach to recapture analysis we just completed, we’re interested here
in a ‘permanent’ state transition. In the recapture analysis, we were interested in the transition from
‘live’ to ‘dead’. The various constraints we imposed during the numerical estimation reflect the fact that
the transition is permanent (once dead, always dead). Here in this example, we’re also considering a
permanent state transition – from ‘non-breeder’, defined as a bird which has never bred, to a ‘breeder’,
or (perhaps more accurately, a ‘recruit’) – an individual which has become a breeder (i.e., has bred at
least once). Now, once an individual is a breeder, it is always a breeder. It may not breed in every year
following first breeding, but it is always a breeder.

This question, and various approaches to estimation of the probability of making this transition from
non-breeder to recruit, have been discussed at length by Pradel & Lebreton (Bird Study 46: S74-81), and
references therein. Our purpose here is merely to point out again how the multi-state approach can be
used to deal with situations where there is a non-observable state. What is the non-observable state?
In this case, it is the non-breeding (pre-recruitment) state (which we’ll call NB). In many species, only
breeding individuals are encountered. Thus, we need to separate the effects of being a NB individual
(for which p � 0) from death. The multi-state approach is one way to tackle this problem.

Consider the following situation (as described by Pradel and Lebreton). The probability of making
the permanent transition from non-breeding to breeding (i.e., the probability of recruiting) is governed
by the parameter a. Formally, let ai be the probability that an as yet inexperienced individual of age i

starts to breed at that age. An individual is marked as a newborn, and then each year, you go out to look
for that individual. If you encounter the individual, then it has both survived, and recruited. If you don’t
encounter the individual, it is either because it hasn’t survived,or that it hasn’t recruited (and isthus non-
observable). Take the encounter history ‘2011’, where ‘2’ denotes the birth date (time of initial marking),
and ‘1’ denotes ‘breeding’ or ‘recruited’. Assume there are only 2 age-specific survival probabilities (ϕ j

and ϕa), a constant recapture probability p, and age-specific probabilities of recruitment (a1, a2 and a3).
Thus, the associated probability of this encounter history is ϕ j[(1 − a1)a2 + a1(1 − p)]ϕa p.ϕa p..

Pradel and Lebreton then simulated a data set, setting ϕ j � 0.4, ϕa � 0.8, p � 0.5. They assumed
that survival did not differ among pre-recruits (non-breeders) and recruits. For age-specific recruitment
probabilities, they used a1 � 0.2, a2 � 0.375, and a3 � 1.0.

Simulating the encounter histories for a single cohort of 5,000 individuals, they arrived at the
following histories:

history frequency history frequency

2111 32 2011 128
2110 48 2010 192
2101 32 2001 448
2100 88 2000 4,032

Let’s analyze these data using MARK. The transition matrices governing these data are:

[
1 − ai 0

ai 1

] [
ϕi

ϕi

] [
0

pi

]
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The procedure for analyzing these data using MARK is mechanically similar to what we just did
when using the multi-state approach to analyze live recapture data. The only difference in this case is
that we have to impose different constraints. The challenge is to determine constraints to impose, and
whether or not they make ‘biological’ sense (as opposed to constraints that are needed out of structural
necessity to make one or more parameters identifiable).

We ‘know’ from the simulated data that recapture probability is constant, so we’ll modify the PIM
chart to reflect this. We also know that the probability of capturing a non-breeding pre-recruit is 0, so
we set recapture probability for non-breeders to be a constant (we’ll fix it to 0 just before the numerical
estimation run). We also know the probability of moving from breeder to non-breeder is 0, so we will set
that parameter to be 0 before the numerical estimation. Finally, the ‘a’ parameter we’re really interested
in – this corresponds to the probability of moving from non-breeder to breeder. We ‘believe’ that
this is likely to be age-specific, so we use a simple time-specific parameterizations for this probability
(remember, ‘age = time within cohort’, and here, we’re dealing with a single cohort).

Here is the resulting PIM chart:

and the corresponding DM:
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We proceed to run the numerical estimation, first fixing the recapture probability for non-breeders
(parameter 8 in the PIM chart) to 0, and the probability of moving from breeder back to non-breeder
(parameter 9 in the PIM chart) to 0.

So far, so good – but what about the probability of moving from non-breeder to breeder (parameter
a)? It might seem a priori there is no need to fix any of this parameters – after all, these are the parameters
we’re interested in estimating in the first place. Anything we need to do with the survival parameters?
Perhaps nothing obvious.

However, once we run this model, and look at the estimates (below), we see quickly that fixing only
parameters 8 and 9 as described leads to all sorts of problems:

Although numerical convergence is reached, the estimates for virtually all of the parameters are
clearly wrong – anything estimated with a standard error of 0 or a 95% CI from 0→ 1 is clearly wrong
(even with simulated data!).

Nonetheless, note that the estimates themselves ‘seem’ to approximate the ‘true’ values used in the
simulation rather well, except for ϕ j , and the final recruitment probability a3. This sort of thing often
implies that one (or more) parameters are not identifiable under the given set of constraints – either
because the constraints are incorrect, or because you haven’t constrained enough parameters. In this
case, it turns out that the latter is the cause of the problems here.∗

What other constraint(s) do we need? Well, as it turns out, we need to impose 2 further constraints.
First, consider the survival parameter. How can we estimate the survival probability of individuals we
don’t see (i.e., the pre-breeders)? The answer is – we can’t. We need to apply a constraint, wherein we
need to assume that survival of pre-breeders and breeders is the same for a given interval. We can do
that simply by deleting the ‘state’ and ‘state.time’ interaction columns from the design matrix.

In addition, we also need to assume that there is some age (in this example, age 3) by which all
individuals in the population that are still alive will have recruited (in other words, this involves setting
ψN→B

3 � 1, by fixing parameter 12 to 1.0 in the numerical estimation). [ Note, in fact, that the data were
simulated assuming a3 � 1.0 in the first place.] This second assumption is explained in detail in the
Pradel & Lebreton paper.

∗ The identification of parameters that are not estimable given the structure of the model is discussed in Appendix F.
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If we re-run the analysis, fixing parameter 8 and parameter 9 to 0, and also fixing parameter 12 to 1,
we see that our estimates (shown below) are now ‘correct’.

Now, clearly, the key step was assuming that there was an age after which all individuals were
recruited, conditional on still being alive. This is a strong assumption, and one that makes application of
this approach somewhat problematic – see Pradel & Lebreton for a full discussion. However, the point
here is to demonstrate the methodology, and not to provide a full treatment of this complex problem.
As noted by Pradel & Lebreton, the multi-state approach may have utility for this particular analysis,
given some assumptions. But, more importantly, we again see how useful the multi-state approach can
be in dealing with states which are not observable.

begin sidebar

Estimation problems: local minima – approaches and solutions

In the preceding example, our estimates were ‘wonky’ (nonsensical) until we applied the appropriate

and necessary logical constraints to the model. However, this is not always the case. Sometimes, multi-

state models have ‘problems’ converging to global maxima. In fact, the multi-state model can display

some heinous behavior when there are > 2 states, most notably multiple optima in the likelihood

function (Lebreton & Pradel 2002). That is, depending on the starting values used to maximize the

likelihood function, the solution can vary. Most of the models we have explored so far have a single

maximum, and so this behavior is not encountered.

There are several approaches to handling these sort of problems, which we describe here. First, for

multi-state models in particular, it is not a bad idea to first build a simple, time-constant ‘dot’ model

containing all the factors of interest. We will use this model to generate ‘good starting values’ for the

the more general model. Note that previously, we advocated first building the most general model in

your candidate model set, for which you will then estimate ĉ (see chapter 5). In general, this works

fine. But for multi-state models in particular, and other data types where you might be having some

‘numerical estimation problems’ for your general model, using starting values from a simpler model

often helps you avoid some problems.

In some cases, though, even very simple models will have problems. A second approach then is to

make use of a different link function. In some cases, a different link function may do a ’better job’ at

navigating what might be a multi-modal likelihood surface than another. In fact, if you find fitting a

given model to a data set using different link functions yields very different model deviances, then

this is a reasonable indicator that you might be having problems finding the global minima with some

link functions.

Finally, you might try using an alternative optimization procedure available in MARK. This

procedure, based on simulated annealing, is selected by clicking the ‘alternate optimization’ check-
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box on the right-hand side of the ‘run numerical estimation’ window. Simulated annealing (Goffe

et al. 1994) is less computationally efficient than the default optimization algorithm in finding the

maximum of the function, typically requiring many more evaluations of the likelihood to reach a

solution. However, the reason for this ‘inefficiency’ is why simulated annealing is provided in MARK;

periodically, the simulated annealing algorithm makes a random jump to a new parameter value, and

this characteristic is what allows the algorithm more flexibility in finding the global maximum (instead

of getting stuck at a local maximum).

We will demonstrate the various approaches to handling ‘estimation problems’ using an example

multi-state data set with a known local minimum: 2 states (1 and 2), 7 occasions (this example was

extracted from an example from Jerome Dupuis,used in a recent paper by Gimenez et al. 2005 – JABES).

Here are the encounter histories:

2021202 4; 1110101 4;

2020201 4; 1010101 4;

2020202 4; 1010102 4;

2201021 4; 2102011 4;

The true parameter values are S � 1.0 (constant over time, and the same for both states), p � 0.6

(constant over time, and the same for both states), ψ12
� 0.60 (constant over time), and ψ21

� 0.85

(constant over time). If you fit model {S.p.ψs} (which is the true model) to the data in MARK, using

the default numerical optimization routine with a sin link, we get the following estimates. We see

clearly that MARK has had some problems coming up with estimates for ψ̂s that are even remotely

close to the true values.

What has happened? Well, take a look at the likelihood profile for values of ψ21 from 0.2 → 1.0,

shown below:
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We see from the likelihood profile that there are in fact two local minima: one at approximately

0.35, and another at approximately 0.85. Now, look back at our estimate for ψ21 generated using the

default numerical optimization routine – we see that ψ̂21
� 0.342, which is roughly where the first

local (non-global) minima occurs. In this case, it was a case of ’bad luck’ that MARK converged to this

local minima – the bad luck owing to the starting values MARK defaults to.

If we use a starting value of 0.85 for ψ21 , and try again, we see that now MARK ‘correctly’ gives us

the ‘right’ parameter estimates:

Of course, in practice, we won’t be able to ’cheat’ by using starting values close to the true values –

since we won’t know what the true parameter values are (obviously)!

Moreover, for this particular problem, it turns out the estimates are also strongly influenced by the

choice of the link function. In the preceding, we used the default sin link. What happens if instead

we’d selected the logit link? In fact, for these example data, parameter estimates using the logit link

(below) are very close to the true parameter values under which they data were simulated.

So, estimates for MS models may depend on choices of starting values, and link functions. This is

clearly disconcerting. What can we do?

Well, if you’re willing to get your computer to do a bit of work for you, you can either (i) try a variety

of different starting values and/or link functions, and see if there is convergence in your answers, or

(ii) make use of the alternate optimization capability in MARK – based on simulated annealing. Recall

that, the simulated annealing algorithm makes a periodic ‘random jump’ to a new parameter value

(i.e., jumps to a different part of the likelihood surface). It is this characteristic that allows the annealing

algorithm to be more likely to find the global maximum instead of a local maximum.

For our example, when we run the simulated annealing algorithm, we see that MARK gives us the

correct estimates – even using the default starting values:

However,as noted earlier, simulated annealing is typically much slower than the standard numerical

optimization routine MARK uses. But, if you have a strong suspicion that one or more of your
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parameter estimates are at the boundary, then there is some chance you might have a local minima

(or several, especially if you have > 2 states), and simulated annealing might be your best option.

Is there any way you ‘predict’ when you might have such local minima? Unfortunately, there is no

known simple diagnostic you can apply a priori (although there does seem to be some evidence that

such local minima are more likely to occur for time-dependent models with > 2 states).

However, by making using of a numerically intensive approach known as Markov chain Monte Carlo

(MCMC), we can evaluate the posterior distribution to determine whether or not there may be local

minima in the likelihood for a given parameter (if the notion of MCMC, and posterior distributions,

are new to you, no need to worry – these are covered in detail in Appendix E). Here, we will simply

demonstrate the mechanics of using MCMC in MARK, using the preceding example where we have

already determined there to be local minima in the likelihood.

To use MCMC estimation in MARK you first need to check the ’MCMC Estimation’ check-box in the

’numerical estimation run’ window:

Once you’ve clicked ‘OK to run’ , you’ll be prompted to specify the MCMC parameters:
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For the moment, we’ll simply accept the defaults (the details of the various MCMC parameters

will be covered in the pending appendix) – these are usually sufficient to give us ‘a reasonable’ look

at the posterior, from which we can often determine the presence of local minima in the likelihood

for a given parameter. Note that the default file where the MCMC samples will be stored is the file

MCMC.BIN (we need these samples to construct the posterior). The MCMC.BIN file is created in whatever

directory contains, the .INP, .DBF, and .FPT files associated with the data set you’re working with.

Once you click the ’OK’ button, MARK will spawn a numerical estimation window – you can

‘watch’ as MARK iterates through the MCMC samples (where the number of iterations is equal to

the number of burn in samples (1,000, by default), plus the number of ‘tuning’ samples (4,000, by

default), plus the number of post-burn and post-tuning samples (10,000, by default) – so, accepting

the default parameters, 15,000 total samples (iterations of the Markov chain).

Once MARK has finished, it will spawn a window showing various summary statistics calculated

from the posterior distribution for each of your parameters. These summary statistics are presented

for both the parameter estimates on the transformed scale (note: for MCMC estimation in MARK, the

default settings for the priors assume you’re using the logit link. If you change to another link function,

you’ll probably want to modify the priors as well), followed by the same summary statistics for the

parameters transformed back to the real probability scale. The summary statistics for the 4 parameters

for our example problem are shown at the top of the next page.

Of particular interest are the mean, median and modes of the posterior distributions, and the 2.5th

and 97.5th percentiles of the posterior (from which we derive the 95% ‘credibility interval’ for our

various parameters). Look closely at the mean, mode, and median statistics for the various parameters.

Start with the encounter parameter p (we ignore survival S, here, since it was fixed to 1.0). Note that

for p, the mean, median and mode are all very close to each other.

However, this is obviously not the case for parameters ψ12 and ψ21. For ψ12, for example, the mean

is 0.535, the median is 0.572, and the mode is 0.600. Similarly, for ψ21, the mean is 0.737, the median is

0.803, and the mode is 0.834. Recall that the ‘true’ parameter values were ψ12
� 0.60, and ψ21

� 0.85.

Clearly, both the mean and median are not particularly robust estimators of either parameter – in both

cases, the mode is the better statistic.∗

What do these differences among mean, median and mode suggest? Well, simplistically, they ‘hint’

∗ But we know this only because here we know the true parameter values. In fact, what we’ve just demonstrated is that MCMC
is not necessarily a solution to in deriving point parameter estimates.
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at the possibility there may be ‘problems’ with the likelihood – specifically, multiple local minima. We

can confirm our suspicion by considering two different ‘plots’ derived from the MCMC samples. First,

consider a frequency histogram plotting the frequency (expressed as a percentage of the total) with

which a particular parameter value was ‘visited’ during the iteration of the Markov chain.

Here is the frequency histogram for the posterior chain for ψ12 (note: for a variety of reasons, the

chain was ‘thinned’ by extracting every tenth value, prior to deriving the frequency histograms. This

is commonly done to minimize the effects of serial autocorrelation in the Markov chains, although

there is some debate as to whether or not this is really necessary).

Here is the equivalent histogram for ψ21:

We see clearly that the posterior distributions for both ψ12 and ψ21 are bimodal. These plots help

us understand why MARK converged on the local minimum. For example, note that the smaller, left-

hand modal point for ψ21 occurs at approximately 0.34-0.35, which is roughly what MARK reported
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(incorrectly) as the MLE for this parameter. The default starting value used by MARK (0.5) was closer

to this local minimum than the global minimum for ψ21 (which occurs at 0.85). The same explanation

holds for ψ12 as well. So, multi-modal frequency distributions of ‘visits by the Markov chain’ to parts

of the parameter space indicates local minima,which MARK may (or may not) converge to (depending

on the relative proximity of the starting value to a local minima).

We can also find evidence for local minima by examining the time-series of iterations of the Markov

chain. Here is a plot of part of the time-series (first 5,000 iterations after burn-in and tuning) for ψ12 :

We see clearly that the chain periodically ‘jumps’ to a region of the parameter space between 0.1 and

0.4, corresponding to the smaller, left-hand mode shown on the frequency histogram on the preceding

page for ψ12.

Contrast this Markov chain with that generated for parameter p
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For p, we see that the Markov chain is very ‘tight’ – indicating that the parameter will be estimated

with good precision. In fact, the profile likelihood CI for p, estimated using the simulated annealing

approach to estimating the likelihood,shows the 95% CI for p to be [0.513, −0.652],which is remarkably

close to the MCMC-based 95% ‘credibility interval’, [0.511, −0.648].

From the preceding, we can draw several conclusions:

1. > 1 minima in the likelihood for a given parameter are possible for multi-state models,

especially for fully time-dependent models where there are numerous states. This can

cause problems, if MARK converges on one of these local minima (thus yielding the

‘wrong’ estimate for that parameter). MARK will give you no warning when this occurs.

2. you can often test for the possibility of local minima by examining the posterior distri-

bution for a given parameter, generated using the Markov Chain Monte Carlo (MCMC)

option in MARK. Doing so for the various parameters in your general model may be

a good first step prior to fitting other models. But, be warned – MCMC estimation on

all of the parameters of a ‘large’ general model (i.e., time-dependence, many states) can

take a long time. Moreover, there are a number of options in using the MCMC estimation

routines in MARK that you may have to ‘tweak’ in the process (these will be described

in the pending appendix on MCMC estimation in MARK), adding to the overall time it

might take to fully explore the posterior distributions for various parameters.

3. an alternative approach is to either (i) try various different starting values – if they all result

in convergence to the same parameter values, then you may be fortunate and not have local

minima to concern yourself with. Or, alternatively, you could (ii) use the optimization

routines based on simulated annealing, which are very likely to converge – eventually –

to the true local minima. Again – we emphasize the word ‘eventually’, since simulated

annealing can take a long time to converge.

end sidebar

10.5. GOF testing and multi-state models

What about GOF (goodness of fit)? By now, you should realize that one of the first steps in any analysis
is assessing the fit of the most general model in your candidate model set to the data (introduced in
Chapter 5). As part of this process, we make an estimate of ĉ (a measure of the lack of fit of the model
to the data), and use this ĉ to ‘adjust’ the criterion we use for model selection. Here, we will describe 2
approaches to GOF testing for multi-state models.

10.5.1. Program U-CARE and GOF for time-dependent multi-state models

A few years ago, Roger Pradel and colleagues have described a method for assessing the fit of a fully
time-dependent MS model to data:

Pradel, R., C. M. A. Wintrebert & O. Gimenez. (2003) A proposal for a goodness-of-fit test to
the Arnason-Schwarz multi-site capture-recapture model. Biometrics, 59, 43-53.

Although the specific details are somewhat complex, the rationale for the tests proposed by Pradel
and colleagues are very similar to those underlying program RELEASE, as applied to ‘normal’ CJS data:
the proposed tests essentially consider the fates of individuals seen before, or not, and whether (and
when) they are seen again – but, in this case, conditional on the state in which they were previously
observed. The GOF test proposed by Pradel et al. is relevant for what they refer to as the ‘Arnason-
Schwarz’ (AS) model (the AS model is in fact what we’ve been discussing in this chapter). To test the
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GOF of the AS model to multi-state data, Pradel et al. first describe a fully efficient goodness of fit test to
what they refer to as a ‘Jolly Move’ model (JMV). Any fully efficient GOF test is based on the property
that all animals present at any given time behave in the same way. This is the basic point underlying
RELEASE: in Test 3,we test the assumption of ‘equivalent behaviors’ whatever theirpast capture history,
while in Test 2, we test the ’equivalence’ assumption whether they are currently captured or not. The
same logic underlies the GOF test for the JMV model.

What is this JMV model, and how does it relate to the AS model? The JMV model (Brownie et al. 1993)
differs from the typical AS model in that it permits the capture probability for time (i+1) to depend on
the state at periods (i) and (i+1) (whereas the AS model permits the encounter probability to depend
only on current state, and time). Thus, the AS model is in fact a special (reduced) case of the more
general JMV model. As with program RELEASE, a fully efficient GOF test for the JMV model is based
on the property that all animals present at any given time on the same site behave the same.

Pradel et al. introduce 2 general tests of this multi-state ‘equivalence’ assumption: Test 3G, which
assumes ‘behavioral equivalence’ of individuals released together regardless of their past capture
history, and Test M, which tests ‘equivalence’ among those individuals that are eventually recaptured
(on a subsequent occasion) conditional on whether or not they are encountered at the present occasion.
(There are also 2 possible subcomponents for testing for transience, and memory models, but we will
not discuss those here). See Pradel et al. for full details – for now, we’ll focus on the basic ideas, and the
mechanics

The first step in the GOF test proposed by Pradel et al. is to assess the fit of the fully time-dependent
JMV model to the data. In many cases, the JMV model is unlikely to show significantly greater fit to
the data than the AS model (since the dependence of the capture probability at time (i+1) to depend on
both (i) and (i+1) is unlikely to be observed in practice very often). As such, the GOF test for the JMV
model may by a generally valid test of fit for the AS model as well. Here’s how you implement a GOF
test to the general JMV model. First, you need a recent build of the program U-CARE (first described
in Chapter 5). Then, you might need to modify your MARK input file – slightly. The only thing you
need to do is make sure that all of your ‘state coding’ is numeric (e.g., if you use ‘B’ and ‘N’ in your input
file, for example, you’ll need to change them to numbers, say 1 for ‘N’, and 2 for ‘B’...U-CARE cannot
currently handle letters for state coding in the input file).

We’ll demonstrate the use of U-CARE for multi-state GOF testing using simulated data (MS_GOF.INP).
These data, consisting of 2 states, 8 occasions, were simulated under the true model {Sg+tpg+tψg} – so
additive time variation between the two states for survival, and encounter probability, but constant
state differences in transition probability over time. We start U-CARE, and read in the input file. U-

CARE will ask you to confirm a few things about the file (e.g., presence or absence of covariates).
Once you’ve answered those questions, all you need to do is pull down the ‘Goodness-of-Fit for
Multi-state’ menu, and select ‘Sum of multi-site tests’. Selecting this option will cause U-CARE

to fit the component tests (3G and M) and the JMV to the data. Once finished, U-CARE will spawn
another window, giving the results of the various tests.
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We see that U-CARE reports the 2 individual component tests (3G and M). For these simulated data,
U-CARE reports that both tests are accepted (Test 3G: χ2

� 33.464, df=25, P � 0.120, Test M: χ2
� 5.838,

df=10, P � 0.829).

The next line is the key. It reports the overall test of the JMV model to the data (basically, the sum of
the 2 component tests 3G and M). In this case, U-CARE reports that the χ2

� 50.252, with df=50. The
P-value is 0.463. Thus, our estimate of ĉ would be 50.252/50 � 1.00, which is very close to 1.0.

10.5.2. MS models and the median ĉ test

What about the median ĉ test introduced in Chapter 5 – can it be used for MS data? Yes, although
there is limited experience with it to date. For purposes of comparison with the results from U-CARE,
start MARK, and run the fully time-dependent model on these same, simulated data. Then, run the
median ĉ test – since we know these data are simulated under a reduced parameter AS model, we’ll
save ourselves some time and use lower bound of 1.0, and an upper bound of 2.5 for our analysis (if
you don’t remember the details of the median ĉ GOF test, go back and look at Chapter 5). We’ll use 5
design points, with 10 replicates at each point. Using these values, MARK reported an estimate of ĉ of
0.99, which is effectively 1.0. Again, although there is little experience to date with the median ĉ and
GOF testing of MS models, preliminary results look promising. For the moment, we suggest using U-

CARE for GOF testing, especially if your general model is the fully time-dependent model. For reduced
parameter general models, it is probably worth trying the median ĉ approach.

However, be advised that running a median-ĉ test for multi-state models with a large number of
occasions, and states, can take a lot of computer time (especially if you decide to use the simulated
annealing algorithm – as described earlier in this chapter). For fully time-dependent models, U-CARE

is muchfaster. However, if yourmostgeneralmodelwhichadequately fits the data is not time-dependent,
then your only real option is to run the median-ĉ GOF test. The good news (relatively speaking) is that
you need only assess GOF for the most general model in your candidate model set – so you need only
to go to the trouble once.

10.6. multi-state models & unequal time intervals

Various data types in MARK have state transitions – clearly, the multi-state data type that is presented
in this chapter, but they also arise in robust designs (Chapter 15), Barker models (Chapter 9), and multi-
season occupancy models. Any data type with state transitions suffers from the same problem when
the intervals between occasions are unequal (how MARK handles unequal intervals in general was
introduced earlier in Chapter 4).

To illustrate the issue, consider the case where an encounter occasion is missing in the multi-state
data type. Consider the following valid MARK 5-occasion multi-state encounter history ‘A.A00’, where
the missing occasion is shown as a ‘dot’ and there are 2 states, A and B, and occasions are all 1 time unit
apart. To explain this ‘dot’, several possibilities exist, namely:

SA
1 ψ

AA
1

(

1 − pA
2

)

SA
2 ψ

AA
1 pA

3 . . . and SA
1 ψ

AB
1

(

1 − pB
2

)

SB
2 ψ

BA
2 pA

3 . . .

However, suppose that you coded the data with the ‘dot’ left out, and set the time intervals to 2,
1, and 1. That is, only 4 occasions are considered instead of 5. So the encounter history is now ‘AA00’.
Unfortunately, this approach is going to give very different results from the proper parametrization
above. MARK does not generate the probabilities for the transition to state Bwith this parametrization.
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The probability of surviving from occasion 1 to occasion 2 would now be
(

SS
1

)2, with no consideration
that the animal could have moved to state B during the missing occasion. So, even the survival estimates
S will be incorrect. The ψ parameters for the first interval are not comparable to the ψ parameters for
the second and third intervals because they represent different time scales.

Internally, within MARK, the time interval correction on S remains, but all time interval corrections
from ψ have been removed. The motivating logic is that when time intervals are ‘ragged’, e.g., 1.1, 0.9,
1.05, 0.95, it may still make sense to apply a correction to S. However, this correction is inappropriate
for ψ, and may even be questionable for S. So, ‘user beware’!

10.7. Summary

That is the end of Chapter 10. We have considerably expanded the range of ‘underlying’ models we can
fit to mark-recapture data – in particular, we’ve added a ‘movement’ parameter. We have also seen how
to apply constraints to these models as easily as we did with CJS models. In fact, we’ve seen how we
can apply movement models to other data types (live encounters, dead recoveries...), which highlights
one of the singular strengths of MS models – the ability to combine sources of information in a natural
and relatively intuitive framework.
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CHAPTER 11

Individual covariates

In many of the analyses we’ve looked at so far in this book, we’ve partitioned variation in one or
more parameters among different levels of what are commonly referred to as ‘classification’ factors.
For example, comparing survival probabilities between male and female individuals (where ‘sex’ is
the classification factor), good and poor breeding colonies (where ‘colony’ is the classification factor),
among age-classes, and so on.

However, in many cases, there may be one or more factors which you might think are important
determinants of variation among parameters which do not have natural ‘classification’ levels. For
example, consider body size. It is often hypothesized that survival of individuals may be significantly
influenced by individual differences in body size. While it is possible to take individuals and classify
them as ‘large’, ‘medium’ or ‘small’ (based on some criterion), such classifications are artificial, and
arbitrary. For a continuous covariate such as body size, there are an infinite number of possible
classification levels you might create. And, your results may depend upon how many classification
levels for body size (or some other continuous factor) you use, and exactly where these levels fall.

As such, it would be preferable to be able to use the real, continuous values for body size (for example)
in your analysis – each individual in the data set has a particular body size, so you want to constrain
the estimates of the various parameters in your model to be linear functions of one or more continuous
individual covariates. The use of the word ‘covariate’ might tweak some memory cells – think ‘analysis
of covariance’ (ANCOVA), which looks at the influence of one or more continuous covariates on some
response variable, conditional on one or more classification variables. For example, suppose you have
measured the resting pulse rate for male and female children in a given classroom. You believe that
pulse rate is influenced by the sex of the individual, and their body weight. So, you might set up a linear
model where SEX is entered as a classification variable (with 2 levels: male and female), and WEIGHT is
entered as a continuous linear covariate. You might also include an interaction term between SEX and
WEIGHT.

In analysis of data from marked individuals, you essentially do much the same thing. Of course,
there are a couple of ‘extra steps’ in the process, but essentially, you use the same mechanics for model
building and model selection we’ve already considered elsewhere in the book. The major differences
concern: data formatting, modifying the design matrix, and reconstituting parameter estimates. We will
introduce the basic ideas with a series of worked examples.

Before we begin, though, it is important that you fully understand the semantic and functional
distinction between an ‘individual covariate’ (a covariate that applies to that individual; e.g., body size at
birth), and an ‘environmental’ or ‘group’ covariate (a covariate which applies to all individuals encountered
at a particular casion or over a particular interval; e.g., weather).
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11.1. ML estimation and individual covariates

Conceptually, the idea behind modeling survival or recapture (or any other parameter) as a function of
an individual covariate isn’t particularly difficult. It stems from the realization that it is possible to write
the likelihood as a product of individual ’contributions’ to the overall likelihood. Consider the following
example. Suppose you have 8 individuals, which you mark and release. You go out next year, and find
3 of them alive (we’ll ignore issues of encounter probability and so forth for the moment). We know
from Chapter 1 that the MLE for the estimate of survival probability S is simply (3/8) � 0.375. More
formally, the (binomial) likelihood of observing 3 survivors out of 8 individuals marked and released
is given as (where Y � 3, and N � 8):

L
(

S �� data
)

�

(

N

Y

)

SY
(1 − S)

N−Y

Or, dropping the binomial probability term (which is a constant, and not a function of the parameter
– see Chapter 1):

L
(

S �� data
)

∝ SY
(1 − S)

N−Y

If we let Q � (1 − S), then we could re-write this likelihood as

L
(

S �� data
)

∝ SYQN−Y
� S3Q5

We could rewrite this likelihood expression as

L
(

S �� data
)

∝ S3Q5
� (S.S.S).(Q.Q.Q.Q.Q) �

3∏

i�1

Si

8∏

i�4

Qi

Alternatively, we might define a variable a, which we use to indicate whether or not the animal is
found alive (a � 1) or dead (a � 0). Thus, we could write the likelihood for the ith individual as

L
(

S �� N, {a1 , a2 , . . . , a8}
)

∝
8∏

i�1

Sai Q (1−ai)

Try it and confirm this is correct. Let S = the MLE = 0.375. Then, (0.375)
3
(1−0.375)

5
� 0.00503,which

is equivalent to

(0.375)
1
(0.625)

(1−1)
(0.375)

1
(0.625)

(1−1)
(0.375)

1
(0.625)

(1−1)

×(0.375)
0
(0.625)

(1−0)
(0.375)

0
(0.625)

(1−0)
(0.375)

0
(0.625)

(1−0)
(0.375)

0
(0.625)

(1−0)
(0.375)

0
(0.625)

(1−0)

� (0.05273) × (0.09537)

� 0.00503

In each of these 3 forms of the likelihood the individual ‘fate’ has its own probability term (and
the likelihood is simply the product of these individual probabilities). Written in this way there is
a straightforward and perhaps somewhat obvious way to introduce individual covariates into the
likelihood. All we need to do to model the survival probability of the individuals is to express the
survival probability of each individual Si as some function of an individual covariate Xi.

Chapter 11. Individual covariates



11.2. Example 1 – normalizing selection on body weight 11 - 3

For example, we could use

Si �
eβ1+β2 (Xi )

1 + e(β1+β2 (Xi ))

(

�
1

1 + e−(β1+β2(Xi ))

)

with logit link function

ln

(
Si

1 − Si

)

� β1 + β2(Xi )

Then, we simply substitute this expression for Si into

L
(

S �� N, {a1 , a2 , . . . , a8}
)

∝
8∏

i�1

Sai Q (1−ai)

Written this way, the MLE’s for the β1 and β2 (intercept and slope, respectively) become the focus of
the estimation.

Pretty slick, eh? Well, it is, with one caveat. The likelihood expression gets ‘really ugly’ to write down.
It becomes a very long, cumbersome expression (which fortunately MARK handles for us), and because
of the way it is constructed,numerically deriving the estimates takes somewhat longer than it does when
the likelihood is not constructed from individuals. Also, there are a couple of things to keep in mind.
First, it is important to realize that the survival probabilities are replaced by a logistic submodel of the
individual covariate(s). Conceptually, then, every animal i has its own survival probability, and this may
be related to the covariate. During the analysis, the covariate of the ith animal must correspond to the
survival probability of that animal. MARK handles this, and it is this sort of ‘book-keeping’ that slows
down the estimation (relative to analyses that don’t include individual covariates).

OK – enough background. Let’s look at some examples, and how you handle individual covariates
in MARK.

11.2. Example 1 – normalizing selection on body weight

Consider the following example. You believe that the survivalprobability of some smallbird is a function
of the mass of the bird at the time it was marked. However, you believe that there might be normalizing
selection on body mass, such that there is a penalty for being either ‘too light’ or ‘too heavy’, relative to
some ‘optimal’ body mass.

Now, a key assumption – we’re going to assume that survival probability for each individual bird
is potentially influenced by the mass of the bird at the time it was first marked and released. Now,
you might be saying to yourself ‘hmmm, but body mass is likely to change from year to year?’. True –
and this is an important point to keep in mind – we assume that the individual covariate (in this case,
body mass) is fixed over the lifetime of the individual bird. We will consider using ‘temporally variable
covariates’ later on. For now, we will assume that the mass of the bird when it is marked and released
is the important factor.

We simulated some capture-recapture data, according to the following function relating survival
probability (ϕ) to body mass (mass), according to the following equation:

ϕ � −0.039 + 0.0107(mass) − 0.000045(mass
2
)
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To help visualize how survival varies as a function of body mass, based on this equation, consider
the following figure:
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We see that survival first rises with increasing body mass, then eventually declines – this represents
‘normalizing’ selection, since survival is ‘maximized’ for birds that are neither too heavy nor too light
(right about now, some of the hard core evolutionary ecologists among you may be rolling your eyes,
but it is a reasonable simplification. . .).

We simulated data for 8 occasions, 500 newly marked birds per release cohort (i.e., per year). We
also made our life simple (for this example) by assuming that survival probability does not vary as a
function of time, only body mass. We set recapture probability to be 0.7 for all birds, whereas survival
probability was set as a function of a randomly generated body mass (with mean of 110 mass units).
We’ll deal with the complications of time-variation in a later example.

Here is a ‘piece’ of the simulated data set (contained in indcov1.inp):

11111111 1 120.71 14570.24;

11111110 1 86.26 7440.76;

11111110 1 118.23 13978.42;

11111110 1 72.98 5325.47;

11111110 1 101.52 10305.69;

Several things to note. First, and perhaps obviously, in order to use individual covariate data, you
must include the encounter history for each individual in the data file – you can’t summarize your data
by calculating the frequency of each encounter history as you may have done earlier (see Chapter 2 for
the basic concepts if you’re unsure). Each line of the .INP file contains an individual encounter history.
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The encounter history is followed immediately by a single digit ‘1’, to indicate that the frequency of this
individual history is 1 (or, that each line of data in the .inp file corresponds to 1 individual).

What about the next 2 columns? Consider the following line from the data file:

11111111 1 120.71 14570.24;

The values 120.71 and 14,570.24 refer to the mass of this individual bird (i.e.,mass in the equation),and
the square of the mass (i.e., mass2 in the equation � 14,570.24 � (120.71)

2). Now, in this example, we’ve
‘hard-coded’ the value of the square of body mass right in the .INP file. While this may, on occasion, be
convenient, we’ll see later on that there are situations where you don’t want to do this, where it will be
preferable to let MARK ‘handle the calculation of the covariate functions (squaring mass, in this case)
for you’.

So, for each bird, we have the encounter history, the number ‘1’ to indicate 1 bird per history, and then
one or more columns of ‘covariates’ – these are the individual values for each bird – in this example,
corresponding to mass and the square of the mass, respectively.

Finally, what about missing values? Suppose you have individual covariate data for some, but not all
of the individuals in your data set. Well, unfortunately, there is no simple way to handle missing values.
You can either (i) use the mean value of the covariate, calculated among all the other individuals in the
data set, in place of the missing value, or (ii) discard the individual from the data set. Or, alternatively,
you can discretize the covariates, and use a multi-state approach. The general problem of missing
covariates, time-varying covariates and so forth is discussed later in this chapter (section 11.6).

That’s about it really, as far as data formatting goes. The next step involves bring these data into
MARK, and specifying which covariates you want to use in your analyses, and how.

11.2.1. Specifying covariate data in MARK

Start program MARK, and begin a new project – ‘recaptures only’. We will use the live encounter
data contained in indcov1.inp – 8 occasions, ‘standard’ mark-recapture ‘LLLLL’ format. The encounter
data for each individual are accompanied by 2 individual covariates for each individual, which we’ll
call mass (for mass) and mass2 (for mass2). At this point, we need to ‘tell’ MARK we have 2 individual
covariates (below):

Next, we want to give the covariates some ‘meaningful’ names, so we click the ‘Enter Ind. Cov.
Names’ button. We’ll use mass and mass2 to refer to body mass and body mass-squared, respectively
(shown at the top of the next page). That’s it! From here on, we refer to the covariates in our analyses
by using the assigned labels mass and mass2.
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11.2.2. Executing the analysis

In this example, we simulated data with a constant survival and recapture probability over time. Thus,
for our starting model, we will modify the model structure to reflect this – in other words, we’ll start by
fitting model {ϕ.p.}. Go ahead and set up this model using your preferred method (by either modifying
the PIMs directly, or modifying the PIM chart), and run it. When you run MARK, you’ll notice that it
seems to take a bit longer to start the analysis. This is a result of the fact that this is a fairly large simulated
data set, and that you are not using summary encounter histories – because we’ve told MARK that the
data file contains individual covariates, MARK will build the likelihood piece by piece – or, rather,
individual by individual. This process takes somewhat longer than building the likelihood from data
summarized over individuals.

Add the results to the browser. Let’s have a look at the 2 reconstituted parameter estimates:

Start with parameter 2 – the recapture probability. The estimate of 0.7009 is very close to the ‘true’
value of p � 0.70 used in simulating the data (not surprising they should be so close given the size of
the data set). What about the first parameter estimate – ϕ̂ � 0.568? This is the estimate of the apparent
survival probability assuming (i) no time variation, and (ii) all individuals are the same. Clearly, it is
this second assumption which is most important here, since we know (in this case) that all individuals
in this data set are not the same – there is heterogeneity among individuals in survival probability, as
a function of individual differences in body mass.

Thus, we expect that a model which accounts for this heterogeneity will fit significantly better than a
model which ignores it. Where does the value of 0.568 come from? Remember that the actual probability
of survival was set in the simulation to be a function of body mass:

ϕ � −0.039 + 0.0107(mass) − 0.000045(mass
2
)

The data were simulated using a normal distribution with mean 110 mass units, and a standard
deviation of 25. Thus, the value of 0.568 is the mean survival probability expected given the normal
distribution of body mass values, and the function relating survival to body mass. However, if you put
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the value of ’110’ into this equation, you get an estimate of survival of ϕ̂ � 0.594, which is somewhat
different from the reported value of ϕ̂ � 0.568. Why? Because what MARK is reporting is the mean
survival of the data set as a whole: if you were to take all of the mass data in the input file, run each
individual value for mass through the preceding equation, and take the mean of all of the generated
values of ϕ, you would get an estimate of ϕ̂ � 0.566, which is basically identical to the value reported
by MARK.

But, back to the question at hand – as suggested, we expect a model which incorporates individual
covariates (body mass) to fit better than a model which ignores these differences. How do we go about
fitting models with covariates? Simple – we include the individual covariate(s) in the design matrix.

All linear models which include individual covariates must be built using a design matrix!

In fact, including individual covariates in the design matirix is often straightforward. For our present
example,we’re effectively performing a multiple regression analysis. We want to take ourstarting model
{ϕ.p.} and constrain the estimates of survival to be functions of body mass, and (if we believe that
normalizing selection is operating), the square of body mass. These were the 2 covariates contained in
the input file (mass and mass2, respectively).

To fit a model with both mass and mass2, we need to modify the design matrix for our starting model.
We can do this in several ways, but as a test of your understanding of the design matrix (discussed
at length in Chapter 6), we’ll consider it the following way. Our starting model is model {ϕ.p.}. One
parameter for survival and recapture probability, respectively. Thus, the starting design matrix will be
a (2 × 2) matrix. We want to modify this starting model to now include terms for mass and mass2. We
want to constrain survival probability to be a function of both of these covariates.

Remembering what you know about linear models and design matrices, you should recall that this
means an intercept term,and one term (‘slope’) formass and mass2, respectively. Thus, 3 terms in total, or,
more specifically, 3 columns in the design matrix for survival, and 1 column for the recapture probability.

Let’s look at how to do this. Select ‘design matrix | reduced’.

This will spawn a window asking you to specify the number of covariate columns you want.
Translation – how many total columns do you want in your design matrix. As noted above, we want 4
columns – 3 to specify the survival parameter, and 1 to specify the encounter probability (since this is
the parameter structure specified by the PIMs we created when we started). So, enter ‘4’.
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Once you have entered the number of covariate columns you want in the design matrix, and clicked
the ‘OK’ button, you’ll be presented with an ‘empty’ (4 × 2) design matrix.

To start with, let’s move the grey ‘Parm’ column one column to the right, just to make things a bit
clearer.

Now, all we need to do is add the appropriate values to the appropriate cells of the design matrix.
If you remember any of the details from Chapter 6, you might at this moment be thinking in terms of
‘0’ and ‘1’ dummy variables. Well, you’re not far off. We do more or less the same thing here, with one
twist – we use the names of the covariates explicitly, rather than dummy variables, for those columns
corresponding to the covariates.

Let’s start with the probability of survival. We have 3 columns in the design matrix to specify survival:
1 for the intercept, and 1 each for the covariates mass and mass2, respectively. For the intercept, we enter
a ‘1’ in the first cell of the first column. However, for the 2 covariate columns (columns 2 and 3), we enter
the labels we assigned to the covariates, mass and mass2. For the recapture parameter, we simply enter
a ‘1’ in the lower right-hand corner. The completed design matrix for our model is shown below:

That’s it! Go ahead and run this model. When you click on the ‘Run’ icon, you’ll be presented with
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the ‘Setup Numerical Estimation Run’ window. We need to give our model a title. We’ll use ‘phi(mass
mass2)p(.)’ for the model specified by this design matrix. Again, notice that the sin link is no longer
available – recall from Chapter 6 that the sin link is available only when the identity design matrix is
used. The new ‘default’ is the logit link. We’ll go ahead and use this particular link function.

Now, before we run the model, the first ‘complication’ of modeling individual covariates. On the right
hand side of the ‘Setup Numerical Estimation Run’ window, you’ll notice a list of various options. Two
of these options refer to ‘standardizing’ – the first, refers to standardizing the individual covariates. The
second, specifies that you do not want to standardize the design matrix. These two ‘standardization’
check boxes are followed by a nested list of suboptions (which have to do with how the real parameter
estimates from the individual covariates are presented – more on this later).

The first check box (standardize individual covariates) essentially causes MARK to ‘z-transform’ your
individual covariates. In other words, take the value of the covariate for some individual, subtract from it
the mean value of that covariate (calculated over all individuals), and divide by the standard deviationof
the distribution of that covariate (again, calculated over all individuals). The end result is a distribution
for the transformed covariate which has a mean of 0.0, and a standard deviation of 1.0, with individual
transformed values ranging from approximately (−3 → +3) (depending on the distribution of the
individual data). One reason to standardize individual covariates in this way is to make all of your
covariates have the same mean and variance, which can be useful for some purposes.

Another reason is as an ad hoc method for accommodating any missing values in your data – if you use
the z-transform standardization, the mean of the covariates over all individuals is 0, and thus missing
data could simply be coded with 0 (which, again, is the mean of the transformed distribution). If you
compute the mean of the non-missing values of an individual covariate, and then scale the non-missing
values to have a mean of zero, the missing values can be included in the analysis as zero values, and
will not affect the slope of the estimated β. However, this ‘trick’ is not advisable for a covariate with
a large percentage of missing values because you will have little to no power. [The issue of ‘missing
values’ is treated more generally in a later section of this chapter.] While these seem fairly reasonable
and innocuous reasons to use this standardization option, there are several reasons to be very careful
when using this option, as discussed in the following -sidebar-. In fact, it is because of some of these
complications that the default condition for this standardization option is ‘off’.
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What about the second option – ‘Do not standardize (the) design matrix’? As noted in the
MARK help file, it is often helpful to scale the values of the covariates to ensure that the numerical
optimization algorithm finds the correct parameter estimates. The current version of MARK defaults
to scaling yourcovariate data foryou automatically (without you even being aware of it). This ‘automatic
scaling’ is done by determining the maximum absolute value of the covariates, and then dividing each
covariate by this value. This results in each column scaled to between -1 and 1. This internal scaling
is purely for purposes of ensuring the success of the numerical optimization – the parameter values
reported by MARK (i.e., in the output that you see) are ‘back-transformed’ to the original scale. There
may be reasons you don’t want MARK to perform this ‘internal standardization’ – if so, you simply
check the ‘Do not standardize (the) design matrix’ button.

begin sidebar

when to standardize – careful!

While using the z-transform standardization on your individual covariates may appear reasonable, or

at the least, innocuous, you do need to think carefully about when, and how, to standardize individual

covariates. For example, when you specify a model with a common intercept but 2 or more slopes for

the individual covariate, and instruct MARK to standardize the individual covariate, you will get a

different value of the deviance than from the model run with unstandardized individual covariates.

This behavior is because the centering effect of the standardization method affects the intercept

differently depending on the value of the slope parameter. The effect is caused by the nonlinearity

of the logit link function. You get the same effect if you standardize variables in a logistic regression,

and run them with a common intercept. The result is that the estimates are not scale independent,

but depend on how much centering is performed by subtracting the mean value. In other words,

situations can arise where the real parameter estimates and the model’s AIC differ between runs

using the standardized covariates and the unstandardized covariates. This situation arises because

the z-transformation affects both the slope and intercept of the model. For example, with a logit link

function and the covariate x1,

logit(S) � β1 + β2

(

x1 − x̄1

)

/SD1

�

(

β1 − β2 x̄1/SD1

)

+ (β2/SD1)x1

where the intercept is the quantity shown in the first set of brackets, and the second bracket is the

slope. This result shows the conversion between the β parameter estimates for the standardized

covariate and the β parameter estimates for the untransformed covariate, i.e., the intercept for the

untransformed analysis would correspond to the quantity in the first set of brackets, and the slope for

the untransformed analysis would correspond to the quantity in the second set of brackets. All well and

good so far, because the model with a standardized covariate and the model with the unstandardized

covariate will result in identical models with identical AICc values.

However, now consider the case where we have 2 groups, and want to build a model with different

slope parameters for eachgroup’s individual covariate values,buta common intercept. In this example,

x1 and x2 are considered to be the same individual covariate, each standardized to the overall mean

and SD, but with values specific to group 1 (x1) or group 2 (x2). The unstandardized model would look

like:

Group 1: logit(S1) � β1 + β2x1

Group 2: logit(S2) � β1 + β3x2

Unfortunately, when the individual covariates are standardized, the result is:

Group 1: logit(S1) � (β0 − β1 x̄1/SD) + (β1/SD)x1

Group 2: logit(S2) � (β0 − β2 x̄2/SD) + (β2/SD)x2
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In this case, the intercepts for the 2 groups are no longer the same with the standardized covariates,

resulting in a different model with a different AICc value than for the unstandardized case. This

difference causes the AIC values for the 2 models to differ because the real parameter estimates differ

between the 2 models.

An alternative to this z-transformation is to use the product function in the design matrix (c.f. p. 20)

to multiply the individual covariate by a scaling value. As an example, suppose the individual covariate

Var ranges from 100 to 900. Using the design matrix function product(Var,0.001) in the entries of the

design matrix would result in values ranging from 0.1 to 0.9, and would result in 3 more significant

digits being reported in the estimates of the β parameter for this individual covariate.

end sidebar

Acknowledging the need for caution discussed in the preceding -sidebar-, for purposes of demon-
stration,we’ll go ahead and run ourmodel,using the z-transformation on the covariate data (by checking
the ‘Standardize Individual Covariates’ checkbox). Add the results to the browser.

First, we notice right away that the model including the 2 covariates fits much better than the model
which doesn’t include them – so much so that it is clear there is effectively no support for our naïve
starting model.

Do we have any evidence to support our hypothesis that there is normalizing selection on body mass?
Well, to test this, we might first want to run a model which does not include the mass2 term. Recall that it
was the inclusion of this second order term which allowed for a decrease in survival with mass beyond
some threshold value. How do you run the model with mass, but not mass2? The easiest way to do this
is to simply eliminate the column corresponding to mass2 from the design matrix. So, simply bring the
design matrix for the current model up on the screen (by retrieving the current model), and delete the
column corresponding to mass2 (i.e., delete column 3 from the design matrix). The modified design
matrix now looks like:

Go ahead and run this model – again using standardized covariates. Call this model ‘phi(mass)p(.)’.
Add the results to the results browser.
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Note that the model withmass only (but not the second order term) fits better than our general starting
model, but nowhere near as well as the model including both mass and mass2 – it has essentially no
support. In other words, our model with both mass and mass2 is clearly the best model for these data
(this is not surprising, since this is the very model we used to simulate the data in the first place!).

So,at this stage,we could say with some assurance that there is fairly strong support for the hypothesis
that there is normalizing selection on body mass. However, suppose we want to actually look at the
‘shape’ of this function. How can we derive the function relating survival to mass, given the results
from our MARK? In fact, it’s fairly easy, if you remember the details concerning the logit transform, and how

we standardized our data.

To start, let’s look at the output from MARK for the model including mass and mass2 (shown at
the top of the next page). In this case, it’s easier to use the ‘full results’ option (i.e., the option in
the browser toolbar which presents all of the details of the numerical estimation). Scroll down until
you come to the section shown at the top of the next page. Note that we have 3 sections of the output
at this point. In the first section we see the estimated logit function parameters for the model. There
are 4 β values, corresponding to the 4 columns of the design matrix (the intercept, mass, mass2 and
the encounter probability, p, respectively). These parameters, in fact, are what we need to specify the
function relating survival to body weight.

In fact, if you think about it, only the first 3 of these logit parameters are needed – the last one refers
to the encounter probabiliity, which is not a function of body mass. What is our function? Well, it is

logit(ϕ̂) � 0.256733+ 1.1750545(masss ) − 1.0555046(mass
2
s )

Note that for the two mass terms, we have added a small subscript ‘s’ – reflecting the fact that these
are ‘standardized’ masses. Recall that we standardized the covariates by subtracting the mean of the
covariate, and dividing by the standard deviation. Thus, for each individual,

logit(ϕ̂) � 0.256733+ 1.17505

(

m − m̄
SDm

)

− 1.0555

(

m
2 − m̄2

SD
m

2

)

In this expression, m refers to mass and m2 refers to mass2.

The output from MARK (shown at the top of the next page) actually gives you the mean and standard
deviations for both covariates. For mass, mean = 109.97, and SD = 24.79, while for mass2, the mean =
12,707.46, and the SD = 5,532.03. The ‘value’ column shows the standardized values for mass and mass2
(0.803 and 0.752) for the first individual in the data file. Let’s look at an example. Suppose the mass of
the bird was 110 units. Thus mass = 110, mass2 = 1102

� 12,100. Thus,

logit(ϕ̂) � 0.2567 + 1.17505

(

110 − 109.97

24.79

)

− 1.0555

(

12,100 − 12,707.46

5,532.03

)

� 0.374.
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So, if logit(ϕ̂) � 0.374, then how do we get the reconstituted values for survival? Recall that

logit(θ) � log
(
θ

1 − θ

)

� α + βx

and

θ �
eα+βx

1 + eα+βx

Thus, if logit(ϕ̂) � 0.374, then the reconstituted estimate of ϕ, transformed back from the logit scale
is e0.374/(1 + e0.374

) � 0.592. Thus, for an individual weighing 110 units, expected annual survival
probability is 0.592. How well does the estimated function match with the ‘true’ function used to
simulate the data? Let’s plot the observed versus expected values:
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As you can see from the plot, the fit between the values expected given the ‘true’ function (solid
black line) and those based on the function estimated from MARK (red dots) are quite close, as they
should be. The slight deviation between the two is simply because the simulated data are simply one
realization of the stochastic process governed by the underlying survival and recapture parameters.

Note: in the preceding, we’ve described the mechanics of reconstituting the parameter estimate – this
basically involves back-transforming from the logit scale to the normal [0, 1] probability scale. What
about reconstituting the variance, or SE of the estimate, on the normal scale? This is somewhat more
complicated. As briefly introduced in Chapter 6, reconstituting the sampling variance on the normal
scale involves use of something known as the ‘Delta method’. The Delta method, and its application to
reconstituting estimates of sampling variance is discussed at length in Appendix B.

begin sidebar

AIC, BIC – example of the difference

Back in Chapter 4, we briefly introduced two different information theoretic criteria which can be used

to assist in model selection, the AIC (which we’ve made primary use of), and the BIC. Recall that we

briefly discussed the differences between the two – noting that (in broad, simplified terms), the AIC

has a tendency to pick overly complex models – especially if the ‘true’ model structure is complex,

whereas the BIC has a tendency to pick overly simple models when the reverse is true.

We can demonstrate these differences by contrasting the results of model selection using AIC or

BIC for our analysis of the normalizing selection data. To highlight differences between the two, we’ll

consider the following 4 models: {ϕ.p.}, {ϕ(mass)p.}, {ϕ
(mass ,mass2

)
p.}, and ϕ

(mass ,mass2,mass3
)
p.}.

Recall that the true model used to generate the simulated data was model {ϕ
(mass ,mass2

)
p.}. So, our

candidate model set consists of two models which are simpler than the ‘true’ model, and one model

that is more complex than the ‘true’ model.

Here are the results from fitting the model set to the data, using AIC as the model selection criterion:

Note that although model {ϕ
(mass ,mass2

)
p.} is the true generating model, it was not the most

parsimonious model using AIC – in fact, it was 5-6 times less well supported than was a more complex

model {ϕ
(mass ,mass2,mass3

)
p.}.

What happens if we use BIC as our model selection criterion? (Remember this can be accomplished

by changing MARK’s preferences; ‘File | Preferences’). If you look at the results browser at the top

of the next page, you’ll see that the BIC selected what we know to be the ‘true’ model {ϕ
(mass ,mass2

)
p.}

– the next best model {ϕ
(mass ,mass2,mass3

)
p.} was 5-6 times less well supported than was the most

parsimonious model.
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So, is this an example of BIC ‘doing better’ when the true model is relatively simple? Or is the fact

that the BIC picked the right model an artifact of the inclusion of the right model in the candidate model

set (a point of some contention in the larger discussion)? Our point here is not to make conclusions one

way or the other. Rather, it is merely to demonstrate the fact that different model selection criterion can

yield quite different results (conclusions) – so much so (at least on occasion) that it will be worth you

spending some time thinking hard about the general question, and reading the pertinent literature.

As mentioned in Chapter 4, good starting points are

• Burnham & Anderson (2004) Multimodel inference - understanding AIC and BIC in

model selection. Sociological Methods & Research, 33, 261-304.

• Link & Barker (2006) Model weights and the foundations of multimodel inference.

Ecology, 87, 2626-2635

end sidebar

11.3. A more complex example – time variation

In the preceding example, we made life simple by simulating some data where there was no variation
in either survival or recapture rates over time. In this example, we’ll consider the more complicated
problem of handling data where there is potential variation in survival over time.

We’ll use the same approach as before, except this time we will simulate some data where survival
probability is a complex function of both mass and cohort. In this case, we simulated a data set having
normalizing selection in early cohorts, with a progressive shift towards diversifying selection in later
cohorts. Arguably, this is a rather ‘artificial’ example, but it will suffice to demonstrate some of the
considerations involved in using MARK to handle temporal variation in the relationship between
estimates of one or more parameters and one or more individual covariates.

The data for this example are contained in indcov2.inp. We simulated 8 occasions, and assumed a
constant recapture rate (p � 0.7) for all individuals in all years. The data file contains 2 covariates – mass
and mass2 (as in the previous example). As with the first example, we start by creating a new project,
and importing the indcov2.inp data file. Label the two covariates mass and mass2 (respectively).

We will start by fitting model {ϕt p.}, since this is structurally consistent with the data, and will
provide a reasonable starting point for comparisons with subsequent models. Go ahead and add the
results of this model to the results browser.

Now, to fit models with both individual covariates, and time variation in the relationship between
survival and the covariates, we need to think a bit more carefully than in our first example. If you
understood the first example, you might realize that to do this, we need to modify the design matrix.
However, how we do this will depend on what hypothesis we want to test. For example, we might
believe that the relationship between survival and mass changes with each time interval. Alternatively,
we might suppose there is a common intercept, but different slopes for each interval. It is important to
consider carefully what hypothesis you want to test before proceeding.
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We’ll start with the hypothesis that the relationship between survival and mass changes with each
time interval. With a bit of thought,you might guess how to construct this design matrix. In the previous
example, we used 3 columns to specify this relationship – representing the intercept, mass and mass2,
respectively. However, in the first example, we assumed that this model was constant over all years.
So, what do we do if we believe the relationship varies from year to year? Easy, we simply have 3
columns for each interval in the design matrix for survival (with 1 additional column at the end for
the constant recapture probability). So, 7 intervals = 21 columns for survival, plus 1 column for the
recapture probability. How many rows? Remembering from Chapter 6, 8 rows total – 7 rows for the 7
survival intervals, and 1 for the constant recapture rate.

So, let’s go ahead and construct the design matrix for this model, using the ‘Design | Reduced’ menu
option we discussed previously. We’ll start simply,using a DM based on the basic structure of the identity

matrix – recall that for an identity DM, each row corresponds to a ‘time-specific regression model’, since
each row has its own intercept (see Chapter 6). Or, put another way, each interval ‘has its own multiple
regression line – separate intercept, separate slope(s) – relating survival to mass and mass2’.

This matrix (shown below) is sufficiently big such that it’s rather difficult to see the entire structure
at once.

To help you visualize it, let’s look at just a small piece of this design matrix:

As you can see, for each survival interval, we have 3 columns – 1 intercept, and 1 column each for
mass and mass2, respectively. So, the columns B1, B2 and B3 correspond to interval 1, B4, B5 and B6 for
interval 2, and so on. You simply do this for each of the 7 survival intervals. The bottom right-hand cell
of the matrix (shown on the preceding page) contains a single ‘1’ for the constant encounter probability.
Call this model ‘phi(t * mass mass2)p(.) - separate intcpt’, and run it – remember to standardize
the covariates before running the model. Add the results to the browser.

Again, note that the model constrained to be a function of mass and mass2 fits much better than our
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naïve starting model. Not surprising, since the data were simulated under the assumption that survival
varies as a function of mass and mass2, and that the function relating survival to both covariates changes
over time (i.e., we just fit the true model to the data).

Of course, in practice, we don’t know what the true model is, so we fit a set of approximating models.
How do we construct those models if the include one or more individual covariates? In the following,we
discuss various ways to construct design matrices – in principle, we use the same ideas and mechanics
introduced in Chapter 6. However, the design matrices ‘look somewhat different’ when they include
one or more individual covariates.

11.4. The DM & individual covariates – some elaborations

Suppose you want to fit a model with different intercepts and different slopes for each year. In other
words, the same model we just built. Start by considerring what such a model means. In the following
figure, each line represents the relationship (which we assume here is strictly linear) between the
parameter, ϕ, and the individual covariate, mass, for each of the 7 years in the study (i.e., separate slope
and intercept for each year):

As we’ve already seen (above), you could accomplish this by adding an ‘intercept’ and ‘slope’
parameter(s) to each row for the parameter in question (i.e., using a identity-like structure, have a
‘separate regression’ for each interval). So, for a simple linear model of survival as a function of mass,
we could use could use something like the following:
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However, a more flexible way to model this would have been to use:

In other words, a column of ‘1’s for the intercept, a column for the covariate (mass, m), and then the
columns of dummy variables corresponding to each of the time intervals (t1→ t6), and then columns
reflecting the interaction of the the covariate and time. You might recognize this as the same analysis
of covariance (ANCOVA) design you saw back in Chapter 6. If you take this design matrix, and run it,
you’ll see that you get exactly the same results as you did with the design matrix we used initially –
each leads to time-specific estimates of the slope and intercept.

So, if they both yield the ‘same results’, why even consider this more formal design matrix? As we
noted in Chapter 6, the biggest advantage is that using this more complete (formal) design matrix allows
you to test some models which aren’t possible using the first approach.

For example, consider the additive model – where we have different intercepts, but a common slope
among years:

In other words, testing model
ϕ � time + mass

as opposed to the first model which included the (time.mass) interaction (i.e., where the slopes and
intercepts vary among years):

ϕ � time + mass + time.mass

As we discussed in Chapter 6, this sort of additive model can only be fit using this formal design-
matrix approach.
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So, to fit this model – where we have different intercepts, but a common slope among years – we
simply delete the interaction columns. It’s that simple!

Here is the reduced design matrix:

If instead you wanted a common intercept for all years, but different slopes for mass for each year,

then the DM would look like:

Now that you have the general idea, let’s consider constructing a set of models to test various (made-
up) hypotheses concerning the encounter data in indcov2.inp.
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We’ll suppose that we’re interested in fluctuating selection for survival as a function of body mass.
Meaning, we suspect that survival varies as a function of body mass (in a potentially non-linear way),
and that the pattern of variation varies over time. So, we’ll consider a set of models where we fit
both first- and second-order polynomial of survival as a function of mass (i.e., survival = f (mass), and
survival=f (mass+mass2)), with and without variation in that function over time. We’ll start with the
most general model - survival as a second-order function of mass, with time variation in the slope and
the intercept of that function: {ϕtime .(m+m2

)
, p.}.

In fact, we built precisely this model in the preceding section, but, using the following design matrix,
with a separate intercept for each time interval:

Here, we’ll build the exact same model, but using a common intercept for all time intervals. If you
followed what we did earlier in this section, you should have a pretty good guess what it might look
like. We know from above that we need 21 columns for survival.

Here is the DM:

The models are entirely equivalent – in terms of fit, and reconstituted parameter estimates. So is there
an advantage of one over the other (i.e., common intercept, versus separate intercepts)? The common
intercept approach makes it easier to fit models with specific types of constraint – for example, additive
models. On the other hand, interpreting interval-specific intercepts and slopes from the DM built using
separate intercepts is somewhat more straightforward that when using a common intercept.

Forexample, if you look at the parameter (β) estimates from the ‘separate intercept’ approach,you will
see that they correspond to what we expected (given the model under which the data were simulated):
in the early cohorts the sign of the slope for mass is positive, and for mass2 is negative – consistent with
normalizing selection. In later cohorts, the signs are consistent with increasingly disruptive selection.
In contrast, to figure out what is going on when you use a ‘common intercept’ approach, where each
estimated slope is interpreted relative to a reference level (by default, the final time interval), requires
more work.

This distinction between the ‘separate intercept’ approach (which in effect amounts to using an
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identity matrix), and the ‘common intercept’ approach (where the slopes reflect variation of levels
of a factor – say, time – relative to a reference level of that factor) were introduced in Chapter 6. We’ll
consider a more direct way to ‘parse out the pattern’ – by graphing the relationships directly – later in
this chapter.

For the moment, we’ll continue building models using the ‘common intercept’-based DM as our
starting structure. Let’s now consider a model that does not have time variation in the relationship
between survival and body mass. All we need do is modify our general DM (with the common intercept
for all time intervals), by eliminating the time columns, and the columns showing the interaction of mass
with time:

Finally, suppose you want to test the hypothesis that there is a common intercept for each year, but a
different slope. How would you modify the design matrix for our general model to reflect this? Well, by
now you might have guessed – you simply have 1 column for an intercept for all 7 intervals, and then
multiple columns for the mass and mass2 terms for each interval:

which you might now realize is entirely equivalent to

It is worth noting that when you specify a model with a common intercept but 2 or more slopes
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for the individual covariate, and standardize the individual covariate, you will get a different value of
the deviance than from the model run with unstandardized individual covariates. This is because the
centering effect of the standardization method affects the intercept differently depending on the value of
the slope parameter. The effect is caused by the nonlinearity of the logit link function. You get the same
effect if you standardize variables in a logistic regression, and run them with a common intercept. The
result is that the estimates are not scale independent, but depend on how much centering is performed
by subtracting the mean value.

begin sidebar

Design Matrix Functions

A number of special functions are allowed as entries in the design matrix: add,product,power,min,max,

log, exp, eq (equal to), gt (greater than), ge (greater than or equal to), lt (less than), and le (less than

or equal to). These names can be either upper- or lower-case. You should not include blanks within

these function specifications to allow MARK to properly retrieve models with these functions in their

design matrix.

As shown below, these functions can be nested to create quite complicated expressions, which may

require setting a larger value of the design matrix cell size (something you can specify by changing

MARK’s preferences – ‘File | Preferences’).

1. add and product functions

These two functions require 2 arguments. The add function adds the 2 arguments together, whereas

the product function multiplies the 2 arguments. The arguments for both functions must be one of the

3 types allowed: numeric constant, an individual covariate, or another function call.

The following design matrix demonstrates the functionality of these 2 functions, where wt is an

individual covariate.

1 1 1 wt product(1,wt) product(wt,wt)

1 1 2 wt product(2,wt) product(wt,wt)

1 1 3 wt product(3,wt) product(wt,wt)

1 0 add(0,1) wt product(1,wt) product(wt,wt)

1 0 add(1,1) wt product(2,wt) product(wt,wt)

1 0 add(1,2) wt product(3,wt) product(wt,wt)

The use of the add function in column 3 is just to demonstrate examples; it would not be used in

a normal application. In each case, a continuous variable is created by adding constant values. The

results are the values 1, 2, and 3, in rows 4, 5, and 6, respectively.

Column 5 of the design matrix demonstrates creating an interaction between an individual covariate

andanothercolumn (the first3 rows) ora constantandan individual covariate (the last3 rows). Column

6 of the design matrix demonstrates creating a quadratic effect for an individual covariate. Note that

if the 2 arguments were different individual covariates, an interaction effect between 2 individual

covariates would be created in column 6.

2. IF functions: eq (equal to), gt (greater than), ge (greater than or equal to), lt (less than), le (less

than or equal to)

These five functions require 2 arguments. The eq, gt, ge, lt, and le functions will return a zero if

the operation is false and a one if the operation is true. For each of these functions, 2 arguments (x1

and x2) are compared based on the function.

For example, eq(x1,x2) returns 1 if x1 equals x2, and zero otherwise; gt(x1,x2) returns 1 if x1

is greater than x2, zero otherwise; and le(x1,x2) returns 1 if x1 is less than or equal to x2, zero

otherwise. The arguments for these functions must be one of the 3 types allowed: numeric constant,

column variable, or an individual covariate.
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The following design matrix demonstrates the functionality of both the add function and the IF

function (eq), where age is an individual covariate.

1 add(0,age) eq(0,add(0,age))

1 add(1,age) eq(0,add(1,age))

1 add(2,age) eq(0,add(2,age))

1 add(3,age) eq(0,add(3,age))

1 add(4,age) eq(0,add(4,age))

1 add(5,age) eq(0,add(5,age))

In this particular example, the individual covariate age corresponds to the number of days before

a bird fledges from its nest (fledge day 0) and subsequently enters the study. Suppose an individual

fledges from its nest during the fourth survival period. Its encounter history (LDLD format) would

consist of ‘00 00 00 10’ and the individual would have -3 as its age covariate because the individual

did not fledge from its nest until the fourth survival period. A bird that did not fledge from its nest

until survival period 20 would have -19 as its age covariate. Think of the use of negative numbers as

an accounting technique to help identify when the individual fledges.

Column 2 of the design matrix demonstrates the use of the add function to create a continuous age

covariate for each individual by adding a constant to age. The value returned in the first row of the

second column is -3 (0 + (−3) � −3). The value returned in the second row of the second column is -2

(1 + (−3) � −2). The value returned in the fourth row of the second column is zero and corresponds

to fledge day 0 (3 + (−3) � 0). The value returned in the fifth row of the second column is one and

corresponds to fledge day 1. Thus, column 2 is producing a trend effect of age on survival, with the

intercept of the trend model being age zero. A trend model therefore models a constant rate of change

with age on the logit scale, so that each increase in age results in a constant change in survival, either

positive or negative depending on the sign of β2.

Now, suppose that survival is thought to be different on the first day that a bird fledges, i.e., the first

day that the bird enters the encounter history. To model survival as a function of fledge day 0, use the

eq function to create the necessary dummy variable. This is demonstrated in the third column. The eq

function returns a value of one only when the statement is true, which only occurs on the first day the

bird is fledged. Recall that the value for age of this individual is -3; therefore, the add function column

will return a value of -3 (0 + (−3) � −3) in the first row. The eq function in the third column would

return a value of zero because age (-3) is not equal to zero. The eq function in the third column, fourth

row would return a value of one because age (0) is equal to (0). Note this will only be true for row four

for this particular individual; all other rows return a value of zero because they are false. Thus, the eq

function will produce a dummy variable allowing for a different survival probability on the first day

after fledging from the trend model for age which applies thereafter.

Note that the eq function in this example is using the same results of the add function from the

preceding column, and illustrates the nesting of functions.

3. power function

This function requires 2 arguments (x,y). The first argument is raised to the power of the second

argument; i.e., the result is xy. As an example, to create a squared term of the individual covariate

length, you would use power(length,2). To create a cubic term, power(length,3). So, in our normal-

izing selection example (first example of this chapter), we did not need to explicitly include mass2 in

the .INP file – we could have used power(mass,2) to accomplish the same thing.

4. min/max functions

The min function returns the minimum of the 2 arguments, whereas the max function returns

the maximum of the 2 arguments. These functions allow the creation of thresholds with individual

covariates. So, with the individual covariate length, the function min(5,length)would use the value

of length when the variable is < 5, but replace length with the value 5 for all lengths > 5. Similarly,

max(3,length) would replace all lengths < 3 with the value 3.
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5. Log, Exp functions

These functions are equivalent to the natural logarithm function and the exponential function.

Each only requires one argument. So, for the individual covariate length = 2, log(length) returns

0.693147181, and exp(length) returns 7.389056099.

Example

These functions are useful for constructing a design matrix when using the nest survival analysis

(Chapter 17). Here, the add and ge functions are demonstrated. Stage-specific survival (egg or nestling)

could be estimated only if nests were aged and frequent nest checks were done to assess stage of failure.

1 add(0,age) GE(add(0,age),15) product(add(0,age),GE(add(0,age),15))

1 add(1,age) GE(add(1,age),15) product(add(1,age),GE(add(1,age),15))

1 add(2,age) GE(add(2,age),15) product(add(2,age),GE(add(2,age),15))

1 add(3,age) GE(add(3,age),15) product(add(3,age),GE(add(3,age),15))

1 add(4,age) GE(add(4,age),15) product(add(4,age),GE(add(4,age),15))

1 add(5,age) GE(add(5,age),15) product(add(5,age),GE(add(5,age),15))

1 add(6,age) GE(add(6,age),15) product(add(6,age),GE(add(6,age),15))

1 add(7,age) GE(add(7,age),15) product(add(7,age),GE(add(7,age),15))

1 add(8,age) GE(add(8,age),15) product(add(8,age),GE(add(8,age),15))

1 add(9,age) GE(add(9,age),15) product(add(9,age),GE(add(9,age),15))

1 add(10,age) GE(add(10,age),15) product(add(10,age),GE(add(10,age),15))

1 add(11,age) GE(add(11,age),15) product(add(11,age),GE(add(11,age),15))

1 add(12,age) GE(add(12,age),15) product(add(12,age),GE(add(12,age),15))

1 add(13,age) GE(add(13,age),15) product(add(13,age),GE(add(13,age),15))

1 add(14,age) GE(add(14,age),15) product(add(14,age),GE(add(14,age),15))

1 add(15,age) GE(add(15,age),15) product(add(15,age),GE(add(15,age),15))

1 add(16,age) GE(add(16,age),15) product(add(16,age),GE(add(16,age),15))

1 add(17,age) GE(add(17,age),15) product(add(17,age),GE(add(17,age),15))

1 add(18,age) GE(add(18,age),15) product(add(18,age),GE(add(18,age),15))

In this particular example, the age covariate corresponds to the day that the first egg was laid in a

nest (nest day 0). Suppose a nest is initiated during the fourth survival period. Its encounter history

(LDLD format) would consist of 00 00 00 10 and the nest would have -3 as its age covariate because

the first egg was not laid in the nest until the fourth survival period.

Column 2 of the design matrix demonstrates the use of the add function to create a continuous

age covariate for each nest. The value returned in the first row of the second column is -3. The value

returned in the second row of the second column is -2. The value returned in the fourth row of the

second column is a zero and corresponds to the initiation of egg laying. The value returned in the fifth

row of the second column is one (the nest is one day old).

To model survival as a function of stage, use the ge function to quickly create the necessary dummy

variable. This is demonstrated in third column. The value of 15 is used in this example because it

corresponds to the number of days before a nest will hatch young birds. Day 0 begins with the laying

of the first egg, so values of 0→ 14 correspond to the egg stage. Values of 15→ 23 correspond to the

nestling stage. The ge function will return a value of one (nestling stage) only when the statement is

true.

Because the value of age for this nest is -3, the add function column returns a value of -3 (since

0 + −3 � −3) for the first row. The ge function (third column) returns a value of zero because the

statement is false; age (-3) is not greater than or equal to 15. A value of one appears for the first time

in row 19; here, the add function returns a value of 15 (since 18 + (−3) � 15). The ge function returns

a value of one because the statement is true; add(18,age) results in 15 which is greater than or equal

to 15.

The fourth column produces an age slope variable that will be zero until the bird reaches 15 days of

age, and then becomes equal to the bird’s age. The result is that the age trend model of survival now

changes to a different intercept and slope once the bird hatches.
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Some useful tricks

An easy way to prepare these complicated sets of functions is to use Excel to prepare the values

and then paste them into the design matrix. The following illustrates how to used the concatenate

function in Excel to concatenate together a column and a closing ‘)’ to create a complicated column of

functions that duplicate the above example.

A B C D

1 =concatenate("add(age,",A2,")") =concatenate("GE(",B2,",15)") =concatenate("product(",B2,",",C2,")")

2 =concatenate("add(age,",A3,")") =concatenate("GE(",B3,",15)") =concatenate("product(",B3,",",C3,")")

3 =concatenate("add(age,",A4,")") =concatenate("GE(",B4,",15)") =concatenate("product(",B4,",",C4,")")

...

Other details

The design matrix values can have up to 60 characters, and unlimited nesting of functions (within the

60 character limit). As an example, the following is a very complicated way of computing a value of 1:

log(exp(log(exp(product(max(0,1),min(1,5))))))

Before the design matrix is submitted to the numerical optimizer, each entry in the design matrix is

checked for a valid function name at the outermost level of nesting, plus that the number of ‘(’ matches

the number of ‘)’.

In previous versions of MARK, the design matrix functions were allowed to reference a value in

one of the preceding columns. This capability was removed when the ability to nest functions was

installed. No flexibility was lost with the removal of the ‘Colxx’ capability, and a considerable increase

in versatility was obtained with the nested design matrix function calls. As shown in the Excel ‘Tricks’

example above, the ability to use values from other columns is still available. The ‘Colxx’ capability

was also a very error prone method in that a column could be inserted ahead of the column being

referenced, and the entire model would become nonsense without the user realizing that a mistake

had been made. Therefore, the ‘Colxx’ capability was removed.

end sidebar

11.5. Plotting + individual covariates

In the first example presented in this chapter, we considered the relationship between survival and
individual body mass, under the hypothesis that there was strong ‘normalizing selection’ on mass – i.e.,
that the relationship between survival and mass was quadratic. We found that a quadratic model

logit(ϕ̂) � 0.256733+ 1.1750545(masss ) − 1.0555046(mass
2
s )

had good support in the data. We discussed briefly the mechanics of reconstituting the estimates of
survival on the normal probability scale – the complication is that you need to generate a reconstituted
value for each plausible value of the covariate(s) in the model. In fact, this is not particularly challenging
for simple models such as this. Because the linear model consists of a covariate (mass) plus a function
of the covariate (mass2), it is relatively trivial to code this into a spreadsheet and generate a basic plot
of predicted survival values over a range of values for mass. In fact, this is effectively what was done to
generate the plot of predicted versus observed values we saw earlier (example on p. 14).

But, there are no confidence bounds on the predicted value function. The calculation of 95% CI for
this function requires use of the Delta method – although not overly difficult to apply (the Delta method
is discussed at length in Appendix B), it can be cumbersome and time consuming to program.
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Fortunately, MARK has a plotting tool that make it convenient to generate a plot of predicted values
from models with individual covariates, which includes the estimated 95% CI. MARK also makes it
possible to output the data (including the data corresponding to the 95% CI) to a spreadsheet.

Let’s demonstrate this for the analysis we previously completed on the normalizing selection data
in indcov1.inp. Open up the .DBF file corresponding to those results, and retrieve the most parsimo-
nious model from the model set we fit to those data {ϕmass mass2 p.}. Then, click on the ‘Individual
Covariate Plot’ icon in the main MARK toolbar:

This will bring up a new window which will allow you to specify key attributes of the plot:

Notice that the title of the currently active model is already inserted in the title box. Next, are two
boxes where you specify (i) which parameter you want to plot, and (ii) which individual covariate you
want to plot. In our model, there are 2 different individual covariates – mass and mass2.

So, first question – which one to plot? If you look back at the figure at the bottom of p. 13, you’ll
see that we’re interest in plotting ‘survival’ versus ‘mass’. So, if our goal is to essentially replicate these
plots, with the addition of 95% CI, using this individual covariate plot tool in MARK, it would seem to
make sense that we should specify mass as the covariate we want to plot.

Finally, two boxes which allow us to specify the numerical range of the individual covariate to plot.
Also notice the check box you can check if you want to output the various estimates that go into the
plot output to a spreadsheet.
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OK – seems easy enough. Let’s start by clicking on the survival parameter ‘Phi’.

As soon as we do so, the window ‘updates’, and now presents you with the ‘Design Matrix Row’. For
this example, the DM has only 2 rows, so what is presented is in fact the linear model itself.

Next, we click on ‘mass’ to specify that as the individual covariate we want to plot. The window
immediately updates – and spawns a new box in the process.

As you can see, the range of covariate values has been updated showing the maximum and minimum
values that are actually in the .INP file. You can change these manually as you see fit (usual caveats about
extrapolating a plot outside the range of the data apply).

Now, what about the new box – showing mass2 set to 12,707.4638? First, you might recognize the
number 12,707.4638 as the square of the mean mass of all individuals in the sample. But, why is a box
for mass2 there in the first place? It’s there because the linear model that MARK is going to plot has 2
covariates – mass and mass2.
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OK – so what does MARK actually plot? Well, if you click the ‘OK’ button, MARK responds with

which doesn’t look remotely like the quadratic curve we were expecting. What is actually being plotted?
Well, if you think about it for a moment, it should be clear that MARK is plotting the functional
relationship between survival and mass, holding the value of mass2 constant at the mean value! Different
values of mass2 would yield different plots.

So,MARK isn’t doing anything wrong – it’s simply plotting what you told it to plot. MARK generates
a 2-D plot between some parameter and one covariate. If there are other covariates in the model, then
it needs to know what to do with them. Clearly, if there were only 2 covariates in the model, you could
construct a 3-D plot (the two covariates on the x- and y-axes, and the parameter on the z-axis), but what
if you had > 2 covariates? If would be difficult to program MARK to accommodate all permutations in
the plot specification window, so it defaults to 2-D plots, meaning (i) you plot a parameter against only
one covariate, and (ii) you need to tell MARK what to do with the other covariates.

So, how do you tell MARK to plot survival versus mass and mass2 together, as a single 2-D plot? The
key is in specifying the relationship between mass and mass2 explicitly – in effect, telling MARK that
mass2 is in fact just (mass × mass). MARK doesn’t ‘know’ that the second covariate (mass2) is a simple
function of the first (mass). MARK doesn’t know this because you haven’t told MARK that this is the
case. In your DM, you simply entered mass and mass2 as label names for the covariates, which were in
fact ‘hard-coded’ in the .INP file. You (the user) know what they represent, but all MARK sees are two
different covariates with two different labels.

So, if you can’t pass this information to MARK in the plot specification window, where can you do
so? Hint: what was the subject of the last -sidebar- presented several pages back? Looking back, you’ll
see that we introduced a series of ‘design matrix functions’, which included power and product. In our
current analysis, we coded for mass and mass2 explicitly in the DM by entering the labels corresponding
to the mass and mass2 covariates, which were hard-coded into the .INP file. As such, we know what
the covariates represent, but MARK doesn’t – it only knows the label names.
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But, what if instead of

we used

Look closely at this second DM – notice that we’ve used the power function. Recall that the power
function has two arguments – the first argument (mass, in this example) is raised to the power of the
second argument (2, in this case). Now, we have explicitly coded (i.e., told MARK) that the second
covariate is a power function of the first covariate. And because MARK now knows this, it knows what
to plot, and how.

Run this model, and add the results to the browser. As expected, the results are identical to what we
saw when we ran this model using the hard-coded mass2 in the INP file. But, more importantly, when
we plot this model, we get exactly what we were looking for:
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Note that there are two other options in the ‘Individual Covariate Plot’ specification window:
you can (i) output the estimates into Excel, or (ii) plot only the actual estimates (meaning, plot only the
reconstituted estimates for the parameter for the actual covariates in the input file – the estimate are
presented without their estimated SE).

Beyond the mechanics of plotting individual covariate functions, which is clearly part of the intent of
this section, this example also demonstrates one of the ‘hidden’ advantages of using the DM functions
to handle coding any functional relationships you might have among your covariates. Not only does
this save you from having to do those calculations by hand while you construct the INP file, they also
provide a convenient mechanism to make those functional relationships ‘known’ to MARK.

Plotting model averaged models with covariates is possible in MARK (see section 11.8), and using
RMark (see Appendix C – discussion of the covariate.predictions function).

begin sidebar

plotting ‘environmental’ covariates as ‘individual’ covariates

In Chapter 6, section 6.8.2, we considered the plotting of the functional relationship between some

parameter of interest and a particular ‘environmental’ covariate. One of the things noted in Chapter 6

was the lack of a direct option in MARK to plot this functional relationship.

But, we can, in fact, generate exactly the plot we’re looking for, within MARK, by using a ‘trick’

that involves individual covariates. The ‘trick’ is to get MARK to treat environmental covariates as

individual covariates, and then use the individual covariate plotting capabilities in MARK that we

introduced in the preceding section.

The basic idea is actually quite simple – if you remember the difference between an ‘environmental’

and ‘individual’ covariate. They key is the idea that an ‘environmental covariate’ is a covariate that

applies to all individuals. So, how do we use individual covariates to model/plot environmental

covariates? Easy – you simply add the value of the environmental covariate to each individual in

the INP file, as if it were an individual covariate.

We’ll demonstrate this using the dipper data (what else?). Assume that we believe that annual

apparent survival, ϕ is a function of some measure of rainfall. The dipper data consists of live capture

data over 7 occasions (6 intervals).

Here are the ‘rain data’ we’ll use in our model.

Interval 1 2 3 4 5 6

rain 1 10 8 15 3 6

For this demonstration,we’lluse the fulldipper data (ed.inp) – 7 occasions,2 attribute groups (males

and females). The first step involves entering the environmental covariate data into the .INP file, such

that each value of the environmental covariate (rain) will be a time-specific individual covariate, with

the values of those covariates repeated for all of the individuals in the data set.

The easiest way to explain is this be demonstration. First, here are the top few lines of the full

dipper encounter history file (which consists of 294 individuals). There are 2 frequency columns after

the encounter history – the first column corresponds to males,while the second corresponds to females.

The first few lines of the .INP file happen to be for male individuals.

1111110 1 0;

1111000 1 0;

1100000 1 0;

Now, all we need to do is enter the environmental covariates as a set of time-specific individual

covariates.
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Here is what the modified .INP file will look like (ed_mod.inp) – again, we’ll only show the first few

lines of the file:

1111110 1 0 1 10 8 15 3 6;

1111000 1 0 1 10 8 15 3 6;

1100000 1 0 1 10 8 15 3 6;

OK, now that we have this modified .INP file, start a new project in MARK start a new project – 7

occasions, 2 attribute groups (males and females), and 6 individual covariates, which we’ll refer to as

{r1,r2,...,r6}, corresponding to time interval 1, time interval 2, and so on.

We’ll start by fitting model {ϕt p.} – in other words, no sex differences in ϕ, but ϕ allowed to vary

over time, t. Encounter probability, p, is constant over time, with no sex differences.

To make our lives simpler, we’ll build the underlying parameter structure for our starting model

using the following PIM chart (we’ll assume that by now you know how to do this). Then, we’ll build

the DM corresponding to this PIM structure – again, this should all be familiar territory:

Go ahead and run this model, and add the results to the browser.

Next, we want to modify the DM to constraint ϕ to be a linear function of rain. Recall from Chapter

6 that all we need to is (i) eliminate the time columns from the DM, and (ii) insert a column containing

the values for the environmental covariate, rain. The modifed DM is shown at the top of the next page.

Go ahead and run the model, and add the results to the browser:

If we look at the β estimates, we see that the linear model for apparent survival is

logit(ϕ) � 0.3027129 + (−0.0076410)(rain)
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So, as rain increases, apparent survival decreases, since the estimate for the coefficient for the ‘rain’

covariate is negative.

But, now, we’d like to plot this relationship, using MARK. To do this, we’re first going to duplicate

model {ϕrainp.}, but this time using our individual covariates corresponding to the environmental

covariates – recall that we named them {r1, r2,...,r6} when we set up the specifications for the analysis.

How do we modify the DM to use these individual covariates? Easy – simply remember that each

covariate is time-specific. In other words, r1 corresponds to interval 1, r2 corresponds to interval 2, and

so on. Keeping this in mind, then here is what our modified DM will look like:

Go ahead and run this model – let’s name it ‘phi(ind rain cov)p(.)’. Let’s have a look at the browser:

We see that the model deviance for model ‘phi(rain)p(.)’ – built using the environmental

covariates ‘the usual way’, and the deviance of model ‘phi(ind rain cov)p(.)’, are identical. If you

compare reconstituted parameter estimates between the two models, they’re also the same.

Simply put, the 2 models are equivalent, in all but one important way. Because model ‘phi(ind

rain cov)p(.)’ was built using individual covariates, we can use the individual covariate plotting

capabilities in MARK to plot the functional relationship – and the uncertainty in that relationship –

between the parameter (in this case, ϕ), and the covariate (rain).

To generate the plot, simply click the ‘Individual covariate’ plot icon in the toolbar, which will

bring up the following window:
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Now, all you need to do is pick any one of the 6 parameters to plot (1:Phi, 2:Phi,...), and (this is

important) the correct (matching) individual covariate. For example, parameter ‘1:Phi’ corresponds

to the first interval, which corresponds to time-specific individual covariate ‘r1’. Parameter ‘2:Phi’

corresponds to covariate ‘r2’, and so on. It doesn’t matter which parameter you pick, but it does matter

that you pick the appropriate covariate it matches to. For present purposes, we’ll select ‘1:Phi’ and

‘r1’.

Now, notice that on the far right-hand side, the range for ‘r1’ is shown as 1 for the minimum, and

1 for the maximum. That is because ‘r1’ corresponds to the rain covariate for the first interval, which

was 1. Needless to say, if we don’t adjust the range, the plot won’t be particularly interesting. Let’s

change the range to 1 for the minimum, and 20 for the maximum:

All that remains is to generate the plot (or export everything to Excel, by selecting the appropriate

output option). For now, we’ll simply generate the plot using the plotting capabilities in MARK -

click the ‘OK’ button and we get exactly the plot we’re after – the basic function, and the uncertainty

represented by the 95% CI.

end sidebar
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11.6. Missing covariate values, time-varying covariates, and other

complications...

Several strategies for handling missing individual covariates are available. Probably the best option is
to code missing individual covariate values with the mean of the variable for the population measured.
Replacing the missing value with the average means that the mean of the observed values will not
change, although the variance will be slightly smaller because all missing values will be exactly equal
to the mean and hence not variable.

The easiest way to accomplish this in MARK is to use the ‘standardize covariates’ option – if you
compute the mean of the non-missing values of an individual covariate, and then scale the non-missing
values to have a mean of zero, the missing values can be included in the analysis as zero values, and
will not affect the value of the estimated β term. (note: we don’t advise this trick for a covariate with
a large percentage of missing values because you have no power, but this approach does work for a
‘small’ number of missing values).

If you have lots of missing values, another option is to code the animals into 2 groups, where all the
missing values are in one group. Then, you can use both groups to estimate a common parameter, and
only apply the individual covariate to one group. This approach can be tricky, so think through what
you are doing before you try it.

What about covariates that vary through time? In all our examples so far, we’ve made the assumption
that the covariate is a constant over the lifetime of the animal. But, clearly, this will often (perhaps
generally) not be the case. For example, consider body mass. Body mass typically changes dynamically
over time, and if we believe that body mass influences survival or some other parameter, then we might
want to constrain our estimates to be functions of a dynamically changing covariate, rather than a static
one (typically measured at the time the individual was initially captured and marked). You can handle
time-varying covariates in one of a couple of ways.

First, you can include time-varying individual covariates in MARK files, but you must have a value
for every animal on every occasion, even if the animal is not captured. Typically, you can impute these
values if they are missing (not observed), but be sure to recognize what this imputation might do to
your estimates. As demonstrated in the preceding - sidebar -you implement time-varying individual
covariates just like any other individual covariate, except that you have to have a different name for each
covariate corresponding to each time period. ’

For example, suppose you have a known fate model (which we’ll cover in chapter 16) with 5 occasions,
and you have estimated the parasite load for each animal at the beginning of each of the 5 occasions.
The 5 values for each animal are contained in the variables v1, v2, v3, v4, and v5.

A design matrix that would estimate the effect of the parasite load assuming that the effect is constant
across time would be:

1 v1

1 v2

1 v3

1 v4

1 v5

The second β estimate is the slope parameter associated with the time-varying individual covariates.
Note that you do not want to standardize these individual covariates, because standardizing them will
cause them to no longer relate to one another on the same scale (making a common slope parameter
nonsensical). Each would have a different scale after standardizing. If you need to standardize the
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covariates, you must do so before the values are included in a MARK encounter histories input file, and
you must use a common mean and standard deviation across the entire set of variables and observations.

The following design matrix would build a model where you assume the effect of parasite load is
different for each interval, but with the same survival probability for animals with no parasites (i.e., the
same intercept).

1 v1 0 0 0 0

1 0 v2 0 0 0

1 0 0 v3 0 0

1 0 0 0 v4 0

1 0 0 0 0 v5

The following model would allow different survival probabilities for each interval (i.e., time-specific
survival), but assumes the same impact of parasites on survival on the logit scale (assuming that a logit
link function is used). In other words, same slope, different intercept for each interval:

1 1 0 0 0 v1

1 0 1 0 0 v2

1 0 0 1 0 v3

1 0 0 0 1 v4

1 0 0 0 0 v5

Finally, a DM like the one shown below would allow a completely different survival probability and
parasite effect for each occasion:

1 1 0 0 0 v1 0 0 0 0

1 0 1 0 0 0 v2 0 0 0

1 0 0 1 0 0 0 v3 0 0

1 0 0 0 1 0 0 0 v4 0

1 0 0 0 0 0 0 0 0 v5

which is equivalent to specifying a separate function for each interval – this is perhaps illustrated
in a ‘more obvious’ fashion in the following DM, which is equivalent to the one above (although
interpretation of the β terms is clearly different).

1 v1 0 0 0 0 0 0 0 0

0 0 1 v2 0 0 0 0 0 0

0 0 0 0 1 v3 0 0 0 0

0 0 0 0 0 0 1 v4 0 0

0 0 0 0 0 0 0 0 1 v5

Alternatively, you can ‘discretize’ the covariate, and use a multi-state model (chapter 10) to model
transitions as a function of the covariate ‘class’ the individual is in. For example, suppose you believe
that survival from time (i) to (i+1) is strongly influenced by the size of the organism at time (i). Now,
size is clearly a continuously distributed trait. But, perhaps you might reasonably classify each marked
individual as either ‘large’, ‘average’, or ‘small’ size. Then, each individual at each occasion is classified
into one of these 3 different size classes, and you use a multi-state approach to estimate the probability
of surviving as a function of being in a particular size class. If the covariate is not measured (typically,
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if the individual is not captured), then the missing value is accounted for explicitly by including the
encounter probability p in the model. Moreover, you would also be able to look at the relationship
between survival as a function of size, and the probability of moving among size classes.

Sounds reasonable, but you need to consider a couple of things. First, in applying this approach, you
are discretizing a continuous distribution, and how many discrete categories you use, and how you
decide to partition them (e.g., what criterion you use to define a ‘large’ versus ‘small’ individual), may
strongly influence the results you get. However, when there are a large number of missing covariate
values, or if discretizing seems ‘reasonable’, this is a robust and easily implemented approach. Second,
you might need to be a bit ‘clever’ in setting up your design matrix to account for trends (relationships)
among states, as we’ll see in the following worked example.

11.6.1. Continuous individual covariates & multi-state models...

Let’s work through an example – not only to demonstrate an application of multi-state modeling to this
sort of problem (giving you a chance to practice what you learned in Chapter 10), but also to force you
to think deeply (yet again) about the building of a design matrix.

Consider a situation where we believe there is strong directional selection on (say) body size, where
larger individuals have higher survival than do smaller individuals. Suppose we have categorized
individuals as ‘small’ (S), ‘medium’ (M) and ‘large’ (L). For this example, we simulated a 6-occasion
data set (ms_directional.inp) according to the parameter values for ‘size-specific survival’ tabulated
at the top of the next page. If you look closely, you’ll see that within each interval, the difference in the
latent survival probability used in the simulation differs by a constant multiplicative factor such that
there is a linear increase in survival with size.

interval

state 1 2 3 4 5

S 0.500 0.700 0.600 0.700 0.700
M 0.525 0.749 0.624 0.749 0.749
L 0.551 0.801 0.649 0.801 0.801

However, if you look even more closely, you’ll note that the rate of this increase in survival with
size is not constant over intervals. So, imagine that for each time interval, you calculate the slope of the
relationship between survival and size. This slope should show heterogeneity among intervals (i.e., the
strength of directional selection on size varies over time).

To make things ‘fun’ (i.e., more realistic) we’ll also specify some size-specific transition parameters:

from

S M L

S 0.7 0.0 0.0
to M 0.2 0.8 0.0

L 0.1 0.2 1.0

So, small (S) and medium (M) individuals can stay in the same size class or grow over a given interval,
but individuals cannot get smaller. We’ll assume that the encounter probability for all size classes and
all intervals is the same; however, to make this even more realistic, we’ll assume that p � 0.7 for all size
classes – since p < 1, then we have ‘missing covariates’.
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So, start MARK, and begin a new ‘multi-state’ analysis: select the ms_directional.inp file, and
specify 6 occasions, and 3 states: S, M, L. We’ll start with a general model with time-dependence in
survival,among states,andamong time intervals. We’llmake the encounterparameterp constantamong
states and over time, and will make ψ constant within state. This general structure is reflected in the
following PIM chart:

Now, before we run this model, we have to consider if there are any parameters we need to fix (due to
logical constraints). As noted earlier, some of the transitions are not possible; specifically,ψMS

� ψLM
�

ψLS
� 0. Thus, looking at our PIM chart, we see that this corresponds to setting parameters 19, 21 and

22 to 0.

Go ahead and fix these parameters in the numerical estimation setup window. Call this model
‘s(state*time)p(.)psi(state)’, run it, and add the results to the browser. If we look at the estimates,
we’ll see that, by and large, the values are consistent with the underlying model structure.

OK – on to the ‘clever’ design matrix we alluded to before. The model we just fit is a naïve model,
as far as our underlying hypothesis is concerned – it is a model which simply allows the estimates for
survival to vary among states, and over time. In essence, a simple heterogeneity model. By itself, this
is not particularly interesting, although it is arguably a reasonable null model.

But, we’re interested in a particular a priori hypothesis: specifically, that survival increases with size.
We may also suspect that the strength (magnitude) of this directional selection favoring larger sized
individuals varies over time. So, what we want to fit is a model where, within a given interval, survival
is constrained to be a linear function of size (i.e., follow a trend), and that the slope of this trend may
vary over time.

So, here’s the tricky bit – in effect, we’re now going to treat each time interval as a group, and ask
if the slope of a relationship between survival and size varies among levels of this group (i.e., among
time intervals). So, we need to figure out how to do two things: (1) build a design matrix where each
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time interval is a group, and (2) within a time interval, have survival constrained to follow a trend with
size among states (i.e., an ordinal constraint on survival with increasing size). How do we do this?

Well, with a bit of thought, you might see your way to the solution. First, start by writing out the linear
model. We know we need an intercept (β1). There are 6 occasions, so 5 time intervals, meaning we need
4 columns in the design matrix to code for the TIME grouping (β2 → β5). Next, we want to impose
a TREND over states. Recall from Chapter 6 how we handled trends: a single column consisting of an
ordinal series. So, for TREND, one column (β6). Next, the interaction term of TIME and TREND - (4× 1) � 4

columns for the interaction terms (β7 → β10). So, for the survival parameter,

S � β1

+ β2(T1) + β3(T2) + β4(T3) + β5(T4)

+ β6(TREND)

+ β7(T1.TREND) + β8(T2.TREND) + β9(T3.TREND) + β10(T4.TREND)

Now, encounter probability p is constant among states and over time, so one column (β11) for that
parameter. For the ψ parameters, one for each of the estimated transitions. Remember that if there are n

states that there are n(n−1) estimated transitions, then for 3 size states, 3(3−1) � 6 transitions, meaning
6 columns (β12 → β17). So, in total, our design matrix should have 17 columns. So, we tell MARK we
want to build a ‘ reduced design matrix, with 17 columns. MARK will then respond by giving us a
‘blank’ design matrix with 17 columns.

Starting the process of specifying our design matrix is easy enough: a column of 15 ‘1’s for the
intercept. Then, looking back at our linear model, we see that we next want to code for the 5 TIME
intervals: 4 columns (β1 → β4). We use the same coding scheme we’re familiar with – all we want to do
is make sure the dummy-variable structure unambiguously indicates the time interval:

So far, so good. Now, for the ‘hard part’. We now need to code for TREND. But, remember, here, we’re
not coding for TREND over TIME, but rather, TREND over states within TIME. You might remember that if
we have 3 levels we want to constrain some estimate to follow a trend over, then we can use the ordinal
sequence 1, 2, and 3 as the TREND covariate (check the relevant sections of Chapter 6 if you’re unsure
here). But, where do we put these TREND coding variables?
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The key is remembering – TREND among states within TIME interval. So, here is how we code TREND for
this model:

Holy smokes! OK, after you’ve caught your breath (or had a beer or two), it’s actually not that bad.
Remember,TREND among states within TIME interval. So, for the first interval for the 3 states,corresponding
to rows 1, 6, and 11, respectively, we enter 1, 2 and 3. Similarly, for the second interval for the 3 states,
corresponding to rows 2, 7, and 12, respectively, we again enter 1, 2 and 3, and so on for each of the
intervals. Think about this – remember, TIME is a grouping variable for this model.

After all this, the interaction terms (and the encounter and transition parameters) are straightforward
(the full design matrix is shown below):
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Go ahead and run this model – call it ‘s(time*trend)p(.)psi(state)’, where the time*trend part
indicates an interaction of the trend among TIME intervals. Run the model, and add the results to the
browser. Then, build the additive model (by deleting the interaction columns from the design matrix)
– call this model ‘s(time+trend)p(.)psi(state)’, and again, add the results to the browser.

We see clearly that our model constraining survival to show a trend among states,with full interaction
among time intervals, is by far the best supported model. Of course, this isn’t surprising, since the data
were simulated under this model.

So – a fairly complex example ofusing a multi-state approach to handle covariates whichvary through
time. And, yet another example of why it is important to have a significant level of comfort with design
matrices – unless you do, you won’t be able to build the ‘fancy models’ you’d like to.

11.7. Individual covariates as ‘group’ variables

Suppose you were interested in whether or not survival probability differed between male and female
dippers. Having come this far in the book, you’ll probably regard this as a trivial exercise – you specify
the PIMs corresponding to the two sexes, perhaps construct the corresponding design matrix, and
proceed to fit the models in your candidate model set. This is all fairly straightforward, and easy to
implement – in part because the problem is sufficiently ‘small’ (meaning,only two parameters, relatively
few occasions, only two groups) that the overall number, and complexity of the PIMs you construct (and
the corresponding design matrix) is small. But, as we’ve seen, especially for ‘large’ problems (many
parameters, many occasions, many PIMs), manipulating all the PIMs and the design matrix can become
cumbersome (even given the convenience of manipulating the PIMs using the PIM chart).

Is there an option? Well, as you might guess, given that this chapter concerns the use of individual
covariates, you can, for a number of categorical models, use an alternative approach based on individual
covariates. Such an approach can in some cases be easier and more efficient to implement. We’ll consider
a couple of examples here, starting with the dippers.

11.7.1. Individual covariates for a binary classification variable

Let’s consider fitting the following 3 candidate models to the data collected for male and female dippers:

{

ϕg∗t p·
}

,
{

ϕg+t p·
}

,
{

ϕg p·
}

,

where g is the ‘grouping’ variable – in this case, sex (male or female). Recall that the dipper data
(dipper.inp) consist of live encounter data collected over 7 encounter occasions. We specify 2 attribute
groups in the data type specification window in MARK (which we’ll label m and f, respectively), and
proceed to fit the three models in the candidate model set.
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To specify the underlying parameter structure for our general model
{

ϕg∗t p·
}

, we’ll use fully time-
dependent PIMs for survival, and constant PIMs for the encounter probability. The PIM chart looks
like

and the corresponding design matrix is

We’ll skip the details on how to modify this design matrix to specify the remaining two models in
the model set (you should be pretty familiar with this by now).
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The results of fitting the three models to the dipper data are shown below:

Now, let’s consider using an individual covariate approach to fitting the same three models to the
dipper data. Our first step involves reformatting the input file. We need to reformat the input file to
specify gender as an individual covariate. Much like with the design matrix, you need to consider how
many covariates you need to specify group (in this case, sex). Clearly, in this case, the grouping variable
is binary (has only two states), and thus we need only a single covariate to indicate group (sex). How
do we reformat our data, using a single covariate to indicate sex? We’ll use ‘1’ to indicate males, and
‘0’ to indicate females. Now, we reformat the dipper data as follows – consider the following table of
different encounter histories (selected from the original dipper.inp file in ‘standard’ format), which
we’ve transformed to use an individual covariate approach:

standard reformatted

1111110 1 0; 1111110 1 1;

1111100 0 1; 1111100 1 0;

1111000 1 0; 1111000 1 1;

1111000 0 1; 1111000 1 0;

1101110 1 0; 1101110 1 1;

The key is to remember that under the original ‘standard’ formatting, there is one column in the
input file for each of the groups: two sexes, two columns following the encounter history itself. So, a ‘1
0’ indicates male (1 in the male column, 0 in the female column), and a ‘0 1’ indicates a female (0 in the
male column, 1 in the female column). When using an individual covariates approach, you have only
one column for the covariate.

But, notice there are 2 columns after the encounter history. Why? Don’t we need just 1 covariate
column? Yes, but remember that we also need a column of ‘1’s’ to indicate the frequency of number of
individuals with a given encounter history (and since we’re working with individual covariates, each
encounter history corresponds to one individual, hence the frequency column has a ‘1’ in it for each
individual history). The first column after the encounter history is the frequency, and the second column
is the covariate column for group (sex). So, a male in the original file (indicated by ‘1 0’) becomes ‘1
1’ in the reformatted file, and a female in the original file (indicated by ‘0 1’) becomes ‘1 0’ in the
reformatted file. The reformatted data are contained in the file dipper_ind.inp (we’ll leave it to you to
figure out an efficient way to transform your data from one format to the other).

Now, when we specify the data type in MARK, we do not indicate 2 attribute groups, but instead
change the default number of individual covariates from 0 to 1. We’ll call this covariate s (for sex). If
we make the encounter probability constant, the corresponding PIM chart should look like the one
pictured at the top of the next page. Note that there are now only 6 parameters in the PIM chart for
survival, instead of the 12 parameters specified in the PIM chart of our general model using the standard
input format. Obviously, we’re going to need to make up the difference somehow. In fact, you may have
already guessed – by entering the individual covariates into the design matrix.
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For our general model
{

ϕg∗t p·
}

, here is the corresponding design matrix using individual covariates:

We see that it has 13 columns, corresponding to 13 estimable parameters – we know from our initial
analysis that this model does indeed have 13 estimable parameters. From this design matrix, we can
build the other two models in the candidate model set:

{

ϕg+t p·
}

,
{

ϕgp·
}

,

simply by deleting the appropriate columns from the design matrix (e.g., for the additive model
{

ϕg+tp·
}

, we simply delete the interaction columns 8→ 12).
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Here are the model fits for the 3 models, built using the individual covariates approach:

Compare them with the results obtained using the standard approach where sex was treated as an
‘attribute group’:

We see that the model AICc values, and the number of parameters, are identical between the two.
However, the deviances are different. Does this indicate a problem? No – not if you think about it for
a moment. If the AICc values and the number of parameters are the same, then the likelihoods for the
models are also the same (since the AICc is simply a function of the sum of the likelihood and the
number of parameters – if two out of the three are the same between the different analyses, then so
must the third (likelihood) be the same). In fact, if you look closely at the deviances, you’ll see that
the difference between the deviances – which is related to the likelihood (as discussed elsewhere) – is
identical. For example, (666.6762− 659.6491) � (84.1991 − 77.1720) � 7.0271.

So, the results are identical, regardless of the approach taken (attribute groups versus individual
covariates coding for groups). And, it is pretty clear that the number of PIMs and the design matrix
for the analysis using individual covariates is smaller (easier to handle, potentially less prone to errors)
when using individual covariates. As such, is there any reason not to use the individual covariate
approach to handling groups?

There are at least two possible reasons why you might not want to use the individual covariate
approach for coding groups. First, as discussed earlier in this chapter, execution time generally increases
for models involving individual covariates. For very large, complex data sets, this can be a significant
issue.

Second,and perhaps more important,while the individual covariate approach might simplify aspects
of building the models, in fact it complicates derivation (reconstitution) of group-specific parameter
estimates. For example, take estimates of ϕ from our simplest model,

{

ϕgp·
}

. Using the standard
attribute group approach, the estimates MARK reports formale and female survival are ϕ̂m � 0.5702637

and ϕ̂ f � 0.5507352, respectively.
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What does MARK report for the estimates for this model fit using the individual covariates approach?

Clearly, the reported estimates using individual covariates appear to be quite different. But, are
they? What does the value ϕ̂ � 0.5601242 represent? What about the value 0.4795918 reported for
the sex covariate, s? How can we reconstitute separate estimates of apparent survival for both males
and females?

The key is remembering that this analysis is based on individual covariates. Recall that MARK defaults
to reporting the parameter estimates for the mean value of the covariate. In this case, the sex covariate
is 1 (indicating male) or 0 (indicating female). If the sex-ratio of the sample was exactly 50:50, then
the mean value of the covariate would be 0.5. In fact, in the dipper data set, 47.96% of the individuals
are male. Does that number look familiar? It should – it is the value of 0.4796 reported (above) as the
average value of the covariate. And, the estimates of ϕ̂ are the reconstituted values of survival for an
average individual. Thus, the value of 0.5601242 is essentially identical (to within rounding error) to the
weighted average of ϕ̂m � 0.5702637 and ϕ̂ f � 0.5507352, which we obtained from the analysis using
attribute groups ([0.4796× 0.5702]+ [0.5204× 0.5507]) � 0.5601) – here, the weights are the frequencies
of males and females in the sample (i.e., the sex ratio of the sample).

OK – fine, but that still doesn’t answer the practical question of how to reconstitute separate survival
estimates for males and females? The ‘brute-force’ approach is to use a ‘user-specified covariate
value’, when you setup the numerical estimation. You do this by checking the appropriate radio button:

Now, when you click the ‘OK to run’ button, MARK will ask you to specify the individual covariate
value for that model – in this case, either a 1 (for male) or 0 (for female). If we enter a ‘1’, run the model,
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and then look at the reconstituted parameter estimates, MARK shows ϕ̂ � 0.5703, which is exactly
what we expected for males. Similarly, if instead we enter a ‘0’ for the covariate value, MARK shows
ϕ̂ � 0.5507 for females, again, precisely matching the estimate from the model fit using attribute groups.

OK, that is a functional solution, but not one that is particularly elegant (it can also be cumbersome
if you have multiple levels of group, or a lot of interactions between one or more grouping variables
and – say – time). It also is somewhat devoid of ‘thinking’, which is rarely a good strategy, since not
understanding what MARK is doing when you ‘click this button’ or ‘that button’ will catch up with you
sooner or later. The key to understanding what is going on is to remember from earlier in this chapter
how parameter estimates were reconstituted for a given value of one or more individual covariates.
Essentially, all you need to do is calculate the value of the parameter on the logit scale (assuming you’re
using the default logit link), and then back-transform to the real probability scale. For model

{

ϕg p·
}

,
the linear model is

logit(ϕ̂) � β1 + β2(s)

� 0.2036416+ 0.0792854(s)

So, if the value of the covariate is 1 (for males), then

logit(ϕ̂m ) � β1 + β2(s)

� 0.2036416+ 0.0792854(1)

� 0.282927

which, when back-transformed from the logit scale to the normal probability scale,

ϕ̂m �
e0.282927

1 + e0.282927
� 0.570264

which is identical (within rounding error) to the estimate for male survival MARK reports using either
the attribute group approach, or by specifying the value of the covariate in the numerical estimation
using the individual covariate approach. The same is true for reconstituting the estimate for females.

While this is easy enough, it can get tiresome, especially if the linear model you’re working with is
‘big and ugly’. Even for fairly simple models like

{

ϕg∗tp.
}

, the linear model you need to work with can
be cumbersome:

logit(ϕ) � β1 + β2(s) + β3(t1) + β4(t2) + β5(t3) + β6(t4) + β7(t5)

+ β8(s · t1) + β9(s · t2) + β10(s · t3) + β11(s · t4) + β12(s · t5)

Each extra term in the equation adds to the possibility you’ll make a calculation error. The complexity
of the linear equation you need to work with will clearly be increased if you have> 2 levels of a grouping
factor. We consider just such a situation in our final example.

11.7.2. Individual covariates for non-binary classification variables

Here, we consider the analysis of a simulated data set with 3 levels of some grouping variable (we’ll
call the grouping variable colony, and the three levels ‘poor’, ‘fair’, and ‘good’, reflecting the impact of
some colony attribute on – say – apparent survival). The true model under which the simulated data
(contained in cjs3grp.inp) were generated is model

{

ϕg+t p.
}

– additive survival differences among the
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3 colonies (in fact, additive, and ordinal, such that ϕg > ϕ f > ϕp , although this ordinal sequencing isn’t
of primary interest here). In the input file, the group columns (from left to right) indicate the poor, fair
and good colonies, respectively. For our model set, we’ll fit the same models (structurally) that we used
for the dipper data used in the preceding example:

{

ϕg∗t p·
}

,
{

ϕg+t p·
}

,
{

ϕg p·
}

. Here are the results for
the analysis of the data formatted using the attribute grouping approach:

As expected, model
{

ϕg+t p·
}

has virtually all of the support in the data (it should, given that it was
the true model under which the data were simulated in the first place).

Now, let’s recast this analysis in terms of individual covariates. As noted in the preceding example,
we need to specify enough covariates to correctly specify group association. Your first thought might
be to use a single column, with (say) a covariate value of 1, 2 or 3 to indicate a particular colony. This
would work, but the model you’d be fitting would be one where you’d be constraining the estimates to
following a strict ordinal trend (this is strictly analogous to how you built trend models in Chapter 6).
What if we simply want to test for heterogeneity among colonies? This, of course, is the null hypothesis
of the standard analysis of variance. Since there are 3 colonies, then (perhaps not surprisingly) we need
2 columns of covariates to uniquely code for the different colonies. In effect, we’re using exactly the same
logic in constructing the covariate columns as we would in constructing corresponding columns in the
design matrix. In fact, it is reasonable to describe what we’re doing here – with individual covariates –
as ‘moving’ the basic linear structure out the of the design matrix, and coding it explicitly in the input
file itself.

We’ll call the covariates c1 and c2. For dummy coding of the colonies, we’ll let ‘1 0’ indicate the
first (poor) colony, ‘0 1’ indicate the second (fair) colony, and ‘1 1’ indicate the third (good) colony.
So, the encounter history ‘111011 1 0 0’ in the original file (indicating an individual from the poor
colony) would be recoded as ‘111011 1 1 0’. Again, the first column after the encounter history after
recoding is the frequency column, and is a ‘1’ for all individuals (regardless of which colony they’re in).
The following two columns indicate values of the covariates c1 and c2, respectively. The reformatted
encounter histories are contained in csj3ind.inp.

Now, when we specify the data type in MARK, we set the number of individual covariates to 2, and
label them as c1 and c2, respectively. The design matrix corresponding to the most general model in the
candidate model set

{

ϕg∗t p.
}

is shown at the top of the next page. Column 1 is the intercept, columns
2-3 are the covariates c1 and c2 (respectively), columns 4 → 7 are the time intervals (6 occasions, 5
intervals), columns 8 → 12 and 13 → 17 are the interactions of the covariates c1 and c2 with time,
respectively. Column 18 is the constant encounter probability. Go ahead and fit this model to the data –
notice immediately how much longer it takes MARK to do the numerical estimation (again, one of the
penalties in using the individual covariate approach is the increased computation time required).
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Here are the results for our candidate model set:

If you compared these results with those shown on the preceding page (generated using group
attributes rather than individual covariates), you’ll see they are identical (again, the differences among the
model deviances are identical, even if the individual model deviances are not). Again, using individual
covariates in this case seems like a reasonable ‘time-savings’ strategy, since the number of PIMs, and
the complexity of the general design matrix, is considerably reduced relative to what you’d face if you
worked directly with attribute groups in the ‘standard’ way.

However, as noted in our discussion of the preceding dipper analysis, there are other potential ‘costs’
which might temper your enthusiasm for using the individual covariate approach to coding ‘attribute
groups’. First, you’ll need to handle reconstituting parameter estimates from what might potentially
be pretty sizeable linear model (for our present example, it’s sufficiently sizeable – 15 terms – that we
won’t write it out in full here). Second, you (instead of MARK) would have to handle the accompanying
calculation of SE of the reconstituted estimates (using the Delta method – Appendix B).

However, while this is possible (albeit somewhat time consuming), what is not possible is the
derivation of the SE for the effect size (see Chapter 6 – section 6.12) for the difference between levels of
a discrete ‘attribute variable’ when you’ve coded the ‘attribute variable’ using an individual covariate
(e.g., ‘sex’ – see section 11.7; the dipper example in subsection 11.7.1). Calculation of the SE for the
‘effect size’ (i.e., the difference between the estimates for different levels of the ‘attribute variable’)
requires an estimate of the variance-covariance matrix between estimates for the different attribute
levels, which is not estimable when using the individual covariate approach. Finally, generating model
averaged parameter estimates from models with individual covariates is decidedly more complicated
(as discussed in the next section) than for models without individual covariates.

So, while there is a clear ‘up-front savings’ in terms of simpler PIMs, and simpler design matrices,
when using the individual covariate approach to handling attribute groups, the ‘after-the-fact cost’ of
the number of things you’ll need to do by hand (or, more typically, program into some spreadsheet)
to generate parameter estimates is not insubstantial, and may be more than the hassle of dealing with
lots of PIMs and big, ugly design matrices. An alternative to using individual covariates to simplify
model-building is to use the RMark package (see Appendix C).
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11.8. Model averaging and individual covariates

In chapter 4 we introduced the important topic of model averaging. If you don’t remember the details,
or the motivation, it might be a good idea to re-read the relevant sections. In a nutshell, the idea behind
model averaging is pretty simple: there is uncertainty in our model set as to which model is ‘closest
to truth’. We quantify this uncertainty by means of normalized AIC weights – the greater the model
weight, the more support in the data for a given model in that particular model set. Thus, it seems
reasonable that any average parameter value must take this uncertainty into account. We do this by (in
effect) weighting the estimates over all models by the corresponding model weights (strictly analogous
to a weighted average that you’re used to from elementary statistics).

For models with individual covariates, you might guess that the situation is a bit more complex. The
model averaging provides average parameter values over the models, but what you’re often (perhaps
generally) most interested in with individual covariates is the ‘average survival probability for an
organism with a value of individual covariate XYZ’. For example, suppose you’ve done an analysis
of the relationship of body mass to survival, using individual body mass as a covariate in your analysis.
Some of your models may have body mass (mass) included, some may have mass, and mass2 (as in the
first example in this chapter). What would report as the ‘average survival probability for an individual
with body mass X’?

Mechanically, what you would need to do, if doing it by hand, is take the reconstituted values of ϕ for
each model, for a given value of the covariate, then average them using the AIC weights as weighting
factors (for models without the covariate, the β for the covariate is, in fact, 0). This is fairly easy to do,
but a bit cumbersome by hand. Moreover, you have the problem of calculating the standard errors.

Fortunately, MARK has a couple of options to let you handle this ‘drudgery’ automatically. Basically,
you can either (i) specify (‘define’) the value of the individual covariate, and model average for that
value or (ii) you can calculate (and plot) the value of the model-averaged parameter over a range of
covariate values, using the individual covariate plot capability.

Consider the following example – here we’ve simulateda new live encounterdata set (indcov1_avg.inp,
8 occasions), where survival (ϕ) is a function of body mass, m (over the range 85-140 mass units). The
form of the relationship used in simulating the encounter data is shown in the following figure:
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Here, we see that the relationship between survival and body mass is non-linear – there is a tendency
for survival to increase with mass, but at higher mass values the rate of change asymptotes. The data
were simulated assuming no annual variation in the relationship between survival and mass, and no
temporal variation in the encounter probability.

We will start by building a candidate model set consisting of 3 models: {ϕ.p.}, {ϕmp.}, and{ϕm+m2p.}.
What is important to note about this model set is that we have 2 models which we anticipate will get
some significant support in the data (models {ϕmp.}, and {ϕm+m2 p.}). We also have a model, {ϕ.p.},
which is notable because it does not contain the covariate. As we will discuss, this is an important
consideration – how does ‘model averaging’ account for models without the individual covariate?

If we fit these 3 models to the data,

we see that there is relatively strong support for the model where survival is a linear function of mass,
{ϕmp.}, but there is non-negligible support for the non-linear model, {ϕm+m2 p.}.

Now, we might for some purposes want to know what the model-averaged survival probability is for
a particular mass – say, some value near the extremes of the range (a very light or very heavy individual),
or perhaps the mean value. MARK makes it very easy to do this. Simply build the models, each time
specifying whether you want MARK to provide real parameter estimates from either the first encounter
record, a user-defined set of values, or the mean of the covariates.

For purposes of demonstration, we’ll use a user-defined covariate value (which allows us to generate
a model-averaged estimate of survival for a covariate value we specify). Now, if you know you want to
do this before you run your models, then fine. Simply select the model you want to re-run, and then in
the ‘Setup Numerical Estimation Run’ window, simply check the ‘user-specific covariate values’
option box in the lower right-hand corner:

If you’ve checked the ‘user-specified covariate values’ radio button, once you click the ‘OK to
run’ button you’ll then be presented with another small window asking you to enter the values of the
covariate(s) you want to generate real parameter estimates for.

But quite often, you may run your models using the default covariate value (the mean), and then
‘after the fact’, decide you want to re-run the model, this time using a user-define covariate value.
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In fact, MARK makes this quite easy do. Simply select ‘Run | Re-run models(s)’ from the main
menu. This will bring up the following dialog window:

All of the models currently in the browser are shown in the main part of this window. You select the
models you want to re-run (typically, ‘Select all’). Then, to specify individual covariate values to use
for re-running the models, simply check that box, as shown on the preceding page. When you click ‘OK’,
another window will pop up, asking you to enter the value of the covariate you want to use – say, 85
for mass (m):

Now, all that remains is to run the model averaging routine. For this example, using m=85 as the value
of the covariate, model averaged survival value is

One conceptual issue to consider – body mass (m) was contained in 2 of 3 models in our candidate
model set. What about the third model, {ϕ.p.} which does not contain body mass? Well, clearly, if the
covariate for a particular covariate does not show up in a model, then the β estimate for that covariate
is 0, for that model. But, our interest is (typically) in model averaging real parameter estimates, not β
estimates.
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So how does MARK average real estimates over models including those that do not include the
covariate? You can get a partial clue by looking back at the table of estimates used in the model averaging
(above). Not that the reported estimate for survival for model {ϕ.p.} is 0.6524177. Where does this value
come from? Simple – it is the estimate of survival you would get if you ignore the mass covariate (which
is implicit in the model, which does not include mass), which in effects is equivalent to assuming that all
individuals in the sample have the same mass – i.e., the average mass for the sample. You can confirm
this for yourself by re-running all the models, and changing the user-specified model for mass. If you
do this, you will see that the reported estimates of survival for models {ϕ.p.} and {ϕmp.} will change,
since they both include mass as a term in the model. However, the reported value for model {ϕ.p.} will
not change.

While calculating model averaged survival for specific, user-defined valuesof the covariate (as above)
is straightforward, we’re often most interested in evaluating (and visualizing) the model averaged
parameter (in this example, survival) over a range of the covariate (mass). This is quite easy to do
in MARK. Simply select ‘Output | Model Averaging | Individual Covariate Plot’:

A dialog window nearly identical to the single model plot we considered earlier (section 11.5) is then
opened (top of the next page), and you select the real parameter you want to plot.
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However, the design matrix entry now shows the names of the individual covariates available to
be plotted, because not all models in the results browser would normally use the same functional
relationship between the real parameter and the individual covariate that is to be plotted. For example,
some models with AICc weight in the results browser might not have any relationship between the
covariate and the real parameter to be plotted, meaning a flat line results for this model. As with the
single model plot, you select from the second list box the individual covariate to be plotted, and the
range over which to plot the function. If there were other covariates included in one or more of the
models in the model set, all of these other individual covariates are listed with the values used when
they are included in the model for the real parameter being plotted.

For our present example, the plotted model averaged values (below) don’t indicate much evidence
for any non-linearity in the relationship between survival and mass (in other words, this figure doesn’t
look very similar to the true generating function used to generate the data used in this analysis – p. 45).

However, this plot of model averaged values is entirely consistent with the previous observation
that the non-linear quadratic model in the candidate model set, {ϕm+m2 p.}, did not receive appreciable
support in the data. In fact, the linear model, {ϕmp.}, had 2.6 times the support in the data as the
quadratic model – and this much stronger support for the linear model is reflected in the model averaged
estimates.

11.8.1. Careful! – traps to watch when model averaging

In the process of building some of your candidate models, you may have changed the definition of some
of the PIMs with the ‘Change PIM Definition’ menu choice. For example, consider a multi-state model
(Chapter 10) – if the first transition probability from strata A is defined in some models as ψA→A , and
in other models as ψA→B , and these real parameters are model averaged, the results may be incorrect.
Thus, be sure to check the model averaging results to verify that correct parameters were selected.

Another potential ‘gotcha’ might arise if you want to use the ‘individual covariate plot’ for
modeling averaging, and if you’ve used different PIM structures for some of your models in your
candidate model set (rather than using the same PIM structure for all your models, using the design
matrix to construct reduced parameter models based on that PIM structure). For example, consider the
example presented at the start of this section, based on the simulated data in indcov_avg1.inp. Recall
that for these data, we fit the following 3 candidate models: {ϕ.p.}, {ϕmp.}, and {ϕm+m2 p.}.
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However, what we didn’t discuss when we initially analyzed these data is what the underlying PIM
structure was. We noted that we assumed no temporal variation in ϕ or p. As such we could have used
either of the following PIMs and corresponding DM for (say) model {ϕ

m+m2 p.}:

which is entirely equivalent (in terms of fit to the data, and parameter estimation) to

For purposes of making the point, we’ll refer to the first approach as being based on ‘t-PIM’ (say, for
‘time-based PIM’), and the second approach being based on ‘simple PIM’ (no time-dependence in the
PIM). We’ll use the time-based PIMs for models {ϕ.p.} and {ϕmp.}, and the ‘simple’ PIM for model
{ϕm+m2 p.}.

As you can see from the browser (below), the results of fitting these models to the data are identical
to what we saw before, even though we have used a different underlying PIM structure for one of the
models:

Make model {ϕmp.} active, by selecting it in the browser, and retrieving it. Recall that this model
was built with the time-based PIM.

Now, select ‘Output | Model averaging | Individual covariate plot’. You’ll be presented with
the individual plot window shown at the top of the next page.
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You’ll see that you have 7 parameters for ϕ (labeled 1:Phi→ 7:phi). Now, we ‘know’ that here, we
could select any of the 7 x:Phi, because our DM is set up to constrain them to be equivalent.

However, if instead we made model {ϕ
m+m2 p.} active, then we see the following when we select

‘Output | Model averaging | Individual covariate plot’:

Now, we see see only 1 parameter for ϕ, not 7, as above. Why? because we constructed model
{ϕ

m+m2 p.} using a ‘simple’ PIM structure for the underlying model.

Now, in this particular case, you’ll end up with the same model averaged estimates regardless of
which model was ‘active’, but that may not always be the case (especially for complicated models where
the functional relationship between the covariate(s) and the parameter vary over time). So, the general
recommendation is to use a common PIM structure over all your models, and if you do want/need to
use a different PIM structure for some models in your model set, be careful when model averaging.

A final trap concerns individual covariates in particular. The user can specify the values of individual
covariates to be used to compute the real and derived parameter values. If different values of the
individual covariate are specified for different models to be model averaged, the results will be nonsense.

Thus, be sure to use the same individual covariate values in all models to be model averaged, e.g.,
the mean value. The real and derived estimates can be changed to use a different individual covariate
value with the ‘ReGenerate Real Derived Model(s)’ option in the results browser ‘Run’ menu.
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11.8.2. Model averaging and environmental covariates

In chapter 6 (section 6.16), we considered model averaging across models where survival or some other
parameter was constrained to be a function of one or more ‘environmental covariates’. Our interest is
in coming up with a way to estimate the relationship between the parameter and the covariate (similar
to what was presented in the -sidebar- starting on p. 28 of this chapter), but averaged over multiple
models.

As in Chapter6, let’s consider,again, the full Dipperdata set,where we hypothesize that the encounter
probability, p, might differ as a function of (i) the sex of the individual, (ii) the number of hours of
observation by investigators in the field, with (iii) the relationship between encounter probability and
hours of observation potentially differing between males and females.

Recall that our ‘fake’ observation hour covariates were:

Occasion 2 3 4 5 6 7

hours 12.1 6.03 9.1 14.7 18.02 12.12

Now, when we introduced this example earlier in this chapter, we fit only a single model to the data:

logit(p) � β1 + β2(SEX) + β3(HOURS) + β4(SEX.HOURS)

But, here, we acknowledge uncertainty in our candidate models, and will fit the following candidate
model set to our data:

model M1 logit(p) � β1 + β2(SEX) + β3(HOURS) + β4(SEX.HOURS),

model M2 logit(p) � β1 + β2(SEX) + β3(HOURS),

model M3 logit(p) � β1 + β2(HOURS),

model M4 logit(p) � β1 + β2(SEX).

There are a couple of things to note. First, this is not intended to be an ‘exhaustive, well-thought-out’
candidate model set for these data. We’re using these models to introduce some of the considerations for
model averaging. In particular, we’re using this example where encounter probability is hypothesized
to be a function of a continuous environmental covariate, to force us to consider how – and what – we
model average when some models include the environmental covariate (HOURS), and some don’t.

Let’s fit these 4 candidate models (M1 → M4) to the full Dipper data set, treating sex as a categorical,
group attribute variable. We’ll build all of the models using a design matrix approach, using the
encounter data in ED.INP. Note that models M2 → M4 in the model set are all nested within the first
model, M1. For all 4 models, we’ll assume that apparent survival, ϕ, varies over time, but not between
males and females.

The results of fitting our 4 candidate models to the full Dipper data are shown below:

We see from the AICc weights that there is considerable model selection uncertainty. In fact, the
∆AICc values among all models is < 4.
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Now, we want to fit the same candidate model set, but coding both SEX and HOURS as individual
covariates. Recall from p. 28 that we code each occasions covariate value as an individual covariate.
This requires reformatting the .inp data. Here are the top few lines of the reformatted .inp file (which
we’ll call ED_cov.inp):

The first 7 columns comprise the encounter history for the individual. Column 9 is the frequency
(1) for that individual. Column 11 is the coding for SEX, as an individual covariate (SEX=1, male, SEX=0,
female), and columns 13 → 42 list the environmental covariates (HOURS), coded as occasion-specific
individual covariates.

Now, that we’ve re-formatted our .inp file, let’s fit the same 4 candidate models. We’ll refer to the sex
covariate as sex, and the environmental covariates as h1,h2,h3,h4,h5, and h6, corresponding to HOURS for
each encounter occasion:

Compare these results with those shown in the browser at the top of this page. Note that the
reported deviances are quite different – because the underlying likelihood structures differ, depending
on whether you use individual covariates, or not. However, even though the deviances differ, the relative
AIC differences, and so on, are identical. And, if we looked at the reconstituted parameter estimates,
we’d see they were also identical.

OK, so we’ve just confirmed that our 4 candidate models built using the individual covariates
approach are ‘correct’, in that they match the models we built earlier, based on treating sex as a group
attribute variable, and entering the covariate values into the DM.

Now what? Well, now we can use the model averaging (and plotting capabilities) for individual
covariates in MARK, to generate model averaged estimates of the relationship between the parameter
(in this case, encounter probability, p), and the environmental covariate, HOURS.

In Chapter 6, we focussed on averaging over models for SEX=1 (males). Let’s try the same thing
here. Simply select ‘Output | Model Averaging | Individual Covariate Plot’ This will bring up the
model averaging window we’ve seen earlier in this chapter:
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Now, have a look what happens if we click the first encounter probability (7:p) and the first HOURS
covariate (h1):

On the right-hand side,we see the range of the individual covariate we want to plot (h1, corresponding
to encounter probability for sampling occasion 2, although it is not labeled as such). We’ll change this
range in a moment.

Below this are the other values of the covariates which will be ‘fixed’ during the averaging and
plotting. Note that the SEX covariate is reported as 0.4795911. Where does this number come from?
Remember, we coded males using SEX � 1, and females as SEX � 0. If we had an equal number of males
and females in our sample, then the average coding for SEX would be 0.5. However, in our sample,
we have slightly more females than males, and the average for SEX is 0.4795911 (which, in fact, is the
sex-ratio for our sample).

Below the SEX covariate value are the values of the environmental covariate HOURS for each encounter
occasions (h2 for occasion 3, h3 for occasion 4, and so on...).

To generate the plot we’re after, we’ll need to modify a few things (shown on the top of the next
page). First, since we are focussing on males (SEX � 1), we’ll change the value of the SEX covariate to
1. In addition, we’ll change the range of the individual covariate h1 we want to average over, and plot,
from 12.1 → 12.1 to (say), 5 → 20. Remember, it doesn’t matter which covariate you plot (p1 , p2, . . . ),
so long as you select the correct environmental covariate for that occasion (ie., 7:pwith h1, 8:pwith h2,
and so on...).

For convenience, we’ll also check the box to output everything to Excel.
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Back in Chapter 6 (section 6.16), we hand-calculated model averaged estimates for male encounter
probability as function of HOURS of observation, and their associated confidence intervals, which when
plotted, looked like the following:
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How do the results from our ‘averaging over individual covariates’ compare? In fact, they are
essentially identical.∗ Here is the plot generated by MARK, which is a near-perfect match to the hand-
generated plot shown at the bottom of the previous page:

If you look back at section 6.16 in Chapter 6, you’ll see that doing the calculation(s) ‘by hand’ was
a lot of work. Using the individual covariate model averaging capabilities in MARK, demonstrated in
this section, is much faster, and likely far less error-prone. The only really ‘trade-off’ is that to use the
approach based on individual covariates, you need to re-format your .inp file such that everything in
your analysis is coded using individual covariates (all attribute grouping variables, all environmental
covariates, everything...). Depending on the scope of your data set, and the models you’re fitting to
those data, this can also require a fair bit of work.

11.9. GOF Testing and individual covariates

Well, now that we’ve seen how easy it is to handle individual covariates, now for the good news/bad
news part of the chapter. The good news is that individual covariates offer significant potential for
explaining some of the differences among individuals, which, as we know (see Chapter 5), is one
potential source of lack of fit of the model to the data.

OK – now the bad news. At the moment, we don’t have a good method for testing fit of models with
individual covariates. If you try to run one of the GOF tests based on simulation or resampling – say,
the median-ĉ – you’ll be presented with a pop-up warning that ‘the median c-hat only works for models

without individual covariates’. The Fletcher-ĉ isn’t even printed in the full output. And so on.

For the moment, the recommended approach is to perform GOF testing on the most general model

∗ As discussed in Chapter 6, the back-transform of the model averaged value of logit(p̂) is not the same as the model averaged
value of the back-transforms of the individual estimates of p̂ from each model. This difference reflects Jensen’s inequality. In
Chapter 6, the reported and plotted model averaged estimates for the encounter probability, and associated 95% CI, were based
on the model averaged value of logit(p̂), while the values MARK uses for the individual covariate model averaging are based
on the model averaged value of the back-transforms of the individual estimates of p̂ from each model. The difference between
the two is generally very small.
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that does not include the individual covariates, and use the ĉ value for this general model on all of the
other models, even those including individual covariates. If individual covariates will serve to reduce
(or at least explain) some of the variation, then this would imply that the ĉ from the general model
without the covariates is likely to be too high, and thus, the analysis using this ĉ will be ’somewhat
conservative’. So, keep this in mind...

begin sidebar

individual covariates and deviance plots

One approach to assessing the fit of a model to a particular set of data is to consider the deviance residual

plots. While this can prove useful – in particular, to assess lack of fit because the structure of the model

is not appropriate given the data (e.g., TSMmodels – see Chapter 7), if you try this approach for models

with individual covariates, you’ll quickly run into a problem.

For example, consider the deviance residual plot for the first example analysis presented in this

chapter (for model {ϕ.p.}).

Clearly, something ‘strange’ is going on – we see fairly discrete ‘clusters’ of residuals, virtually all

below the 0.000 line. Obviously, this is quite different than any other residual plot we’ve seen so far.

Why the difference? In simple terms, the reason that the residual plots change so much when an

individual covariate is added is because the number of animals in each observation changes. Without

individual covariates, the data are summarized for each unique capture history, so that variation within

a history due to the individual covariate is lost. However, when the covariate is added into the model,

each animal (i.e., each encounter history, even if it is the same as another history) is plotted as a separate

point. The result is quite different, obviously. Without individual covariates, the binomial functions

are the sample size, so animals are ‘pooled’. With individual covariates, the number of animals is the

sample size, each resulting in a unique residual.

In other words, the deviance residual plots for models with individual covariates are not generally

interpretable.

end sidebar
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11.10. Summary

That’s it for Chapter 11! In this chapter, we looked at the basic mechanics of using MARK to fit models
where one or more parameters are constrained to be functions of individual covariates. Individual
covariates can be used with any of the models in MARK (not just recapture models). This is a significant
increase in the flexibility of analyses you can execute with MARK.
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CHAPTER 12

Jolly-Seber models in MARK

Carl James Schwarz, Simon Fraser University

A. Neil Arnason, University of Manitoba

The original Jolly-Seber (JS) model (Jolly, 1965; Seber, 1965) was primarily interested in estimating
abundance. Since then, the focus of many mark-recapture experiments changed to estimating survival
rates (but not abundance) using the Cormack-Jolly-Seber (CJS)models (Cormack, 1964; Jolly, 1965; Seber,
1965) particularly with the publication of Lebreton et al. (1992). In previous chapters concerning analysis
of live encounter data,we have focussed exclusively on CJS models. In recent years,however, interest has
returned to estimating parameters related to abundance such as population growth (λi), recruitment
( fi), as well as abundance (Ni).

∗

Much of the theory about estimating population growth, recruitment, and abundance can be found
in Williams et al. (2002).

12.1. Protocol

The protocol for JS experiments is very similar to that of CJS experiments. In each of K sampling
occasions, animals are captured. Unmarked animals are tagged with individually identifiable tags
and released. Previous marked animals have their tag numbers read and are again released.† The key
difference between JS and CJS experiments is the process by which unmarked animals are captured and
marked. In CJS experiment, no assumptions are made about how newly marked animals are obtained.
The subsequent process of recovering marked animals in CJS models is conditional upon the animal
being released alive at first encounter, and survival and catchability refer only to these marked animals.‡

In JS experiments, the process by which unmarked animals are newly captured to be marked and
released is crucial – the assumptions about this process allows the experimenter to estimate recruitment
and population sizes. In particular, it is assumed that unmarked animals in the population have the
same probability of capture as marked animals in the population, i.e., that newly captured unmarked
animals are a random sample of all unmarked animals in the population.

∗ One of the reasons for preferring estimation of population growth is that estimates of population growth are fairly robust
against heterogeneity in catchability (Schwarz, 2001), and tag loss (Rotella and Hines, 2005).

† Losses on capture are possible at every sampling occasion and are ignored in the discussion that follows.
‡ Of course, we hope that the survival of the marked subset of animals tells us something about the remaining unmarked animals

in the population at large.
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This assumption of equal catchability for marked and

unmarked animals is needed to estimate abundance

or recruitment or population growth and is required

for the Pradel, Link-Barker, POPAN, and Burnham JS

formulations in MARK...

Other assumptions about the experiment are similar to those for the CJS model:

• Animals retain their tags throughout the experiment.∗

• Tags are read properly.

• Sampling is instantaneous.

• Survival probabilities are the same for all animals (marked and unmarked) between
each pair of sampling occasions (homogeneous survival).

• Catchablity is the same for all animals (marked and unmarked) at each sampling
occasion (homogeneous catchability). This is the most crucial assumption for JS
models.†

• The study area is constant. If the study area changes over time, then the population
size may change with the changing size of the study area.

There are generally two sources of non-closure in any particular study. Animals may leave the
population through death or permanently emigrate. Conversely, animals may enter the study area from
outside (immigration) or be recruited from within the study area (e.g. fish growing into the catchable
portion of the population). Specific tests for closure have been developed (e.g., Stanley and Burnham,
1999), but more often tests for closure are performed by fitting models with no apparent mortality
(ϕ � 1), or no apparent recruitment ( f � 0, λ � ϕ, or b � 0), or both and letting the AICc indicate the
appropriate weight for such simpler models.

12.2. Data

The basic unit of analysis is the capture history, a sequence of 0’s and 1’s that indicates when a particular
animal was seen in the experiment. The JS models in MARK use the LLLLL capture history format. For
example, the history (‘011010’) indicates that an animal was captured for the first time at sampling
occasion 2, was seen again at sampling occasion 3, not seen at sampling occasion 4, seen at sampling
occasion 5, and not seen after sampling time 5.‡ Either individual or grouped capture histories may be
used.

In many papers, the list of capture histories is too long to publish, and so a series of summary statistics
are commonly used (Table 12.1; see also the reduced and full m-array descriptions in Chapter 5). For
example, the history (011010) would contribute a count of 1 to n2, n3, n5, u2, m3, m5, R2, R3, R5, r2, r3,
and z3.

∗ Refer to Cowen and Schwarz (2006) for dealing with tag loss in JS experiments.
† Refer to Pledger and Efford (1998) for details on dealing with heterogeneity in JS models.
‡ Again losses on capture are ignored for now but are handled in the same way as elsewhere in MARK.
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Table 12.1: Summary statistics often used for JS experiments. Losses-on-capture are found as ni − Ri .

Statistics Definition

ni Number of animals captured at occasion i, both marked and unmarked.
ni � mi + ui .

ui Number of unmarked animals captured at occasion i.

mi Number of previously marked animals captured at occasion i.

Ri Number of animals released alive at occasion i+, i.e., just after sampling
occasion i.

ri Number of animals from Ri that are subsequently captured after occasion
i.

zi Number of animals seen before i, seen after occasion i, but not seen at
occasion i.

While these summary statistics form the sufficient statistics for the Jolly-Seber probability model,
their use has fallen out of favor in place of the raw histories used by MARK for two reasons. First,
the use of individual covariates will require the individual capture history vectors (see Chapter 2, and
Chapter 11). Second, it is difficult to compute goodness-of-fit statistics (i.e., the RELEASE suite of tests;
Chapter 5) from the summary statistics.∗ If only summary statistics are available, it is possible to work
‘backwards’ and create a set of histories that will reproduce these summary statistics that can be used
with MARK to fit various models. One problem in using these pseudo-histories is that goodness-of-fit
tests are nonsensical – the goodness-of-fit tests require the full capture history of each animal.

12.3. Multiple formulations of the same process

There are a number of formulations used in MARK to estimate abundance and related parameters, e.g.,
the POPAN; the Link-Barker and Pradel-recruitment; and the Burnham JS and Pradel-λ formulations.
All of these models are slightly different parameterizations of the underlying population processes, and
all are (asymptotically) equivalent in that they should give the same estimates of abundance and related
parameters.

The two main differences among the various formulations are

1. the way in which they parameterize new entrants to the population

2. if estimation is conditional upon the animals actually seen in the study (refer to
Sanathanan 1972, 1977).

All of the formulations model the recapture of marked animals in the same way. In this section,
several of these models will be examined and contrasted.

∗ Indeed, if the summary statistics are used by themselves, the fully time dependent JS models will be ‘perfect’ fit to the summary
statistics regardless if the model overall is a good fit.
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12.3.1. The Original Jolly-Seber formulation

In the original JS formulation of Jolly (1965) and Seber (1965), the population process can be modeled as
shown in Figure 12.1. The parameters pi and ϕi are similar, but not identical to those in the CJS models.
The parameter pi is the probability of capture of both unmarked and marked animals that are alive at
occasion i (the CJS models referred only to marked animals); the parameter ϕi refers to the survival
probabilities of both marked and unmarked animals between occasions i and i + 1 (the CJS models
referred only to marked animals).

Figure 12.1: Original process model for JS experiments. pi represents the probability of capture at occasion
i; ϕi represents the probability of an animal surviving between occasions i and i + 1; and Mi and Ui
represent the number of marked and unmarked animals alive at occasion i. Losses-on-capture are not
modeled here, but are easily included.

ϕ1 ϕ2 ϕ3 ϕ4

t1 → t2 → t3 → t4 → t5 . . .

↑ ↑ ↑ ↑ ↑
p1 p2 p3 p4 p5

M1 M2 M3 M4 M5

U1 U2 U3 U4 U5

The number of marked animals in the population just before occasion i + 1 is found as Mi+1 �

(Mi + ui )ϕi where ui is the number of newly unmarked animals captured and subsequently marked.

The number of net new entrants to the population was defined as

Bi � Ui+1 − ϕi (Ui − ui )

The Bi values refer to the net number of new entrants to the population between sampling occasions
i and i + 1. The reference to ‘net’ number of new entrants implies that animals that enter between two
sampling occasions but then die before being subject to capture at occasion i+1 are excluded.∗ As in the
CJS models, the term survival refers to apparent survival – permanent emigration is indistinguishable
and treated the same as mortality. Similarly, the term births refers to any new animals that enter the
study population regardless if in situ natural births or immigration from outside the study area.

The likelihood function consists of three parts. The first part models losses-on-capture using a simple
binomial distribution as in the CJS models. The second part models the recapture of marked animals in
exactly the same way as in the CJS model. Finally, the third part models the number of unmarked animals

captured at occasion i as a binomial function of the number of unmarked animals in the population, i.e.,
ui is Bin(Ui , pi ).

The estimates of pi and ϕi are found in exactly the same way as in the CJS models. The estimated
unmarked population sizes were estimated as Ûi � ui/p̂i . The estimated number of births was found by
substituting in the estimates in the previous definition and does not form part of the likelihood. Finally,
estimates of population size at each time point are found by adding the estimates of Ui and Mi .

∗ The term gross number of entrants would include these deaths prior to the next sampling occasion. Refer to Schwarz et al. (1993)
for details on the estimation of these gross births.
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12.3.2. POPAN formulation

Schwarz and Arnason (1996) adopted a slightly different parameterization, for a number of reasons:

• The parameters Bi never directly entered into the likelihood function. The number
of entrants must be non-negative, but it was difficult to enforce B̂i ≥ 0 and negative
estimates of births were often obtained.

• Because the Bi did not appear in the likelihood, how could these be forced to be
equal across groups following the Lebreton et al. (1992) framework?

• How could death-only models (e.g., all Bi known to be zero) or birth-only models
(all ϕi=1) or closed models be obtained by constraining the likelihood function.

In their parameterization, first implemented in the computer package POPAN and now a sub-module
of MARK, they postulated the existence of a super-population consisting of all animals that would ever
be born to the population, and parameters bi which represented the probability that an animal from
this hypothetical super-population would enter the population between occasion i and i + 1 as shown
in Figure 12.2.∗

Figure 12.2: Process model for POPAN parameterization of JS experiments. pi represents the probability of
capture at occasion i; ϕi represents the probability of an animal surviving between occasions i and i+1; and
bi represents the probability that an animal from the super-population (N) would enter the population
between occasions i and i + 1 and survive to the next sampling occasion i + 1. Losses-on-capture are
assumed not to happened, but are easily included.

b0 b1 b2 b3 b4 N

ϕ1 ϕ2 ϕ3 ϕ4

t1 → t2 → t3 → t4 → t5 . . .

↑ ↑ ↑ ↑ ↑
p1 p2 p3 p4 p5

Now the expected number of net new entrants is simply found as E[Bi] � Nbi . If B0 represents the
number of animals alive just prior to the first sampling occasion, then

N � B0 + B1 + B2 + · · · + BK−1

In other words, the total number of animals that ever are present in the study population. The
parameters bi are referred to as PENT (Probability of Entrance) probabilities in MARK. Notice that
b0+b1+ · · ·+bK−1 � 1; – this will have consequences later when the models are fitted using MARK. Even
though the number of new animals is not modeled in the process, modeling the entrance probabilities
and a super-population size is equivalent.

∗ The super-population approach was first described by Crosbie and Manly (1985) where distribution functions (e.g. a Weibull
distribution) was used to model survival time once an animal had entered the population. To our knowledge, there is no readily
available computer code for the Crosbie and Manly (1985) model.
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Under this parametrization,

E[N1] � Nb0

E[N2] � E[N1]ϕ1 + Nb1

...

The probability ofany capture history can be expressedusing these parameters. Forexample,Pr[(01010)]
is found as:

Pr [(01010)] �
[

b0

(

1 − p1

)

ϕ1 + b1

]

p2ϕ2

(

1 − p3

)

ϕ3p4

[

1 − ϕ4 + ϕ4

(

1 − p5

) ]

As in the CJS models, the fate of the animal after the last capture is unknown – either it died, or it
survived and was not seen at occasion 5. In a symmetrical fashion, the fate of the animal before the first
time it is captured is also unknown. Either it was present in the population prior to sampling occasion
1 and wasn’t seen at occasion 1 and survived to occasion 2, or it entered the study population between
sampling occasions 1 and 2 and survived to sampling occasion 2 where it was captured for the first
time. The likelihood function is again a multinomial function over all the observed capture histories.
Schwarz and Arnason (1996) showed that it could be factored into three parts:

L � Pr
(

first capture
)

× Pr
(

subsequent recaptures
)

× Pr
(

loss on capture
)

where the second and third components are identical to the CJS models. It turns out that similar to CJS
models,not all parameters are identifiable and only functions of parameters can be estimated in the fully
time-dependent model. The set of non-identifiable parameters is given in Table 12.2. In particular, the
final survival and catchability parameters are confounded (as in the CJS models), and symmetrically
the initial entrance and catchability are confounded. This impacts three other sets of parameters, in
particular N1 and NK cannot be cleanly estimated, nor can b1 and bK−1. If confounding takes place, the
estimated super-population number may be suspect, so some care must be taken in fitting appropriate
models. For example, models with equal catchability over sampling occasions make all parameters
identifiable.

This confounding implies that careful parameter counting may have to be done when fitting POPAN

models. The fully time-dependent model {pt , ϕt , bt} has K parameters for catchability, K−1 parameters
for survival, K parameters for the PENTs, and 1 parameter for the super-population size for a total of
3K parameters. However, not all are identifiable and the PENTs must sum to one. Only the products
b0p1 and ϕK−1pK can be estimated, and one of the PENTs is not ‘free’ (as the sum must equal 1), leaving
3K − 3 parameters that can be estimated for each group.

Furthermore, as indicated in Table 12.2 (top of the next page), the b1 and bK−1 parameters are affected
(the estimates reflect the combination of parameters as listed in the table) which further affect N1 and NK .
While the latter parameter combinations are ‘estimable’, they seldom represent anything biologically
useful. The actual number of parameters reported by MARK in the results browser should be checked
carefully.
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Table 12.2: Confounded parameters in the POPAN parameterization in the fully time-dependent model. In
order to resolve this confounding, the models must make assumptions about the initial (p1) and final (pK )
catchabilities. For example, a model may assume that catchabilities are equal across all sampling occasions.

Function Interpretation

ϕK−1pK Final survival and catchability.

b0p1 Initial entrance and catchability.

b1 + b0(1 − p1)ϕ1 Entry between firstandsecondoccasions cannotbe cleanly estimated
because initial entrance probability cannot be estimated. MARK

(and other programs) will report an estimate for this complicated
function of parameters but it may not be biologically meaningful.

bK−1/ϕK−1 Entry prior to last sampling occasion cannot be cleanly estimated
because final survival probability cannot be estimated. MARK (and
other programs) will report an estimate for this complicated function
of parameters but it may not be biologically meaningful.

Once estimates of p, ϕ, b, and N are obtained, the estimated number of births is obtained as B̂i � N̂ b̂i .
The estimated population sizes are obtained in an iterative fashion:

N̂1 � B̂0

N̂2 � N̂1ϕ1 + B̂1

...

If losses on capture occur, they are removed before the population size at occasion i is propagated to
occasion i + 1.

The likelihood does not contain any terms for Bi or Ni – these are derived parameters and standard
errors for these estimates are found using the Delta method (see Appendix 2).

12.3.3. Link-Barker and Pradel-recruitment formulations

The Link-Barker (2005) and Pradel-recruitment∗ (1996) formulations are conceptually the same and
the process model is shown in Figure 12.3. The parameters for survival (ϕi) and catchability (pi) are
standard. The parameter fi is interpreted as a per capita recruitment probability , i.e., how many net new
animals per animal alive at occasion i enter the population between occasion i and i + 1?

Unlike the POPAN formulation, the Link-Barker formulation conditions upon an animal being seen
somewhere in the experiment. This eliminates the necessity of estimating the super-population size,
but also means that abundance cannot be directly estimated. Any probability of a history must be
normalized by the probability of being a non-zero history.

∗ There are three different Pradel models and ‘-recruitment’ refers to the Pradel models parameterized using fi terms
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Figure 12.3: Process model for Link-Barker and Pradel-recruitment parameterization of JS experiments. pi
represents the probability of capture at occasion i; ϕi represents the probability of an animal surviving
between occasions i and i+1; and fi represents the net recruitment probability , i.e., the per capita number
of new animals that enter between occasions i and i+1 and survive to the next sampling occasion i+1 per
animal alive at occasion i. Losses-on-capture are assumed not to have happened, but are easily included.

f1 f2 f3 f4
ϕ1 ϕ2 ϕ3 ϕ4

t1 → t2 → t3 → t4 → t5 . . .

↑ ↑ ↑ ↑ ↑
p1 p2 p3 p4 p5

For example, Pr[(01010) |animal seen] is proportional to:

Pr [(01010) |animal seen] ∝
[

(1 − p1)ϕ1 + f1
]

/p1 × p2ϕ2

(

1 − p3

)

ϕ3p4

[

1 − ϕ4 + ϕ4

(

1 − p5

) ]

where the constant of proportionality is related to the probability of seeing an animal somewhere in
the experiment. As in the CJS models, the fate of the animal after the last capture is unknown – either
it died, or it survived and was not seen at occasion 5. In a symmetrical fashion, the fate of the animal
before the first time it is captured is also unknown – either it was present among animals seen in the
experiment at time 1, was not seen, and survived to time 2, or it entered between times 1 and 2. The
likelihood function is a multinomial function over all the observed capture histories conditional upon
an animal being seen somewhere in the experiment.

The implementation of the Link-Barker model differs from the Pradel-recruitment formulation in
a number of ways. First, Link-Barker partitioned the likelihood in a similar fashion to the POPAN

formulation which made it easier to implement in the Bayesian context of their paper. Second, Link-
Barker explicitly modeled the confounded parameters (but the MARK implementation leaves the
confounded parameters separate and it is the user’s responsibility to understand the confounding).
Third, losses on capture are handled differently between the two formulations and this affects the
interpretation of the recruitment parameters.

The Link-Barker model also differs from the POPAN formulation as there is no need to postulate the
existence of a super-population – the model is fit conditional upon the observed number of animals
in the experiment.∗ Section 12.3.5 outlines the equivalences between the Link-Barker parameters and
those of other formulations.

As in the POPAN formulation, the fully time-dependent Link-Barker and Pradel-recruitment models
have a number of parameter confoundings as listed in Table 12.3. On the surface, the fully time-
dependent model {pt , ϕt , ft} has K catchability parameters, K − 1 survival parameters, and K − 1

recruitment parameters for a total of (3K − 2) parameters. However, only the product ϕK−1pK and
the ratio ( f1/p1) can be estimated, leaving a net of (3K − 4) parameters. The estimate for fK−1 estimates
a function of other parameters as shown in Table 12.3.

∗ The implementation of Schwarz and Arnason (1996) in the POPAN package also estimates parameters conditional upon being
seen, and then adds another step to estimate the super-population size.
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Table 12.3: Confounded parameters in the Link-Barker parameterization in the fully time-dependent model.
In order to resolve this confounding, the models must make assumptions about the initial (p1) and final
(pK ) catchabilities. For example, a model may assume that catchabilities are equal across all sampling
occasions.

Function Interpretation

ϕK−1pK Final survival and catchability

(ϕ1 + f1)/p1 Initial recruitment and survival

fK−1pK Final recruitmentandcatchability cannotbe cleanly estimated. MARK (and
other programs) will report an estimate for this complicated function of
parameters but it may not be biologically meaningful.

The abundance at each sampling occasion and the absolute number of new entrants cannot be
estimated even as derived parameters because of the conditioning upon animals seen at least once
during the experiment.

12.3.4. Burnham JS and Pradel-λ formulations

The final formulations to be considered in this chapter model new entrants to the population indirectly
by modeling the rate of population growth (λ) between each interval where population growth is the
net effect of survival and recruitment. If ϕi is the decrease in the population per member alive at time i,
and fi is the increase in the population per member alive at time i, then the sum of their contributions
is the net population growth:

λi � Ni+1/Ni � ϕi + fi

These formulations were developed by Burnham (1991) and Pradel (1996).

The key difference between the two parameterizations is that the Pradel-λ approach is conditional
upon animals being seen during the study, while the Burnham JS formulation is not. Therefore, the
Burnham Jolly-Seber formulation also includes a parameter for the population size at the start of the
experiment. This enables the estimation of the population size at each subsequent time point.

However, in practice, it is often difficult to get the Burnham-JS model to convergence during the
numerical maximization of the likelihood. Although the implementation of this model has been
thoroughly checked and found to be correct, MARK has some difficulty obtaining numerical solutions
for the parameters because of the penalty constraints required to keep the parameters consistent with
each other.∗ For this reason, only the Pradel-λ formulation will be discussed further in this section
(and treated in depth in Chapter 13). The process model is shown in Figure 12.4. The parameters for
survival (ϕi) and catchability (pi) are standard. The parameterλi is interpreted as the ratio of successive
population abundances.

∗ This convergence problem disappears for some models if simulated annealing is used for the numerical optimization. – J. Laake
& E. G. Cooch, pers. obs.
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Figure 12.4: Process model for Burnham and Pradel-λ parameterization of JS experiments. pi represents the
probability of capture at occasion i; ϕi represents the probability of an animal surviving between occasions
i and i + 1; and λi represents the rate of population change. The population size at time 1, N1 is used
by the Burnham formulation, but not by the Pradel-λ formulation. Losses-on-capture are assumed not to
happened, but are easily included.

ϕ1 ϕ2 ϕ3 ϕ4

λ1 λ2 λ3 λ4

t1 → t2 → t3 → t4 → t5 . . .

↑ ↑ ↑ ↑ ↑
p1 p2 p3 p4 p5

N1

Unlike the POPAN and Burnham formulations, the Pradel-λ formulation conditions upon an animal
being seen somewhere in the experiment. This eliminates the necessity of estimating the population
sizes at any sampling occasion. But, the probability of a history must now be normalized by the
probability of being a non-zero history. For example, Pr[(01010) |animal seen] is proportional to:

Pr [(01010) |animal seen] ∝
[

λ1 − p1ϕ1

]

× p2ϕ2

(

1 − p3

)

ϕ3p4

[

1 − ϕ4 + ϕ4

(

1 − p5

) ]

where the constant of proportionality is related to the probability of seeing an animal somewhere in
the experiment.

As in the CJS models, the fate of the animal after the last capture is unknown – either it died, or it
survived and was not seen at occasion 5. In a symmetrical fashion, the fate of the animal before the first
time it is captured is also unknown – either it was present at the initial sampling occasion and not seen,
or was part of the population growth (over and above survival from the first sampling occasion). The
likelihood function is a multinomial function over all the observed capture histories conditional upon
an animal being seen somewhere in the experiment.

Section 12.3.5 outlines the equivalences between the Pradel-λ parameters and those of other formu-
lations.

As in the POPAN formulation, the fully time-dependent Pradel-λ formulation has a number of pa-
rameter confoundings as listed in Table 12.4. On the surface, the fully time-dependent model{pt , ϕt , λt}
has K catchability parameters, (K − 1) survival parameters, and (K − 1) growth parameters for a total
of 3K − 2 parameters. However, only the product ϕK−1pK and the function λ1 − ϕ1p1 can be estimated,
leaving a net of (3K − 4) parameters. Furthermore, the estimate for λK−1 estimates a function of other
parameters and may not be interpretable.

The abundance at each sampling occasion and the absolute number of new entrants cannot be
estimated even as derived parameters because of the conditioning upon animals seen at least once
during the experiment.
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Table 12.4: Confounded parameters in the Pradel-λ parameterization in the fully time-dependent model. In
order to resolve this confounding, the models must make assumptions about the initial (p1) and final (pK )
catchabilities. For example, a model may assume that catchabilities are equal across all sampling occasions.

Function Interpretation

ϕK−1pK Final survival and catchability

λ1 − ϕ1p1 Initial growth and survival

λK−1pK Final recruitmentandcatchability cannotbe cleanly estimated. MARK (and
other programs) will report an estimate for this complicated function of
parameters but it may not be biologically meaningful.

Because population growth (λ) is a function both of survival and recruitment (i.e., λi � ϕi + fi),
the modeler should be careful about fitting simpler models that restrict population growth but leave
survival time-dependent. For example the model { pt , ϕt , λ•} would imply that recruitment varies in
a time dependent fashion to exactly balance changes in survival to keep population growth constant.
This may not be a sensible biological model.

Another potential problem with the Pradel-λ model is that no constraints are imposed in MARK

that population growth must exceed the estimated survival probability. Consequently (as seen in the
examples that follow), it is possible to get estimated survival probabilities of 80% while the estimated
population growth rate is only 70%. This logically cannot happen, and is often an indication that
recruitment did not occur in that interval – the illogical estimates are artifacts of the estimation process.
Under these circumstances,models that separate recruitment from population growth may be preferred.

12.3.5. Choosing among the formulations

All of the formulations use the same input file in the same format. Which JS formulation should be used
for a particular experiment? There are two considerations.

First, only certain of the formulations can be used in MARK if losses-on-capture occur in the
experiment.

Secondly, and more importantly, different formulations give you different types of information and
can be used to test different hypotheses. All of the formulations should give the same estimates of
survival and catchability, as all formulations estimate these from recaptures of previously marked
animals using a CJS likelihood component. Even though all the models give different types of estimates
for growth or recruitment or births, it is always possible to transform the estimates from one type to
another by simple transformation and the standard errors can be found using the Delta method.

The major equivalents are between NET births, recruitment, and population growth parameters.
Recruitment parameters are the net number of new animals that enter the population between occasions
i and i + 1 per animal present in the population at occasion i

fi �
Bi

Ni

� N
bi

Ni
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Population growth is the proportionate increase in abundance between occasions i and i + 1:

λi �
Ni+1

Ni

�
Niϕi + Bi

Ni

� ϕi + fi

Actual estimates from fitted models may not follow these exact relationships for several reasons.

First, certain estimates (e.g., apparent survival) should be constrained to lie between 0 and 1. If an
estimated survival hits against this boundary, estimates of survival prior to and after this sampling
occasion will also be affected. If the identity link of MARK is used, estimates are allowed to fall outside
these ‘normal’ boundaries,and usually the exact relationships above thenhold true among the estimates
as well.

Second, losses on capture complicate the equivalences among parameters. For example, Link and
Barker (2005) indicate that their fi should be interpreted as the number of new animals that enter
between occasions i and i + 1 per hypothetical animals alive at occasion i in the absence of losses on
capture, while the Pradel-recruitment fi is the number of new animals after losses on capture have been
taken into account.

Lastly, MARK does not impose constraints that estimated population growth parameters must be at
least as great as estimated survival probabilities. Consequently, it is possible (as seen in the examples)
that the estimated population growth rate is less than the estimated survival probability which would
imply a negative recruitment. In my opinion, formulations that model recruitment and survival as
separate processes are preferred in these case – the estimated population growth rate can always be
derived from these alternative models.

It cannot be emphasized too strongly, that all of the formulations require the same careful attention

to study design – in particular the study area must remain a consistent size, and the probability of
capturing an unmarked individual must be the same as a marked individual at each sampling occasion.
A Cormack-Jolly-Seber experiment where marked animals are captured and released haphazardly,
should not be then analyzed using any of the formulations of the Jolly-Seber model discussed in this
chapter.

Table 12.5: Summary of criteria to choose among the different JS formulations

losses on estimates available for

formulation capture abundance net births recruitment λ

POPAN yes yes yes no no

Link-Barker yes no no yes yes

Pradel-recruitment no no no yes yes

Burnham JS yes yes yes no yes

Pradel-λ yes no no no yes

• The implementation of Burnham’s JS model in MARK often does not converge, and is not

recommended (although convergence problems may be minimized for some models if simulated

annealing is used for the numerical optimization. - J. Laake & E.G. Cooch, pers. obs.)

• The standalone package of POPAN will estimate recruitment, and population growth as derived

parameters
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12.3.6. Interesting tidbits

There have been a number of queries in the MARK forum (http://www.phidot.org/forum) about the
use of POPAN and other models to estimate abundance. This section will try to answer some of these
queries in more detail.

Deviance of 0 in POPAN

The following query was received in the MARK forum (http://www.phidot.org/forum, 2006-04-07)
which asked:

‘I read on one of the other posts that getting a deviance of zero was possible using the robust design

model because the saturated model hadn’t been computed yet and some constants were left out for

faster computation. Is something along these lines at play in POPAN also because when I run a

particular set of data, I get a deviance of zero?’

The deviance of models is often computed as the negative of twice the difference in the log-likelihood
between the current model and a ‘saturated’ model. The usual saturated model in CJS and other models
that condition upon an animal’s first capture, is to have a separate probability for each observed history,
i.e., if ω is a capture history (e.g., ‘010011’) then the Pr(ω) under the saturated model is found as
Pr(ω) �

nω
nobs

where nω is the number of animals with capture history ω, and nobs is the total number of
animals observed. In such cases, the log-likelihood of the saturated model (ignoring constants) is then

∑

nω log
(

pω
)

�

∑

nω log
( nω

nobs

)

However, this doesn’t work for models where abundance is estimated because you need to include
the animals with history (‘000000....’), i.e., those animals not observed. This can only be computed if the
population size is estimated which cannot be estimated under the saturated model. Hence a ‘deviance’
cannot be directly computed.

However, the likelihood can be portioned as shown earlier into components representing the proba-
bility of first capture, the probability of subsequent recapture given the animal has been captured, and
the probability of losses-on-capture given that an animal is captured. Schwarz and Arnason (1996) and
Link and Barker (2005) showed that the first component is essentially non-informative about the capture,
survival, and loss-on-capture rates.

This suggests that an approximate deviance could be computed using only the latter two components,
i.e., by conditioning upon animals that are seen at least once in the experiment. The difference between
the two likelihoods would be based only on the part representing animals seen at least once. In practice,
we would suggest that you compute a deviance based on conditioning on the observed animals. The
easiest way is to use the Link-Barker model (which doesn’t estimate abundance) but is ‘equivalent’ to
the POPAN model. So if you fit a {pt , ϕt , bt} model in POPAN look at the deviance of the {pt , ϕt , ft}
model in Link-Barker formulation. This could be used to estimate a variance-inflation factor to adjust
reported standard errors.

12.4. Example 1 – estimating the number of spawning salmon

After spending several years at sea, coho salmon (Oncorhynchus kisutch) return to spawn in the Chase
River, British Columbia. The normal life cycle of coho salmon is to return at age 3 as adults to spawn
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and die. But, some precocious males return earlier at age 2 to spawn and die. One question of interest
is if the distribution of salmon that return to spawn at different parts in the spawning period the same
for regular adult and precocious males?

As fish return to the Chase River, they are captured using electrofishing gear. If they are unmarked
they are given a unique tag number and released. If they were previously marked, the tag number is
read. The experiment took place over a 10 week period in 1989, but the data from weeks 1 and 2, and
weeks 9 and 10 were pooled and labeled as weeks 1.5 and 9.5. Approximately the same amount of effort
was expended in each week of sampling. More details of this experiment are found in Schwarz et al.
(1993).

The datafile is given in the chase_both.inp file, and a portion of it is reproduced in Figure 12.5. This
study has two groups, the regular adult males and the precocious males (called jacks). Notice that a
separate capture history is used for each tagged fish – unfortunately, this implies that the residual plots
and deviance plots in MARK cannot be used to assess goodness of fit.

Figure 12.5: Portion of the data for the Chase 1989 experiment

/* Estimating salmon numbers returning to spawn in Chase River 1989 */

/* These are the male salmon with two groups. */

/* Group1 = adults . group2=jacks */

/* Survey conducted over 10 weeks. Weeks 1 & 2 pooled. weeks 9 & 10 pooled */

11000000 -1 0 ; /* tagnum=1 */

10000000 0 1 ; /* tagnum=3 */

10000000 0 1 ; /* tagnum=4 */

10000000 0 1 ; /* tagnum=6 */

11000000 0 1 ; /* tagnum=8 */

10110000 0 1 ; /* tagnum=9 */

10000000 0 1 ; /* tagnum=10 */

10000000 1 0 ; /* tagnum=11 */

... additional histories follow ....

Summary statistics for this experiment are presented in Table 12.6.

Table 12.6: Summary statistics for the Chase 1989 experiment

statistics for adults statistics for jacks

ti ni mi ui Ri ri zi ti ni mi ui Ri ri zi

1.5 37 0 37 37 12 0 1.5 67 0 67 62 21 0
3.0 22 6 16 21 13 6 3.0 28 9 19 25 7 12
4.0 52 7 45 41 19 12 4.0 46 6 40 44 9 13
5.0 56 17 39 54 26 14 5.0 47 12 35 45 5 10
6.0 46 26 20 38 8 14 6.0 25 9 16 24 3 6
7.0 28 16 12 20 2 6 7.0 16 6 10 12 1 3
8.0 22 3 19 16 2 5 8.0 7 1 6 5 1 3
9.5 10 7 3 0 0 0 9.5 7 4 3 0 0 0
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Because ni > Ri for some sampling occasions, this indicates that some losses-on-capture occurred.
For example, there was one adult loss-on-capture in week 3; 11 adults lost in week 4, etc.

12.4.1. POPAN formulation

The POPAN super-population is a natural way to think of this experiment – a pool of fish is returning to
spawn. During each week, a certain fraction of these returning fish decide to enter the spawning areas.

Let us begin by fitting a model only to the regular adults (use the input file chase_adult.inp), i.e.,
to the first group. Later models will be fit to both groups (and will require the chase_both.inp file).
Launch MARK. Select the POPAN data type, enter the number of sampling occasions and the number
of attribute groups:

Don’t forget to set the intervals between sampling occasions. As weeks (1 and 2) were pooled and
labeled as week 1.5, the interval between the first and second sampling occasion is 1.5 weeks. Similarly
weeks (9 and 10) were pooled and so the last interval is also longer.
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Start by fitting a fully-time dependent model {pt , ϕt , bt} (using an obvious notation extension from
CJS models). In this model there are 8 sampling occasions which give rise to 8 capture probabilities, 7
apparent survival probabilities, 8 probability of entry probabilities, and 1 super-population parameter.
Note that MARK does not allow the user to specify the parameter b0 (the proportion of the population
available just before the first sampling occasion) and so only presents 7 PENT parameters in the PIM
and output corresponding to b1 , . . . , b7.∗

Note that unlike the CJS models, we assume a single set of survival and catchability parameters, regardless
of when previously captured. The super-population size has its own parameter.

Because b0 + b1 + · · · + bK−1 � 1, a special link-function must be specified for the PENT parameters.
This is done using the ‘Parameter specific link function’ radio button:

∗ In the stand alone POPAN package, the user has access to all of the PENT’s.

Chapter 12. Jolly-Seber models in MARK



12.4.1. POPAN formulation 12 - 17

The sin or logit or any of the other link functions can be used for the p and ϕ parameters. In order
to specify that a set of parameters must sum to 1, the Multinomial Logit link function (called Mlogit in
MARK) must be used. If there are several groups, each set of PENTs must independently sum to 1, so
MARK provides several sets of MLogit link functions. As there is only one group, the MLogit(1) link-
function is used for the PENTs. It is possible to specify that some of the PENTs are zero if, for example,
the experimenter knew that no new animals entered the study population during this interval.

Also notice, that a log or identity link should be used for the super-population size as it is not restricted
to lie between 0 and 1:

Now run MARK. If we look at the REAL estimates, we must keep in mind that not all parameters
are identifiable:
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In particular, the final survival and catchability are confounded as in the CJS model. The initial
entrance and catchability parameters are also confounded (only the product b0p1 can be estimated)
– however, MARK does not report b0 so the first PENT reported here refers to b1 which cannot be
estimated separately (refer to Table 12.2). This non-identifiability can often be recognized by the large
standard errors for certain estimates, or by estimates tending to the value 1.0. Also notice, that because
the intervals are unequal size, the survival probabilities are given on a per week basis, so that the survival
probability for the initial 1.5 week interval is found as 0.571.5

� 0.43.

The estimates of population size and net births are found under the derived parameter section:

Again, not all parameters are identifiable. The derived parameters also include estimates of gross births
– these are explained in more detail in Schwarz et al. (1993).

Goodness-of-fit can be assessed using the RELEASE suite as in CJS models (see Chapter 5 for details
on RELEASE). The results are shown below.
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There is some evidence of potential lack-of-fit as indicated by Test2 in component C3, but a detailed
investigation of that table shows it is not serious. Unfortunately, because individual capture histories
were used, residual plots are not useful.

Because ofparameter confounding, it is important to count the actualnumberof estimable parameters.
On the surface there are 24 parameters composedof8 capture parameters,7 survivalparameters,8 PENT

parameters and 1 super-population parameter. However, the PENTs must sum to 1, and Table 12.2
indicates that two parameters are lost to confounding which leaves a net of 21 actual identifiable
parameters. Check that the results browser shows 21 parameters for this model.

The original sampling experiment has approximately equal effort at all sampling occasions. Perhaps
a model with constant catchability over time is suitable, i.e., model {p• , ϕt , bt}. This model is specified
in the PIM in the usual fashion:

None of the other PIM’s need to be respecified. The model is run, and again the parameter specific
link functions must be specified for the PENTs (use the MLogit(1) link function) and for the super-
population size (use the log link function):

Now all parameters are identifiable (shown in the following two figures at the top of the next page).
The results show b̂1 � 0.044, b̂2 � 0.33, etc. These are interpreted as 4.4% of adult returning salmon
return between weeks 1.5 and 3; about 33% of adult returning salmon return to spawn between weeks
4 and 5, etc. The value of b̂0 � 0.352 is obtained by subtraction (b̂0 � 1 − b̂1 − b̂2 − · · · − b̂K−1). This is
interpreted as 35% of adults returning salmon has returned to spawn before sampling began in week
1.5.

The total number of salmon returning to spawn (the super-population) is estimated to be N̂ � 332

(SE=29) fish. The derived birth parameters are found as B̂i � N̂ b̂i . For example, B̂1 � N̂ b̂1 � (332 ×
0.044) � 14.9. This is interpreted as about 15 adult fish returned to spawn between weeks 1.5 and 3.
B̂0 � N̂ b̂0 � (332 × 0.352) � 117 fish are estimated to be present before the first sampling occasion.
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The derived estimates of population size are found iteratively and must account for losses-on-capture
and the unequal time intervals (which affects the survival terms).

N̂1 � B̂0 � 117.03.

N̂2 � (N̂1 − loss1 )ϕ̂1.5
1 + B̂1 � (117.03 − 0)0.5841.5

+ 14.92 � 67.2.

N̂3 � (N̂2 − loss2 )ϕ̂1.0
2 + B̂2 � (67.2 − 1)0.9261.0

+ 110.39 � 171.72

...

The number of identifiable parameters for this model is 16 composed of 1 capture parameters, 7
survival parameters, 8 PENT parameters and 1 super-population parameter less the restriction that the
PENTs must sum to 1. The number of parameters reported in the browser may have to be manually
adjusted to indicate the correct number of parameters.

Another sub-model can also be fit where the apparent survival probability (per unit time) is constant
over all intervals, i.e., model {p• , ϕ• , bt}. It is fit in the same fashion by adjusting the PIMs:

This model would have 10 parameters composed of 1 capture parameter, 1 survival parameter, 8
PENT parameters, and 1 super-population parameters with 1 restriction that the PENTs sum to 1.

The final results table (after making sure that the number of parameters is correct):
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shows not much support for this final model. If model averaging is to be used, some care must be taken
as not all parameters are identifiable in all models. For example, most models with a pt structure, will
be unable to estimate abundance at the first (N1) or last (NK) sampling occasion; nor can recruitment
be estimated for the first (b1, or B1) or last (bK−1 or BK−1) interval.

Other models could be fit, e.g., an equal fraction of the super-population returns to spawn in each
week, but in this example is highly unlikely biologically and was not fit.

Now let us return to the real question of interest – do jacks and adults have the same return pattern?
This is now a two group problem and is handled in a similar fashion to the ordinary CJS model.

Start a new project, using chase_both.inp, and this time specify two groups (regular adults and
jacks) rather than a single group. Also specify the names of the two groups.

Now each parameter can vary over sampling occasions (intervals) and/or groups. The full model fit
will be specified by a triplet of specifications.

In the previous example, a model with equal catchability over sampling occasions was tenable, but
adults and jacks may have different catchabilities. Survival probabilities varied by time, so perhaps start
with a fully time- and group-dependent model for ϕ. Also start with a full group and time dependence
for the PENTs. This would correspond to model {pg , ϕg∗t , bg∗t} with the following PIMs.
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The two PIMs for the super-population size of the adults and jacks (respectively) are not shown.

Request that MARK fit this model. As before, we must indicate to MARK that the PENTs sum to 1,
for each group using the parameter specific link functions:.

There are a total of 8 sampling occasions, 8 PENTs per group, but MARK only shows the last seven
(b0 for each group is implicitly assumed). Use the MLogit(1) link function for the first seven PENTs
(belonging to group 1) and the MLogit(2) link function for the last seven PENTs (belonging to group 2).
Notice that only 30 parameters are displayed per window, so the ‘More’ button must be used to scroll
to the next page:

Don’t forget to specify that the two super-population parameters should have the identity or log link
function.
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Run the model and add it to the results browser. Then, run and fit the models {pg , ϕt , bg∗t} and and
{pg , ϕt , bt}.∗

Count parameters carefully. All of the models have a simple structure for the p’s so there is no problem
with confounding. The model {pg , ϕt , bg∗t} has 2 catchability parameters, 7 survival parameters, 16
PENTs, and 2 super-population sizes. However, each set of PENTs must sum to 1, leaving 25 free
parameters. The model {pg , ϕt , bt} has 2 catchability parameters, 7 survival parameters, 8 PENTs (but
these must sum to 1), and 2 super-population parameters for a total of 18 parameters. The model
{pg , ϕg∗t , bg∗t} has 2 catchability parameters, 14 survival parameters, 18 PENTs (but each of the two
groups of PENTs must sum to 1), and 2 super-population sizes for a total of 32 parameters.

The final results window looks like (after adjusting for the number of parameters)

The final models of interest are a comparison between model {pg , ϕt , bg∗t} and {pg , ϕt , bt} (why?).
The ∆AICc shows very little support for the model where the jacks enter in the same distribution as the
adults. In particular, examine the estimates of the PENTs for the {pg , ϕt , bg∗t} model:

Recall that even though there are 8 PENT parameters per group that MARK does not let you specify
the b0 parameter in the PIMS – this value is obtained by subtraction from 1. Further manipulations can
be done by copying the real parameter values to an Excel spreadsheet:

∗ The Initial→ Copy 1 PIM to another PIM is helpful here.
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You will find that about 34% (1 − 0.033 − 0.326 − . . . − 0.000) of adults were in the stream prior to the
first sampling occasion, while about 69% (1 − 0.000 − 0.227 − 0.036 − . . . − 0.000) of jacks were in the
stream prior to the first sampling occasion. So it appears that precocious males tend to return earlier
(for this stream and year) than regular adults.

In this example, it is vitally important that catchability be approximately constant across all sampling
occasions so that a model with pg could be fit; any model where catchability varied across time (a pt

or pg∗t model) would have the first PENT parameter hopelessly confounded with the first catchability
parameter and in many cases, makes it difficult if not impossible to do sensible model comparisons.
This again illustrates the need for careful study design with JS models.

begin sidebar

The multinomial logit link and the POPAN model

In situations where you want to constrain estimates from a set of 2 or more parameters to sum to 1,

you might use the multinomial logit link (MLogit), which was introduced in some detail in Chapter

10 with respect to multi-state models (where the transitions from a given stratum must logically sum

to 1.0).

While specifying the MLogit link in MARK is straightforward, you need to be somewhat careful.

Consider the following set of parameters in a PIM for the probability of entry (pent) in a POPAN

model:

61 62 63 64 65 66 67 68 69 70

The parameter-specific link would be selected in the ‘Setup Numerical Estimation Run’ window,

and the MLogit(1) link would be applied to parameters 61→ 70 to force these 10 estimates to sum to

≤ 1. But suppose that you wanted to force all of the 10 entry probabilities to be the same, and have the

sum of all 10 be ≤ 1? You might be tempted to specify a PIM such as

61 61 61 61 61 61 61 61 61 61

(i.e., simply use the same index value for all the parameters in the PIM), but that would be incorrect.

Changing the PIM and selecting the MLogit link for parameter 61 would result in parameter 61 alone

summing to ≤ 1 (i.e., just like a logit link), but would not force the sum of the 10 values of parameter

61 to sum to ≤ 1.

To implement the proposed model, the PIM should not be changed from the top example (i.e., it

should maintain the indexing from 61→ 70), and the design matrix should be used to force the same

estimate for parameters 61→ 70:

Parameter Design Matrix

61 1

62 1

63 1

64 1

65 1

66 1

67 1

68 1

69 1

70 1

Then the MLogit(1) link should be specified for the 10 parameters 61→ 70. The result is that now all

10 parameters have the same value, and 10 times this value is le1.

Another example – suppose you wanted parameters 61 and 62 to be the same value, 63 to 66 the

same, 67 and 68 the same, and 69 and 70 the same, but the sum over all parameters to be ≤ 1. Again

you would use the PIM
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61 62 63 64 65 66 67 68 69 70

but again use the design matrix to implement the constraints. The following design matrix is one

example that would produce such a set of constraints.

Parameter Design Matrix

61 1 1 0 0

62 1 1 0 0

63 1 0 1 0

64 1 0 1 0

65 1 0 1 0

66 1 0 1 0

67 1 0 0 1

68 1 0 0 1

69 1 0 0 0

70 1 0 0 0

The key point with these examples is that the PIM cannot be used to constrain parameters if you

want the entire set of parameters to sum to ≤ 1. Rather, the design matrix has to be used to make the

constraints, with each of the entries in the PIM given the same MLogit(x) link. Further examples of

the MLogit link are discussed in Chapter 10.

end sidebar

12.4.2. Link-Barker and Pradel-recruitment formulations

The Link-Barker or Pradel-recruitment formulation can be conveniently obtained by switching data
types from any of the JS formulations. We will illustrate the use of the Link-Barker formulation; that for
the Pradel-recruitment is similar, but in this case cannot be used because of losses-on-capture.

Let us begin with a time dependent model for all parameters, i.e., {pt , ϕt , ft}. The number of groups
and sampling intervals would have been entered as seen in the POPAN formulation. The survival and
catchability PIMs mimic those for the POPAN formulation.

In the Link-Barker formulation, there are K−1 � 7 population recruitmentparameters witha standard
PIM:
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Because the population recruitment value is not limited to lie between 0 and 1 (for example, the
recruitment value could exceed 1), the ‘Parameter Specific Link’ functions should be specified when
models are run:∗

Any of the link functions can be used for the catchability and survival parameters (although the logit

and sin link are most common), but either the log or the identity link function should be used for the
population recruitment parameters. There are no restrictions that the recruitment parameters sum to 1
over experiment so the Mlogit link should not be used.

Run the model and append it to the browser.

As in the POPAN formulation, the fully time-dependent Link-Barker and Pradel-recruitment formu-
lations suffer from confounding. If you examine the β parameter estimates, and the estimated SE (shown
at the top of the next page), there are several clues that confounding has taken place:

∗ An undocumented feature of MARK is that it will use the log link for the recruitment parameter if you specify a logit or sin
link in the radio buttons.
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As in the POPAN formulation, survival in the last interval and catchability at the last sampling
occasion are confounded. The corresponding βparameters are very large on the logit scale withstandard
errors that are either zero or very large. Similarly, p1 cannot be estimated and its β standard error is very
large. Finally, because the first and last catchabilities cannot be estimated, neither can ‘population size’
(despite population size not being explicitly in the model) and so the recruitment parameter (the fi

values) based on occasion 1 ( f1) or terminating with occasion K ( fK−1) cannot be estimated either. We
notice that the standard errors for these recruitment parameters are nonsensical.

The user must be very careful to count parameters carefully and to see if MARK has detected the
correct number of parameters. There are 8 sampling occasions. The fully time-dependent model has, on
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the surface, 8 capture parameters, 7 survival parameters, and 7 recruitment recruitment parameters for
a total of 22 parameters. However, as shown in Table 12.3, there are two parameters lost to confounding
which gives a total of 20 parameters that can be estimated. The number of parameters reported in the
results browser may have to be modified manually.

As in the POPAN formulation, models where constraints are placed on the initial and final catchabil-
ities can resolve this confounding. Because roughly the same effort was used in all sampling occasions,
the model {p• , ϕt , ft} seems appropriate.

Adjust the PIM for the recapture probabilities to be constant over time, re-run the model (don’t forget
to use the Parameter Specific Link functions),∗

and append the results to the browser. Let’s look at the parameter estimates:

Goodness-of-fit analysis is done using the RELEASE suite as seen in the POPAN fit and as explained
in Chapter 5.

The number of parameters that can be estimated is now 15 being composed of 1 capture parameter,

∗ CAUTION: When we ran this model with the logit link for the ϕ’s, one ϕ converged to a value of 1; we would recommend that
the sin link be used.
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7 survival parameters, and 7 recruitment parameters.

If you compare the estimates of p and ϕ between the Link-Barker formulation and the POPAN

formulation they are identical (except for rounding errors). Note that because of unequal time intervals,
estimates of ϕi are on a per-unit basis. The actual survival in the first and last interval must be obtained
by raising the reported ϕ’s to the 1.5th power (corresponding to the 1.5 week interval).

The PENTs from POPAN and the f ’s from the Link-Barker are not directly comparable. However, the
following equivalents are noted:

( f̂ LB
1 )

1.5
� 0.2521.5

� 0.127 �
B̂POPAN

1

N̂POPAN
1

�
14.92

117.034

f̂ LB
2 � 1.644 �

B̂POPAN
2

N̂POPAN
2

�
110.39

67.20

f̂ LB
3 � 0.211 �

B̂POPAN
3

N̂POPAN
3

�
36.77

171.72

. . .

Similarly, estimates of population growth are also equivalent:

( f̂ LB
1 )

1.5
+ (ϕ̂LB

1 )
1.5

� 0.5831.5
+ 0.2521.5

� 0.571 �
N̂POPAN

2

N̂POPAN
1

�
67.20

117.03
� 0.574

f̂ LB
2 + ϕ̂LB

2 � 1.644 + 0.928 � 2.57 �
N̂POPAN

3

N̂POPAN
2

�
171.72

67.20
� 2.55

. . .

If you examine the results browser (after any changes for the actual number of parameters that are
estimated):

you will also see that the ∆AICc values between these two models matches very closely with the
difference in the POPAN formulation. The differences in ∆AICc between the two formulation are
artifacts of the different number of parameters estimated and the small sample correction applied to
the AIC. If the actual AIC values from the two formulations are compared, the difference in AIC are
nearly identical because the two formulations are simply re-parameterizations of the same models for
modeling the marked animals and only differ in estimating the super-population size.

As Sanathanan (1972, 1977) showed, the conditional approach of Link and Barker (2005) is asymp-
totically equivalent to the full likelihood approach of Schwarz and Arnason (1996). For example, in the
table shown at the top of the next page, the log-likelihood and AIC (before small sample corrections
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are applied) were extracted from the model outputs. The differences in the log-likelihoods and the AIC
among the models in different formulations are nearly the same.

POPAN formulation Link-Barker formulation

Model −2 × logL # parms AIC Model −2 × logL # parms AIC

{p• , ϕt , bt} 489.94 16 521.94 {p• , ϕt , ft} 1176.74 15 1206.74

{p• , ϕ• , bt} 507.25 10 527.25 {p• , ϕ• , ft} 1193.99 9 1211.99

{pt , ϕt , bt} 486.80 21 528.80 {pt , ϕt , ft} 1173.69 20 1213.69

The two group case can be fit in a similar fashion as seen in the POPAN example. However, it
is not clear exactly which models should be compared because the fi parameters in the Link-Barker
formulation depend both upon the NET number of new births, but also upon the population size at
occasion i which depends upon the pattern of previous births and survival probabilities. Consequently,
even if the same birth pattern occurred between the two groups, differences in survival probabilities
could result in differences in patterns of the f ’s. Fortunately, it appears the survival probabilities are
roughly constant between groups, so a comparison of models {pg , ϕt , fg∗t} vs {pg , ϕt , ft} is a valid test
of the hypothesis of equal return patterns for adults and jacks.

Fitting these two models to the two groups is left as an exercise for the reader.

12.4.3. Burnham Jolly-Seber and Pradel-λ formulations

The Burnham model

The Burnham JS model does not model entrants directly,but rather parameterizes changes in population
size using population growth. In the case of the spawning salmon, this would correspond to the increase
in the number of spawning salmon at occasion i + 1 relative to occasion i.

The Burnham JS model is selected using the Jolly-Seber radio button. The same data file as for POPAN

can be used. Again let us start with fitting a model just to the adults over 8 sampling occasions with
unequal sampling intervals (see the screen shots in section 12.4.1 for details). Again, start by fitting the
fully time-dependent model:

Chapter 12. Jolly-Seber models in MARK



12.4.3. Burnham Jolly-Seber and Pradel-λ formulations 12 - 31

As in POPAN (and all JS formulations) there are (K − 1) � 7 survival parameters, K � 8 capture
probabilities. In the Burnham model, there is a single initial population size parameter per group and
(K − 1) � 7 population growth parameters.

We were unable to get the Burnham Jolly-Seber model to converge for any of the models considered
in this chapter. The MARK help files state that

‘This model can be difficult to get numerical convergence of the parameter estimates. Although this

model has been thoroughly checked, and found to be correct, the program has difficulty obtaining nu-

merical solutions for the parameters because of the penalty constraints required to keep the parameters

consistent with each other.’

Bummer. . . ∗†

The Pradel-λ model

The Pradel-λ formulation (considered in much more detail in Chapter 13) can be conveniently obtained
by switching data types from any of the JS formulations (or can be entered directly from the initial
screen of MARK as discussed in Chapter 12). The number of groups and sampling intervals would
have been entered as seen in the POPAN formulation. Let us begin by modeling only the adult salmon.

∗ . . . dude. C. Schwarz has clearly spent too much time on the ‘wet coast’ – E. G. Cooch, pers. obs.
† As noted earlier, this convergence problem disappears for some models if simulated annealing is used for the numerical

optimization. – J. Laake & E. G. Cooch, pers. obs.
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Begin by fitting a fully time-dependent model. The PIMs for survival and catchability mimic those
seen in earlier sections; the PIM for the population growth parameter has (K − 1) � 7 entries:

Because the population growth parameter is not limited to lie between 0 and 1 (for example, the
growth rate could exceed 1), the Parameter Specific Link functions should be specified when models are
run:∗

Any of the link functions can be used for the catchability and survival parameters (although the logit

and sin link are most common), but either the log or the identity link function should be used for the
population growth parameters (this is discussed in detail in Chapter 13). There are no restrictions that
the growth parameters sum to 1 over experiment so the Mlogit link should not be used. Because there
are more than 20 parameters, we need to press the ‘More’ button to specify the link function for the two
remaining λ values.

∗ A hidden feature of MARK is that it will use the log link for the growth parameter if you specify a logit or sin link in the radio
buttons.
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Run the model and append it to the browser.

As in the POPAN formulation, the fully time-dependent Pradel-λ formulation suffers from confound-
ing. If you examine the parameter estimates, there are several clues that confounding has taken place.
The standard errors for some parameters are enormous or the standard error are zero. Survival in the
last interval and catchability at the last sampling occasion are confounded. Similarly, λ1 is confounded
with p1.
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Consequently, not all of the real parameter estimates are usable:

The user must be very careful to count parameters carefully and to see if MARK has detected the
correct number of parameters. There are 8 sampling occasions. The fully time-dependent model has,
on the surface, 8 capture parameters, 7 survival parameters, and 7 growth parameters for a total of 22
parameters. However, there are two parameters lost to confounding which gives a total of 20 parameters
that can be estimated. The number of parameters reported in the results browser may have to be
modified manually.

As in the POPAN formulation, models where constraints are placed on the initial and final catchabil-
ities can resolve this confounding. Because roughly the same effort was used in all sampling occasions,
the model {p• , ϕt , λt} seems appropriate.

Adjust the PIM for the recapture probabilities to be constant over time, re-run the model (don’t forget
to use the ‘Parameter Specific link functions or let MARK automatically use the log link for the λ
parameters).
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This gives the final estimates:

The number of parameters that can be estimated is now 15 being composed of 1 capture parameter,
7 survival parameters, and 7 λ parameters.

Note that because of unequal time intervals, estimates of ϕi are on a per-unit basis. The actual
survival in the first and last interval must be obtained by raising the reported ϕ’s to the 1.5th power
(corresponding to the 1.5 week interval).

Compare the estimates from the Pradel-λ formulation to those from the POPAN or Link-Barker
formulation. Estimates of survival are similar at sampling occasions 1,2,and 3 differing only by roundoff
error.

However, the estimate of ϕ at sampling occasion 4 differs considerably among the models. Indeed,
the Pradel-λ formulation is not even consistent as λ̂4 � 0.86 < ϕ̂4 � 1.0! The POPAN formulation
estimated that there was no recruitment between sampling occasion 4 and 5 (it was constrained so that
estimates of recruitment cannot be negative); the Link-Barker model also estimated the recruitment
parameter to be 0 (it is also constrained so that it cannot be negative). However, there are no constraints
in the Pradel-λ model that λ must be at least as great as survival.

The estimates of λ also don’t appear to be consistent with the results from POPAN when estimates of
population size are compared. However, this discrepancy is explained by the different ways in which
losses-on-capture are incorporated into the estimates of population size and growth between the two
formulations.

The model {p• , ϕ• , λt} can also be fit and the results appended to the results browser. The estimates
from this model are:
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Again, the estimates are not internally consistent as the population growth rate estimates sometimes fall
below the common survival probability . These would indications that there was little or no recruitment
in these intervals.

The results browser

tells the same story as in the other formulations – strong support for the model with constant catchability
and time varying survival and population growth.

The two group models can also be fit in similar fashion as in the other formulations. However, there
is again the question of which models comparisons are a sensible choice. Because the λ values are
population growth on a per capita basis and include both survival and recruitment, models with group-
and time-dependence in λ may not be indicative of changes in recruitment between the two groups.

12.5. Example 2 – Muir’s (1957) female capsid data

This second example uses the Muir (1957) data on a population of female black-kneed capsid (Blephar-

idopterus angulatus) that was originally analyzed by Jolly (1963)∗ and Seber (1965).

According to the British Wildlife Trust website† a black-kneed capsid is a green insect about 15 mm
long that lives on orchard trees (particular apples and limes). It is a predatory insect that is beneficial to
orchard owners as it feeds on red spider mites which cause damage to fruit trees. It apparently makes a
‘squawk’ by rubbing the tip of its beaks against its thorax and will stab people with its beak if handled.

Thirteen successive samples at alternating 3- and 4-day intervals were taken. The population is open
as deaths/emigration and births/immigration can occur.

The raw history data is located in the file capsid.inp. A portion of the histories appears below:

0000000000001 47;

0000000000010 36;

0000000000011 12;

0000000000100 30;

0000000000101 8;

...

There is only one group (females) and the individual histories have been grouped.‡

∗ The data was subsequently reanalyzed in Jolly (1965)
†
http://www.wildlifetrusts.org

‡ We suspect that it was impossible to attach individually numbered tags to these small insects and some sort of batch marking
scheme (e.g., color dots) was used. This batch marking scheme would enable the history of each insect to be followed, but
individuals with the same history cannot be separately identified

Chapter 12. Jolly-Seber models in MARK



12.5. Example 2 – Muir’s (1957) female capsid data 12 - 37

The summary statistics are:

Occasion ti ni mi ui Ri ri zi

1 0 54 0 54 54 24 0

2 3 144 10 134 143 83 14

3 7 166 39 127 166 71 58

4 10 203 56 147 202 71 73

5 14 186 54 132 185 76 90

6 17 197 66 131 196 92 100

7 21 231 97 134 230 102 95

8 24 164 75 89 164 95 122

9 28 161 101 60 160 69 116

10 31 122 80 42 122 55 105

11 35 118 74 44 117 44 86

12 38 118 70 48 118 35 60

13 42 142 95 47 142 0 0

There are a few losses on capture at some of the sampling occasions where ni , Ri .

The data are input into MARK in the usual fashion. The time intervals are set to three and four day
intervals in the usual fashion:

Chapter 12. Jolly-Seber models in MARK



12.5.1. POPAN formulation 12 - 38

12.5.1. POPAN formulation

We begin by fitting the fully time-dependent model {pt , ϕt , bt} in the usual fashion using PIMs:

The model is run, again selecting the ‘parameter-specific link’ functions:
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and specifying the Mlogit(1) link-function for the PENT parameters, and the log link-function for the
super-population size (N).

The resulting model output is:

There are a total of 36 parameters (13 capture probabilities; 12 survival probabilities; 13 entry probabili-
ties ∗, and 1 super-population size; less 2 confounded parameters at the start and end of the experiment

∗ Don’t forget that MARK will show only the later 12 PENTs in the PIM and output because it never allows you to do anything
with the b0 parameter.
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and less 1 restriction that the PENTs must sum to 1). The results browser only shows 30 parameters
because some of the estimated PENTs, p’s and ϕ’s are estimated to be 0 or 1.∗

The number of parameters in the results browser should be reset to 36 in the usual fashion.

Because of the differing time intervals, the estimated survival rates (ϕ’s) are the survival probabilities
per day. They also differ from the estimates found in Jolly (1965) because they are also constrained to lie
between 0 and 1. For example, Jolly (1965) estimated that the survival probability between the second
and third sampling occasion was 1.015.

The estimated population sizes (shown at the top of the next page) are found in the derived parameters

(accessed using ‘Output | Specific Model Output | Parameter Estimates | Derived Estimates’):

∗ This may be clearer if the β estimates table is also examined.
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Because of confounding and non-identifiability at the start and the end of the experiment in the fully
time-dependent model, some estimates cannot be used.

Model with constant p and/or constantϕ per day may also be tenable and are fit in the usual way using
the PIMs. Models with constant b’s don’t really have any sensible biological interpretation and should
not be fit. A model for the emergence curve may be more sensible and this could result in predictions
about the number of new entrants over time that has an early peak and tends to tail off over time. The
number of parameters estimated by MARK should be checked and adjusted.

The final results table is:

It appears that virtually all support lies on the model {p•, ϕt , bt}. Because the capture probabilities are
constant over time, there is no longer any problem with confounding or non-identifiability at the start
or end of the experiment.
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The final estimates of the basic parameters and the derived parameters are:

The estimated super-population size is interpreted as the total number of capsids ever present in the
experiment and does not represent the number present at any particular point in time. The population
seems to peak at about sampling occasion 4, and then gradually tapers off because of deaths/emigration
and fewer new insects entering the population of interest.
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12.5.2. Link-Barker and Pradel-recruitment formulations

Both the Link-Barker and Pradel-recruitment parameterize new entrants to the population using the
fi parameter representing the numbers of new recruits in the interval per member of the population
alive at time i. Because this dataset includes losses-on-capture, the Pradel-recruitment model cannot be
used, and the Link-Barker formulation will be used.

The data are entered as shown above – don’t forget to set the alternating 3- and 4-day time intervals.

The fully time-dependent model {pt , ϕt , ft} is fit using PIMs in the usual fashion:

This model is run in the usual fashion.

The recruitment parameter should have a log link-function specified as this parameter can exceed the
value of 1.
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The results table is:

There are 35 parameters (13 capture probabilities; 12 survival probabilities; 12 recruitment probabilities;
less 1 non-identifiable parameter at the end of the sampling chain where ϕ12p13 can only be estimated;
and less 1 non-identifiable parameter at the start of the sampling chain.) If the number of parameters
in the results table differs, it should be changed in the usual fashion.

The estimates from this model are shown at the top of the next page. The estimated survival probabil-
ities and recruitment parameters are on a per day basis. The estimates of p and ϕ are comparable to the
POPAN estimates except for some minor differences at the start of the sampling chain. These are artifacts
of the different confounding at the start of the sampling chain between the two formulations. The
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estimated recruitment parameters indicate the number of new recruits per member of the population.
Estimates of the actual population size are not available.

Simpler models for p and ϕ can be fit in the usual fashion. It may be actually biologically sensible
to fit a model with constant f over time as this is the recruitment per existing member. Even if the
population is declining over time, perhaps the recruitment is constant over time. The results table for
these models is:

Virtually all support again lies with the model with constant catchability {p• , ϕt , ft}. Because capture
probabilities were constant over time, all parameters are now estimable. The final estimates are:
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The estimates of p and ϕ are comparable to those from the POPANformulation except at the start of
the sampling chain. This may be an artifact of convergence to a local minimum by MARK. The estimates
of recruitment can be matched to that from POPAN. For example,

f̂ LB
12 � 0.54765, B̂POPAN

12 � 43.83, and N̂POPAN
12 � 486.02.

Now

B̂POPAN
12

N̂POPAN
12

�
43.83

486.02
� 0.090 � ( f̂ LB

12 )
4
� 0.5484

� 0.090

12.5.3. Burnham Jolly-Seber and Pradel-λ formulations

The Burnham-Jolly-Seber and the Pradel-λ formulations parameterize new recruits to the population
indirectly by estimating population growth (λ) representing the population size at time i + 1 relative
to the population size at time i. The growth process is the net effect of both survival and recruitment.

The data are entered in the usual fashion – don’t forget to set the alternating 3- and 4-day intervals.

The Burnham-Jolly-Seber formulation again has difficulty in convergence for this example and so is
not run against this data.
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The fully time-dependent Pradel-λ model {pt , ϕt , λt} is fit using PIMs in the usual fashion:

This model is run in the usual fashion.

The population growth parameter should have a log link-function specified as this parameter can exceed
the value of 1.
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The results table is:

There are 35 parameters (13 capture probabilities; 12 survival probabilities; 12 growth rates; less 1 non-
identifiable parameter at the end of the sampling chain where ϕ12p13 can only be estimated; and less 1
non-identifiable parameter at the start of the sampling chain.) If the number of parameters in the results
table differs, it should be changed in the usual fashion.

The estimates from this model are:
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The estimated survival probabilities and growth rates are on a per day basis. The estimates of p and ϕ
are comparable to the POPAN estimates except for some minor differences at the start of the sampling
chain. These are artifacts of the different confounding at the start of the sampling chain between the
two formulations. The estimated growth parameters indicate ratio of the estimated population size at
successive sampling intervals on a per unit time basis. Estimates of the actual population size are not
available directly, but as illustrated in previous examples can be derived if needed.

Simpler models for p andϕ can be fit in the usual fashion. It may be actually biologically sensible to fit
a model with constant λ over time if the population is roughly constant over time. Because the growth
rate includes both survival and recruitment, models where growth is constant over time, but survival is
not, are not usually fit as it is difficult to believe that changes in recruitment will exactly balance changes
in survival to keep the population at a constant level. The results table for these simpler models is:

Virtually all support again lies with the model with constant catchability{p• , ϕt , λt}. Because capture
rates were constant over time, all parameters are now estimable. The final estimates are:

The estimates of p and ϕ are comparable to those from the POPAN formulation. There are only a
few sampling occasions where the estimates of population growth are inconsistent with estimates of
survival, but the differences are minor.

The estimates of population can be matched to that from POPAN . For example, λ̂PL
12 � 1.0219978,

N̂POPAN
12 � 486.02, and N̂POPAN

13 � 529.86.
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Now
N̂POPAN

13

N̂POPAN
12

�
529.86

486.02
� 1.09 � (λ̂PL

12 )
4
� 1.02199784

� 1.09

12.6. Final words

While many researchers think of population numbers and recruitment in terms of actual animals
entering populations, the JS model can be extended in a number of ways:

• Manske and Schwarz (2000) used a Jolly-Seber model to estimate stream residence times of
salmon. This extended the work of Schaub et al. (2001) who used mark-recapture methods to
estimate stop-over times of migrating birds. In both methods, the population is transient with
new animals arriving and departing on regular basis and the average time at the sampling
location is of interest. The key difference between the two approaches is that the methods
of Schaub et al. (2001) assume that the day the animal is marked is the first day of residence
while Manske and Schwarz (2000) did not make this assumption.

• Schwarz and Arnason (2000) and Manske et al. (2002) showed how to use the POPAN

parametrization to estimate age-specific breeding proportions, i.e., what fraction of animals
enter the breeding population at each age.

While current implementations of the JS model allow for multiple groups (e.g., males and females),
animals are not allowed to change groups during the experiment. The Cormack-Jolly-Seber (CJS) model
has been extended to a multi-state version where animals are allowed to change states during the
experiment (e.g., geographical movement) and this is discussed in detail in Chapter 10. Recently,Dupuis
and Schwarz (2007) have extended the Jolly-Seber model to allow multiple states. In their example, they
modeled a fish population that spawned at various locations around a lake and moved among spawning
location during the multiple years of the study. Estimates of abundance at each spawning location and
recruitment to spawning locations were obtained.

This stratified Jolly-Seber model can also be used to model stratified closed populations and the
Jolly-Seber age-structured model.

The examples in this chapter did not use covariates. System-wide covariates that affect all animals at
a particular time point (e.g., temperature) are easily implemented using design matrices.

One area that requires further work is the use of individual covariates. Individual covariates take two
forms – those that vary among individuals, but are fixed for the individual for the study, and individual
time-varying covariates. There are two major difficulties. First, even if the covariates are fixed for each
animal for the entire study, the value of the covariate is unknown if the animal is not seen. Second, if
the individual covariates can change values during the experiment, the value of the covariate is also
unknown when an animal is not recaptured after being captured for the first time.

McDonald and Amstrup (2001) used a Horvitz-Thompson type estimator to incorporate individual
fixed covariates and were able to estimate population sizes. However, this approach does not have a
likelihood basis and so multi-group methods where restrictions on parameters are placed across groups
is not easily implemented. Bonner and Schwarz (2006) recently developed methods for the CJS model
for individual time-varying covariates, but this has not been extended to JS models. Stay tuned for
developments over the next few years.
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CHAPTER 13

Pradel models: recruitment, survival and

population growth rate

So far, we have concentrated on estimation related to the general question ‘what is the probability of
leaving the population?’. Clearly, death marks permanent departure from the population. Absence
from the population can be permanent (like death), or temporary (a subject we’ll discuss more fully in
a later chapter on something known as the ‘robust design’). However, if we’re interested in modeling
the dynamics of a population, then we’re likely to be as interested in the probability of entry into the
population as we are the probability of exit from the population. So, where to begin. We’ll start with the
fundamental model of population dynamics. Usually, the assumption (based on even a casual glance at
a typical textbook on the subject) is that population dynamics models are based entirely on high-level
mathematics. However, while it isn’t difficult to find examples of such models, the fundamental model
is quite simple:

population dynamics has to do with the change

in abundance over space and/or time (∆N)

∆N � ’additions’ - ’subtractions’

That’s it, really. The rest is just ‘details’ (of course, the details can get messy,and that is what often leads
to the higher math referred to above). But the basic idea is simple: when the net number of additions is
greater than the net number of subtractions, then clearly the population will grow (∆N > 0). When the
reverse is true, the population will decline. So, population dynamics involves the study and estimation
of the relative contributions to the ‘additions’ and ‘subtractions’ from the population.

13.1. Population growth: realized vs. projected

Usually, the net growth of a population is expressed as the ratio of successive population abundances:
Nt+1/Nt . This ratio is usually referred to as λ, leading (frequently) to a whole bunch of confusion - λ as
the ratio of successive population sizes, orλ as the projected growth rate of a population under specified
model conditions? As you may recall, the projected growth of a structured population is given as the
dominant eigenvalue from a non-negative projection matrix (the ‘Leslie’ matrix for models structured
on age, and the ‘Lefkovitch’ matrix for situations where some other classification factor – often size or
developmental state – is a better demographic category than age). The word ‘projected’ is key here – it is
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the growth rate of the population that would eventually be expected if (and only if) the conditions under
which the model are valid are time invariant (i.e., not stochastic). We differentiate between projected λ

and realized λ. We let realized λ be (simply) the ratio of successive population sizes. Projected λ and
realized λwill be equivalent if and only if the growth of the population has achieved stationary, ergodic
conditions (the familiar stable-age or stable-age structure at equilibrium). Under such conditions, the
population (and each age-class in the population) will be growing at rate λ, such that λ � Nt+1/Nt .
So, we suggest qualifying the used of ‘λ’ with a prefix – either projected, or realized, and noting (if
appropriate) when they are equivalent, and when they are different:

projected λ: the growth rate of the population expected under time invariance (where λ is
commonly derived as the dominant eigenvalue from a projection matrix model)

realized λ: the observed growth rate of the population between successive samples (time
steps): λi � Ni+1/Ni

While projected λ is often of considerable interest (especially for prospective management studies),
in a retrospective study, where we’re interested in assessing the pattern of variation in growth that
has occurred, it is realized λ that is of interest (although there are a variety of analytical methods out
there for retrospective analysis that somewhat blur this convenient distinction: the life table response
experiment (LTRE) developed by Caswell is a hybrid of a retrospective technique using prospective
perturbation analysis of deviation in the projected λ under a variety of experimental conditions). For
our purposes though, we’ll keep to the simple distinction we’ve just described – we want to explore
changes in realized growth, λ.

13.2. Estimating realized λ

Since λ � Nt+1/Nt , then it seems reasonable that as a first step,we want to derive estimates of abundance
for our population at successive time steps, and simply derive the ratio to yield our estimate of λ. Simple
in concept, but annoyingly difficult in practice. Why? In large part, because the estimation of abundance
in an open population is often very imprecise. Such estimates often suffer rather profoundly from
violation of any of a number of assumptions, and are often not worth the effort (abundance estimation in
open populations was covered in Chapter12 – estimation in closed populations is covered in Chapter 14).

So we’re stuck, right? Not exactly. The ‘solution’ comes in several steps. We start with the recognition
that our basic purpose in characterizing the change in abundance between years rests on assessing the
relative number of ‘additions’ and ‘subtractions’. This basic idea was introduced in Chapter 12. With a
bit of thought, you should realize that an individual which ‘dies’, or ‘permanently emigrates’, is clearly
a ‘subtraction’ from the population. As such, we can reasonably state that the number of individuals in
the population next year is going to be a function, at least in part, of the number of individuals in the
population this year that survive and return to the population next year.

However, we also know that there may be ‘additions’ to the population, either in the form of
permanent immigration, or births (in situ recruits). Let the number of individuals this year be Nt . Letϕi

be the probability of surviving and returning to the population (ϕi � SiFi , where S is the true survival
probability , and F is the fidelity probability – see chapter 10). Let Bi be the number of new individuals
that enter the population between (i) and (i+1) - in other words, Bi is the number of individuals in the
population at (i+1) that were not there at (i). Thus, we can write:

Ni+1 � Niϕi + Bi
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Next, some simple algebra. First, recall we define λ as the ratio of successive population sizes – λi �

Ni+1/Ni . Thus, substituting this into the previous expression, and after a bit of algebraic re-arranging,
we get:

λi �
Bi

Ni

+ ϕi

Now, λ and ϕ are familiar (and explicitly defined above).

What about Bi/Ni? This is the per capita rate of additions to the population (often referred to
somewhat ‘sloppily’ as the recruitment rate, which has a very specific demographic meaning that is
often ignored – for purposes of consistency with some of the literature, we’ll ignore it too). It is the
number of individuals entering the population between (i) and (i+1) (i.e., Bi) per individual already in
the population at time (i) (i.e., Ni). Let’s call this recruitment probability fi .

Thus, we write

λi �
Bi

Ni

+ ϕi

� fi + ϕi

OK, so far so good. But perhaps right about now you’re asking yourself ‘how does this help?’. We
can estimate ϕi fairly well (as discussed in the first several chapters of this guide), but what about
recruitment, fi? After all, fi is Bi/Ni , both of which are difficult to estimate with any precision in an
open population.

13.2.1. Reversing encounter histories: ϕ and γ

Now for the big ‘trick’, which is so intuitively obvious once we describe it we should probably pause
long enough for you to slap yourself in the forehead. Back in 1965, George Jolly, and later Ken Pollock
in 1974, realized that the encounter histories carried a lot more information than we often realize. They
basically noted that

‘if estimating the transitions among encounter occasions going forward in time yields an estimate

of the probability of remaining alive and in the population, ϕ, where (1 − ϕ) is the probability of

leaving the population, then if you simply reverse the encounter histories, the transition parameter

being estimated is the probability of entering the population’.

Why is this important? It is important because that’s precisely what we’re after. Recruitment is the
process of entering the population. So, if we had a parameter that allowed us to estimate the probability
of entering a population (i.e., recruiting), then we’re clearly on the right track.

In fact, this is precisely whatRogerPradeldescribes in his 1996 paper.∗ Re-discovering (andextending)
the earlier work of Jolly and Pollock,Pradel explicitly noted the duality between analyzing the encounter
history going forward, and going backward in time. He introduced a parameter γi (which he refered
to as the seniority parameter), which he defined as ‘the probability that if an individual is alive and in
the population at time i that it was also alive and in the population at time i-1’.

∗ Pradel, R. (1996) Utilization of capture-mark-recapture for the study of recruitment and population growth rate. Biometrics, 52,
703-709.
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Let’s pause to highlight the distinctions between ϕi (going forward in time) and γi (estimated from
the reverse encounter history, going backward in time):

forward in time ϕi probability that if alive and in the population at time i (e.g.,

this year), the you will be alive and in the population at

time i+1 (e.g., next year)

backward in time γi probability that if alive and in the population at time i (e.g.,

this year), that you were also alive and in the population at

time i-1 (e.g., last year)

begin sidebar

Understanding ‘backwards’ encounter histories

Consider the following encounter history: ‘101110’. What this history is telling us, going forward in

time, is that the individual was initially encountered and marked at occasion 1, not seen at occasion

2, but then seen on the next 3 occasions (3, 4, and 5), then not seen on occasion 6. The probability

expression corresponding to this history would be:

ϕ1

(

1 − p2

)

ϕ2p3ϕ3p4ϕ4p5

(

1 − ϕ5p6

)

Now, if we reverse the encounter history (‘101110’→ ‘011101’), then we see that, conditional on being

alive and in the population at occasion 5, that the individual was also in the population at occasion 4,

and at occasion 3. Given that it was also there at occasion 1, but not encountered at occasion 2 (with

probability 1 − p2), then the probability expression (in terms of γi and pi ) corresponding to ‘011101’

is

γ5p4γ4p3γ3

(

1 − p2

)

γ2p1

end sidebar

13.2.2. Putting it together: deriving λ

Still with us? We hope so,because the parameterγi features prominently in what comes next. Remember,
our interest in this parameter γi comes from it having something to do with recruitment.

Now, for the next big step – pay close attention here. Remember from our previous discussion that Bi

is the number of individuals entering the population between time (i) and (i+1). If Ni+1 is the number
of individuals in the population at time (i+1), then Bi/Ni+1 is the proportion (or probability) that an
individual in the population at i + 1 is one that entered the population between (i) and (i + 1). So, if
(Bi/Ni+1) is the probability that an individual entered the population, then 1−(Bi/Ni+1) is the probability
that it was already in the population.

Does this sound familiar? It should. Think back – what is γi? It is the probability that if you’re in the
population at time (i) that you were also there at time (i-1), which is precisely the same thing! In other
words,

γi+1 � 1 −
Bi

Ni+1

Thus, since
Ni+1 � Niϕi + Bi
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then we can write

γi+1 � 1 −
Bi

Ni+1

� 1 −
(

Ni+1 − Niϕi

)

Ni+1

�
Niϕi

Ni+1

�
ϕi

λi

Or, re-arranging slightly,

λi �
ϕi

γi+1

In other words, all we need are estimates of ϕi and γi+1, and we can derive estimates of λi , all
without ever measuring population abundance (N)! Here we have a technique where, using simple
mark-recapture data, we derive an explicit estimate of population growth, with considerable precision
(as it turns out), without the need to estimate abundance.

begin sidebar

An alternative derivation

We can also derive this expression for λ using a slightly different approach. Let the size of the

population at risk of capture (encounter) on occasions i and i+1 be Ni and Ni+1, respectively. A subset

of these two sets (populations) of animals is the subset of all animals that are alive in the population

at both times. At time i+1, the size of this set can be given as Niϕi . At time i, the size of that set can be

given as γi+1Ni+1. Since both relationships give the size of the same set (population size alive and in

the population at both times), then we can write

Niϕi � γi+1Ni+1

Since λ � Ni+1/Ni , then it follows clearly that λi � ϕi/γi+1, which is exactly the same relationship

we derived above.

end sidebar

We also note that since λi � ϕi + fi , then we can clearly also derive the following 2 expressions:

γi+1 �
ϕi

ϕi + fi

(

�
ϕi

λi

)

fi � ϕi

(
1 − γi+1

γi+1

)

This is the essence of the Pradel models in MARK. They rest on the duality between estimating
ϕi going forward in time, and γi going backward in time. Moreover, because ϕ and γ can both be
estimated in a general likelihood expression, not only can we estimate λ and f directly, but we can also
derive estimates of the variance in both. Perhaps more importantly, we can address hypotheses about
variation in one or more of these parameters using the standard linear models approach we’ve used
throughout – constraining various parameters to be linear functions of one or more covariates.
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13.3. Population λ versus Pradel’s λ: are they equivalent?

While the preceding result might appear to be ‘the best of all worlds’, there are important assumptions,
caveats, and conditions under which the Pradel models, and the parameters you can estimate with them,
are ‘meaningful’. First, and most importantly, the parameter λ estimated using the Pradel models∗ is a
measure of the rate of change of the age class from which the encounter histories were derived - it is not

necessarily a measure of the growth rate of the population! This is so important, we’ll repeat it again,
with some emphasis:

The λ estimated from Pradel models is the realized growth

rate of the age class from which the encounter histories were

generated, which is not necessarily (or even generally) equivalent

to the growth rate of the population...

The λ estimated from the Pradel models may be a good measure if there is a single age class which
contributes most of the variation in the growth of the population as a whole (or if you make somewhat
heroic assumptions that the age structure of the population is stationary – in which case, growth of any
individual age class is equivalent to the growth of the population as a whole).

Second, the estimate of λ is only biologically meaningful if the study (sample) area stays constant.
If you expand your study area, then both f and λ make little biological sense, because the population
to which inferences are being made is also expanding or contracting. Further, even if the study area
remains constant, some individuals can be missed in the first years of the study (when observers are
learning their ‘field craft’), and estimates of λ and f from early years may frequently be biased high.
These methods also assume that all animals in the study area have some non-zero probability of being
captured. Finally, significant trap response can lead to substantial bias.

But, these caveats notwithstanding, the Pradel models are potentially powerful tools for exploring
population dynamics. We can look at variation in growth trajectory (λ) without the problems associated
with abundance estimation.

13.4. Pradel models in MARK

To demonstrate the Pradel models in MARK, we’ll make use of the capsid data set (Muir, 1957),
pradel.inp (this file is included when you install MARK - look in the MARK/examples subdirectory
on your computer). Go ahead and start MARK, and begin a new project, reading in the capsid data
file. There are 13 occasions, and 1 group. Now, once you’ve specified the input file, and entered the
appropriate number of occasions and attribute groups, your next step is to specify which of the Pradel
models you want to fit. When you click the ‘Pradel models including robust design’ data type,you’ll
be presented with a pop-up window (shown at the top of the next page) listing 7 data types (4 primary
for open populations, and 3 for models within a ‘robust design’ framework – see Chapter 15 for a full
description of the robust design). For now, we’ll focus on the (first) 4 ‘open population’ models.

∗ It is important to note that in his 1996 paper, Pradel did not actually use the parameter λ, but instead used ρ to indicate the
change in abundance between successive years. While using ρ for realized growth rate instead of λ eliminates confusion with
use of λ as projected growth rate, MARK adopts the use of λ, since it is more commonly associated with measures of population
growth.
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At this point, you need to decide which analysis you want to do. You could focus on estimation of
the γi values alone (i.e., estimate the seniority probabilities). Estimation of γ can be useful in analysis of
age-specific variation in ‘recruitment to breeding state’ (i.e., the transition from pre-breeder to breeder).
The next 3 models (and their robust design equivalents) consist of different pairs of parameters (for
example, you could estimate survival and λ by selecting the ‘Survival and Lambda’ data type). You
cannot estimate all 3 of the primary parameters simultaneously (i.e., you can’t estimate ϕ, γ, f, and λ in
one data type), since they are effectively a linear function of each other (such that estimating any two
of them can provide estimates of the remaining parameters).

Let’s run through all 4, starting with the ‘seniority only’ data type, providing estimates of seniority
γ and encounter probability p. Once you click the ‘OK’ button, you’ll be presented with the PIM for the
seniority parameter γ:

Why only 1 row in the PIM? Why not the ‘triangular’ PIM we’ve seen for standard recapture models?
The answer is because the Pradel models don’t allow for ‘age effects’. As noted by Franklin (2001)∗, the
reason for this is that the likelihood for estimating γ is conditioned on the entire encounter history,
not just the portion following first capture as is the case when estimating ϕ under the CJS model.
For example, MARK conditions on the full encounter history ‘001101’ to estimate f and λ, whereas it
conditions on only the ‘1101’ portion to estimate ϕ and p. Therefore, age cannot be included because
age cannot be estimated back to the initial zeros of the encounter history. Thus, you have no more than
one row in the PIM (since each row corresponds to a different release cohort, and cohort and age are
collinear). If age-specific estimates are desired, groups of animals can be created based on age.

The results browser (below) shows the results of fitting the 4 ‘standard’ models to the capsid data.

∗ Franklin, A.B. (2001) Exploring ecological relationships in survival and estimating rates of population change using program
MARK. pp. 350-356 in R. Field, R. J. Warren, H. K. Okarma & P. R. Sievert (editors). Wildlife, Land, and People: Priorities for the
21st Century. The Wildlife Society, Bethesda, MD.
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Based on these 4 models, and with a default ĉ of 1.0, it appears as though a model with time-variation
in γ and a constant encounter probability p is overwhelming supported by the data.

However, since we’ve mentioned ĉ, what about it? If you try to run a bootstrap, or median ĉ, MARK

will quickly tell you that a neither of these GOF tests are available for the Pradel recruitment only model
(and indeed, they aren’t available for any of the Pradel models). At first glance, it might seem that you
could simply flip the encounter histories back around to the ‘normal’ forward direction (as if you were
going to do a CJS analysis), and simply use the CJS bootstrap GOF test.

However, this is inappropriate in general, since the likelihood is based on the full encounter history.
Still, it ‘may’ be reasonable if your only interest is in estimating the γ parameters. For the moment, we
can cautiously suggest that if all you’re interested in is γ, and are using the Pradel ‘seniority only’ model,
then since this model is identical to taking your encounter histories, flipping them, and running them
through the CJS model, then the ĉ from the CJS model may be appropriate. But – don’t quote us (this
is still a work in progress). For the other open population Pradel models (‘survival and seniority’,
‘survival and lambda’, and ‘survival and recruitment’), this is likely to be incorrect.

These difficulties notwithstanding, it is likely these other models that will hold the greatest interest
to you, since they provide information on parameters related to the growth of a population. We will
focus in particular on the ‘Survival and Lambda’ and ‘Survival and Recruitment’ models.

Let’s restart ouranalysis of the capsid data. This time,we will select the ‘Survival and Lambda’ model.
After we click the ‘OK’ button,we are immediately presented with the open PIM for the apparent survival
parameter f.

If you open up the PIM chart (shown below), you’ll see that there are 3 structural parameters involved
in this model type: ϕ, p and λ.
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If you look at each PIM separately, you’ll see that each of them consists of 1 row (the reason for this has
been discussed earlier). So, again, the modeling is relatively straightforward – you can apply constraints
quite simply to any one or more of the parameters – all three parameters are in the likelihood, and this,
you can ‘model’ any of them (via the DM, for example).

So, at this point, this looks like perhaps the simplest thing we’ve done so far with MARK. However,
there are several issues to consider. First, several parameters are confounded under the fully time-
dependent model. For example, in model {ϕt ptλt} the first and last λ are inestimable because ϕ1 is
confounded with p1 and ϕk−1 is confounded with pk−1 (for k encounter occasions).

Here are reconstituted estimates from the fully time-dependent model {ϕtptλt}:

We see that the first and last estimates of λ are ‘problematic’ (very large or impossibly small SE
for both estimates). We also have the usual issues of inestimability of terminal survival and encounter
parameters.

However, when constraints are placed on either ϕ or p, some of the variation in these parameters
is taken up by λ, γ, or f , which often ‘solves the estimability problem’. For example, if you look at
the estimates (shown at the top of the next page) from a model where the encounter probability p is
constrained to be constant over time (e.g., model {ϕt p.λt}), you will see that all of the estimates for λ
appear reasonable.
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Unfortunately, the issue of applying constraints to models where λ is a structural parameter is
somewhat more complex than the preceding example suggests. For example, Franklin (2001) suggests
that since λ, γ and f are (often) the parameters of biological interest in the Pradel models, that it is often
best to model ϕ and p as completely time-dependent, and apply the constraints to λ, γ, or f .

While this might seem reasonable, there’s a catch. If you do specify constraints on λ, γ, or f , you
need to be a bit careful when interpreting the ‘meaning’ behind constraining these parameters. Since
λi � ϕi + fi , if a model is fit with time invariant (i.e., constant) λ, or where λ is constrained to follow
a linear trend, but with time varying f, then this implies a direct inverse relationship between survival
and recruitment (e.g., if λ is held constant, then if ϕi goes up, then fi must go down). While this may
be true in a general sense, it is doubtful that the link between the two operates on small time scales
typically used in mark-recapture studies. As noted by Franklin (2001), models where ϕ is time invariant
while λ is allowed to vary over time are (probably) reasonable, as variations in recruitment are the extra
source of ‘variation’ in λ.

More complex models involving covariates have the same difficulty. Population-level covariates
(e.g., weather) are interpretable, but it is potentially difficult to interpret individual-based covariates
as operating on population growth. The root of the problem is that while individual covariates could
apply to survival probabilities, the recruitment parameter is not tied to any individual – it is a population-
based, average recruitment per individual in the population. What is needed is a generalization of the
general JS model where new entrants to a population are tied to existing members of the population,
for example, if newborns were identified with their parents.∗

So, as long as you take some care, then you’ll be OK. There are always challenges in modeling
parameters that are linear functions of each other – be advised – think carefully. The Pradel models

∗ An alternative approach based on random effects is discussed in Appendix D (section D.4.4).
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have great potential, for a number of applications - if you’re careful, then you can apply them to a fairly
broad set of problems. We introduce once such ‘application’ in the following section.

begin sidebar

Pradel models and link functions

Several types of parameters have forced link functions, i.e., the link function is changed to the default

value unless the user specifies ‘Parm-Specific’ link functions. Specifically, the λ and f (recruitment)

parameters of the Pradel data types are set to a log link function, even if the user selects the sin, logit,

loglog, or cloglog link functions. Likewise, the population estimates (N̂) in the (i) Jolly-Seber and

POPAN and (ii) closed captures data types (discussed in Chapter 12 and Chapter 14, respectively) are

also set to a log link function when the user selects the sin, logit, loglog, or cloglog link functions

for the model. The reason for these changes from the user-specified link function for the model is

that link functions that constrain these parameters to the [0, 1] interval will not work because the real

parameters λ, f and N should not be in the [0, 1] interval.

Note: MARK will force the log link for λ, regardless of what other link function you select – but,

there will be no indication of this in the output. So, for example, if you are evaluating the βi values for

a particular model, the βi values are estimated on the log scale, so (i) if reconstituting by hand, you

need to use the back-transform for the log link, and (ii) assessing if λ > 0 is equivalent to asking if

βi > 0.

In addition, there is at least one other situation involving Pradel models where you may need to

pay particular attention to the link function. There is a logical necessity that ϕi ≤ λi for Pradel models

where λ occurs as a structural parameter, i.e., is a parameter included in the likelihood. Consider for

example, the situation where f � 0 (i.e., if there was no recruitment). In the absence of recruitment, the

population would decline over time – the rate of the decline in a given year could not be less than ϕi ,

and thus ϕi ≤ λi . You can enforce this constraint using the cumulative logit link function (introduced

in Chapter 6, section 6.8.1). As you might recall, the cumulative logit link (CLogit) function is useful

for constraining a set of parameters to monotonically increase.

Suppose for some parameter θ that you desire the relationship of θ̂1 ≤ θ̂2 ≤ θ̂3, but do not want

to enforce the relationship on the logit scale that

logit
[

θ2

]

− logit
[

θ1

]

� logit
[

θ3

]

− logit
[

θ2

]

To use the CLogit link, you have to specify a separate CLogit link for each set of parameters that

are to be constrained. In addition, you also have to specify the order of the parameters for the set. For

the above example, the link function for each of the 3 parameters would be:

θ1: CLogit(1,1)

θ2: CLogit(1,2)

θ3: CLogit(1,3)

Consider the situation where you want to constrain ϕi ≤ λi . We’ll demonstrate the steps using the

capsid data set introduced earlier (contained in pradel.inp). Re-start your analysis of these data,and

fit model {ϕt p.λt} to the data (i.e., the ‘Pradel Survival and Lambda’ data type; time-dependence

in ϕ and λ, but a constant ‘dot’ model for encounter probability p). We’ll start using the default sin

link for all parameters (remembering that in fact MARK will use the log link for λ). The parameter

estimates are shown at the top of the next page.

While ϕ̂i ≤ λ̂i for most parameters, this is clearly not the case for for ϕ̂8 � 1.0000 > λ̂8 � 0.9605.

Since this particular pair of parameters violates the logical necessity that ϕ̂i ≤ λ̂i , we could simply

re-run the model applying the CLogit link to these parameters only. To do this, we’ll re-run model

{ϕt p.λt}, except that this time we’ll select the ‘Parm-Specific’ link function option. Once you click

the ‘OK to Run’ button, you’ll be presented with a popup window allowing you to specify the link

function for a given parameter. Here, we’re going to apply the CLogit link between ϕ8 and λ8. Recall

that the CLogit link is specified by manually entering the word ‘CLogit’ into the appropriate spot.
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The Clogit function has 2 arguments: the first is the particular set (or pair) of parameters you want

to apply the link to, and the second identifies the member of the pair. For example, CLogit(1,1) and

CLogit(1,2) refer to the first pair of parameters, corresponding toϕ1 andλ1 , respectively. CLogit(2,1)

and CLogit(2,2) refer to the second pair of parameters, corresponding to ϕ2 and λ2 , respectively. And

so on.

Here is the completed link function specification window:

Note: if you are applying the CLogit link to only a subset of the ϕ and λ parameter pairs, you must

remember to specify the log link function for the λ parameters you are not constraining using the

CLogit. In this case, we specify the log link for parameters 14-20, and 22-25 (shown above). If we run

the model with the CLogit link function applied to ϕ8 and λ8, we’ll see that ϕ̂8 � 0.9998 ≤ λ̂8 � 0.9998.

However, applying the CLogit only to those parameters which are identified (based on a first

analysis) as violating the logical constraint that ϕ̂i ≤ λ̂i might appear rather post hoc. What about

a priori applying a CLogit link to all of the ϕ and λ parameters? We’ll see in a moment why this is not

a good idea. For now, we’ll plunge ahead as if it were.
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Here is the completed link specification window if we apply the CLogit link function to all successive

pairs of ϕ and λ parameters:

Pay attention to how successive pairs of parameters are indexed – the first argument in CLogit(n,p)

is n=which pair, while p=which parameter in the pair. Click the ‘OK’ button, and add the results to the

browser.

Hmmm. Something has definitely ‘gone wrong’. The first two models in the browser are the model

with and without the CLogit link constraint applied to [ϕ8 , λ8], respectively. However, when we apply

the CLogit link to all of the ϕ and λ parameters, we see that not only is the model deviance quite

different (931.37 versus ≈ 750), but the number of estimated parameters is much lower (10 versus 23

& 25). If we look at the estimates,
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we see that the ‘problem’ is that many of the estimates of λ are estimated at the boundary, even though

λ was previously estimated as > 1 for many of the estimates (see listing of estimates on p. 10).

What has happened? Well, the answer is somewhat explicit in the name of the link function: Clogit.

The cumulative logit function is still a logit link, meaning, it constrains estimates to be bounded [0, 1].

While this isn’t a problem for some parameters, it is clearly a problem for parameters such as λ, which

are not upper-bounded at 1. So, you could/should apply the CLogit link function to enforce the

constraint that ϕi ≤ λi only for those pairs of parameters where λi ≤ 1.

end sidebar

13.5. extensions using the S and f parametrization...

Suppose you are interested on the relative degree to which recruitment or survival influence the
dynamics of a population. For those of you with any background in matrix population models, this
is an old concept: you have a metric describing the growth of the population (λ), and you want to
determine the degree to which λ is ‘sensitive’ to variation in one or more elements of the demography
of the population. Such a sensitivity analysis is usually expressed in terms of the rate of change of λ
given a certain change in one of the matrix elements (ai j). Done on a log scale, this ‘sensitivity’ analysis
becomes an ‘elasticity’ analysis (the log scale expresses relative proportional contributions to λ). Now,
in the typical ‘sensitivity’ or ‘elasticity’ analysis, the point is to determine what would happen to growth
if a specified change is made in one or more vital rates. So, a prospective analysis. In the prospective
context, sensitivity and elasticity are together referred to as ‘perturbation’ techniques, since the goal is
to see how much projected growth would change as the system is ‘perturbed’ by changing one of the
vital rates which contributes to population growth. There is a very large literature on the application
of prospective perturbation techniques in conservation and population management.∗

However, in the retrospective context, the story is a little bit different. In this situation, we have an
esimtated time series of λ̂i , which we might estimate from our mark-encounter data. We want to know
what the relative contributions of ϕ̂i and f̂i have been to the observed variation in λ̂i . In other words,
what has driven the estimated pattern of variation in population growth over time.

Several years ago, Jim Nichols and colleagues addressed this very question.† The approach they
developed is very intuitive, and the result is rather elegant. The basic idea is that since γi+1 is the
probability that an individual in the population at time i+1 (and thus contributing to Ni+1) was also
there at time i (and thus included in Ni), and since Ni+1 � Niϕi + Bi, then

Niϕi � Ni+1γi+1 and Bi �
(

1 − γi+1

)

Ni+1

Since λi � Ni+1/Ni , then

E(λi ) �

[

γi+1Ni+1 +
(

1 − γi+1

)

Ni+1

]

E(Ni )

Since the abundance term, Ni+1, is the same for both product terms in the numerator, then the γi+1 in
the first term in the numerator is interpretable as the contribution of survivors from time i to time i+1,
while the (1 − γi+1) in the second term of the numerator is the contribution of new recruits into the
population. So, the two terms give the proportional contributions of survivors and new recruits to λ,
which is conceptually analogous to the elasticities of both terms. The details (and several very clever

∗ The canonical reference being: Caswell, H. (2001) Matrix Population Models: Construction, Analysis, and Interpretation. 2nd Edition.
Sinauer Associates.

† Nichols, J. D., J. E. Hines, J-D. Lebreton, R. Pradel. (2000) Estimation of contributions to population growth: a reverse-time
capture-recapture approach. Ecology, 81, 3362-3376.
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extensions to multi-state and robust design models) are discussed at length in the Nichols paper.

However, this approach involves ‘doing algebra’ with estimates of γ only. A more direct, and perhaps
more flexible approach is to re-parameterize the likelihood in terms of survival and recruitment directly.
This is the basis of the ‘Survival and Recruitment’ Pradel model implemented in MARK.

Re-start the analysis of the capsid data set, this time selecting the ‘Survival and Recruitment’ data
type. If you look at the PIM chart, you’ll see that there are only 3 structural parameters: ϕ, p and f .
For this model type, the realized growth λ is estimated as a derived parameter (meaning, it is derived
‘by algebra’, outside the likelihood). This has one immediate implication, which refers back to our
earlier discussion of applying constraints to Pradel models. Because λ is a derived parameter (not
in the likelihood), you cannot put a constraint on λ. Alternatively, you might apply constraints to the
underlying demographic processes which contribute to λ (i.e., S and f ).

Let’s proceed by fitting a single model to the capsid data: model {ϕt p. ft}. We’ll use constant
encounter probabilities over time to eliminate some of the confounding problems inherent in fully
time-dependent models. Here are the reconstituted parameter estimates from this model

and the reconstituted estimates of λ (on the real scale):

To reinforce the relationship between survival, recruitment, and λ, let’s compare (i) the derived
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estimate of λ provided by MARK (above), and (ii) the value of the sum of the estimates of survival
and recruitment.

Since

λi � ϕi +
Bi

Ni

� ϕi + fi

then (i) and (ii) should be identical, as they are shown to be (to within rounding error) in the following
table for a sub-sample of intervals:

interval derived λ̂ ϕ̂ f̂ ϕ̂ + f̂

2 1.1918 0.9923 0.1994 1.1918
3 1.2330 0.8287 0.4044 1.2330
4 0.9357 0.6365 0.2992 0.9357
5 1.0282 0.7178 0.3105 1.0282
6 1.1032 0.8457 0.2575 1.1032
7 0.7245 0.6151 0.1094 0.7245

We could express the proportional contribution of (say) survival ϕ to realized growth λ simply as
ϕ/(ϕ + f ). The variance of this proportion can be estimated using the Delta method (Appendix B). ∗

How do these calculated proportions compare to those based on interpreting γi+1 as the proportion
of λ due to survival of individuals from Ni → Ni+1, and (1−γi+1) as the proportion due to new recruits
(sensu Nichols et al. 2000)? In the following, we re-tabulate the first couple of estimates of ϕ̂i and f̂i ,
using the ‘Survival and Recruitment’ data type (above), and also include estimates of γ̂i+1 using the
‘Survival and Seniority’ data type, using model {ϕt p.γt}:

interval derived λ̂ ϕ̂ f̂ ϕ̂/λ̂ f̂ /λ̂ γ̂i+1 (1 − γ̂i+1)

2 1.1918 0.9923 0.1994 0.8326 0.1673 0.8327 0.1673
3 1.2330 0.8287 0.4044 0.6721 0.3279 0.6720 0.3280
4 0.9357 0.6365 0.2992 0.6802 0.3198 0.6803 0.3196
...

...
...

...
...

...
...

...

We see clearly that the proportional contribution of survival ϕ or recruitment f to realized growth
λ, calculated as ϕ/λ or f /λ, is entirely equivalent to using γi+1 and (1 − γi+1), respectively.

By considering the proportional contribution of survival and recruitment to λ, we can interpret these
parameters as non-asymptotic analogs of sensitivity and elasticity. Thus, for example,we might consider
how much population growth might decrease if we reduced survival by some factor δ. We see clearly
from above that it would be reduced by δϕ, which is equivalent to δγi+1.

∗ If we let θ � ϕ/(ϕ + f ), then

v̂ar(θ̂) �


*,

f̂

(ϕ̂ + f̂ )
2

+- *,−
ϕ̂

(ϕ̂ + f̂ )
2

+-



v̂ar(ϕ̂) ĉov(ϕ̂, f̂ )

ĉov( f̂ , ϕ̂) v̂ar( f̂ )





f̂

(ϕ̂ + f̂ )
2

−
ϕ̂

(ϕ̂ + f̂ )
2


where the variance and covariance of ϕ̂ and f̂ can be output from MARK (see Appendix B).
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One final point: note that all we’ve done up until now is talk about net ‘additions’ and ‘subtractions’.
We haven’t partitioned these any further. For example, we haven’t partitioned additions into ‘in situ

recruits’ and ‘immigrants’. We may, in fact, not be satisfied with simply using a ‘summary accounting’
like ‘total recruits’ or ‘total subtractions’ – we may want to know how many of each are due to underlying,
lower-level processes (like births, immigration, deaths, or emigration). However, to do that, we’d need
to consider different approaches: the Jolly-Seber (and related) models (introduced in Chapter 12), and
the robust design (which we introduce in Chapter 15). But, if partitioning λ into summary contributions
of total recruits and total losses is what you’re after, then the Pradel models may be of some use.

begin sidebar

λ = ’survival’ + ’recruitment’: be careful!

Another example of a potential pitfall. In the preceding, we made use of the fact that realized λ can

be estimated as the sum of survival and per capita recruitment, both estimated over a given interval.

However, you need to be careful in how you are ‘handling’ recruitment. Consider, for example, a

population with 2 age classes: babies, and adults. Assume that adults start breeding at age 2 years (i.e.,

they don’t breed as yearlings), and on average produce C babies. Babies survive with probability So ,

and thus become adults, which survive with probability Sa .

Assuming the population is censused after breeding, the population can be described by the life-

cycle diagram shown on the next page, where node 1 refers to babies, and node 2 refers to adults

(age 1 yr and older). The self-loop on node 2 indicates that survival does not vary with age among

adults. The fertility arc (connecting node 2 back to node 1) represents the expected contribution of

each individual in node 2 at time (i) to the baby age class at time (i+1).

1 2
So

Sa C

Sa

From the life cycle graph (above), we can derive the corresponding projection matrix

A �

[
0 SaC

So Sa

]

Assume that C � 0.42, Sa � 0.9, and So � 0.5. Thus, the projection matrix A is

A �

[
0 SaC

So Sa

]
�

[
0.000 0.378

0.500 0.900

]

from which we can determine that projected λ � 1.0757. [The use of life cycle diagrams, projection

matrices, and various metrics extracted from such matrices, is discussed in most modern texts on

population biology – Caswell (2001) is the standard reference].

OK, but what if you had used a different approach, based on the logic underlying the derivation

of the Pradel models? In other words, λi � ϕi + fi . Assume we know that (ϕi �)Sa � 0.90. That

would appear to be half of our equation for λ. What about recruitment, fi? For the Pradel models,

we’re interested in recruitment to the adult age class - the number of individuals entering the adult

population between (i) and (i+1) for each individual adult at (i).

If you stare at the life-cycle diagram (above), it might seem to be obvious that recruitment is simply

the number of babies who become adults. True, but how many babies are there? Recall that we’re
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estimating growth rate λ without having estimates of abundance. Well, as a first stab at the answer,

you might think that the number of babies surviving to adulthood is a function of how many babies are

produced by current adults (which is Sa .C.So ; because this is a post-breeding census, you pre-multiply

by Sa since a current adult has to survive in order to produce babies next year - this is indicated by

the product Sa .C on the fertility arc connecting node 2 back to node 1 in the life-cycle diagram). So,

you might try to estimate λ as λ � Sa + Sa .C.So � 0.9 + 0.189 � 1.089.

Unfortunately, this estimate (1.089) is not the same as the ‘true’ estimate of projected growth rate

derived from the projection matrix (1.0757). Why the difference? The difference is due to the fact that

recruitment between (i) and (i+1) is a function of how many babies there were at time (i). The product

Sa .C.So gives the projected recruitment between (i+1) and (i+2)! Why? Look carefully - the product

Sa .C.So covers two time intervals: one for current adults (Sa), and one for babies produced next year

by those adults (So).

So, how would you solve this problem? Fairly easily – you simply need to remember that for an

exponentially growing population,∆N for any age class over (t) time intervals is simply Nλt . Similarly,

since the projection of an exponentially growing population is time-symmetric, you could also project

backwards, and say that the size of the population (t) time units in past is simply Nλ−t .

Which is important...because?? It’s important because you want to know how many of babies at time

(i) will recruit (becomeadults) between (i) and (i+1). Since the product Sa .C.So in fact gives recruitment

2 time steps ahead, what you need to do is ‘back-step’ this product by 1 time step, which (as noted)

is given simply by λ−1. For our numerical example, where λ (from the matrix) is given as 1.0757,

then (1.0757)
−1

� 0.92963. So, we correct (or ‘back-step’) our recruitment term as (0.92963).Sa .C.So �

0.1757. Thus, λ = 0.9 + 0.1757 = 1.0757, which is exactly the same value we got from the projection

matrix.

OK – admittedly a somewhat ‘artificial’ problem,but remember: although the basic logic underlying

the temporal symmetry approachto estimating λ is relatively simple,you do need to pay close attention

to what is going on (which we suppose is a general truism for most things, but we’ll make the point

again here).

end sidebar

13.6. ‘average’ realized growth rate

Following estimation of the time-specific realized growth rates,λi, there is natural interest in the average
growth rate over the course of the study. You might recall from section 6.14 in Chapter 6 that estimating
the ‘average’ for a parameter can be somewhat more complicated than you might expect.

This is especially true in the present situation, where we are interested in estimating ˆ̄λ. Here, the
complication is that we’re calculating the mean of the ratio of successive population sizes, where the
population sizes at each time step are outcomes of an underlying, geometric stochastic generating
process. As such, the most appropriate ‘average’ to report is the geometric mean of the individual λ̂i ,
not the more familiar arithmetic mean.

You might recall that the geometric mean of a set of n numbers {x1 , x2, . . . , xn} is given as

y �
n

√√
n∏

i�1

xi

An important result is that unless the set {x1, x2 , . . . , xn} are all the same number (i.e., {x1 � x2 �

· · · � xn}), then the geometric average is always less than the arithmetic average. [Note: if the geometric
mean, in general, is new to you, it is worth consulting the following - sidebar - before proceeding
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much further.]

begin sidebar

arithmetic mean, geometric mean, and population growth...

The first ‘statistical’ calculation you usually learn how to do is the computation of an average. This is

how the teacher comes up with grades (in many cases) so it’s a basic bit of math most students have

an inherent interest in.

What you learned to calculate is what is known as the arithmetic average. For example, given three

random values x1, x2, and x3 then arithmetic mean y is

y �
x1 + x2 + x3

3

However, one of the most important averages in ecology is something known as the geometric mean,

or geometric average, which given the same three random values x1 , x2, and x3 is

y � 3
√

x1x2x3

In other words, the geometric mean of three numbers is the cube-root of their product.

If you have n numbers, the geometric mean is

y �
n

√√
n∏

i�1

xi

� e

(
1
n

∑(

log(x)
) )

For example, let x1 � 2, x2 � 2.5, and x3 � 4. Given these values, the arithmetic mean is (2 + 2.5 +

4)/3 � 2.833, whereas the geometric mean is

y �
3
√

2 × 2.5 × 4

�
3
√

20

� 2.714

Consider the simplest possible case of two numbers: x1 and x2. Unless x1 and x2 are the same

number, then the geometric average is always less than the arithmetic average.

Here is a proof attributed to Cauchy. Assume we have 2 values: x1 and x2. Assume that x1 , x2.

Thus x1 − x2 , 0, and

(

x1 − x2

)2
> 0

x2
1 − 2x2x2 + x2

2 > 0

[add (4x1x2) to each side] x2
1 + 2x1x2 + x2

2 > 4x1x2

(x1 + x2)
2 > 4x1x2

(
x1 + x2

2

)2

> x1x2

x1 + x2

2
>
√

x1x2

where the LHS is the arithmetic mean of x1 and x2, and the RHS is the geometric mean of the same

two values. The LHS (arithmetic mean) is greater than the RHS (geometric mean). Q.E.D

end sidebar
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Now, why do we care about the distinction between an arithmetic and geometric mean? We care
because the geometric mean is the appropriate average for stochastic population growth.

We’ll illustrate the reason ‘why’ we make this statement, by means of a simple numerical example.
Consider two successive years of population growth, with λ1 being the growth factor for the first year,
and λ2 being the growth factor for the second year.

Then, the population size after the first year, starting at size N0, is

N1 � λ1N0 ← after 1 year

while after 2 years, the population size is given as

N2 � λ2N1

� λ2λ1N0 ← after 2 years

Thus, the λi values foreach year i are simply multiplied togetherwhen projecting of geometric growth
through time.

What can we use this for? Well, let’s step back a moment, and recall from some population biology
class you might have taken that under time-invariance, such that λ is constant over time, we can write

Nt � N0λ
t

Let t � 3. Thus

N3 � N0λ
3

� N0 ·
(

λ · λ · λ
)

Clearly, in this case the growth rate over each year is the same, and is given by λ. So, the expected
change in size over t � 3 time steps is simply the average annual growth rate, raised to the 3rd power.
And, thus in reverse, the average growth rate in a given year would simply be the 3rd root of the product
of the individual λ values. For example, if N0 � 10, and N3 � 11.57625, then since Nt � N0λ

t under
time invariance, then λ3

� (11.57625/10) � 1.157625, and thus the average growth rate (again, assuming
time invariance) is simply 3

√
1.157625 � 1.05.

Now, consider the more typical case where λ varies from year to year. If λ1 is the geometric growth
factor for the first year, λ2 is the geometric growth factor for the second year, and λ3 is the geometric
growth factor for the third year then

N3 � λ3λ2λ1N0

So,what is the average growth rate over the 3 years? Consider the following simple numerical example:
let λ1 � 1.05, λ2 � 1.01, and λ3 � 0.98. The arithmetic mean of these three growth rates is 1.013. Is this
the appropriate growth rate to project population size in 3 years?

Let’s see what happens. Let N0=10. Thus, after three years, we project the population size in 3 years
will be N3 � (10 · 1.05 · 1.01 · 0.98) � 10.393. But, if instead we had used the arithmetic average in the
projection equation, we would project the population size after three time steps to be (10 · 1.013 · 1.013 ·
1.013) � 10.405, which is higher than it should be (10.405 > 10.393).
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But, what if instead we use the geometric mean? The geometric mean of our annual growth rates is

3
√

(1.05 × 1.01 × 0.98)

�
3
√

1.03929

� 1.01293

So, the projected size of the population after three time steps, using the geometric mean growth
rate, would be (10 × 1.01293 × 1.01293 × 1.01293) � 10.393, which is exactly what it should be, based
on our earlier projection using the individual λi values. The constant-environment equivalent of the
fluctuating environment is an environment with a constant λ that is the geometric average of the λ’s in
the fluctuating environment. We refer to this mean stochastic growth rate as λS . And, as noted earlier,
the geometric mean is always smaller than the arithmetic mean, and so, we expect that the stochastic

growth rate will be lower than the deterministic growth rate (this is a very important result in population
biology).

OK, back to Pradel models, and calculating the most appropriate ‘average’ growth rate over the time
series of estimated growth rates, λ̂i . From the preceding, we see that using a simple arithmetic mean
calculated over the set of λ̂i would be incorrect – it would overestimate the stochastic growth rate, which
is more appropriately estimated using the geometric mean.

How can we estimate the geometric mean growth rate using MARK? In fact, you have two options.
You can either (i) derive estimates of the geometric mean over the set of ML estimates of λ̂i by hand (a
fairly straightforward exercise using a spreadsheet of the estimates), or, (ii) you can use derived estimates

of λ on the log scale, which MARK generates automatically.

Why is this second approach useful? Recall again from some earlier population biology class that
λ � e r , where r is the instantaneous (intrinsic rate) of growth, whereas λ is the ratio of population sizes
at 2 discrete points in time.

We can write the stochastic growth rate λS over T time steps as

λS �
(

λ1 × λ2 × λ3 · · · × λT

)1/T

�
(

e r1 × e r2 × e r3 · · · × e rT
)1/T

which, taking logs, can be rewritten as

ln λS �
r1 + r2 + r3 · · · + rT

T

So, we can calculate ln λS simply as the arithmetic mean r̄.

Let’s explore application of these algebraic relationships using the capsid data set we introduced
earlier in this chapter. Using the ‘Pradel survival and Lambda’ data type, we’ll fit model {ϕt p.λt} to
the data, using the CLogit link applied to parameters ϕ8 and λ8 to enforce the logical constraint that
ϕi ≤ λi (this was discussed in the - sidebar - starting on p. 9 of this chapter).

The estimates of realized growth rate, λ̂i for the 12 intervals for the capsid data set are shown at the
top of the next page. For our subsequent calculations, we’ll exclude the estimate over the first interval,
λ̂1 � 2.6457, as being ‘suspicious’ (see earlier discussion on the potential for bias and confounding for
initial estimates from Pradel models).
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Now, how do we calculate the best estimate of ‘average’ growth rate? From the preceding discussion,
we know that the simple arithmetic mean of the set of estimates λ̂2 → λ̂12 (1.0074) would be incorrect as
a measure of this average growth, since it would overestimate the average expected stochastic growth
of the population over any given interval.

Instead, we should focus on the geometric mean of the estimates. We could simply take our set of
estimates λ̂i , export them to a spreadsheet, and calculate the geometric mean ‘by hand’. Alternatively,
and perhaps more conveniently, we could export the derived estimates of ln(λ̂i ) from MARK, and take
the arithmetic mean of these derived estimates, recalling that ln(λi ) � ri , and that ln(λS ) is simply the
arithmetic mean r̄. Recall that MARK generates estimates of ln(λ̂i ) as derived parameters for all of the
Pradel data types, which makes this approach very straightforward.

Simply select ‘Output | Specific Model Output | Parameter Estimates | Derived Estimates |
Copy to Excel’. The exported estimates are shown below:
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The first 12 rows are the estimates of λ̂i , while the next 12 rows are the same estimates, but reported
on the log scale, ln(λ̂i ). For example, ln(λ̂2) � 0.1772225 � ln(1.1938967), where λ̂2 � 1.1938967.

We focus here on the set of estimates ln(λ̂2) → ln(λ̂12), shown on the preceding page with light
green shading. The arithmetic average of this set is r̄ � ln(λS ) � −0.004616859. Thus, our estimate of
the stochastic, geometric growth rate on the real scale is λ̂S � e (−0.004616859)

� 0.995393783, which as
expected is less than the arithmetic mean of 1.0074. Not only that, the geometric mean suggests a slow
decline in population size over the long-term, whereas the arithmetic mean suggests a slow increase in
population size.

At this point, you may (and should) also be wondering about the variance of our estimated stochastic
growth rate. We could simply take the variance calculated on the log scale, and using the Delta method
(see Appendix B), back-transform our estimated variance to the usual real scale.

But, recall from section 6.14 in Chapter 6 that such an approach is generally biased, since it fails
to take into account the conditional sampling variances of our time-specific estimates of growth rate.
The preferred approach is to use a ‘random effects, variance components approach’, which could be
implemented using either a ‘moments-based’ approach (Appendix D), or using MCMC (appendix E).

For (relative) simplicity, we will briefly demonstrate the steps for the using the ‘moments-based’
method. We will fit a random effects ‘intercept only’ (i.e., mean) model to the capsid data. The
‘intercept only’ model assumes that the parameters in the model (say, λi ) are drawn from some
underlying distribution specified by mean µ and variance σ2 (see Appendix D for complete details
– our intent here is to demonstrate the mechanics only).

First, retrieve the model {ϕt p.λt} in the browser. Then, select ‘Output | Specific Model Output |
Variance Components | Derived Parameter Estimates’. This will spawn another window (shown at
the top of the next page) asking you whether you want to use λ̂i (‘Lambda Population Change’, or ln(λ̂i )

(‘log(Lambda) Population Change’) in the calculations.

Although earlier in this section we suggested that working with ln(λ) is more ‘convenient’ in the
context of doing subsequent calculations in a spreadsheet, convenience isn’t really the issue here. Here,
it is important to think carefully about what the variance components analysis yields for either λ or
ln(λ), and based on that, deciding which is the more appropriate.

To that end, we’ll compare both approaches – starting with the variance decomposition for λ. First,
we select ‘Lambda Population Change’. Then, in the variance component specification window (below),
we specify parameters ‘2 to 12’, and the ‘Intercept Only (Mean)’ model:
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Here is the output of the variance decomposition of λ̂2 → λ̂12, using the default mean (intercept-only)
model:

The value β̂ � 0.998117 reported near the top of the output is, in fact, quite close to the arithmetic mean
of the shrinkage estimates S̃i (labeled ‘S-tilde’ in the output): ¯̃Si � 1.0024 (the reason for the slight
difference between the two is discussed in Appendix D). In fact, if we were interested in the arithmetic

mean of the λ̂i , then β̂ � 0.998117 would be our best, most robust estimate.

But, to quantify average stochastic growth rate, we want the geometric mean, not the arithmetic mean.
Clearly, we can’t ‘get there from here’ using a variance decomposition of the λ̂i estimates. We need to
re-do our variance components analysis, this time using the derived ln(λ̂i ) estimates.

The output from this re-analysis, using ln(λ̂i ), is shown below:

The value β̂ � −0.008259 reported near the top of the output is again quite close to the arithmetic mean
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of the shrinkage estimates, ln(λ̃i ) (again, labeled ‘S-tilde’ in the output),−0.00653. The arithmetic mean
of the ML estimates of ln(λ̂i ) (labeled ‘S-hat’) is identical to what we reported earlier (-0.00462).

If we had a basis for accepting that a random effects model was a more parsimonious model for
these data than was the original fixed effects model, {ϕt p.λt}, then our best estimate of the stochastic
growth rate on the log scale would be −0.008259, with an estimated process variance on the log scale of
of 0.02243. If we back-transform from the log scale to the real scale, our estimate of stochastic growth
rate is exp(−0.008259) � 0.9918, which is somewhat smaller than the estimated arithmetic mean of the
λ̂i estimates shown on the preceding page. This is perhaps expected (since for a random sample, the
GM < AM), but we note that this may not always be the case when comparing β estimates for the
intercept (i.e., means) using the variance components approach.

Using a Delta method approximation, our estimate for the back-transformed process variance is
≈ (exp(−0.008259)

2× 0.02243) � 0.0228.∗ To derive a 95% CI for our estimated of stochastic growth, we
first calculate the CI on the log scale using the estimated ‘SE(Beta-hat)’� 0.046131,as−0.008259±(1.96×
0.045181)→ [−0.098676, 0.082158], which when back-transformed from the log scale, is [0.9060, 1.0856]

Note: beyond the ability to estimate mean growth rate directly, the log transformation of the λi

estimates results in a distribution which is generally nearer to normal than the generally log-normal
distribution of the untransformed λi values. This may provide some improvement in performance of
the ‘method of moments’ approach to estimation of the mean and process variance of the random
distribution.

It is worth mentioning, however, that despite these advantages, the ‘method of moments’ approach
to variance components analysis is sensitive to the length of the time-series, and is generally thought to
be robust only when number of samples is ≥ 15 (see Appendix D). For the capsid example (above), we
have only 12 estimates of λi , 11 if we exclude the potentially biased estimate over the first interval. In
practice, we would be somewhat cautious in evaluation of the estimated mean stochastic growth rate
from data with a relatively small number of years in the sample.

13.7. Pradel models and Jolly-Seber estimation

We began this chapter by noting that population dynamics in the broad sense is determined by the net
balance of ‘additions’ and ‘subtractions’. The Pradel models, which we’ve introduced in this chapter, are
one of several approaches available in MARK for partitioning one or more components of the dynamics
of a population.

However, there are some important differences between Pradel models and the classical approaches
generally referred to as Jolly-Seber models, introduced earlier in Chapter 12. In fact, the Pradel models
considered in this chapter, are in effect a special (conditional) case of the more general Jolly-Seber model
(as discussed in Chapter 12). One important difference is that the Pradel models, and the Cormack-Jolly-
Seber (CJS) models we’ve considered in detail for analysis of live encounter data, condition on events
since marking, and do not explicitly try to model events prior to the first encounter.

Another major difference is that neither the Pradel or CJS models specifically model abundance. In
many cases, however, estimating abundance in open populations is important. For that, you need to
consider Jolly-Seber and related models (Chapter 12).

∗ Because the transformation here (log) is non-linear, potentially strongly so depending on the range of the data, the first-order
Delta approximation may not be particularly accurate – see section B.3.1 in Appendix B.
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13.8. Summary

That’s the end of our very quick stroll through the Pradel models. We’ve seen how a simple ‘flip’ of the
encounterhistory can yieldall sorts of interesting information on the processes underlying the dynamics
of our population. We can estimate population growth,without the ‘messy’ job of estimating abundance.
Moreover, we can partition variation in population growth due to relative contributions of recruitment
and mortality. Pretty neat stuff. But, we wouldn’t want to presume that estimating abundance, and all
of the other elements which contribute to the dynamics of a population, are not important - we’ll deal
with this in the next chapter.
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CHAPTER 14

Closed population capture-recapture models

Paul Lukacs, University of Montana

A fair argument could be made that the marking of individuals in a wild population was originally
motivated by the desire to estimate a fundamental parameter: abundance (i.e., population size). By
comparing the relative proportions of marked and unmarked animals in successive samples, various
estimators of animal abundance could be derived. In this chapter, we consider the theory and mechanics
of estimation of abundance from closed population capture-recapture data, using program MARK.∗

Here, the population of interest is assumed to be closed geographically – no movement on or off the
study area – and demographically – no births or deaths.

14.1. The basic idea

How many individuals are there in the sampled population? Well, if the population is (or assumed
to be) closed, then the number of individuals in the population being sampled is a constant over time.
Meaning, the population size does not change at each sampling event. With a little thought, you quickly
realize that the canonical estimate of population size is a function of (i) how many unique individuals
are encountered over all sampling events, and (ii) what the probability is of encountering an individual
at least once. For a single sampling event, we can express this more formally as

N̂ �
n

p̂

where the numerator (n) is the number of unique individuals encountered, and the denominator (p) is
the probability that any individual will be encountered.

This expression makes good intuitive sense. For example, suppose that you capture 50 individuals
(n � 50), and the encounter probability is p � 0.5, then clearly, since there is a 50:50 chance that you
will miss an individual instead of encountering it, then

N̂ �
n

p̂
�

50

0.5
� 100

∗ Prior to MARK, program CAPTURE was a widely used application for closed population abundance estimation. All of the
likelihood-based models from CAPTURE can be built in MARK, plus numerous models that have been developed since then.
Further, there are some important differences between MARK and CAPTURE: (i) for likelihood-based models, CAPTURE
returns the estimate from the integer, and not the floating point value that maximizes the likelihood; (ii) all of the heterogeneity
models in CAPTURE (except Mbh) are not likelihood based, so will give quite different estimates than those from MARK.
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14.1.1. The Lincoln-Petersen estimator – a quick review

The most general approach to estimating abundance, and p, in closed populations is based on what is
known as the Lincoln-Petersen estimator (hereafter, the ‘LP’ estimator). The LP estimator is appropriate
when there are just two sampling occasions, and the population is closed between the two occasions.
Imagine you go out on the first occasion, capture a sample of individuals, mark and release them
back into the population. On the second occasion, you re-sample from (what you hope is) the same
population. In this second sample, there will be two types of individuals: those that are unmarked (not
previously captured) and those with marks (individuals captured and marked on the first occasion).
The basic sampling structure is shown in Fig. (14.1).

marked ( )n1

previously
marked ( )m2

first
sample marked ( )n1

second
sample

total
population

sampling
occasion 1

sampling
occasion 2

Figure 14.1: Schematic representation of the LP sampling scheme. The entire left-most vertical bar (the sum of
light- and dark-grey areas) represents the total population, N. The light-grey represents the proportion of the
total population that is sampled on the first sampling occasion. The number encountered, and marked, during
this first sample, is n1. The middle bar is the same population at the time of the second sample, with the same total
abundance,N,which we assume is constant between sampling occasions. During the second sample, indicated as
the proportion of the total population bounded by the dashed-line box, some of the n2 total sampled individuals
are newly encountered – dark-grey – while some (m2, the light-grey portion) were previously encountered.
Adapted from Powell & Gale 2015.

We develop the LP estimator by noting that the proportion of marked animals in the population
after the first sample is simply n1/N , where N is the size of the population (and which, of course, is
what we’re trying to estimate). Note that the numerator of this expression (n1) is known, whereas the
denominator (N) is not. In the second sample (Fig. 14.1), the ratio of the previously marked to the total
number of individuals sampled is, simply, m2/n2.

Now, the key step, based on the following assumption – we assume that all individuals (marked or
not) are equally catchable (meaning, we assume random mixing of marked and unmarked after the first
sample). Under this assumption, then this proportion of previously marked individuals in the second
sample should be equivalent to the proportion of newly marked individuals in the first sample:

m2

n2

�
n1

N
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Make sure you understand the logic here.

Next, a little algebraic rearrangement of this equation, and we come up with the familiar LP estimator
for abundance, as

N̂ �
n1n2

m2

We might also use the canonical form noted earlier, where abundance is estimated as the count
statistic divided by the encounter probability:

N̂ �
n

p̂
.

If n1 is the number of animals caught and marked at the first sampling occasion, and if m2 is the
number of the animals caught in both occasions, then assuming that (i) all n1 individuals are alive and
in the sample at occasion 2, and (ii) that marked and unmarked individuals have the same probability
of detection, then the probability of encountering any of those n1 marked individuals is

p̂ �
m2

n2

.

Thus, the ratio of the count statistic to the detection probability is the Lincoln-Petersen estimator:

N̂ �
n1

p̂
�

n1n2

m2

14.2. Likelihood

While the ‘algebraic’ (LP) estimator for N developed in the preceding section is simple, reasonably
intuitive and undoubtedly quite familiar, here we consider a more formal approach, based upon
maximum likelihood estimation.

14.2.1. full likelihood approach

We start by re-visiting the simple two sample study we used to motivate the LP estimator introduced
in the previous section. For such a study, there are only 4 possible encounter histories: ‘11’, ‘10’, ‘01’,
and ‘00’. The number of individuals with encounter history ‘00’ is not known directly, but must be
estimated. So, the estimation of abundance proceeds by using the number of individuals observed who
were encountered at least once.

We can express the probability distribution for n1, n2 , and m2, given the r (total) observed frequencies
of the 3 observable encounter histories ( ‘11’, ‘10’ and ‘01’), as

P
(

n1 , n2 ,m2
�� N, p1, p2

)

�
N!

m2!
(

n1 − m1

)

!
(

n2 − m2

)

!(N − r)!

×
(

p1p2

)m2
[

p1

(

1 − p2

) ] (n1−m2) [(
1 − p1

)

p2

] (n2−m2) [ (
1 − p1

) (

1 − p2

) ] (N−r)

Two important things to note in this expression. First, N appears in the multinomial coefficient of the
likelihood function. Second, the probability expression is written including a term for each encounter
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history, and with the exponent representing the number of individuals with a given encounter history
(expressed in the standardnotation introducedearlier).Forexample,the probability of encounterhistory
‘11’ is p1p2, the probability of encounter history ‘10’ is p1(1 − p2), and so on.

Note also that the encounter history representing individuals that were never caught (i.e., ‘00’ for a
two occasion case) also appears (as the final term) in the likelihood (but not in the encounter histories
file – since (obviously) there are no data for individuals that were never captured!).

More generally, we can write the likelihood as

L
(

N, p �� data
)

∝ N!

(N −Mt+1)!

∏

h

P[h]nh · P[not encountered]N−Mt+1

where p is the vector of encounter probability parameters, Mt+1 is the number of unique animals
encountered (i.e., r in the expression on the previous page), and nh is the number (frequency) of
individuals with encounter history h.

Now, it is possible to rewrite the likelihood in terms of the number of individuals never caught, f0,
such that f0 = N −Mt+1 (the notation ‘ f0’ originates from the frequency (count) of animals observed 0
times). The likelihood now becomes

L
(

f0 , p
�� data

)

∝
( f0 + Mt+1)!

f0!

∏

h

P[h]nh · P[not encountered] f0 .

The f0 parametrization is useful computationally because f0 is bounded on the interval [0,∞], thus
forcing the logical constraint that N̂ ≥ Mt+1. In fact, MARK uses the f0 parametrization for ease of
computation by using the log link function to constrain f̂0 ≥ 0, but presents the results in terms of N̂

as a derived parameter (i.e., N̂ � f̂0 + Mt+1 and v̂ar [N̂] � v̂ar [ f̂0]).

The fact that MARK uses f0, the number of individuals never caught, in the likelihood has important
implications you must keep in mind. Consider a study with two different sites (say, sampling plots) –
you may be interested as to whether or not there is a difference between sites in abundance. How would
you build a model where (say) you set N1 � N2? Answer – you can’t. You can only apply constraints to
parameters that are included in the likelihood. Abundance N isn’t in the likelihood, so you can’t build
models that constrain N .

But, N̂ � f̂0 + Mt+1, and since Mt+1 is a constant, then N̂ ∝ f̂0. So wouldn’t constraining f̂0 be
equivalent to constraining N̂? If you think about it for a moment, you should realize the answer is ‘no,
this is generally not reasonable’. Why? Consider setting f̂0,1 � f̂0,2. This is easy enough to do in MARK,
but, does it really make sense to say that ‘the number never caught is the same in the 2 locations...’?
Probably not. So, in short, you cannot constrain N in any meaningful way.

14.2.2. conditional likelihood

It is sometimes convenient to use a conditional likelihood approach to estimating abundance, where N

(or, equivalently, f0) is not a parameter in the likelihood. This is possible if you ‘condition’ the analysis
only on those individuals which are encountered (i.e., r).

Recall that the probability that any individual in the population is encountered at least once during
a two-sample study is

p∗ � 1.0 − (1 − p1)(1 − p2)
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Thus, we can re-write the conditional probability expression for the capture histories as

P
(

{xi j} �� r, p1 , p2

)

�
r!

x11!x10!x01!
×

(
p1p2

p∗

)x11
(

p1

(

1 − p2

)

p∗

)x10
( (

1 − p1

)

p2

p∗

)x01

The ML estimates for this model are again fairly easy to derive (see Williams, Nichols & Conroy 2002
for the details).

The primary advantage of using this conditional likelihood approach is that individual covariates can
be used to model the encounter process. Individual covariates cannot be used with the full likelihood
approach introduced in the preceding section, because the term (1 − p1)(1 − p2)...(1 − pt ) is included
in the likelihood, and no covariate value is available for animals that were never captured.

In contrast, the unconditional likelihood approach conditions this multinomial term out of the
likelihood, and so an individual covariate can be measured for each of the animals included in the
likelihood. When individual covariates are used, a Horvitz-Thompson estimator is used to estimate N :

N̂ �

Mt+1∑

i�1

1

1 −
[

1 − p̂1(xi )
] [

1 − p̂2(xi )
]

...
[

1 − p̂t (xi )
]

An example is perhaps the best way to illustrate the difference between the full and conditional
likelihood approaches. Consider the 4 possible encounter histories for 2 sampling occasions:

encounter history probability

11 p1p2

10 p1

(

1 − p2

)

01
(
1 − p1

)
p2

00
(

1 − p1

) (

1 − p2

)

For each of the encounter histories except the last, the number of animals with the specific encounter
history is known. For the last encounter history, the number of animals is f0 � (N − Mt+1), i.e., the
population size (N) minus the number of animals known to have been in the population (Mt+1).

The approach (first described by Huggins 1989, 1991) was to condition this last encounter history out
of the likelihood by dividing the quantity ‘1 minus this last history’ into each of the others. The result
is a new multinomial distribution that still sums to one. The derived parameter N is then estimated as

N̂ �
Mt+1

[

1 −
(

1 − p̂
) (

1 − p̂
) (

1 − p̂
) ]

for data with no individual covariates. A more complex estimator is required for models that include
individual covariates to model the p parameters.

Here’s a simple example of how this works, given 2 occasions. Let p1 � 0.4, p2 � 0.3. At the top of
the next page, we tabulate both the unconditional probability of a given encounter history (i.e., where N

is in the likelihood), and the conditional probability of the encounter history, where the individuals not
seen are not included (i.e., are ‘conditioned out’). Note that if p1 � 0.4 and p2 � 0.3, then the probability
of not being captured at all is (1− p1)(1− p2) � 0.42, such that the probability of being captured at least
once is Pr(capt) � p∗ � (1 − 0.42) � 0.58.

Chapter 14. Closed population capture-recapture models



14.2.2. conditional likelihood 14 - 6

history unconditional Pr(history) Pr(history | captured)

11 p1p2 (0.4 × 0.3) � 0.12
(

p1p2

)

/p∗ 0.12/0.58 � 0.207

10 p1

(

1 − p2

)

0.4 (1 − 0.3) � 0.28
[

p1

(

1 − p2

) ]

/p∗ 0.28/0.58 � 0.483

01 (1 − p1)p2 (1 − 0.4) 0.3 � 0.18
[(

1 − p1

)

p2

]

/p∗ 0.18/0.58 � 0.310

00
(

1 − p1

) (

1 − p2

)

(1 − 0.4)(1 − 0.3) � 0.42 (not included because not captured)

In either case, the probabilities for all 4 histories sum to 1.0 (i.e., (0.12+ 0.28+ 0.18+ 0.42) � 1.0, and
(0.207 + 0.48 + 0.310) � 1.0). Each forms a multinomial likelihood that can be solved for p1 and p2, by
maximizing the likelihood expression.

As noted earlier, the derived parameter N is then estimated as

N̂ �
Mt+1

[

1 −
(

1 − p̂
) (

1 − p̂
) (

1 − p̂
) ]

for data with no individual covariates.

Regardless of whether or not you include individuals not encountered in the likelihood, the key to
understanding the fitting of closed capture models is in realizing that the event histories are governed
entirely by the encounter probability.

In fact, the process of estimating abundance for closed models is in effect the process of estimating
detection probabilities – the probability that an animal will be caught for the first time (if at all), and the
probability that if caught at least once, that it will be caught again. The different closed population
models differ conceptually on how variation in the encounter probability (e.g., over time, among
individuals) is handled. The mechanics of fitting these models in MARK is the subject of the rest
of this chapter.

begin sidebar

What does ‘closure’ really mean?

The ‘closed captures’ data types, as the name implies, all assume the population of interest is closed

during the sampling period. Strictly speaking, the models assume that no births or deaths occur and

no immigration or emigration occurs. Typically, we refer to a closed population as one that is free of

unknown changes in abundance, as we can usually account for known changes. White et al. (1982: 3-4)

provide a good overview of the closure assumption.

A few methods have been developed to test for closure violations. Program CloseTest exists to test

the assumption of closure (Stanley and Burnham 1999), although it is no longer in widespread use.

The Pradel model with recruitment parameterization has also been used to explore closure violations

(Boulanger et al. 2002; see chapter 13 for details of the Pradel model). By analyzing closed population

capture-recapture data with the Pradel recruitment parameterization, one could test for emigration

and immigration. To test for emigration, compare a model withϕ � 1 to a model withϕ unconstrained.

To test for immigration, compare a model with f � 0 to an model with f unconstrained. A likelihood

ratio test could be used for the comparison.

Heterogeneity in capture probability can cloud our ability to detect closure violations. In situations

where the population is truly closed, heterogeneity in capture probability can cause both the tests of

immigration and emigration to reject the null hypothesis of closure.

end sidebar
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14.3. Model types

MARK currently supports 12 different closed population capture-recapture data types. These different
data types can be classified within a hierarchy of dichotomous divisions – as shown in the diagram,
below:

full likelihood conditional likelihood

full mixtures + mis-ID

f0, ,  , ,p c a p

mixtures + mis-ID

f  p0,  , ,a p

p cº

closed captures + mis-ID

f ,0, ,p c a
full mixtures

f ,0, ,p c p

mixtures

f  p0,  ,p
closed captures

f0, ,p c

Mo

f  p0,

p=1c=1

pºc

a=1

p=1
a=1

p cºp=1

Huggins full mixtures
+ mis-ID p c,  , ,a p

Huggins mixtures + mis-ID

p, ,a p

p cº

Huggins closed captures
+ mis-ID p c, ,a

Huggins full mixtures
p c, ,p

Huggins mixtures
p,p

Huggins closed captures

p c,

Huggins Mo

p

p=1c=1

p cº

a=1

p=1
a=1

p cºp=1

p M| t+1

more
general

more
constrained

The first and most important split is between the models with abundance (or, rather, f0) in the
likelihood (Otis et al. 1978) and those with abundance conditioned out of the likelihood (Huggins 1989).
We refer to the former as ‘full likelihood’ models, and the latter as either ‘conditional likelihood’ or
‘Huggins’ models. This is a major division that results in the two types of models not being comparable
with standard AIC-based model selection techniques.

The remainder of the splits reflect one or more constraints on different parameters, and which
parameters are included in the likelihoods. As noted earlier, the encounter histories in MARK are
determined by the underlying encounter probabilities only. Minimally, most models in MARK are
parameterized in terms of two different encounter parameters:

p – the probability of first capture (i.e., the probability that an animal in the population will
be captured – and marked - for the very first time)

c – the probability of recapture (conditional on having been captured at least once before). The
c parameter is generally used to model for behavioral effects following inial capture.

Both p and c can be time specific, although some specific constraints are required to ensure iden-
tifiability (discussed later). As a matter of convention in this chapter, we will use bold p’s and c’s to
indicate a set (vector) of parameters that are (potentially) time varying, italic, un-subscripted p’s and c’s
to indicate constant parameters, and italic, subscripted p’s and c’s refer to specific sampling occasions.

It is perhaps easiest to introduce the various models and parameters indicated in the preceding
figure, by associating them with the different data types available in MARK. When you select ’closed
captures’ in the data type specification window, MARK presents you with a popup window allowing
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you to select among these 12 different data types:

The first data type is labeled ‘Full Likelihood p and c’. These are the models of Otis et al. (1978).
They are based on the full likelihood parametrization with three types of parameters; pi , ci , and f0 (the
number of individuals in the population, but not encountered).

The second data type is labeled ‘Huggins p and c’. These are the models of Huggins (1989). In this
model, the likelihood is conditioned on the number of animals detected and f0 therefore drops out of the
likelihood. These models contain only pi and ci ; the abundance N is estimated as a derived parameter.
As noted earlier, the primary advantage of the Huggins data type is that individual covariates can be
used to model p and c.

The next 4 model types are heterogeneity models. These models incorporate a finite mixture as an
approximation to individual heterogeneity in the pi parameter. In this model,

pi �


pi ,A with Pr(π)

pi ,B with Pr(1 − π)

for the case with two mixtures A and B, although the model can be extended to >2 mixtures. As written
(above), the parameter π is the probability that the individual occurs in mixture A. For >2 mixtures,
additional π parameters must be defined (i.e., πA , πB ,...), but constrained to sum to 1.

Note that the ‘heterogeneity models’ for both full likelihood closed captures and the Huggins’
models come in one of two forms, differentiated by the presence of either (i) the mixture parameter,
π, and both the pi and ci parameters, or (ii) the mixture parameter,π, and a single encounter parameter,
p, only. The latter parameterizations (with only the π and p parameters) represent simple individual
heterogeneity models, with parameters π, pi ,A � pA, and pi ,B � pB , and assume no temporal or
behavioral variation. In contrast, the full parametrization models (including π, p and c parameters)
provide for all three effects of time, behavior, and heterogeneity. Of course, any of the reduced models
can be run from the full parameterizations if the appropriate constraints are applied.

The final six data types generalize the previous six data types to handle uncertainty in identification
of individuals, typically from genotyping error (Lukacs & Burnham 2005). These models include
an additional parameter, α, that is the probability that the individual was correctly identified on its
first observation. In these models, N is estimated as a derived parameter. While it is possible to
construct models for every data type using only ‘Full Likelihood heterogeneity pi, p, and c with
mis-identification’ and ‘Huggins heterogeneity pi, p, and c with mis-identification’, the other
data types are included to allow the user a less cumbersome set of parameters for building more
constrained models. The heterogeneity and misidentification models will be treated in more detail
later in this chapter.
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14.3.1. Constraining the final p

A subtlety of the closed population models is that the last p parameter is not identifiable unless a
constraint is imposed. When no constraint is imposed on the last pi , the likelihood is maximized with
the last p � 1, giving the estimate N̂ � Mt+1. Why?

Consider a simple 2 occasion study. For this study, there are 4 possible encounter histories: 11, 10, 01,
and 00. The probabilities of observing each history are:

history probability

11 p1c2

10 p1

(

1 − c2

)

01
(

1 − p1

)

p2

00
(

1 − p1

) (

1 − p2

)

Our interest concerns the final p parameter (in this case, p2). We see that p2 is a term in the probability
expression for the ‘01’ and ‘00’ histories only. Taking the ratio of the observed frequency of ‘00‘ individuals
to the observed frequency of ‘01’ individuals (which is an ad hoc way of estimating p2; see Chapter 1),
then

f{00}

f{01}
�

✘✘✘✘(

1 − p1

) (

1 − p2

)

✘✘✘✘(

1 − p1

)

p2

�

(

1 − p2

)

p2

Focus on the LHS of this expression. The numerator, f{00}, must be 0. Why? This must be true since
the ‘00’ history refers to individuals not seen. So, the observed frequency of animals not seen ( f{00}) is
0 (obviously), and thus the LHS of our equation is 0/ f{01} � 0.

Thus, we solve for p2 as

f{00}

f{01}
�

(

1 − p2

)

p2

0 �

(

1 − p2

)

p2

� 1 − p2

∴ p̂2 � 1

So, the final encounter probability p2 is estimated at 1.

OK – fine. But, why is that a problem? Recall that the canonical estimator for N̂ is the count statistic
(in this case, Mt+1) divided by the encounter probability. For a two occasion study,

N̂ �
Mt+1

(

1 −
[(

1 − p̂1

) (

1 − p̂2

) ] )
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If p̂2 � 1, then

N̂ �
Mt+1

(

1 −
[(

1 − p̂1

) (

1 − p̂2

) ] )

�
Mt+1

(

1 −
[(

1 − p̂1

) (

1 − 1
)] )

�
Mt+1
(

1 − 0
)

� Mt+1

Thus, unless a constraint is placed on the last p, then the estimated abundance N will simply be Mt+1.
Thus, it is diagnostic to check to see whether N̂ � Mt+1, and if so, to see if the last pi estimate equals 1.
If they are, then you’ve forgotten to constrain p.

So, in model Mt , the constraint of pi � ci is imposed, providing an estimate of the last p from the last c.
Likewise, under model Mb , the constraint of pi � p. is imposed, so that the last p is assumed equal to all
the other p values. A similar constraint is used for model Mbh , i.e., pi ,A � pA, pi ,B � pB , and so on. Under
model Mtb , the pi and ci are modeled as a constant offset (Obeh) of one another, i.e., ci � (pi + Obeh).
This relationship will depend on the link function used, but the last pi is still obtained as ci minus
the offset (where the offset is estimated from the data on the other pi and ci ). Under model Mtbh , the
offset between the pi and ci is applied, with an additional offset(s) included to model the relationship
among the mixtures, i.e., pi ,B � (pi ,A + OB), pi ,C � (pi ,A + OC), with a different offset applied to each
succeeding mixture. Similarly, ci ,B � (pi ,B + Obeh) � (pi ,A + OB + Obeh), with the resulting relationship
depending on the link function applied. With this model, the relationship between the mixtures of the
pi is maintained, i.e., the ordering of the mixtures is maintained across occasions. Model Mth can also be
modeled as an additive offset between the mixtures, although other relationships are possible because
the last pi for each mixture is estimated from the corresponding last ci .

Although other relationships than those of the preceding paragraph can be proposed to provide
identifiability, the proposed models must provide identifiability of all the initial capture probabilities.

14.4. Encounter histories format

All of the closed capture-recapture models use the LLLL encounter histories format (see chapter 2 for
more detail). By the definition of a closed population, animals are not dying, therefore a dead encounter
is not possible. On the same line of reasoning, time between sampling occasions is not relevant because
there is no survival or movement process to consider. Encounter histories are followed by group
frequencies. For the Huggins models, group frequencies can be followed with individual covariates.
All encounter histories end with the standard semicolon.

/* Closed capture-recapture data for a Huggins model.

tag #, encounter history, males, females, length */

/* 001 */ 1001 1 0 22.3;

/* 002 */ 0111 1 0 18.9;

/* 003 */ 0100 0 1 20.6;
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If you wish to analyze a data set that contains covariates in the input with both full and conditional
likelihoods, you must initially import that data set by selecting a ‘Huggins’ data type. The ‘Closed
Captures’ data type will not allow individual covariates to be specified. In this case, it is likely best to
create two separate MARK files for the analysis because the AICc values are not comparable between
the ‘Closed Captures’ and ‘Huggins’ data types.

14.5. Building models

Now it is time to move on to the actual mechanics of closed population abundance estimation in MARK.
We will analyze some simulated data contained in (simple_closed1.inp). In this simulated data set
(which consists of 6 encounter occasions), true N � 350. The total number of individuals encountered
was Mt+1 � 339 (so, 11 individuals were never seen). Open MARK and create a new database using
the ‘File | New’ option. Select the ‘Closed Captures’ radio-button. When you click on the ‘Closed
Captures’ radio-button, a window will open that allows you to select a model type, shown earlier in
this chapter. To start, select ‘Full Likelihood p and c’.

Enter a title, select the input file, and set the number of encounter occasions to 6.

To start, we’ll construct some of the ‘standard’ closed capture models, as originally described in Otis
et al. (1978). Model notation for the closed capture-recapture models in the literature often still follows
that of Otis et al. (1978). Now that more complex models can be built, it seems appropriate to use a
notation that is similar to the notation used for other models in MARK. Thus, our notation in this
chapter will be based on a description of the parameters in the models.

Below,we present a table contrasting model notation based on Otis et al. (1978) and expanded notation
based on a description of the parameters. Combinations of the models described are possible.

Otis notation Expanded notation Description

M0 { f0, p(.) � c(.)} Constant p

Mt { f0, p(t) � c(t)} Time varying p

Mb { f0, p(.), c(.)} Behavioral response

Mh or Mh2 { f0, pa (.) � ca (.), pb (.) � cb (.), π} Heterogeneous p

If you look closely at the ‘expanded notation’, you’ll see that models are differentiated based on
relationships between the p and c parameters. This is important – the closed capture-recapture models
are one of the model types in MARK where different types of parameters are modeled as functions of
each other. In this case p and c are commonly modeled as functions of one another. This makes intuitive
sense because both p and c relate to catching animals.

With that said, let’s begin building a few models to learn some of the tricks of using MARK to
estimate abundance. We’ll start with models { f0 , p(.) � c(.)}, { f0 , p(t) � c(t)}, and { f0 , p(.), c(.)} (i.e.,
models M0 ,Mt and Mb).
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Let’s first examine the default PIM chart for the ‘Full Likelihood p and c’ models:

MARK defaults to a general time-varying parameter structure where there is a different p and c for
each occasion. You may recall (from preceding section 14.3.1) that abundance is not estimable with this
model structure because no constraint is imposed to estimate p10. If this default, fully time-dependent
model is fit to the data, N̂ � Mt+1 and p̂10 � 1.0 regardless of the data. Therefore, in every model
we build we must put some constraint on pi for the last encounter occasion so that this parameter is
estimated.

If we open the PIM windows (say, for p), we’ll notice that the p’s and c’s have only a single row of
text boxes.

In the closed capture models, every individual is assumed to be in the population and at risk of
capture on every occasion. Therefore, there is no need for cohorts (expressed as multiple rows in the
PIM window) as there is for many of the open-population models.
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We’ll start with { f0, p(.) � c(.)} – for this model, there is no temporal variation in either p or c, and
the two parameters are set equal to each other. This model is easily constructed using the PIM chart:

Go ahead and run this model, and add the results to the browser. Couple of important things to
note. First, it is common for AICc values to be negative for the full likelihood closed captures models.
Negative AICc values are legitimate and interpreted in the same way as positive AICc values. The
negative AIC arises due to the portion of the multinomial coefficient that is computed. Recall that for
the full likelihood for the 2-sample situation, the multinomial coefficient was written as

N!

m2!
(

n1 − m1

)

!
(

n2 − m2

)

!(N − r)!
≡

(

f0 + Mt+1

)

!

m2!
(

n1 − m1

)

!
(

n2 − m2

)

! f0!

which, after dropping terms that did not include N (or f0), simplified to

( f0 + Mt+1)!

f0!

which is frequently negative (which results in a negative AICc). In contrast, AICc values from the
conditional likelihood models are typically positive. Regardless, the model with the ‘most negative’
AICc , i.e., the one furthest from zero, is the most parsimonious model.

In addition, note that MARK defaults to a sin link, just as it does with all other data types when an
identity design matrix is specified. In the case of the closed models, the sin link is used for the p’s and
c’s, but a log link is used for f0. The log link is used because f0 must be allowed to be in the range of
[0→∞]. Therefore, no matter what link function you select, a log link will be used on f0. If you choose
the ‘Parm-Specific’ option to set different link functions for each parameter, be sure you choose a link
that does not constrain f0 to the [0, 1] interval. Choose either a log or identity link (log is preferable).

Now,we’ll build model { f0 , p(t) � c(t)} (i.e.,model Mt). Remember, there is no c for the first occasion
because it is impossible for an animal to be recaptured until it has been captured once. Therefore,MARK
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offers an easy way to assure that the correct p’s line up with the correct c’s: under the ‘Initial’ menu
select ‘make c=p’ and renumber with overlap. The constraint on p5 in this model is that p5 � c5.

Here is the PIM chart:

Finally, we’ll build model { f0 , p(.), c(.)} (i.e., model Mb). Here, we’re accounting for possible dif-
ferences in ‘behavior’ between the first encounter, and subsequent encounters. Such a ‘behavioral’
effect might indicate some permanent ‘trap effect’ (trap ‘happiness’ or trap ‘aversion’). For model
{ f0 , p(.), c(.)}, shown below, there is a ‘behavior’ effect, but no temporal variation:
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Note that there is no ‘overlap’ (i.e., no function relating p and c) for this model – this is analogous to
the default model { f0, p(t), c(t)}, shown earlier. However, in this instance, all parameters are estimable
because of the constraint that p and c are constant over time – the lack of estimability for the final p occurs
if p is time dependent. As such, model { f0, p(.), c(t)} would be estimable, while model { f0, p(t), c(.)}
would not (for this model N̂ � Mt+1). You might want to confirm this for yourself.

begin sidebar

simple extension – removal models

Now let’s consider a removal model. These are commonly used in fisheries work where the researcher

does not want to subject a fish to multiple passes of electricity. Therefore, the fish that are encountered

are held aside until all sampling has occurred.

To accomplish this in MARK, build an { f0 , p(t), c(.)} or { f0 , p(.), c(.)} model. Then click ‘Run’ to

open the run window. Click the ‘fix parameters’ button. A window will open listing all of the real

parameters in the model. Simply fix c � 0, and run the model. Note – a removal model requires that

the number of captures decrease with occasion.

end sidebar

14.6. Closed population models and the design matrix

In the preceding, we constructed 3 simple models using the PIM chart. While using the PIM chart was
very straightforward for those models, through the design matrix MARK allows models to be fit that
were not possible with the PIM chart. For example, it is possible to build an { f0 , p(t) � c(t) + b} model
where capture probability and recapture probability are allowed to vary through time, but constrained
to be different by an additive constant on the logit scale. It is also worth noting that these extended
models are not available in program CAPTURE (one of several reasons that CAPTURE is no longer
preferred for fitting closed population abundance models).

As introduced in Chapter 6, one approach to doing this is to first build a general model using PIMs,
and then construct the design matrix corresponding to this general model. Then, once you have the
generalmodel constructedusing the design matrix,all othermodels of interest can be constructedsimply
by modifying the design matrix. In this case, the most general model we can build is { f0 , p(t), c(t)}. As
noted above, we know before the fact that this particular model is not a useful model, but it is convenient
to build the design matrix for this model as a starting point.

To do this we need the PIMs in the full time varying setup (as shown earlier). Go ahead and run
this model, and add the results to the browser. Look at the real and derived parameter estimates – note
that (i) p̂5 � 1.0, and (ii) N̂ � Mt+1 � 339. Note as well that the reported SEs for both p̂5 and N̂ are
impossibly small – a general diagnostic that there is ‘something wrong’ with this model (as expected).
As discussed earlier, this is not a useful model without imposing some constraints since the estimate of
N̂ � Mt+1.

Now, the design matrix. Recall that there are 12 parameters specifying this model: 1→ 6 for p, 7→ 11

for c, and parameter 12 for abundance, N . Thus, our design matrix will have 12 columns. Now, if you
select ‘Design | Full’, MARK will respond with the default DM shown at the top of the next page:
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Here, we see a DM which is strictly analogous to what we might have expected for 3 parameters –
each parameter (in this case, p , c and f0) has a separate ‘block’ within the matrix: p in the upper-left,
c in the middle, and f0 in the lower-right. If you go ahead and run this model, you’ll see (below) that it
gives you exactly the same model deviance as the general model built with PIMs.

You’ll also note, however, that the AICc reported for this DM-built general model is not the same
as the AICc reported for the general model built with PIMs (-530.1030 versus -528.0812). If the model
deviances are the same, but the reported AICc values are different, then this implies that the number
of estimated parameters is different. In fact, we see that the number estimated for the ‘full default DM’
model is 10, whereas for the model built with PIMs, the number reported is 11. In fact, for this model, the
difference in the number reported isn’t particularly important, since this is not a ‘reasonable’ model in
the first instance (as mentioned several times earlier in this chapter). The fact that the model deviances
‘match’ indicates that the DM is correct.

However, while this is ‘technically’ true, the default DM assumes that there is no interest in creating a
functional relationship between any of the parameters. While normally this is a reasonable assumption
(e.g., in a CJS live encounter study, there is no plausible reason to create a functional relationship between
ϕ and p), this is clearly not the case for closed population abundance models, where many of the models
of interest are specified by imposing a particular relationship between p and c. For example, model
{ f0 , p(t) � c(t)} imposes a relationship between p and c at each sampling occasion t.

How do we accommodate our interest in specifying these relationships between p and c in the DM?
In fact, it is very easy, with a simple conceptual ‘trick’ – we’re going to treat the two parameters p and
c as if they were levels of some putative ‘treatment’ – in precisely the same way (structurally) that we
handled age (TSM) effects for individuals marked as young in age (TSM) models (Chapter 7 – section
7.2). As a reminder, recall how we would construct the design matrix to correspond to the PIM for
survival for a simple age model, with 2 age classes, and time-dependence in each age class. Assume
that we have 7 occasions.
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Recall that the PIM for this model looks like:

1 7 8 9 10 11

2 8 9 10 11

3 9 10 11

4 10 11

5 11

6

So, based on the number of indexed parameters in the PIM, we know already that our design matrix
for survival would need to have 11 rows and 11 columns.

What does the linear model look like? Again, writing out the linear model is often the easiest place to
start. In this case we see that over a given time interval, we have, in effect, 2 kinds of individuals: juveniles

(individuals in their first year after marking), and adults (individuals at least 2 years after marking). Thus,
for a given TIME interval, there are 2 groups: juvenile and adult. If we call this group effect AGE, then we
can write out our linear model as

‘survival’ � AGE + TIME + AGE.TIME

� β1

+ β2(AGE)

+ β3(T1) + β4(T2) + β5(T3) + β6(T4) + β7(T5)

+ β8(AGE.T2) + β9(AGE.T3) + β10(AGE.T4) + β11(AGE.T5)

Again, recall from Chapter 7 that there is no (AGE.T1) interaction term. Also remember, we’re treating
the two age classes as different groups – this will be the key ‘conceptual step’ in seeing how we apply
the same idea to closed population abundance models.

The design matrix corresponding to this linear model is:

So, column B2 in this design matrix indicates a putative ‘age group’ – for a given cohort, and a given
time step, is the individual young (indicated with the dummy ‘1’) or adult (indicated with the dummy
‘0’). If you don’t recall this connection, go back and re-read section 7.2.

Now, what does this have to do with building design matrices for closed abundance estimation
models? The connection relates to the idea of creating a ‘logical group’. For age models, we used the
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age of an individual for a given cohort and time step as a grouping variable. For closed population
abundance models, we do the same thing – except that instead of age, we’re going to ‘group’ as a
function of whether or not the individual has been captured at least once or not. In other words, we’re
going to treat the parameters p (caught for the first time) and c (caught subsequently) as levels of a
putative ‘encounter’ group (analogous to young and adult, respectively).

This will make more sense when you see how we set up the DM. Here it is – note that it is identical

to the age (TSM) model (shown on the previous page):

Column B1 is the common intercept – this is a necessary step (and a key difference from the default
DM) in order to allow us to specify a functional relationship between p and c. Column B2 is the column
which specifics the putative ‘encounter group’ – first encounter (corresponding to parameter p) or
subsequent encounter (corresponding to parameter c). Note that there are 6 ‘1’s; for p, but only 5 ‘0’s’ for
c (since there is no c parameter for occasion 1). This is entirely analogous to having no adults in the first
occasion for individuals marked as young. Columns B3→ B7 correspond to the time steps – again, note
that for parameter c, there is no time coding for interval 1. These are followed by the interaction columns
B8→ B11. Again, there is no logical interaction of p and c for occasion 1 (since there is no parameter c1),
so the interaction columns start with time interval 2. Finally, column B12 for the parameter f0.

Go ahead, run this model, and add the results to the browser:

We see that the model deviances for the general model constructed with (i) PIMs, (ii) the default DM
(which used a separate intercept for each parameter), and (iii) the modified DM which used a common
intercept, are all identical.

Now, let’s see how to use the DM to build the 3 models we constructed previously using PIMs. First,
model { f0, p(.) � c(.)}. We see that (i) there is no temporal variation (meaning, we simply delete the
columns corresponding to time and interactions with time from the DM – columns B3→ B11), and (ii)
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p � c (meaning, we delete the column specifying difference between the putative ‘encounter groups’ –
column B2):

Run this model and add the results to the browser:

We see the model results match those of the same model constructed using PIMs.

What about model { f0 , p(.), c(.)}? Here, we again delete all of the time and interaction columns, but
retain the column coding for the ‘encounter group’ term in the model:

Again, we see that the results of fitting this model constructed using the DM approach exactly match
those from the same model constructed using PIMs (as indicated on the next page):
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Finally, model { f0 , p(t) � c(t)}. Here, we have no ‘encounter group’ effect, but simple temporal
variation in p and c. We simply delete the interaction and ‘encounter group’ columns:

We see (below) that the model deviances are identical, regardless of whether or not the PIM or DM
approach was used.

Now, let’s consider a model which we couldn’t build using the PIM-only approach (or, as noted, if
we’d relied on the default DM) – a model with an additive ‘offset’ between p and c. As we introduced in
Chapter 6, to build such additive models, all you need to do is delete the interaction columns from
the DM – this ‘additive’ model is shown at the top of the next page. Remember that this model
constrains time-specific estimates of p and c to parallel each other by a constant offset. In effect, this is
a ‘behavior+time’ model. Whether or not this is a ‘meaningful’ model is up to you.
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14.7. Heterogeneity models

As noted earlier, MARK allows you to fit a class of models which are parameterized based on what
are known as ‘finite mixtures’.∗ These models have proven to be very useful for modeling unspecified
heterogeneity among individuals in the pi and ci parameters. In these models,

pi �

{

pi ,A with Pr(π)

pi ,B with Pr(1 − π)

for the case with two mixtures A and B, although the model can be extended to >2 mixtures. As written
(above), the parameter π is the probability that the individual occurs in mixture A. For >2 mixtures,
additional π parameters must be defined (i.e., πA, πB ,...), but constrained to sum to 1.† In practice,
most data sets generally support no more than 2 mixtures. Note that the π parameter is assumed to be
constant over time (i.e., an individual in a given mixture is always in that particular mixture over the
sampling period). This has important implications for constructing the DM, which we discuss later.

Before we demonstrate the ‘mechanics’ of fitting finite mixture models to the data, let’s first consider
the encounter histories (there are 2k possible encounter histories for a k-occasion study), and their
probabilities, for a 4-occasion case for the ‘Full likelihood p and c’ data type:

history cell probability

1000 p1(1 − c2)(1 − c3)(1 − c4)

0100 (1 − p1)p2(1 − c3)(1 − c4)

0010 (1 − p1)(1 − p2)p3 (1 − c4)

0001 (1 − p1)(1 − p2)(1 − p3)p4

1100 p1c2(1 − c3)(1 − c4)

1010 p1(1 − c2)c3(1 − c4)

1001 p1(1 − c2)(1 − c3)c4

1110 p1c2c3 (1 − c4)

history cell probability

1101 p1c2 (1 − c3)c4

1011 p1(1 − c2)c3c4

0110 (1 − p1)p2c3(1 − c4)

0101 (1 − p1)p2(1 − c3)c4

0011 (1 − p1)(1 − p2)p3c4

0111 (1 − p1)p2c3c4

1111 p1c2c3c4

0000 (1 − p1)(1 − p2)(1 − p3)(1 − p4)

∗ Here, we introduce the application of ‘finite mixture models’ to closed population abundance estimation. In fact, ‘finite mixture
models’ are available for a number of additional data types in MARK – see the Addendum to this chapter

† In practice, this means that you should use the multinomial logit link function, MLogit, to ensure that the estimates do sum to
1. The MLogit link was introduced in Chapter 10.
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If we want to add a finite mixture to the cell probability (i.e., for ‘Full Likelihood Heterogeneity
with pi, p, and c’ data type, with two mixtures), we modify the probability expressions as follows:

history cell probability

1000
∑2

a�1

(

πa pa1(1 − ca2)(1 − ca3)(1 − ca4)
)

0100
∑2

a�1

(

πa (1 − pa1)pa2(1 − ca3)(1 − ca4)
)

0010
∑2

a�1

(

πa (1 − pa1)(1 − pa2)pa3(1 − ca4)
)

0001
∑2

a�1

(

πa (1 − pa1)(1 − pa2)(1 − pa3)pa4

)

1100
∑2

a�1

(

πa pa1ca2(1 − ca3)(1 − ca4)
)

1010
∑2

a�1

(

πa pa1(1 − ca2)ca3(1 − ca4)
)

...
...

Note: the finite mixture models have a separate set of p’s and c’s for each mixture.

We will demonstrate the fitting of finite mixture (‘heterogeneity’) models to a new sample data set
(mixed_closed1.inp). These data were simulated assuming a finite mixture (i.e., heterogeneity) using
the generating model { f0 , π, p(.) � c(.) � constant} – 9 occasions, 2 mixtures, N � 2,000, π � 0.40,
and pπA

� 0.25, pπB
� 0.75. In other words, two mixtures, one with an encounter probability of p � 0.25,

the other with an encounter probability of p � 0.75, with the probability of being in the first mixture
π � 0.40.

Start a new project, select the input data file, set the number of occasions to 9, and specify the ‘Full
Likelihood Heterogeneity with pi, p, and c’ data type. Once we’ve selected a closed data type
with heterogeneity, you’ll see that an option to specify the number of mixtures is now available in the
‘specification window’ (lower-right side). We’ll use 2 mixtures for this example.

Once you have specified the number of mixtures, open the PIM chart for this data type (when you
switch data types, the underlying model will default to a general time-specific model):

Notice that there are twice as many p’s and c’s as you might have expected given there are 9 occasions
represented in the data. This increase represents the parameters for each of the two mixture groups.
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The PIM for the p’s now has two rows defaulting to parameters 2→ 10 and 11→ 19.

Parameters 2→ 10 represent the p’s for the first mixture, and 11→ 19 the p’s for the second mixture.
It becomes more important with the mixture models to keep track of which occasion each c corresponds
to because now both parameter 2 and 11 relate to occasion 1 which has no corresponding c parameter.

We’ll follow the approach used in the preceding section, by first fitting a general model based on
PIMs to the data. You might consider model { f0 , π, p(t), c(t)} as a reasonable starting model. However,
there are two problems with using this as a general, starting model. First, you’ll recall that there are
estimation problems (in general) for a closed abundance model where both p and c are fully time-
dependent. Normally, we need to impose some sort of constraint to achieve identifiability. However,
even if we do so, there is an additional, more subtle problem here – recall we are fitting a heterogeneity
‘mixture’ model, where the parameter π is assumed to be constant over time. As such, there is no
interaction among mixture groups possible over time. Such an interaction would imply time-varying
π. Thus, the most general meaningful model we could fit would be an additive model, with additivity
between the mixture groups, and interaction of p and c within a given mixture group. Recall that we
can’t construct this model using PIMs – building an additive model requires use of the design matrix.

We see from the PIM chart (shown at the top of this page) that the default model structure has 36
columns. Note: if you select ’Design | Full’, MARK will respond with an error message, telling you it
can’t build a default fully time-dependent DM. Basically, for heterogeneity models, you’ll need to build
the DM by hand – meaning, starting with a reduced DM. So, we select ‘Design | Reduced’, and keep
the default 36 columns.

Now, how do we build the DM corresponding to the PIM chart on the preceding page? We start by
first writing out the linear model. To do so, we need to first consider the ‘groups’ in our model. Here, we
have in fact 2 groups: (i) the putative ‘encounter group’ (ENCGRP) representing the p and c parameters (as
we saw in the preceding section), and (ii) a new ‘heterogeneity’ group (HETGRP) representing what we
might for convenience think of as the ‘π’ and ‘1−π’ groups. So, two ‘ encounter groups’, 2 ‘heterogeneity
groups’, 9 occasions (TIME), and the various plausible interactions among them.

Here is our linear model (which we write only in terms of parameters p and c. Parameters π and f0
are simple scalar constants):

f � ENCGRP+HETGRP+TIME+(ENCGRP.TIME)+(HETGRP.TIME)+(ENCGRP.HETGRP.TIME)

� β1

+ β2(ENCGRP)

+ β3(HETGRP)

+ β4(ENCGRP.HETGRP)

+ β5(T1) + β6(T2) + β7(T3) + β8(T4) + β9(T5) + β10(T6) + β11(T7) + β12(T8)

+ β13(HETGRP.T1) + β14(HETGRP.T2) + β15(HETGRP.T3) + · · · + β20(HETGRP.T8)

+ β21(ENCGRP.T2) + β22(ENCGRP.T3) + β23(ENCGRP.T4) + · · · + β27(ENCGRP.T8)

+ β28(ENCGRP.HETGRP.T2) + β29(ENCGRP.HETGRP.T3) + · · · + β34(ENCGRP.HETGRP.T8)
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So, 34 parameters in this linear model. If we add 2 (for π and N , respectively), we get 36 total. The
design matrix corresponding to this model is shown below (you might need to put on some ‘special
reading glasses’ to see it all):

Now, some important things to note from the linear model and corresponding DM. First, the two
‘groups’ (encounter and heterogeneity; ENCGRP and HETGRP, respectively) are each coded by a single
column (single β) – columns B3 for ENCGRP and B4 for HETGRP. 9 sampling occasions, so 8 columns for
time (B5→ B12). The remaining columns code for the two-way interactions between ENCGRP (E),HETGRP
(H) and time (T), and the three-way interaction (H.E.Tx).

Now, if you run this model constructed using the DM, , you’ll se that the model deviance is identical
to the model constructed using PIMs (indicating that our DM is correct). However, if you look at
the parameter estimates, you’ll quickly notice that, as expected, quite a few of the parameters aren’t
identifiable. In particular, the final p̂ estimates for the two mixture groups have problems, and the
derived estimate of N̂ is simply Mt+1 (the SE of the abundance estimate is clearly wrong).

Why the problems? Simple – despite the fact we have 2 mixture groups, this is still model {p(t), c(t)},
which we know is not identifiable – and thus, is not a useful model to fit to the data – without constraints.
One possible constraint is to model p and c as additive functions of each other. How can we modify
the DM to apply this constraint? Simple – by eliminating the interactions between ENCGRP and TIME. In
other words, deleting columns B14→ B20 (coding for the interaction of ENCGRP and TIME), and columns
B29→ B35 (coding for the 3-way interaction of HETGRP, ENCGRP, and TIME) from the DM shown on the
previous page. This model allows time variation, behavioral variation and individual heterogeneity in
capture probability, yet does so in an efficient and parsimonious (and estimable) manner.

We can use this DM to create additional, reduced parameter models. For example, we could build
model { f0 , pa (t) � ca (t) � pb (t) + z � cb (t) + z } representing capture probability varying through time
and additive difference between mixture groups, but with no interaction between p and c over time (no
behavior effect). We do this simply by deleting the ENCGRP column from the DM.

As a final test – how do we modify the DM to match the true generating model, which for these data
was model { f0, π, pA � cA , pB � cB}? To build this model from our DM, we simply delete (i) all the
time columns, (ii) any interactions with time, and (iii) the encounter group column (ENCGRP). We delete
the encounter group column because we’re setting p � c. We retain the heterogeneity (mixture) group
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column (HETGRP) since we want to allow for the possibility that encounter probability differs between
mixtures (which of course is logically necessary for a mixture model!).

Both the real and derived parameter estimates (π̂ � 0.607, p̂πA
� 0.250, p̂πB

� 0.754, N̂ � 1,995.494)
are quite close to the true parameter values used in the generating model. [But, what about π̂? The true
value we used in the simulation wasπ � 0.40. The estimated value π̂ � 0.607 is simply the complement.]

We can confirm that this corresponds to model { f0 , π, pA � cA , pB � cB} by comparing the model fit
with that from the PIM-based equivalent. We can do this in one of two ways – we can either (i) stay within
the ‘Full Likelihood Heterogeneity with pi, p, and c ’ data type,andbuild the appropriate PIMs,
or (ii) change data type to the simpler ’Full Likelihood Heterogeneity Pi and p’, which defaults to
ourdesiredmodel. Ifwe take the firstapproach,allwe need to do is modify the two encounterprobability
PIMs as follows, for p and c, respectively, so they both have the following structure:

So, constant over time and no behavior effect (i.e., p � c) within mixture group. If you run this
model, you’ll see that it yields an identical model deviance (555.1792) as the model built earlier using
the modified DM.

What about changing data types? Well, you might think that you need to restart MARK, and begin
a new project after first specifying the new data type. In fact, you don’t need to – you can simply ‘tell’
MARK that you want to switch data types (something MARK lets you do within certain types of models
– in this instance, closed population abundance estimators). All you need to do is select ‘PIM | change
data type’ on the main menu bar, and then select ‘Full Likelihood Heterogeneity Pi and p’ from
the resulting popup window. As noted earlier, the default model for this data type is the model we’re
after – it is simply a reduced parameter version of the full model.

14.7.1. Interpreting π

So,you do an analysis using a closedpopulation heterogeneity abundance model,andderive an estimate
of π̂. Perhaps you’ve built several such models, and have a model averaged estimate of ˆ̄π. So, what do
you ‘say’ about this estimate of π̂?

Easy answer – generally nothing. The estimate of π̂ is based on fitting a finite mixture model, with a
(typically small) number of discrete states. When we simulated such data (above), we used a discrete
simulation approach – we simply imagined a population where 40% of the individuals had one
particular detection probability, and 60% had a different encounter probability. In that case, because
the distribution of individuals in the simulated population was in fact discrete, then the real estimate
of π̂ reflected the true generating parameter.

However, if in fact the variation in detection probability was (say) continuous, then in fact the estimate
of π̂ reflects a ‘best estimate’ as to where a discrete ‘breakpoint’ might be (breaking the data into a set
of discrete, finite mixtures). Such an estimate is not interpretable, by and large. Our general advice is
to avoid post hoc story-telling with respect to π̂, no matter how tempting (or satisfying) the story might
seem.
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Closing comment: individual heterogeneity – the bane of abundance estimation

Individual heterogeneity refers to the variation among individual animals in their probability of
detection. Most capture-recapture models assume that capture probability is constantacross individuals
within a group. When individuals vary in the their capture probabilities, the most catchable animals
are likely to be caught first and more often. This leads to capture probability being over estimated and
abundance being underestimated.

Many attempts have been made to deal with heterogeneity in capture probability over the past 30+
years. No single method has really solved the problem, although several methods are useful. MARK

allows individual heterogeneity to be approximated with finite mixtures (as above) or with individual
covariates (using Huggins’ conditional likelihood models).

While these approaches can be effective, the single best way to minimize the bias caused by individual
heterogeneity is to get p as high as possible – the ‘big law’ of capture-recapture design. When p is high
there is little room for variation and little chance that an individual is not detected. Link (2003,2004)∗

demonstrated that different models of the form of individual heterogeneity can lead to very different
estimates of abundance and fit the data equally well. The magnitude of the differences in abundance
estimates is related to p; when p is small the differences can be large. Therefore, to have much hope of
estimating abundance with little bias, capture probability must be relatively high.

begin sidebar

a convenient short-cut: pre-defined closed population models

It is fair to argue that one of the main objectives for fitting closed population abundance models is

to come up with the best estimate of abundance. Generally, this will involve averaging over multiple

models (model-averaging for closed population abundance estimation is covered in section 14.10).

As part of this process, we will fit a candidate set of approximating models to the data – using

either the full or conditional (Huggins) likelihood approach. In many cases, the model set will consist

at minimum of what are commonly referred to as the ‘Otis models’ – described by Otis et al. (1978).

In general this minimal model set consists of some or all of the following 8 models (shown for the full

likelihood parameterization – the number of parameters assumes a single group. If you have g > 1

groups, then the number of parameters is simply g times the value for K in the following table):

Otis notation Expanded notation K

M0 { f0 , p(.) � c(.)} 2

Mt { f0 , p(t) � c(t)} t + 1

Mb { f0 , p(.), c(.)} 3

Mtb { f0 , p(t) � c(t) + z} t + 2

Mh2 { f0 , pa (.) � ca (.), pb (.) � cb (.), π} 4

Mth2 { f0 , pa (.) � ca (.) + t , pb (.) � cb (.) + t , π} t + 3

Mbh2 { f0 , pa (.) � ca (.) + z, pb (.) � cb (.) + z, π} 5

Mtbh2 { f0 , pa (.) � ca (.) + t + z, pb (.) � cb (.) + t + z, π} t + 4

At this point in the chapter, building these models ‘by hand’, using a design matrix, is not overly

difficult. But, it can be somewhat time-consuming.

∗ Link, W. A. (2003) Non-identifiability of population size from capture-recapture data with heterogeneous detection
probabilities. Biometrics, 59, 1125-1132.

Link, W. A. (2004) Individual heterogeneity and identifiability in capture-recapture models. Animal Biodiversity and Conservation,
27, 441-449.
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However, there is a time-saving option in MARK which will let you build all or some of these 8

models as ‘pre-defined’ models. From the browser, simply select ‘Run | Pre-defined models’. You

will then be presented with the ‘Setup Numerical Estimation Run’ window. Now, though, instead of

a button for ‘fixing parameters’, you’ll see a button to ‘Select Models’.

If you click this button, you will be presented with the following:

Note that the Otis model naming conventions are used (while perhaps not particularly informative

of the underlying model structure, they are compact). All you need to do is select the models you’d

like to fit. Although not indicated explicitly, all of the models are constructed using a design matrix

(for some models, especially the heterogeneity models, this point might be implicit).

What is not immediately obvious, though, is that if you pick all 8 models, then MARK will fit all

8 models, even if the underlying data types when you started the analysis seems different than one

of the pre-defined models. For example, suppose you start an analysis using the ‘Full likelihood p

and c’ data type. Recall that for this data type, the 3 structural parameters are: p, c, f0. There is no π

parameter for finite mixture heterogeneity models. Nonetheless, if you include heterogeneity models

from the pre-defined models list (e.g.,model Mth2), then MARK will go ahead and (i) internally change

the data type from ‘Full likelihood with p and c’ to ‘Full likelihood heterogeneity with pi,

p and c’, and then (ii) fit the pre-defined model to the encounter data.

Related to the preceding, if you want unconditional (Huggins) data types, then you have to have

set the data type to Huggins, and vice versa for full likelihood models. The PIM structure at the time

you hit the ‘Run | Pre-defined Models’ dictates whether you get the full or Huggins likelihoods.

While in general pre-defined models should be used cautiously – since there isn’t a lot of ‘thinking’

involved with fitting them to the data – being able to build some of the canonical closed population

abundance models with only a few clicks can be a real time-saver.

end sidebar

14.8. Misidentification models

The likelihoods and cell probabilities get more complicated when we want to include the possibility
of misidentification into the cell probabilities. In order to do this we must assume that (i) an individual
encountered more than once is correctly identified (i.e., individuals captured on multiple occasions
are correctly identified – owing to the greater amount of information gathered on which to base the
identification), and (ii) individuals encountered only once may or may not be correctly identified.
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First, we consider the closed capture cell probabilities without finite mixtures. We will add the
possibility of misidentification (where α is the probability of correctly identifying the individual) to
the probabilities for a 4-occasion full likelihood closed population capture-recapture model:

history cell probability

1000 p1α(1 − c2)(1 − c3)(1 − c4) + p1(1 − α)

0100 (1 − p1)
[

p2α(1 − c3)(1 − c4) + p2(1 − α)
]

0010 (1 − p1)(1 − p2)
[

p3α(1 − c4) + p3(1 − α)
]

0001 (1 − p1)(1 − p2)(1 − p3)
[

p4α + p4(1 − α)
]

1100 p1αc2 (1 − c3)(1 − c4)

1010 p1α(1 − c2)c3 (1 − c4)

1001 p1α(1 − c2)(1 − c3)c4

1110 p1αc2c3(1 − c4)

1101 p1αc2 (1 − c3)c4

1011 p1α(1 − c2)c3c4

0110 (1 − p1)p2αc3 (1 − c4)

...
...

In the encounter histories for individuals encountered only once their probability expression is a
summation across the two possible ways the history could have occurred; for example, consider history
‘0100’; captured for the first time, marked and released alive at occasion 2. Conditional on being alive
and in the sample (i.e., available for capture) over the entire sampling period, then the probability
of observing encounter history ‘0100’ is

(

1 − p1

)

(the probability of not being captured at the first
occasion), times the sum of (1) the probability the individual was correctly identified and not seen
again (p2α(1− c3)(1− c4), or (2) the individual was misidentified and therefore unable to be seen again
p2(1 − α).

When misidentification occurs, the constraint that N̂ ≥ Mt+1 no longer holds. It is possible that
enough animals are misidentified such that the number detected is greater than the number that actually
exist in the population. Second, this increase in the numbers of animals supposedly encountered causes
the estimated probability of detection to be smaller than it should be. The effect of these two factors is
to cause the estimated abundance N̂ to be too high.

To account for these problems, the sum f̂0 + Mt+1 must be adjusted for mis-identification error, α̂:

N̂ � α̂
(

f̂0 + Mt+1

)

.

Therefore, in these models where misidentification is possible MARK presents f̂0 in the real param-
eter output and N̂ in the derived parameter output as it is a function of more than one parameter.

14.8.1. joint heterogeneity and misidentification models

Both the simple and complex heterogeneity models are available for the misidentification closed
capture models (i.e., they are available data types). However, incorporation of both misidentification
and heterogeneity typically leads to inconclusive results, in that misidentification is somewhat (almost
totally) confounded with heterogeneity. Intuitively, misidentification is detected by too many animals
only appearing once in the encounter histories. Thus, a large amount of individual heterogeneity may
appear as misidentification, and vice versa, misidentification may appear as individual heterogeneity.
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So, you can build models with both heterogeneity and misidentification, but there is a very good
chance you won’t be able to do much with the results.

14.9. Goodness-of-fit

Testing model fit in the closed-population capture-recapture models remains an unresolved issue, even
more so than in other capture-recapture model types. A central component of the problem stems from
the fact that there is no unique way to compute a saturated model. If one was only concerned about
time variation in capture probability, then goodness-of-fit is fairly straightforward. When individual
heterogeneity is added into the problem there is an infinite set of possible models for heterogeneity.
Thus, no unique goodness-of-fit exists.

Several tests of model assumptions have been developed for the closed-population capture-recapture
models (Otis et al. 1978:50-67, White et al. 1982:77–79). The seven tests examine the fit of specific model
forms relative to other specific models or vague alternatives (i.e., the model fails to fit for unspecified
reasons). These tests are available in MARK through CAPTURE by selecting the ‘Appropriate’ check
box in the CAPTURE window. The tests were developed largely as a means of model selection in the
absence of another method. Now that MARK employs AICc as a selection criterion and that it has been
shown the model averaged estimates of N have better properties than single-model estimates (Stanley
and Burnham 1998), the tests of Otis et al. (1978) have fallen out of use.

14.10. Model averaging and closed models

Model averaging is particularly important in the closed models because selecting a single model tends
to be especially problematic when a parameter, in this case N , is in the multinomial coefficient. Typically,
abundance would be the only parameter for which we’re interested in a model averaged estimate. The
basic concepts and mechanics of model averaging were introduced in earlier chapters.

To compute a model averaged estimate forabundance, select ‘Output | Model Averaging’ then either
‘Real’ or ‘Derived’ from the menu. Select the appropriate parameter by checking the box from the PIM
window that opens. Here, it will be especially important to note the check box in the lower left-hand
corner of the model averaging window (highlighted in the red oval, below).

The highlighted ‘check box’ selects whether model averaging is performed across multiple data types.
It is legitimate to model average across data types that are based on the same likelihood, but not across
those based on different likelihoods.

What do we mean by ‘different likelihoods’? Well, if you look back at the figure at the top of p. 4 in
this chapter, you’ll see that closed population abundance models are broadly dichotomized based on
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whether ‘ f0, is included in the likelihood’ (referred to as ‘full likelihood’ models), or not (referred to
as ‘conditional likelihood’ or ‘Huggins’ models). Also recall that within either the full or conditional
likelihood models, there are 2 discrete classes of models, depending on whether or not heterogeneity
in encounter probability is being modeled using a finite mixture approach. In a moment, we’ll discuss
why this is important.

First, why is it not legitimate to average over models with different likelihoods? Recall that model
averaging is based on an average of parameters over a candidate model set, where the conditional
estimates from each individual model are weighted by normalized AIC weights. Also recall that the
AIC is calculated as the sum of −2 ln(L) + 2K parameters. If the underlying models have different
likelihoods, then it would clearly not be correct to model average parameters based on AIC weights
normalized over those models.

However, while it is not possible to model average between different models based on conditional
or unconditional likelihoods, there are two fairly simply approaches which allow you to accommodate
the additional the problem of averaging over models with and without finite mixtures. The approach is
based on the simple observation that all models are in fact mixture models – but, simply, some of those
models have only a single mixture group. These models are, in fact, entirely equivalent conceptually to
standard models without mixtures.

We demonstrate model averaging by considering analysis of some simulated data (contained in
N_avg.inp): true N � 2,000, 9 sampling occasions. We’ll begin by assuming no heterogeneity in p

or c, and will use the ‘Full likelihood p and c’ data type (i.e., f0 is included in the likelihood) for
our analysis of these data.

To start, we’ll fit 2 simple models: { f0 , pt � ct} and { f0 , pt � ct + z}, where the latter model allows for
an additive constant z between the two encounter types (recall that this model is equivalent to M(bt),
specifying both a ‘behavior’ effect, and a ‘time’ effect). While we could use a PIM approach to build
model {pt � ct}, for the second additive model, { f0 , pt � ct + z}, we need a DM. So, it is perhaps more
efficient to build both models using a DM. The DM for the more general of our 2 candidate models,
{ f0 , pt � ct + z} is shown below:

For DM corresponding to the simpler, nested model { f0, pt � ct} – we simply delete the column in
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the DM corresponding to the ‘encounter type’ (encgrp).

Here are the model fit results for these 2 models:

If we stopped here, and model averaged abundance, our model averaged estimate (based on these 2

models) would be ˆ̄N � 1,996.97, with an unconditional ŜE � 2.40.

Now, let’s re-analyze these data using a model which assumes heterogeneity in encounter probability,
using a finite mixture approach. Our purpose here is to consider model averaging over models with
and without mixtures (in other words, based on different data types). In order to do this, we need to
build the mixture models within the same ‘MARK project’ (since we can only average across models
within a given results browser∗). To do this, we’re going to tell MARK that we want to ‘change the data
type’ within our current analysis, from ‘Full likelihood p and c’ to something else (specifically, a
mixture model).

We do this by selecting ‘PIM | Change Data Type’:

MARK will then present all the available data types which are consistent with your data, letting you
select the one you want to change to. Here, we select ‘Full likelihood heterogeneity pi, p and c’:

Once we’ve selected the new data type, MARK will ask you how many finite mixtures you want to
model. We’ll accept the default of 2 mixture groups. MARK will then drop you back into the browser –
the only indication that the underlying data type has been changed is that the title of the results browser
now says ‘Full likelihood heterogeneity pi, p, and c’.

∗ You might wonder if you could start a new project, using mixture models, and then import them, but MARK doesn’t allow
you to import from a different data type. Generally, there is a very good reason for this.

Chapter 14. Closed population capture-recapture models



14.10. Model averaging and closed models 14 - 32

The PIM chart (below) is another indication that the underlying data type has changed.

We see (above) that the default model now has the mixture parameter, π, with full time dependence
for both encounter parameters, p and c.

Here, we’ll fit model { f0 , π, pA,t � cA,t + zA , pB ,t � cB ,t + zB} to the data (i.e., {pt � ct + z}, but
separately within each of the 2 mixture groups). The DM for this model is shown below:
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If we fit this model to the data, and add the results to the browser (below), we see that this new
‘heterogeneity model’ gets roughly 84% of the support in the data among our 3 candidate models:

But, our interest here concerns model averaging. If at this point, having just fit the heterogeneity
model, { f0 , π, pA,t � cA,t + zA , pB ,t � cB ,t + zB}, we run through the (by now) familiar mechanics of
model averaging for N , we would see only one model reported in the model averaging output:

Why only one model, and not all three? Simple – at present there is only one model in the browser
based on the ‘currently active’ data type (i.e., full likelihood with 2 finite mixtures). MARK knows
that the other 2 models in the current model set were constructed using the a different data type (‘full
likelihood without mixtures’), and thus doesn’t try to average over them. Alternatively, if you select (by
right-clicking and retrieving) eitherof the other two models we constructed using the ‘Full likelihood
p and c’ data type (i.e., { f0 , pt � ct} or { f0, pt � ct + z}), and then model average, the model averaging
will be based on these 2 models only (since they share a common data type).

Note: Not only is MARK ‘smart enough’ to recognize which models in the browser are based on the
same data type, but it is also smart enough to re-calculate AIC weights during the averaging to include
only those models with the common (active) likelihood structure. So, the model averaged estimated is
correctly reported as ˆ̄N � 482.15, with an unconditional ŜE � 185.76 (identical to what we reported
earlier for these 2 models, before we changed the data type).

Back to the problem at hand. Remember at the outset of this section we alerted you to the default (se-
lected) option in the model averaging procedure in MARK, to ‘only select models for the current
data type’ (as circled in red, below).

This is the option which ‘tells MARK’ to average only over models of the current data type.
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However, our apparent inability to model average over the complete model set represented in the
browser seems unfortunate, since we might imagine a full candidate model set with and without
heterogeneity models, over which we’d like to derive a model averaged estimate for abundance, N̂ .
What can we do?

There are 2 related approaches you can adopt to average over all 3 models – both of which are
based on the same assumption. For either approach, the key conceptual step is to realize that any

model constructed using the ‘Full likelihood p and c’ data type is simply a heterogeneity model
constructedusing the ‘Full likelihood heterogeneity pi, p, and c’data type,withone important
change – fixing π � 1. (Similarly, any model constructed using ‘Huggins p and c’ is simply a ‘Huggins
heterogeneity p and c’ model, again after fixing π � 1).

If you think about it for a moment, this should make sense – the ‘Full likelihood p and c’ data
type is simply a heterogeneity model with only one mixture group (i.e., where π � 1). So, you could,
if you wanted to, force the ‘Full likelihood heterogeneity pi, p, and c’ data type to fit models
for the ‘Full likelihood p and c’ data type, simply by fixing the mixture parameter π to 1. We’ll
consider this approach in a moment.

The quickest approach to handling model averaging in this case is to ‘tell MARK’ to ignore the fact
that, structurally, there are two different data types in the browser. We can do this here because, in fact,
the ‘Full likelihood p and c’ data type is simply a full likelihood heterogeneity model where π is
fixed to 1. In other words, although the models represent two different data types, they have the same
underlying likelihood structure. In fact, one data type is equivalent to the other, subject to a particular
constraint on one of the parameters (i.e., fixing π � 1).

So, we run through the mechanics of model averaging, except that this time, we ‘turn off’ the option
to restrict averaging to only models of the current data type, by unchecking the appropriate check-box,
as shown below:

Now,when you uncheck this option,MARK will respond with the following rather ominous warning
message when you try to average over models:

Here, ‘use at your own risk’ means ‘make sure you know what you’re doing...’. In this instance, we’ll
assume our underlying logic is correct, and so we can proceed with the final steps of model averaging
abundance N .
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Here are the estimates:

We see that now, MARK averages over all 3 of the models in the browser – the model averaged
estimate for abundance is ˆ̄N � 1,998.10, with an unconditional ŜE � 2.80

However, are these estimates correct? Did we in fact ‘know what we were doing’ when we overrode
MARK’s warning about averaging over data types? Was our underlying logic that in fact these models
have the same underlying likelihood structure correct? We can prove to ourselves that ‘we got things
right’ (and confirm that MARK has given us the correct estimates using the preceding approach) by
(i) reconstructing the model set using the same data type for all three models, and (ii) manually fixing
π � 1 for two of them. While this is easy enough in principle, in practice this approach will require some
thought, since you’re going to need to think through carefully which columns in the ‘Full likelihood
heterogeneity pi, p, and c’ data type DM you need to keep, or modify, when you are reducing the
number of heterogeneity groups to 1 (i.e., single mixture group).

To start, have another look at the DM for model { f0 , π, pA,t � cA,t + zA , pB ,t � cB ,t + zB}, shown on
p. 31. Notice that there is a column for ‘hetgrp’, to account for the 2 mixture groups in this model. If
we want to force this model to be equivalent to a model without heterogeneity, without switching the
underlying data type, we need to do 2 things: (1) delete the ‘hetgrp’ column from the DM, and (2) fix
π � 1 before starting the numerical estimation run.

Go ahead and delete the ‘hetgrp’ column from the DM. What is the model represented by this DM?
If you look closely, and think about it a bit, you’ll realize that without the ‘hetgrp’ column, you’re left
with model {pt � ct + z}. Go ahead and run this model – call it ‘f0,pi=1,p(t)=c(t)+z’ (we’ll use ‘pi=1’
in the model name to indicate we built this model using only a single mixture group). Remember to fix
π � 1 before starting the numerical estimation.

When finished, add the results to the browser:

The deviances for model ‘f0,pi=1,p(t)=c(t)+z’ and model ‘f0,p(t)=c(t)+z’ are identical (meaning,
they are the same model!).

Next, how would we build model {pt � ct}, using the heterogeneity model approach? Simple – in
addition to deleting the ‘hetgrp’ column, we now also delete the ‘encgrp’ column (leaving only ’pi’,
’incpt’, the time columns (’t1’→ ’t9’), and N. Go ahead and delete the ‘encgrp’ column, fix π � 1, and
add the results to the browser (call this model ‘pi=1,p(t)=c(t)’).
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Again, we see that fits for model ‘f0,pi=1,p(t)=c(t)’ and model ‘f0,p(t)=c(t)’ are identical
(meaning, once again, that they are the same model!).

OK, now for the big moment. We’ve proven to ourselves that we can build models for the ‘Full
likelihood p and c’data type using the‘Full likelihood heterogeneity pi, p, and c’data type,
simply by fixing π � 1, and making appropriate modifications to the DM (paying particular attention
to terms involving the ‘heterogeneity group’ column). So, in fact, we could have built all 3 candidate
models ({pt � ct}, {pt � ct + z} and {π, pA,t � cA,t + zA , pB ,t � cB ,t + zB}), using the ‘Full likelihood
heterogeneity pi, p, and c’ data type – meaning, a single common data type. Meaning, we can
model average overall 3models without overriding the default option in MARK that prevents averaging
over models built using different data types.

Go ahead and delete models ‘p(t)=c(t)+z’ and ‘p(t)=c(t)’ from the browser, leaving only those
models built using the ‘Full likelihood heterogeneity pi, p, and c’ data type (i.e., all 3 models
in the browser are based on the same underlying data type).

Now, the big moment – go ahead and derivea model averaged estimate for ˆ̄N , based on these 3 models
– without unchecking the ‘Only select models for the current data type’ (since these models are
all of the same data type):

Using this approach, the model averaged estimate for abundance is ˆ̄N � 1,998.10, with an uncondi-
tional ŜE � 2.80, which are identical to the estimates we derived earlier.

Given the preceding, there is a fair argument to be made that you should only use the ‘heterogeneity
pi, p, and c’ data types (for either the full or conditional likelihoods), since it allows you to model
average over all the candidate models. However, keeping track of ‘encounter groups’ and ‘heterogeneity
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groups’ does require more work to get things right. As long as you understandwhatyou’re doing,simply
forcing MARK to average over both data types is decidedly quicker. But, remember – you can only
average over models with a common likelihood structure: full likelihood (with and without mixtures),
or Huggins conditional likelihood (with and without mixtures).

14.10.1. Estimating CI for model averaged abundance estimates

The usual (simplest) approach to estimating the confidence interval for a given parameter makes use of
asymptotic variances, covariances – typically, these can be generated from the information matrix for
models with maximum likelihood estimates (this is discussed elsewhere).

However, there is a basic problem with applying this ‘classical’ approach to estimates of abundance
– specifically, the classical approach requires asymptotic normality of point estimates N̂ , and this
assumption is frequently not met for any number of reasons.

An alternative approach is to focus on the number of animals that are not caught ( f0), where f0 �

(N −Mt+1) (this relation was introduced earlier in this chapter). On the assumption that this quantity
follows a log-normal distribution (which has been generally confirmed by various authors), then lower
and upper CI interval bounds for N̂ are given by∗

[
Mt+1 +

(

f̂0/C
)

,Mt+1 +
(

f̂0 × C
) ]

where

f̂0 � N̂ −Mt+1

C � exp

{

1.96

[
ln

(

1 +
v̂ar( ˆ̄N)

f̂ 2
0

)]1/2}

Note that since N̂ � Mt+1 + f̂0, then v̂ar(N̂ ) is exactly the same as the variance of f̂0, because Mt+1 is
a known constant.

As such,

v̂ar(N̂ )

f̂ 2
0

�
v̂ar( f̂0)

f̂ 2
0

� ĈV( f̂0)
2

Commonly in these kinds of calculations, the square of the CV (coefficient of variation) of f0 is
embedded in the formula.

It is important to note that the lower bound of this confidence interval cannot be smaller than
Mt+1, but the upper bound frequently is larger than the upper bounds computed with the information
matrix under the assumption of normality. This is the approach used by MARK to derive the CI for N̂

(regardless of whether N is a derived or real parameter).

Now, how do we handle the calculation of the CI for the model averaged estimate of abundance, ˆ̄N?

∗ There is a typographical error in the equation for C in the Williams, Nichols & Conroy book (p. 304, section 14.2.4). The version
presented here is correct.
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From Buckland et al. (1997), the estimated unconditional (i.e., model averaged) variance v̂ar( ˆ̄θ),
calculated over models

{

M1 ,M2 , . . . ,MR

}

is given as

v̂ar
( ˆ̄θ

)

�

R∑

i�1

wi

(

v̂ar
(

θ̂i
�� Mi

)

+
(

θ̂i − ˆ̄θ
)2

)

, where ˆ̄θ �

R∑

i�1

wi θ̂i

Here, the wi are the Akaike weights (∆i) scaled to sum to 1. The subscript i refers to the ith model.

The value ˆ̄θ is a weighted average of the estimated parameter θ over R models (i � 1, 2, . . . , R).

This estimator of the unconditional variance is clearly the sum of 2 components: (i) the conditional

sampling variance v̂ar(θ̂i |Mi ) (i.e., conditional on model Mi), and (ii) a term for the variation in the

estimates across the R models, (θ̂i − ˆ̄θ)
2. The sum of these terms is then merely weighted by the Akaike

weights wi .

Thus, the unconditional standard error would be given as

ŜE
( ˆ̄θ

)

�

√

v̂ar
( ˆ̄θ

)

OK – given all this, back to the original question – how do you estimate the confidence interval for
model averaged abundance estimates?

We’ll demonstrate the mechanics by means of a worked example. Suppose you fit 3 different full
likelihood models ({pt � ct , f0}, {p. , c. , f0}, {p. � c. , f0}) to some closed capture data (bbsample.inp -
8 capture occasions), where Mt+1 � 43.

Here is a tabulation of the relevant results of fitting these models to the data:

model QAICc wi N̂ v̂ar(N̂ )

{p. � c. , f0} 115.364 0.676 53.604 25.737

{p. , c. , f0} 117.201 0.270 50.867 43.398

{pt � ct , f0} 120.395 0.055 53.117 24.257

Now, we first need to calculate the unconditional variance of N̂ . Since our model averaged estimate
of θ̂ is given as

ˆ̄θ �

R∑

i�1

wi θ̂i

then ˆ̄N is given as

ˆ̄N �

R∑

i�1

wi N̂i

� (0.676 × 53.604) + (0.270 × 50.867) + (0.055 × 53.117)

� 52.839
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and

v̂ar
( ˆ̄N

)

�

R∑

i�1

wi

(

v̂ar
(

N̂i
�� Mi

)

+
(

N̂i − ˆ̄N
)2

)

� 0.676
[
25.737 +

(

53.604− 52.839
)2]

+ 0.270
[

43.398 +
(

50.867 − 52.839
)2

]
+ 0.055

[
24.257 +

(

53.117− 52.839
)2

]
�

(

17.794 + 12.751 + 1.329
)

� 31.867

In fact, MARK handles the calculation of the unconditional variance for you – you would simply
need to take the reported unconditional SE and square it to get the unconditional variance. But you
need to calculate the CI by hand.

To do so, we first calculate

C � exp

{

1.96

[
ln

(

1 +
v̂ar

( ˆ̄N
)

f̂ 2
0

)]1/2}

Since Mt+1 � 43 for this data set, and since ˆ̄N � 52.839, then

ˆ̄f0 �
ˆ̄N −Mt+1

� (52.839 − 43)

� 9.839

and thus

C � exp

{

1.96

[
ln

(

1 +
v̂ar

( ˆ̄N
)

f̂ 2
0

)]1/2}

� exp

{

1.96

[
ln

(

1 +
31.867

(9.839)
2

)]1/2}

� 2.845

Last step. Now that we have a value for C, we can derive the 95% CI as

[

43 +
(

9.839/2.845
)

, 43 +
(

9.839 × 2.845
)]

� [46.458, 70.992]

OK, this seems like a lot of work,but in this particular example, it was necessary. If we had simply used
the ‘automatic’ model averaging in MARK, the CI reported by MARK for ˆ̄N is [41.775, 63.905]. There
is clearly a fundamental problem with this CI, since the lower bound is less than Mt+1 (41.775 < 43).
Clearly, this makes no sense whatsoever. In contrast, the CI we derived ‘by hand’ does not bound Mt+1.
Not only was the reported lower-limit of the CI too low, but the upper limit was as well.

Now, in the preceding example, there was an obvious ‘problem’ with the simple model-averaged CI

for ˆ̄N reported by MARK. However, even if the lower bound of the reported CI is ≥ Mt+1, don’t take
this as evidence that the reported CI is correct.
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For example, consider fitting models { f0 , p(.) � c(.)} and { f0 , p(.), c(.)} to the ‘Carothers A’ data set
(found in the \examples subdirectory created when you installed MARK).

Here is a tabulation of the relevant results of fitting these models to the data:

model QAICc wi N̂ v̂ar(N̂ )

{ f0 , p(.) � c(.)} -99.7370 0.63460 368.128 212.944

{ f0, p(.), c(.)} -98.6330 0.36540 392.480 1234.986

If we had used the model averaging option in MARK, the model averaged estimate is ˆ̄N � 377.027,
and the reported 95% CI is [324.292, 429.761]. For this data set, Mt+1 � 283, so, in one sense at least, the
reported CI for the model average abundance estimate seems reasonable, since the lower limit of the
CI is greater than Mt+1 (i.e., 324.292 > 283). How does the reported CI compare with the one derived
using the calculations presented above?

Again, we start by first deriving an estimate of the variance of the model averaged abundance:

v̂ar
( ˆ̄N

)

�

R∑

i�1

wi

(

v̂ar
(

N̂i
�� Mi

)

+
(

N̂i − ˆ̄N
)2

)

� 0.63460
(

212.944 +
(

368.128− 377.027
)2

)

+ 0.36540
(

1234.986+
(

392.480− 377.027
)2

)

� 723.910

Note that if we were to fit these models in MARK, the unconditional SE for the model averaged
abundance would be reported as 26.9045. If we square this value, we get (26.9045)

2
� 723.901.

Again, the unconditional SE – and thus the variance – reported by MARK is correct (i.e., you do
not need to calculate the SE – or variance – by hand. We are simply demonstrating the underlying
calculations).

However, the CI as reported by MARK is not correct – this, you need to do by hand.

As in the first example, we first calculate

C � exp

{

1.96

[
ln

(

1 +
v̂ar

( ˆ̄N
)

f̂ 2
0

)]1/2}

Since Mt+1 � 283 for this data set, and since ˆ̄N � 377.027, then

f̂0 �
ˆ̄N −Mt+1

� (377.027− 283)

� 94.027

Thus,

C � exp

{

1.96

[
ln

(

1 +
723.910

(94.027)
2

)]1/2}

� 1.733
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Final step. Now that we have a value for C, we can construct the 95% CI around the model averaged

estimate ˆ̄N � 377.027 as[
283 +

(

94.027/1.733
)

, 283 +
(

94.027× 1.744
)]

�⇒
[

337.26, 445.94
]

Recall that if we had used the model averaging option in MARK, the reported model averaged 95%
CI was [324.292, 429.758]. Again, these reported lower- and upper-limits of the CI are both different
than the ones we just calculated ‘by hand’.

The general recommendation, then, is to calculate the 95% CI for the model averaged abundance ‘by
hand’, using the procedure outlined above.

begin sidebar

Profile confidence intervals – careful!

In chapter 1, we introduced the profile likelihood approach to constructing confidence intervals.

Typically, to construct a CI based on the profile likelihood, you take the value of the log likelihood

at the maximum (−16.30 in the example, shown in the following figure), add 1.92 to it (preserving the

sign), and look to see where the line corresponding to this sum (−18.22 � −[16.30 + 1.92]) intersects

with the profile of the log likelihood function. The two intersection points of this line and the profile

correspond to the upper- and lower-bounds of the CI.

For closed population abundance estimators, there is need to be cautious in using profile likelihoods

to generate CI, having to do with the fact that abundance estimates are not [0, 1] bounded parameters.

The maximum bound (if in fact one exists) is determined by the likelihood. There are situations for

some closed models where the upper bound of the likelihood profile→∞.

For example, take the likelihood for model { f0 , p(t) � c(t)} (i.e., model Mt ) fit to some data (the

likelihood profile is shown at the top of the next page). We see that the likelihood profile rises to the

MLE (vertical dotted line), and then falls, such that the horizontal dashed line corresponding to the

MLE−1.92 intersects the likelihood at 2 points (which represent the two bounds of the 95% CI).
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However, now consider model { f0 , p(.), c)(.)} (i.e., model Mb) fit to the same data:
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Model M(b)

Here, the likelihood rises, but then never falls to <2 units from the MLE – and, as such, there is no

upper bound for the profile likelihood!

end sidebar

14.11. Parameter estimability in closed models

It is important to examine the real parameter results to see if pt � 1.0 and N̂ � Mt+1. This would indicate
that the model you constructed was not estimable. Be careful – incorrectly built models may appear very
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good in terms of AICc . If you don’t know what Mt+1 is for a particular data set, it can be found in the
full model output labeled as ‘M(t+1):’.

In addition, it has been noted several times that a constraint must be placed on pt in order to properly
estimate N . It is straightforward to demonstrate that an estimate of pt is necessary to get an estimate of
N . We’ve already done it once. We’ll do it again here to make sure you don’t forget.

Consider the following estimator of N from a t � 3 occasion capture-recapture study,

N̂ �
Mt+1

1 −
[(

1 − p̂1

) (

1 − p̂2

) (

1 − p̂3

) ] .
Now if p̂3 � 1, then the denominator in the estimator above equals 1. Thus, the estimate of N̂ � Mt+1.

Let’s consider the estimability of the p’s, now that we know we need p̂t to get N̂ . The first p is estimable
because we have information in the subsequent capture occasions about the proportion of marked and
unmarked animals captured. This goes for each p until we get to pt . On the last occasion, there are no
future occasions from which to pull information. Thus, we must place a constraint of pt . The constraint
can be in the form of modeling pt as a function of previous p’s or as a function of the recaptures, or by
constraining estimates to be functions of one or more covariates. Recall that constraining parameters as
linear function of a covariate can often ‘solve’ identifiability issues.

14.12. Other applications

Closed population capture-recapture models have been used for other applications beyond estimating
the number of individuals in a population. There is a natural extension to estimating the number of
species in an area. In this case,encounterhistories representdetections of species rather than individuals.
Heterogeneity in detection probability among species is virtually guaranteed.

Closed capture-recapture models and modifications thereof are widely used in human demography.
There they are typically referred to as multiple list sampling. Several lists containing people from a
population of interest, for example drug users in a city, act as sampling occasions. Individuals are
matched across lists to estimate abundance.

The closed population capture-recapture models underpin the secondary sampling periods in a
robust design (Kendall et al. 1997; see Chapter 15). It is therefore essential to understand the closed
captures models in order to fully understand the robust design

14.13. Summary

Despite a seemingly simple goal, estimating abundance can be quite difficult. The closed capture-
recapture models contain numerous, subtle complications. MARK offers a framework for a variety
of models addressing different assumptions, compares models and most importantly model averages
estimated abundance.

An additional advantage of MARK is the ability to combine data from multiple study sites. It is too
often argued in the ecological literature that capture-recapture is not useful because the sample size at
any one trapping grid is too small. Through the use of groups, MARK allows data from multiple grids
to be used to jointly estimate detection probability. While this may bias the estimate of N somewhat
for each individual grid, it remains a better solution than using minimum number known alive as an
index. Moreover, MARK handles all of the covariances among the N’s estimated from common data.
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CHAPTER 15

The ‘robust design’

William Kendall, USGS Colorado Cooperative Fish & Wildlife Research Unit

Changes in population size through time are a function of births, deaths, immigration, and emigra-
tion. Population biologists have devoted a disproportionate amount of time to models that assume
immigration and emigration are non-existent (or, not important). However, modern thinking suggests
that these effects are potentially (perhaps generally) quite important. For example, metapopulation
dynamics are not possible without immigration and emigration in the subpopulations. A model which
allows the estimation of emigration and immigration to a population is therefore of considerable
utility. In this chapter, we consider Pollock’s robust design, an approach which will allow us considerable
flexibility in estimating a very large number of important demographic parameters, including estimates
of emigration and immigration. As you might imagine, such a model is bound to be more complicated
than most (if not all) of the models we’ve previously considered, but it brings more biological reality to
the analysis of population dynamics.

15.1. Decomposing the probability of subsequent encounter

We begin by considering the probabilistic pathway that links two events – the initial capture, marking
and live release of an individual, and its subsequent re-encounter (for the moment, we’ll focus on live
encounters). We know by now that we can represent such an individual with the encounter history ‘11’.
An individual that we mark and release but do not encounter on the subsequent sampling occasion
wouldhave the encounterhistory ‘10’. Back in Chapter1,we motivated the need forestimating encounter
probability by considering the utility of measures of return rate. You might recall that ‘return rate’∗ is
not a robust measure of survival. Why? Well, recall from Chapter 1 that ‘return rate’ is, at minimum,
the product of two events: (1) the probability of surviving from the time of initial mark and release
to some future sampling occasion, and (2) the probability that the individual is encountered on that
sampling occasion, conditional on being alive. Because the ‘return rate’ is in fact the product of two
different probabilities, this makes it difficult (and frequently impossible) to determine if differences in
‘return rate’ are due to differences in the probability of survival, the probability of encounter, or both.
To solve this problem, we introduced models which explicitly account for encounter probability, such
that potential differences in survival probabilities can be determined.

∗ Recall the ‘return rate’ is simply the proportion of individuals marked and released at some occasion that are encountered on
a subsequent occasion; in other words, ‘return rate’ is simply x(11)/[x(11)+x(10)], where x(11) is the number of individuals
marked and encountered on a subsequent occasion, and x(10) is the number marked and not encountered on a subsequent
occasion.
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In fact,our treatment of ‘return rate’ (both in the preceding paragraph,and in Chapter1) is incomplete.
It is incomplete because in fact ‘return rate’ is the product of more than two parameters – it is the product
of at least 4 lower-level parameters. We can illustrate this dependence graphically, using a ‘fate diagram’,
as indicated in Fig. (15.1):

individual caught,

marked and released

survives

dies

returns

disperses

(permanent emigration)

‘available’

‘not available’

encountered

not encountered

S

F

g

p*

1-S

1-F

1-g

1- *p

“return rate”

j

p

Figure 15.1: Basic fate diagram indicating the decomposition of ‘return rate’ into component transition parameters:
S (probability of surviving from release occasion i to subsequent sampling period i+1), F (probability that,
conditional on surviving, that individual does not permanently leave (e.g., by permanent emigration) the
population being sampled (i.e., the super-population; see Kendall 1999), (1−γ) (the probability that conditional
on being alive, and in the super-population, that the individual is available to be encountered), and p∗ (the
probability that an individual is encountered, conditional on being alive, in the super-population, and available
for encounter). The arcs indicate the underlying structure of apparent survival probability (ϕ � S×F), apparent
encounter probability (p � (1 − γ) × p∗), and ‘return rate’ (� S × F × (1 − γ) × p∗).

Starting at the lower left-hand corner of Fig. (15.1), we see that an individual animal is caught, marked
and released alive at occasion i. Then, there are several ‘events’ which determine if the individual is
encountered alive at a subsequent sampling occasion i + 1. First, the animal must survive – we use
the parameter S to denote survival. Clearly, the probability of the animal not surviving is given by the
complement probability, (1 − S). This much should be pretty obvious.

Next, conditional on surviving, a marked individual is potentially available for subsequent encounter
if it remains in the ‘super-population’ (the larger population from which we are sampling). We use the
parameter F to indicate the probability of fidelity of the marked individual to the super-population. We
note that the fidelity parameter F was first introduced in Chapter 9, in the context of joint live encounter-
dead recovery analysis. The complement, (1− F), is the probability that the animal has permanently left
the super-population, e.g., by dispersing, and would thus not be available for subsequent live encounter
in a sample drawn from this super-population under any circumstances.

Next,conditionalon remaining in the super-population (withprobability F),we introduce the concept
of ‘availability’. It’s perhaps easiest to introduce this idea based on a simple biological example. Suppose
we’re dealing with a bird species, where only breeding individuals are found at the breeding site
where we conduct our encounter sampling. Clearly, then, only breeding individuals are ‘available’ for
encounter, whereas non-breeding individuals would be ‘unavailable’. We model the probability of an
individual being unavailable using the parameterγ (such that the probability of being available is given by
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its complement 1−γ). Note that in most instances, the availability of a marked individual for encounter
is conditional, varying from occasion to occasion (e.g., in some years, a marked individual breeds, and
is thus available, whereas in other years, the same individual does not breed, and is thus unavailable).
As such, we generally refer to the parameter γ as defining the probability that the marked individual
has or has not temporarily emigrated from the study area. So, γ might be considered as the probability
that the marked individual has temporarily emigrated from the study area. In fact, we’ll see shortly that
the γ parameter can be interpreted in more than one way.

Finally, conditional on surviving, remaining in the super-population, and being available for en-
counter, the marked individual is encountered live with probability p∗. Here, we use the asterisk ‘∗’ to
differentiate what we will refer to as the ‘true’ encounter probability (p∗) from the ‘apparent’ encounter
probability (p). The use of the familiar p to indicate apparent encounter probability is intentional, since
it forces us to acknowledge that the familiar p parameter estimated in most models focused on live
encounter data is in fact a ‘function’ of the true encounter rate, but is not true encounter rate in and of
itself (except under very specific circumstances).

To make this clear, let’s write out the following expression for ‘return rate’. As noted earlier (and in
Chapter 1), ‘return rate’ is in fact the product of two separate events – survival and encounter. But, we
also noted that this simple definition is incomplete. It’s incomplete, because it is more strictly correct
to say that ‘return rate’ is the product of the apparent survival probability and the apparent encounter
probability. If we let R represent return rate, and use ϕ and p to represent apparent survival rate and
encounter probability, respectively, then we can write

R � (ϕ × p)

Now, considering Fig. (15.1), we see that apparent survival (ϕ) is itself a product of true survival
(S), and fidelity (F). This should make sense – the probability that an animal marked and released
alive at occasion i will be encountered alive in the study area at occasion i + 1 requires that the animal
survives (with probability S), and remains in the super-population (with probability F; if it permanently
emigrates, then it will appear ‘dead’, since permanent emigration and mortality are confounded). So,
ϕ � SF. Similarly, apparent encounter probability p is the product of the probability that the animal
is available for encounter (with probability 1 − γ), and the true detection probability p∗ (which is the
probability of detection, given availability, or presence). So, p �

(

1 − γ
)

p∗. Thus, we write

R � ‘apparent survival probability’ × ‘apparent encounter probability’

�
(

ϕ × p
)

�
(

SF
)

×
(

[1 − γ]p∗
)

Now, in several previous chapters, we simply decomposed ‘return rate’ R into apparent survival ϕ
and apparent encounter probability p. The challenge, then, is to further decompose ϕ and p into their
component pieces. In Chapter 9, we considered use of combined live encounter-dead recovery data
to decompose ϕ. Recall that dead recovery data provides an estimate of true survival rate S, whereas
live encounter data yields estimates of apparent survival probability ϕ. Since ϕ � (SF), then an ad hoc

estimate of F is given as F̂ � (ϕ/S). The formal likelihood-based estimation of F̂ (described by Burnham,
1993) is covered in detail in Chapter 9.

What about the decomposition of apparent encounter probability p? We see from Fig. (15.1) that
p � (1− γ)p∗. Following the logic we followed in the preceding paragraph to derive an ad hoc estimator
for F, we see that p̂∗ � p̂/(1 − γ̂), and γ̂ � 1 − (p̂/p̂∗); estimates of both the true encounter probability,
and the ‘availability’ probability may be of significant interest.
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15.2. Estimating γ: the classical ‘live encounter’ RD

The problem, then, is how to derive an estimate of either p∗ or γ? Recall that we can generate an estimate
for p (apparent encounter probability) using our standard live encounter CJS models. But, where do
we get estimates of γ, and p∗? Are any of them estimated by any estimation model we’ve considered so
far?

Well, if you think back to Chapter 14 (on closed population estimators), you might recall that one of
the parameters estimated is in fact p∗. Now, in Chapter 14, we didn’t refer to the parameter using the p∗

notation, but with a few moments of thought, you should see they are essentially the same thing (well,
not quite – recall that closed capture models estimate two different ‘types’ of encounter probability –
p and c – we’ll deal with these details later). In a closed population, there is neither entry or exit of
individuals (i.e., N is a constant). As such, your estimate of the encounter probability is not conditional
on presence or availability, since (by definition for a closed population) the marked individuals must
be there. So, the estimate of p from a closed population model allows you to derive an estimate of p∗

(given n > 1 occasions, p∗ � 1 −
[

(1 − p1)(1 − p2) . . . (1 − pn )
]

).

OK, fine, but why is this important? It’s important because if you have an estimate of apparent
encounter probability p, and if you have an estimate of true encounter probability p∗, then you can
derive an ad hoc estimate of γ as γ̂ � 1 − (p̂/p̂∗).

Now, for the ‘big leap forward’. To derive the estimate of γ, we need an estimate of p (which we can
get from standard open, live encounter CJS models), and p∗ (which we can get from standard closed
estimates). Can we derive both estimates from the same data set (based on samples from the same
population)?

The answer (as first described by Ken Pollock) is ‘yes’ – by application of what has been described as
the robust design. The robust design model is a combination of the Cormack-Jolly-Seber (CJS) (Cormack
1964, Jolly 1965, Seber 1965) live recapture model and the closed capture models. The model is described
in detail by Kendall et al. (1997, 1995) and Kendall and Nichols (1995), and is represented schematically
in standard (‘classical’) form in Fig. (15.2):

1 2 k1
... 1 2 k2

... 1 2 k3
...

1 2 3

closure closure closure

open open

secondary

samples

primary

samples

time

Figure 15.2: Sampling structure of ‘classical’ Pollock’s robust design.

The key difference from the standard CJS model considered in several earlier chapters is that instead
of just one capture occasion between survival intervals, multiple (>1) capture occasions are used. These
occasions are close together in time – so close that it allows you to (in general) assume that the
populations are closed while these samples are being taken (i.e., no mortality or emigration occurs
during these short time intervals). In fact, Pollock pointed out that in many cases data were being
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collected in this way anyway (e.g., small mammal sampling might be conducted in groups of 5-7
consecutive trapping days). The closed encounter occasions are termed secondary trapping occasions,
and each primary trapping session can be viewed as a closed capture survey.

The power of this model is derived from the fact that, in addition to providing estimates of abundance
(N̂), the probability that an animal is captured at least once in a trapping session can be estimated
from the data collected during the session using capture-recapture models developed for closed
populations (Chapter 14). The longer intervals between primary trapping sessions allows estimation
of survival, temporary emigration from the trapping area, and immigration of marked animals back
to the trapping area. The interval between primary sampling sessions is sufficiently long that gains
(birth and immigration) and losses (death and emigration) to the population can occur. This contrasts
with secondary samples (within the primary sampling session), where the interval between samples is
sufficiently short that the population is effectively closed to gains and losses.

Recall that we’re seeking estimates of both p and p∗, from which we can derive an estimate of γ. The
relationship of the various parameters to the standard robust design is shown in Fig. (15.3):

1 2 k1
... 1 2 k2

... 1 2 k3
...

1 2 3
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primary

samples

time

j1 1 2=S F j2=S F2 3
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2p
*

3p

P p p2 2 21 2 k, ,... P p p3 3 31 2 k, ,...

p p2 2 2=(1- )g * p p3 3=(1-g )3 *

Figure 15.3: Relationship of key parameters to basic sampling structure of Pollock’s robust design.

For each secondary trapping session (i), the probability of first capture pi j and the probability of
recapture ci j are estimated (where j indexes the number of trapping occasions within the session),
along with the number of animals in the population that are on the trapping area Ni . For the intervals
between trapping sessions (i.e., between primary sessions,when the population is open), the probability
of apparent survival ϕi (� S × F), and the apparent encounter probability p are estimated.

It is clear from Fig. (15.3) that it should be possible to derive estimates of γ. In the absence of extra
information (specifically, dead recovery data, or the equivalent), partitioning apparent survival ϕ into
component elements S and F is not feasible using the classical robust design (which is based entirely
on live encounters at a single location). We will deal with extensions to the classic robust design later
in this chapter.
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15.3. The RD extended – temporary emigration: γ′ and γ′′

Earlier we introduced the parameter γ as the probability that the individual was ‘unavailable’ for
encounter at some particular primary sampling session. Kendall et al. (1995a, 1997) extended the simple
(classical) parameterization of the robust design in terms of parameter γ by introducing two different
parameters: γ′ and γ′′ (read as ‘gamma-prime’ and ‘gamma-double-prime’, respectively). Basically,
these two new parameters are defined as follows:

parameter definition

γ′
i

the probability of being off the study area, unavailable for capture

during primary trapping session (i) given that the animal was not

present on the study area during primary trapping session (i − 1),

and survives to trapping session (i).

γ′′
i

the probability of being off the study area, unavailable for capture

during the primary trapping session (i) given that the animal was

present during primary trapping session (i − 1), and survives to

trapping session (i).

Now, these are perhaps more difficult to ‘wrap your brain around’ than they might first appear. You
need to read the definitions carefully.

First, we distinguish between the ‘observable’ (i.e., potentially available for encounter at time i) and
‘unobservable’ (i.e., potentially unavailable for encounter at time i) parts of the population of interest
(Fig. 15.4). The ‘superpopulation’ (i.e., the target population of interest) is the sum of the ‘observable’
and ‘unobservable’ individuals.

outside of

study area

(unobservable)

inside of

study area

(observable)

‘superpopulation’

(= observable +

unobservable)

Figure 15.4: Relationships between observable (i.e., available to be encountered during sampling), and unobservable
(i.e., not available to be encountered during sampling) segments of the population of interest. The larger
circle represents the range of the super-population. The smaller circle (light grey) represents the part of the
superpopulation that is available for encounter (i.e., in the study area), whereas the darker part of the larger
circle represents individuals unavailable for encounter (i.e., temporarily outside the study area).

The γ parameters introduced by Kendall define the probability of movement between the ‘observable’
and ‘unobservable’ states, between any two time steps. The basic relationship between γ′ and γ′′ is
shown in Fig. (15.5). Start with the parameter γ′′i . It is the probability that given that you were available
at time (i − 1), that you are not available now at time (i). In other words, γ′′ is the probability of an
individual that is available for encounter at time (i−1) temporarily emigrating between time (i−1) and
(i), such that it is not available for encounter at time (i). Thus, (1− γ′′) is the probability of being in the
study area at time (i), given that it was also in the sample at time (i − 1).
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time ( -1)i time ( )i

1- ’(i)g

g’(i)
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observable

unobservable

observable

Figure 15.5: Relationships between γ′ and γ′′.

As indicated in Fig. (15.5), the parameter γ′′i is the probability of temporarily emigrating from the
sample between sampling occasions (i − 1) and (i), and its complement (1 − γ′′i ) is the probability of
remaining in the sample between sampling occasions (i − 1) and (i).

What about parameter γ′? Again, consider Fig. (15.5) – γ′ is the probability that given that an
individual was not in the sample at time (i − 1), that is also not present (i.e., not in the sample) at
time (i). In effect, γ′ is the probability of remaining outside the sample (if you prefer, ‘fidelity’ to being
outside the sample). Thus, (1 − γ′) is the probability that an individual which was out of the sample at
time (i − 1) enters the sample between time (i − 1) and time (i) - i.e., return rate of temporary emigrants.

Indexing of these parameters (as indicated in Fig. 15.5) follows the notation of Kendall et al. (1997).
Thus, γ′′2 applies to the interval before the second primary trapping session. It is important to note
that not all parameters are estimable (either because of logical constraints, or statistical confounding).
For example, γ′2 is not estimated because there are no marked animals outside the study area at
primary trapping session 2 that were also outside the study area at time 1 (because they could not
have been marked otherwise). In general, for a study with k primary sessions, (i) S1, S2, . . . , Sk−1, (ii)
pi j , i � 1 . . . k, j � 1 . . . ki , (iii) γ′3 , γ

′
4 , . . . γ

′
k−1, and (iv) γ′′2 , γ

′′
3 , . . . γ

′′
k−1 are estimable. General issues of

estimability of various parameters is discussed elsewhere (below).

15.3.1. γ parameters and multi-state notation

If these parameters are still confusing, note the similarity of Fig. (15.5) to multi-state models introduced
in Chapter 10. In fact, this temporary emigration model is a special case of a multi-state model with
two states. Defining state O to be the study area (O; observable) and state U to be off the study area (U;
unobservable), then γ′′3 � ψOU

2 and γ′3 � ψUU
2 . The basic relationship between the ψ parameters and

the ‘observable’ and ‘unobservable’ states is shown in Fig. (15.6).

time ( -1)i time ( )i

unobservable

observable

unobservable

observable

y
UU

(i)

y UO
(i)

y
OU (i)

y
OO

(i)

Figure 15.6: Multi-state (ψ) probabilities of transition between ‘observable’ and ‘unobservable’ states.

Chapter 15. The ‘robust design’



15.3.2. illustrating the extended model: encounter histories & probability expressions 15 - 8

If you compare Fig. (15.6) with Fig. (15.5) for a few moments, you should recognize that

γ′ ≡ ψUU

1 − γ′ ≡ ψUO

γ′′ ≡ ψOU

1 − γ′′ ≡ ψOO

In fact, you could, with a bit of work, perform a ‘typical’ single sampling location robust design
problem as a multi-state problem with two states – you would simply fix S � 1 and ψOU

� 0 in the
closed periods (modeling the encounter probability only). In the ‘Closed Robust Design Multi-state’
and ‘Open Robust Design Multi-state’ options in MARK, which we describe later in this chapter, we
abandon the use of the ‘γ notation’ altogether. Although those models are more flexible, the models
using γ that we are discussing here are much simpler to set up.

15.3.2. illustrating the extended model: encounter histories & probability

expressions

To illustrate the mechanics of fitting the classical robust design model, assume a simple case with 3
primary trapping sessions, each consisting of 3 secondary trapping occasions. The encounter history in
its entirety is viewed as 9 live capture occasions, but with unequal spacing. Thus, the encounter history
might be viewed as

1 1 1 −→ 1 1 1 −→ 1 1 1

where the ‘→’ separates the primary trapping sessions. The probability that an animal is captured at
least once during a trapping session is defined as p∗i (see Chapter 14), and is estimated as

p∗i � 1 −
[

(1 − pi1) × (1 − pi2) × (1 − pi3)
]

That is, the probability of not seeing an animal on trapping occasion j is (1 − pi j ) for j � 1, 2, and 3.
The probability of never seeing the animal during trapping session i is

(1 − pi1) × (1 − pi2) × (1 − pi3)

so therefore, the probability of seeing the animal at least once during the trapping session is 1 minus
this quantity. Note that the pi j are estimated as with the closed capture models (Chapter 14).

To illustrate the meaning of the emigration (γ′′i ) and immigration (γ′i ) parameters, suppose the animal
is captured during the first trapping session, not captured during the second trapping session, and then
captured during the third trapping session. One of many encounter histories that would demonstrate
this scenario would be (where spaces in the encounter history separate primary sampling sessions, but
which would not appear in an actual encounter history):

010 000 111

which, if pooled over secondary samples within primary samples, would be equivalent to the encounter
history ‘101’.

The probability of observing this ‘pooled’ encounter history can be broken down into 2 parts. First,
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consider the portion of the probability associated with the primary intervals. This would be

ϕ1ϕ2

[
γ′′2

(

1 − γ′3
)

+
(

1 − γ′′2
) (

1 − p∗2
) (

1 − γ′′3
) ]

p∗3

The product in front of the first bracket [ϕ1ϕ2] is the probability that the individual survived from the
first primary trapping session to the third primary trapping session. Because we encountered it alive
on the third occasion (i.e., at least once during the three secondary trapping sessions during the third
primary session), we know the individual survived both intervals (this is a logical necessity, obviously).

The complicated-looking term in the brackets represents the probability that the individual was not
captured during the second trapping session. The first product within the brackets

[

γ′′2 (1 − γ′3)
]

is
the probability that the individual emigrated between the first 2 primary trapping sessions (γ′′2 ), and
then immigrated back onto the study area during the interval between the second and third trapping
sessions

[

1− γ′3
]

. However, a second possibility exists for why the animal was not captured, i.e., that it
remained on the study area and just was not captured. The term

[

1−γ′′2
]

represents the probability that
the individual ‘remained on the study area’. The term

[

1 − p∗2
]

represents individuals ‘not captured’.
The final term

[

1 − γ′′3
]

represents the probability that the individual remained on the study area so
that it was available for capture during the third trapping session.

The second portion of the cell probability for the preceding encounter history (p∗3) involves the
estimates of p∗i , and is thus just the closed capture model probabilities.

15.3.3. Random (classical) versus Markovian temporary emigration

The probability of movement between ‘availability states’ can be either random, or Markovian. If the
former (random), the probability of moving between availability states between primary occasions i and
i+1 is independentof the previous state of the system,whereas forMarkovian movement, the probability
of moving between availability states between primary occasions i and i + 1 is conditional on the state
of the individual at time i − 1. Note that random movement is essentially what was assumed under the
classical robust design model discussed earlier (i.e., the RD model based on γ, and not parameterized
in terms of γ′ and γ′′).

To provide identifiability of the parameters for the ‘Markovian emigration’ model (where an animal
‘remembers’ that it is off the study area) when parameters are time-specific, Kendall et al. (1997) stated
that γ′′k and γ′k need to be set equal to γ′′t and γ′t , respectively, for some earlier period. Otherwise these
parameters are confounded with St−1. They suggested setting them equal to γ′′k−1 and γ′k−1, respectively,
but it really should depend on what makes the most sense for your situation. This confounding problem
goes away if either movement or survival is modeled as constant over time.

To obtain the ‘Random emigration’ model,setγ′i � γ
′′
i . This constraint is perhaps not intuitively obvious.

The interpretation is that the probability of temporarily emigrating from the observable sample during
an interval is the same as the probability of staying away (i.e., the probability of not immigrating back
into the observable sample). Biologically, the probability of being in the study area during the current
trapping session is the same for those animals previously in and those animals previously out of the
study area during the previous trapping session. The last survival parameter, Sk−1, is also not estimable
under the time-dependent model unless constraints are imposed. That is, the parameters γ′′k ,γ′k , and Sk−1

are all confounded. Setting the constraints γ′′k−1 � γ′′k and γ′k−1 � γ′k , for example, makes the resulting
3 parameters estimable. Or, you could forgo the constraint – in that case, you would simply ignore the
estimates of Sk−1, γ

′
k , and γ′′k . Estimates of the remaining parameters would be unbiased.

The null model for both the random and Markovian models is the ‘No emigration’ model. To obtain
the ‘No emigration’ model, you simply set all the γ parameters to zero. If all the γ′′i are set to zero, then
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the γ′i must all be set to zero also, because there are no animals allowed to emigrate to provide a source
of immigrants back into the population.

To make the distinction between the random (classical) and Markovian temporary emigration robust
design models clearer, consider the cell probability expressions for the following encounter history:

110 000 010 111

Here, we have 4 primary trapping occasions, and 3 secondary trapping occasions per primary
occasion. If we considered only primary occasions, the encounter history for this individual would be
‘1011’. The individual was marked and released on the first secondary occasion within the first primary
sampling occasion, and then seen again on the second secondary occasion within that first primary
period. The individual was not seen at all during any of the secondary samples during the second
primary sampling occasion. The individual was seen once – on the second of the secondary sampling
occasions – during the third primary sampling occasions, and was seen on all of the secondary sampling
occasions during the final primary sampling period.

Again, what is key here is the second primary sampling occasion – during the second primary
occasion, the individual was not seen at all. This might occur in one of three ways. First, the individual
could have died – we assume only live encounters are possible. However, since the individual was
seen alive at least once on a subsequent primary sample, then we clearly cannot assume that the ‘000’
secondary encounter history on the second primary occasion reflects death of the individual.

However, there are two other possibilities we need to consider:

1. the individual could be alive and in the observable sample, but simply ‘missed’
(i.e., not encountered)

or, alternatively,

2. the individual could have temporarily emigrated from the observable sampling
region between primary occasion 1 and primary occasion 2, such that it is
unavailable for encounter during primary occasion 2 (i.e., is unobservable).

We have to account for both possibilities when constructing the probability statements. The following
table shows the probability expressions for both the Markovian and random temporary emigration
models:

model probability

Markovian ϕ1γ
′′
2 ϕ2

(

1 − γ′3
)

p∗3ϕ3

(

1 − γ′′4
)

p∗4

+ ϕ1

(

1 − γ′′2
) (

1 − p∗2
)

ϕ2

(

1 − γ′′3
)

p∗3ϕ3

(

1 − γ′′4
)

p∗4

random ϕ1γ2ϕ2

(

1 − γ3

)

p∗3ϕ3

(

1 − γ4

)

p∗4

+ ϕ1

(

1 − γ2

) (

1 − p∗2
)

ϕ2

(

1 − γ3

)

p∗3ϕ3

(

1 − γ4

)

p∗4

Look at these expressions carefully. Make sure you understand the distinction between the random
andMarkovian temporary emigration models,andhow the various constraints needed for identifiability
affect the probability expressions. For example, notice that for the random temporary emigration model,
the probability expression corresponding to the encounter history is parameterized in terms of γ – no
‘gamma-prime’ (γ′) or ’gamma-double-prime’ (γ′′) parameters.
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Why? Well, recall that in order to obtain the ‘Random emigration’ model, you set γ′i � γ
′′
i (i.e., simply

set both parameters equal to some common parameter γi).

Now, let’s step through each expression, to make sure you see how they were constructed. Let’s
start with the Markovian emigration expression. Note that the probability expression for both models
is written in two pieces (separated by the ‘+’ sign). These two pieces reflect the fact that we need to
account for the two possible ways by which we could achieve the ‘000’ encounter history for the second
primary sampling occasion: either (i) the individual was not available to be sampled (with probability
γ′′2 ; in other words, it was in the sample at primary occasion 1, and left the sample at primary occasion 2,
such that it was unavailable for encounter), or (ii) was in the sample during primary sampling occasion
2, with probability (1 − γ′′2 ), but was simply missed (i.e., not encountered).

So, let’s consider the first part of the probability expression. Clearly, ϕ1 indicates the individual
survived from primary occasion 1→ 2. We know this to be true. The γ′′2 term indicates the possibility
that the individual temporarily emigrated from the sample between occasions 1 and 2, such that it was
unavailable for encounter during primary sampling occasion 2. Then, ϕ2, since the individual clearly
survives from occasion 2 to occasion 3. Then, conditional on having temporarily emigrated at occasion
2, we need to account for the re-entry (immigration) back into the sample at occasion 3, with probability
(1 − γ′3). This is logically necessary since the individual was encountered at least once during primary
sampling occasion 3. Next, ϕ3, since the individual clearly survives from occasion 3 to 4. Finally, the
individual stays in the sample (since it was encountered),with probability (1−γ′′4 ), and was encountered
with probability p∗4.

Now, the second term of the expression (after the ‘+‘ sign) is similar, with one important difference
– in the second term, we account for the possibility that the individual stayed in the sample between
primary sampling occasion 1 and 2 with probability (1 − γ′′2 ), and was not encountered during any of
the secondary samples during primary sampling occasion 2 with probability (1 − p∗2).

For the random emigration model, the expressions are the same, except we’ve eliminated the ‘primes’
for the γ terms (we note that we could, with a bit of algebra, reduce both expressions to simpler forms –
especially the expression for random emigration. However, leaving the expressions in ‘expanded’ form
makes the logic of how the expressions were constructed more obvious).

15.3.4. Alternate movement models: no movement, and ‘even flow’

While in the preceding we focussed on contrasting random and Markovian movement models, it is
clear that both need to be tested against an explicit null of ‘No movement’. For this null model, we
assume that individuals that are ‘observable’ are always ‘observable’ over all sampling occasions.
Similarly, individuals which are ‘unobservable’ remain unobservable over all sampling occasions. We
construct the ‘No movement’ fairly easily, by simply setting the γ′s to 1 (unobservable individuals remain
unobservable) and γ′′s to 0 (observable individuals remain observable).∗ Unless you have compelling
evidence to the contrary, it is always worth including a ‘No movement’ model in your candidate model
set.

Another, somewhat more subtle model, is what we might call an ‘Even flow’ model. In the ‘Even

flow’ model, we are interested in whether the probability of moving from ‘observable’ at time i to
‘unobservable’ at time i+1 is the same as the probability of moving from ‘unobservable’ to ‘observable’
over the same time interval. In other words, (1 − γ′) � γ′′. Note that the ‘even flow’ model says only

∗ Practically speaking, it would not matter if you fixed γ′ to 1 or 0. Since the model does not consider movement of marked animals
outside the study area, γ′ never enters the likelihood and therefore it doesn’t matter whether you fix it to 0 or 1. However, setting
γ′ � 1 for a ‘no movement’ model is logically more consistent with Fig. (15.5).
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that the per capita probability of moving to the alternate state over some interval is independent of the
originating state at the start of the interval.

Be sure you understand the distinction between the ‘Even flow’ model and the ‘Random movement’
and ‘Markovian movement’ models. In the ‘Random movement’ model we set γ′ � γ′′, which means that
the probability of an individual being unobservable at time i+1 is independent of whether or not it was
‘observable’ at time i. As noted earlier, the interpretation is that the probability of emigrating during an
interval is the same as the probability of staying away (conditional on already being ‘unobservable’ at
the start of the interval). For the ‘Markovian movement’ model, we allow for movement rates to differ as a
function of whether the individual is ‘observable’ or ‘unobservable’ – the only constraints we apply to
the γ parameters in the Markovian model are necessary to ensure identifiability. Contrast this with the
‘Even flow’ model, where we enforce an equality constraint between entry and exit from a given state
over the interval. We will leave it to you do decide which of these models are sufficiently ‘biological
plausible’ to consider including in your candidate model set.

The following table (15.1) summarizes some of the constraints which are commonly used to specify
(and in some case, make identifiable) the 4 model types we’ve discussed so far (‘No movement’, ‘Random

movement’, ‘Markovian movement’, and ‘Even flow’).

Table 15.1: Parameter constraints for standard model types using classical
closed RD (γ) parameterization.

model constraint

no movement γ′ � 1, γ′′ � 0

random movement γ′ � γ′′

Markovian movement γ′k � γ′k−1

γ′′k � γ′′k−1

‘even flow’ γ′′ � (1 − γ′)

15.4. Advantages of the RD

Advantages of the robust design alluded to above include

1. estimates of p∗i , and thus Ni and recruitment are less biased by heterogeneity in capture
probability (specifically, if you use heterogeneity models within season; see Chapter 14)

2. temporary emigration can be estimated assuming completely random, Markovian, or
temporarily trap dependent availability for capture (Kendall and Nichols 1995, Kendall
et al. 1997)

3. If temporary emigration does not occur, abundance, survival, and recruitment can be es-
timated for all time periods (e.g., in a 4-period study, half the parameters are inestimable
using the JS method; Kendall and Pollock 1992).
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4. Precision tends to be better using the formal robust design models of Kendall et al. (1995),
which include the model described above with γ′′ � γ′ � 0.

5. Because there is information on capture for the youngest catchable age class, estimation
of recruitment into the second age class can be separated into in situ recruitment and
immigration when there are only 2 identifiable age classes. Using the classic design (i.e.,
one capture session per period of interest), 3 identifiable age classes are required (Nichols
and Pollock 1990).

6. The robust design’s 2 levels of sampling allow for finer control over the relative precision
of each parameter (Kendall and Pollock 1992).

15.5. Assumptions of analysis under the RD

For the most part, the assumptions under the robust design are a combination of the assumptions for
closed-population methods and the JS method.

1. Under the classical robust design (as first described by Ken Pollock, and subsequently
extended by Kendall and colleagues; hereafter, we refer to this as the closed robust

design), the population is assumed closed to additions and deletions across all secondary
sampling occasions within a primary sampling session. Kendall (1999) identified 3
scenarios where estimation of p∗i would still be unbiased when closure was violated.

a. If movement in and out of the study area is completely random during the period,
then the estimator for p∗i remains unbiased. The other 2 exceptions require that
detection probability vary only by time and might apply most with migratory
populations.

b. If the entire population is present at the first session within a period but begins to
leave before the last session, then the estimator is unbiased if detection histories
are pooled for all sessions that follow the first exit from the study area. If the
exodus begins after the first session this creates a new 2-session detection history
within period.

c. Conversely, if sampling begins before all animals in the population have arrived
but they are all present in the last session, then all sessions up to the point of first
entry should be pooled.

2. Temporary emigration is assumed to be either completely random,Markovian,orbased
on a temporary response to first capture.

3. Survival probability is assumed to be the same for all animals in the population,
regardless of availability for capture. This is a strong assumption, especially in the
Markovian availability case.

15.6. RD (closed) in MARK – some worked examples

OK, enough of the background for now. Let’s actually use the closed robust design in MARK. We’ll
begin with a very simple example which can be addressed using only PIMs and the PIM chart, followed
by a more complex model requiring modification(s) of the design matrix.
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15.6.1. Closed robust design – simple worked example

We’ll demonstrate the ‘basics’ using some data simulated under a ‘Markovian movement’ model. The
data (contained in rd_simple1.inp) consist of 3,000 individuals in a study area, some of which are
captured, marked and released alive. Each of the 5 primary sampling sessions consisted of 3 secondary
samples. So, in total, (5 × 3) � 15 sampling occasions. For our simulation, we assumed that survival
between primary periods varied over time: S1 � 0.7, S2 � 0.8, S3 � 0.9, S4 � 0.8. Within each year, we
assumed that the true model for encounters during the secondary samples was model { f0 , p(.) � c(.)}
(i.e., model M0 – see Chapter 14). We used p11→13 � 0.5, p21→33 � 0.6, p41→43 � 0.5 and p51→53 � 0.5.
(Note: setting p11 � p12 � p13 � 0.5 implies that p∗1, the probability of being captured at least once
in primary period 1, is p∗1 � 1 −

[

(1 − 0.5)(1 − 0.5)(1 − 0.5)
]

� 0.875. If you notice, the total number
of individuals captured at least once in primary session 1 in the simulated data set is 2,619, which is
close to the expected value of 3,000× 0.875 � 2,625.) We also assumed (purely for convenience) that no
individual entered the population between the start and end of the study (thus, since S<1, the estimated
population size should decline over time). We also assumed no heterogeneity in capture probabilities
among individuals. What about the γ parameters? We assumed a time-dependent Markovian model:
γ′′2 � 0.2, γ′′3 � 0.3, γ′′4 � 0.3, γ′′5 � 0.2 and γ′3 � 0.2, γ′4 � 0.4, γ′5 � 0.3.

OK, now, let’s analyze these simulated data in MARK. For our candidate model set, we’ll assume
that there are 3 competing models: (i) a model with no temporary emigration (i.e, γ′′i � γ′i � 0), (ii) a
model with random temporary emigration (i.e., γ′′i � γ′i ), and (iii) a model with Markovian temporary
emigration (in this case, the ‘true’ model under which the data were simulated). We’ll skip the ‘even
flow’ model mentioned earlier for now. It is not a model we can build directly using PIMs. Moreover,
building the ‘even flow’ DM requires a design matrix ‘trick’ we haven’t seen before. For now, we’re
going to concentrate on simple model construction, using PIMs. We’ll get back to the ‘even flow’ model
later. In our analysis, we’ll also assume we have ‘prior knowledge’ concerning the true structure for the
encounter probabilities (i.e., the parameter structure for pi and ci). To facilitate referring to the models in
the results browser, we’ll call them simply ‘no movement’, ‘random movement’ and ‘Markovian movement’,
respectively.

Start MARK and select the ‘Robust Design’ data type on the model specification window. MARK

will immediately ‘pop-up’ a small sub-window, asking you specify the model type for the closed
captures data type (recall that you’re modeling encounters during secondary samples using a closed
population estimator). For this example, we’ll use ‘Full Likelihood p and c’. After selecting the
appropriate input file (rd_simple1.inp), we need to tell MARK how many occasions we have. For
the robust design, we need to do this in stages. First, how many total occasions? In this case, we have 5
primary occasions, each of which consists of 3 secondary occasions. So, 15 total occasions.

Now, the next stage is specifying the primary and secondary sampling structure. In other words,
how are the secondary samples divided among primary samples? If you look at the .INP file, there is
no obvious indication in the file itself where the break-points are between primary occasions. However,
MARK has a useful feature which makes specifying the primary and secondary sample structure
relatively straightforward. If you look immediately to the right of where you entered the total number of
occasions, you’ll see the usual ‘Set Time Intervals’ button. Immediately above and to the right of the
‘Set Time Intervals’ button is a button labeled ‘Easy Robust Design Times’. Why 2 buttons? Well,
you could specify the primary and secondary sampling model structure by appropriately setting the
time intervals (see below), or you can take the ‘easy way out’ (pun intended) by using the ‘Easy Robust
Design Times’ button.
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If you click this button, you’re presented with a new window which asks you to specify the number
of primary sampling occasions:

In our case, we have 5 primary sampling occasions. Once you click the ‘OK’ button, MARK responds
with a second pop-up window, asking you to specify the number of secondary sampling occasions for
each primary session.

The default values that you will see are derived simply by taking the total number of occasions (15
in this example) and dividing that number by the number of primary sampling occasions (5) – in this
example, the default of 3 secondary sampling occasions conveniently matches the true structure of
our sampling – of course, if it didn’t, then we would simply manually adjust the number of secondary
sampling occasions per primary sampling occasion, subject to the constraint that the total number of
secondary occasions (summed over all primary sampling occasions) equaled 15 (in our example).

In fact, what the ‘Easy Robust Design Times’ button is doing is setting the time intervals used to
specify which encounter occasions are grouped together to form the secondary encounter sessions
within each primary period. The time intervals between the encounter occasions within a primary
session have a length of zero, whereas the time intervals between primary sessions have a positive (>0)
length.

An example will make this clearer. Assume that animals are trapped for 15 separate times. The first
year, animals are trapped for 2 days, the second year for 2 days, the third year for 4 days, the fourth year
for 5 days, and the fifth year for 2 days. The number of encounter occasions would be specified as 15.
The length of the time intervals would be specified as

0 1 0 1 0 0 0 1 0 0 0 0 1 0

That is, only 14 time intervals are needed, where the value 1 means that 1 year elapsed. This
mechanism is flexible, but can be a bit tricky (hence, the utility of the ‘Easy Robust Design Times’
button). Note that all sessions must have at least 2 occasions. Thus, you will never have 2 consecutive
time intervals of length > 0.

Once you have correctly specified the primary and secondary sampling structure (by whichever
method you chose), click the ‘OK’ button. As usual, MARK responds by presenting you with the PIM
for the first parameter, in this case, the survival parameter S. Let’s look at the PIM chart – but, remember
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how many parameters you’re dealing with here: you have survival (S), the γ parameters (γ′ and γ′′),
the encounter parameters (p and c), and the number of individual not encounter f0 (for simple closed
capture models where f0 is a parameter in the likelihood – see Chapter 14). Meaning, the PIM chart will
be very big (very...). Even for this simple example, with ‘only’ 15 total occasions, the PIM chart (shown
below) is ‘dense’ with information (to put it mildly).

We’ll start by trying to fit a model with time dependence in S, γ′, and γ′′, but where pi � ci � c. for
each primary occasion i (although we allow annual p to vary). The PIM chart corresponding to this
model is shown below:

If you’ve read the preceding text carefully, you’ll recognize that in fact (i) this represents a Markovian
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model for the γ parameters, and (ii) without constraints, there will be identifiability problems for S and
γ for this model.

We can confirm this by running the model, and looking at the estimates for S and γ from this model:

We see that the estimates for the last two S and γ parameters are completely confounded. Now, let’s
see what happens to the estimates if we apply the constraints γ′k � γ′k−1, and γ′′k � γ′′k−1? As mentioned
earlier, these constraints are necessary to make S and the remaining γ parameters identifiable. How do
we set these constraints?

Here, we’ll use a simple PIM-based approach. Here are the modified PIMs for γ′′ and γ′, respectively:

Make sure you understand what we’ve done in the PIMs. We’ve set the last two parameters equal to
each other for both γ′′ (parameter index 7) and γ′ (parameter index 9). This constraint should allow us
to estimate γ′′2 (parameter index 5) and γ′′3 (parameter index 6), and γ′3 (parameter index 7).

If we fit this model to the data, we see that the estimates of S and γ (shown at the top of the next
page) are all reasonable, and quite close to the true underlying parameter values used in the simulation
(S1 � 0.7, S2 � 0.8, S3 � 0.9, S4 � 0.8; γ′′2 � 0.2, γ′′3 � 0.3; γ′′4 � 0.3, γ′′5 � 0.2 and γ′3 � 0.2). Remember
that we’ve achieved this ‘identifiability’ by applying constraints on the terminal pairs of γ parameters
– not only may there be no good biological justification for imposing this constraint, but the estimates
of the constrained γ (parameter index 7, representing the constraint γ′′4 � γ′′5 , and parameter index 9,
representing the constraint γ′4 � γ′5) are not biologically interpretable.
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What if instead of constraining γwe’d applied a constraint to the survival parameter S? For example,
what if we constrained S to be constant over time? As you’ll recall from earlier chapters, constraining
one parameter can often eliminate confounding with other parameters, and in the process, make them
identifiable. Forexample, in a simple {ϕt pt} live mark-recapture model, the terminalϕand p parameters
are confounded, whereas if you fit model {ϕ.pt} (i.e., constrain ϕ to be constant over time), all of the
encounter probabilities pt are estimable, including the terminal parameter. Of course, you would still
want to have a good prior motivation to apply the constraint.

So, for our present analysis, what happens to our estimates if we (i) constrain S to be constant over
time, and (ii) ‘remove’ the γ′k � γ′k−1 and γ′′k � γ′′k−1 constraints? Here is the PIM chart corresponding
to this model – note that the indexing for γ′′ is now 2 → 5 (whereas for the constrained model, it was
2→ 4), and for γ′, the indexing is from 6→ 8 (instead of 6→ 7 for the constrained model).
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Here are the estimates from fitting this model with constant survival to the data:

We see that in fact all of the γ′′ parameters are now estimable, as are the first two estimates for γ′.
The estimates qualitatively match the true underlying parameter values – differences reflect the fact
that in the generating model used to simulate the data, survival S was time-dependent – here we are
constraining it to be constant over time, which affects our estimates of other parameters.

Let’s continue fitting the models in our candidate model set, assuming that S is time-dependent (go
ahead and delete the model we just ran with S held constant from the browser – we ran that model just
to demonstrate that you could achieve identifiability by hold S constant). We’ll fit the ‘Random movement’
model next. Recall that for a ‘Random movement’ model, which is essentially the ‘classical’ robust design,
we apply the constraint γ′′i � γ′i .

Also remember that without additional constraints, the parameters γ′′k , γ′k , and Sk−1 are all con-
founded. While you could set some constraints to ‘pull them apart’, in practice it is often easier to
forgo the constraint – in that case, you would simply ignore the estimates of Sk−1, γ

′
k , and γ′′k . Estimates

of the remaining parameters would be unbiased.

Specifying the ‘Random movement’ model is straightforward, but remember that there is one more
γ′′ than γ′ parameter. In this case, there is no γ′2 parameter corresponding with γ′′2 , so we apply the
constraint to the γ parameters forprimary occasions 3 and 4 only. Again, this is most easily accomplished
by modifying the PIMs for γ′′ and γ′, respectively:

Run this model and add the results to the browser.
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If you look at the real estimates from the ‘Random movement’ model (shown below) you see clearly
that the final S and γ parameters are confounded.

Finally, the ‘No movement’ model. Recall that to fit this model, we fix γ′i � 1 and γ′′i � 0 over
all occasions. We can do this easily by using the ‘Fix parameters’ button in the ‘Run numerical
estimation’ window. Since we just finished building the ‘Random movement’ model, we can run the ‘No
movement’ model simply by fixing all of the γ parameters in the ‘Random movement’ model (parameters
5 → 8) to either 1 or 0 (for γ′ and γ′′ respectively). Go ahead and fix the γ’s, run the ‘No movement’
model, and add the results to the browser:

Note that the reported AICc values are all negative. An explanation for negative AICc values was
presented in Chapter14. Negative AICc values are legitimate and interpreted in the same way as positive
AICc values. Keep in mind thatminimum AICc remains the targetand the modelwith the ‘mostnegative’
AICc , i.e., the one furthest from zero, is the most parsimonious model.

In looking at our results, we conclude that the ‘Markovian model’ has by far the most support in
the data among our 3 candidate models. This should not be surprising – a Markovian model was the
generating model for the simulated data.

Using the design matrix in the RD – simple example revisited...

In the preceding, we built the models using PIMs. How would we build these models using the
design matrix (DM)? We start by considering the PIM structure for a model with full time-dependence
in S and γ, with annual variation in p (in fact, this is the generating model used to simulate the data we
considered in the preceding example). The PIM chart corresponding to this structure is shown at the
top of the next page.
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There are a number of ways to build the DM corresponding to this PIM chart. One way, which is
arguably the ‘default’ approach, is shown in the following.

Here, we assume that we’re going to model each of the structural parameters (S, γ′, γ′′, p) indepen-
dently of each other. Meaning, each parameter will have its own intercept. While there is nothing
wrong with this, it makes it somewhat more difficult to build models where we want (or need) to
specify particular relationships between 2 or more of the parameters. For example, there is no simple

Chapter 15. The ‘robust design’



15.6.1. Closed robust design – simple worked example 15 - 22

modification of this DM which will let you build a ‘Random movement’ model, where γ′ � γ′′.

Is there a more flexible approach? In fact, you might recall from our development of the DM for
closed population abundance models (Chapter 14 – section 14.6) that a straightforward approach is to
consider each of the parameters you want to model ‘together’ (i.e., as being related to each other in some
fashion) as different levels of a putative ‘group’ factor, using a common intercept for these parameters.
[In fact, you may recall that we first introduced this concept back in Chapter 7 with respect to ‘age’ and
‘time since marking’ models]. We start by specifying a putative parameter ‘group’ for the γ parameters
– we’ll call it ‘gg’ (for ‘γ-group’).

Next, to help us keep track of what we’re doing, we write out the linear model corresponding to the
γ parameters in the PIM chart shown on the preceding page. We know that without constraints not
all parameters are identifiable, but it represents our most general parametrization for γ, which we will
constrain to build our 3 candidate models. Here is the linear model corresponding to the γ parameters
shown in the PIM chart:

‘γ’ � INTCPT + gg + TIME + gg.TIME

� β1 + β2(GG) + β3(T1) + β4(T2) + β5(T3) + β6(gg.T2) + β7(gg.T3)

We see there are 7 terms in the linear model, which correctly matches the 7 parameters for γ specified
in the PIM chart. Note that we model only ‘plausible interactions’. Since there is no γ′1, parameter, then
no interaction is specified for interval coded by T1.

Here is what this linear model for γ would look like coded in the DM:

(Note that we’ll leave the coding for the other parameters S, p and f0 the same).

Given this DM, how would we modify it to construct the 3 models we constructed in the preceding
section using the PIM approach? We’ll start with the ‘Markovian model’. Recall for a model where
movement is modeled as Markovian, we generally need to set (i) γ′′k � γ′′k−1 and (ii) γ′k � γ′k−1. How
would we set these constraints in the DM? The key is in realizing that by setting γ′′k � γ′′k−1 and γ′k � γ′k−1

we are, in effect, ‘merging’ the final two time intervals. In other words, instead of having 4 time intervals,
we now have 3.

Now, have another look at the part of the DM relating to the γ parameters (shown above). Note that
column B9 (labeled t3) specifies the 3rd time interval. So, to make time interval 3 equivalent to time
interval 4 (which we coded by convention as the reference interval), we simply delete column B9. But,
if we delete the t3 column (i.e., B9), when we also need to delete any interaction column involving t3.
So, we must also delete column B11 (labeled gg.t3).
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Here is what the modified DM for the ‘Markovian model’ for γ looks like:

If you run this model, and add the results to the browser – you’ll see that they match the results from
the ‘Markovian model’ built using the PIM approach.

Next, we’ll consider the ‘random movement’ model. Recall for this model, we set γ′ � γ′′. This is
analogous to setting p � c in a closed population abundance model. By setting γ′ � γ′′, we are in
effecting eliminating the difference between the groups. So, all we need to do is (i) delete the ‘gg’ column
(B6), and (ii) delete any interaction column involving ‘gg’ (in this case, column B9, labeled ‘gg.t2’). Here
is the modified DM for γ for the ‘random movement’ model:

Again, if you run this model, and add the results to the browser – you’ll see that they match the results
from the ‘random movement’ model built using the PIM approach. Note that by simply modifying the
DM we built for the ‘Markovian model’, we are retaining the γ′′k � γ′′k−1 and γ′k � γ′k−1 constraints. Doing
so (or not) does no affect the overall model fit, but does influence the identifiability of some parameters
(in particular, the final estimate for survival S).

Finally, for the (null) ‘no movement’ model, we want to set γ′ � 1, and γ′′ � 0. Starting from the DM
we just specified for the ‘random movement’ model, all we need to do is (i) delete the time columns (B7
→ B9), and (ii) fix parameters 5→ 8 to 0, and parameters 9→ 11 to 1 when we run the model. Results
from this model should match those from the ‘no movement’ model built using PIMs.

15.6.2. Closed robust design – more complex worked example

In the preceding,we used PIMs,and a PIM chart, to construct the various models in our candidate model
set. We also demonstrated (and reinforced) the notion of parameter constraints that are often necessary
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to make various parameters estimable. Recall in particular that for a model with Markovian movement,
setting the constraints γ′′k−1 � γ′′k and γ′k−1 � γ′k (where k is the number of primary sampling occasions)
makes the resulting 3 parameters estimable. However, as you might imagine, there is another approach
which is often preferred, since it makes various parameters estimable, while avoiding constraints which
work, but may have little biological meaning, or justification. This approach involves constraining
various estimates to be functions of one or more covariates.

Consider the following scenario – suppose that only individuals in the breeding condition are
available for encounter (this is quite plausible – for many taxa, only reproductively active individuals
are ever encountered. Non-breeding individuals often do not return to the breeding site, and are thus
not available for encounter). Suppose that in general, for some species, if the climatic conditions are
favorable, the tendency of all individuals to breed is increased, relative to a year with harsher climatic
conditions, where more individuals opt out of breeding. Thus, we would anticipate that in general in a
‘good’ year, (1− γ′) and (1− γ′′) will generally be greater than γ′ and γ′′. The reverse would generally
be true in a ‘poor’ year.

For this example, we simulated 15 occasions worth of data – 5 primary sampling occasions, each
with 3 secondary samples. Primary samples 1, 2 and 4 were classified as ‘good’ years, whereas primary
samples 3 and 5 were taken in ‘poor’ years. In ‘good’ years, γ′g � 0.5 and γ′′g � 0.1. In ‘poor’ years,
γ′p � 0.7 and γ′′p � 0.25. These values were chosen to reflect the basic expectation that in ‘good’ years,
individuals that were breeders the previous year tend to remain in breeding state, whereas individuals
that were not breeding the year before tend to become breeders. The reverse is likely true (in many
cases) in ‘poor’ years. We also assumed that survival is marginally lower in ‘poor’ years than in ‘good’
years (Sg � 0.8 > Sp � 0.7). Finally, we also assumed that encounter effort tends to be lower in ‘poor’
years (perhaps for some logistical reasons related to the poorer weather), but that p∗i � ci in all years.
We set p∗g � cg � 0.5, and p∗p � cp � 0.3. We simulated a data set with 2,000 individuals captured,
marked and released alive on the first occasion. We assumed closure within each primary sampling
period, and no net immigration of new individuals into the population on any subsequent occasion
(thus, expected population size N should decline over time). The simulated data are contained in the
file rd_complex1.inp.

Now, let’s proceed to analyze these data – with the intent of demonstrating that use of covariates can
make it possible to estimate various parameters without relying on equality constraints as described
earlier. We’ll assume that our model set consists of 2 models:

1. Markovian, no covariates – simple time variation in S, γ, and p � c

2. Markovian, with covariates used to explain temporal variation in S, γ, and p � c.

Now, in this example, the covariate is a dichotomous indicator variable (‘good’ year or ‘poor’ year).
As such, this example problem is analogous to the (by now) familiar European dipper ‘flood’ analysis.
You may recall from Chapter 6 that there are two ways to approach this type of analysis. We could, in
fact, use a PIM-only approach for some models, by coding ‘good’ and ‘poor’ directly into the PIMs for
various parameters (see section 6.7 in Chapter 6). However, we also recall that ultimately this limits the
types of models we want to build – more generally, we’d like to use a design matrix approach, since it
will (ultimately) give us complete flexibility over the types of models we build. So, that is the approach
we’ll employ here for our model with covariates for ‘good’ and ‘poor’ years.

Start MARK, and access the rd_complex1.inp file. Select ‘robust design, closed captures’ as the
model type – 15 total occasions, with 5 primary occasions each consisting of 3 secondary samples. To
start, we’ll build the unconstrained model – time variation in S, γ, and p � c. We can do this most easily
by making use of the PIM chart.

Chapter 15. The ‘robust design’



15.6.2. Closed robust design – more complex worked example 15 - 25

Go ahead and bring up the PIM chart, and modify it so it looks like the following:

This PIM chart is similar to the PIM chart used in the preceding (simpler) example – the only major
difference is that now the ‘blue boxes’ for S, γ′′ and γ′ are all time-dependent. Recall that this has
implications for estimability of several parameters.

Now, we recall from earlier sections of this chapter that for time-dependent robust design models, not
all parameters are estimable without some constraints. Specifically, we would need to set the constraints
γ′′4 � γ′′5 and γ′4 � γ′5 (in a few moments, we’ll also discuss whether or not these particular constraints
actually ‘make sense’ given the nature of ‘this study’). However, for purposes of demonstrating the
necessity of these constraints, let’s first run the model without imposing the constraints. We see from the
following listing of parameter estimates that indeed, none of the survival or γ parameters are estimable
(they all have completely unrealistic SE or 95% CI).
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Now,let’s re-run this same model,afterapplying the constraintsγ′′4 � γ′′5 andγ′4 � γ′5. In the preceding
example, we applied these constraints by directly modifying the PIMs for both γ parameters. However,
this is not necessary – we can apply these constraints using the design matrix, which we want to build
anyway, for the purposes of constraining our estimates to be functions of ‘good’ or ‘poor’ years.

First, let’s build the design matrix (DM) which corresponds exactly to the PIM chart shown on the
preceding page – since our models set consists of only 2 candidate models (Markovian with and without
covariates), we’ll use the ‘default’ coding which treats γ′ and γ′′ separately (i.e., each parameter has its
own intercept).

The basic coding should be familiar – however, since we’re not modeling f < −0 as a function
of anything, we specify simple temporal variation using an identity matrix for the part of the DM
corresponding to f0 (lower right-hand corner).

Now, we want to modify this starting DM to constrain γ′′4 � γ′′5 and γ′4 � γ′5. Recall from the first,
simpler example we worked through in this chapter that at present, the γ parameters for occasion k and
k − 1 are coded as separate time intervals. Thus, to apply the necessary constraint, we simply modify
the DM so that the final two time intervals are treated as a single time step.

If you run this model, you’ll see that now, all of the non-constrained γ parameters, and S are estimable
(i.e., have reasonable standard errors, and are qualitatively close to the true parameter values). We can
confirm this by modifying the PIMs directly (as in the preceding example). You should get precisely
the same estimates as you just did using the design matrix. You will also note that the deviance of this
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‘constrained’ model is identical to that for the unconstrained model we fit on the previous page (since
the point estimates for the parameters are identical – all that has changed are the SE’s).

But, again, we achieved ‘estimability’ at the cost of imposing some necessary, but perhaps not
particularly ‘biologically meaningful’ constraints. Remember that for this example, primary samples
1, 2 and 4 were classified as ‘good’ years, whereas primary samples 3 and 5 were taken in ‘poor’ years.
In ‘good’ years, γ′g � 0.5 and γ′′g � 0.1. In ‘poor’ years, γ′p � 0.7 and γ′′p � 0.25. Given this structure, it
makes little biological sense to constrain γ′′4 � γ′′5 and γ′4 � γ′5. Although these constraints did make the
non-constrained γ parameters estimable, there would be reason to be concerned about possible bias in
the unconstrained estimates (relative to the true values).

It would seem to be more appropriate to modify the DM to account for variation between ‘good’
and ‘poor’ years. Let ‘1’ be the dummy variable we use to code for a ‘good’ year, and ‘0’ be the dummy
variable coding for a ‘poor’ year. Recall that primary sessions 1, 2 and 4 occurred in ‘good’ years, while
primary sessions 3 and 5 occurred in ‘poor’ years. Recall that we assume that S, γ, and p � c are
all functions of whether or not a year was classified as ‘good’ or ‘poor’. Start by retrieving the model
constructed using a DM without the logical constraints γ′′4 � γ′′5 and γ′4 � γ′5. We’ll begin by modifying
the coding for the survival parameter S first. In order to do this, we need to decide on whether or not
S or γ over the interval from (i) to (i + 1) are functions of whether or not the environment is ‘good’ or
‘poor’ at time (i). For this example, we’ll assume that since

1 2 3 4 5

good good poor good poor

that the estimate for parameter θi is a function of the state of the environment at the start of the interval
from (i) to (i + 1). So, for example, S1, S2, and S4 reflect ‘good’ years, whereas S3 reflects a ‘poor’ year.
In contrast, for parameters estimated at a particular sampling occasion (e.g., c, p ,N), the estimate for θi

reflects the conditions at sampling occasion i.

We’ll start by modifying the part of the DM corresponding to survival.

The first column (labeled B0) is the intercept, while the second column (labeled B1) is the coding for
‘good’ or ‘poor’ years. Again, note that in our coding we are assuming that the conditions (‘good’ or
‘poor’) at primary occasion (i) determine the probability of surviving from occasion (i) → (i + 1).

Now, what about γ′ and γ′′? Here, all we need to remember is that there is one fewer occasion for
the γ′ parameter (for reasons discussed earlier in this chapter). The primary challenge, then, is to keep
track of which row refers to which occasion, for each of the two γ parameters. For γ′′2 → γ′′5 , we have
‘good’, ‘good’, ‘poor’ and ‘good’, whereas for γ′3 → γ′5 we have ‘good’, ‘poor’ and ‘good’.
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Here is the completed DM for the γ parameters:

Finally, we modify the DM for the p � c parameters (the DM structure for the parameter f0 is not
changed). Remember that we’re assuming that pi � ci is equal to the conditions at sampling occasion
(i). Thus,

Not surprisingly, when we run this model and add the results to the browser (shown below), we see
it has most of the support in the data (this is a good thing, since this is the ‘true’ model under which
the data were simulated in the first place).

However, what is of greater interest here is the influence of adding covariates to the DM on the
estimability of the various parameters in the model. As shown at the top of the next page all of the
parameters are estimable (dichotomized between ‘good’ and ‘poor’ years). It is worth noting that we
assume the survival process is the same for those that are or are not available at any given time. We
cannot derive a separate estimate of survival for individuals in and outside of the sample – to do so
requires different approaches, discussed elsewhere.
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15.7. The multi-state closed RD

In section 15.3.1 we briefly described the analogy between a model including temporary emigration
from a single study area and a multi-state model with two states. I will illustrate this in more detail in this
section, for two reasons. First, the multi-state closed robust design (hereafter, MSCRD) model, initially
presented by Nichols and Coffman (1999),providesmuch more flexibility than either the original robust
design model (which only permits two states, one of which must be unobservable) or the multi-state
model (which lacks the extra information available from multiple secondary capture periods). However,
as mentioned earlier, with flexibility comes complexity, and you will see that setting up the multi-state
robust design model in MARK can be very involved (and tedious). Second, this section provides a
segue to the multi-state open robust design (MSORD). In MARK, for the open robust design there is no
simpler alternative to the full multi-state version. Again, the flexibility of this model will compensate
for the complexity.

Between Chapter 10 and this chapter up to this point, the pieces of the MSCRD have already been
explained individually. For someone familiar with the MS model of Chapter 10, the simplest way to
view the MSCRD model is to note that each time capture probability ps

i for state s appears in a MS
model, it is replaced with p∗si . As in previous sections, if there are three secondary capture periods for
primary period i, then the effective capture probability for state s in primary capture period i might be
p∗si � 1 − (1 − ps

i1)(1 − ps
i2)(1 − ps

i3). The easiest way to illustrate the relationship between the classical
robust design model and the MSCRD model is through an example. For simplicity we’ll use the simple
robust design example from section 15.6.1.

15.7.1. multi-state closed RD – simple worked example

The simple example discussed in section 15.6.1 involved a hypothetical study consisting of 4 primary
periods of interest. Capture effort for each of these primary periods consisted of 3 secondary capture
periods, conducted over a sufficiently short period of time that it is reasonable to assume the group of
animals in the study area did not change (no deaths or births or movement in or out). This constitutes
a robust design. The data were generated from a population with time-varying survival (S1 � 0.7, S2 �

0.8, S3 � 0.9, S4 � 0.8). Capture probability varied across primary periods (p1 j � 0.5, p2 j � 0.6, p3 j � 0.6,
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p4 j � 0.5,p5 j � 0.7), but not within primary period, and recapture probability within a primary period
was the same as initial capture probability (i.e., no trap effect; model M0 – see Chapter 14). All of these
parameters are also found in the MSCRD model. Notation changes when we consider the transition
(in this case movement) parameters (i.e., γ and ψ). Relating the two sets of notation to the parameter
values chosen, recall (from earlier in this chapter) that

γ′ ≡ ψUU

1 − γ′ ≡ ψUO

γ′′ ≡ ψOU

1 − γ′′ ≡ ψOO

where where superscript ‘O’ means ‘observable’, or within the study area, and superscript ‘U’ means
‘unobservable’, or outside the study area.

In this example ψOU
1 ≡ γ′′2 � 0.2, ψOU

2 ≡ γ′′3 � ψOU
3 ≡ γ′′4 � 0.3, ψOU

4 ≡ γ′′5 � 0.2, and ψUU
2 ≡ γ′3 �

0.2, ψUU
3 ≡ γ′4 � 0.4, ψUU

4 ≡ γ′5 � 0.3. The analogy between the classic closed RD and the MS equivalent
will become even clearer after running this in MARK using the MSCRD model and comparing it to the
output from the original ‘classic’ analysis.

For this exercise, start by making a copy of ‘rd_simple1.inp’ and call it ‘MS_rdsimple1.inp’. To use the
MSCRD model simply open the MARK screen for developing new models and click on ‘Closed Robust
Design Multi-state’ (almost the last model listed). For consistency with our previous run with these
data, choose the ‘Full Likelihood p and c’ option. As in the previous example, after selecting the
input file, specify 15 encounter occasions (remember there were 5 primary periods, each consisting of 3
secondary capture occasions). Click on ‘Easy Robust Times’ and specify 5 primary periods. It will give
you a new screen that happens to have the correct allocation of capture occasions across primary periods
(3 in each). If in doubt, check back to section 15.6.1 where some of these steps were first introduced.

Up to this point the process has been identical to using the ‘Robust Design’ option in MARK. Now
we run into the first difference, and complication. Because this is a multi-state model, you see that the
‘State’ and ‘Enter State Names’ sections are now active. From Chapter 10 recall that you must specify
for each state the code that will be used in the capture history to denote capture in that state. You also
have the option of specifying a label for that state that might be more descriptive than the code alone.
The default value of 2 states is appropriate for this example, because we have two statesin this example
(O = observable = available for capture in the study area, U = unobservable = outside the study area).
Click on ‘Enter State Names’ and you will see the default codes of ‘A’ for state 1 and ‘B’ for state 2. Given
that we are using a copy of ‘rd_simple1.inp’, which denoted capture with a ‘1’, you should replace the
‘A’ with a ‘1’ (or start over and this time replace the ‘1’s’ in the input file with ‘O’ or some other code.
What code should you use for the second state? We are calling it state U for ‘unobservable’, so you could
use that code. However, it does not really matter, since by definition you never capture the animal while
in that state.

Caution: Be sure, however, not to use zero as the code, because zero is always reserved to denote
non-capture.
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When this is complete, and after you return to the main screen and click ‘OK’, have a look at the PIM
chart, shown below:

It is even more ‘busy’ than under the classic ‘Robust Design’ model. If animals in each state could be
captured, then the PIM chart could remain this complex. However, in this case of an unobservable state
we will pare it down considerably. In addition, you can also reduce its size by opting for a ‘Huggins’
option when you first invoke a robust design model. As explained in Chapter 14, this designation
denotes that abundance (Ni) is not a parameter of the model, but is derived after the fact from the
model parameters and the number of animals captured. We will make three major changes in order to
make this analysis identical to our previous analysis of these data: (1) change the PIM definitions, (2)
equate survival for both states, and (3) fix the capture probability to 0 for the unobservable state.

Changing the PIM definition would not be necessary for two of the three models we will run, but is
necessary for one of them. It also permits us to equate γ values from the Robust Design option with
ψ values from the MSCRD model. Recall from Chapter 10 that under the multi-state model, transition
probabilities for a given state need to sum to 1.0, thus one of the probabilities is computed by subtraction
from 1.0. As with the ‘Multi-state Recaptures only’ option in MARK, the default is for the probability
of remaining in a state to be gotten by subtraction. In the ‘Robust Design’ option in MARK the γ
parameters always refer to being outside the study area, so we will mimic that case here using the ψ
parameters in the MSCRD model. First click on the ‘PIM’ menu, then on ‘Change PIM definitions’. This
should spawn a window looking like the one shown below.
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For each state you can designate which transition is obtained by subtraction. For state U change ‘Psi
U to U’ to ‘Psi U to 1’. That way ψUU

i � γ′i+1 will be estimated directly as a parameter.

Next, you want to set survival equal for both states, which was one of the assumptions of the robust
design model above. From previous chapters you will know that this can be done by dragging PIM’s in
the PIM chart, by copying one PIM to another after opening any PIM and then clicking on the ‘Initial’
option at the top of the screen, or by opening a PIM and changing one entry at a time.

Finally, to account for the unobservable state you want to fix the capture and recapture probabilities
for that state to 0. The simplest way to do it, especially when running many models, is to collapse all p

and c PIM’s for the unobservable state to one parameter. [Although for simplicity we don’t do it here,
to make it even easier to keep track of, designate that parameter you are going to fix to be parameter
number 1 (move it to the far left of the PIM chart). In this way, you will always be fixing the same
parameter to be 0. Otherwise, as you expand and contract the PIM chart with more restrictive or more
general models, you will need to keep changing which parameter you fix to 0]. Recall that parameters
are fixed by going to the ‘Run Current Model’ screen and clicking on ‘Fix Parameters’.

To compare the MSCRD approach against the usual robust design model we will set up and run the
same three models that we used in section 15.6.1: ‘Markovian movement’, ‘Random movement’, and ‘No
movement’. The following is a reminder of the constraints needed for each of the models, for both the
classic ‘γ’ RD parametrization, and the equivalent MS closed RD.

γ formulation MS (ψ) formulation

no movement γ′ � 1, γ′′ � 0 ψUO
� ψOU

� 0

random movement γ′ � γ′′ ψUU
� ψOU

Markovian movement γ′k � γ′k−1 ψOO
k � ψOO

k−1

γ′′k � γ′′k−1 ψUU
k � ψUU

k−1

We’ll start with the ‘Markovian movement’ model. For each type of movement we set the last two
equal to one another (i.e., ψOU

3 � ψOU
2 , ψUU

3 � ψUU
2 ), although this constraint is not necessary when

survival is set equal over time. Recall that ψUU
1 does not really enter the likelihood because no animals

are released in the unobservable state. You can fix this parameter to any value or leave it alone. It will
not affect the other parameters, but remember not to try to interpret it. The PIMs for the movement
parameters are shown below:

All of the encounter probabilities are set constant within primary period, and ‘c=p’ (corresponding to
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model Mo) – however, recall that the unobservable state U is just that – unobservable,and thus encounter
probabilities is 0 for all primary occasions. Finally, under the assumptions of the robust design, we set
the survival probabilities for observed and unobserved states equal to each other. Here is the PIM chart:

Go ahead and run this model – remember to fix parameter 16 (i.e., the encounter probability for the
unobservable state) first. You can also choose to fix ψUU

1 (parameter 8 in the PIM chart) to some value
(say, 0.5), or not – regardless, remember not to try to interpret it (for reasons noted above). We’ll fix it
to 0.5. The real parameter estimates of the survival S and movement parameters ψ are shown below.
Note that they are virtually identical to the estimates for survival and γ from the Markovian model we
fit using the classic closed RD (p. 19).
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It is also worth having a look at the estimated abundances N̂ :

Since Mt+1 � 0 for the unobservable state, then clearly N̂i ,U � 0, as seen above.

For the ‘Random movement’ model we do not need to constrain the last movement probabilities –
movement is independent of which state you were in last time. So, we simply set ψOU

� ψUU (i.e.,
ψOU

1 � ψUU
1 , ψOU

2 � ψUU
2 , ψOU

3 � ψUU
3 ...).

Here is the full PIM chart for the ‘Random movement’ model.
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Go ahead and run this model – again fixing the encounter probability for the unobservable state to 0
first (note that for this model, this corresponds to parameter 14). Finally, recall that as was the case for
the ‘Markovian movement’ model, ψUU

1 (parameter 5) does not enter the likelihood, but we constrain it
for consistency. However, here we do not want to fix it to any value, since that would also imply fixing
ψ1u

1 � 0, which we don’t necessarily want to do.

Here are the results from fitting the MS ‘Random movement’ model to the data – if you compare these
estimates to those from the classic RD using ‘γ’ notation (p. 20), you’ll see they are again virtually
identical.

Finally, for the ’No movement’ model we fix ψOU
t � ψUU

t � 0, using the same PIM setup as the ’Random
movement’ model (above). Here is the results browser with all three models:

Compare it against its counterpart from section 15.6.1 (p. 21), and you’ll see they are identical. This
drives home the point that the ‘Robust Design’ and ‘MSCRD’ options of MARK invoke two models that
produce basically the same estimates. For the special case we have set up they represent the exact same
likelihood, which reinforces the point that the ‘Robust Design’ option represents a special case of the
more general ‘Closed Robust Design Multi-state’.

In conclusion, if you can keep straight the definitions of the γ’s and their relationship with ψ’s,
then for the case of one observable and one unobservable state, you can see from the examples we’ve
shown that the ‘Robust Design’ option is simpler to set up and deal with. The ‘Closed Robust Design
Multi-state’ option in MARK provides a more powerful and flexible tool for more complex scenarios
that arise.

begin sidebar

the ‘even flow’ model

Back in section 15.3.4, we introduced a model we referred to as an ‘even flow’ model. In the ‘even

flow’ model, we are interested in whether the probability of moving from ‘observable’ at time i to

‘unobservable’ at time i+1 is the same as the probability of moving from ‘unobservable’ to ‘observable’
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over the same interval. In other words, the the ‘even flow’ model is specified by setting (i) (1−γ′) � γ′′

in the classic closed RD, which is equivalent to (ii) setting ψUO
� ψOU in the multistate closed RD

(MSCRD).

Let’s consider the MSCRD formulation first. We’ll used the simulated data set we analyzed before

(ms_rdsimple1.inp; 5 primary periods). Recall from our earlier analysis of these data that we expect

time-dependence in movement probabilities between observable and unobservable states. Thus, to

construct the ‘even flow’ model, we set ψUO
1 � ψOU

1 , ψUO
2 � ψOU

2 , . . . , ψUO
4 � ψOU

4 . We should

recognize at this point that we set ψUO
1 � ψOU

1 for consistency only, since ψUO
1 is undefined, and

ψOU
1 isn’t in the likelihood. Thus, we would typically ignore the estimates over the first interval.

Bring up the results of your earlier MS analysis of these simulated data – retrieve the ‘random

movement’ model. Next, we’ll want to change the PIM definitions, to make sure we have the parameters

ψUO and ψOU in model. Select the ‘PIM | Change PIM definition’ menu, and make sure you specify

‘Psi 1 to 1’ and ‘Psi U to U’ as the transition probabilities to obtain by subtraction. Once you’ve

done so, stop and think for a moment. Do you need to do anything more to construct the ‘even flow’

model? No! you’re done. In the ‘random movement’ model we retrieved, we’d set ψUU
i � ψOU

i . So, by

simply changing the PIM definition so that ψUU is obtained by subtraction, then with the same PIM

structure you retrieved from the ‘random movement’ model, but now with different definitions for those

parameters, you’ve already ‘built’ the ‘even flow’ model. Go ahead an run this model, and add the

results to the browser. You’ll see that it doesn’t do particularly well – better than the ‘no movement’

model, but much worse than the ‘random movement’ or ‘Markovian’ models.

So far – pretty straightforward. Perhaps unexpectedly so for the MSCRD approach, given the

convenience of of switching directly from the ‘random movement’ to ‘even flow’ models simply by

changing the PIM definition. However, what if instead we had used the classic ‘γ’ parametrization

of the closed RD? As noted earlier, fitting the ‘even flow’ model using γ notation means setting

(1−γ′) � γ′′. OK – fine. But how do you set this equality constraint, when the model is parameterized

using only γ′ and γ′′, and where you are not able to specify that MARK used the complement of one

of them? You can only ‘change PIM definitions’ for certain data types (such as the MS data type) – so

how would would set (1−γ′) � γ′′? When we first introduced the ‘Even flow’ model back in 15.3.4, we

made some cryptic mention of a ‘design matrix’ trick that you would need to use in order to construct

the model using the ‘γ parameterizations. Time to introduce the ‘trick’.

First, go back and re-open your classic closed RD analysis of rd_simple.inp. Retrieve the ‘Markovian

movement’ model in the browser. Open up the PIMs for γ′ and γ′′, and eliminate the Markovian

constraints (in other words, make them both fully time-dependent, with no overlapping parameter

indices). The PIM structure for the two parameters should now look like:
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Here is the corresponding PIM chart for the ‘random movement’ model.

So, in effect, we’ve constructed a model with full time-dependence in S and both γ parameters.

For the next step, we want to build the DM corresponding to this ‘fully time-dependent’ model. At

this point, this should be relatively straightforward for you. One version of a DM corresponding to

this PIM chart is shown below:

(Note: we’ve used an identity matrix structure for the S, p and f0 parameters, since we are not

particularly interested in them here.)

We do want to pay attention to the DM modeling of the γ parameter, obviously. Here, we’ve simply

adopted the familiar ‘intercept reference coding’ approach we’ve used much of the time so far in this

book. Recall that what we’re doing here is specifying β terms as relative deviances from a common

‘reference’ value (i.e., the intercept).
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Alternatively, we could use an identity coding scheme for the γ parameters:

Both would yield identical real estimates on the normal probability scale – the difference between

the two is in terms of interpretation of the β parameters in the linear model. In either case, note the

similarity of the structure of the part of the DM coding the γ parameters to a typical ‘age’ model

(Chapter 7) – reflecting the fact that there is no γ′ parameter for the first interval (such that the coding

for time for γ′ starts with interval 2).

Now – the ‘trick’. Not so much a ‘trick’, but rather a more advanced application of some DM concepts.

We’ll introduce the idea by first modifying our current time-dependent DM to specify the ‘Random

movement’ model (where γ′i � γ
′′
i ). Recall from earlier in this chapter that to build the ‘Random movement’

model we applied a constraint to a DM with time-variation in the γ parameters (actually, we initially

introduced it wrt to the ‘Markovian model’, but the ‘Markovian model’ is essentially time-dependent

with some constraints on the terminal pair of γ parameters). What we do here depends on which form

of the DM we’re using for γ. We’ll proceed as if we’re using the identity DM for γ – it’s somewhat

easier to explain (as you’ll see).

So, for a ‘Random movement’ model, the DM corresponding to the γ parameters would look like

The modified DM if we’d used the intercept coding scheme would look like

Here we’ve structured the DM for the ‘Random movement’ model, which specifies that γ′i � γ
′′
i . For

the ‘Even flow’ model, we want to specify that (1 − γ′i ) � γ′′. In other words, we want so set the

complement of γ′i equal to γ′′i . Our current DM for the ‘Random movement’ model is clearly pretty close,

but how do we ‘tell it’ to use the complement of γ′i?

In fact, it turns out that you can specify the equality of one parameter with the complement of another

using a ‘1, -1’ coding scheme, where we use the ‘1’ to indicate one parameter, and ‘-1’ to indicate

the complement of the other. In this case, we would use ‘1’ to code for (1 − γ′, and ‘-1’ to code for

γ′′. Using the identity DM, we simply need to change the dummy coding for each time step using the

‘1,-1’ coding convention (as described).
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Here is the completed DM for the γ parameters, corresponding to the ‘Even flow’ model:

If you run this model, you’ll see that if gives you exactly the same value for−2 log(L) as we obtained

for the ‘even flow’ model using the MSCRD approach (above). What if instead of (1 − γ′i ) � γ′′ we

wanted (1 − γ′′i ) � γ′ (which would correspond to setting ψUU
i � ψUO

i )? Easy – simply reverse the

DM coding so that ‘-1’ is used for γ′, and ‘1’ is used for γ′′.

Now, as a real test of your understanding, how would we modify the intercept-based DM for a ‘Even

flow’ model? The trick is to think – hard – about what the intercept represents. The ‘answer’ is shown

below – no peeking! See if you can figure it out on your own. It’s somewhat trickier than the identity

matrix approach we demonstrated first, but if you understand what this modified DM shows (i.e., if

you understand the ‘strange’ things we did to the intercept’) then congratulations are in order, since

that would exhibit a pretty solid understanding of the DM, and intercept coding in general.

Nifty stuff, eh? Bonus points if you can figure out why this ‘trick’ works (i.e., what you’re really

doing with ‘1’ and ‘-1’ coding). Actually, if you understand the linear model being constructed, it isn’t

too bad.

end sidebar

15.8. The ‘open’ robust design...

Ourdiscussion here of the robust design assumes that the closure assumption within a primary period is
valid. In Chapter 14 we outlined conditions,discussed in Kendall (1999),wherecertain types of violation
of closure do not induce bias in estimators. These same conditions are directly applicable here as well.
However, one situation where this will not work well is where both arrivals and departures from the
study area are occurring throughout the primary period. This situation falls under the umbrella of an
‘open robust design, which we describe here.

15.8.1. Background

The ‘Open Robust Design multi-state’ data type in MARK (hereafter, MSORD) derives from Kendall
& Bjorkland (2001, Biometrics) and Kendall & Nichols (2002, Ecology), basedon the design first described
by Schwarz & Stobo (1997, Biometrics). We’ll use the case of nesting sea turtles from Kendall & Bjorkland
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(2001) to motivate the use of this data type, as well as how to use it. Schwarz & Stobo (1997) used the case
of a rookery of grey seals, and we also believe it could be quite useful for stopover studies of migratory
species.

In a study of sea turtles there is an interest in estimating survival probabilities, breeding probabilities,
and perhaps population size (as well as population growth rate). Nesting seasons are extensive, up to
five months. Capture effort is typically throughout the season, in some cases nightly. Because sea turtles
often lay more than one clutch, there is an opportunity to recapture a given female multiple times in
a season. In summary, sampling for a given year consists of multiple sampling periods, where each
individual in the nesting population has a chance (assumed to be the same chance) of being captured
in each sampling interval. With a couple of additional assumptions, this constitutes a robust design.

In the preceding sections of this chapter,we described the closed robust design,where it was assumed
that, for the duration of capture effort within a primary period, one of the following was true: (1) the
population occupying the study area was completely closed to additions or deletions, (2) individuals
moved completely randomly in and out of the study area, (3) all individuals were present in the first
sampling occasion within a primary period, although marked and unmarked individuals could exit
the study area (with the same probability) before the last sampling occasion for that season, or (4)
individuals could enter the study area between the first and last sampling occasion within a season,
assuming all individuals are present by the last sampling occasion. An additional assumption for
conditions 3 and 4 is that capture probability within a primary period varies only by time (not trap
response or individual heterogeneity).

In the case of nesting sea turtles, or marine mammal rookeries, the above assumptions do not hold. In
fact, turtles arrive to lay their first clutch in a staggered fashion, remain in the area to renest for variable
periods of time, then complete nesting and return to foraging areas in a staggered fashion. In essence,
there is an open population study going on within each nesting season. First arrival at the nesting beach
is equivalent to birth, and departure for the foraging grounds after the last clutch is laid is equivalent
to death in a modeling sense.

If each individual in the population could be relied upon to be on the nesting beach each year, then
the data for the entire nesting season could be pooled into whether or not an individual was captured
in year t. However, some individuals skip nesting in a given year, and therefore the nesting population
and population of female breeders in a given year are not equivalent. If nesting were a completely
random process (i.e., each adult female had the same probability of nesting), then a CJS analysis from
pooled data would produce an unbiased estimator for survival, although breeding probability could
not be estimated. With most species, however, breeding probability is more accurately characterized
as a Markov process (i.e., the probability of breeding is dependent on whether or not an individual is
currently a breeder), and for some species skipping at least one year after breeding is obligatory. In this
case, if skipping is not accounted for, all estimators in the CJS model, including survival, will be biased.

15.8.2. The General ORD Model

The essence of any robust design model is to take advantage of multiple sampling periods over a
sufficiently short period of time that the state of the individual (e.g., nester or non-nester) remains
static, in order to estimate the effective capture probability for those that are observable in that primary
period (e.g.,nesters). Because of the possibility of some individuals occupying an unobservable state (i.e.,
away from the study area[s]), we use a multistate approach to model the capture process across primary
periods. Formodeling captures within a primary periodwe use a generalization of the Schwarz-Arnason
(1996, Biometrics) version of the Jolly-Seber model (see Chapter 12). The details of this generalization
will become apparent below, but basically the probability an animal remains in the study area from one
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sampling period to the next can be modeled as a function of time (as in the Schwarz-Arnason model)
or the number of sampling periods since it first arrived that season (i.e., its ‘age’ within the season ).

The ORD model first conditions on the total number of individuals captured in primary period t.
Given that an individual is captured at least once within primary period t, the model then considers
the probability of each observed capture history within that primary period. For example, if a nesting
turtle is first captured on capture occasion 2 (of 6) of year t, the model considers two possibilities. She
could have arrived to lay her first clutch during the first capture occasion (with probability pentt1

), was
not captured on that occasion (with probability 1 − pt1

), then returned to nest again (with probability
ϕt1,0

) where time subscript 1 indicates sampling period 1 and age subscript 0 implies this is the first
clutch laid this season by this female) and was captured (with probability pt2

) during capture occasion 2.
Alternatively, she could have arrived to lay her first clutch during capture occasion 2 (with probability
pentt2

). So for six capture occasions within a year (i.e, one primary period), we have the following
probability structure for the history 010111:

[
pentt1

(

1 − pt1

)

ϕt1,0
ϕt2,1

ϕt3,2
ϕt4,3

ϕt5,4
+ pentt2

ϕt2,0
ϕt3,1

ϕt4,2
ϕt5,3

]
pt2

(

1 − pt3

)

pt4
pt5

pt6

which can be rewritten as

pentt1

(

1 − pt1

)

ϕt1,0
pt2
ϕt2,1

(

1 − pt3

)

ϕt3,2
pt4
ϕt4,3

pt5
ϕt5,4

pt6

+ pentt2
pt2
ϕt2,0

(

1 − pt3

)

ϕt3,1
pt4
ϕt4,2

pt5
ϕt5,3

pt6

Because a turtle only arrives to lay her first clutch once, the entry probabilities (pentti
) have to add

to 1.0. Once captured within a year, subsequent captures within that year are modeled as a function
of future ‘survival’ (in this case the probability a turtle keeps coming back to lay more clutches) and
capture probability.

In summary , the following parameters will be found in the MSORD data type in MARK: Sr
t =

survival from primary period t to t + 1 for those occupying state r during period t; ψrs
t = probability

an individual in state r in primary period t is in state s in primary period t + 1, given it survives to
period t + 1; pents

t j = probability that an individual in state s in primary period t is a new arrival (within
that primary period) to the study area for that state at capture occasion j; ϕs

t j,a
= probability that an

individual in the study area associated with state s at capture occasion j, and who first arrived in the
study area a capture occasions previous, is still in that study area at capture occasion j + 1; and ps

t j
=

probability that an individual in the study area for state s at capture occasion t j is captured. Of course
any of these parameters can also be group- (e.g., sex) or true age-dependent.

Although useful and powerful, the use of the ORD in combination with MS models at least initially
raises the dimensionality of the problem of programming models in MARK. As with the MSCRD model
described in section 15.7, there are PIM’s for state-specific survival between primary periods, and for
state-specific transitions between primary periods. For each primary period there is a PIM for pent, ϕ,
and p for each group and state, whereas for the MSCRD there were PIM’s for p and c. The ORD also
raises the dimensionality of model selection, where you explore variation in parameters both across
primary periods (S, ψ, pent, ϕ, and p) and within primary periods (pent, ϕ, and p).

15.8.3. Implementing the ORD in MARK: (relatively) simple example

To illustrate some the points made above we will continue the example of nesting sea turtles on a single
beach. We will consider a five-year study. Data are collected nightly on the beach in question, for three
months. When laying multiple clutches, females space those clutches approximately two weeks apart.
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In dividing the season into capture occasions, it makes sense to do it so that each time an individual
re-nests she has a chance of being included in a capture occasion. Therefore we divide the three-month
season into six half-month capture occasions (if an individual is captured one or more times in within
the half-month interval you record a ’1’ in the capture history).

An example history for a five-year study, each with six capture occasions (totaling (5×6) � 30 capture
occasions for the study) is

001010000000001111000000001001 1;

In this case a female is captured in sampling periods 3 and 5 in year 1, sampling periods 3-6 in year 3,
and sampling periods 3 and 6 in year 5. As with other models in MARK, you provide the total number of
encounter occasions (in this case 30). As with the closed robust design, when you designate the MSORD
option in MARK, it provides a screen titled ‘Easy Robust Times’, which is an aid to specifying how the
capture history should be broken up into primary periods and capture occasions. MARK will ask how
many primary occasions there are (in this case 5). MARK will then provide a screen indicating equal
numbers of capture occasions per primary period. However, the MSORD model does not require them
to be equal, and MARK allows you to correct these values.

As with the ’Multi-state Recaptures only’ (Chapter 10) feature of MARK, after specifying the
number of states you go to the ‘Enter State Names’ screen, where you designate the label (the code
used in the encounter history to designate the state), and name for each state. In the case of the example
capture history above, where we have a single-site study, with one unobservable state, we would replace
the MARK default of ’A’ with a ’1’ in the label (to be consistent with the encounter history shown above),
and might name it ‘nest’ (meaning that the animal was observed nesting). We can name the other state
with something like ‘skip’ (because the animal was skipping nesting).
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For this unobservable state it does not matter what label you give it (but do not make it ’0’ or the
same as state 1), because animals are neither released nor observed in that state anyway.

When you have completed the model specification screen MARK will set up the PIM’s for the ‘MSORD’
model. Before we look at individuals PIMs, it’s worth firing up the PIM chart, if for no other reason than
to ‘impress yourself’ (and perhaps help convince your employers you need a bigger monitor). As noted
earlier, PIM charts for robust design models can be ‘busy’ – the default time-dependent PIM chart for
the turtle data is shown below.

Pretty scary – it’s so dense with information, you can barely read some of the labels on the left-hand
side. As such, we’ll do much of our manipulation of the basic parameter structure for our models using
the individual PIMs.

Because this is a multi-state model, the PIM’s for S and ψ are structured just as with the MS model
(discussed at length in Chapter 10). They are upper triangular matrices, where you can specify these
parameters to be constant, time-specific, partially age-specific, release-cohort specific, etc. You can also
apply specific constraints to ensure transitions sum to 1. You can even specify which transitions are
reported by MARK.

For parameters relating to capture histories within primary period, the PIM’s for pent and p are really
vectors, implying they can be modeled as a function of time or covariates, but not time since capture
within the primary period.
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For example, here is the PIM for pentt1
:

The PIM’s for ϕ are of the typical format (i.e., an upper triangular matrix). However, keep in mind
that typically the rows of a PIM denote a capture cohort, thereby permitting a parameter to be modeled
as a function of time since first capture. For the ϕ PIM’s the rows denote an entry cohort, permitting
one to model these parameters as a function of the time since arrival to the study area (e.g., for nesting
turtles that probability a female lays another clutch is a function of the number of clutches she has laid
so far).

We provide two examples of PIM’s below.

Whereas in the first (left-most) example ϕ is modeled strictly as a function of capture occasion, in
the second example (right-most) it is modeled strictly as a function of the number of capture occasions
since first arrival.

In the first PIM, parameter 68 refers to the probability that an animal in the study area at capture
occasion 2 will still be in the study area at capture occasion 3, independent of whether the animal was
present or not present on occasion 1. In the second PIM above parameter 68 refers to the probability that
an animal in the study area at any capture occasion j will still be in the study area at capture occasion
j+1, given that the animal has been in the study area for two capture occasions, implying it first entered
the study area that season at capture occasion j − 1 (e.g., with sea turtles the individual laid her second
clutch at capture occasion j).

There is an important point to consider about pent, the probability an animal arrives at the study
area before any given sampling period, given that it arrives at some time during the season. For a given

primary period the probability of entry across all sampling periods must add to 1.0 (i.e.,
∑lt

j�1
pent j �

1.0). MARK derives pentt1
by subtraction, and therefore you cannot model this parameter directly. In order
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to satisfy this constraint reliably you should use the multinomial logit (mlogit) link in MARK, just as
with the multistate models as described in Chapter 10. This is invoked in the ‘Run’ screen by specifying
the ‘parm-specific’ option for the link function.

Each series of parameters that must add to one gets the same mlogit designation. For example, all
pent’s for primary period 1 in state 1 would be assigned mlogit(1), all pent’s for primary period 2 in
state 1 would be assigned the mlogit(2) link, and so on. If you fail to do this you will most likely get an
error message saying the numerical convergence was not reached. The entry probabilities are especially
prone to this type of problem, because there are potentially so many different estimates that must sum
to 1.0.

15.8.4. Dealing with unobservable states

Accounting for unobservable states with the ‘MSORD’ feature of MARK is different than doing so in the
original Robust Design option in MARK (discussed earlier in this chapter). With the latter, the model
is set up explicitly for the case of one study area plus temporary emigrants. The fact that temporary
emigrants actually occupy an unobservable state is treated implicitly. That model includes one PIM for
survival (assumed the same for those in the study area and those outside), two PIM’s for the temporary
emigration process (coming and going), and one PIM for each primary period for detection probabilities
in the study area. Conversely, the ORD model is nested within a general MS model framework. Therefore
there will be PIM’s for the within-primary-period parameters (pent, ϕ, and p) for each state. For a T-
primary period study involving V states and G groups, this implies there will be G(V × 2 + V ×T× 3)

PIM’s.

This framework is very flexible for dealing with unobservable states, because an unobservable state

is simply one where capture probability is always 0. However, because of this flexibility there is also some
irritation involved with dealing with all those PIM’s, many of which do not get used. The PIM chart
shown at the top of the next page illustrates a model from our example of one adult female population
of sea turtles, where there is one observable (nesting) and one unobservable (skipping) state.
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First, this chart illustrates yet again how this model can quickly make working directly with the PIM
chart impractical (there are 34 PIM’s in this relatively simple case of 5 years, 2 states, and 1 group).
Second, it illustrates how within-primary-period parameters for the unobservable state are dealt with.
Here we have set the pent’s, ϕ’s, and p’s for the unobservable state equal to 0, after assigning all these
parameters to parameter index 1 (because these parameter will be set to 0 for each model considered,
assigning them index 1 prevents you from being required to fix a different parameter to 0 for each
run). Fixing the p’s for the unobservable state to 0 is most important, because this implies the effective
capture probability for the primary period will be 0. Once you do that, it does not matter what value
you give to the pent’s or ϕ’s because they never enter into the model as the animal is ‘uncatchable’ (i.e.,
unobservable in this state).

Also, note that we have set the survival PIM for the skipped breeders equal to that for the nesters.
This is done implicitly in the original Robust Design model, but is necessary to do explicitly here as well.
This constraint makes sense, since one cannot directly monitor survival of the unobservable animals,
because they cannot be captured and released in the unobservable state. In general, it is a price to be
paid for the fact that an unobservable state creates missing cells of data. However, under the assumption
that survival is the same for both states, there is enough indirect information (from marked animals
leaving and coming back) to estimate the transition probabilities ψ .

15.8.5. Which parameters can be estimated?

Identifying which parameters can be estimated can be a tricky business with these models, as it is for the
other models in MARK. The first question is which parameters can be estimated based on the structure
of the model (assuming no sparseness in the data). This issue is discussed for a single observable
state in Kendall and Pollock (1982), Kendall et al. (1997), Kendall and Bjorkland (2001), Kendall and
Nichols (2002), Fujiwara and Caswell (2002), and Schaub et al. (2004). If there are no unobservable
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states, then under the ORD all S’s andψ’s, for each time period and state, can be estimated (i.e., since the
effective capture probability is estimable from the within-primary-period data, there is no confounding
of parameters in the last period). For the case of one observable and one unobservable state, under
a robust design, if ψ(obs→unobs)

T−1
and ψ(unobs→obs)

T−1
can be constrained to equal their counterparts for

an earlier time period, then all the other parameters can be estimated as time specific. For multiple
observable or unobservable states, investigations into estimability are ongoing, and call for methods
such as described in Gimenez et al. (2004), and alternative numerical methods (see Appendix F) to
investigate which parameters or combinations of parameters can be estimated, given the structure of
the model. There are also some parameters within a primary period that cannot be estimated under the
most general models. For the case where pent, ϕ, and p are all time dependent, pentt1

, pt1
, and pentt2

are
all confounded, as are ϕtl−1

, pt1
, and penttl

(Kendall and Bjorkland 2001).

15.8.6. Goodness of Fit

As with other CMR models, there is no perfect answer to the question of how to assess absolute fit of the
MSORD model to your data set. The only test specific to this model, for the case of one observable and
one unobservable state, is a Pearson χ2 test (pooling cells with small expected frequencies) available in
program ORDSURVIV (Kendall and Bjorkland 2001, www.pwrc.usgs.gov/software).

15.8.7. Derived parameters from information within primary periods

In addition to the parameters listed above that are part of the ‘MSORD’ model, MARK also reports two
other derived parameters for each state: (i) the number of animals in that state in that primary period,
N̂∗St ; and (ii) the residence time (orstopover time), R̂s

t , the average numberof secondary sampling periods
that an individual spent in the study area for that state s in primary period t. For the nesting sea turtle
example these parameters would be the number of individual females that nested on that beach in year
t, and the average number of nests laid per female in year t.

These parameters are derived in the following way. First, effective capture probability for the primary
period (i.e., the probability an animal is observed 1 or more times during the primary period, denoted
as p∗) would be the sum of the probabilities an animal is first captured on each secondary sampling
occasion.

For example, for a three-occasion primary period in state s:

p∗st � pents
t1

[

ps
t1
+ (1 − ps

t1
)ϕs

t1,0
ps

t2 + (1 − ps
t1

)ϕs
t1,0

(1 − ps
t2

)ϕs
t2,1

ps
t3

]

+ pents
t2

[

ps
t2
+ (1 − ps

t2
)ϕs

t2,0
ps

t3

]

+ pents
t3

ps
t3

Abundance is then estimated as N̂ s
t � n∗st /p̂∗st , where n∗st is the total number of individuals captured

in state s during a primary period.

Expected residence time as defined here is of the following form for three secondary sampling
periods:

E
(

Rs
t

)

� 1 ×
[

pents
t1

(1 − ϕs
t1,0

) + pents
t2

(1 − ϕs
t2,0

) + pents
t3

]

+ 2 ×
[

pents
t1
ϕs

t1,0
(1 − ϕs

t2,1
) + pents

t2
ϕs

t2,0

]

+ 3 × pents
t1
ϕs

t1,0
ϕs

t2,1
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The form of this expression indicates that residence time is in units of time that match the time scale
of secondary sampling periods. In the case of sea turtles, Kendall and Bjorkland (2001) partitioned the
season into sampling periods of 2 weeks. In addition, for the case where the probability of remaining
in the study area is a function of the time since the animal first arrived, it assumes that sampling effort
begins as soon as animals are available for capture (e.g., as soon as the first turtle arrives to nest).
Otherwise, an animal captured in the first sampling occasion will be treated as if it just got there (i.e.,
it will be assigned to ‘age’ class 0) when in fact it might have been there for several periods (e.g., a
sea turtle that might have already laid two previous clutches). Similarly, if the last sampling period
does not coincide with the last departure by an animal marked in that primary period, bias will also be
introduced.

15.8.8. Analyzing data for just one primary period

You might be interested in focusing on analysis of just one primary period. One reason might be to
estimate the abundance or residence time parameters discussed above. Another use for this approach is
in model selection. Robust design models add a layer of complexity to model selection, because possible
variation in parameters goes on both at the primary period and secondary period levels. One approach
to simplifying this process is to at least partially partition model selection with respect to pent, ϕ , and
p from model selection with respect to S and ψ . Regardless, if you are interested in analyzing data for
a given primary period you have two choices. If you are willing to assume that ϕ is not a function of
an animal’s ‘age’ within the primary period, then you are dealing with a Schwarz-Arnason Jolly-Seber
model, and you can use the POPAN option in MARK (Chapter 12).

Otherwise you need to ‘trick’ the MSORD model. To do this, pretend that you have a two-primary
period study. The data you are interested in analyzing will constitute the first primary period, and you
will create a dummy second primary period consisting of at least two capture occasions.

For example, if you want to analyze the following sea turtle capture histories for one primary period

111100

010010

111000

111100

011101

Then concatenate two more columns consisting of all 1’s:

11110011 1;

01001011 1;

11100011 1;

11110011 1;

01110111 1;

Create an ‘MSORD’ model in MARK as discussed before. In this case you specify 8 total encounters, and
using the ‘Easy Robust Times’ option you specify 2 primary periods, with 6 and 2 secondary samples,
respectively.
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You specify two states, as discussed above. Set up the PIM’s as described above, with the following
exception. In order for each of the animals captured in primary period 1 to have a history of ‘11’ in
primary period 2, each must have survived, returned to the study area in primary period 2, arrived in
time for the first sample, stayed around for each of the two sampling occasions, and been captured each
time. Therefore, for the observable state you would need to fix the S1, ψobs→obs

1 , ϕobs
20 , pobs

21 , pobs
22 and to

1.0 and pentobs
22 to 0 (recall that is computed by subtraction). Maintain these constraints for each of the

models you consider.

15.9. The robust design & unequal time intervals

As noted in Chapter 10, any data type with state transitions suffers from the same problem when
the intervals between occasions are unequal (how MARK handles unequal intervals in general was
introduced earlier in Chapter 4).

As introduced in Chapter 10, consider the case where an encounter occasion is missing in the multi-
state data type. Consider the following valid MARK 5-occasion multi-state encounter history ‘A.A00’,
where the missing occasion is shown as a ‘dot’ and there are 2 states, A and B, and occasions are all 1
time unit apart. To explain this ‘dot’, several possibilities exist, namely:

SA
1 ψ

AA
1 (1 − pA

2 )SA
2 ψ

AA
1 pA

3 . . . and SA
1 ψ

AB
1 (1 − pB

2 )SB
2 ψ

BA
2 pA

3 . . .

However, suppose that you coded the data with the dot left out, and set the time intervals to 2, 1,
and 1. That is, only 4 occasions are considered instead of 5. So the encounter history is now ‘AA00’.
Unfortunately, this approach is going to give very different results from the proper parametrization
above. MARK does not generate the probabilities for the transition to state Bwith this parametrization.
The probability of surviving from occasion 1 to occasion 2 would now be

(

SS
1

)2, with no consideration
that the animal could have moved to state B during the missing occasion. So, even the survival estimates
S will be incorrect. The ψ parameters for the first interval are not comparable to the ψ parameters for
the second and third intervals because they represent different time scales.

Internally, within MARK, the time interval correction on S remains, but all time interval corrections
from ψ have been removed. The motivating logic is that when time intervals are ‘ragged’, e.g., 1.1, 0.9,
1.05, 0.95, it may still make sense to apply a correction to S. However, this correction is inappropriate
for ψ, and may even be questionable for S.

Given the deep connections between ‘multi-state’ models and ‘robust design’ models introduced in
this chapter, it is perhaps not surprising that the same general issue applies here. Consider the robust
design with 3 primary occasions, each with 2 secondary occasions. Assume that the data were not
collected for the 2nd primary sample, giving an encounter history of ‘11..11’. The missing primary
encounter history again can be explained by 2 possibilities:

. . . S1γ
′′
2 S2(1 − γ′2) . . . and S1(1 − γ′′2 )(1 − p∗2)S2(1 − γ′′3 ) . . .
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For the robust design data type, coding the encounter history as only 2 primary occasions, ‘1111’,
with time interval of 2 will give the correct parametrization for S (i.e., S2), but as above, the γ′ and γ′′

parameters cannot be corrected with this simple trick because the possibility of leaving the encounter
area is not considered. So, for robust design data types (including the multi-state robust designs),
only survival rates are corrected with the time interval, but none of the transition parameters are
corrected. Again, user beware! Think carefully about what unequal time intervals may be doing to
your interpretation of the parameter estimates.
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CHAPTER 16

Known-fate models

In previous chapters, we’ve spent a considerable amount of time modeling situations where the
probability of encountering an individual is less than 1. However, there is at least one situation where we
do not have to model detection probability – known-fate data, so-called because we know the fate of each
marked animal with certainty. In other words, encounter probability is 1.0 (which must be true if we
know the fate of a marked individual with certainty). This situation typically arises when individuals are
radio-marked, although certain kinds of plant data can also be analyzed with the known fate data type.
In such cases, known-fate data are important because they provide a theory for estimation of survival
probability and other parameters (such as emigration). The focus of known fate models is the estimation
of survival probability S, the probability of surviving an interval between sampling occasions. These
are models where it can be assumed that the sampling probabilities are 1. That is, the status (dead or
alive) of all tagged animals is known at each sampling occasion. For this reason, precision is typically
quite high, as precise as the binomial distribution allows, even in cases where sample size is often fairly
small. The only disadvantages might be the cost of radios and possible effects of the radio on the animal
or its behavior. The model is a product of simple binomial likelihoods. Data on egg mortality in nests
and studies of sessile organisms, such as mollusks, have also been modeled as known fate data.

In fact, the known fate data type is exactly the same as logistic regression in any statistical package.
The main advantage of using MARK for known fate analysis is the convenience of model selection, and
the capabilities to model average survival estimates easily, and compute random effects estimates.

16.1. The Kaplan-Meier Method

The traditional starting point for the analysis of known-fate data is the Kaplan-Meier (1958) – we’ll
discuss it briefly here, before introducing a more flexible approach that will serve as the basis for the
rest of this chapter.

The Kaplan-Meier (hereafter, K-M) estimator is based on observed data at a series of occasions, where
animals are marked and released only at occasion 1. The K-M estimator of the survival function is

Ŝt �

t∏

i�1

(
ni − di

ni

)

where ni is the number of animals alive and at risk of death at occasion i (given that their fate is known
at the end of the interval), di is the number known dead at occasion i, and the product is over i up to
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the tth occasion (this estimator is often referred to as the product-limit estimator). Critical here is that
ni is the number known alive at the start of occasion i and whose fate (either alive or dead) is known at
the end of the interval. Thus, the term in parentheses is just the estimated survival for interval i. Note
that ni does not include individuals censored during the interval. It is rare that a survival study will
observe the occasion of death of every individual in the study. Animals are ‘lost’ (i.e., censored) due
to radio failure or other reasons. The treatment of such censored animals is often important, but often
somewhat subjective. These K-M estimates produce a survival function (see White and Garrott 1990);
the cumulative survival up to time t. This is a step function and is useful in comparing, for example,
the survival functions for males vs. females.

If there are no animals that are censored, then the survival function (empirical survival function or
ESF) is merely,

Ŝt �

(
number alive longer than t

n

)

for t ≥ 0

This is the same as the intuitive estimator where no censoring is occurring: Ŝt � nt+1/nt ; for example,
Ŝ2 � n3/n2. The K-M method is an estimate of this survival function in the presence of censoring.
Expressions for the variance of these estimates can be found in White and Garrott (1990).

A simple example of this method can be illustrated using the data from Conroy et al. (1989) on 48
radio-tagged black ducks. The data are

survived to occasion

week 1 2 3 4 5 6 7 8

number alive at start 48 47 45 39 34 28 25 24

number dying 1 2 2 5 4 3 1 0

number alive at end 47 45 39 34 28 25 24 24

number censored 0 0 4 0 2 0 0 0

Here, the number alive at the start of an interval are to known be alive at the start of sampling occasion
j. This is equivalent to being alive at the start of interval j. For example, 47 animals are known to be
alive at the beginning of occasion 2. Forty-five are alive at the start of interval 3, but 4 are censored from
these 45 because their fate is unknown at the end of the interval, so that n3 � 41. A further example is
that 34 ducks survived to the start of occasion 5. Thus, the MLEs are

Ŝ1 � (47/48) � 0.979

Ŝ2 � (45/47) � 0.957

Ŝ3 � (39/41) � 0.951 (note: only 41 because 4 were censored)

Ŝ4 � (34/39) � 0.872

Ŝ5 � (28/32) � 0.875 (note: only 32 because 2 were censored)

Ŝ6 � (25/28) � 0.893

Ŝ7 � (24/25) � 0.960

Ŝ8 � (24/24) � 1.000

Here one estimates 8 parameters – call this model S(t). One could seek a more parsimonious model
in several ways. First, perhaps all the parameters were nearly constant; thus a model with a single
survival probability might suffice (i.e., S(.)) If something was known about the intervals (similar to the
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flood years for the European dipper data) one could model these with one parameter and denote the
other periods with a second survival parameter.

Finally, one might consider fitting some smooth function across the occasions and, thus, have perhaps
only one intercept and one slope parameter (instead of 8 parameters). Still other possibilities exist
for both parsimonious modeling and probable heterogeneity of survival probability across animals.
These extensions are not possible with the K-M method and K-L-based (i.e., AIC) model selection is not
possible. To do this, we need an approach based on maximum likelihood estimation – as it turns out,
the simple binomial model will do just that for known-fate data.

16.2. The binomial model

In the K-M approach, we estimated the survival probability by

Ŝt �

t∏

i�1

(
ni − di

ni

)

where di is the number dying over the ith interval, and ni is the number alive (‘at risk’) at the start of
the interval and whose fate is also known at the end of the interval (i.e., not censored). Here, we use
the equivalence (under some conditions) of the K-M estimator, and a binomial estimator, to recast the
problem in a familiar likelihood framework.

Consider the situation for the case in which all animals are released at some initial time t � 0, and
there is no censoring. If we expand the product term from the preceding equation, over the interval
[0, t],

Ŝt �

(
n0 − d0

n0

) (
n1 − d1

n1

)

. . .

(
nt − dt

nt

)

We notice that in the absence of censoring (which we assume for the moment), the number of animals
at risk at the start of an interval is always the previous number at risk, minus the number that died the
previous interval.

Thus, we can re-write the expanded expression as

Ŝt �

(
n0 − d0

n0

) (
n1 − d1

n1

)

. . .

(
nt − dt

nt

)

�

(
n0 − d0

n0

) (
n0 −

(

d0 + d1

)

n0 − d0

)

×
(

n0 −
(

d0 + d1 + d2

)

n0 −
(

d0 + d1

)

)

× . . .

×
(

n0 −
(

d0 + d1 + · · · + dt

)

n0 −
(

d0 + d1 + · · · + dt−1

)

)

OK, while this looks impressive, its importance lies in the fact that it can be easily simplified to

Ŝt �

(
n0 − d0

n0

) (
n0 −

(

d0 + d1

)

n0 − d0

)

× · · · ×
(

n0 −
(

d0 + d1 + · · · + dt

)

n0 −
(

d0 + d1 + · · · + dt−1

)

)
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�

(
n0 −

(

d0 + d1 + · · · + dt

)

n0

)

If you look at this expression closely, you’ll see that the numerator is the number of individuals from
the initial release cohort (n0) that remain alive (i.e., which do not die – the number that die is given by
(d0 + d1 + · · · + dt )), divided by the number initially released. In other words, the estimate of survival
to time t is simply the number surviving to time t, divided by the number released at time 0.

Now, this should sound familiar – hopefully you recognize it as the usual binomial estimator for
survival as (in this case) number of survivors (‘successes’, in a literal sense) in n0 trials. Thus, if

Ŝi �
yi

ni

where yi is the number surviving to time i (on the interval [i − 1, i]), and ni is the number alive (‘at
risk’) at the start of the interval (i.e., at time i), then we can write

Ŝt �

t∏

i�1

(
ni − di

ni

)

�

t∏

i�1

(
yi

ni

)

If you recall the brief introduction to likelihood theory in Chapter 1 (especially the section discussing
the binomial), it will be clear that the likelihood expression for this equation is

L
(

θ �� ni , yi

)

�

t∏

i�1

S
yi

i

(

1 − Si

) (ni−yi )

where θ is the survival model for the t intervals, ni is the number of individuals alive (at risk) during
each interval, yi is the number surviving each interval, and Si is the MLE of survival during each
interval.

As suggested at the start of this section, the binomial model allows standard likelihood-based
estimation and is therefore similar to other models in program MARK. To understand analysis of
known-fate data using the binomial model in MARK, we first must understand that there are 3 possible
scenarios under the known fate model. In a known-fate design, each tagged animal either:

1. survives to end of study (detected at each sampling occasion so fate is known on every
occasion)

2. dies sometime during the study (its carcass is found on the first occasion after its death so
that its fate is known)

3. survives up to the point where its fate is last known, at which time it is censored→ the fate
is known

Note, for purposes of estimating survival probabilities, there is no difference between animals seen
alive and then removed from the population at occasion k and those censored due to radio failure or
for other reasons. The binomial model assumes that the capture histories are mutually exclusive and
that animals are independent, and that all animals have the same underlying survival probability when
individuals are modeled with the same survival parameter (homogeneity across individuals). Known
fate data can be modeled by a product of binomials.

Letus reconsider the blackduckdata (seen previously),using the binomialmodel framework: n1 � 48,
and n2 � 47. Thus, the likelihood is
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L
(

S1
�� n1 , n2

)

�

(

n1

n2

)

S
n2

1

(

1 − S1

) (n1−n2)
�

(

48

47

)

S47
1

(

1 − S1

) (48−47)

Clearly, one could find the MLE, Ŝ1, for this expression (e.g., Ŝ1 � (47/48) � 0.979). We could also
easily derive an estimate of the variance (see section 1.3.1 in Chapter 1). Of course, the other binomial
terms are multiplicative, assuming independence. The survival during the second interval is based on
n2 � 47 and n3 � 45,

L
(

S1
�� n1 , n2

)

�

(

n1

n2

)

S
n2

2

(

1 − S2

) (n1−n2)
�

(

45

47

)

S45
2

(

1 − S2

) (47−45)

As noted above, the likelihood function for the entire set of black duck data (modified to better make
some technical points below) is the product of these individual likelihoods.

16.3. Encounter histories

Proper formatting of encounter histories for known-fate data is critical, and is structurally analogous
to the LDLD format used in some other analyses (e.g., Burnham’s live encounter-dead recovery model) –
these are discussed more fully in Chapter 2. For the encounter histories for known-fate data, each entry
is paired, where the first position (L) is a 1 if the animal is known to be alive at the start of occasion j;
that is, at the start of the interval. A ‘0’ in this first position indicates the animal was not yet tagged or
otherwise not known to be alive at the start of the interval j or else its fates is not known at the end of
the interval (and thus the animal is censored and is not part of the estimation during the interval).

The second position (D) in the pair is ‘0’ if the animal survived to the end of the interval. It is a ‘1’ if
it died sometime during the interval. As the fate of every animal is assumed known at every occasion,
the sampling probabilities (p) and reporting probabilities (r) are 1. The following examples will help
clarify the coding:

encounter history probability interpretation

10 10 10 10 S1S2S3S4 tagged at occasion 1 and survived until the end of

the study

10 10 11 00 S1S2(1 − S3) tagged at occasion 1, known alive during the second

interval, and died during the third interval

10 11 00 00 S1(1 − S2) tagged at occasion 1 and died during the second

interval

11 00 00 00 (1 − S1) tagged at occasion 1 and died during the first

interval

10 00 00 10 S1S4 tagged at occasion 1, censored for interval 2 and 3

(not detected, or removed for some reason), and re-

inserted into the study at occasion 4

00 00 10 11 S3(1 − S4) tagged at occasion 3, died during the 4th interval

10 00 00 00 S1 tagged at occasion 1, known alive at the end of

the first interval, but not released at occasion 2 and

therefore censored after the first interval
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Estimation of survival probabilities is based on a release (1) at the start of an interval and survival
to the end of the interval (0), mortality probabilities are based on a release (1) and death (1) during the
interval; if the animal then was censored, it does not provide information about Si or 1 − Si).

Some ‘rules’ for encounter history coding for known-fate analysis:

a. The two-digit pairs each pertain to an interval (the period of time between occasions).

b. There are only 3 possible entries for each interval:

– 10 = an animal survived the interval, given it was alive at the start of the interval

– 11 = an animal died during the interval, given it was alive at the start of the interval

– 00 = an animal was censored for this interval

c. In order to know the fate of an animal during an interval, one must have encountered it
both at the beginning and the end of the interval.

16.4. Worked example: black duck survival

Here, we consider the black duck radio-tracking data from Conroy et al. (1989). These data are contained
in the BLCKDUCK.INP file contained in the MARK examples subdirectory that is created when you install
MARK on your computer. The data consists of 50 individual encounter histories, 8 encounter occasions,
1 group, and 4 individual covariates: age (0 = subadult, 1 = adult), weight (kg), wing (length, in cm)
and condition. In this study, it was suspected that variation in body size, condition (or both) might
significantly influence survival, and that the relationship between survival and these covariates might
differ between adult and subadult ducks.

Here is what a portion of the BLCKDUCK.INP file looks like, showing the encounter histories and
covariate values for the first 10 individuals:

For example, the 10th individual in the data set has the encounter history ‘1010110000000000’,
meaning: marked and released alive at the start of the first interval, was detected alive at the start
of the second interval, and then died during the third interval. The individual was radio-marked as
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an adult, and weighed 1.42 kilograms, had a wing length of 27.0 cm, and a condition index of 5.26.
Ah – but look carefully – notice that in this .INP file, age is not coded as a classification variable (as is
typically done for ‘groupings’ of individuals – see Chapter 2), but instead as a dichotomous covariate.
Coding dichotomous groups as simple linear covariates is perfectly acceptable – sometimes it is more
straightforward to implement – the only ‘cost’ (for large data sets) might be efficiency (the numerical
estimation can sometimes be slower using this approach). However, the advantage of coding age as an
individual covariate is that if age turns out to be not important, then you are not required to manipulate
PIMs for 2 age groups.

Obviously, this has some implications for how we specify this data set in MARK. Start a new project
in MARK. Select ‘known fates’ as the data type. Enter 8 encounter occasions. Now, the ‘trick’ is to
remember that even though there are two age groups in the data, we’re coding age using an individual
covariate – as such, there is still only 1 attribute group, not two. So, leave attribute groups at the default
of 1. For individual covariates, we need to ‘tell’ MARK that the input file has 4 covariates which we’ll
label as age, weight, wing, and cond (for condition), respectively.

Once we’ve specified the data type, we’ll proceed to fit a series of models to the data. Let’s consider
models St , Sa ge , S., Swei ght , Swin g, and Scond. Clearly, the most parameterized of these models is model
St , so we’ll start with that. Here is the PIM for survival:
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Not only is this particular PIM rather ‘boring’ (only a single row), in fact, there are no other PIMs
for this analysis! Why? Easy – for known-fate data, we assume that all individuals are detected at each
occasion, conditional on being alive and in the sample (i.e., we assume detection probability equals 1).
Thus, the only parameter to model is the survival parameter (this should make sense – look back at the
table on page 4 of this chapter – notice that the probability expressions corresponding to the different
encounter histories are functions only of Si – no encounter probability is included).

Why only a single row? Again, the assumption in the ‘known-fate’ analysis is that all individuals are
released on the same occasion – presumably, at the start of the study (we’ll consider staggered entry
designs later). So, a single row, since all individuals in the analysis are in the same release cohort. Of
course, this means that you aren’t able to separate ‘time’ effects from ’age’ effects in the analysis – at
least, using the ‘known fates’ data type in MARK. Remember, the age factor in this analysis is acting as
a classification variable – and does not indicate the effects of aging (getting older over the course of the
study) on survival. If you’re marked individuals are all adults, then this may not be a particular problem.
But, if your marked sample are subadults or young individuals, or perhaps a heterogeneous mixture of
adults which might contain some proportion of transient individuals (see Chapter 7), you might have a
problem. We’ll deal with this later on in the chapter. For now, we’ll proceed with the analysis, assuming
all the assumptions of the classic known-fates analysis have been met.

Given the preceding discussion, it should be clear that for a known-fate data, the PIMs (and as a
result, the model-fitting in general) is very straightforward. The default PIM (shown on the previous
page) corresponds to model St . We go ahead, fit the model, and add the results to the browser. Recall
that the default link function when using the PIM approach to model fitting is the sin link.

But, also recall that ultimately, we want to use the complete flexibility of the design matrix for fitting
models in MARK. So, let’s ‘re-build’ our starting model St , using the design matrix. In this case, since
the model we’re fitting corresponds to the fully time-dependent model, we can generate the design
matrix simply by selecting ‘Design | Full’, which yields the following design matrix:

Go ahead and fit this model, and add the results to the browser – label the model ‘S(t) - DM’, to
indicate it is the St model, constructed using a design matrix (DM) approach. Once you’ve added this
model to the results browser (shown at the top of the next page), you’ll notice that the two models (which
are structurally identical) report different numbers of estimated parameters – 7 estimated parameters
for the model fit using the DM (and the logit link), and 8 estimated parameters for the model fit using
the PIM approach (and the sin link).
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In fact, what we see here is fairly common for known-fate studies – in many such studies, the
sampling interval is often relatively short, such that the survival probabilities over each interval are often
relatively close to 1.0. We discussed previously (Chapter 6) how the different link functions behave when
parameter values are near the [0, 1] boundary. In the present example, examination of the reconstituted
parameter values on the probability scale are in many cases close to the boundary – the two models
differ in the estimate of survival for the last interval – the sin link estimates survival for the final interval
at 1.00, whereas the logit link estimates the survival as 1.00, but fails to properly count this parameter
as being estimated. We know that the number of estimated parameters for this analysis is 8 – so, we
manually adjust the number of parameters for the model fit using the design matrix from 7 to 8 (when
we do so, we see that the AICcand related statistics for the two models are now identical). We then
delete the model fit using the PIM, since it is redundant to the model fit using the DM.

The next model in our candidate model set is model Sa ge . Recall that for this analysis, age is entered
as a linear covariate in the .INP file, where age = 0 for subadults, and age = 1 for adults. Recall from
Chapter 11 that individual covariates are introduced directly into the design matrix. So, for model Sa ge ,
the design matrix will look like

With this design matrix, we can interpret β2 as the difference in survival between subadults and
adults, i.e., what should be added on a logit scale to the subadult survival estimate to obtain the adults
survival estimate (interpretation of the βi terms in the linear model is discussed at length in Chapter 6).
We run this model, and add the results to the browser. We do much the same thing for each of the
remaining models in the model set – each time, making simple modifications to the design matrix. The
results browser showing the results from all of the models in our candidate model set is shown at the
top of the next page. Interpretation and processing of the results follows the usual process outlined in
earlier chapters, so we will not elaborate further here.
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16.5. Pollock’s staggered entry design

The usual application of the Kaplan-Meier method assumes that all animals are released at occasion 1
and they are followed during the study until they die or are censored. Often new animals are released
at each occasion (say, weekly); we say this entry is ‘staggered’ (Pollock et al. 1989). Assume, as before,
that animals are fitted with radios and that these do not affect the animal’s survival probability. This
staggered entry fits easily into the K-M framework by merely redefining the ni to include the number
of new animals released at occasion i. Therefore, conceptually, the addition of new animals into the
marked population causes no difficulties in data analysis.

But, you might be wondering how you handled staggered entry designs in MARK – after all, how do
you handle more than one cohort, if the survival PIM has only one row? If you think that the survival
of the newly added animals is identical to the survival of animals previously in the sample, then you
can just include the new animals in the encounter histories file with pairs of ‘00’ LD codes prior to when
the animal was captured and first put into the sample.

But what if you think that the newly added animals have different survival. Obviously, you need
more rows. How? As it turns out, there is a straightforward and fairly intuitive way to tweak the
known-fate data type (in this case, allowing it to handle staggered entry designs) – you simply add in
additional groups for each release occasion (each release cohort), thus allowing cohort-specific survival
probabilities. For this to work, you need to fix the survival probabilities for these later cohorts prior to
their release to 1, because there is no data available to estimate these survival rates. With multiple
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groups representing different cohorts, analyses equivalent to the upper-triangular PIMs of the CJS and
dead recovery data types can be developed.

16.5.1. Staggered entry – worked example

To demonstrate the idea, we’ll consider a somewhat complex example, involving individuals radio-
marked as young – the complexity lies in how you handle the age-structure. Within a cohort, age and
time are collinear, but with multiple release cohorts, it is possible to separate age and time effects (see
Chapter 7). We simulated a dataset (staggered.inp) where individuals were radio-marked as young
and followed for 5 sampling intervals – assume each interval is (say) a month long. We assumed that all
individuals alive and in the sample were detected, and that all fatalities (fates) were recorded (detected).
We let survival in the interval following marking be 0.4, while survival in subsequent intervals (with
a given cohort) was 0.8. For convenience, we’ll refer to the two age classes as ‘newborn’ and ‘mature’,
respectively.
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If this were a typical ‘age’ analysis (see Chapter 7), this would correspond to the following PIM
structure:

1 2 2 2 2

1 2 2 2

1 2 2

1 2

1

But, here we are considering a known-fate data, with staggered entry. To begin, let’s first have a look
at the .INP file – the first few lines are shown below:

Now, at first glance, the structure of this file might seem perfectly reasonable. There are 5 occasions,
in LDLD format. We see, for example, there were 865 individuals marked and released in the first cohort
which died during the first interval (as newborns), 126 which were marked and released in the first
cohort which died during the second interval (as mature individuals), and so on. But, what about the
second cohort, and the third cohort, and so on?

How do we handle these ‘additional cohorts’? As mentioned, we accomplish this in the known-fate
data in MARK by specifying multiple groups – one group for each additional release cohort (in this
case, 5 groups). However, while it is easy enough to specify 5 groups in the data specification window
in MARK, we first need to modify the .INP file to indicate multiple groups. Recall from earlier chapters
(especially Chapter 2), that each grouping requires a frequency column. So, 5 groups mean 5 frequency
columns – not just the single frequency column we start with.

The fully modified staggered.inp file is shown at the top of the next page (we’ll let you make the
modifications yourself). Notice that there are now 5 frequency columns – the first frequency column
corresponds to number of individuals marked and released in cohort 1, the second frequency column
corresponds to the number of individuals marked and released in cohort 2, and so on. Pay particular
attention to the structure of these frequency columns.
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Now that we’ve modified the .INP file (above), we can go ahead and run the analysis in MARK. We
select the known-fate data type, and specify 5 groups (which we’ll label as C1, C2,. . . ,C5, for cohort 1,
cohort 2, and so on, respectively, to cohort 5):
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OK, so far, so good. Now for the only real complication – how to structure the PIMs for each cohort,
and which parameters to fix to 1, in order for the analysis to make sense. Let’s consider the following
2 models for our model set: Sa2×cohort, and Sa2

. The first model indicates 2 age classes (newborn, and
mature), with differences among cohorts. This corresponds to the following PIM structure:

1 6 6 6 6

2 7 7 7

3 8 8

4 9

5

The second model has differences in survival among the two age classes, but no differences among
cohorts. This corresponds to the following PIM structure:

1 2 2 2 2

1 2 2 2

1 2 2

1 2

1

OK, so these are the 2 models we want to fit in MARK. The challenge is figuring out how to build
them, and which parameters to fix. Clearly, the first model S(a2 - cohort) is the most general (since it
has the most parameters), so we’ll start there. Here is the default PIM chart for these data:

We see from the following PIM structure for this model that the first cohort consists of 2 age classes, as
does the second, third, and so on. So, we might choose to simply right-click on the various ‘blue-boxes’
in the PIM chart, and select ‘age’ – specifying 2 age-classes. Now, while you could, with some care, get
this to work, there is an alternative approach which, while appearing to be more complex (and initially
perhaps somewhat less intuitive), is in practice much easier.
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The key is in remembering that in the known-fates staggered entry analysis, we treat each cohort as
if it were a separate group, fixing any ‘00’ cells preceding the initial encounter in a cohort to 1.0. Again,
keep in mind that each row (cohort) represents a separate group. And, as noted, we want to fix the
estimate for any of the preceding ‘00’ cells to 1.0. Where do these cells occur? We’ve added them to the
PIM in the following:

1 6 6 6 6

00 2 7 7 7

00 00 3 8 8

00 00 00 4 9

00 00 00 00 5

Now for the big step – if all of the ‘00’ cells are ultimately to be fixed to 1.0, then we clearly would
need only one parameter to code for them. So, let’s rewrite the PIM, using the parameter 1 for the ‘00’
cells, and then increasing the value of all of the other parameters by 1:

2 7 7 7 7

1 3 8 8 8

1 1 4 9 9

1 1 1 5 10

1 1 1 1 6

OK, now what? Well, each cohort is a group. So, we open up the PIM chart for each of the 5 groups
(cohorts) in our example analysis – each of them has the same structure: a single line – here is the
starting PIM for cohort 1:

So, remembering that we want the overall PIM structure (over all cohorts) to look like

2 7 7 7 7

1 3 8 8 8

1 1 4 9 9

1 1 1 5 10

1 1 1 1 6
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then it should be clear how to modify the PIM for cohort 1 - it needs to be modified to correspond to
the first row of the overall PIM structure.

In other words, for cohort 1

and for cohort 2,

and so on – each PIM modified to match the corresponding row (representing a specific cohort) in the
overall PIM.

Before we run our analysis, it’s worth looking at the PIM chart for the model we’ve just created:
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Note that the new parameter 1 occurs only in groups (cohorts) 2 to 6. The ‘staircase’ pattern for
parameters 2 to 6, and 7 to 10 shows that we’re allowing survival to vary among release cohorts as a
function of age: in the first period following marking (newborns, parameters 2 to 6), and subsequent
intervals (mature, 7 to 10). Note that in cohort 5, there are no ‘mature’ individuals.

Now, all that is left to do is to run the model, and add the results to the browser. All you need to do is
remember that parameter 1 is fixed to 1.0. Go ahead and run the model, after first fixing the appropriate
parameter to 1.0 – add the results to the browser – call the model ‘S(a2 - cohort) - PIM’ (we add the
word PIM to indicate the model was built by modifying the PIMs).

OK, what about the second model – model S(a2) (no cohort effect)? Well, if you reached this point
in the book (i.e., have worked through the preceding chapters), you might realize that this model
corresponds to

1 2 2 2 2

1 2 2 2

1 2 2

1 2

1

Again, if we add a parameter 1 to indicate the ‘00’ cells preceding the first encounter within each
cohort, and subsequently increment the parameter indexing for all other parameters by 1, we get

2 3 3 3 3

1 2 3 3 3

1 1 2 3 3

1 1 1 2 3

1 1 1 1 2

We can build this model conveniently by simply modifying the PIM chart for the preceding model
S(a2 - cohort). Recall that the PIM chart for that model was (see top of the next page)
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So, to build model S(a2), all we need to do is ‘remove’ the cohort variation for parameters 2 to 6, and
7 to 10 – this is shown in the modified PIM chart, below:

Chapter 16. Known-fate models



16.5.1. Staggered entry – worked example 16 - 19

Now, run this model, first fixing parameter 1 to 1.0, label it ‘S(a2) - PIM’, and add the results to the
browser:

As expected, model S(a2) (the true, underlying model which we used to generate the data) gets
virtually all of the AIC weight, relative to the other model. And, the reconstituted parameter estimates
are very close to the true underlying values.

Now, while ‘fiddling’ with the PIM chart (and the underlying PIMs) is convenient for these simple
models, we know from earlier chapters that there are structural limits to the types of models we can
construct this way. Most obviously, we can’t use the PIM approach to build models with additive effect.
Ultimately, it’s to our advantage to build models using the design matrix (DM), since all reduced
parameter models can be constructed simply by manipulating the structure of the DM for the most
general model. Let’s build the DM for model ‘S(a2 - cohort)’, which is the most general model of the
two models in our candidate model set).

First, we start by writing out the conceptual structure of the linear model corresponding to this model:

S � cohort + age + cohort.age

The first term is fairly straightforward – we have 5 cohorts, so we need (5 − 1) � 4 columns to code
for cohort. What about age? Well, look again at the PIM for this model:

2 7 7 7 7

1 3 8 8 8

1 1 4 9 9

1 1 1 5 10

1 1 1 1 6

Remembering that parameter 1 is fixed at 1.0, and is thus a constant. We can ignore it for the moment
(although we do need to account for it in the DM). Pay close attention to the parameters along and above
the diagonal. These represent each of the two age classes in our model – the vary among rows within
an age class, but are constant among columns within a row, specifying cohort variation for a given age
class, but no time variation (recall from Chapter 7 that a fully age-, time- and cohort-dependent model
is generally not identifiable, since the terms are collinear). So, we have 2 age classes, meaning we need
(2 − 1) � 1 column to code for age. What about cohort? Well, 5 cohorts, so (5 − 1) � 4 columns to code
for cohort. Again, hopefully familiar territory. If not, go back and re-read Chapter 6.

But, what about the interaction terms (age.cohort) – do we need (4 × 1) � 4 columns? If you think
back to some of the models we constructed in Chapter 7 (age and cohort models), especially those
models involving individuals marked as young only you might see how we have to handle interaction
terms for this model. Recall from Chapter 7 that the interaction columns in the DM reflected ’plausible’
interactions – if a specific interaction of (say) age and time wasn’t possible, then there was no column in
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the DM for that interaction. For example, for an analysis of individuals marked as young, there can be
no interaction of age (young or adult) with time in the first interval, since if the sample are all marked
as young, then there are no marked adults in the first interval to form the interaction (i.e., there can be
no plausible interaction of age and cohort in the first interval, since only one of the two age classes is
present in the first interval).

OK, so what does this have to do with our known-fate data? The key word is ‘plausible’ – we build
interactions only for interactions that are plausible, given the structure of the analysis. In this case,
there are only 2 true age classes (newborn, and mature). All of the other ‘age’ classes are ‘logical’ –
we’ve ‘created’ them to handle the preceding ‘00’ terms in the PIM. They are not true ‘age’ classes, since
there are no marked animals in those classes. As such, there are no interactions between cohort and any
of these logical ’00’ age classes – we need only consider the interactions of the two true ‘biological’ age
classes (newborn, and mature), with cohort. But, how many columns? Look closely again at the PIM:

2 7 7 7 7

1 3 8 8 8

1 1 4 9 9

1 1 1 5 10

1 1 1 1 6

Pay particular attention to the fact that the ‘newborn’ age class shows up in all 5 cohorts, while the
‘mature’ age class shows up only in the first 4 cohorts (and not in the fifth). So, not all (age × cohort)
interactions are ‘plausible’. Which ones are ‘plausible’? Well, both age classes are represented in the first
4 cohorts, but both age classes are represented only over intervals 2 to 4. Thus, we only need include
cohorts 2, 3 and 4, in the interaction terms. See the pattern? If not, try again. It’s very similar to problems
we considered in Chapter 7.

OK, penultimate step – what about parameter 1? Well, as noted earlier, since it’s fixed to 1.0, then it’s
simply a constant across cohorts, and thus, enters into the linear model as a single parameter.

Now, finally, we’re ready to write out the linear model corresponding to S(a2 - cohort).

Ŝ � β1(constant)

+ β2(intercept)

+ β3(age)

+ β4(c1) + β5(c2) + β6(c3) + β7(c4)

+ β8(age.c2) + β9(age.c3) + β10(age.c4)

Is this correct? It has the same number of terms (10), as there are parameters in the PIM chart, so it
would seem to be correct.

The next step, then, is to actually build the DM. We start by having MARK present us with a 10-
column ’reduced’ DM as the starting point. The completed DM for this model is shown at the top of
the next page. Column 1 (labeled B1) contains a single ‘1’ - this represents parameter 1, which is a
constant – fixed to 1.0 for all cohorts. The next column (labeled B2) represents the intercept for the ‘age
and cohort’ part of the model. Column B3 codes for age – 1 for newborn individuals, and 0 for mature
individuals (note the different number of rows for each age class – this is key – 5 rows for newborns, and
4 rows for mature individuals). Columns B4 to B7 code for cohort. Note how the first row for newborn
individuals for cohort 1 is coded, and note that this row does not show up for mature individuals –
since, in cohort 1, there are no mature individuals! Finally, the interaction terms – columns B8 to B10,
for those ‘age.cohort’ combinations that represent ‘plausible’ interactions.
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Go ahead and run this DM-based model (label it S(a2-cohort - DM)), and confirm that the results
exactly match those for the model you constructed using the PIM chart, as shown below:

Now that you have the DM for the general model, try constructing model S(a2) – the second model.
We already did this a few pages back using the PIM approach, but we can generate the same model
easily using the DM approach by simply deleting (i) the columns of the DM coding for cohort, and (ii)
the (age.cohort) interaction columns:
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If you run this model, again you’ll see the results exactly match those for model S(a2) built using
the PIM approach:

We’ll leave building an additional model S(a2+cohort) (i.e., a model with additive effects between
age and cohort) to you as an exercise (hint: simply delete the interaction columns from the design matrix
for model S(a2-cohort)).

So, we see that by treating different release cohorts as ‘groups’, we can use the known fate data type
in MARK to handle staggered entry designs. Are there any other design types we can handle using
known fate data? In fact, there are, but they involve using a different approach, based on treating known
fate data in a live-encounter, dead-recovery context.

16.6. Known fate and joint live-dead encounter models

As noted earlier, the encounter history format for known-fate data is structurally similar to the classic
LDLD format used for Burnham’s live encounter-dead recovery analysis (Chapter 9). Recall that in that
case, it is possible to observe an individual alive at the start of a particular interval (L), and dead at some
point during the interval (D).

With a little thought, you might think that you could apply the live encounter-dead recovery model
structure directly to known-fate data, if you simply fix the ‘detection parameters’ (r and p), and the
‘fidelity parameter ’ (F) to 1 (remember, for a known-fate data, we assume we know the fate of all
individuals). However, there is a complication – the live encounter-dead recovery model does not
correctly handle the censoring of ‘00’ LD pairs in a known-fate data. In the live encounter-dead recovery
data type, the ‘00’ is handled as an animal that was not detected as either alive or dead on this occasion.
In a known-fate data, the ‘00’ indicates that the animal was censored from the study. The distinction is
made clearer in the following table, where we contrast the probability expressions, and interpretations,
of the encounter history ‘100010’ under the known-fate, and live-dead encounter models, respectively.

model probability interpretation

known fate S1S3 tagged at occasion 1, censored for interval 2 (i.e.,not

detected, or removed for some reason), and re-

inserted into the study at occasion 3.

live-dead S1F1S2(1 − p2)S3p3

+S1F1S2(1 − p2)(1 − S3)(1 − r3)

(i) tagged at occasion 1, stays in sample, survives to

occasion 2 but not encountered, survives to occasion

3, where it is encountered alive, not shot; (ii) tagged

at occasion 1, stays in sample, survives to occasion 2

but not encountered, survives to occasion 3, where it

is encountered alive, shot, but not recovered.
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Clearly, the probability expressions differ considerably between the two model types. And, as such,
you can’t simply apply the live-dead encounter model to known-fate data without somehow accounting
for the difference in how the ‘00’ values in the encounter history are handled. Specifically, how can you
’tell’ the live-dead model that a ‘00’ means ‘censored’ and not either ‘dead and missed’, or ‘live and
missed’?

One way to handle this is to break up the encounter history and use a ‘-1 coding’ – in other words,
take the ‘10 00 10’ encounter history and make it into 2 encounter histories as:

10 00 00 -1;

00 00 10 1;

Now, the live-dead model correctly handles the pair of encounter histories to allow the animal to be
in the sample for the first interval, and then be removed from the sample. The animal is then re-injected
back into the sample for interval 3. If all the r and p parameters are fixed to 1, and you also fix F to 1,
then you will get the identical estimates of survival from the live-dead and known fate approaches.

To see that the preceding statement is true, first examine the probability of the first encounter history:
S1 + (1 − S1)(1 − r1), which reduces to just S1 because r1 � 1. The probability of the second encounter
history is S3 + (1 − S3)(1 − r3), which again reduces to just S3. So, the product of these 2 encounter
histories is identical to the probability of the original encounter history under the known fate model.

To make this ‘trick’ of splitting known fate encounter histories to allow censoring, let’s consider a
bit more complex example. Take the encounter history ‘10 10 00 10 11’. The known fate probability
is just S1S2S4(1 − S5). The split encounter history for live-dead coding looks like:

10 10 00 00 00 -1;

00 00 00 10 11 1;

The probability expression corresponding to the first piece is just S1F1p2(S2 + (1−S2)(1− r2)), which
reduces to just S1S2 because all F, p, and r parameters are fixed to 1. The second probability is S4F4p5(1−
S5)r5,which reduces to S4(1−S5). The preceding might seem like a lot of work just to ‘trick’ the Burnham
live-dead model into being able to handle known-fate data. Clearly, for ‘typical’ known-fate data, use
of the known-fate data type in MARK is decidedly more straightforward (and, not surprisingly, why
it’s there in the first place). However, there are some situations where using the live-dead model is
particularly helpful – we consider two such applications in the following.

16.6.1. Live-dead and known fate models (1) ‘radio impact’

One of the most pressing questions with known fate data is ‘What is the impact of the radio on the
animal’s survival?’ A useful solution to this question can be obtained by marking some animals with
non-intrusive tags. For example, one sample of ducks can be radio-marked, whereas a second can be
banded with leg bands. Now, the data must be analyzed with a different model that incorporates the
live detection probability p and the dead detection probability r.

The way to do this is to use the live-dead model, and specify 2 groups. The first group would consist
of the radio-marked sample, where all the p, r, and F parameters are fixed to 1. The second group would
consist of the leg-banded sample, where all the parameters are estimated. The power of this design
comes into play when we compare a model with survival estimated separately for each group against
the equivalent model but with survival estimated in common across both groups. The comparison of
these 2 models provides a powerful test of the effects of the radios on survival. For a well-designed study,
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we might consider using a likelihood-ratio test between these 2 models to test the null hypothesis of
no radio effect directly. Alternatively, we could use the Akaike weights to assign probabilities to which
hypothesis we believe is most likely the truth.

16.6.2. Live-dead and known fate models: (2) ‘temporary emigration’

The live-dead data type can also be used to estimate the fidelity (F) to a study area for known fate data.
The approach is to code the LD pair as ‘00’ for animals that leave the study area. That is, animals that
leave the study area are not censored as if the radio failed, but rather included in the sample with ‘00’ for
periods when they are off the study area. Then, given that p � 1 and r � 1, F is estimated. So, consider
what the probability would be for the encounter history ‘10 10 10 00 00’ when p � 1 and r � 1 so that
these terms are left out of the expression: S1F1S2F2S3(1−F3). With F estimated, the only way to account
for trailing 00 values is to have the animal emigrate. Remember that the Burnham joint live-dead data
type assumes permanent emigration.

What if you want to model temporary emigration? The solution in this case is to use the Barker
joint live-dead data type (see Chapter 9), where the parameter F′ is the probability that an animal not
available for capture (i.e., off the study area) returns to the study area. So consider the probability of
the encounter history ‘10 10 00 00 10’ with p � 1 and r � 1, along with no probability of sightings in
between capture occasions (i.e., R � 0 and R′ � 0): S1F1S2(1−F2)S3(1−F′3)S4F′4S5. The point here is that
the Barker joint live-dead data type can also be used to estimate the temporary emigration probability
from known fate data, and hence can also be used to assess the effects of radios on animals against a
sample marked in a different fashion.

16.7. Censoring

Censoring appears ‘innocent’ but it is often not. If a substantial proportion of the animals do not have
exactly known fates, it might be better to consider models that allow the sampling parameters to be
< 1. In practice, one almost inevitably will lose track of some animals. Reasons for uncertainty about
an animal’s fate include radio transmitters that fail (this may or may not be independent of mortality)
or animals that leave the study area. In such cases, the encounter histories must be coded correctly to
allow these animals to be censored. Censoring often require some judgment.

When an animal is not detected at the end of an interval (i.e., immediately before occasion j) or at the
beginning of the next interval (i.e., immediately after occasion j + 1), then its fate is unknown and must
be entered as a ‘00’ in the encounter history matrix. Generally, this results in 2 pairs with a ‘00’ history;
this is caused by the fact that interval j is a 00 because the ending fate was not known and the fact that
the beginning fate for the next interval ( j + 1) was not known. Censored intervals almost always occur
in runs of two or more (e.g., ‘00 00’ or ‘00 00 00’). See the example above where the history was ‘10
00 00 11’.

In this example, the animal was censored but re-encountered at the beginning of interval 4 (alive)
and it died during that interval. It might seem intuitive to infer that the animal was alive and, thus, fill
in the 2 censored intervals with ‘10 10’ – this is incorrect and results in bias. The reason for this bias is
because a dead animal is less likely to be encountered at a later occasion than if it lives. So, you have a
biased sampling process – animals are mostly encountered because they are alive, and hence estimates
of survival become too high if the ‘00’ values are replaced with ‘10’.

Censoring is assumed to be independent of the fate of the animal; this is an important assumption.
If, for example, radio failure is due to mortality, bias will result in estimators of Ŝi . Of course, censoring
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reduces sample size, so there is a trade-off here. If many animals must be censored, then the possible
dependence of fates and censoring must be a concern. In such cases, you probably should be analyzing
the data with the live encounters-dead recovery data type, and explicitly estimate the p and r parameters.

16.8. Goodness of fit and known fate models

Consider a model where all the parameters are specific to both the time-interval, as well as the cohort
(i.e., year marked and released). This is a fully-saturated model where there are as many unknown
parameters as there are cells. Note, the saturated model always fits the data perfectly (by definition and
design). The concept of a saturated model is necessary in computing model deviance. As discussed
earlier in Chapter 5, the deviance of model j in the candidate model set is defined as

Deviance � −2 ln
(

L j (θ)
)

−
[
−2 ln

(

Lsaturated(θ)
) ]

Typically, for most data types, the saturated model contains many uninteresting parameters – its use is
primarily heuristic, in allowing use to estimate the deviance of some less general model, relative to the
saturated model.

Now, if sample size is large (i.e., there are no cells with small expectations), then the deviance is
asymptoticallyχ2 with df equal to (the numberof cells in the saturated model) - (the numberof estimable
parameters in model j). OK, fine, this is the basis of the likelihood ratio test discussed earlier in Chapter
5. What does this have to do with GOF testing for known-fate data?

Well, the problem with known-fate data is this – for known-fate models where all individuals enter
at the same time (or even with staggered entry data), the saturated model where each cohort has its
own survival estimate for each occasion is a sensible model, and as such, there is no way to estimate the
deviance of the saturated model from itself. Because the saturated model fits the data perfectly, there
is no GOF test for classical known-fate data. In reality, this is the same with all models in MARK –
we just assume (i.e., make an assumption) that some reduction of the saturated model to a biologically
reasonable model is okay, and use this reduction to assess GOF.

To help you understand this point, consider a simple radio-tracking study where 100 radios are put
on a single age/sex class for one occasion. The saturated model is the simple survival estimate based
on the binomial distribution. There is only one data point, hence one degree of freedom, and that df
is used to make the estimate of survival. Thus, it is fairly obvious that there is no GOF test available –
to obtain a GOF test, we would have to assume a reasonable biological model that is reduced from the
saturated model. This selection can be pretty arbitrary (obviously).

16.9. Known-fate models and derived parameters

Typically you are doing a known fate analysis to be able to estimate survival over an interval, say 1 year.
However, you also want to know something about how survival changes within the year, or maybe
because of censoring and radio failure problems, you want to include animals in the analysis that only
appeared for a period of time within the year period. For example, you are doing a bear study where
you have staggered entries and some radio failures or collars that dropped off that you have kept track
of on a monthly interval. However, you are interested in estimating annual survival. How do you get
an estimate of annual survival from 12 monthly estimates?

MARK provides derived parameter estimates that are the product of all the estimates for the intervals
in the PIMs. So, suppose you have a 3-year study,where you want 3 annual estimates of survival, but you
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have 36 months of data. The clever way of setting up your analysis is to define 3 groups for the known
fate model, each with 12 occasions (months), with the 3 groups corresponding to the 3 years of interest.
Then, when you examine the derived parameter estimates, you will find 3 estimates, representing the
3 years. Variances and covariances of the derived parameters are computed with the Delta method
(Appendix B).

Derived parameter estimates can be used in model averaging and variance components analyses, so
you further have all of the power of these methods available for your analysis of annual survival rates.

Part of the ‘art’ of how to set up the known fate data type is whether attribute variables should
be incorporated as groups or individual covariates. Derived parameter estimates are a function of the
individual covariates used to compute them, so whether age in the black duck example is treated as a
group or an individual covariate won’t make a difference in the estimates. However, if age is handled
as a group variable, the derived estimates are clear. To get derived estimates when age is an individual
covariate means that you must specify individual covariate values to obtain the correct estimates.

16.10. Known-fate analyses and ‘nest success models’

Suppose you want/need to estimate the survival of radio-tracked animals when the animals are not
monitored in discrete intervals, as generally required by the known fate data type. Consider that such
data are no different than a set of (say) nests, where all the nests are not visited on the same day. As
such, you could apply a ‘nest success model’ to the data – in such a model, the daily survival rate is
estimated for each day of the study based on the sample of animals available on that day, and the exact
day of death is not required (just as the exact day that a nest was destroyed is not known). We call these
kinds of data ‘ragged telemetry data’ because the sampling scheme is ragged, but useful estimates can
still be obtained. Nest success analysis is the subject of our next chapter.

16.11. Summary

Known-fate models are a very important model type – most commonly applied in situations where
individuals are marked with radios (i.e., radio telemetry studies). The presence of a radio makes is
feasible (under usual circumstances) to determine the ‘fate’ of the individual: is it alive, or dead? Present,
or absent? And so on. Although the assumption that detection and reporting probabilities are both 1.0
simplifies aspects of the modeling considerably, a number of complex, elegant approaches to handling
known-fate data are possible – especially when known-fate data are combined with data from other
sources.
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CHAPTER 17

Nest survival models

Jay Rotella, Montana State University

In this chapter, we will introduce how to analyze nest survival data with program MARK. Nest
survival is a key vital rate in the population dynamics of many birds. Accordingly, estimation of nest
survival is a key aspect of many studies of breeding bird populations. Given the strong interest in nest
survival, there is a rich literature detailing field techniques and estimation methods for this vital rate.
The development of estimation techniques has been very active in recent years (e.g., see Dinsmore et al.
2002, Rotella et al. 2004, and references therein) and so most of the analyses described in this chapter
are still relatively new.

At this point, you may be wondering why we need to go to the trouble of using program MARK

for analyzing nest survival data. After all, with nests you know how many nests you found and you
know the fate of every nest. Why not just compare the proportion of successful nests among groups
with different attributes? Well, for starters (and many of you probably already know this), it turns out
that this is not a valid approach for most data sets. As Harold Mayfield pointed out several decades
ago (Mayfield 1961, 1975), such an analysis is only valid if destroyed nests can be found with the same
probability as active ones. In most studies successful and unsuccessful nests are not found with equal
probability, and most nests are found after egg laying has commenced. Mayfield pointed out that under
these circumstances the proportion of successful nests, which he termed apparent nesting success, is
biased high relative to actual nesting success, the proportion of nests that survive from initiation to
completion. Klett et al. (1986:10) provide an excellent illustration of the source of this bias. In fact, it’s
so good that we’ll repeat the essence of the example here.

Imagine a study in which only active nests can be found. Nests are found at various ages (i.e., days
since the nestwas started). Young leave the nest35 days afternest initiation (in this example, immediately
after hatching, as is typical for species with precocial young). Assume that the probability that a nest
survives a single day (daily survival rate; DSR) is 0.96 regardless of calendar date or nest age, and thus,
the true probability of a nest surviving from initiation to completion is 0.2396 (0.9635). The following
table (at the top of the next page) shows the bias involved in working with the proportion of successful
nests if all nests aren’t found on or before the day they’re initiated. As you can see, overestimation is
likely and can be severe.
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age of nest

when found

probability of surviving

to hatching

bias relative to actual

hatching success

0 0.9635
� 0.24 0.00

5 0.9630
� 0.29 +0.05

10 0.9625
� 0.36 +0.12

15 0.9620
� 0.44 +0.20

20 0.9615
� 0.54 +0.30

25 0.9610
� 0.66 +0.42

30 0.965
� 0.82 +0.58

34 0.961
� 0.96 +0.72

Mayfield developed an ad hoc estimator of nesting success that overcomes the bias associated with
estimates of apparent nesting success. His approach calculates the daily survival probability for only
the days that nests were under observation. Thus, the Mayfield model accounts for the fact that some
nests are not under observation starting with the day of nest initiation.

To see how Mayfield’s method works, consider the following example where 10 nests were found at
an age of 0 days, another 10 were found at an age of 14 days, and another 10 were found at an age of
28 days. After being discovered, each nest’s fate was checked every 7 days until it failed or reached an
age of 35 days. The dataset can be summarized in the following table, which tabulates the number of
nests in the sample that survived to a given age – for example, we see that among the 10 nests found at
age 14 days, 8 survived to 21 days (i.e., an additional week), 7 survived to 28 days (i.e., an additional 2
weeks), and so on:

initial sample

size

age of nest

when found

7

days

14

days

21

days

28

days

35

days

10 0 days 7 6 5 3 3

10 14 days 8 7 4

10 28 days 8

The next step is to run Mayfield’s calculations on the data. Key steps are to calculate (1) how many
nests were unsuccessful and (2) how many days nests were exposed to potential nest failure (termed
exposure days). The number of unsuccessful nests is easy and intuitive to calculate: (10 − 3) + (10 −
4) + (10 − 8) � 15 failed nests. Exposure days may be a bit less obvious, but here’s how it’s calculated.
All nests in this example were checked every 7 days. So, if a nest survived the interval between 2 visits,
it was exposed to potential nest failure on each of the 7 days between visits. Thus, each time a nest
survived a re-visit interval, we simply need to add 7 days to the total number of exposure days. For
nests found at an age of 0 days, nests survived a total of 24 7-day intervals (7 + 6 + 5 + 3 + 3), which
yields 168 exposure days. For nests first found at an age of 14 days, nests survived a total of 19 7-day
intervals (8 + 7 + 4), which yields 133 exposure days. For nests first found at an age of 28 days, nests
survived a total of 8 7-day intervals, which yields 56 exposure days.

But, what to do with nests that failed between two nest visits? We don’t know when the failure
occurred and so don’t know how many days of exposure to use. Mayfield calculations typically use 1/2
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the interval length in the cases of failures that occurred on an unknown date between two nest visits.
So, these calculations are pretty simple to make as well. We know that 15 nests failed and, because all
intervals in this simple example were 7 days long, each failed nest is assumed to have survived through
3.5 exposure days (one half of the 7-day interval). Thus, we need to add 52.5 exposure days (15 nests x
3.5 days per nest) to the total. Using the values we’ve just calculated, we see that 15 nests failed during a
total of 409.5 exposure days (total = 168 + 133 + 56 + 52.5). Thus, the Mayfield estimate of daily mortality
probability for nests is (15/409.5)or 0.0366. The Mayfield estimate of daily survival probability is simply
one minus the daily mortality rate, or (1− 15/409.5) or (1− 0.0366) or 0.963. Mayfield’s ad hoc estimator
thus focuses on daily survival probabilities and circumvents the problems inherent in using apparent
nest survival probabilities.

Subsequent to Mayfield’s (1961, 1975) publications, a variety of authors published a maximum-
likelihood approach to estimating daily survival probabilities and nesting success for data from nests
that were visited periodically (Johnson 1979, Hensler and Nichols 1981, Bart and Robson 1982). The
method is based in statistical theory and provides estimates of the mean and variance of daily survival
rate. Thus,use of the maximum-likelihood estimator (MLE) of daily survival probability and its variance
is recommended over use of Mayfield’s ad hoc estimator despite the fact that they produce very similar
point estimates of daily survival (and are in fact the same estimator in the case where nests are visited
every day).

Let’s review some key points made in this chapter so far: we can’t validly use the proportion of
successful nests as a surrogate for true nest success so we want to use maximum likelihood estimates
of DSR and its associated variance instead. As we’ve seen in earlier chapters, program MARK is a
very useful tool for doing just this sort of thing. Once we have estimates of DSR, we can raise it to the
appropriate power (number of days it takes to go from nest initiation to nest completion [e.g., 35 days])
to estimate true nest success, e.g., 0.9635

� 0.2396. With estimates of the variance of DSR, we can also
estimate the variance of nest success (var(0.9635) = [(35×0.9634

)
2 × var(DSR)]. So, by this point we hope

you’re starting to see how program MARK might be useful. But, it gets better because program MARK

allows one to evaluate a rich variety of competing models of nest survival rate and go well beyond what
was possible with basic Mayfield estimation.

Next, we use data collected on Mallard (Anas platyrhynchos) nests in North Dakota to introduce the
analysis of nest-survival date in program MARK. This data set is part of a larger data set collected
and analyzed by Stephens (2003) and the same data set used by Rotella et al. (2004) in their example
analysis. It contains information from 565 nests that were monitored on 18 sites during a 90-d nesting
season. Nests of various ages were found during periodic nest searches conducted throughout the
nesting season. Once a nest was found, it was re-visited every 4 to 6 days to determine its fate (a binary
outcome). For each nest, several covariates of interest were measured: (1) the date the nest was found;
(2) the nest’s initiation date, which provides information about the age of the nest when it was found,
its age during each day of the nesting season, and its expected hatch date (35 days after nest initiation,
which is when young typically leave the nest in this species); (3) a measure of how much the vegetation
around the nest site visually obscured the nest; (4) the proportion of grassland cover on the 10.4-km2

study site that contained the nest; and (5-7) the habitat type in which the nest was located (3 indicator
variables, each coded as 0 or 1, that were used to distinguish among nests found in 4 different habitat
types: native grassland, planted nesting cover, wetland vegetation, and roadside right-of-ways).

17.1. Competing models of daily survival rate

Up to this point, we haven’t discussed competing models. We’ve simply focused on the idea that we
need to estimate daily survival rate (DSR) and can use program MARK to do so. But, typically we’re
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interested in evaluating competing hypotheses about sources of variation in nest survival. DSR might
vary spatially due to changes in features such as habitat characteristics and predator communities. DSR
might also be hypothesized to vary temporally. For example, one might hypothesize for a given species
that nests are more vulnerable later in the nesting season as predators develop a search image for nests
and key into nests as food sources. Thus, DSR may be predicted to be relatively high early in the season,
to drop off in the mid-season, and to stay low late in the season. One might also be interested in changes
in DSR that are associated with changes in nest age. For a songbird that feeds young in the nest, one
might hypothesize that DSR will be lower during the nestling stage, when parents make many foraging
trips per day to and from the nest to provide for begging young, than it will be during egg-laying and
incubation stages, when fewer cues are provided to predators. In a multi-year study, we might wonder
if DSR differs among years.

It seems safe to say that we can think of lots of possible sources of variation in DSR. So, it also seems
reasonable to say that we will want to be able build and evaluate competing models of DSR. This may
seem readily obvious, but it was only recently that methods were developed for evaluating multiple-
regression type models of DSR (Dinsmore et al. 2002; and, yes, these methods were first developed in
program MARK).

Most studies of nest survival haveused Mayfield’s ad hoc estimator of DSR or the maximum likelihood
estimator of Johnson (1979) or Bart and Robson (1982), and these methods assume that DSR is the same
for all nests on all dates and for all nest ages (nest fates are independent and identically distributed: iid)
within the sample. To attempt to meet the assumption of homogeneity of fates within a given sample,
one can stratify data prior to analysis and create sets for which fates can reasonably be considered iid.
For example, data can be analyzed separately for different nesting stages, habitats, years, species, or
combinations of these. However, such stratification can be limiting and may prevent researchers from
exploring the full suite of models that are likely of interest. This is especially difficult when some of the
multiple factors that are thought to affect DSR are measured oncontinuous rather than categorical scales.
Although one can certainly discretize continuous variables and convert them to categorical values, this
won’t always be desirable.

Fortunately, program MARK allows us to model DSR as a function of multiple covariates and to
compare competing models. But, before we can begin building models, we need to consider the data
input for nest-survival data. It turns out that there are a few unique features to this data type.

17.2. Encounter histories format

Minimally, four pieces of information are required for each nest: (1) the day of the nesting season on
which the nest was found; (2) the last day the nest was checked when alive; (3) the last day the nest
was checked; and (4) the fate of the nest (0 = successful, 1 = depredated). Program MARK uses these
key pieces of information to generate an encounter history for each nest in live/dead (LDLD) format (see
Chapter 2). Although you’ll never see the LDLD type encounter histories in program MARK for this data
type, we will explore them a bit more below as they can help us understand what’s taking place with
nest survival data.

The days mentioned above refer to standardized days within the study’s nesting season. These
standardized days are obtained by first calculating the earliest date on which you began recording
data on nest survival, treating this date as day 1 of the nesting season, and then sequentially numbering
all subsequent days for which you observed nests up to the last date of data collection. For the Mallard
data set used in this example, data collection began on 24 April and continued for 90 days. So, 24 April
was standardized as day 1 and the last day was day 90.
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The next step is to create an encounter history for each nest based on the critical information described
above. In the mallard study, the first nest was found on day 1 (April 24)of the season with 1 egg. This nest
was observed periodically over the next 35 days and was successful. Thus, this nest had the following
encounter history:

/* 1 */ 1 35 35 0 1;

Here, the encounter history begins with a comment (/* 1 */) referring to the nest’s identification
number (this is quite handy when data checking but not essential to provide). The key information
follows the comment: (1) first is the day the nest(s) was/were found, labeled time i; (2) next is the last
day the nest(s) was/were known to be present, labeled time j, which for successful nests should be the
day the nest attempt was successfully completed (as it is in this example); (3) then comes the last day
that the nest(s) was/were checked or, for successful nests, the day that the nest attempt should have been
successfully completed (as it is in this example), labeled time k; (4) next is the fate of the nest(s): 0 means
successful, and 1 means destroyed or unsuccessful; and (5) the last value is the number (frequency) of
nests that had this history (this will usually be 1 but doesn’t need to be if multiple nests have the same
encounter history). Later in the study, a nest had this encounter history:

/* 1931 */ 63 81 85 1 1;

From this, we can see that this nest was found on day 63 of the nesting season, last known to be active
on day 81, and last checked on day 85. The nest was unsuccessful and was destroyed sometime between
day 81 and day 85.

You may have noticed that for successful nests, all the information about survival time is contained
in times i and j. If you did, you’re paying attention and you’re right. Time k is only used for unsuccessful
nests to bracket the interval when the nest was destroyed. Another point worth emphasizing is the fact
that dates j and k should not extend beyond the nest’s successful completion date even if the actual nest
check was done after the hatch date (or, in the case of nidicolous species with a nestling stage, beyond
the expected fledging date). If you put in the actual check dates rather than completion dates, you’ll
give the nest credit for surviving days when it was no longer subject to possible failure — definitely not
something we want to do.

The histories above could be extended to include individual covariates after the 5 required variables.
In the mallard example, the following covariates were added to the encounter histories: (1) a measure of
how much the vegetation around the nest site visually obscured the nest; (2) the proportion of grassland
cover on the 10.4-km2 study site that contained the nest; (3) an indicator variable that was coded as 1

if the nest was in native grassland and 0 otherwise; (4) an indicator variable that was coded as 1 if the
nest was in planted nesting cover and 0 otherwise; (5) an indicator variable that was coded as 1 if the
nest was in wetland vegetation and 0 otherwise; and (6) the age of the nest on the first day of the nesting
season. Because the age variable is for the first day of the nesting season, this value will be negative for
all the nests in the sample except those that were initiated (started) on or before day 1.

Several items are noteworthy about the covariates. First, date, which may be of interest as a covariate
in some models, is incorporated into the required fields of the encounter history, and so, there is no
need to include date information elsewhere. One might, of course, wish to have a variable(s) for year of
study in a multiple-year study. Second, in this example, there were 4 habitat types of interest but only 3
indicator variables are included: the 4th habitat type (roadside right-of-ways) is indicated if all 3 of the
indicator variables have a value of 0. Third, the age variable as described above might seem a bit odd at
first glance. Why do we want to work with the age of each nest on the first date of the nesting season?
The short answer is it allows us to generate each nest’s age on every other day of the nesting season and
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these are critical to have if we think that DSR might vary by nest age. A longer answer comes below
when we use the age variable in modeling.

Is that it for covariates? Well, no. As we’ve seen for some other data types, the encounter histories
are assigned to groups, so we could also group the data in various ways, which is another way of
incorporating a group covariate. Group covariates can also be incorporated through the design matrix
in ways that will be explained below.

In the mallard example, data were originally recorded in interval-specific form, i.e., each row of data
contained information for one observation interval for an individual nest. For the 2nd nest found in the
study, the following rows of raw data were recorded:

Nest ID Species Study Site Habitat Code Obs t IFate SDate Sage Robel PpnGR

2 MALL 14 PICov 1 5 0 1 3 0.88 0.96
2 MALL 14 PICov 2 5 0 6 8 0.88 0.96
2 MALL 14 PICOv 3 4 0 11 13 0.88 0.96
2 MALL 14 PICov 4 6 1 15 17 0.88 0.96

Here the columns represent (1) the nest’s identification number, (2) a species code, (3) the study site,
(4) a habitat code, (5) a number indicating which observation interval is represented on this row for this
nest, (6) the number of days in the observation interval, (7) the nest’s fate for this observation interval
(0 = successful, 1 = failed), (8) the day of the nesting season at the start of the interval, (9) the age of the
nest at the start of the interval, (10) a measure of how much the vegetation around the nest site visually
obscured the nest, and (11) the proportion of grassland cover on the 10.4 km2 study site that contained
the nest. The data for nest #2 were re-formatted for analyses in MARK as:

/* 2 */ 1 15 21 1 1 0.88 0.96 0 1 0 3;

To create the actual input file for MARK, the data for each nest to be used in the analyses must
be formatted appropriately. In addition, the first non-comment line of the file needs to consist of the
statement ‘Nest Survival Group=1 ;’. Following this command are the data for all of the nests in the
1st group. When this is done for the mallard data, the first portion of the encounter history file appears
as follows:

Nest Survival Group=1;

/* 1 */ 1 35 35 0 1 4.500 0.9600 0 1 0 1;

/* 2 */ 1 15 21 1 1 0.875 0.9616 0 1 0 3;

/* 4 */ 1 11 15 1 1 2.750 0.9616 0 1 0 3;

/* 5 */ 1 31 33 1 1 3.375 0.9616 0 1 0 3;

/* 6 */ 2 2 7 1 1 1.875 0.9616 0 0 0 3;

/* 7 */ 2 7 12 1 1 2.750 0.9616 1 0 0 4;

Note: The MARK help file contains much useful information about how to build the encounter history
file. It is definitely worth taking the time to review the information provided.
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17.3. Nest survival, encounter histories, & cell probabilities

In MARK, the data type for the encounter history is LDLD (although you won’t code it this way in the
INP file - MARK will handle this for you). The cell probability is modeled as the product of the survival
probabilities from time i to time j − 1. For successful nests, i.e., fate=0, the last time seen alive (j) and
the last time (k) should always be the same and equal to the day the nest attempt was completed (which
may be hatch date for species with precocial young, or fledging date for species with altricial young).
For unsuccessful nests, fate> 0, j < k.

For successful nests, time k is ignored. For situations where the date of hatch is not known exactly,
none of the times should exceed the potential nest completion date, because the nest should not be
considered at risk of failure when a nesting attempt has already been completed. For unsuccessful
nests, the cell probability for the nest is taken as the product of the survival rates from time i to time
j − 1, times 1 minus the product of survival from j to k − 1.

The following series of examples for 5 occasions will clarify how to code nest survival data with the
triplet i, j, and k.

triplet history and interpretation

i � 1, j � 3, k � 5, f ate � 1 1010100001, with cell probability S1S2(1 − S3S4)

i � 1, j � 3, k � 3, f ate � 0 1010100000, with cell probability S1S2

i � 1, j � 3, k � 3, f ate � 1 invalid, because the nest was observed both present and
destroyed on day 3

i � 1, j � 1, k � 3, f ate � 1 1000010000, with cell probability 1 − S1S2

i � 1, j � 1, k � 3, f ate � 0 invalid because the nest was observed present only on day
i � 1. If the nest was still present on day 3, then j should
have been coded as j � 3

i � 1, j � 3, k � 5, f ate � 0 partially invalid because the nest was observed for the
interval 1 to 5, when the nest was successful, but the coding
shown will only use the data from 1 to 3,giving 1000100000,
with cell probability S1S2. For f ate � 0, j � k

i � 3, j � 3, k � 3, f ate � 0 or 1 invalid because the nest was not observed over an interval
for either fate

The key difference between known-fate (discussed in the preceding chapter) and nest survival data
types is that with nest survival data, we don’t know exactly what day the nest was destroyed for cases
where the nest was unsuccessful. Thus, consider the cell probability for the following:

/*GGOO, 1995-076*/ 53 59 63 1 1 4;

This nest was found on day i � 53, checked and found still present on day j � 59, and found destroyed
(i.e., failed) on day k � 63. The last variable (an individual covariate) in this example is the age of the
nest at the time it was first found – 4 days old for the first nest.

The cell probability corresponding to this nest would look like:

S53S54S55S56S57S58

(

1 − S59S60S61S62

)
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The first portion of the expression models the survival of the nest from day i � 53 to day j � 59. The
second portion of the expression, in brackets, models the failure of the nest during the interval from day
j � 59 to day k � 63. That is, had the nest been successful during this interval, the probability would
have been S59S60S61S62. Because the nest was destroyed at some time during that interval, this quantity
is subtracted from 1. The complete encounter history for this example would consist of 52 pairs of ’00’,
followed by the following string with blanks inserted to delimit occasions denoted on the second line:

10 00 00 00 00 00 10 00 00 01

53 54 55 56 57 58 59 60 61 62

Needless to say, having to write this out in full on your own would be a rather tedious exercise.
Fortunately, MARK handles all of this for you ‘behind the scenes’. But, it is important to understand
how the probability statements are created.

begin sidebar

Effective sample size and nest survival analyses

The effective sample size for AICc is computed somewhat differently for the nest survival model than

other models in MARK. Typically, each binomial trial in a model provides one degree of freedom. For

the nest survival model, each day that the nest is known to survive contributes 1 degree of freedom

because each day is a binomial trial where the result is known. However, the interval in which a nest

fails only contributes 1 degree of freedom also, because the exact day of failure is not known, but only

that the nest failed during the interval.

Thus, a record like

/*YGBB, 1995-074*/ 44 55 55 0 1 18};

contributes 10 degrees of freedom, because there are 10 binomial trials where the nest was known to

succeed. However, the following record only contributes a single degree of freedom, because the nest

failed somewhere in the interval 58-61.

/*WGGW, 1995-078*/ 58 58 61 1 1 18;

end sidebar

17.4. Building models

OK, this is what you’ve probably been patiently waiting to get to all along so finally, here is some
information on how to actually build competing models for nest survival data in MARK. Before we
can get started, we need to start MARK and opt to create a new MARK database file from your nest-
survival encounter history file using the ‘File’ menu and the ‘New’ option. From this point, choose the
‘Nest Survival’ data type and fill in the required information. For our mallard example, we have a
90-occasion study (data were collected across 90 days), 1 attribute group, and 6 individual covariates.
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If you’d like, you can enter names for the individual covariates. As we have 6 that we’ll use in the
model-building exercises below, it’s probably best to name them. So, choose to ‘Enter Individual
Covariate Names’ and enter the following: Robel, PpnGrass, Native, Planted, Wetland, and AgeDay1.

Model 1: Constant Daily Survival Rate

Now that we have created a new database, we’ll start our model building with the simplest model, the
maximum likelihood version of the Mayfield model. Remember, in this model, we assume that all nests
in the sample under consideration have the same DSR on every day. So, we simply need to constrain
DSR accordingly.

This can be done with the PIM chart, the survival PIM window, or by choosing to run the appropriate
pre-defined model, which is listed appropriately as the S(.)model (although, again – as noted before,
we do not favor relying on pre-defined models – they’re available in MARK to expedite analysis of
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common models, and should only be used if you have a firm grasp on what you’re doing).

begin sidebar

PIMs and nest survival

This brings up a question: how many PIMs are there for this nest survival dataset? Well, it turns out

that there is only one. That’s right: we’ve only got one group, and there are no parameters other than

survival (DSR) to estimate for this data type. It also brings up the question of how many cells there are

in the PIM. For this dataset, there are 90 encounter occasions and thus, there are 89 cells in the PIM to

estimate the survival probabilities across the 89 intervals. Unfortunately, for this example, the PIM is

so wide we can’t show you the whole thing - but, try it yourself.

end sidebar

OK, back to model building. To set up this model using the PIM window, simply set all the values in
the PIM to 1, which, of course, is the S(.) model we’re after here. The easy way to set all the values to 1
is to right-click the PIM window, and select ‘Constant’.

Next, go ahead and run this model. You might name the model something like ‘Constant DSR’ or
‘B0’ (as it is an intercept-only model, and we usually denote the intercept as β0 or β1 (depending on
your convention), or ‘B0’ or ‘B1’in ASCII, respectively. Here we will use β0 for the intercept.). Be sure to
turn off the option ‘Standardize Individual Covariates’, because this option is not needed for these
data (i.e., the covariate values are scaled to not produce numerical problems), and because we will not
want to scale the AgeDay1 variable in a future analysis. So, to maintain compatibility of the models, we
uncheck the ‘Standardize Individual Covariates’ box.
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Once the model has run, you can examine the real parameter estimates whereupon you’ll see the
following:

This is the estimate of DSR when DSR is constrained to be constant across all nests and all dates in
the sample. For mallards, it is typically considered that a nest must survive 35 days in order to make
it from the 1st day of egg laying to nest completion, which is the day the young leave the nest. So, you
could raise the estimated DSR to the 35th power to obtain a point estimate of nest success, which is
0.184.

Model 2: DSR Varies by Habitat Type

Often there is interest in whether or not DSR varies among nests found in different habitat settings.
Although there are certainly many metrics that can be used to describe the habitat conditions associated
with a nest, researchers often categorize habitat conditions and use a metric such as habitat type. In
the study of mallard nests, the researchers used 4 habitat types, which you’ll remember were described
using 3 dummy variables as individual covariates. To build a model that allows DSR to vary by habitat
type, you’ll need to use the design matrix and the individual covariates that tell MARK which habitat
type each nest was in. The following design matrix can be used.

begin sidebar

DM, groups and nest survival

If you have experience using groups in MARK, you may recognize that encounter histories for nests in

different habitats could be put in different groups. If this were done,you would have a different PIM for

DSR for each group and could evaluate a model that allows DSR to vary among habitat types without

using a design matrix. In this example, all of the data were entered in a single group, the habitat type

associated with each nest is input as an individual covariate, and the design matrix is used to build

models in which DSR is allowed to vary among habitat types. The modeling results obtained will be

the same regardless of whether habitat type is input using different groups or individual covariates.

end sidebar

Once you’ve specified the design matrix appropriately, you’re almost ready to run this model. When
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you name the model,you might call it ‘Habitat Type’ or, in keeping with the naming strategy used in the
previous model, you might call it ‘B0 + B1 x Native + B2 x Planted + B3 x Wetland’. Once again,
be sure to turn off the option ‘Standardize Individual Covariates’, because this option is not needed for
these data. Next, you need to think through which habitat you’d like the estimates of the real parameters
to be for. One easy way to control this is by specifying that you want to use ‘User-Specified Covariate
Values’ (check the button in the lower right corner of the setup window. For more on this topic, look in
the MARK Help file under ‘Individual Covariates and Real Parameter Estimates.’).

Let’s assume for now that you want to get estimates for Native vegetation (we’ll get estimates for
other habitat types later). Specify that you want to estimate the real parameters when Native = 1, i.e.,
when the habitat type is native grassland. For this model, all other parameter values can be left as 0:
values for Robel, PpnGrass, and AgeDay1 are ignored as they’re not in the model; values for Planted and
Wetland need to be 0 to ensure we’re only estimating DSR for nests in Native.

We want to know the habitat-specific estimates of DSR. To get those, we’ll need to run the model 3
more times and choose to base the real parameter estimates from user-specified covariate values. When
you run this model, you’ll see that (1) the results for this model suggest that the simpler intercept-only
model (our ‘S(.)’ or ‘B0’ model) is more appropriate and (2) the estimate of DSR for native grassland
is 0.946 (SE = 0.005). Now, you can re-run the model 3 more times: setting Planted=1 and all other
variables to 0 on one run, setting Wetland=1 and all other variables to 0 on another run, and then finally
running the model with all variables set to 0. What will this last model run allow us to estimate? If you
figured out that this will allow you to obtain an estimate for roadside habitat (i.e., the habitat that a nest
is in for this example if it’s not in planted cover, native cover, or a wetland), then you’re getting this (or
this is old hat to you and you might consider reading something else!).
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Notice that you don’t want multiple versions of this same model sitting in the Results Browser as
they influence the model weights. But, you may want to look at each and see what the habitat-specific
estimates of DSR are (Native: 0.946 [SE=0.005]; Planted: 0.956 [SE=0.003]; Wetland: 0.951 [SE=0.011];
and Roadside: 0.956 [SE=0.009]).

You now see how MARK can be used to evaluate basic models of DSR using maximum likelihood
estimation and AIC. This alone would make MARK a very useful tool for analyzing nest survival data.
However, we can do much more. To showcase a few of the other types of models that can be run, we’ll
now explore models that allow DSR to vary based on factors such as habitat metrics measured on a
continuous scale.

Model 3: DSR varies with vegetation thickness (continuous covariate)

The input file contains an individual covariate labeled Robel (a continuous measure of how much the
vegetation around the nest site visually obscured the nest). One way to evaluate whether DSR varies
with Robel is to use the following design matrix:

When this model is run (you might call it ‘B0 + B1 x Robel’), you find that this model receives less
support than the simpler intercept-only model (our S(.)model).

Model 4: DSR varies with the amount of native vegetation in the surrounding area

The input file contains an individual covariate labeled PpnGrass,which you may recall is a continuous
measure of the proportion of grassland cover on the 10.4 km2 study site that contained the nest. Given
interest in relationships between nest survival and spatial features of vegetation, models containing
such covariates may be of interest in some studies. And, as you can probably now readily envision,
such models are readily evaluated in MARK.

You can use the design matrix to build a model containing PpnGrass and if you do, you will find that
this model receives more support than any of the models discussed so far. In fact, there is evidence that
DSR is higher on sites that contain more grassland cover than on sites with less cover.

But, we’ll assume that we have other a priori models that are of interest and will run them all before
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getting into the details about inferences that can be drawn from the analysis.

Model 5: DSR varies across the nesting season

One might predict that nests will be more or less vulnerable as the season progresses. Changes
might be predicted to occur because the abundances of predators and alternate prey are thought to
vary seasonally or because vegetation characteristics may change dramatically over the course of the
season in some habitat settings. Certainly other interesting hypotheses might exist as well. For now,
let’s just evaluate a model that constrains DSR across the nesting season such that it is forced to follow
a trend (a linear trend on the logit scale).

To build a trend model, go ahead and open the PIM window and set the values to all different (i.e., so
that the values in the 89 cells of the PIM take on the values 1, 2, 3, . . . , 89). Next, open a reduced design
matrix with 2 columns. Now, because our PIM had 89 parameters, the design matrix has 89 rows and 2
columns. Fill the first column in with 1’s (we want to estimate a β term for our intercept) and the second
column in with numbers running from 1 to 89 (we want to estimate a β term for a slope indicating how
the log-odds of DSR change with increasing season date; log-odds are discussed in Chapter 6).

Go ahead and run this model (you might call it ‘B0 + B1 x Date’). You can see that there’s not
much support for this model and that the real estimates don’t indicate any large changes in DSR over
the season. Even though in this case we don’t see much seasonal variation in DSR, you can probably
envision how this model might be of interest in other studies. Also, you might also be interested in
pursuing curvilinear versions of this model (e.g., a model with a quadratic term) where the middle
of the nesting season is expected to have the highest (or perhaps the lowest) DSR. If you did want to
evaluate a quadratic term you would create a third column in the design matrix and fill it with the
squared values of 1, 2, 3, . . . , 89, which, of course, are 1, 4, 9, . . . , 7921. [An easy way to do this is to
build an Excel spreadsheet that has columns containing the values and to copy and paste them into the
design matrix in MARK].

Model 6: DSR varies with nest age

One might predict that nests will be more or less vulnerable as they age. This could be of interest
because the species is known to provide predators with fewer and fewer cues each day as the nest ages.
Perhaps this occurs because the species is known to increase nest attentiveness and to take fewer breaks
from incubation as hatching nears. In contrast, in other species, one might predict that DSR is lower
later in nesting when nestlings and feeding of nestlings may provide more cues to predators. Obviously,
the predictions will vary by species. Regardless, we can use MARK to model a variety of models that
allow DSR to vary with nest age.

Let’s examine a simple model that allows DSR to follow a trend in accordance with nest age. To build
this model, we first need to let DSR be different on each day of the nesting season. To do this, we once
again need a PIM that is numbered from 1 to 89. Next, open a Design Matrix with 2 columns. Fill the
first column of the design matrix with 1’s (our intercept). Now for something that is new, at least in
this chapter. We want to build a model that contains each nest’s age on each day of the nesting season.
Fortunately, we have the covariate AgeDay1, which you may recall tells us the age of the nest on the 1st
day of the nesting season (a negative value for most of the nests!). We will now use this covariate and
one of MARK’s handy design matrix functions to fill in our design matrix.

In the MARK Help file (or in Section 11.4 of Chapter 11 of this book), you should read over the
section on design matrix functions – you can find it by searching for ‘Design Matrix Add and Product
Functions’ in the helpfile index. We will use the ‘add’ function, which not surprisingly is a function
that adds 2 arguments together.
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To create an individual covariate that is each nest’s age on each day of the nesting season, we will
start with AgeDay1 and simply add 0 to it on the first day of the nesting season, 1 to it on the 2nd day
of the nesting season, 2 to it on the 3rd day of the nesting season,. . ., and 88 to it on the 89th day of the
nesting season. The actual function takes the form ‘add(argument1,argument2)’ where the 2 arguments
in this case are AgeDay1 and a continuous string of discrete numbers from 0 to 88. Some of you may be
concerned about the fact that negative values were entered for most nest ages on day 1 of the nesting
season. But, the negative values are never actually used to compute a survival, because a nest doesn’t
enter the likelihood until the ‘add(AgeDay1,x)’ value is zero, assuming that the correct age on day 1
(i.e., the correct negative value) has been entered. This business of adding to a negative age may be
conceptually difficult at first but it does work!

The completed design matrix appears as follows:

Go ahead and run this model (you might call it ‘B0 + B1 x Nest Age’). Be sure to uncheck the
‘Standardize Individual Covariates’ box, because otherwise the adding of the values in each row
of the design matrix will not perform as you are expecting. You’ll see that the results indicate that DSR
might vary with nest age. But first, we might just want to run a few models that consider multiple
covariates at once.

Note that you can also construct a model with age in a quadratic (or higher power function). Simply
add a third column to the design matrix, and enter ‘power(add(AgeDay1,0),2)’ in the 1st row of the
3rd column, ‘power(add(AgeDay1,1),2)’ in the 2nd row of the 3rd column, and so on, ending with
‘power(add(AgeDay1,88),2)’ in the 89th row of the 3rd column. (As noted above, in both Chapter 11 of
this book and in MARK’s help file for design matrix functions, there are instructions for how to create
such a column efficiently in Excel using Excel’s ‘concatenate’ function).

Model 7: models with multiple covariates

Let’s imagine that the researchers had predicted a priori that DSR might vary with nest age and each
of the various habitat measures (Habitat Type, Robel, and PpnGrass). So, let’s build 3 more models by
simply adding to the design matrix used for the ‘B0 + B1 x Nest Age’ model. We can do this using
the ‘Add Column’ function (or the combination of the ctrl key and the ‘A’ key) while the design matrix
window is active. Let’s go ahead and run these 3 models and call them: (1) ‘B0 + B1 x Nest Age + B2
x Robel’, (2) ‘B0 + B1 x Nest Age + B2 x PpnGrass’, and (3) ‘B0 + B1 x Nest Age + B2 x Native +
B3 x Planted + B4 x Wetland’.
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It seems pretty clear that it’s worth considering nest age and that PpnGrass appears to be important
as well. We’ll look at the details of model results a bit more below, but first, let’s consider another factor
possibly affecting DSR that one might want to investigate.

17.4.1. Models that consider observer effects on DSR

Although we won’t go into all the details here, it seems worth pointing out that MARK also allows
one to readily evaluate possible effects of observer visits to nests on DSR if the appropriate information
is entered in the encounter history. In the case of the mallard study, 89 individual covariates could be
added to the encounter history that simply are coded as 0 or 1 and that indicate whether a nest was
visited on each day of the nesting season or not. These 89 covariates might be called something like
VisitDay1, VisitDay2,. . ., VisitDay89. The idea being that we could then build a design matrix that
modeled DSR as a function of whether or not a nest was visited on a given day. For example, if these
covariates were included in the dataset, you could build a design matrix like the following:

Further, you could include consideration of nest visits at the same time that other covariates were
also considered. In cases where there is concern that nest visits may affect DSR on the day of the visit,
such models may be of considerable interest. Other versions of such models could be built to consider
more complex effects of visits on DSR, e.g., effects that are strongest immediately after a visit but that
persist for multiple days.

Also recognize that you definitely do not want to use the ‘Standardize Individual Covariates’ option
with the model shown in the above design matrix. If you were to standardize the individual covariates,
each of the 89 variables VisitDay1 through VisitDay89 would be standardized differently, and as a
result, the model would be nonsense. That is, the βi value (β2) would be multiplying variables with
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different meanings in each row. So, by not standardizing the individual covariates, the meaning of
VisitDay1 is the same as the meaning of VisitDay2, etc.

17.5. Model results

The most parsimonious model of DSR included Nest Age and PpnGr. This model was 1.06 AICc units
better than the second-best model, which included Nest Age but not PpnGr, and was > 2.90 AICc

units better than all other models evaluated. Models that held daily survival probability constant or
simply allowed it to vary by habitat type, i.e., the only model types that have been used in many recent
publications on nest survival, received little support (∆AICc > 6.11). The best model indicated that
DSR increased with nest age (β̂ � 0.0188, SE � 0.008) and grassland extent (β̂ � 0.369, SE � 0.211),
as can be seen in the following graphic (note: individual covariate values were not standardized in the
analysis that produced these estimates so that actual nest ages and levels of PpnGrass could be used
when producing the estimates; convergence was not problematic here).

When the logit link is used, our estimate of DSR for any combination of nest age and PpnGrass is
simply

exp
(

β0 + β1(Nest age) + β2(PpnGrass)
)

1 + exp
(

β0 + β1(Nest age) + β2(PpnGrass)
)
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So, for example, the estimated DSR for age=15:

So, the estimates presented in the figure can readily be obtained by substituting in the estimates of
the β’s and various values of nest age and PpnGrass.

Of course, one would want to see some measure of uncertainty on these graphs as well. So, it is worth
considering how we can obtain estimates of the SE associated with various estimates of DSR. This is a
bit more complicated because now there are 3 estimated β’s and an associated 3×3 variance-covariance
matrix for those estimates. One method of incorporating the variances and covariances associated with
the 3 β’s is the ‘Delta method’ (Seber 1982). Although we won’t go into the use of the Delta method
in this chapter (it is described in detail in Appendix 2), the figure (above) provides estimates of DSR
and 95% confidence intervals estimated by the delta method for 15-days-old nests for different levels
of PpnGrass.

17.6. Individual covariates and design matrix functions

In chapter 11 (section 11.4) we introduced several special functions that you can use in the design matrix,
to make it easier to build specific models. These functions are especially useful for building complex
models involving individual covariates. In Chapter 11 (section 11.4), there is a fairly comprehensive
review of how to use several of these (specifically, the add and ge function) for a nest survival analysis
which has fairly common design considerations.

17.7. Additional applications of the nest success model

Another application of the nest success model is to estimate the survival of radio-tracked animals when
the animals are not monitored in discrete intervals, as required by the known-fate data type (see the
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preceding chapter on known-fate analysis). Consider that such data are no different than a set of nests
where all the nests are not visited on the same day. A DSR is estimated for each day of the study based
on the sample of animals available on that day, and the exact day of death is not required (just as the
exact day that a nest was destroyed is not known). We call these kinds of data ‘Ragged Telemetry Data’
because the sampling scheme is ragged, but useful estimates can still be obtained.

17.8. Goodness of fit and nest survival

Like the known fate data type, the saturated model for the nest survival data type is a useful model.
Because the saturated model fits the data perfectly, there is no GOF test provided in Program MARK.
However, a goodness of fit test for nest survival data was developed recently by Sturdivant et al. (2007),
and it can be implemented with published SAS code, but not in MARK. Additional details, including
code and sample datasets, can be found at: http://www.montana.edu/rotella/nestsurv/.

17.9. Summary

For nest survival data,Program MARK provides an excellent alternative to traditional constant-survival
methods that have been used in most studies of nest survival to date. The methods shown in this
chapter (1) can be used to conduct analyses of stratified data (appropriate if the simplifying assumptions
of constant survival apply) and provide estimates that are almost identical to Mayfield estimates (or
various refinements), (2) permit comparisons of survival probabilities among groups, (3) allow a much
broader variety of covariates and competing models to be evaluated, and (4) should be employed in
most nest-survival studies. It is worth noting that these methods can also be used for analyzing survival
data collected from radiomarked individuals using ragged (uneven) intervals among animals and over
time. The MARK help file provides more comments on this topic.

Despite these advances, further analysis improvements would be useful. Improved methods of
estimating goodness-of-fit and for detecting and estimating overdispersion, or extra-binomial variation,
would be useful given that a variety of factors may cause overdispersion. Nest-success data are com-
monly collected according to multilevel designs that result in grouped data, e.g., multiple observations
on at least some nests, multiple nests per site, and multiple sites within each year. Thus, undetermined
random effects of individuals, sites, and years could cause overdispersion or within-group correlations
in daily survival probabilities, e.g., nest fates from multiple nests from within a colony or from a given
study plot may not be independent. In addition, the spatial clustering of covariate levels could generate
spatial correlation in nest survival rates and thus cause overdispersion. The random-effects model
described by Rotella et al. (2004) can estimate random effects due to one source, e.g., site.

However, even these methods do not accommodate multi-level nonlinear mixed models (e.g., some
random effects associated with site, some associated with year, and others associated with individual
nests),although,as mentioned above, they will be of interest in some studies (note: This is a good example
of a situation where the new MCMC tool in MARK could be used,but further discussion of that complex
topic is beyond the scope of this chapter). Finally, in some studies, uncertainty will exist about nest ages
and when transitions among nest stages occur (Williams et al. 2002). This problem has been addressed
for stratified data (Stanley 2000, 2004) but not yet for data with more complex covariates.
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CHAPTER 18

Mark-resight models

Brett McClintock, NOAA National Marine Mammal Laboratory, Seattle, Washington, USA

Mark-resight methods constitute a slightly different type of data than found in traditional mark-
recapture, but they are based on the same fundamental principle of explicitly accounting for imperfect
detection towards reliably estimating demographic parameters (see White & Shenk 2001 for a thorough
explanation of how these data are collected, and McClintock et al. 2009b, McClintock & White 2009,
and McClintock & White 2012 for full details of the models). Like the other mark-recapture models in
MARK, this approach models encounters (resightings) of marked individuals, but they also incorporate
additional data via sightings of unmarked individuals into the estimation framework. Mark-resight
data may be used to estimate abundance (N) in a fashion analogous to the closed capture models of
Otis et al. (1978) (see also Chapter 14). When sampling is under the robust design, mark-resight data
may be used to estimate abundance, apparent survival, and transition probabilities between observable
and unobservable states in a fashion analogous to the closed capture robust design models of Kendall,
Pollock & Brownie (1995) and Kendall, Nichols & Hines (1997) – see also Chapter 15.

These models assume some individuals have been marked prior to sampling, and sampling occasions
consist of sighting surveys (instead of capture periods). The main advantage of this approach is that
because costs associated with marking and recapturing can be minimized, it can in many circumstances
be a less invasive and less expensive alternative to traditional mark-recapture as a means for monitoring.
With limited funds and resources, mark-resight can be appealing to researchers because costs associated
with capture are generally the most expensive aspects of mark-recapture studies. Not only can the
financial burden of mark-recapture be discouraging for long-term population monitoring, but capture
is also the most hazardous aspect for the animals and may unduly influence the attributes of scientific
interest. If field-readable marks are feasible, mark-resight can substantially reduce stress to species
because they can be observed at a distance with minimal disturbance after the initial marking period.
This can be of particular concern when working with threatened, endangered, or sensitive species.

The methods require that the number of marked individuals in the population during sampling be
known exactly or can at least be reliably estimated. If sampling during sighting occasions is without
replacement (i.e., any single individual may only be sighted once per distinct occasion) and the number
of marked individuals in the population available for resighting is known exactly, then the mixed logit-
normal mark-resight model (McClintock et al. 2009b) may be employed to estimate N . If the mixed
logit-normal model is appropriate but the population of interest within the study area is known to lack
geographic closure (e.g., from telemetry data for the marked population), the immigration-emigration
logit-normal model may be used to estimate N (or density). Alternatively, if sampling within sighting
occasions is with replacement or the exact number of marked individuals in the population is unknown,
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the Poisson-log normal mark resight model (McClintock et al. 2009a) may be used to estimate N . If
permanent field-readable marks are used but the number of marks is not known, then mark-resight
data collected under the closed robust design may be analyzed with the Poisson-log normal model in
a fashion analogous to the regular mark-recapture robust design (Chapter 15) for estimating apparent
survival (ϕ), transition probabilities between observable and unobservable states (γ′′ and γ′), and N

(McClintock & White 2009).

These models were developed as reliable and more efficient alternatives to the mark-resight models
previously available in Program NOREMARK (White 1996). Similar to the mark-recapture models in
MARK, they provide a framework for information-theoretic model selection and multimodel inference
based on AIC (Burnham & Anderson 2002) and the utilization of individual or environmental covariates
on parameters. However, because the nature of mark-resight data is somewhat different than that of
mark-recapture, a different format for the encounter history files has been developed to address this.
Explanations of the various models and their MARK encounter history file formats are detailed below.
The encounter history and results files referenced here accompany MARK. Following the explanations
of the models and their MARK encounter history files, some general suggestions are provided for
performing an analysis with these models in MARK. But first, a little more background on mark-resight.

18.1. What is mark-resight?

The basic premise behind mark-resight is fairly simple. First, some field-readable marks are introduced
into the population. Then encounter data are collected (via non-invasive sighting surveys) on both
the marked and unmarked individuals in the population. Lastly, the data are analyzed to estimate
abundance (N) and/or related demographic parameters (ϕ, γ′, γ′′). Pretty simple, right? As usual, the
complications lie in the particulars.

Initially, the focus of mark-resight was on utilizing radio-marked individuals to estimate closed
population abundance. This dependency on radio-collars arose because of a need to know the exact
numberof marked individuals in the population. One of the simplest mark-resight models of abundance
is the classic Lincoln-Petersen estimator:

N̂ �
m1n2

m2

,

where m1 is the number of marked animals in the population, n2 is the total number of marked and
unmarked animals seen, and m2 is the number of marked animals seen (see Chapter 14 for more
details on the Lincoln-Petersen and other closed population abundance estimators). Users of Program
NOREMARK are probably familiar with other mark-resight models of abundance, such as the joint
hypergeometric estimator (Bartmann et al. 1987), the Minta-Mangel estimator (Minta & Mangel 1989),
the immigration-emigration joint hypergeometric estimator (Neal et al. 1993), and Bowden’s estimator
(Bowden & Kufeld 1995). Arnason, Schwarz & Gerrard (1991) developed a mark-resight model of
abundance when the number of marked individuals in the population is unknown. These contributions
were the motivation for developing a more general suite of mark-resight estimators that would fit into
the flexible modeling framework that MARK provides.

There are several things to consider when deciding to use the mark-resight models in MARK. As with
all mark-recapture studies, a population of interest must first be defined (both in space and time). For
starters, we will assume this population is geographically and demographically closed, and abundance
for a single period of time is the only item of interest. The simplest issue relevant to mark-resight is
whether or not individuals in the population can possess field-readable marks. You’re unlikely to use
mark-resight on Peromyscus, but it has been applied to many different species including ursids, canids,
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badgers,ungulates,prairie dogs, snail kites, owls, robins, and grouse. Field-readable marks may come in
many forms, including collars, bands, paint, dye, or natural patterns. The marks may be temporary (e.g.,
paint or dye on fur) or permanent, but no (unknown) marks may be lost during the sampling period
of interest. An important distinction for the mark-resight models in MARK is whether the marks are
individually identifiable or not. Much more information (and flexibility) can be attained through the
use of individually identifiable marks, particularly if individual sighting probability heterogeneity is of
concern. However, this methodology may still be employed if individually identifiable marks are not
feasible (e.g., due to species or monetary constraints).

If field-readable marks are possible, then marked individuals must be introduced into the population
before any sighting data can be collected. This is typically done via a capture event (but not necessarily).
Whatever the marks and however they are introduced, the most fundamental assumption of mark-

resight is that the subset of the population selected for marking is representative of the entire

population in terms of sighting probabilities. A strategy typically employed to satisfy this condition
is the use of a different method to randomly select marked individuals than is used for the sighting
surveys. This may seem obvious, but mark-resight has often been applied (inappropriately) when the
marked population was selected based on sightability.

One must also make sure that the marks themselves do not affect sightability. If the tags on the marked
individuals are so eye-catching that they make the marked population much more sightable than
the unmarked individuals, then the sighting probabilities will be overestimated (and population size
therefore underestimated). For example, suppose fish were marked with bright fluorescent tags on the
dorsal side (Fig. 18.1) and sighted from a bridge above. If the bright tags made the marked individuals
sightable from depths where unmarked individuals were not, then there would be a problem.

Figure 18.1: Example of a ‘tagged’ organism which may be significantly more ‘visible’ than untagged individuals,
which would potentially bias estimates of population size.

Once marks have been introduced into the population, an important piece of information becomes
‘how many marked individuals are alive and in the study area?’. If the number of marked individuals
available for resighting is known exactly, this can be very useful information for estimation (particularly
when individual sighting heterogeneity is a serious issue). The number of marks in the population
is commonly determined via radio or GPS collars that emit a mortality signal. Another way this is
accomplished is by conducting the marking period immediately prior to the collection of sighting
data, such that it can be reasonably assumed that no marked individuals died or emigrated between
the capture event and the sighting surveys. When marked individual mortality or movement cannot
be monitored, and sufficient time has passed since the original introduction of marks, then the exact
number of marks will usually be unknown.
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The actual sighting data are collected during visual surveys within the study area. All sightings of
marked and unmarked individuals in the population are recorded. If individually identifiable marks
are used, then the individual identities of marked individuals are also recorded. The sighting surveys

themselves come in two basic flavors: sampling with or without replacement. If sampling is without
replacement, then each individual in the population can be seen at most once within each of the distinct
sampling occasions (as in mark-recapture). However, in many circumstances sampling must be with
replacement. This arises when sampling cannot be divided into distinct occasions where individuals can
only be sighted once, such as when studying a highly mobile species or using camera traps. Sampling
with replacement differs from other mark-recapture sampling because here sighting occasions need
not be distinct, and consideration is given only to some closed period of sampling. When sampling
with replacement, particular care must be taken to ensure that all sightings of a marked or unmarked
individual are recorded, irrespective of marked status or any previous sightings. For example, suppose
one were to stop counting resightings of a marked individual after it had already been resighted during
the sampling period,but continued to record all unmarked sightings (because one cannot know whether
or not an unmarked individual had been previously sighted during the sampling period). This would
violate the must fundamental assumption of mark-resight because the marked individual sighting
probabilities would not be representative of the unmarked individual sighting probabilities.

Sighting probabilities are modeled with mark-resight estimators just as capture probabilities are
modeled with mark-recapture estimators. This means group, temporal, or individual covariates may be
utilized to describe the detection process. Individual sighting heterogeneity is also an important issue
because failure to account for it may result in underestimates of abundance (if the number of marks is
unknown) and overestimates of precision. Individual heterogeneity may only be accounted for if marks
are individually identifiable.

As is the case in most monitoring programs, let’s now consider more than a single closed period
of interest. We will adopt the terminology of the ‘robust design’ (Kendall, Pollock & Brownie 1995;
Kendall, Nichols & Hines 1997; Chapter 15), where data are collected across both closed and open
sampling periods (Fig. 18.2):

1 2 k1
... 1 2 k2

... 1 2 k3
...

1 2 3

closure closure closure

open open

secondary

samples

primary

samples

time

Figure 18.2: Sampling structure of ‘classical’ robust design.

The open periods refer to the encounter process between ‘primary’ sampling intervals, where each
primary interval consists of ‘secondary’ sighting occasions. The time periods between the secondary
sighting occasions within a primary interval must be of short enough duration for the assumption of
closure to be satisfied (although this may in some circumstances be relaxed – see the next paragraph).
As noted before, if sampling is with replacement, then we are not concerned with distinct secondary
sighting occasions, but rather some closed period of secondary sampling during each of the primary
intervals. New marks may be introduced to the population at any time during the open periods, but
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no marks may be added during the closed periods (except when using the immigration-emigration
logit-normal model).

The issue of closure deserves a bit of attention before getting into the specifics on implementing the
logit-normal, immigration-emigration logit-normal, and Poisson-log normal mark-resight models in
MARK. When the population of interest is both geographically and demographically closed, then the
estimates of abundance produced by all of the mark-resight models are exactly what we think they are:
the population size residing within the study area during the period of interest. If the population is not
geographically closed (i.e., individuals move in and out of the study area), then there are two notions of
‘population’ for the study area (Fig. 18.3). There is the population that actually resides within the study
area during the period of interest (N), but there is also a ‘super population’ of individuals associated
with the study area during the period of interest (N∗).

outside of

study area

(unobservable)

inside of

study area

(observable)

‘superpopulation’

(= observable +

unobservable)

Figure 18.3: Observable sampled population, as part of larger superpopulation.

This distinction is important, because the latter is unsuitable for addressing questions related to
population density. When geographic closure is violated, then the mixed logit-normal and Poisson-
log normal mark-resight models produce estimates of N∗. For this reason, the immigration-emigration
logit-normal model was developed as a means for estimating both N and N∗ when geographic closure
is violated. When demographic closure is violated (i.e., individuals may die or permanently emigrate
independent of mark status), all of the models will produce estimates of the population size at the
beginning of the sampling period of interest. Because the lack of geographic or demographic closure
may induce non-negligible levels of individual sighting heterogeneity, we suggest that heterogeneity
models be explored when these violations are suspected (this requires individually identifiable marks).

18.2. The mixed logit-normal mark-resight model

To be used when sampling is (i) without replacement within secondary sampling occasions, and (ii) the
number of marked individuals in the population available for resighting is known exactly. Marks may
or may not be individually identifiable. See McClintock et al. (2009b) for full details.

Data:

t � the number of primary sampling intervals

k j � the number of secondary sampling occasions (without replacement) during the primary
interval j

n j � the exact number of marked individuals in the population during primary interval j

mi j �
∑n j

s�1 δs i j � total number of marked individual sightings during secondary occasion i of
primary interval j
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Tu j � total number of unmarked individual sightings during primary interval j

δs i j � Bernoulli random variable indicating sighting (δs i j � 1) or no sighting (δs i j � 0) of
marked individual s on secondary occasion i of primary interval j (this only applies when
individually identifiable marks are used)

ǫi j � total number of marks seen that were not identified to individual during secondary
occasion i of primary interval j (this only applies when individually identifiable marks
are used)

Parameters:

N j � population size or abundance during primary interval j

pi j � intercept (on logit scale) for mean resighting probability of secondary occasion i during
primary interval j. If there is no individual heterogeneity (σ j � 0), once back-transformed
from the logit scale the real parameter estimate can be interpreted as the mean resighting
probability

σ2
j � individual heterogeneity level (on the logit scale) during primary interval j (i.e., the

variance of a random individual heterogeneity effect with mean zero)

Derived Parameter:

µi j � overall mean resighting probability for secondary occasion i of primary occasion j. This
parameter is derived as a function of pi j , σ

2
j , and ǫi j . Note that when σ j � 0 and ǫi j � 0,

then the real parameter estimate for pi j is identical to the derived parameter estimate for
µi j .

18.2.1. No individually identifiable marks

If a known number of marks are in the population, but the marks are not individually identifiable, then
the data for the mixed logit-normal model are t, k j , n j , mi j , and Tu j . These are the same data as for the
joint hypergeometric estimator (JHE) previously available in Program NOREMARK (White 1996), but
the mixed logit-normal model can be a more efficient alternative because it can borrow information
about resighting probabilities across primary intervals or groups (McClintock et al. 2009b). Note that
because no information is known about individual identities, individual heterogeneity models cannot
be evaluated with these data (i.e., σ j � 0) and the probability of any individual being resighted on
secondary occasion i of primary interval j is pi j .

Suppose there is only one group and t � 3, k j � 4, n1 � 30, n2 � 33, n3 � 32, m11 � 8, m21 � 9,
m31 � 10, m41 � 5, m12 � 11, m22 � 10, m32 � 18, m42 � 9, m13 � 5, m23 � 10, m33 � 13, m43 � 8, Tu1 � 96,
Tu2 � 68, and Tu3 � 59.

Although no individual identities are known, these data may be summarized into artificial

individual encounter histories similar to those of the mark-recapture robust design.The total number
of unmarked individuals seen

(

Tu j

)

must be entered after the encounter histories under the heading
‘Unmarked Seen Group=1’ such that the resulting encounter history file would be:

/* No Individual Marks 1 group */

/* 12 occasions, 3 primary, 4 secondary each */

/* Begin Input File */

111111111111 5;
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111011110111 3;

011011110110 1;

001011100110 1;

000010100010 1;

000000100010 2;

000000100000 5;

000000000000 12;

....00000000 2;

....0000.... 1;

Unmarked Seen Group=1;

96 68 59;

/* End Input File */

Let’s looka bitmore closely at the inputfile. First,remember that there are 3 primary sampling periods,
each consisting of 4 secondary samples. To make this sampling scheme somewhat more ‘visually
obvious’, we’ll modify the encounter histories by putting a space between each primary sampling
session:

/* No Individual Marks 1 group */

/* 12 occasions, 3 primary, 4 secondary each */

/* Begin Input File */

1111 1111 1111 5;

1110 1111 0111 3;

0110 1111 0110 1;

0010 1110 0110 1;

0000 1010 0010 1;

0000 0010 0010 2;

0000 0010 0000 5;

0000 0000 0000 12;

.... 0000 0000 2;

.... 0000 .... 1;

Unmarked Seen Group=1;

96 68 59;

/* End Input File */

How do we generate the ‘artificial encounter histories’? The process is actually straightforward. First,
recall that n1 � 30, n2 � 33, n3 � 32, where n j is the exact number of marked individuals in the
population during primary interval j. Now, consider the first primary sample. Recall that for the first
primary sample, m11 � 8, m21 � 9, m31 � 10, m41 � 5, where mi j is the total number of marked individual
sightings during secondary occasion i of primary interval j. A little bit of mental math will demonstrate
that (8+9+10+5) , 30. This is because individuals can be sighted on more than one secondary occasion
(sampling with replacement among secondary samples,but not within an individual secondary sample).
The same logic applies to each of the other primary periods.

Now, if you look at the encounter histories closely, you’ll notice that the sums of the encounter history
columns (when multiplied by the corresponding history frequency) equal mi j , and the sums of the
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frequencies with non-missing entries (i.e., not ‘....’) for each primary interval equals n j .

In fact, this might give you a clue as to how you might generate the artificial encounter histories.
The easiest, albeit somewhat laborious way to do it is to create a file (a matrix, actually) consisting of 12
columns,one for each of the sighting samples (3 primary× 4 secondary = 12), and 33 rows. Why 33 rows?
Because 33 is the largest number of marked individuals observed during any one primary session (for
this example, n2 � 33). Now, simply fill in the matrix, entering a ‘1’ for each marked individual sighted,
and a ‘0’ for each individual ‘missed’ (not sighted). How many ‘1’ and ‘0’ values need to be entered?
Simple – for each column i j, you enter mi j ‘1’s.

So, given m11 � 8, m21 � 9, m31 � 10, m41 � 5, m12 � 11, m22 � 10, m32 � 18, m42 � 9, m13 � 5,
m23 � 10, m33 � 13, m43 � 8, then simply enter mi j ‘1’ values for the corresponding column, starting
from the top in each case:

1111 1111 1111

1111 1111 1111

1111 1111 1111

1111 1111 1111

1111 1111 1111

1110 1111 0111

1110 1111 0111

1110 1111 0111

0110 1111 0110

0010 1110 0110

0000 1010 0010

0000 0010 0010

0000 0010 0010

0000 0010 0000

0000 0010 0000

0000 0010 0000

0000 0010 0000

0000 0010 0000

0000 0000 0000

0000 0000 0000

0000 0000 0000

0000 0000 0000

0000 0000 0000

0000 0000 0000

0000 0000 0000

0000 0000 0000

0000 0000 0000

0000 0000 0000

0000 0000 0000

0000 0000 0000

0000 0000 0000

0000 0000 0000

0000 0000 0000

Next, we have to remember that for some primary sampling occasions, the number of marked
individuals is < 33. Since each row corresponds to a potential marked individual, then for those primary
periods where the number of marked individuals is < 33, some rows correspond to individuals which
don’t actually exist. To account for that, we’ll use a ‘...’ notation. Meaning, we’ll enter a dot (‘.’) for
unobserved or missing information. Recall that n1 � 30 (so, (33 − 30) � 3 rows corresponding to
‘missing individuals’ for primary period 1), and n3 � 32 (so, (33 − 32) � 1 row corresponding to
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‘missing individuals’ for primary period 3).

Thus, our matrix would be modified as follows (look closely at the last 3 rows):

1111 1111 1111

1111 1111 1111

1111 1111 1111

1111 1111 1111

1111 1111 1111

1110 1111 0111

1110 1111 0111

1110 1111 0111

0110 1111 0110

0010 1110 0110

0000 1010 0010

0000 0010 0010

0000 0010 0010

0000 0010 0000

0000 0010 0000

0000 0010 0000

0000 0010 0000

0000 0010 0000

0000 0000 0000

0000 0000 0000

0000 0000 0000

0000 0000 0000

0000 0000 0000

0000 0000 0000

0000 0000 0000

0000 0000 0000

0000 0000 0000

0000 0000 0000

0000 0000 0000

0000 0000 0000

.... 0000 0000

.... 0000 0000

.... 0000 ....

Next, simply calculate the frequency (number) of the individual histories. If you look closely, you’ll
see there are 5 of the ‘1111 1111 1111’ histories, 3 of the ‘1110 1111 0111’ histories, and so on.

We take these calculated frequencies, and re-write the histories in summary form, removing the
blank spaces/columns we inserted to make the sampling intervals more obvious, and put the encounter
frequencies in a column to the right of the history (as is the standard format for MARK input files):

111111111111 5;

111011110111 3;

011011110110 1;

001011100110 1;

000010100010 1;

000000100010 2;

000000100000 5;

000000000000 12;

....00000000 2;

....0000.... 1;
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This should look familiar – it is simply a piece of the larger input file (below), corresponding to the
artificial histories for the marked individuals:

/* No Individual Marks 1 group */

/* 12 occasions, 3 primary, 4 secondary each */

/* Begin Input File */

111111111111 5;

111011110111 3;

011011110110 1;

001011100110 1;

000010100010 1;

000000100010 2;

000000100000 5;

000000000000 12;

....00000000 2;

....0000.... 1;

Unmarked Seen Group=1;

96 68 59;

/* End Input File */

The final step simply involves entering the number of unmarked individuals, as shown above.

Constructing the .INP file based on ‘artificial sighting histories’ takes a bit of practice, but if you work
through the preceding example, it shouldn’t be too tough to grasp the basic idea.∗

As a test of your understanding, consider the case if these single group data (above) were split into
two groups, such that n1 � 17, n2 � 19, n3 � 18, m11 � 6, m21 � 6, m31 � 7, m41 � 4, m12 � 5, m22 � 5,
m32 � 11, m42 � 5, m13 � 3, m23 � 7, m33 � 7, m43 � 7, Tu1 � 48, Tu2 � 40, and Tu3 � 20 for the first
group, and n1 � 13, n2 � 14, n3 � 14, m11 � 2, m21 � 3, m31 � 3, m41 � 1, m12 � 6, m22 � 5, m32 � 7,
m42 � 4, m13 � 2, m23 � 3, m33 � 6, m43 � 1, Tu1 � 48, Tu2 � 28, and Tu3 � 39 for the second group, a
possible encounter history file would be:

/* No Individual Marks 2 groups */

/* 12 occasions, 3 primary, 4 secondary each */

/* Begin Input File */

111111111111 3 0;

111111110111 1 0;

111011110111 1 0;

111000100111 1 0;

001000100111 1 0;

000000100000 4 0;

000000000000 6 0;

....00000000 1 0;

....0000.... 1 0;

111111111111 0 1;

111011111110 0 1;

∗ Since creating .INP files by hand is not a good use of your time, an example R script for creating the .INP files based on ‘artificial
encounter histories’ is provided in the addendum. Tweak/adjust/improve as needed...

Chapter 18. Mark-resight models



18.2.2. Individually identifiable marks 18 - 11

011011110110 0 1;

000011110010 0 1;

000011100010 0 1;

000010100010 0 1;

000000100000 0 1;

000000000000 0 6;

....00000000 0 1;

Unmarked Seen Group=1;

48 40 20;

Unmarked Seen Group=2;

48 28 39;

/* End Input File */

Notice here that the single group data has simply been split up into two group data. The encounter
histories are followed by group frequencies just as in other MARK encounter history files for mark-
recapture data. The twist is that the unmarked data must be entered separately for each group. Again,
the sums of the encounter history columns (when multiplied by the corresponding group frequencies)
equals mi j for each group, and the sums of the frequencies with non-missing entries (i.e., not ‘....’) for
each primary interval equals n j for each group.

The analysis using these encounter history data (Logit_NoIndividualMarks_OneGroup.inp) yielded
the following results for the time-constant (p i j � p , σ j � 0) model in MARK:

Real Function Parameters of {p(.) sigma(.)=0 N(t)}

95% Confidence Interval

Parameter Estimate Standard Error Lower Upper

------------------------- -------------- -------------- -------------- --------------

1:p Session 1 0.3064700 0.0236970 0.2620778 0.3547665

2:sigma Session 1 0.0000000 0.0000000 0.0000000 0.0000000 Fixed

3:N Session 1 108.02874 8.9593461 92.350040 127.65004

4:N Session 2 88.188211 7.0136070 76.062792 103.72785

5:N Session 3 79.846656 6.3659903 68.905724 94.031094

Note that σ j must be fixed to zero for these data because heterogeneity models do not apply when
marks are not individually identifiable. This is because no information is known about individual
resighting probabilities, and the above encounter histories are artificial in that they don’t actually refer
to a real individual’s encounter history (these artificial encounter histories are just a convenient and
consistent way to enter the data into MARK). Because there is no individual heterogeneity in the model,
the real parameter estimate of p may be interpreted as the overall mean resighting probability (0.31 in
this case).

18.2.2. Individually identifiable marks

If marks are individually identifiable, encounter histories are constructed just as for robust design mark-
recapture data with the tk j possible encounters representing δs i j for individual s during secondary
occasion i of primary interval j. In other words, the encounter history is identical to the standard robust
design mark-recapture encounter history introduced earlier (Chapter 15).
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However, in the mark-resight context, it is possible to have an individual identified as marked, but
not to individual identity. A marked individual may be encountered but not be identified to individual
when the mark was seen but the unique pattern or characters that identify the individual were obscured
or too far away to read.

These are the same data as could be used for Bowden’s estimator (Bowden & Kufeld 1995) in Program
NOREMARK (White 1996),but the logit-normal model can be more efficient because information about
resighting probabilities may be borrowed across primary intervals, and it does not require investment
in individual heterogeneity parameters unless deemed necessary by the data (McClintock et al. 2009b).
If an individual was not known to be in the population during any primary interval j, then missing
values (.) are included for all k j secondary occasions of that interval in the encounter history. The total
number of marks seen but not identified to individual during secondary occasion i of primary interval
j (ǫi j) are entered sequentially

(

ǫ11 , ǫ21 , . . . , ǫk11 , . . . , ǫ1t , ǫ2t , . . . , ǫkt t

)

with each entry separated by a
space.

Using the data from the previous single group example but with ǫ � (0,0,0,0,1,1,1,0,0,3,0,1)

entered after the unmarked data under the heading ‘Marked Unidentified Group=1;’, one possible
encounter history file would be:

/* Individual Marks 1 Group */

/* 12 occasions, 3 primary, 4 secondary each */

/* Begin Input File */

001001000011 1;

000000100110 1;

010000000110 1;

0000........ 1;

....01101101 1;

000010000000 1;

001100100000 1;

001011100011 1;

000010000010 1;

010001100000 1;

000000000010 1;

001010010110 1;

101000100000 1;

....01001110 1;

010000100000 1;

11001000.... 1;

000100000000 1;

100000101011 1;

000011010000 1;

000100000000 1;

111000100001 1;

010000111001 1;

101000110000 1;

100001100010 1;

....00010000 1;

101000010010 1;

0000........ 1;

010000101000 1;

000110100000 1;
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011000000000 1;

010011110010 1;

000010110000 1;

101100000001 1;

....00010110 1;

....11100100 1;

Unmarked Seen Group=1;

96 68 59;

Marked Unidentified Group=1;

0 0 0 0 1 1 1 0 0 3 0 1;

/* End Input File */

Note that the sums of each column
∑n j

s�1
δs i j �

(

mi j − ǫi j

)

. The last two encounter histories are for
individuals that were not marked and known to be in the population until immediately prior to the
second primary interval. The fourth encounter history from the top represents an individual who was
marked and known to be in the population during the first primary interval (when it was resighted 0
times), but known to have not been marked and in the population during the second or third primary
intervals. This could be because the individual was known to have died, emigrated, or lost its mark.
Similar to other MARK encounter history files, the histories may pertain to multiple groups and include
individual covariates.

Splitting the above data into two groups, the above encounter history file could look like:

/* Individual Marks 2 Groups */

/* 12 occasions, 3 primary, 4 secondary each */

/* Begin Input File */

001001000011 0 1;

000000100110 1 0;

010000000110 1 0;

0000........ 1 0;

....01101101 1 0;

000010000000 0 1;

001100100000 1 0;

001011100011 0 1;

000010000010 0 1;

010001100000 0 1;

000000000010 0 1;

001010010110 1 0;

101000100000 1 0;

....01001110 1 0;

010000100000 1 0;

11001000.... 1 0;

000100000000 1 0;

100000101011 1 0;

000011010000 1 0;

000100000000 0 1;

111000100001 1 0;

010000111001 0 1;

Chapter 18. Mark-resight models



18.2.2. Individually identifiable marks 18 - 14

101000110000 1 0;

100001100010 0 1;

....00010000 0 1;

101000010010 0 1;

0000........ 0 1;

010000101000 0 1;

000110100000 1 0;

011000000000 1 0;

010011110010 1 0;

000010110000 0 1;

101100000001 1 0;

....00010110 1 0;

....11100100 0 1;

Unmarked Seen Group=1;

48 40 20;

Unmarked Seen Group=2;

48 28 39;

Marked Unidentified Group=1;

0 0 0 0 0 1 1 0 0 1 0 1;

Marked Unidentified Group=2;

0 0 0 0 1 0 0 0 0 2 0 0;

/* End Input File */

Notice the encounter histories are followed by group frequencies the same way as they are in all other
MARK encounter history files.

Because marks are individually identifiable, individual heterogeneity models may be explored
with these data. Here, individual heterogeneity is modeled as a random effect with mean zero and
unknown variance σ2

j . These encounter history data (Logit_IndividualMarks_OneGroup.inp) yielded
the following results for the time-constant individual heterogeneity (p i j � p , σ j � σ) model in MARK:

Real Function Parameters of {p(.) sigma(.) N(t)}

95% Confidence Interval

Parameter Estimate Standard Error Lower Upper

------------------------- -------------- -------------- -------------- --------------

1:p Session 1 0.2786641 0.0273014 0.2284108 0.3351710

2:sigma Session 1 0.4766088 0.2707817 0.1690244 1.3439241

3:N Session 1 112.97626 10.415916 94.940988 136.02025

4:N Session 2 87.429921 6.9734104 75.386318 102.89558

5:N Session 3 77.935945 6.0515938 67.521842 91.403200

If one wanted to report an overall mean resighting probability for this model, then the derived
parameter µi j (‘Mu-hat’) may be obtained (top of the next page).

Estimates of Derived Parameters

Mean Resighting Rate Estimates of {p(.) sigma(.) N(t)}
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95% Confidence Interval

Grp. Occ. Mu-hat Standard Error Lower Upper

---- ---- -------------- -------------- -------------- --------------

1 1 0.2880297 0.0247720 0.2420014 0.3388985

1 2 0.2880297 0.0247720 0.2420014 0.3388985

1 3 0.2880297 0.0247720 0.2420014 0.3388985

1 4 0.2880297 0.0247720 0.2420014 0.3388985

1 5 0.3183328 0.0247720 0.2718623 0.3687242

1 6 0.3183328 0.0247720 0.2718623 0.3687242

1 7 0.3183328 0.0247720 0.2718623 0.3687242

1 8 0.2880297 0.0247720 0.2420014 0.3388985

1 9 0.2880297 0.0247720 0.2420014 0.3388985

1 10 0.3817797 0.0247720 0.3345418 0.4313640

1 11 0.2880297 0.0247720 0.2420014 0.3388985

1 12 0.3192797 0.0247720 0.2727964 0.3696574

Even though the model included a constant p and σ for all occasions, there is some slight variation
in µi j due to marked individuals not being identified to individual identity (ǫi j) on several occasions.

The time-constant model with no heterogeneity (p i j � p , σ j � 0) yields:

Real Function Parameters of {p(.) sigma(.)=0 N(t)}

95% Confidence Interval

Parameter Estimate Standard Error Lower Upper

------------------------- -------------- -------------- -------------- --------------

1:p Session 1 0.2881305 0.0232879 0.2447124 0.3358270

2:sigma Session 1 0.0000000 0.0000000 0.0000000 0.0000000 Fixed

3:N Session 1 112.98732 9.7939840 95.902227 134.50170

4:N Session 2 87.446686 6.5355052 76.068609 101.83068

5:N Session 3 77.954031 5.6720754 68.112315 90.477916

Estimates of Derived Parameters

Mean Resighting Rate Estimates of {p(.) sigma(.)=0 N(t)}

95% Confidence Interval

Grp. Occ. Mu-hat Standard Error Lower Upper

---- ---- -------------- -------------- -------------- --------------

1 1 0.2881305 0.0232879 0.2447124 0.3358270

1 2 0.2881305 0.0232879 0.2447124 0.3358270

1 3 0.2881305 0.0232879 0.2447124 0.3358270

1 4 0.2881305 0.0232879 0.2447124 0.3358270

1 5 0.3184336 0.0232879 0.2746235 0.3657090

1 6 0.3184336 0.0232879 0.2746235 0.3657090

1 7 0.3184336 0.0232879 0.2746235 0.3657090

1 8 0.2881305 0.0232879 0.2447124 0.3358270

1 9 0.2881305 0.0232879 0.2447124 0.3358270

1 10 0.3818805 0.0232879 0.3373910 0.4284434

1 11 0.2881305 0.0232879 0.2447124 0.3358270

1 12 0.3193805 0.0232879 0.2755591 0.3666438

As before, when σ j � 0, the real parameter estimate of p may be interpreted as the overall mean
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resighting probability ignoring unidentified marks (0.29 in this case), but µi j is an overall mean
resighting probability that takes unidentified marks into account.

Notice that these results are different than the results from the same model when there were no
individually identifiable marks. This is because the two versions (individually identifiable marks or
not) of the mixed-logit normal model are only comparable when all marks are correctly identified to
individual and σ j is fixed to zero. Further, if one finds very little support for individual heterogeneity
models (based on AICc) and has relatively many unidentified marks, it may be better to analyze the
data as if there were no individually identifiable marks to begin with.

18.3. The immigration-emigration mixed logit-normal model

For use when the population of interest may not be geographically closed (i.e., individuals move in
and out of the study area between secondary occasions of the primary sampling intervals). Because
the study area is not closed, there is a ‘super population’ of individuals that use the area, but the
population of interest may be that which actually resides within the study area at any given time (see
Fig. 18.3). This distinction is important when density estimation is of concern. This model requires
additional information on whether or not each marked individual was available for resighting within
the study area for each secondary sampling occasion (e.g., from radio or GPS collars). One way this
is commonly determined using radio-collars is by conducting an aerial survey locating all marked
individuals immediately prior to each secondary sampling occasion, although the use of GPS collars
may alleviate the need for such surveys.

Once the presence or absence of each marked individuals within the study area is determined,
secondary resighting occasions are conducted only within the boundaries of the study area. As with the
regular mixed logit-normal model, sampling must be without replacement within secondary sampling
occasions, and the number of marked individuals in the population available for resighting must
be known exactly for every secondary sampling occasion. Marks may or may not be individually
identifiable (but individually identifiable marks are needed to investigate individual heterogeneity).

Unlike the regular mixed logit-normal or the Poisson-log normal models (where new marks may
be introduced only during the open periods), new marks may be introduced at any time (other than
during a secondary sampling occasion) when using the immigration-emigration mixed logit-normal
model. See McClintock & White (2012) for full details.

Data:

t � the number of primary sampling intervals

k j � the number of secondary sampling occasions (without replacement) during primary
interval j

n j � the exact number of marked individuals in the population during primary interval j

mi j �
∑n j

s�1
δs i j � total number of marked individual sightings during secondary occasion i of

primary interval j

Tu i j � total number of unmarked individual sightings during secondary occasion i of primary
interval j

δs i j � Bernoulli random variable indicating sighting (δs i j � 1) or no sighting (δs i j � 0) of
marked individual s on secondary occasion i of primary interval j (this only applies when
individually identifiable marks are used)
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Ti j � number of marked animals in the ‘super population’ during secondary occasion i of
primary interval j. A marked individual is considered to be in the super population if
it were located within the study area at least once during primary interval j

Mi j � number of marked animals that are actually in the study area during secondary occasion
i of primary interval j

ǫi j � total number of marks seen that were not identified to individual during secondary
occasion i of primary interval j (this only applies when individually identifiable marks
are used)

Parameters:

N∗j � ‘super-population’ size utilizing the study area at any time during primary interval j

N̄ j � mean population size within the study area during primary interval j. Because this
quantity is generally of more interest (e.g., for density estimation) than the population
size within the study area during secondary occasion i of primary interval j (Ni j ), MARK

uses the reparameterization Ni j � N̄ j + αi j where
∑k j

i�1
αi j � 0

αi j � the difference (relative to N̄ j) in population size within the study area during secondary

occasion i of primary interval j. Because of the imposed constraint
∑k j

i�1
αi j � 0, only (k j−1)

of the αi j must actually be estimated for primary interval j.

pi j � intercept (on logit scale) for mean resighting probability of secondary occasion i during
primary interval j. If there is no individual heterogeneity (σ j � 0), once back-transformed
from the logit scale the real parameter estimate can be interpreted as the mean resighting
probability

σ2
j � individual heterogeneity level (on the logit scale) during primary interval j (i.e., the

variance of a random individual heterogeneity effect with mean zero)

Derived Parameter:

µi j � overall mean resighting probability for secondary occasion i of primary interval j. This
parameter is derived as a function of pi j , σ

2
j , Mi j , and ǫi j . Note that when σ j � 0 and ǫi j � 0,

then the real parameter estimate for pi j is identical to the derived parameter estimate for
µi j .

18.3.1. No individually identifiable marks

If a known number of marks are in the population, but the marks are not individually identifiable, then
the data for the immigration-emigration mixed logit-normal model are t, k j , Ti j, Mi j , mi j , and Tu i j . These
are the same data as for the immigration-emigration joint hypergeometric estimator (IEJHE) previously
available in Program NOREMARK (White 1996), but the immigration-emigration mixed logit-normal
model can be a more efficient alternative because it can borrow information about resighting probabil-
ities across primary intervals. Note that because no information is known about individual identities,
individual heterogeneity models cannot be evaluated with these data (i.e., σ j � 0) and the probability
of any individual being resighted on secondary occasion i of primary interval j is pi j .

Here we’ll use vector notation because we must keep track of data for each secondary occasion of
each primary interval, where any x � {x11 , x21 , . . . , xk11, x12 , x22 , . . . , xk22, . . . , x1t , x2t , . . . , xkt t}.
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Now, suppose there is only one group and

t � 3, k j � 4

n � {27, 22, 18, 29, 28, 23, 20, 32, 31, 19, 21, 33}
T � {28, 29, 30, 30, 30, 33, 33, 33, 33, 34, 34, 34}
m � {17, 15, 9, 8, 16, 14, 9, 13, 11, 14, 13, 16}
Tu � {264, 161, 152, 217, 217, 160, 195, 159, 166, 152, 175, 190}

These data show that marks were introduced into the population between secondary sampling
occasions at some point for all three primary intervals. For example, one mark was introduced between
the first (T11 � 28) and second (T21 � 29) secondary occasions of the first primary interval. Of these
marked individuals in the super population using the study area, n11 � 27 and n21 � 22 marked
individuals, respectively, were actually in the study area during these secondary sighting occasions of
the first primary interval.

As before, these data may be summarized into artificial individual encounter histories similar

to those of the mark-recapture robust design. Now, both the number of marked animals in the
super population (T ) and the total number of unmarked individuals seen

(

Tu

)

during each secondary
occasion must be entered after the encounter histories under the headings ‘Marked Superpopulation
Group=1’ and ‘Unmarked Seen Group=1’ such that the resulting encounter history file would be:

/* No Individual Marks 1 Group */

/* 12 occasions, 3 primary, 4 secondary each */

/* Begin Input File */

111111111111 8;

111011111111 1;

110011011111 2;

110011010111 2;

110011000101 1;

110010000001 1;

100010000001 1;

100000000000 1;

000000000000 1;

00.000000000 1;

00.000000.00 1;

00.000.00.00 1;

00.000.00..0 1;

0..000.00..0 1;

0..00..00..0 4;

...00..00..0 1;

...0...00..0 1;

.......00..0 2;

.......0...0 1;

...........0 1;

Marked Superpopulation Group=1;

28 29 30 30 30 33 33 33 33 34 34 34;

Unmarked Seen Group=1;
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264 161 152 217 217 160 195 159 166 152 175 190;

/* End Input File */

Notice the sums of the encounter history columns (when multiplied by the corresponding frequency)
equal mi j , and the sums of the non-missing entries (i.e., not ‘.’) for each column equal ni j . If these two
conditions are satisfied, then the data have been correctly manipulated into artificial encounter histories.

With no individually identifiable marks, only the parameters pi j , N̄ j , αi j , and N∗j should be esti-
mated, and σ j needs to be fixed to zero. The analysis using the encounter history data contained
in (IELNE_NoIndividualMarks.inp) yielded the the following results for the fully time- and session-
dependent model in MARK:

Real Function Parameters of {p(t*session) Nbar(session) alpha(t*session) Nstar(session)}

95% Confidence Interval

Parameter Estimate Standard Error Lower Upper

-------------------------- -------------- -------------- -------------- --------------

1:p Session 1 0.5920048 0.0656170 0.4600336 0.7119197

2:p Session 1 0.5336830 0.0849114 0.3696301 0.6907604

3:p Session 1 0.5334205 0.0791715 0.3799858 0.6807828

4:p Session 1 0.4660226 0.0528644 0.3652849 0.5696100

5:sigma Session 1 0.0000000 0.0000000 0.0000000 0.0000000 Fixed

6:Nbar Session 1 397.32353 37.779741 345.08949 499.99984

7:alpha Session 1 77.488465 23.018541 32.372124 122.60481

8:alpha Session 1 -67.485508 35.691739 -137.44132 2.4703031

9:alpha Session 1 -95.435499 32.604481 -159.34028 -31.530716

10:Nstar Session 1 494.93170 21.786836 460.75810 547.81022

11:p Session 2 0.5299575 0.0619746 0.4091072 0.6473942

12:p Session 2 0.5553905 0.0782237 0.4016923 0.6991743

13:p Session 2 0.6222315 0.0715188 0.4756901 0.7493929

14:p Session 2 0.3737708 0.0454746 0.2896954 0.4662306

15:sigma Session 2 0.0000000 0.0000000 0.0000000 0.0000000 Fixed

16:Nbar Session 2 385.24069 35.290100 331.28861 472.92637

17:alpha Session 2 54.472940 22.564238 10.247032 98.698847

18:alpha Session 2 -71.850164 29.657658 -129.97918 -13.721152

19:alpha Session 2 -57.222270 25.778240 -107.74762 -6.6969177

20:Nstar Session 2 475.22043 20.428033 443.38777 525.10066

21:p Session 3 0.4143881 0.0495080 0.3217547 0.5134995

22:p Session 3 0.7132910 0.0934712 0.5038977 0.8590295

23:p Session 3 0.6569720 0.0793330 0.4899648 0.7924578

24:p Session 3 0.4701110 0.0539388 0.3672353 0.5755906

25:sigma Session 3 0.0000000 0.0000000 0.0000000 0.0000000 Fixed

26:Nbar Session 3 346.12174 29.879666 300.03823 419.77196

27:alpha Session 3 80.815452 21.159041 39.343731 122.28717

28:alpha Session 3 -113.10159 28.082685 -168.14366 -58.059529

29:alpha Session 3 -59.723073 25.125391 -108.96884 -10.477305

30:Nstar Session 3 452.02721 20.950900 418.31832 501.69599

Here the mean population size using the study area during the first primary interval was ˆ̄N1 � 397.3.
The total ‘super population’ size associated with the study area during the first primary interval was
N̂∗1 � 494.9. The estimates for α suggest the population within the study area fluctuated, with N̂11 �

ˆ̄N1 + α̂11 � 474.8, N̂21 �
ˆ̄N1 + α̂21 � 329.8, N̂31 �

ˆ̄N1 + α̂31 � 301.9, and N̂31 �
ˆ̄N1 −

∑k1−1

i�1
α̂i1 � 482.8.
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Suppose temporary emigration from the study area during primary interval j is constant and
completely random. In this case, the expected population size within the study area doesn’t change
despite the fact that individuals freely move in and out.

Using these same data, this hypothesis may be explored by fixing αi j � 0 (i � 1, . . . , k j−1) in MARK:

Real Function Parameters of {p(t*session) N(session) Nstar(session)}

95% Confidence Interval

Parameter Estimate Standard Error Lower Upper

-------------------------- -------------- -------------- -------------- --------------

1:p Session 1 0.6439324 0.0636854 0.5120143 0.7571063

2:p Session 1 0.4029707 0.0440082 0.3204665 0.4913568

3:p Session 1 0.3684690 0.0411356 0.2920867 0.4520701

4:p Session 1 0.5153590 0.0531874 0.4119457 0.6174735

5:sigma Session 1 0.0000000 0.0000000 0.0000000 0.0000000 Fixed

6:Nbar Session 1 436.60462 40.188783 376.61052 538.64137

7:alpha Session 1 0.0000000 0.0000000 0.0000000 0.0000000 Fixed

8:alpha Session 1 0.0000000 0.0000000 0.0000000 0.0000000 Fixed

9:alpha Session 1 0.0000000 0.0000000 0.0000000 0.0000000 Fixed

10:Nstar Session 1 532.11187 24.630622 494.78594 593.80284

11:p Session 2 0.6078401 0.0608881 0.4844027 0.7188762

12:p Session 2 0.4536115 0.0486381 0.3610701 0.5494736

13:p Session 2 0.5320235 0.0548963 0.4246068 0.6365519

14:p Session 2 0.4483689 0.0482075 0.3567993 0.5435784

15:sigma Session 2 0.0000000 0.0000000 0.0000000 0.0000000 Fixed

16:Nbar Session 2 383.50015 34.946464 330.10908 470.38476

17:alpha Session 2 0.0000000 0.0000000 0.0000000 0.0000000 Fixed

18:alpha Session 2 0.0000000 0.0000000 0.0000000 0.0000000 Fixed

19:alpha Session 2 0.0000000 0.0000000 0.0000000 0.0000000 Fixed

20:Nstar Session 2 480.30601 23.005205 444.82403 537.00999

21:p Session 3 0.4922281 0.0511459 0.3936081 0.5914567

22:p Session 3 0.4615808 0.0488057 0.3684460 0.5574769

23:p Session 3 0.5228970 0.0535107 0.4185439 0.6252887

24:p Session 3 0.5730778 0.0573259 0.4588866 0.6799768

25:sigma Session 3 0.0000000 0.0000000 0.0000000 0.0000000 Fixed

26:Nbar Session 3 359.57710 31.935979 309.89200 437.67227

27:alpha Session 3 0.0000000 0.0000000 0.0000000 0.0000000 Fixed

28:alpha Session 3 0.0000000 0.0000000 0.0000000 0.0000000 Fixed

29:alpha Session 3 0.0000000 0.0000000 0.0000000 0.0000000 Fixed

30:Nstar Session 3 466.75871 23.909342 429.24320 524.77071

When fixing αi j � 0, the model may still be used to estimate both the super population size (N∗j ) and
the population size within the study area N̄ j � Ni j (i � 1, . . . , k j ). For these data, however, the AICc

evidence strongly favors the previous model (∆AICc� 67.4!).

18.3.2. Individually identifiable marks

As with the regular mixed logit-normal model with individually identifiable marks, the encounter his-
tories are constructed with tk j possible encounters representing δs i j for individual s during secondary
occasion i of primary interval j. If an individual is not yet marked or a marked individual is outside of
the study area during secondary occasion i of primary interval j, then missing values (.) are included
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for that occasion in the encounter history. As before, the total number of marks seen but not identified
to individual during secondary occasion i of primary interval j (ǫi j) are also entered into the encounter
history file.

Using the same data from the previous example with one group and

t � 3, k j � 4

n � {27, 22, 18, 29, 28, 23, 20, 32, 31, 19, 21, 33}
T � {28, 29, 30, 30, 30, 33, 33, 33, 33, 34, 34, 34}
m � {17, 15, 9, 8, 16, 14, 9, 13, 11, 14, 13, 16}
Tu � {264, 161, 152, 217, 217, 160, 195, 159, 166, 152, 175, 190}
ǫ � {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

one possible encounter history file incorporating individually identifiable marks would be:

/* Individual Marks 1 Group */

/* 12 occasions, 3 primary, 4 secondary each */

/* Marked individuals off the study area or not yet marked indicated by "." */

/* in encounter history */

/* Begin Input File */

11010..00100 1;

.........1.0 1;

11.110110110 1;

0011.1001..1 1;

...00.1001.1 1;

0.0000.0000. 1;

1.11111001.0 1;

0..111.11..1 1;

0110000011.0 1;

111011111.11 1;

1111110101.1 1;

1110..100.11 1;

00.000000000 1;

1.001..10.00 1;

111011.0..11 1;

11.01..01..1 1;

.00010011110 1;

.....11011.1 1;

01.01.000.01 1;

000011101010 1;

110.10.11111 1;

1..00.0011.0 1;

11.010010..0 1;

......000111 1;

.01001010.10 1;

11.011.10100 1;

11.101110.10 1;

011000.10.00 1;

00.001.00001 1;

100000.000.0 1;
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0..00.10...1 1;

1.011..11.11 1;

110011.00.10 1;

.....10.0111 1;

Marked Superpopulation Group=1;

28 29 30 30 30 33 33 33 33 34 34 34;

Unmarked Seen Group=1;

264 161 152 217 217 160 195 159 166 152 175 190;

Marked Unidentified Group=1;

0 0 0 0 0 0 0 0 0 0 0 0;

/* End Input File */

Note that the sums of each column
∑ni j

s�1 δs i j �
(

mi j − ǫi j

)

. The first encounter history describes a
marked individual that was in the super population of marked individuals (T ) during all three primary
intervals. This individual was outside the study area on the second and third secondary occasions of the
second primary interval. The second encounterhistory from the top describes an individual that was not
in the marked super population during the first and second primary intervals. This individual may not
have been marked until sometime during the third primary interval or it may have already been marked
but didn’t use the study area during the first or second primary intervals. Either way, it’s not included
in Ti1 or Ti2. We avoid needing to distinguish between these two possibilities in the encounter history
by providing MARK with the known values for all Ti j under ‘Marked Superpopulation Group=1.’

Because marks are individually identifiable, individual heterogeneity models may be explored with
these data. The analysis using these encounter history data (IELNE_NoIndividualMarks.inp) yielded
the following results for the fully time- and session-dependent model in MARK:

Real Function Parameters of

{p(t*session) sigma(session) Nbar(session) alpha(t*session) Nstar(session)}

95% Confidence Interval

Parameter Estimate Standard Error Lower Upper

-------------------------- -------------- -------------- -------------- --------------

1:p Session 1 0.6133918 0.0910340 0.4278053 0.7710052

2:p Session 1 0.5616208 0.1194894 0.3310362 0.7683446

3:p Session 1 0.5413694 0.1033785 0.3429405 0.7274912

4:p Session 1 0.4574051 0.0730364 0.3213478 0.6001278

5:sigma Session 1 1.0205809 0.4924485 0.4163080 2.5019584

6:Nbar Session 1 394.61098 44.452039 337.29368 522.89418

7:alpha Session 1 79.083762 23.173848 33.663020 124.50450

8:alpha Session 1 -73.737498 35.569234 -143.45320 -4.0217987

9:alpha Session 1 -93.058635 32.321863 -156.40949 -29.707783

10:Nstar Session 1 494.08538 22.358088 459.06840 548.42536

11:p Session 2 0.5324475 0.0802870 0.3770380 0.6818062

12:p Session 2 0.5597357 0.0973820 0.3694818 0.7339233

13:p Session 2 0.6357481 0.0878476 0.4534913 0.7859170

14:p Session 2 0.3512142 0.0600856 0.2440611 0.4758014

15:sigma Session 2 0.9087787 0.4205942 0.3832277 2.1550599

16:Nbar Session 2 387.54071 40.782499 327.25659 492.00581

17:alpha Session 2 54.176870 22.768204 9.5511885 98.802551
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18:alpha Session 2 -71.817931 29.415765 -129.47283 -14.163031

19:alpha Session 2 -56.822380 26.126235 -108.02980 -5.6149591

20:Nstar Session 2 477.60634 21.044542 445.03053 529.30608

21:p Session 3 0.3978764 0.0894500 0.2411951 0.5787139

22:p Session 3 0.8554374 0.1033849 0.5347726 0.9682158

23:p Session 3 0.7842213 0.1143219 0.4915720 0.9317948

24:p Session 3 0.4882646 0.0998619 0.3035819 0.6762078

25:sigma Session 3 1.7968113 0.6252497 0.9262340 3.4856536

26:Nbar Session 3 329.55557 33.183455 281.69496 416.44233

27:alpha Session 3 79.218362 20.744845 38.558465 119.87826

28:alpha Session 3 -110.37310 25.613884 -160.57631 -60.169884

29:alpha Session 3 -58.532733 22.476479 -102.58663 -14.478834

30:Nstar Session 3 432.33206 21.148660 398.57525 482.84169

For the model ignoring individual heterogeneity (i.e., where σ j is fixed to 0):

Real Function Parameters of {p(t*session) Nbar(session) alpha(t*session) Nstar(session)}

95% Confidence Interval

Parameter Estimate Standard Error Lower Upper

-------------------------- -------------- -------------- -------------- --------------

1:p Session 1 0.5920050 0.0656170 0.4600338 0.7119199

2:p Session 1 0.5336829 0.0849114 0.3696300 0.6907603

3:p Session 1 0.5334203 0.0791715 0.3799856 0.6807828

4:p Session 1 0.4660228 0.0528644 0.3652850 0.5696102

5:sigma Session 1 0.0000000 0.0000000 0.0000000 0.0000000 Fixed

6:Nbar Session 1 397.32348 37.779732 345.08945 499.99977

7:alpha Session 1 77.488323 23.018552 32.371960 122.60469

8:alpha Session 1 -67.485442 35.691773 -137.44132 2.4704343

9:alpha Session 1 -95.435342 32.604530 -159.34022 -31.530462

10:Nstar Session 1 494.93154 21.786834 460.75796 547.81007

11:p Session 2 0.5299575 0.0619746 0.4091071 0.6473944

12:p Session 2 0.5553905 0.0782238 0.4016923 0.6991744

13:p Session 2 0.6222314 0.0715188 0.4756901 0.7493929

14:p Session 2 0.3737708 0.0454746 0.2896953 0.4662307

15:sigma Session 2 0.0000000 0.0000000 0.0000000 0.0000000 Fixed

16:Nbar Session 2 385.24068 35.290114 331.28859 472.92641

17:alpha Session 2 54.472932 22.564274 10.246954 98.698911

18:alpha Session 2 -71.850162 29.657677 -129.97921 -13.721115

19:alpha Session 2 -57.222263 25.778259 -107.74765 -6.6968749

20:Nstar Session 2 475.22042 20.428040 443.38775 525.10067

21:p Session 3 0.4143880 0.0495079 0.3217546 0.5134994

22:p Session 3 0.7132910 0.0934712 0.5038977 0.8590295

23:p Session 3 0.6569718 0.0793330 0.4899648 0.7924576

24:p Session 3 0.4701108 0.0539388 0.3672353 0.5755904

25:sigma Session 3 0.0000000 0.0000000 0.0000000 0.0000000 Fixed

26:Nbar Session 3 346.12180 29.879668 300.03828 419.77202

27:alpha Session 3 80.815496 21.159034 39.343789 122.28720

28:alpha Session 3 -113.10166 28.082677 -168.14371 -58.059612

29:alpha Session 3 -59.723082 25.125383 -108.96883 -10.477330

30:Nstar Session 3 452.02731 20.950896 418.31842 501.69607

The interpretation of the parameters remains the same as before. In this case, AICc lends more
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support to the model including individual heterogeneity (∆AICc � 7.0). Notice that because all ǫi j � 0

for these data, the estimates from the no-heterogeneity model with individually identifiable marks are
the same as those for the same model when there were no individually identifiable marks.

18.4. The Poisson-log normal mark-resight model

For use when (i) the number of marked individuals in the population may be unknown, or (ii) sampling
is with replacement within secondary sampling occasions (or there is no concept of a distinct secondary
sampling occasion without replacement). Marks must be individually identifiable. See McClintock et

al. 2009a and McClintock & White 2009 for full details.

Data:

t � the number of primary sampling intervals (through time, groups, or time and groups)

n j � the exact number of marked individuals in the population during primary interval j

n∗j � total number of marked individuals resighted at least once and known to be in the
population

c j � total number of individuals captured (e.g., for marking) immediately prior to primary
interval j and therefore assumed to be present in the population during primary interval
j, but not resighted during primary interval j

c∗j � n∗j + c j � total number of marked individuals captured immediately prior to primary
interval j or resighted at least once during primary interval j. When the number of marks
is known exactly, c∗j � n j . When the number of marks is unknown this is the minimum
number of marked individuals known to be in the population

ys j � Poisson random variable for the total number of times individual s was resighted during
primary interval j

ǫ j � total numberof times an individual was sighted and identified as marked,but not identified
to individual identity during primary interval j

Tu j � total unmarked individual sightings during primary interval j

Parameters:

U j � number of unmarked individuals in the population during primary interval j

α j � intercept (on log scale) for mean resighting rate during primary interval j. If there is
no individual heterogeneity (σ j � 0), once back-transformed from the log scale the real
parameter estimate can be interpreted as the mean resighting rate for the entire population

σ2
j � individual heterogeneity level (on the log scale) during primary interval j, i.e., the

additional variance due to a random individual heterogeneity effect with mean zero

ϕ j � apparent survival between primary intervals j and j + 1, j � {1, ..., t − 1}
γ′′j � probability of transitioning from an observable state at time j (e.g., on the study area) to an

unobservable state at time j+1 (e.g., off the study area), j � {1, ..., t−1}. This is equivalent
to transition probability ψOU

j of Kendall & Nichols (2002) – also, Chapter 15.

γ′j � probability of remaining at an unobservable state at time j + 1 (e.g., off the study area)
when at an unobservable state at time j, j � {2, ..., t − 1}. This is equivalent to 1 − ψUO

j of
Kendall & Nichols (2002) – also, Chapter 15.
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Derived Parameters:

λ j � overall mean resighting rate for primary occasion j. This is a parameter derived as a
function of α j , σ

2
j , and ǫ j . Note that when σ j � 0 and ǫ j � 0, then the real parameter

estimate for α j is identical to the derived parameter estimate for λ j .

p∗j � overall probability of being sighted at least once during primary occasion j (see -sidebar-,
below)

N j � U j + n j � total population size during primary occasion j. This is a derived parameter,
because MARK actually estimates U j in the model. If n j is unknown, then N j is derived
as

N j � U j +

n∗j

p∗j

where n∗j/p∗j is the number of marked individuals, and p∗j is the probability of being sighted
at least once within primary sampling occasion j (for details on p∗, and relation to λ, see
the following - sidebar -).

begin sidebar

p∗, and interpreting λ

It is helpful for interpreting λ (a rate) to note that if there is no individual heterogeneity (i.e., σ j � 0),

then p∗ (the probability of being sighted at least once within a primary sampling occasion) is related

to λ as p∗ � 1 − e−λ.

If, however, σ j > 0, then the approximation p∗ � 1 − e−λ gets progressively worse as σ j increases.

Formally,

p∗j � 1 −
∫ ∞
−∞

exp
(

− exp
(

α j + exp
(

σ j

)

z
) )

ϕ(z)dz

where ϕ(z) is the standard normal density and both σ j and α j are on the log scale (same scale as the

beta parameters in MARK).

Fortunately, this ‘nasty looking integral’ can be accurately approximated using Gauss-Hermite

quadrature:

p∗j ≈ 1 −
M∑

m�1

wm

exp
(

− exp
(

α j +
√

2 exp(σ j )vm

))

√
π

where
(

wm , vm

)

are weights and nodes corresponding to M quadrature points.

The estimator for the number of marked individuals is then still n̂ � n∗j/p∗j , and abundance is still

estimated as N̂ j � exp(Û j )+ n̂ j , where Û j is on the log scale (which is the same scale as the β parameter

in MARK). The variance of N̂ can be estimated using the Delta method (Appendix B) as

v̂ar
(

N̂ j

)

≈
[
∂N j

∂α j

∂N j

∂σ j

∂N j

∂U j

]
∑

j

[
∂N j

∂α j

∂N j

∂σ j

∂N j

∂U j

]⊺

We’ll leave it to you as an exercise to derive the partial derivatives in this approximation (actually,

they’re not too bad, and quite impressive looking when you’re finished). Fortunately, MARK does all

that ‘heavy lifting’ for you.

end sidebar
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18.4.1. Closed resightings only

If interest is only in abundance estimates for different groups (or t primary intervals for group(s)
with few or no marked individuals in common across the intervals), then the mark-resight Poisson-log
normal model may be used in a fashion analogous to the closed mark-recapture models introduced in
Chapter 14. Individual covariates may be used in modeling resighting probabilities. However, because

the data consist of the total number of times each marked individual was resighted, the encounter

histories must be modified to reflect this different type of encounter data. If the number of marks
is known exactly, then n j , ys j, ǫ j and Tu j are the same data used for Bowden’s estimator (Bowden
& Kufeld 1995) in NOREMARK (White 1996), but the Poisson-log normal model will often be more
efficient because information about resighting probabilities may be borrowed across time or groups
(McClintock et al. 2009a).

The number of marks available for each of the groups or t primary intervals may be known or
unknown. The encounter history file contains individual encounter histories composed of the ys j

resightings, the frequencies and group(s) to which each encounter history pertains, the Tu j unmarked
sightings and group(s) to which they pertain, the ǫ j unidentified marks and the group(s) to which
they pertain, and whether or not the number of marks is known exactly for each group. Instead of the

familiar 0’s and 1’s of other MARK encounter histories, these histories simply contain the ys j for

each marked individual s. Two character spaces are allocated to allow ys j > 9. Note that this coding
does not allow ys j > 99. For reasons that will become clear in the next section covering the robust
design Poisson-log normal model, entries for which ys j � 0 are entered using ‘+0’ instead of ‘00’.
Further, (unlike the logit-normal model and mark-recapture robust design), because the Poisson-log
normal model does not condition on distinct secondary resighting occasions, the number of encounter

occasions entered into MARK when creating a new analysis is the number of primary occasions.

For instance, suppose in a very simple example that there were two groups and t � 1 primary interval
with known n1 � 3, y11 � 2, y21 � 3, y31 � 0, Tu1

� 11, and ǫ1 � 2 for the first group, and n1 � 3, y11 � 0,
y21 � 0, y31 � 12, Tu1

� 5, and ǫ1 � 3 for the second group. The encounter history file would be:

/* Poisson log-normal mark-resight */

/* Occasions=1 groups=2 */

/* Begin Input File */

02 1 0;

03 1 0;

+0 1 0;

+0 0 1;

+0 0 1;

12 0 1;

Unmarked Seen Group=1;

11;

Unmarked Seen Group=2;

5;

Marked Unidentified Group=1;

2;

Marked Unidentified Group=2;
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3;

Known Marks Group=1;

3;

Known Marks Group=2;

3;

/* End Input File */

The columns following the encounter histories are the frequencies for the two groups, just as would
be done in other MARK encounter history files. Under ‘Unmarked Seen’, the Tu j are entered separately
for each group. The ‘Marked Unidentified’ data (ǫ j ) are entered in the same fashion separately for
each group. Similarly, the ‘Known Marks’ headings contain the n j for each group.

Using the same example, but now with the number of marks being unknown for the second group,
the encounter history file must be modified to reflect that n2 is unknown and ys2 � 0 is no longer
observed:

/* Poisson log-normal mark-resight */

/* occasions=1 groups=2 */

/* Begin Input File */

02 1 0;

03 1 0;

+0 1 0;

12 0 1;

Unmarked Seen Group=1;

11;

Unmarked Seen Group=2;

5;

Marked Unidentified Group=1;

2;

Marked Unidentified Group=2;

3;

Known Marks Group=1;

3;

Known Marks Group=2;

0;

/* End Input File */

Here, the encounter histories for y12 � 0 and y22 � 0 have been removed because they cannot be
observed if the number of marked individuals in the population (n2) is unknown. Further, under ‘Known
Marks;’ there is now a ‘0’ for the second group. By including a ‘0’ for the second group’s ‘Known Marks’,
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MARK knows the number of marks is unknown and will use the zero-truncated Poisson-log normal

model.

It is possible that the number of marks may be unknown for a given group, but some marking
was conducted immediately prior to the primary sampling interval of interest. Here, some additional
information is known about the minimum numberof marks in the population because those (previously
marked or newly marked) individuals captured during the marking period are known to have been
present and available for resighting (even if they were not resighted during the interval of interest).

For example, suppose it’s 2015 and we’re conducting a study of bighorn sheep. A student had
previously conducted a telemetry study on the same population in 2011, so those radios are no longer
transmitting, but some unknown number of those individuals are still alive and marked, and potentially
sightable. At the onset of the 2015 study, there are nold individuals that still have those marks from 2011.
Immediately prior to the primary sampling interval in 2015, we decide to introduce some additional
marks, say nnew � 20. The total number of marks (n) is unknown in 2015, because n � nold + nnew ,
although there is clearly an upper bound on n, since nold can’t be greater than the number of marks in
the 2011 study. When entering ‘Known Marks’ in the .INP file, there are two options: (1) enter n if the
exact number of marks is known; or (2) enter ‘0’ to indicate that the exact number of marks is unknown.
If ‘Known Marks=0’, then the encounter histories are used to tally up the minimum number of marks
known to be in the population (c∗ � nnew+ any of the nold individuals sighted at least once), and things
proceed from there.

Suppose this sort of situation were the case in the above example, such that the second individual of
the second group was captured and marked immediately prior to resighting surveys but never resighted.
This information (although not used in the zero-truncated likelihood) may be included in the encounter
history file to make the lower bound for N2 ≥ c∗2:

/* Poisson log-normal mark-resight */

/* occasions=1 groups=2 */

/* Begin Input File */

02 1 0;

03 1 0;

+0 1 0;

+0 0 1;

12 0 1;

Unmarked Seen Group=1;

11;

Unmarked Seen Group=2;

5;

Marked Unidentified Group=1;

2;

Marked Unidentified Group=2;

3;

Known Marks Group=1;

3;
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Known Marks Group=2;

0;

/* End Input File */

Because the ‘Known Marks;’ is still ‘0’ for the second group,MARK knows the actual number of marks
is unknown and to use the zero-truncated model for the second group, but c∗2 � 2 (instead of n∗2 � 1) will
be used in establishing the lower bound for N2. When the number of marks is unknown, the information
provided by such encounters via capture events will become more useful when considering the robust
design Poisson-log normal model in the next section.

Now to analyze a more realistic data set where the number of marks was known for the first group
but not for the second. No marking occurred immediately prior to resighting surveys for the second
group, so c∗2 � n∗2, and therefore no ‘+0’ encounter histories are included for the second group. For the
first group, n1 � 60, Tu1

� 1,237, and ǫ1 � 10. For the second group, n∗1 � 33, Tu1
� 588, and ǫ1 � 5:

/* Poisson log-normal mark-resight */

/* Occasions=1 groups=2 */

/* Begin Input File */

02 1 0;

03 1 0;

03 1 0;

01 1 0;

01 1 0;

01 1 0;

02 1 0;

09 1 0;

05 1 0;

01 1 0;

01 1 0;

01 1 0;

03 1 0;

03 1 0;

02 1 0;

06 1 0;

04 1 0;

02 1 0;

03 1 0;

01 1 0;

02 1 0;

01 1 0;

03 1 0;

04 1 0;

03 1 0;

03 1 0;

05 1 0;

03 1 0;

04 1 0;

04 1 0;

+0 1 0;

04 1 0;
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01 1 0;

03 1 0;

02 1 0;

01 1 0;

03 1 0;

02 1 0;

03 1 0;

05 1 0;

06 1 0;

03 1 0;

01 1 0;

04 1 0;

07 1 0;

03 1 0;

+0 1 0;

06 1 0;

+0 1 0;

04 1 0;

+0 1 0;

02 1 0;

02 1 0;

02 1 0;

02 1 0;

05 1 0;

02 1 0;

01 1 0;

04 1 0;

+0 1 0;

02 0 1;

02 0 1;

04 0 1;

01 0 1;

02 0 1;

01 0 1;

01 0 1;

01 0 1;

04 0 1;

03 0 1;

01 0 1;

05 0 1;

02 0 1;

02 0 1;

05 0 1;

02 0 1;

01 0 1;

05 0 1;

01 0 1;

02 0 1;

07 0 1;

01 0 1;

03 0 1;

05 0 1;

03 0 1;
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03 0 1;

04 0 1;

02 0 1;

03 0 1;

05 0 1;

02 0 1;

02 0 1;

02 0 1;

Unmarked Seen Group=1;

1237;

Unmarked Seen Group=2;

588;

Marked Unidentified Group=1;

10;

Marked Unidentified Group=2;

5;

Known Marks Group=1;

60;

Known Marks Group=2;

0;

/* End Input File */

The analysis for these data (Poisson_TwoGroups.inp) yielded the following results for the most
general model:

Real Function Parameters of {alpha(g)sigma(g)U(g)}

95% Confidence Interval

Parameter Estimate Standard Error Lower Upper

------------------------- -------------- -------------- -------------- --------------

1:alpha 2.6274189 0.2483643 2.1839589 3.1609248

2:alpha 2.3834952 0.3632005 1.7711208 3.2076012

3:sigma 0.2782579 0.1405534 0.1093112 0.7083213

4:sigma 0.2316744 0.2787288 0.0362715 1.4797580

5:U 426.66770 37.155745 359.83441 505.91416

6:U 227.09486 29.801418 175.78405 293.38314

In most situations, these real parameter estimates may not be of interest. The derived parameters for
abundance (N) and mean resighting rate (λ) are typically what we want:

Estimates of Derived Parameters

Population Estimates of {alpha(g)sigma(g)U(g)}

95% Confidence Interval
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Grp. Occ. N-hat Standard Error Lower Upper

---- ---- -------------- -------------- -------------- --------------

1 1 486.66770 37.155822 419.12029 565.10136

2 1 263.21721 30.821410 209.40169 330.86314

Mean Resighting Rate Estimates of {alpha(g)sigma(g)U(g)}

95% Confidence Interval

Grp. Occ. Lambda-hat Standard Error Lower Upper

---- ---- -------------- -------------- -------------- --------------

1 1 2.8977973 0.2355306 2.4716992 3.3973507

2 1 2.5867444 0.3200561 2.0315747 3.2936257

Here are the results for the model with no group effects on α j or σ j :

Real Function Parameters of {alpha(.)sigma(.)U(g)}

95% Confidence Interval

Parameter Estimate Standard Error Lower Upper

------------------------- -------------- -------------- -------------- --------------

1:alpha 2.5449662 0.2037816 2.1758646 2.9766800

2:sigma 0.2670036 0.1248112 0.1117130 0.6381611

3:U 440.94680 32.590191 381.55642 509.58148

4:U 211.45044 17.316388 180.14242 248.19966

Estimates of Derived Parameters

Population Estimates of {alpha(.)sigma(.)U(g)}

95% Confidence Interval

Grp. Occ. N-hat Standard Error Lower Upper

---- ---- -------------- -------------- -------------- --------------

1 1 500.94680 32.590259 441.03409 568.99842

2 1 246.99366 17.749865 214.58185 284.30115

Mean Resighting Rate Estimates of {alpha(.)sigma(.)U(g)}

95% Confidence Interval

Grp. Occ. Lambda-hat Standard Error Lower Upper

---- ---- -------------- -------------- -------------- --------------

1 1 2.8039855 0.1882162 2.4586823 3.1977840

2 1 2.7779927 0.1902567 2.4294158 3.1765839

Here are the results for the model with no group effect on α j and σ j � 0:

Real Function Parameters of {alpha(.)sigma(.)=0 U(g)}

95% Confidence Interval

Parameter Estimate Standard Error Lower Upper

------------------------- -------------- -------------- -------------- --------------

1:alpha 2.6488895 0.1731506 2.3306735 3.0105529
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2:sigma 0.0000000 0.0000000 0.0000000 0.0000000 Fixed

3:U 439.16724 29.754643 384.61298 501.45959

4:U 210.59709 15.810414 181.81833 243.93104

Estimates of Derived Parameters

Population Estimates of {alpha(.)sigma(.)=0 U(g)}

95% Confidence Interval

Grp. Occ. N-hat Standard Error Lower Upper

---- ---- -------------- -------------- -------------- --------------

1 1 499.16724 29.754705 444.17194 560.97181

2 1 246.10883 16.203557 216.34382 279.96896

Mean Resighting Rate Estimates of {alpha(.)sigma(.)=0 U(g)}

95% Confidence Interval

Grp. Occ. Lambda-hat Standard Error Lower Upper

---- ---- -------------- -------------- -------------- --------------

1 1 2.8155562 0.1731506 2.4961207 3.1758707

2 1 2.7896881 0.1750062 2.4672233 3.1542988

Note that to run models without individual heterogeneity, σ j must be fixed to zero. When σ � 0, the
real parameterestimate ofαmay be interpreted as the overall mean resighting rate ignoring unidentified
marks, but λ is an overall mean resighting rate that takes unidentified marks into account.

18.4.2. Full-likelihood robust design

If interest is in apparent survival (ϕ), transition probabilities between observable and unobservable
states (γ′ and γ′′), and abundance (N) for one or more groups through time, then a mark-resight robust
design analogous to the mark-recapture robust design of Kendall,Pollock & Brownie (1995)and Kendall,
Nichols & Hines (1997) may be employed (see Chapter 15). Full details on the mark-resight robust
design model may be found in McClintock & White (2009). In contrast to the modeling of recapture
probabilities in the mark-recapture robust design utilizing the full likelihood closed capture models
of Otis et al. (1987), the mark-resight robust design may incorporate individual covariates in modeling
resighting probabilities.

The encounter history files are similar to those from the previous ‘Closed Resightings’ model
(section 18.4.1), but now the open period encounter process for individuals with permanent field-
readable marks may be modeled through time across t primary sampling intervals in a robust design.
For instance, if an individual s was encountered ys1 � 4 times during the first primary interval and
ys2 � 2 times during the second primary interval, then the encounter history would be ‘0402’. Each
encounter history over t primary samples will contain 2t characters, again allowing two characters for
each ys j. Because the number of marks can be known or unknown for any given primary interval, the
primary intervals must again be identified as such under the ‘Known Marks’ heading in the encounter
history file. In the individual encounter histories, a ‘+0’ indicates that the individual was known to be a

marked individual available for resighting during primary interval j but never resighted. Therefore,
when the numberof marks is unknown,the total numberof ‘+0’ entries during primary interval j is equal
to c j as defined above. A ‘-0’ indicates a previously encountered individual that was not encountered
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(via capture or resighting) during primary interval j, and only applies when the number of marks

is unknown (i.e., when the number of marks is known a ‘-0’ is impossible).

Lastly, a ‘..’ indicates a marked individual who has not yet been encountered prior to and during
primary interval j, or an individual that is known to no longer be in the marked population (due to
removal, mortality, or permanent emigration) during and after primary interval j. As in the regular
CJS model in MARK, any ‘..’ contributes no information to the estimation of parameters. When n j is
known, ‘+0’ contributes information towards estimation of survival, transition probabilities, resighting
probabilities, and abundance. When n j is unknown, ‘+0’ contributes information towards estimating
survival and transition probabilities, but makes no contribution to the estimation of resighting proba-
bilities or abundance (but it does affect the minimum lower bound for N j as described in the previous
section). A ‘-0’ contributes no information to the estimation of resighting probabilities or abundance (it
is only a valid entry when the number of marks is unknown), and is equivalent to a ‘0’ in the regular CJS
encounter history for MARK. It therefore only contributes to the estimation of survival and transition
probabilities. As before, the encounter histories are followed by group frequencies in the usual MARK

encounter history file. The entries for ‘Unmarked Seen’, ‘Marked Unidentified’, and ‘Known Marks’ are
the same as described earlier and are entered separately for each group.

In the following example encounter history file with a single group and t � 4 primary intervals,
the number of marks are known for the first and second primary intervals, but unknown for the third
and fourth. Because the model does not condition on distinct secondary resighting occasions, the

number of encounters that are input into MARK is equal to the number of primary occasions (t � 4

in this case). Capturing for marking occurred immediately prior to the first, second, and third occasion,
but not the fourth occasion, so n∗4 � c∗4.

Here, n1 � 45, Tu1
� 1,380, ǫ1 � 8, n2 � 67, Tu2

� 1,120, ǫ2 � 10, n∗3 � 56, Tu3
� 1,041, ǫ3 � 9, n∗4 � 52,

Tu4
� 948, and ǫ4 � 11:

/* Poisson log-normal Mark-resight -- 4 occasions, 1 group */

/* Begin Input File */

....+002 1;

..06-0-0 1;

04060202 1;

+0010402 1;

070602-0 1;

04020606 1;

..020101 1;

060602-0 1;

..04-004 1;

040401-0 1;

03010103 1;

02030503 1;

..03+0-0 1;

070503-0 1;

04+00104 1;

01010401 1;

06060103 1;

02010602 1;

..0403-0 1;

..020306 1;

020202-0 1;
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..050201 1;

02010103 1;

031002-0 1;

+0+00704 1;

01030102 1;

01010302 1;

..02-0-0 1;

..020210 1;

020301-0 1;

02+00503 1;

02+0+0-0 1;

02020302 1;

..080201 1;

..040603 1;

030304-0 1;

02020202 1;

..030107 1;

04050402 1;

+0050101 1;

..030605 1;

05+00101 1;

..04-003 1;

06020204 1;

..03-004 1;

..010201 1;

04+00303 1;

04040204 1;

01+00201 1;

0403-004 1;

01+00103 1;

..020307 1;

01060701 1;

..040101 1;

03040301 1;

..0404-0 1;

03050101 1;

05040202 1;

03010202 1;

05+00302 1;

01020202 1;

01+0+0-0 1;

01070202 1;

..050105 1;

02040205 1;

02010301 1;

..03-010 1;

..01+0-0 1;

Unmarked Seen Group=1;

1380 1120 1041 948;

Marked Unidentified Group=1;

8 10 9 11;
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Known Marks Group=1;

45 67 0 0;

/* End Input File */

Let’s look at the first 4 encounter histories a bit more closely. Here, we’ll add some blank columns in
the history to more clearly indicate the 4 different primary sampling periods.

.. .. +0 02 1;

.. 06 -0 -0 1;

04 06 02 02 1;

+0 01 04 02 1;

The first encounter history indicates this individual was not captured for marking until immediately
prior to the third primary occasion, and the ‘+0’ for the third sampling period indicates that it was not
resighted (although known to be a marked individual available for resighting during this sampling
occasion). This individual was then resighted twice during the fourth occasion.

The second encounter history from the top indicates that this individual was only known to be
marked and in the population during the second primary occasion (when it was resighted 6 times).
Recall that for this example, the number of marks are known for the first and second primary intervals,
but unknown for the third and fourth (see below) . So, for this second history, because the number of
marks is known for the first primary interval, this individual must have been marked between the first
and second primary intervals. As indicated by ‘-0’, this individual was never encountered again when
the number of marks was unknown during the third and fourth primary intervals.

The third encounter history from the top indicates and individual known to be marked and available
for resighting for all t � 4 occasions. This individual was resighted four, six, two, and two times during
the first, second, third and fourth intervals, respectively.

The fourth encounter history from the top indicates an individual who was known to be marked and
available for resighting for all t � 4 occasions. The ‘+0’ entry for the first primary occasion indicates
that it was known to be marked and available for resighting, but never resighted. This individual was
then resighted one, four, and two times during the second, third, and fourth intervals, respectively.

Now, let’s consider the final encounter history – again,we’ve added some blank columns in the history
to more clearly indicate the 4 different primary sampling periods.

.. 01 +0 -0 1;

The final encounterhistory describes an individual that was not marked until immediately prior to the
second primary occasion,and during the second occasion it was resighted one time. It was then captured
immediately prior to (but never resighted during) the third occasion. Because the number of marks was
unknown for the third occasion, this ‘+0’ primarily contributes information to the estimation of survival
and transition probabilities (as described in the previous section). As indicated by ‘-0’ this individual
was then never resighted during the fourth occasion (and could not have been captured immediately
prior to the occasion because no capturing took place). Because no individuals were captured (e.g.,
for marking) immediately prior to the fourth occasion (and the number of marked individuals was
unknown), no ‘+0’ appears in the entries for this occasion. Because no marked individuals were known
to have left the population (due to removal, mortality, or permanent emigration), no ‘..’ entries appear
after an individual’s first encounter.

The ‘Unmarked Seen’ entry tells MARK that 1,380 unmarked sightings occurred during the first
primary interval, 1,120during the second,1,041 during the third, and 948 during the fourth. The ‘Marked
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Unidentified’ entry follows the same pattern. The ‘Known Marks’ entry tells MARK that n j is known
for the first and second primary intervals (n1 � 46, n2 � 60), but unknown for the third and fourth (as
indicated by ‘0’ for these occasions).

As a simple two group example, suppose for the first group that n1 � 10, Tu1
� 800, ǫ1 � 4, n2 � 14,

Tu2
� 950, ǫ2 � 2, n∗3 � 11, Tu3

� 500, ǫ3 � 6, n∗4 � 8, Tu4
� 1201, and ǫ4 � 3. For the second group,

n1 � 11, Tu1
� 459, ǫ1 � 2, n∗2 � 14, Tu2

� 782, ǫ2 � 5, n∗3 � 15, Tu3
� 256, ǫ3 � 0, n∗4 � 11, Tu4

� 921, and
ǫ4 � 1. With capturing (e.g., for marking) occurring for both groups immediately prior to the first and
second occasions, a possible encounter history file would be:

/* Poisson log-normal Mark-resight -- 4 occasions, 2 groups */

/* Begin Input File */

04060202 1 0;

..06-0-0 1 0;

+0010402 1 0;

070602-0 1 0;

04020606 1 0;

..020101 1 0;

060602-0 1 0;

..04-004 1 0;

040401-0 1 0;

03010103 1 0;

02030503 1 0;

..03-0-0 1 0;

070503-0 1 0;

04+00104 1 0;

01010401 0 1;

06060103 0 1;

02010602 0 1;

..0403-0 0 1;

..020306 0 1;

020202-0 0 1;

..050201 0 1;

02010103 0 1;

031002-0 0 1;

+0-00704 0 1;

01030102 0 1;

01010302 0 1;

..02-0-0 0 1;

..020210 0 1;

020301-0 0 1;

02+00503 0 1;

Unmarked Seen Group=1;

800 950 500 1201;

Unmarked Seen Group=2;

459 782 256 921;

Marked Unidentified Group=1;

4 2 6 3;

Marked Unidentified Group=2;
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2 5 0 1;

Known Marks Group=1;

10 14 0 0;

Known Marks Group=2;

11 0 0 0;

/* End Input File */

Here, the encounter histories are followed by two columns for group frequencies in the usual MARK

encounter history file manner. The entries for ‘Unmarked Seen’, ‘Marked Unidentified’, and ‘Known
Marks’ are entered separately for each group. The entries under ‘Known Marks’ tell MARK that the
number of marks was known for the first and second primary occasions of the first group (n1 � 10,
n2 � 14) and for only the first primary occasion of the second group (n1 � 11). Again, no ‘-0’ can
appear for a primary occasion where the number of marks is unknown.

Notice that a ‘+0’ appears in the encounter history for the last individual of the second group, but
that the number of marks for this primary occasion was unknown. This indicates that this individual
happened to be caught (e.g., during marking) immediately prior to the second primary occasion, but
was never resighted. Hence, for the second group during the second primary interval , n∗2 � 14 and
c∗2 � 15.

An analysis using the single group data (Poisson_RobustDesign_OneGroup.inp) yielded the follow-
ing results for the random emigration model {ϕ(.)γ′′(.) � γ′(.)α(t) σ(t)U (t)}:

Real Function Parameters of {phi(.) gamma’(.)=gamma’(.) alpha(t) sigma(t) U(t)}

95% Confidence Interval

Parameter Estimate Standard Error Lower Upper

------------------------- -------------- -------------- -------------- --------------

1:alpha 2.7638408 0.2886637 2.2534628 3.3898122

2:alpha 2.6470841 0.2695821 2.1692136 3.2302279

3:alpha 2.1173163 0.2745082 1.6439392 2.7270036

4:alpha 2.1254054 0.3281373 1.5732477 2.8713520

5:sigma 0.2368147 0.1786795 0.0635331 0.8827081

6:sigma 0.4564778 0.1114859 0.2847935 0.7316598

7:sigma 0.3925358 0.1552277 0.1859589 0.8285937

8:sigma 0.5348317 0.1257812 0.3394039 0.8427864

9:U 456.73003 43.067154 379.81489 549.22102

10:U 362.54432 34.740271 300.59433 437.26168

11:U 427.89101 45.664583 347.33475 527.13045

12:U 358.01017 44.974968 280.14293 457.52102

13:Phi 0.9857548 0.0182401 0.8443633 0.9988683

14:Gamma’ 0.0552683 0.0363436 0.0147309 0.1862693

Estimates of Derived Parameters

Population Estimates of {phi(.) gamma’(.)=gamma’(.) alpha(.) sigma(.) U(t)}

95% Confidence Interval

Grp. Occ. N-hat Standard Error Lower Upper

---- ---- -------------- -------------- -------------- --------------

1 1 524.94217 28.178946 472.55342 583.13891
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1 2 460.37288 24.092419 415.52193 510.06500

1 3 425.58023 23.324431 382.26492 473.80369

1 4 383.16101 21.077938 344.02552 426.74845

Mean Resighting Rate Estimates of {phi(.) gamma’(.)=gamma’(.) alpha(.) sigma(.) U(t)}

95% Confidence Interval

Grp. Occ. Lambda-hat Standard Error Lower Upper

---- ---- -------------- -------------- -------------- --------------

1 1 2.8737886 0.1396905 2.6127801 3.1608711

1 2 2.8452646 0.1396905 2.5843816 3.1324827

1 3 2.8458811 0.1412053 2.5823048 3.1363607

1 4 2.8932760 0.1416843 2.6286365 3.1845582

For model {ϕ(.)γ′′ (.) � γ′(.)α(.)σ(.)U (t)}:

Real Function Parameters of {Phi(.) gamma’(.)=gamma’(.) alpha(.) sigma(.) U(t)}

95% Confidence Interval

Parameter Estimate Standard Error Lower Upper

------------------------- -------------- -------------- -------------- --------------

1:alpha 2.4536985 0.1478956 2.1805245 2.7610956

2:sigma 0.4376083 0.0655452 0.3268107 0.5859693

3:N 524.49384 28.499239 471.81002 583.68075

4:N 460.04989 24.370049 415.11342 510.78703

5:N 426.24093 23.102678 383.69402 474.39761

6:N 379.16926 20.875980 340.74421 422.70778

7:Phi 0.9858690 0.0178497 0.8499082 0.9988380

8:Gamma’ 0.0751540 0.0287552 0.0348592 0.1545672

Estimates of Derived Parameters

Population Estimates of {phi(.) gamma’(.)=gamma’(.) alpha(.) sigma(.) U(t)}

95% Confidence Interval

Grp. Occ. N-hat Standard Error Lower Upper

---- ---- -------------- -------------- -------------- --------------

1 1 524.94217 28.178946 472.55342 583.13891

1 2 460.37288 24.092419 415.52193 510.06500

1 3 425.58023 23.324431 382.26492 473.80369

1 4 383.16101 21.077938 344.02552 426.74845

Mean Resighting Rate Estimates of {phi(.) gamma’(.)=gamma’(.) alpha(.) sigma(.) U(t)}

95% Confidence Interval

Grp. Occ. Lambda-hat Standard Error Lower Upper

---- ---- -------------- -------------- -------------- --------------

1 1 2.8737886 0.1396905 2.6127801 3.1608711

1 2 2.8452646 0.1396905 2.5843816 3.1324827

1 3 2.8458811 0.1412053 2.5823048 3.1363607

1 4 2.8932760 0.1416843 2.6286365 3.1845582
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Here, AICc indicates much more support for the simpler model (1,042.3 versus 1,050.0). Notice that
a significant population decline would be inferred from the latter model (but not the former), one of
the advantages of borrowing information across primary intervals that the Poisson-log normal model
provides over other previously available mark-resight estimators.

18.5. Which mark-resight model? Decision table

As described in this chapter, there a variety of mark-resight models available to you in MARK: (1) the
logit-normal estimator (LNE); (2) the immigration-emigration log-normal estimator (IELNE); and (3) the
(zero-truncated) Poisson log-normal estimator [(Z)PNE].

The following summary table provides some guidance by comparing several of the important
differences in the underlying assumptions:

estimator geographic closure
sampling with

replacement
number of known

marks

individually

identifiable marks

LNE required not allowed required not required

IELNE not required not allowed required not required

(Z)PNE required allowed not required required

Geographic closure is only required for LNE and (Z)PNE within primary sampling intervals. As
described at the end of Section 18.1, closure assumptions may often be relaxed, but abundance estimates
should be carefully interpreted under these circumstances.

18.6. Suggestions for mark-resight analyses in MARK

1. To start an analysis from scratch (after an encounter history file has been created), select the
‘Mark-Resight’ data type. You will then be asked to select from several different models:
‘Logit-Normal, ‘Immigration-Emigration Logit-Normal,’ or ‘Poisson-log normal’.

• For the ‘Logit-Normal’ and ‘Immigration-Emigration Logit-Normal’ models one doesn’t
specify whether or not individual marks were used. This is left to the user to keep track
of (by not running any individual heterogeneity models if marks were not individually
identifiable).

• For ‘Poisson-log normal’ one doesn’t need to specify robust design or not. If there are
multiple primary occasions for the group(s), then MARK will automatically set up an
analysis that includes the open period parameters (ϕ, γ′′, and γ′).

2. Because convergence with these models is sensitive to the starting values (particularly for
N and σ), initial values (on the log scale) should always be manually provided in the ‘Run’
window when using the design matrix. This means that if N � 100 and σ � 0.5, then
log(N) � 4.6 and log(σ) � −0.69 should be provided as initial values. MARK provides its
own initial values that usually work when running a model from the PIMs, so we suggest
that an analysis begin with simple PIM models from which the initial values may then be
provided for running more complex models and for when utilizing the design matrix.

If convergence issues remain after following this strategy, we suggest trying a series of
initial values covering the suspected range of the parameter(s) and possibly other ‘Run

Chapter 18. Mark-resight models



18.7. References 18 - 41

window’ options such as ‘Use Alt. Opt. Method’ or ‘Do not standardize design matrix’.
It is typically fairly obvious when N does not converge correctly (‘garbage’ estimates, SE, or
AICc), but it can be more tricky with σ. Sometimes the regular MARK optimization method
can converge to a local maximum where σ̂ is almost zero. Caution should be taken before
concluding that such an estimate is reliable.

3. Even when using the sin link from the PIMs,MARK will sometimes get the parameter count
wrong for the α parameters in the immigration-emigration logit-normal model. Extra care
should be taken when using the model to verify the number of estimable parameters (e.g.,
for AICc calculation) is correct. We hope to have this issue resolved in the future.

4. The σ parameter must be fixed to zero in the ‘Run’ window to examine a model that ignores
individual heterogeneity in resighting probabilities.

5. When using the (immigration-emigration) logit-normal model, MARK by default assigns
the log link to σ and N , and applies whatever link is specified in the ‘Run’ window to p.

6. When using the Poisson model, MARK by default assigns the log link to α, σ, and N , and
applies whatever link is specified in the ‘Run’ window to ϕ, γ′′, and γ′ (if using the robust
design).
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Addendum – formatting mark-resight input files

As noted at various points in this chapter, generating the input (.INP) file for mark-resight analysis is
somewhat more complex than for general ‘mark-recapture’ analysis (as discussed in Chapter 2) – so
much so, that frequently the biggest ‘rate-limiting step’ forpeople with mark-resight data is formatting
the .INP file. MARK has no capability of generating .INP files, for mark-resight, or any other form of
analysis. This is something you will need to do for yourself. In this short addendum, we provide several
R scripts which can be used to generate the .INP files used in several of the examples presented in this
chapter.

Note: Since there are any number of software environments you could use to accomplish the task
of generating .INP files, we state for the record that we are going to demonstrate creating .INP files
using R, not as a point of advocacy for using R (in fact, there are other software environments that can
accomplish generating .INP files using fewer lines of code), but owing more to its increasing ubiquity.
We also acknowledge from the outset that while there may be (and undoubtedly are) more elegant ways
to accomplish some of the steps in the process using R, our goal is to present scripts that are relatively
transparent in terms of ‘what they’re doing’ (at least to R users), and thus, relatively easy to customize
to specific purposes.

LNE & IELNE – no individually identifiable marks

The following script will generate ‘artificial encounter histories’ for the single-group .INP files presented
for the LNE (section 18.2.1) and the IELNE (section 18.3.1) – both situations involves studies where there
are no individually identifiable marks. The script is more or less identical in either case – the only change
you need to make are to the n and m vectors.

#

# short script to generate artificial encounter histories for LNE and IELNE

# one groups examples - no individually identifiable marks...

#

# enter n vector (n - exact number of marked individuals in pop during primary interval)

# Here, we enter n for each secondary within each primary...

n <- c(30,30,30,30,33,33,33,33,32,32,32,32) # LNE - section 18.2.1

# n <- c(27,22,18,29,28,23,20,32,31,19,21,33) # IELNE - section 18.3.1

# calc total number of sample periods (primary x secondary)

tot_per=length(n);

# enter m vector (m = total number of marked individual sightings during

# secondary occasion within primary interval)

m <- c(8,9,10,5,11,10,18,9,5,10,13,8); # LNE - section 18.2.1

# m <- c(17,15,9,8,16,14,9,13,11,14,13,16); # IELNE - section 18.3.1

# find largest element of n vector - need this later...

n_max=max(n);

# initialize encounter history matrix

eh <- matrix(0,n_max,tot_per);

# fill in 1’s for each secondary sample...

Chapter 18. Mark-resight models



Addendum: formatting mark-resight input files 18 - 44

for (i in 1:tot_per)

{ eh[1:m[i],i]=1; }

# fill in dots as needed for each secondary sample

eh <- data.frame(eh);

for (i in 1:tot_per)

{ if (n[i]<n_max) eh[(n[i]+1):n_max,i]="."; }

# write out EH matrix...this will need to be edited to include unmarked seen individuals for

# each primary period...

eh <- as.matrix(eh);

summ_eh <- apply(eh,1,paste,collapse="")

summ_eh <- as.data.frame(table(summ_eh));

summ_eh <- summ_eh[rev(rownames(summ_eh)),];

summ_eh$end <- ";";

write.table(summ_eh,file="LNE_EH.inp",sep=" ",quote=F,col.names=F,row.names=F);

The script generates the ‘artificial encounter histories’. You will still need to manually edit the file
output by the script, to enter additional information needed for the particular estimator (e.g., for the
LNE, you would need to add information about Unmarked Seen Group=1; and Marked Unidentified
Group=1;). We’ll leave it to you as an exercise to figure out how to modify the script to accommodate
> 1 group.
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CHAPTER 19

Young survival from marked adults

Paul Lukacs & Victoria Dreitz, University of Montana

The survival probability of juvenile animals is often of interest, but juvenile animals may be difficult
to mark or marking may impact survival. In such cases, a count of the young animals with an attending
adult may be the only data that can be obtained. If the adult is marked and highly detectable (such
as with a radio transmitter), then survival of individual young can be estimated from the counts of
young in a family group. This chapter describes the MARK implementation of the ‘Young Survival
from Marked Adults’ model developed in Lukacs et al. (2004).

The ‘young survival model’ is an extension of the Cormack-Jolly-Seber (CJS) model (which is dis-
cussed in detail in Chapters 1 → 7). The model contains two types of parameters, apparent survival
(ϕ) and detection probability (p). Data for the CJS model consist of a string of ones and zeros indicating
an individual animal is detected or not detected, whereas the data for the young survival model are
a string of counts on young in a family group. Encounter histories are entered in the input file at the
family group level rather than the individual young animal level. Despite this, it is important to note
that the parameters refer to individual young animals not to the group in which they were detected.
When there is only one young per family group, the young survival model reduces to the CJS model.

The young survival model is based on extending the CJS model to all possible combinations of events
that could have occurred given the count of young observed. For example, in a clutch of three plover
chicks that are known to be alive at hatching, consider a case where only two chicks are observed at the
next sampling occasion. There are six events that could have occurred to produce that observation.

• First, two chicks survivedandbothwere detected. This eventoccurs withprobabilityϕ2 (1−
ϕ
)

p2. The event can happen in
(3
2

)

� 3 ways (because each of the 3 chicks starting the
interval could have been the one that died), therefore the total probability of observing the
event is 3ϕ2 (1 − ϕ

)

p2.

• Second, all three chicks may have survived but only two were detected. This event occurs
with probability ϕ3p2 (1 − p

)

. The event also can happen in
(3
2

)

� 3 ways (again because
each of the 3 surviving chicks may have been the one not detected), therefore the total
probability of observing that event is 3ϕ3p2 (1 − p

)

.

The probability of observing two chicks given three chicks were alive at the previous occasion is
therefore 3ϕ2 (1 − ϕ

)

p2+3ϕ3p2 (1 − p
)

. Based on the combinatorics, it is easy to see that the number of
possible events grows rapidly as the family group size increases. Therefore, precision decreases rapidly
as the number of events increases.
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19.1. Assumptions

The young survival model assumes that the number of young at the start of observation is known (if,
for example, the number of eggs hatched out of a nest is counted exactly). If the initial size of the family
group is not known and the entire family group is not observed at least once for each group in the data
set, parameter estimates will be biased. Family groups can vary in size, but the initial size of each group
must be known, and is assumed in MARK to be the maximum count observed (even if not the first
count). MARK will function properly if the size of the family group is observed at least once during the
study, but to assure parameter estimates are unbiased studies should be designed to know the family
group size at the beginning of observation.

The young survival model also assumes that there is no brood mixing. Therefore, the number of
young can never exceed the number the brood began with and new individuals cannot join the family
group. Within a family group, young are assumed to be exchangeable, meaning that each individual
animal has the same survival and detection probability as its siblings on a given occasion.

The parameter ϕ in the young survival model is defined as an apparent survival probability (the
probability of an individual being alive and available for detection at occasion i given the individual
was alive at i-1) rather than true survival (the probability of being alive at occasion i given the individual
was alive at i-1) just as it is in the CJS model. In cases where separation of young from the attending adult
results in death of the young, ϕ will essentially equal true survival. Study design should be carefully
considered to separate fledging from mortality. Design considerations for this aspect will be highly
species-dependent.

19.2. Data

Data for the young survival model consist of counts of young detected per family group on each occasion.
The MARK input file uses the two digit count format similar to that of the Poisson log-normal mark-
resight models (Chapter 18). Given this format, 0 to 99 young could be counted per group (although
precision decreases greatly with more than 5 or so young per family group). Consider a case where a
nest has 3 eggs hatch and 3, 2, 3, 0, and 1 young are counted over 5 occasions. The encounter history for
this brood would be

0302030001 1;

Note that all counts must be entered as two digits with a leading 0 for values from 0-9 (for example
3 would be coded as ‘03’). If there are occasions where the marked attending adult is not located,
and therefore the young have no chance of being located, two dots (’..’) can be used to represent that
information. For example, if the adult is not detected (or not sampled) on occasion 3, then the encounter
history would be

0302..0001 1;

In all cases, a frequency (count of number of family groups with this encounter history) per encounter
history (1 in this example) and a semicolon are needed as in other MARK data types.

The young survival model can incorporate covariates for more flexible modeling. Family group-
specific covariates can be included just as individual covariates are included after the frequency column
in the input file as in other MARK data types. Given individual young are not handled nor individually
identifiable in this data collection scheme, only covariates measured on the whole family group will
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be available. Environmental covariates (covariates acting on all family groups) can be included in the
design matrix (presented in detail in Chapter 6).

19.3. Model Implementation

To demonstrate the implementation of the young survival model in MARK, we use an example of
mountain plover (Charadrius montanus) data simplified and modified from Dreitz (2009). The data
consist of encounter histories of 31 occasions, one group and three covariates: year (three years coded
in two covariates, with year 1 the ’00’ code)] and sex (0 = female, 1 = male) of the attending adult.
The maximum number of chicks per family group is three in this case, because mountain plovers
seldom or never have more than three eggs in a nest. Below are four encounter histories from the
file plover_mark.inp showing the input file format.

0300..00......00....00..02..00....01..00..00..01..01..00..01.. 1 0 1 0 ;

0301000203....03......01..01..010001..00....01..01..00..01..03 1 0 1 0 ;

01..00..00..01..01..00..0100..00..00..00......00..00..00..00.. 1 0 1 1 ;

02000000....00....00......01....01..01..00..00................ -1 0 1 0 ;

The fourth record has a ‘-1’ in the frequency column indicating a family group that was censored
at the last ‘00’ because of a radio failure on the attending adult. However, because all the succeeding
potential encounters are coded as ’..’, the ’-1’ value is equivalent to the usual ’1’. Losses on capture in
this data type are coded as ’..’ for the encounters after the loss, rather than as negative values of the
frequency.

Model implementation for the young survival model follows that of the CJS model directly. The
primary difference between implementing the young survival model and the CJS model in MARK is
in the PIM format. The CJS model has triangular PIMs with rows representing cohorts while the young
survival model has a single row in each PIM.

The single row PIM forces age-specific models to be built in the design matrix rather than the PIM,
but otherwise does not limit the capability of MARK. On the whole, the single row PIM makes more
sense than a triangular PIM for the young survival model because data generally consist of multiple
occasions within a single year. Multiple years of data are better input as multiple attribute groups or
as individual covariates indicating the year.

A year-specific survival model can be built in the design matrix with covariates as we demonstrate
here (top of the next page) with the plover data. In this case y05 and y06 are binary covariates indicating
data that occur in each year, when both covariates are 0 the data are from 2004.
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Many young animals have a lower survival probability immediately after they are born, but survival
increases quickly thereafter. One way to model this is to place a trend on the first few occasions after
birth. In our plover example, all family groups are started on the first occasion, so the implementation
of the trend is simple.

If family groups enter the data set on different occasions then a covariate would be needed to indicate
the occasion of first observation. Likewise, occasions before the family group is entered into the analysis
have to be coded with the ’..’ notation, because the ’00’ notation would suggest that the family group
was sampled, and no young counted.
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The age-specific model estimates suggest that survival is substantially lower immediately after
hatching, but increases with age. The β parameter is strongly negative for the slope on the age parameter.

The real parameters for the {ϕa ge p.} model show the same effect on the probability scale.

19.4. Parameters and Sample Size

Parameter identifiability in the young survival model is the same as that in the CJS model. The last p

and ϕ in a time-specific model are confounded. The use of fully time-specific models will be rare with
this data type because occasions will often refer to days or other short time intervals.

Effective sample size for the young survival model is based on the number of “family group releases”
(counts >0 and not ’..’) in the encounter histories. This matches the implementation of the CJS model in
MARK, but differs from the way that effective sample size was computed in Lukacs et al. (2004). Lukacs
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et al. (2004) used the number of encounter histories. The appropriate value for effective sample size
in mark-recapture models remains an unresolved issue and more research on the topic is warranted.
MARK allows the user to specify the value of effective sample size if desired by selecting the option
under the ‘Adjustments | Effective Sample Size’ menu.

19.5. Relationship with CJS and Multi-state Models

The young survival model has its roots in the multi-state and CJS models. When all family groups have
only a single young, the ‘CJS’ and ‘young survival’ models are equivalent. This can be demonstrated
with the cell probability for a ‘0101’ encounter in the young survival model assuming a group size of 1
and the cell probability of a ‘11’ encounter history for a CJS model.

Pr
[

0101YS

]

�

[
1 0

] 
ϕ (1 − ϕ)

0 1



p 0

0 0



1

1


� ϕp

� Pr
[

11CJS

]

The relationship between the multi-state model and the young survival model is a bit less obvious.
To demonstrate it, let us consider a case of two young per family group. First, we must define the states
in terms of the number of young alive at any given occasion. Our three states are: A: 2 young live, B:
1 young live, C: 0 young live. Note that the states are defined by the true number of young alive not
the observed number of young. When state definitions are based on whether or not an animal is alive,
survival is modeled with the transition matrix and the multistate model survival probability is set to 1.
Survival transitions can only proceed in one direction; therefore the lower left side of the matrix has all
zero elements. The transition matrix takes the following form:

Ψ �


ψAA ψAB ψAC

0 ψBB ψBC

0 0 ψCC


�


ϕ2 2ϕ(1 − ϕ) (1 − ϕ)

2

0 ϕ (1 − ϕ)

0 0 1


The capture probability matrix is more complicated. The states are defined by the true number of live

young,but the observations are of young counted (some may be missed). Therefore, the only observation
with a known state is that of a 2. There is state uncertainty in observations of 1 and 0. The detection
probability matrix must account for the state uncertainty. For an observation of 1 young, the matrix is:

D(p) �


2p(1 − p) 0 0

0 p 0

0 0 0


This matrix handles the two possible states that an observation of 1 young could imply: either one

young alive and detected, or two young alive with one detected and one not detected. A standard
multi-state model would simply have a p for the state observed or (1-p) for all states if the animal was
missed.
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19.6. Summary

The young survival from marked adults data type in MARK allows apparent survival of young animals
in a family group with a marked attending adult to be estimated. The model only requires counts
of young in the family group rather than individually marked young. When designing a study, it is
important to consider trade-offs of counting young versus marking young. As long as the marking
process does not affect the survival of the young, estimates of survival from marked young will be
more precise than that from an equal number of unmarked young. It may be possible to count more
family groups of unmarked young than can be marked; in that case weighing the tradeoff requires a
more careful examination of the benefits of marks versus a larger sample size.
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CHAPTER 20

Density estimation...

Jake Ivan, Colorado Parks and Wildlife

Abundance is commonly sought after as a state variable for the study of populations. However,
density (number of animals per unit area) can be a more meaningful metric because it casts the state of
a population into a common currency. For example, using closed capture models from Chapter 14, we
may estimate 500 animals at site A and 200 animals at site B. Thus one conclusion we may reach is that
habitat management at site A has positively impacted the population there compared to site B. However,
if we know site A is 250 hectares and B is 100 hectares, then we realize that each has 2.0 animals/hectare.
That is, on a relative scale, the different management scheme at A had no effect compared to site B.
Conversely, we may estimate abundance at 2 sites to be similar and conclude management actions, or
habitat types, or harvest regulations, etc. are having a similar impact, but if the sites are different sizes,
then the impacts are actually quite different on a relative scale and our conclusion is erroneous. Thus,
while abundance can be a useful metric, estimating density can be helpful as well.

Chapter 14 covered in depth how one might use mark-recapture techniques to obtain an estimate
of abundance from closed population samples. And in this age of remote imagery, GPS, and GIS, it is
relatively easy to delineate a study site and compute its area. Therefore, it should be easy to compute
the number of animals per unit area, right? Simply obtain an estimate of abundance using any one
(or several) of the multitude of models covered in Chapter 14, then divide that estimate by the area of
the study site. Certainly you can proceed in this straightforward manner, and sometimes people do.
However, your estimate will likely be biased. Why? Recall the assumptions of closed capture models.
Not only do we need the marks to be individually identifiable, readable, and permanent (at least over
the duration of the sampling), in order for our inference to be what we intend it to be, we need the
population we’re sampling to be closed both demographically and geographically.

Demographic closure can often be met by carefully considering the natural history of the species of
interest, then timing the sampling to correspond to periods when births and immigration/emigration
(e.g., dispersal) are unlikely. Sampling over a relatively short duration can give you some assurance that
deaths during the sampling period should be relatively unlikely as well. However, achieving geographic
closure is much more difficult. In fact, given that wildlife are mobile, we likely violate the geographic
closure assumption in most applications. If you happen to be sampling a terrestrial species on a small
island, you’re probably fine. Or, inversely, if you’re sampling fish in a pond, you probably meet the
assumption in that case as well. You may even be able to reasonably assume closure in other select
situations, such as sampling forest dwelling rodents in small woodland patches that are surrounded by
a matrix of agriculture fields.

However, in the vast majority of situations, we sample wildlife populations in relatively continuous
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habitat such that some animal home ranges (simplistically depicted below as ovals) are completely
within the boundaries of our study site (i.e., the home range for animal 2 below falls completely within
the study site [rectangle]), but many others only partially overlap it (animals 1, 3, 5, 6, 7, 8, 9). If this is
the case, many individuals, especially those near the edges of the site, will move on and off of the area
of interest while mark-recapture sampling is ongoing.

For example, during a traditional live-trapping study of small mammals in the fictitious situation
depicted above, animal 5 may be on the site and available for capture during the 1st day of trapping
(occasion 1), then off of the study area for day 2, back on for days 3 and 4, then off again on day 5. Assume
for a moment that capture probability is perfect (p � 1.0). That is, whenever this animal is on the study
area, it gets captured. Under this scenario, the encounter history for animal 5 would be ’10110’. A closed
capture model, however, assumes that if animal i was captured on the study area on any occasion, it was
available on the study area for all occasions (i.e., the study area is closed – once an animal is on it, it can’t
move off). Given this assumption, the ’10110’ capture history would indicate that p is closer to 0.6 (this
animal was available on 5 occasions and was detected on 3 of them). Thus, when we lack geographic
closure, closed capture models will underestimate capture probability. In fact, the estimate returned
from closed capture models is actually a product. It’s the product of the probability that animal i is
available for capture (a) and the probability that animal i is detected given it was available (p) such that
pestimated � (p × a). When we assume closure, we assume a � 1.0; when the assumption is violated
a < 1.0 and pestimated < p.

Now, recall from the beginning of Chapter 14 that the basic, heuristic estimator for abundance for a
single occasion is:

N̂ �
n

p̂

where n is the number of unique animals observed (the count statistic) and p̂ is the estimated probability
that an individual is detected. It stands to reason that if p̂ is underestimated when we lack closure, then
our estimate of N̂ will be inflated. Thus, when we fit a closed capture model to data from a design in
which the study site is not closed, we do not obtain an estimate of the number of animals on the study
site, which is what we want. Our estimate is larger than that. In fact, what we estimate is the number
of animals that could have used the study site during the course of sampling. We term this the super
population (Schwarz and Arnason 1996, Kendall et al. 1997). Is this a problem? Maybe, maybe not. In
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some cases you may elect to simply re-define what it is you’re estimating and report that number.

You can imagine, however, that if your goal is to estimate density, lack of geographic closure is
problematic. We have an estimate of abundance, but we do not know area to which that estimate applies.
Intuitively, the area used by the super population during the course of sampling was larger than the
study area itself, but how much larger? In other words, in the expression for density

D̂ �
N̂

A

what value do we use for A? The choice is not clear, yet the choice can have a big effect on your
estimate of density. Problem? Problem. What to do? Well, there are options. In fact, scientists have
been proposing solutions to this very problem since the inception of the field of wildlife ecology in the
1930s. These include using home range estimates to take a stab at the effective area sampled (Dice 1938),
exploiting differences in capture rates (or abundance estimates) between inner and outer detectors at
the site (e.g., Maclulich 1951, Hansson 1969, Otis et al. 1978), using assessment lines to determine the
reach of the initial sampling effort (e.g., Smith et al. 1971, Van Horne 1982), or computing the distances
moved by individuals between detection events (Otis et al. 1978, Wilson and Anderson 1985). However,
most of these approaches have fallen out of favor over time due to logistical issues, unrealistic data
requirements, or ad hoc rather than theoretical foundations. A notable exception is the method based
on mean maximum distance moved between trapping events (Otis et al. 1978, Wilson and Anderson
1985b), which has received criticism as an ad hoc approach (Williams et al. 2002, Royle and Dorazio
2008), and has shortcomings (Parmenter et al. 2003), but is still fairly popular (e.g., Converse et al. 2006,
Zahratka and Shenk 2008).

Spatially explicit capture-recapture (SECR; Efford 2004, Borchers and Efford 2008, Royle and Dorazio
2008, Efford et al. 2009, Royle et al. 2009) and trapping webs (Anderson et al. 1983, Link and Barker 1994)
are two contemporary density estimation approaches that circumvent the difficulties of estimating the
area used by the super population by estimating density directly. These approaches generally have a
stronger theoretical background behind them than the approaches mentioned above,but like any model,
they have their own sets of assumptions and thus advantages and disadvantages. See (Parmenter et al.
2003) and (Ivan et al. 2013) for discussions of pros and cons, advantages, and limitations.

Here we focus on the solution provided to you in Program MARK. It is called the “Density with
Telemetry” data type. From the name you can see right away that this approach requires auxiliary
information (telemetry locations). Thus, as with the Barker model and Burnham’s joint model, we are
combining mark-recapture information with outside information to help solve a problem. The basic
approach is exactly opposite of that taken during earlier work described above. That is, rather than
estimating N, then trying to figure out the area to which the estimate applies, we first define the study
site of interest, and thus fix its area. We then attempt to estimate the total number of whole and partial
animals within its boundaries. In the case of our simple example above, this amounts to using telemetry
to estimate the shaded areas for each of the 9 animals that were part of the mark-recapture data set. We
then sum these proportions (i.e., for animals 1→ 9, we might estimate there are a total of [0.47+ 1.00+

0.08+ 0.00+ 0.37+ 0.93+ 0.09+ 0.82+ 0.07] � 3.83 animals on the study site) and divide by the area of
the study site to obtain an unbiased estimate of density.

The basic setup in the field is as follows. Assume that our sampling scenario is qualitatively similar
to the simplistic example above. That is, despite our effort to nicely demarcate the study site of interest
in a GIS, we know wildlife will go about their daily business largely ignoring our boundaries. Also
assume we sample animals at the study site during a time of year in which we are not concerned about
dispersal or births and we sample over a short enough time span that we’re not so much concerned with
deaths either (i.e., the population is demographically closed). During a sampling session, we capture,
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mark, and release individuals on multiple occasions, let’s say 5. Let’s also suppose we fit these captured
animals with a telemetry device (e.g., radio tag). We start collecting locations on telemetered individuals
after we’re done with the mark-recapture sampling and we sample locations from these animals over
a relatively short period of time, say 2 weeks post-trapping. For each independent location, we note
whether it is within the study site, or outside the study site.

We know we can apply traditional mark-recapture estimators to the mark-recapture data collected
during the sampling session to estimate the super population (Schwarz and Arnason 1996, Kendall et al.

1997) of animals that used the site during sampling. Our goal is to use the telemetry data to estimate the
portion of the super population that occurred within the boundaries of the site to produce an estimate
of density corrected for the lack of geographic closure. Mathematically, we begin with the Huggins
(1989;1991) closed capture estimator for abundance:

N̂sp �

Mt+1∑

i�1

1

p̂∗i

where N̂sp is the abundance estimate that represents the super population of animals that could have
used the site during the trapping session, p̂∗i is the estimated probability that animal i is captured one
or more times during the sampling session (i.e., if p̂i is an estimate of the probability animal that i is
detected on any given occasion, then p̂∗i � 1− (1− p̂i)

t , where t is the number of occasions), and Mt+1 is
the total number of animals detected. This should look very familiar if you’ve read Chapter 14, with the
exception that we’re explicitly noting that in most cases, N̂ will be an estimate of the super population
rather than an estimate of the number of animals within the study site.

Next let’s make a substitution in the numerator of the Huggins estimator:

N̂ss �

Mt+1∑

i�1

( ˆ̃pi

p̂∗i

)

where ˆ̃p is the estimated proportion of time (i.e., proportion of telemetry locations) animal i spent on the
study site. Those individuals that are always located on the study site contribute fully to the estimate
and are assigned ˆ̃pi � 1. That is, they are treated no differently than they are in the normal Huggins
implementation. Most other individuals receive a fractional ˆ̃pi because they spend some fraction of
their time on the site. Depending on the circumstances, some (many?) animals may be like animal 4
above. That is, they may be attracted to our detectors and become part of the mark-recapture data set,
especially if we use bait or lures to improve our detection probability, but in reality their normal home
range doesn’t occur within the study site. These animals will be assigned ˆ̃pi � 0 and do not contribute
to the estimate.

So, functionally what we have here is an estimator that adjusts our count of animals detected upward
(i.e., divide by p̂∗i ) to accommodate imperfect detection, then ratchets that correction back down (i.e.,
multiply by ˆ̃pi) to include only those animals within the study area. N̂ss , then, is the estimated number
of animals within the study site, which is what we’ve always wanted our abundance estimate to be.

At this point all we need to do is divide N̂ss by the area of the study site (e.g., area of the minimum
convex polygon encompassing all detectors. It is this polygon that is used to determine whether animals
are ‘in’ or ‘out’, which informs derivation of p̃) in order to obtain an estimate of density:

D̂ �

Mt+1∑

i�1

( ˆ̃pi

p̂∗i

)

A
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where D̂ is estimated density (number of animals per unit area), A is the area of the study site, and ˆ̃pi , p̂∗i ,
and Mt+1 are as defined previously. MARK takes care of the variance calculation for you. Note that you
do not necessarily have to put a telemetry device on each of the animals you sample via mark-recapture.
If it is not possible to telemeter all individuals, we can use logistic regression to build a relationship
between ˆ̃pi and a suite of covariates for animals that do have a telemetry device. We can then use this
logistic model to estimate ˆ̃pi for those individuals that were not telemetered. See Ivan et al. (2013) for a
summary of estimator performance for different levels of telemetry effort.

20.1. Likelihood

The likelihood for this estimator is simply a combination of likelihoods you have seen before. Chapter
14 has extensive detail regarding the structure of the likelihood for various forms of the Huggins
estimator (i.e., the likelihood with respect to parameters p, c, and potentially π). Chapter 16 describes
the likelihood for known fate survival models, which is a simple binomial – the same model used for
logistic regression. In Chapter 16, the parameter we were trying to estimate was survival (S), success was
defined as surviving an interval, failure was dying, and N, the number of trials (not to be confused with
abundance, N̂), was the number of animals alive to start each interval. In the case of density estimation,
p̃ replaces S as the parameter of interest, a binomial “success” is locating an animal on the study site
(i.e., the polygon), a “failure” is locating it off of the study site, and the number of trials, N, is the number
of total locations collected (on an individual basis – the N’s need not be the same for each individual).
The two likelihoods can be written out separately, then multiplied together to form one big likelihood,
which is then maximized.

20.2. Implementation in MARK

With this conceptual and mathematical background in mind, let’s look at the mechanics of how to
implement the model in MARK. First, the input file. As you may have guessed, it looks generally like
a closed capture input file with a slight modification to accommodate the telemetry data. A piece of
an example input file appears below. As per the usual closed capture format, each line begins with an
optional comment (here an animal ID #), followed by the encounter history (in this case, 5 occasions).
Next are 2 new columns where we input the telemetry data. The first of these new columns is the
number of times animal i was located on the study site; the second column is the total number of
telemetry locations obtained on animal i. So, in the example, animal 20 was located on the study site
100% of the time (10 locations on site out of 10 total locations collected), animal 24 was located on the
site 50% of the time (5/10), and animal 26 was never located within the bounds of the study site after
having been captured and tagged there (0/10). Note also that animals 27 and 28 were part of the mark-
recapture sample, but they were not fitted with telemetry devices. For those animals, we enter “.” for
each of the 2 telemetry columns as these animals provide no information for that part of the model. The
remaining columns are the same as they would be for the usual closed capture input file. In this case,
after the columns for the telemetry data, we have 2 groups (animals 20-24 belong to group 1, animals
25-28 belong to group 2), then a single covariate, which we will discuss later.

/*20*/ 10010 10 10 1 0 20;

/*21*/ 10000 1 10 1 0 0;

/*22*/ 00100 8 10 1 0 20;

/*23*/ 00001 10 10 1 0 20;

/*24*/ 00010 5 10 1 0 0;
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/*25*/ 00010 5 10 0 1 20;

/*26*/ 00010 0 10 0 1 0;

/*27*/ 00110 . . 0 1 25;

/*28*/ 00001 . . 0 1 0;

To load the input file, open MARK, choose “File | New” and select the “Density with Telemetry”
data type near the bottom of the screen. A window appears in which you will have to select one of
3 possible parameterizations for the capture probability parameter(s). Note that these options are the
same as those available to you under the traditional Huggins closed capture data type (Chapter 14). For
the sake of this example, let’s keep it relatively simple and choose “Huggins p and c".

Once we’ve selected the parameterization we’d like to use to model capture probability, we need
select an input file and fill in the rest of the Specifications Window as per usual. Let’s title this data
“Example", and choose the “Density Estimation With Telemetry.inp” input file.
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This is simulated data intended to mimic a study of small mammals, such as deer mice, sampled
in 2 sites (habitat types), A and B. Each habitat type was sampled with a (10 × 100) live-trapping grid
(10m trap spacing). There are 5 occasions. In addition to marking each mouse with an individually
identifiable ear tag, 50% of the individuals captured were fitted with a small VHF transmitter. These
radio-tagged individuals were located once during the day and once at night for 5 days immediately
after mark-recapture sampling (n = 10 locations total per animal) and each location was recorded as
“in” or “out” of the study site. The single covariate we’ve recorded is the distance to the edge (DTE) of
the of the site from the mean trap location of each individual (i.e., compute the mean trap location for
each individual captured ≥ 1 time, then compute the minimum distance from this mean location to the
edge of the site). This is a crude metric for characterizing whether an individual’s home range is near
the edge or in the interior of the site, which can be helpful in modeling both the p and p̃ parameters as
we’ll see below.

Given this information, fill in the remainder of the “Specifications Window” as follows:

Label the 2 groups “Site A” and “Site B"; label the Individual Covariate “DTE". Note that with this
data type you are required to enter Group Labels. You cannot accept the defaults as you can with other
data types. Also, note that there is a new “Enter Areas” button at the bottom of this window. You must
click this button to specify the area of the study site for each group before you can proceed. The area
of the site is critical to the final computation, and it defaults to 1. It is also allowed to vary with each
group. Forcing you to double check the labels and corresponding areas before you proceed is MARK’s
way of imparting some quality control on your project!

You should enter the area for each group in whatever units you would like the density estimate
expressed. In our example (see top of the next page), each site (group) was sampled with a (10 × 10)

grid with 10m trap spacing and we want the answer to be in animals per hectare so we enter 0.81 for Sites
A and B (i.e., let’s define the study site as the minimum convex polygon around the traps so the site is
(90m×90m). See - sidebar -, below, for more discussion.). If we wanted the answer to be animals/m2,
we would enter 8,100 for each group; for animals per kilometer, we would enter 0.0081 for each group,
etc. If Site B was smaller, say 0.75 ha, we would enter 0.81 for the area of Site A and 0.75 for the area of
Site B.
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begin sidebar

Note that the definition of the “site” is somewhat arbitrary. However, any workable definition should

ensure thatanimals within the site have a reasonable chance ofdetection. We suggest thata “reasonable

chance of detection” can be attained if the site is defined such that detectors are distributed at an

adequate and roughly consistent rate (i.e., 4 detectors per home range; Otis et al. 1978, p. 76) within it

so that there are no gaps in sampling effort.

We prefer to define the study site as the minimum convex polygon (MCP) encompassing the

detectors. Such a definition seems natural and trap density inside this polygon would meet our criteria

of being relatively high and consistent throughout. Alternatively, one could define the study site as

the MCP plus ½ trap-width, or a full trap-width, and still claim that trap density is relatively high and

consistent within the site.

However if we defined the site as the MCP plus 2-3 trap-widths or if detectors were distributed at a

rate of 2 per home range over part of the site, but 6 per home range over other parts, those definitions

would likely result in unequal sampling effort across the site and may lead to bias in the estimator. Note

that because we incorporate the proportion of time each individual spends on the site (i.e., telemetry

data), the estimator will be appropriate regardless of how the site is defined, as long as it is defined

following the guidance we provide here.

end sidebar

Once you’ve entered the area for each group, MARK will allow you to click ‘OK’ and proceed. In the
main MARK interface, open the PIM chart (shown at the top of the next page) to view the parameters
in the model. You will see the familiar p’s (5 for each group) and c’s (4 for each group) from the Huggins
portion of the model along with the new parameter we’re going to model using the telemetry data, p̃

(1 for each group).
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Because the Huggins model is embedded within this model for density, all of the Huggins options
from Chapter 14 are available to you for modeling p and c. That is, you can specify that capture
probability is constant across animals and occasions (M0), or that it varies by occasion (Mt), or that it
differs depending on whether an animal has been captured previously (Mb), or that it differs generally
among individuals (Mh), or that it varies in relation to one or more individual covariates. Of course, you
can specify any combination of these basic model types as well. All of the nuances covered in Chapter
14 regarding model construction for closed abundance estimators(e.g., constraining the last p) apply
here as well.

You may initially be tempted to structure similar models for p̃, but think before you start filling in
your design matrix or PIM chart. For p̃ (proportion of time, or proportion of locations on the study site),
there is no notion of a behavioral effect, nor time effects (we generally sample through time to estimate
p̃, but p̃ is not connected to the mark-recapture sampling occasions in any way). Heterogeneity in p̃ is
possible, and even likely, given that some animals will be located on the edge of the study site whereas
others have home ranges near the interior. However, we cannot model general heterogeneity using a
mixture model (π) like we do with capture probability. Instead, we’re limited to the use of covariates,
such as DTE. Thus, outside of covariates or groups, the structure we can apply to p̃ is limited.

Leave the PIMs in this general form, close the PIM chart, and open a ‘reduced’ design matrix with
2 columns. Let’s begin by building the simplest model possible: p(.)p̃(.) (which we write in ASCII
as p(.)p∼(.)). For this first model, we’re specifying a constant detection probability (M0) and we’re
assigning each animal the average proportion of time on site across all animals and groups – akin
to the basic form of this estimator first introduced by White and Shenk (2001). This may not be the
most biologically realistic model we can think of, but it’s a basis for comparison and may be the most
supportable structure available if you have a sparse data set. The design matrix for this model is shown
at the top of the next page:

Chapter 20. Density estimation...



20.2. Implementation in MARK 20 - 10

Run this model then examine the real parameters. We see that capture probability was estimated to
be 0.23 and p̃ was 0.66. So, on average, each animal was located on their respective study site about 2/3
of the time according to this model.

The density estimate for the 2 sites is a derived parameter. If we examine the derived estimates (below)

we notice that there appears to be some difference in density between the 2 study sites (21.63 animal/ha
in Site A, 14.80 animals/ha in Site B). Note, however, that because density is a derived parameter, we
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cannot specifically test for differences in density between sites by specifying a model structure that
allows for differences and comparing it to one that does not. We can specify differences in p or p̃, but not
D̂. Instead we’re left to make inference by other means. That is, we have to examine the point estimates,
SEs, and confidence intervals, then make a judgment. In this case, the point estimates appear to be fairly
different, but there is substantial overlap in the 95% confidence intervals, so maybe we conclude there
is some evidence that density at Site A is higher than Site B, but the evidence is weak.

We might hypothesize differences in p and/or p̃ between the sites if the habitat imparts differential
home range sizes and/or differential availability of food resources that impact detection. Let’s go ahead
and build 2 models that reflect these hypotheses, that p or p̃ may differ by site. Recall from above, that
Site A (group 1) is represented by parameters 1-5 (p), 11-14 (c), and 19 (p̃); Site B (group 2) is represented
by parameters 6-10 (p), 15-18 (c), and 20 (p̃). Thus, a potential model that reflects the hypothesis that
p is different between sites might look like the design matrix on the left, whereas the one reflecting
differences in p̃ might look like the one on the right. Of course, the 2 structures could be combined as
well.

In this case, the model that allows p̃ to vary between sites has more support than the one that allows
p to vary between sites. If we examine the β estimates for the best fitting model thus far, we see that
with Site A as the reference point (intercept), Site B tended to have lower p̃. That is, animals on that site
tended to spend less time within the study boundaries compared to animals at the site represented by
the intercept (Site A).

Finally, let’s run a model that makes use of our DTE covariate. We might expect that if an animal is
trapped, on average, near the center of the study site, it may have a higher probability of detection than
animals trapped near the edge because there are more traps in its home range compared to the edge
animal. Similarly, we might also expect such an individual to be located on the study site more often
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than an animal whose home range is near the edge of the site. So, p(DTE)p̃(DTE) (i.e., p(DTE)p∼(DTE))
is a candidate model we may want to run, and we expect the DTE covariate to be positively related to
both parameters. Since DTE is an individual covariate, we have to enter the covariate into the design
matrix (see Chapter 11). For our present example, our DM should look like the following:

If we run this model, we see that our hypothesis was well supported. This model is just over 50 AICc

units better than our previous best fitting model.

Also, as expected, the relationship between DTE and both p, and p̃ was positive. Note that this
covariate can be computed for most any closed capture or density estimation setup. Keep it in mind as
it often proves useful.

20.2.1. Estimate proportion on site or use the data?

To this point we’ve been accepting the default run options in MARK, such that p̃ is estimated using
logistic regression. This means that we’ve been specifying a model that relates the proportion of time
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on site to an intercept, or an intercept plus group indicators, or an intercept plus covariates, etc. MARK

then uses this relationship to estimate p̃ for the animals that were sampled via mark-recapture but not
telemetry (i.e., those individuals that had “. .” for the 2 telemetry columns in the input file) as well

as those that were sampled via telemetry. In other words, the resulting logistic model gets applied to
each of the i animals to derive an estimate of p̃ which is then summed over all individuals. You may
be wondering why you wouldn’t just use the telemetry data itself to estimate p̃ for those animals that
were telemetered, then use a logistic model for only those animals that weren’t telemetered.

Actually, you have that option. Retrieve model ‘p(DTE)p∼(DTE)’ in the browser and click the run
button. Notice that in the run window (shown below) you have an extra option for this data type. You
can check a box to “Use observed ptilde". Let’s check the box this time and re-run the model. Add
the label “observed ptilde” to the name so we can keep it straight.

Notice (shown below) that this model has the exact same number of parameters, same log likelihood,
and same AICc as the original p(DTE)p∼(DTE) model. This is because MARK still has to fit the logistic
model to your data and used the MLEs to estimate p̃ for those animals that weren’t telemetered. So,
it still estimates the same number of parameters, it just doesn’t use those parameters to estimate p̃ for
some individuals. Thus, it doesn’t make sense to compare the 2 approaches using AICc to see which
is a more appropriate. It’s completely up to the user and you should make a decision as to which way
you’d like to go before you start running models, then run each model the same way.

You might argue that since we’re making inference using a model-based approach, we should be
consistent and apply the model to all individuals. Or,you might argue that there is no sense in estimating
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p̃ from a model when you can estimate it directly via sampling. Either approach is defensible. In practice,
this decision often has little consequence (especially if nearly all animals are telemetered) and estimates
are similar regardless of which flavor of model you prefer.

Forexample, ifwe compare the deriveddensity estimates from the modelwe just ran top(DTE)p∼(DTE)
we see that the estimates change slightly but we would probably make a similar inference regardless of
the approach.

20.2.2. Threshhold Model

Depending on the relationship between the size of your study site and the home range size of your
target species, you may find that you only want the DTE covariate to operate up to a certain threshold.
Consider the following example in which home ranges are now smaller than they were in our initial
figure above.

As we move through the home ranges from left to right, once we encounter the 3rd or 4th home
range, those animals are fully on the site and exposed to the same number of traps as those farther to
the right (more toward the center of the site). In this situation, p and/or p̃ may increase with DTE for a
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given distance, but after that, DTE is no longer a very good predictor of either parameter. Thus, it may
be useful to consider a “threshold model” for the estimation of p̃ and/or p such that the DTE covariate
is only meaningful to a point. After that p and/or p̃ are constant.

Mathematically, such a model can be represented as

logit
( ˆ̃pi

)

� β̂1 + β̂2

(

min
(

β̂3 ,DTE
))

where β̂1 and β̂2 are the usual intercept and slope estimates from a logistic model using distance to
edge as a covariate, and β̂3 is the threshold parameter (i.e., the point at which the relationship between
p and/or p̃ asymptotes). Note however, that you cannot build a model exactly like this in MARK. MARK

is unable to estimate a parameter that is embedded within the ’min’ function. Instead, if you decide that
a threshold model may be appropriate for your situation,build several models in which you give MARK

an actual threshold value for DTE, then use AICc to help you figure out what the threshold should be.

In the example data set we’ve been analyzing, the trapping grid was (10 × 10) with 10m spacing.
Thus, the center of the grid is 45m from any edge when the edge of the grid is considered to be exactly
at the trap positions at the outer edge of the grid. Note that distance to the traps at the corners is in fact
(
√

2× 45) from the center of the grid. Given that the edge of the grid is taken as the trap position on the
outer edge, the threshold values we consider should be less than 45 (hopefully you can see that if we
specify a model with a threshold of 45 in this specific example, we haven’t specified a threshold at all – p

or p̃ increase with DTE all the way to the center of the grid). Likewise, at the other end of the spectrum,
we expect the threshold to be greater than at least the 1st trap width (remembering there should be 4
traps per home range). Thus, let’s provide MARK with possible threshold values of 15, 25, and 35m for
the p parameter. To do this, simply translate the equation above into a design matrix, making use of the
design matrix function ‘min’ (see Chapter 11).

Thus, the design matrix for a threshold of 15m looks something like:

For other thresholds, just replace the ‘15’ in the design matrix expression with a different number
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(25 or 35). If we examine the results browser (below) we see that the 15m threshold is the best fitting
model of the set we’ve constructed thus far:

20.3. Confidence Intervals

Recall from Chapter 14 that MARK computes log-based confidence intervals for abundance, partly due
to lack of asymptotic normality in point estimates and partly due to the idea that we want the lower
bound to be no less than Mt+1 (makes no sense to have a lower confidence limit that is smaller than the
number of animals you know are out there!). Superficially, we’d like to invoke a similar approach with
density, and for the same reasons. Notice in section 14.1.10 that Mt+1 (the number of animals capture or
the minimum bound on the abundance estimate) appears in the calculations as does f0, which is simply
N̂ −Mt+1. You may be tempted to conclude that the analog to Mt+1 for density estimation would the
sum of all the p̃i divided by the area of the study site. Then the analog to f0 would be D̂− (

∑
p̃i )/A and

all of the same computations would follow. However,
∑

p̃i is not a known quantity as Mt+1 was in the
abundance world. It’s just an estimate (i.e., it’s really

∑ ˆ̃pi).

Thus, instead of following the closed capture CI computation exactly, MARK uses log-based confi-
dence intervals that ensure the CIs are > 0, which is the minimum condition that has to be true. As
such the 95% CIs are computed as:

± exp

[
log(D̂) ± 1.96

(
SE(D̂)

D̂

)]

20.4. Assumptions

Recall from Chapter 14 (and earlier in this chapter) that closed capture models require 2 assumptions:
(1) the population is closed geographically (animals do not move on and off of the study site) and (2)
demographically (there are no births, deaths, immigration or emigration). Through the use of auxiliary
telemetry data we are able to relax the first of these assumptions when estimating density, but we still
need the population to be closed demographically. Fortunately, demographic closure is usually much
easier to attain and simply requires sampling for a relatively short duration at a time when you don’t
expect births or dispersal events. However, the density estimation model described here requires 3
additional assumptions beyond the usual closed capture ones:

1. The animals sampled with telemetry are representative of the population of animals that
use the study site.

2. Telemetry devices do not affect movements and there are no effects of mark-recapture
sampling on animal movements.
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3. Error in telemetry locations is small relative to the size of the study site and assignment
(on/off) of locations near the edge of the site is unbiased.

The crux of assumption 1) is that you want to avoid oversampling “interior” animals while under-
sampling “edge” animals or vice-versa. Hopefully if you think back the form of the estimator, you
can see why either of these cases would be problematic. If your severely under-sample edge animals
(which should have relatively small values for p̃i), the summation of p̃i in the numerator of our density
expression will be too large (all we sampled were animals with p̃i near 1.0), and you will end up with
an estimate of density that is biased high to some degree. The reverse could also be true, and would
result in negatively biased results, although it is probably more likely that you would capture too many
interior animals compared to too many edge animals.

Note, however, we’ve also previously determined that DTE is often a good predictor of capture
probability. That is, interior animals may well have higher capture probabilities (p) than edge animals
because they tend to have more traps or detectors in their home range. If this relationship holds in
your study then it may be true that you tend to sample interior animals too often, which inflates the
numerator of our density expression, but we’re probably inflating the denominator at the same time,
thereby canceling at least some of the potential bias. Nevertheless, you want to provide yourself with
as much protection from bias as possible, and there are a couple of design features of mark-recapture
sampling that may help.∗

For assumption 2, the main concern is if baits or lures were used to detect animals during the
mark-recaptrue portion of your study, which is commonplace. Such attractants are designed to alter
the normal movements of animals (hopefully they entice animals to your detectors and increase your
capture probability!), but when we’re sampling animal movements using telemetry we’d like animal
movements to be “natural”. We have several recommendations for telemetry sampling when baits or
lures were used during mark-recapture.

First, we recommend discarding from the analysis any telemetry locations obtained during the mark-
recapture session as it is very probable that baited detectors influenced animal movement. Second, it is
imperative that you the investigator ensure that every last morsel of bait has been removed from the site
at the end of the mark-recapture session so there is no unnatural attractant left to influence movements
after the session. Third, we suggest that it may be appropriate to wait 1–2 days post mark-recapture
before collecting location data to allow animals to revert to their normal activity patterns. Telemetry
sampling should, however, be completed within a reasonable time to avoid biasing estimates of p̃i due
to seasonal movements, migration, or dispersal. In summary, our experience suggests that bait and lures
can have quite an impact on the movements of animals during a mark-recapture study, even enticing
animals to make extensive movements to become part of the mark-recapture data set when their usual
home range does not include the study site at all (e.g., animal 4 in the original example). Following the
guidelines outlined here, telemetry information should result in p̃i � 0 for these individuals, and they
will not contribute to the density estimate, which is appropriate.

∗ For traditional live-trapping studies in which telemetry devices are deployed on a subset of animals during the mark-recapture
sampling,we recommend checking traps in the same order on each occasion,but selecting a different random starting point each
time. This strategy should help equalize the probability of capturing and telemetering edge vs. interior animals. In addition,
we suggest retaining some telemetry devices for deployment during the latter portion of a sampling session to facilitate the
inclusion of trap-shy individuals in the radio-tagged sample in addition to trap-happy individuals that are captured early and
often.

All of this hand waving is also a justification for using the logistic regression model for p̃ rather than the observed values,
because the logistic regression model would correct for the bias of a non-random sample of animals that were radioed, assuming
that at least a few edge animals (if not a random sample) made it into the telemetry sample.
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20.5. Summary

The summary for Chapter 14 states that “Despite a seemingly simple goal, estimating abundance can
be quite difficult...”. The same can be said for density estimation due to all of the numerous, subtle
complications embodied in the closed capture models along with some added complications necessary
to convert abundance to density. Despite these difficulties, the “Density with Telemetry” data type in
MARK provides a way forward and does so using auxiliary information that actually measures animal
movement on and off of the study site, which is the source of the density estimation problem. There are
other contemporary means of computing density as well, and we encourage readers to explore Ivan et

al. 2013 for a discussion of advantages and disadvantages of this approach compared to others.
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APPENDIX A

Simulations in MARK . . .

The ability to simulate data and fit models for various data types (e.g., Cormack-Jolly-Seber, multi-state,
and so on) is very useful, for a variety of purposes. While it is possible to write your own simulation
code (which has the advantage of making you acutely aware of the underlying structure of the model),
MARK has a convenient and very powerful built-in simulation capability.

At present, MARK can simulate data under three primary systems: program RELEASE simulations,
program CAPTURE simulations, and simulation of models developed in program MARK. In this
appendix, we’ll focus on the simulation of data for two common data types – a simple CJS design, using
both MARK and RELEASE simulations.

A.1. Simulating CJS data

To simulate CJS data in MARK, start MARK, and select ‘File | Simulations’. At this point, you’ll see
that you are given several options of how you want to simulate the data:

Notice that one of the options presented in the drop-down menu is for ‘Release Simulations’. You
might recall that program RELEASE is appropriate for CJS data, which is what we’re going to try to
simulate here. So, in fact, for this example, we could select the ‘Release Simulations’ options from the
menu. However, here we introduce the more general approach to simulating data in MARK, which can
be used for data types other than CJS (we will revisit RELEASE simulations in a moment).

In addition, one of the selections in the ‘Simulation’ menu will generate a list of the ‘data types’ in
MARK under which you can simulate data. Most (but not all) data types can be simulated.
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A.1.1. Simulating CJS data – MARK simulations

To simulate CJS data in MARK, we need to select ‘Set up Simulation’ from the drop-down menu.
Selecting this option in MARK will generate a puzzling popup window:

This window is trying to warn you that not all elements of the simulation feature in MARK are fully
debugged. If you try to click the ‘OK’ button, a little ‘OverRide’ message will keep popping up, and
jumping from side to side of the window as you attempt (in vain) to click on it.

However, if you double-click anywhere in the grey area of the window (not the ‘OK’ button), you are
in fact able to over-ride the warning window, and will (finally) be presented with essentially the MARK

specification window, which you’re probably quite familiar with by now.

It’s at this point we specify the data type we want to simulate – in this case, CJS ‘recaptures only’
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data. Let’s simulate 2 groups, 6 occasions. Note that we’ve entered a title for the simulation, but have
left the box for ‘Results File Name’ blank – since neither are needed.

Once you click the ‘OK’ button, you’ll be presented with the main simulation setup window.

The window consists of a series of tabs, each of which correspond to a particular aspect of the
simulation that needs to specified before you can run the simulation. It’s easiest to go through the
various steps sequentially, corresponding to each of the tabs in the simulation setup window.

The first step is to specify the ‘True Model’, by selecting that tab.

Now,we need to specify the parameter structure of the ’true model’ we want to simulate.Forpurposes
of demonstration, we’ll use model - {ϕgp.} – differences between the two groups for ϕ, but no time
variation,and no group or time differences for p. So, the first thing we need to do is set up the appropriate
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parameter structure – this is most easily accomplished by manipulating the PIM chart. By now this
should be pretty familiar territory.

Several important things to notice here before we proceed. First, as shown on the preceding page,
we’ve specified the identity link (rather than the sin or logit link) – this is important since we want to
enter the parameter values for our model on the real scale (this is simply for convenience – we could of
course calculate the sin or logit transformed values for each parameter, if we so chose). Next, notice that
there are 3 radio buttons just above the title box: one (left-most) is for ’Current PIM Model’. The next
(greyed-out) is for the ’Results Database’. Finally, right-most, is the ’File Database’. For the moment,
the one we’re interested in is the the first one – we click ‘Current PIM Model’, so that MARK will know
to use the parameter structure we just created (corresponding to {ϕgp.}), for our simulation. When you
click this button, the title will be replaced momentarily with ‘???’. No worries – simply enter the title for
your true model (you might use ‘true model’, or something more explicit). Then, click the ’OK’ button.
Notice that now the button ’Display True Model’ is now active (it was previously greyed-out). This
button allows you to check the true model, if you want.

Next, we select the ’Beta values’ tab – here is where we put in the scale-appropriate β values for
the linear model corresponding to our model. Since we specified the identity link, all we need to do
is specify the parameter values on the real scale. For this example, we’ll use the following parameter
values: ϕgrp 1 � 0.80, ϕgrp 2 � 0.75, p � 0.25. So, a difference of 0.05 in apparent survival between
the two groups, and a (relatively) low detection probability. So, we might be interested in how large a
sample size of newly marked individuals we need to release on each occasion in order to allow us to
detect a difference in survival of this magnitude.

So, all that we need to do is enter these β values into MARK. These values are used with the the
design matrix and the link function to produce the value of the real parameters. A good choice for
the link function to be used with an identity design matrix is the identity link function, because then
the values for the β parameters are the same as for the real parameters. For other link functions, the β
parameters must be set to values that will produce the correct value of the real parameter via the link
function. There is, however, an exception when the β values entered define the exact parameter being
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estimated. This issue occurs with simulation of the robust design models (see section A.4).

For the moment, though, we can proceed using the identity link function. Simply click the ’Beta
Values’ tab, and enter the parameter values.

Once you’ve entered the appropriate values, and clicked the ’OK’ button, you’ll be popped back to
the main part of the setup window.

Notice that MARK conveniently provides you with visual indications of which steps in setting up
the simulations you’ve completed (never let it be said that MARK isn’t user-friendly!).

Next, we want to specify the number of releases of newly marked individuals at each occasion. So,
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we click the ’Releases’ tab. For this simulation, we’ll try 4 different ’release experiments’ – to explore
the influence of sample size on the ability to detect true differences in survival between the two groups.
So, we’ll try releasing 500, 250, 100, and 50 newly marked individuals at each occasion, respectively.
We’ll need to do this one ’experiment’ at a time – here is what we would enter for the ’500’ sample size
simulation:

Notice we don’t release new individuals on the last occasion, since these individuals will provide no
information (given that the study terminates on the last occasion).

Next, we want to specify the models we want to fit to the simulated data. To do this, click the
’Estimation Models’ tab.

Here, we could simply simulate the current (true) model, by clicking the ’Current PIM Model’ button,
or we could specify another model. If we choose another model, we need to specify the PIM structure for
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the model, in the usual way. For our experiment, we want to compare fitting the true model {ϕg p.} with
a reduced parameter model with no group effect on survival {ϕ.p.}. Since the true model is reflected by
the current PIM structure, simply click the ’Current PIM Model’ button. Enter ’phi(g)p(.)’ as the model
name. Then, specify the link function. What you’re doing here is telling MARK which link function
you want to use during the numerical estimation for a given simulated data set. Usually, we would use
either the sin or logit link.

Once finished, click the ‘Add Model’ button. Now, we want to add the reduced parameter model
{ϕ.p.}. To do this, we simply need to select the ’Estimation Models’ tab again, open up the PIM chart,
and change the parameter structure to reflect this model.

Once you’ve modified the PIM chart, simply click the ‘Current PIM model’ button, enter ’phi(.)p(.)’
as the model title, and select the appropriate link function. Then, click the ’Add model’ button.

Finally, we’e ready to specify the simulation – click the ’Simulation Specification’ tab.

Appendix A. Simulations in MARK . . .



A.1.1. Simulating CJS data – MARK simulations A - 8

Here, you can specify the various statistics you want to output, how many simulations you want to
run, and whether or not you want to add extra-binomial noise to your data (i.e., specify a specific, true
value for c). For now, we’ll run 100 simulations, and output both the AICc and the deviance for each
model for each of the simulated data sets.

Once you’ve completed specifying the simulations, click the ’OK’ button. This will bring you back to
the main simulation window.

At this point, all that is left is to run the simulations. Simply click the ’Start Simulations’ button
– MARK will then ask you where you want to store the simulation output. Once you’ve done that,
MARK will starting grinding through however many simulations you’ve specified – clearly, the length
of time this takes is dependent upon the model(s) you are simulating, the number of releases at each
occasion, and how ’hot-rod’ your computer is. MARK will present a progress bar as it works through
each simulation.

Once completed, you need to ‘do something’ with the simulation results. While for our experiment
we will ultimately want to extract summary data from the output, for the moment,we’ll explore a couple
of different ways to view the simulation results. To do so, select the ‘View Simulation results’ option
from within MARK.

MARK will present you with a database tabulation of the simulation results – model name(s), and
any of the statistics you requested (in this case ’AICC’ (i.e., AICc), and ’DEVIANCE’). See the figure at the
top of the next page.
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The ‘view’ we’re looking at is known as the ‘browse view’. There is another view known as ‘form view’,
which has some advantages we’ll explore later on. To access ‘form view’, simply select the ‘Form View’
icon on the toolbar (or by puling down the ‘View’ menu and selecting the ‘Form View’ option). Again,
we’ll discuss further uses of this view later, but for now, here’s what it looks like at least – simply select
a particular record from the browser, and then select ‘Form View’:

For our experiment, we’re interested in how much sample size affects our ability to detect a difference
in survival between the two groups. Recall that in our true model, the difference was 0.05 (0.80 vs 0.75).
There are a number of ways we can approach this question, using the results of our analysis of the
simulated data, but for simplicity, we’ll invoke the classical likelihood ratio test (LRT) approach (if you
forget the basics of the LRT, see chapter 4). For each of the 100 simulations, we’ll calculate the LRT test
statistic, and assess whether or not the difference in model deviances (between the true and reduced
parameter models) is significant at the α � 0.05 level, for each of the 4 simulated sample sizes. For
purposes of comparison, we’ll also present mean ∆AICc and evidence ratios and model likelihoods for
each sample size.

Recall that the evidence ratio of a given model relative to the best model is given as

w1

w j

≡ 1

e−1/2∆ j
≡ e1/2∆ j

and the model likelihood (i.e., the probability that model {ϕ.p.} is the K-L best model) is simply the
inverse of the evidence ratio (i.e., w j/w1). Note that you can’t do these calculations directly with MARK

– the simulation results DBF file must be ‘imported’ into some external spreadsheet or statistics program
to allow you to generate summary statistics; e.g., calculate and tabulate LRT statistics.
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sample size % significant mean ∆AIC evidence ratio likelihood

50 17 1.84 2.51 0.399

100 35 2.62 3.71 0.270

250 69 5.61 16.49 0.061

500 93 11.00 244.74 0.004

What is pretty clear from this table is that for a release (sample) size <250, there is a low probability
of detecting a real survival difference of 0.05, given an encounter probability of p � 0.25. Only when
>250 individuals are newly marked at each occasion is the probability of detecting a true difference of
0.05 in survival ∼ 95%. These conclusions are supported by the evidence ratios and model likelihoods.
Note that for sample sizes < 500, the likelihood for model {ϕ.p.} is > 0.05, meaning that based on a
nominal error rate of α� 0.05, you would have no basis for ‘rejecting’ model {ϕ.p.}, even though it is
false. Only when sample size is > 250 is the likelihood of model {ϕ.p.} being K-L best < 0.05.

Of course, you may be familiar with many projects that would be hard-pressed to release even
100 newly marked individuals at each occasion. So, in such cases, your only option is to increase the
encounter probability p (this is generally known as ‘the big law’ – in general, you should do everything
possible to increase encounter rate). Failing that, you’ll have to accept that there will be real limits to
the power of the inference you can make from your data.

The preceding is an example of using the simulation capabilities in MARK to perform what is in
effect a ’power analysis’ – this could (and should) be done prior to a study to help evaluate the amount
of ’effort’ your study will require in order to achieve an inference of a given precision. Of course, in
this example we’ve assumed a particular ’true model’ – the results of your simulations will clearly be
influenced by the choice of true models.

A.1.2. Simulating CJS data – RELEASE simulations

For this example, we’ll look at simulating data under program RELEASE – to demonstrate that ĉ is in
fact an estimate of some underlying parameter, c (and as such, is estimated with uncertainty). This is
important when using estimates of ĉ for quasi-likelihood adjustments of AICc (see chapter 5).

To simulate CJS data underprogram RELEASE,simply startup MARK,andselect ‘File | Simulations’.
At this point, you’ll see that you are given several options of how you want to simulate the data:
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Notice that one of the options presented in the drop-down menu is for ‘Release Simulations’. Select
this option. This will bring up a smallerwindow where you will be asked to specify the numberof release
occasions, the number of groups, and number of subgroups. For this example, we want 8 occasions, and
1 group (and 1 subgroup):

Once you click the ‘OK’ button, you’ll be presented with yet another tabbed window, where each tab
corresponds to a specific parameter or option. The default is for 1000 simulations, with extra binomial
variation of 1 (corresponding to ĉ=1), and a random number seed of zero (meaning some random
function of the computer clock will be used to seed the simulations). This is shown at the top of the
next page. All you need to do at this stage is answer/complete each of the ‘tabbed windows’.

Start by setting a group label, then setting value for ϕ and p respectively, the number of releases on
each occasion, and some options. For our simulations, we want some time variation in both ϕ and p,
with 250 releases on each occasion. For example, we’ll use some random values between 0.5 and 0.75
for both parameters.

For the ‘options’ tab, we want to output the GOF test statistics for each simulated data set (all 1000
of them, in this case), so we check the GOFFILE box. You may recall from some long-ago statistics class
that you can use either a Pearson χ2 approach to contingency analysis, or a likelihood-based G-test
approach. The simulation option windows lets you choose either. For the moment, we’ll use the Pearson
χ2 approach, so leave the GTEST box unchecked:

In the upper right corner of the options window are several radio-buttons corresponding to different
data types. CCH refers to ‘complete capture histories’. The other options are explained in detail in the
‘big blue book’, where RELEASE is first described. Most of the time, you’re likely to be using CCH, so

Appendix A. Simulations in MARK . . .



A.2. Generating encounter histories – program MARK A - 12

this option is selected by default.

Now you’re ready to start the simulations. If you haven’t completed all of the ‘tabbed windows’, the
’start simulations button’ will be greyed-out (see bottom of previous page). If you are ready to run
the simulations, this button will be active. Go ahead and run the simulations. If all goes well, the first
thing you’ll see is a Notepad window showing the basic RELEASE output – this can be ignored for the
moment.

In addition (and most important for our purposes in this case), a file called GOFFILE.dat will be
created on your computer. This file contains all of the results of the individual χ2 tests, and TEST 2

and TEST 3 separately, as well as the sum of TEST 2 + TEST 3. At this point, you’ll need to parse this
output file to extract just the TEST 2 + TEST 3 results. We’ll leave details of how to do this up to you.
But, for completeness, here are the results of our simulation.

If we plot ĉ estimated as (TEST2 + TEST3)/df

then we see that even though the true value for c in the simulated data is 1.0, there is considerable
variation among simulated data sets in estimated ĉ. The implications of this uncertainty are discussed
in some detail in Chapter 5.

A.2. Generating encounter histories – program MARK

Here, we simulate some multi-state data. Our purpose here is primarily to illustrate some of the other
features of the simulation tool in MARK – in particular, the ability to extract the encounter histories
generated by the simulations (up until now,we’ve only considered the analysis results,not the encounter
histories themselves). We’ll simulate {Sgpψg} – simple group differences in survival and movement
(no time variation), but no differences in encounter probability between groups, or over time.

As with earlier examples, start MARK, and and start the setup for a new MARK simulation. Select
‘Multi-strata recaptures’ as the data type, 6 occasions, and 2 strata. Then, using the PIM chart, setup
{Sgpψg} as the true model. Use whatever values you like for each of the parameters, and 100 releases of
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newly marked individuals on each occasion. Since we’re interested in looking at the encounter histories
for the true model, we use the current PIM structure for the ’Estimation Model’.
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Finally, the only thing we need to pay any real attention to is the ‘Simulation Specification’ tab.
Here, we want to specify only a single simulation (i.e., change the ’Number of simulations’ to 1). Then,
we check ‘Input Data in Output’ – this will cause the input data (i.e., the simulated encounter histories)
to be written into the simulation output.

Because you’re only running 1 simulation, it will run very quickly. Next step is to ‘View Simulation
Results’. We’ll start with the standard ’Browser View’.

We see that the browser contains the simulation number (only 1, in this case, see we ran only a
single simulation), the name of the model, and then a column labeled ’Output’. To extract the encounter
histories, double-click the cell in the ‘Output’ column. When you do so, you’ll see that the text in the
cell changes:

What you’re actually seeing is the first line of the entire (full) output that MARK generates. This
full output includes the encounter histories. How do you actually access these histories (given that you
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can’t scroll down the file from within the browser)? What you need to do is copy the contents of the cell
– you can do this either by using ctrl-A, or by right-clicking from within the cell, and selecting ‘Copy’.
Once you have copied the cell contents into the clipboard, you next need to paste the contents into your
favorite editor. After doing so, scroll down a few lines until you find the encounter histories. All that
remains is to extract the encounter histories from this file (this is either easy or difficult, depending on
your choice of editor). Thats it!

Earlier, we mentioned that there was another ‘view’ option for looking at the results of your simula-
tions. You can also look at your results using the ‘Form’ view option. To access the ‘Form’ view, simply
view the simulation results. MARK will typically default to the browser view. You can switch to the
form view either by selecting the appropriate button on the toolbar, or using the appropriate view menu
option. For the current simulation of multi-state data, here is what the form view would look like:

As with the browser option, you can extract the encounter histories simply by selecting the text in
the output window, and then copying the text to your favorite editor.

A.3. simulating data from a prior MARK analysis

Occasionally, it will be of interest to simulate data based on model structures you may have constructed
for some other MARK analysis. How can you ‘pull in’ the model structure from another MARK project
file into the simulation tool in MARK?

In fact, it isn’t really that hard. There are at least a couple of ways you can do this. In one approach,
you simply

1. open up the MARK project of interest

2. retrieve the model of interest

3. then, from within the open MARK project, select ‘Simulations | Setup Simulations’,
and then ‘override’ the popup window.

4. this will spawn the ‘specification of simulations’ window introduced earlier. Simply click
the ‘true model’ tab, and then click the ‘current PIM model’ button. This will make the
‘active model’ (which you retrieved in step 2, above) the ‘active model’ for the simulation.

5. remaining steps are pretty much as described earlier. However, in this case, the number
of releases is ‘set’ to equal the number of releases in the MARK analysis. You can change
this, if you like. The default link function is left at ‘identity’, and the default β parameters
are left at the default value of 0.5.
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Alternatively, you can

1. open up MARK, and select ‘Simulations | Setup Simulations’, and then ‘override’ the
popup window.

2. enter the details for the analysis you’re interested in simulating (e.g., if you want to run
one or more models from an analysis you did of a data set consisting of live encounters, 7
encounter occasions, an 2 groups, then you need to enter this data specification).

3. Once you’ve finished step (3), and clicked ‘OK’, this will spawn the ‘specification of simula-
tions’ window introduced earlier. Simply click the ‘true model’ tab.

4. Look for a button labeled ‘File database’, and click it. This will let you browse to a
particular .dbf file for some other MARK project, select it, and then pick the model you
want to simulate from those contained in the .dbf file (note, you can only pick one model
at a time)

5. remaining steps are pretty much as described earlier. However, in this case, the link
function, the beta parameters (for the link function), but not the number of releases is ‘set’
to equal the values from the MARK analysis. Again, you can manually override whatever
you like.

We’ll demonstrate the second approach using the full Dipper data set. Recall that the Dipper data
consists of live encounter data, 7 occasions, and 2 groups (males and females). We’ll assume we’ve
already analyzed these data (say the results are contained in ED.DBF), fitting 4 different models. The 4
models are shown in the following browser:

Suppose we want to simulate data under the model {ϕsex. f loodpsex}. From above, all we need to do is
start MARK, and select ‘Simulations | Setup Simulations’, and then ‘override’ the popup window.
Next, we click the appropriate data type (‘Recaptures only’), and specify 7 occasions, and 2 groups
(it isn’t necessary to label the groups, or to make the group labels equivalent to the labels used in
the original Dipper analysis). Then, in the ‘Specification of Simulations’ window, select the ’True
Model’ tab. Click the ‘File Database’ button

and browser to ‘ED.DBF’ (i.e., the .dbf file containing the results of your earlier Dipper analysis).
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Once you’ve selected ED.DBF, you will be presented with a list of all 4 of the models contained in the
results database for the Dipper analysis. Simply highlight/select the model you want to simulate from
the list (as shown below, for model {ϕsex. f loodpsex}):

Note: don’t click the ‘Select all’ option. Trying to bring all the files models into the MARK

simulation tool at the same time will cause MARK to crash. Retrieve one file model at a time.

Once you retrieve the file model,MARK willdrop you back into the ‘Specification of Simulations’
window. You’ll see (below) that the name for the true model has been set (reflecting the name of the
file model you just retrieved). It is also important to note that MARK has also set the link function to
whatever link function you used for that model in ED.DBF (in this case, the logit link).
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Click the ‘OK’ button. Next, if you click the ‘Beta values’ tab,you’ll see that MARK has also ‘retrieved’
the beta value estimates from the file model:

However, as noted earlier, MARK does not retrieve the original number of releases from the file
model:

In summary, it is relatively easy to ‘retrieve’ a previous file structure into the simulation capability
of MARK. Simply use a method which is most convenient for your purposes.
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A.4. Simulation of robust design + closed capture data – special

considerations

Simulation of the robust design model (Chapter 15) requires that the user enter parameters for the
simulation that are interpreted differently than what is estimated. This issue occurs for the population
estimates for the second and laterprimary sessions. The userwould expect that the values entered for the
population sizes for each primary session would be the actual population sizes. This assumption is true
for the first primary session. However, for the second and later primary sessions, the value of N entered
is the number of new animals entering the population at that point, i.e., N is now the number of animals
available for capture that have never previously been available for capture. This rather strange arrangement
is caused because of the way that the robust design models are structured (see Chapter 15).

For the closed captures models (see Chapter 14) in the robust design where N is in the likelihood,
the values entered for the N parameters are always assumed to have the identity link. Thus, regardless
of what link function is specified for the true model, the values entered for the N parameters are the
values for N . For the Huggins closed captures models (where N does not appear in the likelihood), N

values are entered in a separate tab window labeled as the true population size. However, again, the
actual values entered are either the initial population size (first primary session) or else the number of
new animals entering the population (second and later primary sessions).

A.5. Summary

The simulation capability of MARK is a very powerful and effective way to look at the impacts of number
of occasions, sample size, number of releases, and other factors, on the strength of your inference, before
you actually conduct your study. Conducting a study involving marked individuals requires careful
planning, and the simulation tool in MARK is an effective first step.
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The ‘Delta method’ . . .

Suppose you have conducted a mark-recapture study over 4 years which yields 3 estimates of apparent
annual survival (say, ϕ̂1, ϕ̂2, and ϕ̂3). But, suppose what you are really interested in is the estimate of the
product of the three survival values (i.e., the probability of surviving from the beginning of the study
to the end of the study)? While it is easy enough to derive an estimate of this product (as [ϕ̂1× ϕ̂2× ϕ̂3]),
how do you derive an estimate of the variance of the product? In other words, how do you derive an
estimate of the variance of a transformation of one or more random variables, where in this case, we
transform the three random variables (in this case, ϕ1 , ϕ2 and ϕ3) by considering their product?

One commonly used approach which is easily implemented, not computer-intensive, and can be
robustly applied in many (but not all) situations is the so-called Delta method (also known as the method
of propagation of errors). In this appendix, we briefly introduce some of the underlying background
theory, and the application of the Delta method, to fairly typical scenarios.

B.1. Mean and variance of random variables

Our interest here is developing a method that will allow us to estimate the variance for functions of
random variables. Let’s start by considering the formal approach for deriving these values explicitly,
based on the method of moments.∗ For continuous random variables, consider a continuous function f (x)

on the interval [−∞,+∞]. The first four moments of f (x) can be written as:

M0 �

∫
+∞

−∞
f (x)dx ,

M1 �

∫
+∞

−∞
x f (x)dx ,

M2 �

∫
+∞

−∞
x2 f (x)dx ,

M3 �

∫
+∞

−∞
x3 f (x)dx.

∗ In simple terms, a moment is a specific quantitative measure, used in both mechanics and statistics, of the shape of a set of
points. If the set of points represents a probability density, then the moments relate to measures of shape and location such as
mean, variance, skewness, and so forth.
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In the particular case that the function is a probability density (as for a continuous random variable),
then M0 � 1 (i.e., the area under the pdf must equal 1).

For example, consider the uniform distribution on the finite interval [a, b]. A uniform distribution
(sometimes also known as a rectangular distribution), is a distribution that has constant probability
over the interval. The probability density function (pdf) for a continuous uniform distribution on the
finite interval [a, b] is:

P(x) �



0 for x < a

1/(b − a) for a < x < b

0 for x > b

Integrating the pdf for p(x) � 1/(b − a):

M0 �

∫ b

a

p(x)dx

�

∫ b

a

1

b − a
dx � 1,

M1 �

∫ b

a

xp(x)dx

�

∫ b

a

x

b − a
dx �

a + b

2
,

M2 �

∫ b

a

x2p(x)dx

�

∫ b

a

x2 1

b − a
dx �

1

3

(

a2
+ ab + b2

)

,

M3 �

∫ b

a

x3p(x)dx

�

∫ b

a

x3 1

b − a
dx �

1

4

(

a3
+ a2b + ab2

+ b3
)

.

If you look closely, you should see that M1 is the mean of the distribution. What about the variance?
How do we interpret/use the other moments?

Recall that the variance is defined as the average value of the fundamental quantity [distance from
mean]2. The squaring of the distance is so the values to either side of the mean don’t cancel out. The
standard deviation is simply the square-root of the variance.

Given some discrete random variable xi , with probability pi , and mean µ, we define the variance as:

var �
∑

(

xi − µ
)2

pi .

Note we don’t have to divide by the number of values of x because the sum of the discrete probability
distribution is 1 (i.e.,

∑
pi � 1).
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For a continuous probability distribution, with mean µ, we define the variance as:

var �
∫ b

a

(x − µ)
2p(x)dx.

Given our moment equations, we can then write:

var �
∫ b

a

(x − µ)
2p(x)dx

�

∫ b

a

(

x2 − 2µx + µ2
)

p(x)dx

�

∫ b

a

x2p(x)dx −
∫ b

a

2µxp(x)dx +

∫ b

a

µ2p(x)dx

�

∫ b

a

x2p(x)dx − 2µ

∫ b

a

xp(x)dx + µ2

∫ b

a

p(x)dx.

Now, if we look closely at the last line, we see that in fact the terms represent the different moments
of the distribution. Thus we can write:

var �
∫ b

a

(x − µ)
2p(x)dx

�

∫ b

a

x2p(x)dx − 2µ

∫ b

a

xp(x)dx + µ2

∫ b

a

p(x)dx

� M2 − 2µ
(

M1

)

+ µ2 (M0

)

.

Since M1 � µ, and M0 � 1 then:

var � M2 − 2µ
(

M1

)

+ µ2 (M0

)

� M2 − 2µ(µ) + µ2
(1)

� M2 − 2µ2
+ µ2

� M2 − µ
2

� M2 −
(

M1

)2
.

In other words, the variance for the pdf is simply the second moment (M2) minus the square of the
first moment ((M1)

2).

Thus, for a continuous uniform random variable x on the interval [a, b]:

var � M2 −
(

M1

)2

�
(a − b)

2

12
.

It turns out, most of the usual measures by which we describe random distributions (mean, vari-
ance,...) are functions of the moments.
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B.2. Transformations of random variables and the Delta method

OK – that’s fine. If the pdf is specified, we can use the method of moments to formally derive the mean
and variance of the distribution. But, what about functions of random variables having poorly specified
or unspecified distributions? Or, situations where the pdf is not easily defined?

In such cases, we may need other approaches. We’ll introduce one such approach here (the Delta
method), by considering the case of a simple linear transformation of a random normal distribution.

Let
X1, X2, . . . ∼ N (10, σ2

� 2).

In other words, random deviates drawn from a normal distribution with a mean of 10, and a
variance of 2. Consider some transformations of these random values. You might recall from some
earlier statistics or probability class that linearly transformed normal random variables are themselves
normally distributed. Consider for example, Xi ∼ N (10, 2) – which we then linearly transform to Yi ,
such that Yi � 4Xi + 3.

Now, recall that for real scalar constants a and b we can show that

i. E(a) � a, E(aX + b) � aE(X) + b

ii. var(a) � 0, var(aX + b) � a2var(X).

Thus, given Xi ∼ N (10, 2) and the linear transformation Yi � 4Xi + 3, we can write:

Y ∼ N
( [

4(10) + 3 � 43
]

,
[

(42
)(2)

] )

� N (43, 32).

Now, an important point to note is that some transformations of the normal distribution are close
to normal (i.e., are linear) and some are not. Since linear transformations of random normal values are
normal, it seems reasonable to conclude that approximately linear transformations (over some range)
of random normal data should also be approximately normal.

OK, to continue. Let X ∼ N (µ, σ2
),and let Y � g(X), where g is some transformation of X (in the

previous example, g(X) � 4X + 3). It is hopefully relatively intuitive that the closer g(X) is to linear
over the likely range of X (i.e., within 3 or so standard deviations of µ), the closer Y � g(X) will be
to normally distributed. From calculus, we recall that if you look at any differentiable function over a
narrow enough region, the function appears approximately linear. The approximating line is the tangent
line to the curve, and its slope is the derivative of the function.

Since most of the mass (i.e., most of the random values) of X is concentrated around µ, let’s figure out
the tangent line at µ, using two different methods. First, we know that the tangent line passes through
(µ, g(µ)), and that its slope is g′µ (we use the ‘prime’ notation, g′, to indicate the first derivative of the
function g). Thus, the equation of the tangent line is Y � g′X + b for some b. Replacing (X, Y) with the
known point (µ, g(µ)), we find g(µ) � g′(µ)µ + b and so b � g(µ) − g′(µ)µ. Thus, the equation of the
tangent line is Y � g′(µ)X + g(µ) − g′(µ)µ.

Now for the big step – we can derive an approximation to the same tangent line by using a Taylor

series expansion of g(x) (to first order) around X � µ:

Y � g(X)

≈ g(µ) + g′(µ)(X − u) + ǫ

� g′(µ)X + g(µ) − g′(µ)µ + ǫ.
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OK, at this point you might be asking yourself ‘so what?’. [You might also be asking yourself ‘what
the heck is a Taylor series expansion?’. If so, see the - sidebar -, below.]

Well, suppose that X ∼ N (µ, σ2
) and Y � g(X), where g′(µ) , 0. Then, whenever the tangent line

(derived earlier) is approximately correct over the likely range of X (i.e., if the transformed function
is approximately linear over the likely range of X), then the transformation Y � g(X) will have an
approximate normal distribution. That approximate normal distribution may be found using the usual
rules for linear transformations of normals.

Thus, to first order:

E(Y) ≈ g′(µ)µ + g(µ) − g′(µ)µ

� g(µ)

var(Y) ≈ var
(
g(X)

)
�

(

g(X) − g(µ)
)2

�
(

g′(µ)(X − µ)
)2

�
(

g′(µ))
2
(X − µ

)2

�
(

g′(µ)
)2var(X).

In other words, for the expectation (mean), the first-order approximation is simply the transformed
mean calculated for the original distribution. For the first-order approximation to the variance, we take
the derivative of the transformed function with respect to the parameter, square it, and multiply it by
the estimated variance of the untransformed parameter.

These first-order approximations to the mean variance of a transformed parameter are usually
referred to as the Delta method.∗

begin sidebar

Taylor series expansions?

A very important, and frequently used tool. If you have no familiarity at all with series expansions,

here is a (very) short introduction. Briefly, the Taylor series is a power series expansion of an infinitely

differentiable real (or complex) function defined on an open interval around some specified point. For

example, a one-dimensional Taylor series is an expansion of a real function f (x) about a point x � a

over the interval (a − r, a + r), is given as:

f (x) ≈ f (a) +
f ′(a)(x − a)

1!
+

f ′′(x)(x − a)
2

2!
+ . . . ,

where f ′(a) is the first derivative of f with respect to a, f ′′(x) is the second derivative of f with respect

to a, and so on.

For example, suppose the function is f (x) � ex . The convenient fact about this function is that all its

derivatives are equal to ex as well (i.e., f (x) � ex , f ′(x) � ex , f ′′ � ex , . . .). In particular, f (n)
(x) � ex

so that f (n)
(0) � 1 . This means that the coefficients of the Taylor series are given by:

an �
f (n)

(0)

n!
�

1

n!
,

,

∗ For an interesting review of the history of the Delta method, see Ver Hoef, Jay M. (2012) Who Invented the Delta Method? The
American Statistician, 66, 124-127.
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and so the Taylor series is given by:

1 + x +
x2

2
+

x3

6
+

x4

24
+ . . . +

xn

n!
+ . . . �

∞∑

n�0

xn

n!

.

The primary utility of such a power series in simple application is that differentiation and integration

of power series can be performed term by term and is hence particularly (or, at least relatively) easy.

In addition, the (truncated) series can be used to compute function values approximately.

Now, let’s look at an example of the “fit” of a Taylor series to a familiar function, given a certain

number of terms in the series. For our example, we’ll expand the function f (x) � ex , at x � a � 0, on

the interval [a − 2, a + 2], for n � 0, n � 1, n � 2, . . . (where n is the number of terms in the series). For

n � 0, the Taylor expansion is a scalar constant (1):

f (x) ≈ 1,

which is obviously a poor approximation to the function f (x) � ex at any point. This is shown clearly

in the following figure – the black line in the figure is the function f (x) � ex , evaluated over the

interval [−2, 2], and the red line is the Taylor series approximation for n � a � 0.

What happens when we add higher order terms? Here is the plot of the Taylor series for n � 1:

Hmmm...a bit better.
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What about n � 2?

We see that when we add more terms (i.e., use a higher-order series), the fit gets progressivelybetter.

Often, for ‘nice, smooth’ functions (i.e., those nearly linear at the point of interest), we don’t need many

terms at all. For this example, n � 4 yields a near-perfect fit (over the interval [−2, 2].

Another example – suppose the function of interest is f (x) � (x)
1/3 (i.e., f (x) � 3

√
x). Suppose we’re

interested in f (x) � (x)
1/3 where x � 27 (i.e., f (27) �

3
√

27). Now, it is straightforward to show that

f (27) �
3
√

27 � 3. But suppose we want to know f (25) �
3
√

25, using a Taylor series approximation?

We recall that to first order:

f (x) � f (a) + f ′(a)(x − a),

where in this case, a � 25 and x � 27. The derivative of f withrespect to x for this function f (a) � (a)
1/3

is:

f ′(a) �
a−2/3

3
�

1

3
3
√

x2
.

Thus, using the first-order Taylor series, we write:

f (25) ≈ f (27) + f ′(27)(25 − 27)

� 3 + (0.037037)(−2)

� 2.926.

Clearly, 2.926 is very close to the true value of f (25) �
3
√

25 � 2.924. In other words, the first-order

Taylor approximation works well for this function. As we will see later, this is not always the case,

which has important implications.

end sidebar

B.3. Transformations of one variable

OK, enough background for now. Let’s see some applications. Let’s check the Delta method out in a
few cases where we (probably) know the answer.

Assume we have an estimate of density D̂ and its conditional sampling variance, v̂ar(D̂). We want
to multiply this by some constant c to make it comparable with other values from the literature. Thus,
we want D̂s � g(D) � cD̂, and v̂ar

(

Ds

)

.
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The Delta method gives:

v̂ar(D̂s ) ≈ (g′(D))
2σ̇2

D

�

(
∂D̂s

∂D̂

)2

· v̂ar(D̂)

� c2 · v̂ar(D̂),

which we know to be true for the variance of a random variable multiplied by a real constant.

Another example of the same thing – consider a known number of harvested fish and an average
weight (µ̂w) and its variance. If you want an estimate of total biomass (B), then B̂ � N · µ̂w and the
variance of B̂ is N2 · v̂ar(µw ).

Still another example – you have some parameter θ, which you transform by dividing it by some
constant c. Thus, by the Delta method:

v̂ar

(

θ̂

c

)

≈
(

1

c

)2

· v̂ar(θ̂)

B.3.1. A potential complication – violation of assumptions

A final – and conceptually important – example for transformations of single variables. The importance
lies in the demonstration that the Delta method does not always work. Remember, the Delta method
assumes that the transformation is approximately linear over the expected range of the parameter.
Suppose one has an MLE for the mean and estimated variance for some parameter θ which is bounded
random uniform on the interval [0, 2]. Suppose you want to transform this parameter such that:

ψ � eθ .

[Recall that this is a convenient transformation since the derivative of ex is ex , making the calculations
very simple. Also recall for the preceding - sidebar - that the Taylor series expansion to first-order
may not ‘do’ particular well with this function.]

Now, based on the Delta method, the variance for ψ would be estimated as:

v̂ar(ψ̂) ≈
(
∂ψ̂

∂θ̂

)2

· v̂ar(θ̂)

�

(

eθ
)2
· v̂ar(θ̂).

Now, suppose that θ̂ � 1.0, and v̂ar(θ̂) � 0.33̇. Then, from the Delta method:

v̂ar(ψ̂) ≈
(

eθ
)2
· v̂ar

(

θ̂
)

� (7.38906)(0.33̇)

� 2.46302.

Is this a reasonable approximation? The only way we can answer that question is if we know what
the ‘true’ (correct) estimate of the variance should be.
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There are a couple of approaches we can use to come up with the ‘true’ (correct) variance: (1)
analytically, or (2) by numerical simulation.

We’ll start with the formal, analytical approach, and derive the variance of ψ using the method of
moments introduced earlier. To do this, we need to integrate the pdf (uniform, in this case) over some
range. Since the variance of a uniform distribution is (b − a)

2/12, and if b and a are symmetric around
the mean (1.0), then we can show by algebra that given a variance of 0.33̇, then a � 0 and b � 2.

Given a uniform distribution, the pdf is p(θ) � 1/(b − a). Thus, by the method of moments:

M1 �

∫ b

a

g(x)

b − a
dx

� − eb − ea

a − b
,

M2 �

∫ b

a

g(x)
2

b − a
dx

�

(
1

2

)

· e2a − e2b

a − b
.

Thus, by moments, var(E(ψ) is:

var
(

E(ψ)
)

� M2 −
(

M1

)2
�

(
1

2

)

· −e2b
+ e2a

−b + a
−

(

eb − ea )2

(a − b)
2
.

If a � 0 and b � 2, then:

var
(

E(ψ)
)

� M2 −
(

M1

)2

�

(
1

2

)

· −e2b
+ e2a

−b + a
−

(

eb − ea )2

(a − b)
2

� 3.19453,

which is not particularly close to the value estimated by the Delta method (2.46302).

Let’s also consider coming up with an estimate of the ‘true’ variance by numerical simulation. The
steps are pretty easy: (i) simulate a large data set, (ii) transform the entire data set, and (iii) calculate
the variance of the transformed data set.

For our present example, here is one way you might set this up in R:

> sim.data <- runif(10000000,0,2);

> transformed.data <- exp(sim.data);

> var(transformed.data);

[1] 3.19509

which is pretty close to the value derived analytically, above( 3.19453) – the slight difference reflects
Monte Carlo error (generally, the bigger the simulated data set, the smaller the error).

Ok, so now that we have derived the ‘true’ variance in a couple of different ways, the important
question is – why the discrepancy between the ‘true’ variance of the transformed distribution (3.19453),
and the first-order approximation to the variance using the Delta method (2.46302)?
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As discussed earlier, the Delta method rests on the assumption the first-order Taylor expansion
around the parameter value is effectively linear over the range of values likely to be encountered. Since
in this example we’re using a uniform pdf, then all values between a and b are equally likely. Thus,
we might anticipate that as the interval between a and b gets smaller, then the approximation to the
variance (which will clearly decrease) will get better and better (since the smaller the interval, the more
likely it is that the function is approximately linear over that range).

Forexample, if a � 0.5 and b � 1.5 (same mean of1.0), then the true variance ofθwillbe 0.083̇. Thus,by
the Delta method, the estimated variance of ψ will be 0.61575, while by the method of moments (which
is exact), the variance will be 0.65792. Clearly, the proportional difference between the two values has
declined markedly. But, we achieved this ’improvement’ by artificially reducing the true variance of the
untransformed variable θ. Obviously, we can’t do this in general practice.

So, what are the practical options? Well, one possible solution is to use a higher-order Taylor series
approximation – by including higher-order terms, we can (and should) achieve a better ‘fit’ to the
function (see the preceding - sidebar -). In other words, our approximation to the variance should be
improved by using a higher-order Taylor expansion. The only ‘technical’ challenge (which really isn’t
too difficult, with some practice, potentially assisted by some good symbolic math software) is coming
up with the higher-order terms.

One convenient approach to deriving those higher-order terms for the present problem is to express
the transformation function ψ in the form var[g(X)] � var[g(µ + X − µ)], which, after some fairly
tedious bits of algebra, can be Taylor expanded as (written sequentially, each row representing the next
order of the expansion)∗

var[g(µ + X − µ)] ≈ g′(µ)
2var(X)

+ 2g′(µ)
g′′(µ)

2
E
((

X − µ
)3

)

+


g′′(µ)

2

4
+ 2g′(µ)

g′′′(µ)

3!

 E
((

X − µ
)4

)

+

2g′(µ)
g (4)

(µ)

4!
+ 2

g′′(µ)

2

g′′′(µ)

3!

 E
((

X − µ
)5

)

+ . . .

Now, while this looks a little ugly (ok, maybe more than ‘little’ ugly), it actually isn’t too bad –
the whole expansion is written in terms of ‘things we know’: the derivatives of our transformation
(g′, g′′, . . . ), simple scalars and scalar factorials, and, expectations of sequential powers of the deviations
of the data from the mean of the distribution (i.e., E

(

(X − µ)
n )). You already know from elementary

statistics that E
(

(X − µ)
1)

� 0, and E
(

(X − µ)
2)

� σ2 (i.e, the variance). But what about E
(

(X − µ)
3) , or

E
(

(X − µ)
4) . The higher-order terms in the Taylor expansion are often functions of the expectation of

these higher-power deviations of the data from the mean. How do we calculate these expectations?

In fact, it isn’t hard at all, and involves little more than applying an approach you’ve already seen
– look back a few pages and have another look at how we derived the variance as a function of the
first and second moments of the pdf. Remember, the variance is simply E

(

(X − µ)
2)

� σ2. Thus, we
might anticipate that the the same logic used in deriving the estimate E

(

(X − µ)
2) as a function of the

moments could be used for E
(

(X − µ)
3
), or E

(

(X − µ)
4) , and so on.

∗ For simplicity, we’re dropping (not showing) the terms involving Cov[(x−µ)
m , (X−µ)

n ] – thus, the expression as written isn’t
a complete expansion to order n, but it is close enough to demonstrate the point.
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The mechanics for E
(

(X − µ)
3) are laid out in the following - sidebar -. You can safely skip this

section if you want,and jump ahead to the the calculation of the variance using a higher-orderexpansion,
but it might be worth at least skimming through this material, if for no other reason that to demonstrate
that this is quite ‘doable’. It is also a pretty nifty demonstration that a lot of interesting things can be
and are developed as a function of the moments of the pdf.

begin sidebar

approximating E
(

(X − µ)
3
)

E
(

(X − µ)
3)

�

∫ b

a
(x − µ)

3p(x)dx

�

∫ b

a

(

x3
+ 3µ2x − 3µx2 − µ3

)

p(x)dx

�

∫ b

a
x3p(x)dx +

∫ b

a
3µ2xp(x)dx −

∫ b

a
3µx2p(x)dx −

∫ b

a
µ3p(x)dx

�

∫ b

a
x3p(x)dx + 3µ2

∫ b

a
xp(x)dx − 3µ

∫ b

a
x2p(x)dx − µ3

∫ b

a
p(x)dx

� M3 + 3µ2
(M1) − 3µ(M2) − µ3

(M0).

Since M1 � µ, and M0 � 1, then

E
(

(X − µ)
3)

�

∫ b

a
(x − µ)

3p(x)dx

� M3 + 3µ2
(M1) − 3µ(M2) − µ3

(M0)

� M3 + 3M3
1 − 3M1M2 −M3

1 .

At this point, all that remains is substituting in the expressions for the moments corresponding to

the particular pdf (in this case, U (a, b), as derived a few pages back), and you have your function for

the expectation E
(

(X − µ)
3
).

We’ll leave it to you to confirm the algebra – the ‘answer’ is

E
(

(X − µ)
3)

� 2
(
1

2
a +

1

2
b
)3

− 3
(
1

2
a +

1

2
b
) (

1

3
a2

+
1

3
ab +

1

3
b2

)

+
1

4
a3

+
1

4
ab

+
1

4
ab2

+
1

4
b3

� 0.

Yes, a lot of work and some algebra for what seems like an entirely anti-climatic result:

“E
(

(X − µ)
3) for the pdf U (a, b) is 0.”

But you’re happier knowing how it’s done (no, really). We use the same procedure for E
(

(X − µ)
4) ,

and so on.

In fact, if you go through the exercise of calculating E
(

(X−µ)
n )

for n � 4, 5, ..., you’ll find that they

generally alternate between 0 (e.g., E
(

(X −µ)
3)

� 0 for U (a, b)), and non-zero (e.g., E
(

(X −µ)
4)

� 0.2,

for U (0, 2)). This can be quite helpful in simplifying the Taylor expansion.

end sidebar
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How well does a higher-order approximation do? Let’s start by having another look at the Taylor
expansion we presented a few pages back – we’ll focus on the expansion out to order 5:

var[g(µ + X − µ)] ≈ g′(µ)
2var(X)

+ 2g′(µ)
g′′(µ)

2
E
((

X − µ
)3

)

+


g′′(µ)

2

4
+ 2g′(µ)

g′′′(µ)

3!

 E
((

X − µ
)4

)

+

2g′(µ)
g (4)

(µ)

4!
+ 2

g′′(µ)

2

g′′′(µ)

3!

 E
((

X − µ
)5

)

.

If you had a look at the preceding - sidebar -, you’d have seen that some of the expectation terms
(and products of same) equal 0, and thus can be dropped from the expansion. So, our order 5 Taylor
series expansion can be written as

var[g(µ + X − µ)] ≈ g′(µ)
2var(X)

+

✘✘✘✘✘✘✘✘✘✘✘✘

2g′(µ)
g′′(µ)

2
E
((

X − µ
)3

)

+


g′′(µ)

2

4
+ 2g′(µ)

g′′′(µ)

3!

 E
((

X − µ
)4

)

+

✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭2g′(µ)
g (4)

(µ)

4!
+ 2

g′′(µ)

2

g′′′(µ)

3!

 E
((

X − µ
)5

)

� g′(µ)
2var(X) +


g′′(µ)

2

4
+ 2g′(µ)

g′′′(µ)

3!

 E
((

X − µ
)4

)

.

So, how much better does this higher-order approximation do? If we ‘run through the math’, and for
U (a, b) where a � 0, b � 2, such that µ � 1, σ2

� 0.33̇, E
((

X − µ
)4)

� 0.2, we end up with

var[g(µ + X − µ)] ≈ g′(µ)
2var(X) +


g′′(µ)

2

4
+ 2g′(µ)

g′′′(µ)

3!

 E
((

X − µ
)4

)

�
(

e1)2
(0.33̇) +


(

e1)2

4
+ 2

(

e1) e1

3!

 (0.20)

� 3.325075,

which is much closer to the true value of 3.19453 (the fact that the estimated value is slightly larger
than the true value is somewhat odd, and possibly reflects not including the Cov[(x − µ)

m , (X − µ)
n]

terms in the Taylor expansion). Regardless, it is a much better approximation than the first-order value
of 2.46302.

OK, the preceding is arguably a somewhat artificial example. Now we’ll consider a more realistic
situation where the first-order approximation may be insufficient to our needs.
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Delta method applied to the expectation of the transformed data

Consider the following situation. Suppose you are interested in simulating some data on the logit
scale, where variation around the mean if normal (so, you’re going to simulate logit-normal data).
Suppose the mean of some parameter on the real probability scale is θ � 0.3. So, transformed to the
logit scale, the mean of the sample you’re going to simulate would be log(θ/(1− θ)) � −0.8472979. So,
you want to simulate some normal data, with some specified variance, on the logit scale, centered on
µlo git � −0.8472979.

Here, using R, we generate a vector (which we’ve called samp, below) of 50,000 logit-normal deviates,
with a µlo git � −0.8472979, and a standard deviation of of σlo git � 0.75 (corresponding to a variance of

σ2
lo git � 0.5625). We’ll set the random number seed at 1234 so you can try this yourself, if inclined:

> set.seed(1234);

> samp <- rnorm(50000,-0.8472979,0.75);

If we check the mean and variance of our random sample, we find they’re quite close to the true
parameters used in simulating the data (perhaps not surprising given the size of the simulated sample).

> mean(samp)

[1] -0.8456896

> var(samp)

[1] 0.5630073

If we plot a histogram of the simulated data, we see a symmetrical distribution centered around the
true mean µlo git � −0.8472979 (vertical red line):

Histogram of samp
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Now, we know from what we’ve covered so far that if we try to calculate the variance of the back-
transform of these data from the logit scale→ real probability scale, by simply taking the back transform
of the estimated variance σ̂2

lo git � 0.5630073, we’ll get the incorrect answer. If we do that, we would get

e0.5630073

1 + e0.5630073
� 0.6371481
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How can we confirm our developing intuition that this value is incorrect? Well, if we simply back-
transform the entire random sample, and then calculate the variance of this back transformed sample
(which we call back) directly,

> expit=function(x) exp(x)/(1+exp(x));

> back <- expit(samp)

> var(back)

[1] 0.02212163

we get a value which, as we might have expected, isn’t remotely close to the value of 0.6371481 we
obtained by simply back-transforming the variance estimate.

Of course, we know by now we should have used the Delta method here. First, we recall that the
back-transform f from the logit→ to the real scale is:

f �
eθ

1 + eθ
.

Then, we apply the Delta method as:

v̂ar( f ) ≈
(
∂ f

∂θ̂

)2

× v̂ar(θ̂)

�
*..,

e θ̂

(

1 + e θ̂
)2

+//-
2

× v̂ar(θ̂)

�
*..,

e−0.8456896

(

1 + e−0.8456896
)2

+//-
2

× 0.5630073

� 0.024860,

which is very close to the value we derived (above) by calculating the variance of the entire back-
transformed sample (0.022121).

However, the main point we we want to cover here is applying the Delta method to other moments
– specifically, the mean. Recall that the mean from our logit-normal sample was -0.8456896. Can we
simply back-transform this mean from the logit→ real probability scale? In other words,

e−0.8456896

1 + e−0.8456896
� 0.3003378.

Now, compare this value to the mean of the entire back-transformed sample:

> mean(back)

[1] 0.3199361

You might think that the two values (0.3003378, 0.3199361) are ‘close enough for government work’
(although the difference is roughly 6%), but since we don’t work for the government, let’s apply the
Delta method to generate a correct approximation to the back-transformed mean.
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First, recall that the transformation function f (from logit→ real) is

f �
eθ

1 + eθ
.

Next, remember that the Delta method as we’ve been applying generally (and in the preceding for the
variance) it is based on the first-order Taylor series approximation.

What is the first-order Taylor series expansion for f , if θ � µ? In fact, it is simply:

eµ

1 + eµ
+ O

(

(θ − µ)
2) .

where there term O
(

(θ−µ)
2) is the asymptotic bound of the growth of the error. But, more to the point,

the first-order approximation is basically our back-transformation, with some (possibly a lot) of error
added.

In fact, we might expect this error term to be increasingly important if the assumptions under which
the first-order approximation applies are strongly violated. In particular, if the transformation function
is highly non-linear over the range of values being examined.

Do we have such a situation in the present example? Compare the histograms of our simulated data,
on the logit (samp) and back-transformed real scales (back), respectively:

Histogram of samp
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Note that the mean of the back-transformed distribution (vertical blue line) is somewhat to the right
of the mass of the distribution, which is fairly asymmetrical.

This suggests that the back-transformation might be sufficiently non-linear that we need to use a
higher-order Taylor series approximation. If you do the math (which isn’t that difficult), the second-
order approximation is given as

eµ
(

1 + eµ
) +

eµ

(

1 − eµ
)2

(θ − µ) + O
(

(θ − µ)
2
)

.
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Now, while the preceding is starting to look somewhat impressive, the key here is remembering that
we’re dealing with ‘expectations’. What is the expectation of (θ − µ)? In this situation, θ is a random
variable – where each estimated mean from a set of replicated data sets on the logit scale represents
θ, and µ is the overall parametric mean. We know from even the most basic statistics class that the
expectation of the difference of a random variable Xi from the mean of the set of random variables,
X̄, is 0 (i.e., E(Xi − X̄) � 0). By the same logic, then, the expectation of E(θ − µ) � 0. And, anything
multiplied by 0 is 0, so, after dropping the error term, our second-order approximation reduces to

eµ
(

1 + eµ
) +

✟✟✟✟✟✟✟✟eµ

(

1 − eµ
)2

(θ − µ)

�
eµ

(

1 + eµ
) ,

which brings us right back to our standard back-transformation, which we continue to be less-than-
satisfied with.

What about a third-order approximation? After a bit more math, we end up with

eµ
(

1 + eµ
) +

eµ

(

1 − eµ
)2

(θ − µ) − 1

2

eµ
(

eµ − 1
)

(

1 − eµ
)3

(θ − µ)
2
+ O

(

(θ − µ)
3
)

.

Again, the expectation for E(θ − µ) � 0, while for E(θ − µ)
2? Look closely – variate minus mean,

square. Look familiar? It should – it’s the variance. So, E(θ−µ)
2
� σ̂2. So, after dropping the error term,

our third-order approximation is given as

eµ
(

1 + eµ
) +

✟✟✟✟✟✟✟✟eµ

(

1 − eµ
)2

(θ − µ) − 1

2

eµ
(

eµ − 1
)

(

1 − eµ
)3

(θ − µ)
2

�
eµ

(

1 + eµ
) −

1

2

eµ
(

eµ − 1
)

(

1 − eµ
)3
σ2.

This is our third-order approximation to the mean.

So, given our estimate of µ � −0.8456896 and σ2
� 0.5630073 on the logit-scale, our Delta approxima-

tion for the expectation (mean) on the back-transformed real probability scale, using this third-order
approximation is

eµ
(

1 + eµ
) −

1

2

eµ
(

eµ − 1
)

(

1 − eµ
)3
σ2

�
e−0.8456896

(

1 + e−0.8456896
) −

1

2

e−0.8456896
(

e−0.8456896 − 1
)

(

1 − e−0.8456896
)3

(0.5630073)

� 0.3239593842,

which is quite a bit closer to the empirical estimate of the mean derived from the entire back-transformed
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sample (0.3199361) than was our first attempt using the first-order approximation (0.3003378).

So, we see that the classical Delta method, which is based on a first-order Taylor series expansion
of the transformed function, may not do particularly well if the function is highly non-linear over the
range of values being examined. Of course, it would be fair to note that the preceding example made
the assumption that the distribution was random uniform over the interval. For most of our work with
MARK, the interval is likely to have a symmetric mass around the estimate, typically β. As such, most
of data, and thus the transformed data, will actually fall closer to the parameter value in question (the
mean in this example) than we’ve demonstrated here. So much so, that the discrepancy between the first
order ‘Delta’ approximation to the variance and the true value of the variance will likely be significantly
smaller than shown here, even for a strongly non-linear transformation. We leave it to you as an exercise
to prove this for yourself.

But, this point notwithstanding, it is important to be aware of the assumptions underlying the Delta
method – if your transformation is non-linear, and there is considerable variation in your data, the
first-order approximation may not be particular good. Fortunately, use of second order Taylor series
approximations is not heroically difficult, with a bit of work. If the pdf for the untransformed data is
specified (which is essentially equivalent to assuming an informative prior), then you can derive var(θ2

)

fairly easily using the method of moments.

B.4. Transformations of two or more variables

We are often interested in transformations involving more than one variable. Fortunately, there are also
multivariate generalizations of the Delta method.

Suppose you’ve estimated p different random variables X1, X2, . . . , Xp. In matrix notation, these
variables would constitute a (p × 1) random vector:

X �



X1

X2

...

Xp


,

which has a mean vector:

µ �



EX1

EX2

...

EXp


�



µ1

µ2

...

µp


,

and the (p × p) variance-covariance matrix is:

cov
(

X1, X2

)

�



var(X1) cov(X1, X2) . . . cov(X1 , Xp)

cov(X2, X1) var(X2) . . . cov(X2 , Xp)

...
...

...
...

cov(Xp , X1) cov(Xp , X2) . . . var(Xp)


.
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Note that if the variables are independent, then the off-diagonal elements (i.e., the covariance terms)
are all zero.

Then, for a (k × p) matrix of constants A � ai j , the expectation of a random vector Y � AX is given
as:



EY1

EY2

...

EYp


� Aµ,

with a variance-covariance matrix:

cov(Y) � AΣAT.

Now, using the same logic we first considered for developing the Delta method for a single variable,
for each xi near µi, we can write:

y �



g1(x)

g2(x)

...

gp (x)


≈



g1(µ)

g2(µ)

...

gp (µ)


+ D(x − µ),

where D is the matrix of partial derivatives of gi with respect to x j , evaluated at (x − µ).

As with the single-variable Delta method, if the variances of the Xi are small (so that with high
probability Y is near µ, such that the linear approximation is usually valid), then to first-order we can
write:



EY1

EY2

...

EYp


�



g1(µ)

g2(µ)

...

gp (µ)


v̂ar(Ŷ) ≈ DΣDT.

In other words, to approximate the variance of some multi-variable functionY,we (i) take the vector of
partial derivatives of the function with respect to each parameter in turn,D, (ii) right-multiply this vector
by the variance-covariance matrix, Σ, and (iii) right-multiply the resulting product by the transpose of
the original vector of partial derivatives, DT.∗

Note: interpretation of the variance estimated using the Delta method is dependent on the source
of the variance-covariance matrix, Σ, used in the calculations. If Σ is constructed using standard ML

∗ There are alternative formulations of this expression which may be more convenient to implement in some instances. When
the variables θ1 , θ2 . . . θk (in the function, Y) are independent, then

v̂ar(Ŷ) ≈ var
(

f (θ1 , θ2 , . . . θk )
)

�

k∑

i�1

var
(

θi

)

(
∂ f

∂θi

)2

,

where ∂ f /∂θ1 is the partial derivative of Y with respect to θi . When the variables θ1 , θ2 . . . θk (in the function, Y) are not
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estimates of the variances and covariances, then the resulting Delta method estimate for variance is an
estimate of the ‘total’ variance, which is the sum of ‘sampling’ + ‘biological process’ variance. In contrast,
if Σ is based on estimated ‘process’ variances and covariances only, then the Delta method estimate for
variance is an estimate of the ‘process’ variance. Decomposition of total variance into sampling and
process components is covered in detail in Appendix D.

Example (1) – variance of product of survival probabilities

Let’s consider the application of the Delta method in estimating sampling variances of a fairly common
function – the product of several parameter estimates.

From the preceding, we see that:

v̂ar(Ŷ) ≈ DΣDT

�

[
∂(Ŷ)

∂(θ̂)

]
· Σ̂ ·

[
∂(Ŷ)

∂(θ̂)

]T

,

where Y is some linear or nonlinear function of the k parameter estimates θ̂1 , θ̂2, . . . θ̂k . The first term,
D, on the RHS of the variance expression is a row vector containing partial derivatives of Y with respect
to each of these k parameters (θ̂1, θ̂2, . . . θ̂k). The right-most term of the RHS of the variance expression,
DT, is simply a transpose of this row vector (i.e., a column vector). The middle-term, Σ is simply the
estimated variance-covariance matrix for the parameters.

To demonstrate the steps in the calculation, we’ll use estimates from the male European dipper data
set (yes, again). We’ll fit model {ϕt p.} to these data. Suppose we’re interested in the probability of
surviving from the start of the first interval to the end of the third interval. Well, the point-estimate of
this probability is easy enough – it’s simply

Ŷ �
(

ϕ̂1 × ϕ̂2 × ϕ̂3

)

�
(

0.6109350× 0.458263× 0.4960239
)

� 0.138871.

So, the estimated probability of a male Dipper surviving over the first three intervals is ∼ 14% (again,
assuming that our time-dependent survival model is a valid model).

To derive the estimate of the variance of the product, we will also need the variance-covariancematrix
for the survival estimates. You can generate the matrix easily in MARK by selecting ’Output | Specific
Model Output | Variance-Covariance Matrices | Real Estimates’.

The variance-covariance matrix for the male Dipper data, generated from model {ϕt p.}, as output
to the default editor (e.g., Windows Notepad), is shown at the top of the next page.

independent, then the covariance structure among the variables must be accounted for:

v̂ar(Ŷ) ≈ var
(

f (θ1 , θ2 , . . . θk )
)

�

k∑

i�1

var
(

θi

)

(
∂ f

∂θi

)2

+ 2

k∑

i�1

k∑

j�1

cov
(

θi , θj

)

(
∂ f

∂θi

) (
∂ f

∂θj

)

Appendix B. The ‘Delta method’ . . .



B.4. Transformations of two or more variables B - 20

In the output from MARK as shown in the editor, the variance-covariance values are below the
diagonal, whereas the standardized correlation values are above the diagonal. The variances are given
along the diagonal.

However, it is very important to note that the V-C matrix that MARK outputs to the editor is rounded

to 5 significant digits. For the actual calculations, we need to use the full precision values.∗ To get those,
you need to either (i) output the V-C matrix into a dBase file (which you could then open with dBase,
or Excel), or (ii) copy the V-C matrix into the Windows clipboard, and then paste it into some other
application. Failure to use the full precision V-C matrix will almost always lead to ‘rounding errors’.

The ‘full precision’ V-C matrix for the 3 Dipper survival estimates is shown below.

ĉov(Ŷ) �
̂∑

�


v̂ar(ϕ̂1) ĉov(ϕ̂1 , ϕ̂2) ĉov(ϕ̂1 , ϕ̂3)

ĉov(ϕ̂2 , ϕ̂1) v̂ar(ϕ̂2) ĉov(ϕ̂2 , ϕ̂3)

ĉov(ϕ̂3 , ϕ̂1) ĉov(ϕ̂3 , ϕ̂2) v̂ar(ϕ̂3)



�


0.0224330125 −0.0003945405 0.0000654469

−0.0003945405 0.0099722201 −0.0002361998

0.0000654469 −0.0002361998 0.0072418858


.

For this example, the transformation we’re applying to our 3 survival estimates (which we’ll call Y)
is the product of the estimates (i.e., Ŷ � ϕ̂1ϕ̂2ϕ̂3).

∗ The variance-covariance estimates MARK generates will occasionally depend somewhat on which optimization method you
use (i.e., default, or simulated annealing), and (occasionally) on the starting values used to initialize the optimization. The
differences in the reported values are often very small (i.e., apparent only several decimal places out from zero), but you should
be aware of them. For all of the examples presented in this Appendix, we have used the default optimization routines, and
default starting values.
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Thus, our variance estimate is given as

v̂ar(Ŷ) ≈
[(

∂(Ŷ)

∂ϕ̂1

) (

∂(Ŷ)

∂ϕ̂2

) (

∂(Ŷ)

∂ϕ̂3

) ]
· ̂∑ ·



(

∂(Ŷ)

∂ϕ̂1

)

(

∂(Ŷ)

∂ϕ̂2

)

(

∂(Ŷ)

∂ϕ̂3

)



.

Each of the partial derivatives for Ŷ is easy enough to derive for this example. Since Ŷ � ϕ̂1ϕ̂2ϕ̂3,
then ∂Ŷ/∂ϕ̂1 � ϕ̂2ϕ̂3. And so on.

So,

v̂ar(Ŷ) ≈
[(

∂(Ŷ)

∂ϕ̂1

) (

∂(Ŷ)

∂ϕ̂2

) (

∂(Ŷ)

∂ϕ̂3

)]
· ̂∑ ·



(

∂(Ŷ)

∂ϕ̂1

)

(

∂(Ŷ)

∂ϕ̂2

)

(

∂(Ŷ)

∂ϕ̂3

)



�

[
(
ϕ̂2ϕ̂3

) (
ϕ̂1ϕ̂3

) (
ϕ̂1ϕ̂2

)
]
·



v̂ar(ϕ̂1) ĉov(ϕ̂1 , ϕ̂2) ĉov(ϕ̂1 , ϕ̂3)

ĉov(ϕ̂1 , ϕ̂1) v̂ar(ϕ̂2) ĉov(ϕ̂2 , ϕ̂3)

ĉov(ϕ̂3 , ϕ̂1) ĉov(ϕ̂3 , ϕ̂2) v̂ar(ϕ̂3)


·



(

ϕ̂2ϕ̂3

)

(

ϕ̂1ϕ̂3

)

(

ϕ̂1ϕ̂2

)


.

Clearly, the estimator is getting more and more ’impressive’ as we progress. The resulting expression
(written in piecewise fashion to make it easier to see the basic pattern) is shown at the top of the next
page.

v̂ar(Ŷ) ≈ ϕ̂2
2ϕ̂

2
3[v̂ar(ϕ̂1)]

+ 2ϕ̂2ϕ̂
2
3ϕ̂1[ĉov(ϕ̂1 , ϕ̂2)]

+ 2ϕ̂2
2ϕ̂3ϕ̂1[ĉov(ϕ̂1 , ϕ̂3)]

+ ϕ̂2
1ϕ̂

2
3[v̂ar(ϕ̂2)]

+ 2ϕ̂2
1ϕ̂3ϕ̂2[ĉov(ϕ̂2 , ϕ̂3)]

+ ϕ̂2
1ϕ̂

2
2[v̂ar(ϕ̂3)].

Whew – a lot of work (and if you think this equation looks ‘impressive’, try it using a second-order
Taylor series approximation!). But, under some assumptions, the Delta method does rather well in
allowing you to derive an estimate of the variance for functions of random variables (or, as we’ve
described, functions of estimated parameters).
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After substituting in our estimates for ϕi and the variances and covariances, our estimate for the
variance of the product Ŷ � (ϕ̂1ϕ̂2ϕ̂3) is (approximately) v̂ar(Y) � 0.0025565.

Example (2) – variance of estimate of reporting rate

In some cases animals are tagged or banded to estimate a “reporting rate” – the proportion of tagged
animals reported (say, to a conservation management agency), given that they were killed and retrieved
by a hunter or angler (see chapter 8 for more details). Thus, Nc animals are tagged with normal (control)
tags and, of these, Rc are recovered the first year following release. The recovery rate of these control
animals is merely Rc/Nc and we denote this as fc .

Another group of animals, of sample size Nr , are tagged with special reward tags; these tags indicate
that some amount of money (say, $50) will be given to people reporting these special tags. It is assumed
that$50 is sufficient to ensure thatall such tags willbe reported,thus these serve as a basis forcomparison
and the estimation of a reporting rate. The recovery probability for the reward tagged animals is merely
Rr/Nr , where Rr is the number of recoveries of reward-tagged animals the first year following release.
We denote this recovery probability as fr .

The estimator of the reporting rate is a ratio of the recovery rates and we denote this as λ. Thus:

λ̂ �
f̂c

f̂r

.

Now, note that both recovery probabilities are binomials.

Thus:

v̂ar
(

f̂c

)

�

f̂c

(

1 − f̂c

)

Nc

and v̂ar
(

f̂r

)

�

f̂r

(

1 − f̂r

)

Nr

.

In this case, the samples are independent, thus cov
(

fc , fr

)

and the sampling variance-covariance
matrix is diagonal: 

v̂ar
(

f̂c

)

0

0 v̂ar
(

f̂r

)

 .
Next, we need the derivatives of λ with respect to fc and fr :

∂λ̂

∂ f̂c

�
1

f̂r

, and
∂λ̂

∂ f̂r

� −
f̂c

f̂ 2
r

.

Thus,

v̂ar(λ̂) ≈


1

f̂r

,−
f̂c

f̂ 2
r



v̂ar

(

f̂c

)

0

0 v̂ar
(

f̂r

)





1

f̂r

−
f̂c

f̂ 2
r


.
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Example (3) – variance of back-transformed estimates - simple

In Chapter 6, we demonstrated how we can ’back-transform’ from the estimate of β on the logit scale
to an estimate of some parameter θ (e.g., ϕ or p) on the probability scale (which is bounded [0, 1]). But,
we’re clearly also interested in an estimate of the variance (precision) of our estimate, on both scales.
Your first thought might be to simply back-transform from the link function (in our example, the logit
link), to the probability scale, just as we did above. But, as discussed in chapter 6, this does not work.

For example, consider the male Dipper data. Using the logit link, we fit the time-invariant model
{ϕ.p.} to the data. Let’s consider only the estimate for ϕ̂. The estimate for β̂ for ϕ is 0.2648275. Thus,
our estimate of ϕ̂ on the probability scale (which is what MARK reports) is:

ϕ̂ �
e0.2648275

1 + e0.2648275
�

1.303206

2.303206
� 0.5658226.

But, what about the variance? Well, if we look at the β estimates, MARK reports that the standard
error for the estimate of β corresponding to survival is 0.1446688. If we simply back-transform this from
the logit scale to the probability scale, we get:

ŜE �
e0.1446688

1 + e0.1446688
�

1.155657

2.155657
� 0.5361043.

However, MARK reports the estimated standard error for ϕ as 0.0355404, which isn’t even remotely
close to our back-transformed value of 0.5361043.

What has happened? Well, hopefully you now realize that you’re ‘transforming’ the estimate from
one scale (logit) to another (probability). And, since you’re working with a ’transformation’, you need
to use the Delta method to estimate the variance of the back-transformed parameter.

Since

ϕ̂ �
e β̂

1 + e β̂
,

then

v̂ar(ϕ̂) ≈
(
∂ϕ̂

∂β̂

)2

× v̂ar(β̂)

�
*..,

e β̂

1 + e β̂
−

(

e β̂
)2

1 +

(

e β̂
)2

+//-

2

× v̂ar(β̂)

�
*..,

e β̂

(

1 + e β̂
)2

+//-
2

× v̂ar(β̂).

It is again worth noting that if

ϕ̂ �
e β̂

1 + e β̂
,
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then it can be easily shown that

ϕ̂(1 − ϕ̂) �
e β̂

(

1 + e β̂
)2
,

which is the derivative of ϕ with respect to β.
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So, we could rewrite our expression for the variance of ϕ̂ conveniently as

v̂ar(ϕ̂) ≈
*..,

e β̂

(

1 + e β̂
)2

+//-
2

× v̂ar(β̂) �
(

ϕ̂
(

1 − ϕ̂
))2
× v̂ar(β̂).

From MARK, the estimate of the SE for β̂was 0.1446688. Thus, the estimate of var(β) is (0.1446688)
2
�

0.02092906. Given the estimate of β̂ of 0.2648275, we substitute into the preceding expression, which
yields

v̂ar(ϕ̂) ≈
*..,

e β̂

(

1 + e β̂
)2

+//-
2

× v̂ar(β̂)

� 0.0603525× 0.02092906 � 0.001263.

So, the estimated SE for ϕ̂ is
√

0.001263 � 0.0355404, which is what is reported by MARK.

begin sidebar

SE and 95% CI

The standard approach to calculating 95% confidence limits for some parameter θ is θ ± (1.96 × SE).

Is this how MARK calculates the 95% CI on the real probability scale? Well, take the example

we just considered – the estimated SE for ϕ̂ � 0.5658226 was
√

0.001263 � 0.0355404. So, you

might assume that the 95% CI on the real probability scale would be 0.5658226 ± (2 × 0.0355404) -

[0.4947418, 0.6369034].

However, this is not what is reported by MARK - [0.4953193, 0.6337593], which is quite close, but

not exactly the same. Why the difference? The difference is because MARK first calculated the 95% CI

on the logit scale, before back-transforming to the real probability scale. So, for our estimate of ϕ̂, the

95% CI on the logit scale for β̂ � 0.2648275 is [−0.0187234, 0.5483785], which, when back-transformed

to the real probability scale is [0.4953193, 0.6337593], which is what is reported by MARK. In this case,

the very small difference between the two CI’s is because the parameter estimate was quite close to

0.5. In such cases, not only will the 95% CI be nearly the same (for estimates of 0.5, it will be identical),

but they will also be symmetrical.

However, because the logit transform is not linear, the reconstituted 95% CI will not be symmetrical

around the parameter estimate, especially for parameters estimated near the [0, 1] boundaries. For

example, consider the estimate for p̂ � 0.9231757. On the logit scale, the 95% CI for the β corresponding

to p (ŜE � 0.5120845) is [1.4826128, 3.4899840]. The back-transformed CI is [0.8149669, 0.9704014],

which is what is reported by MARK. This CI is clearly not symmetric around p̂ � 0.9231757. The

degree of asymmetry is a function of how close the estimated parameter is to either the 0 or 1 boundary.

Further, the estimated variance for p̂:

v̂ar(p̂) ≈
[

p̂(1 − p̂)
]2 × v̂ar(β̂)

�
[

0.9231757(1 − 0.9231757)
] 2 × 0.262231

� 0.001319,

yields an estimated SE of 0.036318 on the normal probability scale (which is what is reported by

MARK). Estimating the 95% CI on the probability scale simply as 0.9231757 ± (2 × 0.036318) yields

[0.85054, 0.99581], which is clearly quite a bit different, and more symmetrical, than what is reported

by MARK (from above, [0.8149669, 0.9704014]). MARK uses the back-transformed CI to ensure that
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the reported CI is bounded [0, 1]. As the estimated parameter approaches either the 0 or 1 boundary,

the degree of asymmetry in the back-transformed 95% CI that MARK reports will increase.

end sidebar

Example (4) – variance of back-transformed estimates - harder

In Chapter 6 we considered the analysis of variation in the survival of the European Dipper, as a function
of whether or not there was a flood in the sampling area. Here, we consider just the male Dipper data
(the encounter data are contained in ed_males.inp). Recall that a flood occurred during over the second
and third intervals. For convenience, we’ll assume that encounter probability is constant over time, and
that survival is a linear function of ‘flood’.

Using a logit link function, where ‘flood’ years were coded in the design matrix using a ‘1’, and
‘non-flood’ years were coded using a ‘0’, the estimated linear model for survival on the logit scale was:

logit(ϕ̂) � 0.4267863− 0.5066372(flood)

So, in a flood year:

logit(ϕ̂flood) � 0.4267863− 0.5066372(flood)

� 0.4267863− 0.5066372(1) � −0.0798509

Back-transforming onto the real probability scale yields the precise value reported by MARK:

ϕ̂flood �
e−0.0798509

1 + e−0.0798509
� 0.48005.

Now, what about the estimated variance for ϕflood? First, what is our ‘transformation function’ (Y)?
Simple – it is the ‘back-transform’ of the linear equation on the logit scale.

Given that:

logit(ϕ̂) � β1 + β2(flood)

� 0.4267863− 0.5066372(flood),

then the back-transform function Y is

Ŷ �
e0.4267863−0.5066372(flood)

1 + e0.4267863−0.5066372(flood)

Second, since our transformation clearly involves multiple parameters (β1, β2), the estimate of the
variance is given to first-order by

v̂ar(Ŷ) ≈ DΣDT

�

[
∂(Ŷ)

∂(θ̂)

]
· ̂∑ ·

[
∂(Ŷ)

∂(θ̂)

]T
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Given our linear (transformation) equation, then the vector of partial derivatives is (we’ve transposed
it to make it easily fit on the page):

*,
∂(Ŷ)

∂β̂1

+- *,
∂(Ŷ)

∂β̂2

+-


T

�



eβ1 + β2(flood)

1 + eβ1 + β2(flood)
−

(

eβ1 + β2(flood)
)2

(

1 + eβ1 + β2(flood)
)2

flood × eβ1 + β2(flood)

1 + eβ1 + β2(flood)
−
flood ×

(

eβ1 + β2(flood)
)2

(

1 + eβ1 + β2(flood)
)2


While this is fairly ‘ugly’ looking, the structure is quite straightforward – the only difference between

the 2 elements of the vector is that the numerator of both terms (on either side of the minus sign) are
multiplied by 1, and flood, respectively. Where do these scalar multipliers come from? They’re simply
the partial derivatives of the linear model (we’ll call it Y) on the logit scale:

Y � logit
(

ϕ̂
)

� β1 + β2(flood),

with respect to each of the parameters (βi) in turn. In other words, ∂Y/∂β1 � 1, and ∂Y/∂β2 � flood.

Substituting in our estimates for β̂1 � 0.4267863and β̂2 � −0.5066372, and settingflood=1 (to indicate
a ‘flood year’) yields:

*,
∂(Ŷ)

∂β̂1

+- *,
∂(Ŷ)

∂β̂2

+-
 �

[
0.249602 0.249602

]

From the MARK output (after exporting to a dBase file – and not to the Notepad – in order to get
full precision), the full V-C matrix for the parameters β1 and β2 is:

ĉov
(

β̂1 , β̂2

)

�
̂∑

�


0.0321405326 −0.0321581167

−0.0321581167 0.0975720877


So,

v̂ar(Ŷ) ≈
[
0.249602 0.249602

]
×


0.0321405326 −0.0321581167

−0.0321581167 0.0975720877

 ×

0.249602

0.249602


� 0.0040742678

The estimated SE for the variance for the reconstituted value of survival for an individual during a
‘flood year’ is

√
0.0040742678 � 0.0638300, which is what is reported by MARK (to within rounding

error).
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begin sidebar

Once again...SE and 95% CI

As noted in the precceding example, the standard approach to calculating 95% confidence limits for

some parameter θ is θ±(1.96 × SE). However, to guarantee that the calculated 95% CI is [0, 1] bounded

for parameters that are [0, 1] bounded (like ϕ), MARK first calculates the 95% CI on the logit scale,

before back-transforming to the real probability scale. However, because the logit transform is not

linear, the reconstituted 95% CI will not be symmetrical around the parameter estimate, especially for

parameters estimated near the [0, 1] boundaries.

For the present example, the estimated value of survival for an individual during a ‘flood year’

(ϕ̂flood � 0.48005), MARK reports a 95% CI of [0.3586850, 0.6038121]. But, where do the values

[0.3586850, 0.6038121] come from? Clearly, they are not based on 0.48005 ± 1.96(SE). Given ŜE �

0.06383, this would yield a 95% CI of [0.35494, 0.60516], which is close, but not exactly what MARK

reports.

In order to derive the 95% CI, we first need to calculate the variance (and SE) of the estimate on the

logit scale. In the preceding example, this was very straightforward, since the model we considered

had a single β term for the parameter of interest. Meaning, we could simply use the estimated SE for

β to derive the 95% CI on the logit scale, which we then back-transformed onto the real probability

scale. For the present example, however, the parameter is estimated from a function (transformation)

involving more than one β term. In this example, the linear equation, which for consistency with the

preceding we will denote as Y, was written as:

Ŷ � logit
(

ϕ̂
)

� β1 + β2(flood)

Thus, the estimated variance of logit(ϕ̂flood) is approximated as

v̂ar
(

Ŷ
)

≈ DΣD
T

�


∂(Ŷ)

∂(β̂1)

∂(Ŷ)

∂(β̂2)

 ·
̂∑ ·


∂(Ŷ)

∂(β̂1)

∂(Ŷ)

∂(β̂2)


T

Since


∂(Ŷ)

∂(β̂1)

∂(Ŷ)

∂(β̂2)

 � [1 flood] � [1 1]

and the VC matrix for β̂1 and β̂2 is

ĉov(β̂1 , β̂2) �
̂∑

�


0.0321405356 −0.0321581194

−0.0321581194 0.0975720908


then

v̂ar(Ŷ) ≈ DΣD
T

�

[
1 1

] 
0.0321405356 −0.0321581194

−0.0321581194 0.0975720908



1

1


� 0.065396

So, the ŜE – on the logit scale! – is
√

0.065396 � 0.255727. Thus, the 95% CI on the estimate on the

logit scale, logit(ϕ̂flood) � −0.0798509 ± 1.96(0.255727) � [−0.581076, 0.421374].
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All that is left is to back-transform the limits on the CI to the real probability scale:

[−0.94321, 0.78351] −→


e−0.581076

1 + e−0.581076
,

e0.421374

1 + e0.421374

 � [0.358685, 0.603812]

which is what is reported by MARK (to within rounding error).

end sidebar

Example (5) – variance of back-transformed estimates - harder still

In Chapter 11, we considered analysis of the effect of various functions of mass, m, and mass-squared,
m2, on the survival of a hypothetical species of bird (the simulated data are in file indcov1.inp). The
linear function relating survival to m and m2, on the logit scale, is:

logit(ϕ̂) � 0.2567341+ 1.1750463
(

ms

)

− 1.0554957
(

m
2
s

)

Note that for the two mass terms in the equation, there is a small subscript ‘s’, reflecting the fact that
these are ‘standardized’ masses. Recall that we standardized the covariates by subtracting the mean of
the covariate, and dividing by the standard deviation (the use of standardized or non-standardized
covariates is discussed at length in Chapter 11).

Thus, for each individual in the sample, the estimated survival probability (on the logit scale) for that
individual, given its mass, is given by:

logit(ϕ̂) � 0.2567333+ 1.1750526

(

m − m̄
SDm

)

− 1.0555024

(

m
2 − m̄2

SD
m

2

)

In this expression, m refers to mass and m2 refers to mass2. The output from MARK (preceding page)
actually gives you the mean and standard deviations for both covariates: for mass, mean = 109.9680,and
SD = 24.7926, while for mass2, the mean = 12,707.4640, and the SD = 5,532.0322. The ‘value’ column
shows the standardized values for mass and mass2 (0.803 and 0.752) for the first individual in the data
file.

Now let’s consider a worked example of the calculation of the variance of estimated survival. Suppose
the mass of the bird was 110 units, so that m = 110, m2 = (110)

2
� 12,100.

Thus:

logit(ϕ̂) � 0.2567333+ 1.1750526

(

(110 − 109.9680)

24.7926

)

− 1.0555024

(

(12,100 − 12,707.4640)

5,532.0322

)

� 0.3742

So, if logit(ϕ̂) � 0.374, then the reconstituted estimate of ϕ, transformed back from the logit scale is:

e0.374152

1 + e0.374152
� 0.5925

Thus, for an individual weighing 110 units, the expected annual survival probability isapproximately
0.5925 (which is what MARK reports if you use the ’User specify covariate’ option).
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What about the variance (and corresponding SE) for this estimate? First, what is our ‘transformation
function’ (Y)? For the present example, it is the ‘back-transform’ of the linear equation on the logit scale.
Given that:

logit(ϕ̂) � β1 + β2(ms ) + β3(m
2
s )

� 0.2567333+ 1.1750526(ms ) − 1.0555024(m
2
s ),

then the back-transform Y is:

Ŷ �
e0.2567333+1.1750526(m s )−1.0555024(m

2
s )

1 + e0.2567333+1.1750526(m s )−1.0555024(m
2
s )

As in the preceding example,since our transformation clearly involves multiple parameters (β1 , β2 , β3),
the estimate of the variance is given by:

v̂ar(Ŷ) ≈ DΣDT

�

[
∂(Ŷ)

∂(θ̂)

]
· ̂∑ ·

[
∂(Ŷ)

∂(θ̂)

]T

Given our linear (transformation) equation (from above) then the vector of partial derivatives is is:



*,
∂(Ŷ)

∂β̂0

+-
*,
∂(Ŷ)

∂β̂1

+-
*,
∂(Ŷ)

∂β̂2

+-



�



eβ1 + β2(m) + β3(m2)

1 + eβ1 + β2(m) + β3(m2)
−

[
eβ1 + β2(m) + β3(m2)

]2

[
1 + eβ1 + β2(m) + β3(m2)

]2

m × eβ1 + β2(m) + β3(m2)

1 + eβ1 + β2(m) + β3(m2)
−
m ×

[
eβ1 + β2(m) + β3(m2)

]2

[
1 + eβ1 + β2(m) + β3(m2)

]2

m2 × eβ1 + β2(m) + β3(m2)

1 + eβ1 + β2(m) + β3(m2)
−
m2 ×

[
eβ1 + β2(m) + β3(m2)

]2

[
1 + eβ1 + β2(m) + β3(m2)

]2


Although this looks complicated, the structure is actually quite straightforward – the only difference

between the 3 elements of the vector is that the numerator of both terms (on either side of the minus
sign) are multiplied by 1, m, and m2, respectively, which are simply the partial derivatives of the linear
model (we’ll call it Y) on the logit scale:

Ŷ � logit(ϕ̂) � β1 + β2(ms ) + β3(m
2
s ),

with respect to each of the parameters (βi) in turn. In other words, ∂Y/∂β1 � 1, ∂Y/∂β2 � m, and
∂Y/∂β3 � m2.

So, now that we have our vectors of partial derivatives of the transformation function with respect to
each of the parameters, we can simplify things considerably by substituting in the standardized values
for m and m2, and the estimated parameter values (β̂1 , β̂2, and β̂3). For a mass of 110 g, the standardized
values for m and m2 are:

ms �

(
110 − 109.9680

24.7926

)

� 0.0012895
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m2s �

(
12100− 12707.4640

5532.0322

)

� −0.1098085

The estimates for β̂i we read directly from MARK: β̂1�0.2567333, β̂2�1.1750526, and β̂3�−1.0555024.

Substituting in these estimates for β̂i and the standardized m and m2 values into our vector of partial
derivatives (which we’ve transposed in the following to save space) yields:

*,
∂(Ŷ)

∂β̂1

+- *,
∂(Ŷ)

∂β̂2

+- *,
∂(Ŷ)

∂β̂3

+-


T

�


0.241451

0.000311

−0.026513


From the MARK output (after exporting to a dBase file – and not to the editor – in order to get full
precision), the full V-C matrix for the β parameters is


0.0009006967 −0.0004110129 0.0003662771

−0.0004110129 0.0373928740 −0.0364291221

0.0003662771 −0.0364291221 0.0362817338


So,

v̂ar(Ŷ) ≈
[
0.241451 0.000311 −0.026513

]

×


0.0009006967 −0.0004110129 0.0003662771

−0.0004110129 0.0373928740 −0.0364291221

0.0003662771 −0.0364291221 0.0362817338


×


0.241451

0.000311

−0.026513


� 0.000073867

So, the estimated SE for var for the reconstituted value of survival for an individual weighing 110 g
is
√

0.000073867 � 0.0085946, which is exactly what is reported by MARK.

It is important to remember that the estimated variance will vary depending on the mass you use -
the estimate of the variance for a 110 g individual (0.000073867) will differ from the estimated variance
for a (say) 120 g individual. For a 120 g individual, the standardized values of m and m2 are 0.404636 and
0.3059512, respectively.

Based on these values, then:

*,
∂(Ŷ)

∂β̂1

+- *,
∂(Ŷ)

∂β̂2

+- *,
∂(Ŷ)

∂β̂3

+-


T

�


0.239817

0.097039

0.073372


Given the variance covariance-matrix for this model (shown above), then

v̂ar(Ŷ) ≈ DΣDT
� 0.000074246

Thus, the estimated SE for the reconstituted value of survival for an individual weighing 120 g is√
0.000074246 � 0.0086166, which again is exactly what is reported by MARK.

Note that this value for the SE for a 120 g individual (0.008617) differs from the SE estimated for a
110 g individual (0.008595), albeit not by much (the small difference here is because this is a very large
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simulated data set based on a deterministic model - see Chapter 11 for details). Since each weight would
have its own estimated survival, and associated estimated variance and SE, to generate a curve showing
the reconstituted values and their SE, you’d need to iteratively calculate DΣDT over a range of weights.
We’ll leave it to you to figure out how to handle the programming if you want to do this on your own.
For the less ambitious, MARK now has the capacity to do much of this for you - you can output the 95%
CI ‘data’ over a range of individual covariate values to a spreadsheet (see section 11.5 in Chapter 11).

Example (6) - estimating variance + covariance in transformations

Here, we consider application of the Delta method to joint estimation of the variance of a parameter, and
the covariance of that parameter with another, where one of the two parameters is a linear transformation
of the other. This is somewhat complicated, but quite useful example, since it illustrates how you can
use the Delta method to estimate not only the variance of individual parameters, but the covariance
structure among parameters as well.

There are many instances where the magnitude of the covariance is of particular interest. Here,
we consider such a situation, in terms of different parameterizations for analysis of dead recovery
data. Dead recovery models are covered in detail in Chapter 8 – here, we briefly review two different
parameterizations (the ‘Seber’ and ‘Brownie’ parameterizations), and the context of our interest in the
covariance between two different parameters.

The encounter process for the Seber parameterization (1973: 254) is illustrated in the following:

Marked individuals are assumed to survive from release i to i + 1 with probability Si. Individuals
may die during the interval, either due to harvest or to ‘natural’ mortality. The probability that dead
marked individuals are reported during each period i between releases, and (most generally) where
the death is not necessarily related to harvest, is ri . In other words, ri is the joint probability of (i) the
marked individual dying from either harvest or natural causes, and (ii) being recovered and reported
(i.e., ‘encountered’).

Brownie et al. (1985) (hereafter, simply ‘Brownie’) developed a different parameterization for dead
recovery data, where the sources of mortality (harvest, versus ‘natural’ or non-harvest) are modeled
separately.

The encounter process for the Brownie parameterization is illustrated in the following:
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Following Brownie,Si is the probability that the individual survives the interval from release occasion
i to i + 1 (note that the definition for the probability of survival is logically identical between the Seber
and Brownie parameterizations). The probability that the individual dies from either source of mortality
is simply 1 − S. However, in contrast to the Seber parameterization, Brownie specified a parameter f ,
to represent the probability that an individual dies specifically due to harvest during interval i, and is
reported (‘encountered’). Thus, the probability that the individuals dies from natural causes is (1−S− f ).

Under the Seber parameterization, the probability of the encounter history ‘11’ is given as r(1 −
S). Under the Brownie parameterization, the expected probability of this event is simply f . Since the
encounter history is the same, we can set the different parameterizations for the expected probability of
the event equal to each other, generating the following expressions relating the two parameterizations:

fi � ri

(

1 − Si

)

ri �
fi

(

1 − Si

)

Clearly, the parameter ri is a reduced parameter, and can be expressed as a function of two other
parameters normally found in the Brownie parameterization. An obvious practical question is, why use
one parameterization over the other, and does it matter? This issue is discussed more fully in Chapter 8,
but for now, we focus on the left-hand expression:

fi � ri

(

1 − Si

)

So, given estimates of r̂i and Ŝi from a Seber analysis, we could use this algebraic relationship (i.e.,
transformation) to generate estimates of f̂ . Naturally, we wish to be able to estimate v̂ar( f̂ ).

However, in addition,we are potentially interested in estimating the covariance ĉov( f̂ , Ŝ). Recall from
above that the parameter f relates in part to the probability of being harvested. We might naturally be
interested in the relationship between harvest mortality f , and overall annual survival, S. For example, if
harvest and natural mortality are strictly additive, then we might expect a negative covariance between
survival and harvest (i.e., as the probability of mortality due to harvest increases, annual survival will
decrease). Whetherornot the covariance is negative has important implications forharvest management
(see full discussion in the Williams, Nichols & Conroy 2001 book).

We’ll begin by considering estimation of the variance for f̂ only, using the Delta method. Let the
transformation g be f � (1 − S)r.

Given Ŝ, r̂ , v̂ar(Ŝ) and v̂ar(r̂), then the Jacobian for g is

[
∂g

∂S

∂g

∂r

]
�

[
−r̂ 1 − Ŝ

]
,

and thus
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v̂ar( f̂ ) ≈
[
−r̂ 1 − Ŝ

]
· ̂∑ ·


−r̂

1 − Ŝ

 ,

where ̂∑ is the variance-covariance matrix for S and r:

̂∑
�


v̂ar(Ŝ) ĉov(Ŝ, r̂)

ĉov(Ŝ, r̂) v̂ar(r̂)

 .

So,

v̂ar( f̂ ) ≈
[
−r̂ 1 − Ŝ

]
· ̂∑ ·


−r̂

1 − Ŝ


yields

v̂ar
(

f̂
)

≈ r̂2v̂ar
(

Ŝ) − 2r̂ · ĉov(Ŝ, r̂
)

+ 2r̂ · ĉov
(

Ŝ, r̂
)

Ŝ + v̂ar
(

r̂
)

− 2 · v̂ar
(

r̂
)

S + v̂ar
(

r̂
)

S2

which, with a little re-arranging, yields

v̂ar
(

f̂
)

≈ r̂2 · v̂ar
(

Ŝ
)

− 2
[

(1 − Ŝ) r̂
]

· ĉov
(

Ŝ, r̂
)

+
(

1 − Ŝ
)2 · v̂ar

(

r̂
)

,

If you substitute in r � f /(1 − S) into the preceding expression, we end up with

v̂ar
(

f̂
)

≈ *,
f̂

1 − Ŝ
+-

2

· v̂ar
(

Ŝ
)

− 2 f̂ · ĉov
(

Ŝ, r̂
)

+
(

1 − Ŝ
)2 · v̂ar

(

r̂
)

.

Now, what if instead of v̂ar( f̂ ) only, we are also interested in estimating the covariance of (say) f and
S? Such a covariance might be of interest since f is a function of S, and there may be interest in the
degree to which S varies as a function of f (see above). Thus, we want to apply the Delta method to a
function (the covariance) of two parameters, f and S. The key step here is recognizing that there are in
fact two different functions (or, transformations) involved, which we’ll call g1 and g2:

g1 : S → S and g2 : (1 − S)r → f

You might be puzzled by g1 : S → S. In fact, this represents a null transformation – a direct,
non-transformative 1:1 mapping between S under the Seber parameterization, and survival under
the Brownie parameterization (since the probability of surviving is, logically, the same under the two
parameterizations). This is analogous to generating the estimate for Ŝi under one paramterization by
multiplying the same estimate under the other parameterization by the scalar constant 1.

Thus, with two transformations, we generate a Jacobian matrix of partial derivatives of each transfor-
mations with respect to S and r, respectively:



∂g1

∂Ŝ

∂g1

∂r̂
∂g2

∂Ŝ

∂g2

∂r̂


�



∂Ŝ

∂Ŝ

∂Ŝ

∂r̂

∂ f̂

∂Ŝ

∂ f̂

∂r̂


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�


1 0

−r 1 − Ŝ



�


1 0

−
f̂

(1 − Ŝ)
1 − Ŝ


.

Given the variance-covariance matrix ̂∑ for Ŝ and r̂

̂∑
�


v̂ar(Ŝ) ĉov(Ŝ, r̂)

ĉov(Ŝ, r̂) v̂ar(r̂)

 ,

we evaluate sampling variance-covariance matrix for Ŝ and f̂ as the matrix product


1 0

−
f̂

(1 − Ŝ)
1 − Ŝ


· ̂∑ ·


1 −

f̂

(1 − Ŝ)

0 1 − Ŝ


,

which (after a bit of algebra) yields


v̂ar(Ŝ) −

f̂

1 − Ŝ
· v̂ar

(

Ŝ
)

+
(

1 − Ŝ
)

· ĉov
(

Ŝ, r̂
)

−
f̂

1 − Ŝ
· v̂ar

(

Ŝ
)

+
(

1 − Ŝ
)

· ĉov
(

Ŝ, r̂
)

r̂2 · v̂ar
(

Ŝ
)

− 2
[

(1 − Ŝ) r̂
]

· ĉov
(

Ŝ, r̂
)

+
(

1 − Ŝ
)2 · v̂ar

(

r̂
)


.

Here, matrix elements [1,1] and [2,2] are the expressions for the approximate variance of S and f ,
respectively (note that the expression in element [2,2], for v̂ar( f̂ ), is identical to the expression we
derived on the preceding page). Elements [1,2] and [2,1] (which are the same) are the expressions for
the approximate covariance of f and S.

As noted earlier, interpretation of the estimated variance and covariance is dependent on the source
of the variance-covariance matrix, Σ̂, used in the calculations. If Σ̂ is constructed using variances and
covariances from the usual ML parameter estimates, then the resulting estimate for variance is an
estimate of the total variance (i.e., sampling + process,where process variation represents the underlying
‘biological’ variation). In contrast, if Σ̂ is based on estimated process (variances and covariances only,
then the estimate for variance is an estimate of the process variance. Decomposition of total variance
into sampling and process components is covered in detail in Appendix D.

B.5. Delta method and model averaging

In the preceding examples, we focused on the application of the Delta method to transformations of
parameter estimates from a single model. However, as introduced in Chapter 4 – and emphasized
throughout the remainder of this book – we’re often interested in accounting for model selection
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uncertainty by using model-averaged values. There are no major complications for application of the
Delta method to model-averaged parameter values – you simply need to make sure you use model-
averaged values for each element of the calculations.

We’ll demonstrate this using analysis of the male dipper data (ed_male.inp). Suppose that we fit
2 candidate models to these data: {ϕ.pt} and {ϕ f loodpt}. In other words, a model where survival is
constant over time, and a model where survival is constrained to be a function of a binary ‘flood’
variable (see section 6.4 of Chapter 6).
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Here are the results of fitting these 2 models to the data:

As expected (based on the analysis of these data presented in Chapter 6), we see that there is some
evidence of model selection uncertainty – the model where survival is constant over time has roughly
2-3 times the weight as does the ‘flood’ model’:

The model averaged values for each interval are shown below:

1 2 3 4 5 6

estimate 0.5673 0.5332 0.5332 0.5673 0.5673 0.5673

SE 0.0441 0.0581 0.0581 0.0441 0.0441 0.0441

Now, suppose we want to derive the best estimate of the probability of survival over (say) the first 3
intervals. Clearly, all we need to do is take the product of the 3 model-averaged values corresponding
to the first 3 intervals:

(

0.5673× 0.5332 × 0.5332
)

� 0.1613

In other words, our best estimate of the probability that a male dipper would survive from the start
of the time series to the end of the third interval is 0.1613.

What about the standard error of this product? Here, we use the Delta method. Recall that:

v̂ar(Ŷ) ≈ DΣDT

�

[
∂(Ŷ)

∂(θ̂)

]
· ̂∑ ·

[
∂(Ŷ)

∂(θ̂)

]T

,

where Y is some linear or nonlinear function of the parameter estimates θ̂1, θ̂2 , . . . . For this example,
Y is the product of the survival estimates.

So, the first thing we need to do is to generate the estimated variance-covariance matrix for the model
averagedsurvivalestimates. This is easy enoughto do – in the ‘Model Averaging Parameter Selection’
window, you simply need to ‘Export Variance-Covariance Matrix to a dBase file’ - you do this by
checking the appropriate check box (lower-left, below):

The ‘rounded’ values which would be output to the Notepad are shown below at the top of the
next page. (Remember, however, that for the actual calculations you need the full precision variance-
covariance matrix from the exported dBase file.)
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Remember, however, that for the actual calculations you need the full precision variance-covariance
matrix from the exported dBase file.

All that remains is to substitute ourmodel-averaged estimates for (i) ϕ̂ and (ii) the variance-covariance
matrix (above), into v̂ar(Ŷ) ≈ DΣDT.

Thus,

v̂ar(Ŷ) ≈
[
∂(Ŷ)

∂(θ̂)

]
· ̂∑ ·

[
∂(Ŷ)

∂(θ̂)

]T

�

[
( ¯̂ϕ2

¯̂ϕ3

) ( ¯̂ϕ1
¯̂ϕ3

) ( ¯̂ϕ1
¯̂ϕ2

)
]
·



v̂ar( ¯̂ϕ1) ĉov( ¯̂ϕ1 ,
¯̂ϕ2) ĉov( ¯̂ϕ1 ,

¯̂ϕ3)

ĉov( ¯̂ϕ1 ,
¯̂ϕ2) v̂ar( ¯̂ϕ2) ĉov( ¯̂ϕ2 ,

¯̂ϕ3)

ĉov( ¯̂ϕ3 ,
¯̂ϕ1) ĉov( ¯̂ϕ3 ,

¯̂ϕ2) v̂ar( ¯̂ϕ3)


·



( ¯̂ϕ2
¯̂ϕ3

)

( ¯̂ϕ1
¯̂ϕ3

)

( ¯̂ϕ1
¯̂ϕ2

)


�

[
0.284303069 0.3024783390 0.3024783390

]

×


0.0019410083 0.0001259569 0.0001259569

0.0001259569 0.0033727452 0.0033727423

0.0001259569 0.0033727423 0.0033727452


×


0.284303069

0.3024783390

0.3024783390


� 0.001435

B.6. Summary

In this appendix, we’ve briefly introduced a convenient, generally straightforward method for deriving
an estimate of the sampling variance for transformations of one or more variables. Such transformations
are quite commonly encountered when using MARK, and having a method to derive estimates of the
sampling variances is convenient. The most straightforward method – based on a first-order Taylor
series expansion – is known generally as the ‘Delta method’. However, the first-order Taylor series
approximation may not always be appropriate, especially if the transformation is highly non-linear,
and if there is significant variation in the data. In such case, you may have to resort to higher-order
approximations, or numerically intensive bootstrapping approaches.
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APPENDIX C

RMark - an alternative approach to building

linear models in MARK

Jeff Laake Eric Rexstad

Alaska Fisheries Science Center Research Unit for Wildlife Population Assessment

National Marine Fisheries Service CREEM - University of St. Andrews

Seattle, Washington, USA St. Andrews, Scotland

For most of the examples presented in the MARK book, the construction of the design matrix
(DM) using the ‘graphical DM template’ is relatively straightforward. Moreover, by ‘forcing’ you to
confront the actual structure of the design matrix, the relationship between linear models, covariates,
even fundamental statistical entities like ‘degrees of freedom’ may actually make more sense than they
did before.

However, quite often in real-world situations, where the size of design matrices can get very large,
very quickly, it is often cumbersome to build design matrices in this fashion. Further, your chances of
making a mistake while building the design matrix increase in rough proportion to the size of the design
matrix - compounded when the models contain significant ultrastructure. Also, if either the number
of occasions or group structure changes, PIMs and DMs must be changed and this means rebuilding
each model in MARK. Thus, automated model development is almost a necessity for researchers that
monitor populations over time and are continually adding sampling occasions.

This appendix describes an alternate interface that can be used in place of MARK’s graphical interface
to describe and run models in terms of formula (e.g., Phi∼sex+age+time). The interface constructs
the necessary PIMS and design matrices which automates model development. The interface creates
the MARK input file, initiates mark.exe and then extracts the results from the output files. All of the
computation for parameter estimation is done with MARK (mark.exe). This alternative interface is a
package that has been written in R, a freely available statistical programming environment.

Thus the package was named RMark. This appendix provides an introduction and description of
the RMark interface to help you get started. The appendix does not document every function and
every function argument in the package because that reference material is provided in the help file
documentation that accompanies the package as described below. Instead, analyses of the dipper and
swift datasets and other examples are repeated here using RMark to demonstrate this ‘formula based’
approach to specifying models.
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In addition to automating model development, RMark has the following advantages:

1. labels for real (reconstituted) and β parameters are automatically added for ease of
interpretation

2. scripts can be written to run an entire analysis and the script can be documented

3. covariate-specific real parameter estimates can be computed within R without re-
running the analysis

4. the R environment is available for plotting and further computation on the results.

Examples of these advantages are given throughout this appendix.

However, there are a number of disadvantages in comparison to the existing MARK graphical
interface. First and foremost, you need to have a rudimentary knowledge of R before using RMark.
There is no getting around it and while it could be viewed as a disadvantage for RMark, it can also be
viewed as an advantage because R is a very powerful statistical programming environment that can be
useful for many different analysis tasks and RMark may be the push you need to start using R for all
of your analyses. To help you learn R, we provide a very brief R primer at the end of this appendix,
but we suggest that you also take advantage of the R tutorial material on the web and in various books.
Even if you have a reasonable grasp of R, it may be useful to review the tutorial to understand how lists
provide useful structures for working with models in RMark.

At present, another disadvantage is that the RMark interface does not replicate every aspect of the
MARK interface. In particular, not every model in MARK is supported by RMark. For a complete
list, refer to the MarkModels.pdf file that is installed in the RMark subdirectory ( from within MARK,
see also ‘Help | Data Types’). In addition, features such as the median ĉ goodness-of-fit testing and
random effects are not available at present. A solution is to export the model runs from RMark into the
MARK interface (discussed later in this appendix).

Another subtle difference with the MARK interface is that all models constructed in the RMark

interface are developed via a design matrix approach rather than coding the model structure via
parameter index matrices (PIMS). The title for this appendix was chosen to reflect this aspect of the
RMark interface. However, as of version 1.7.6 RMark can create models with an identity design matrix
and you can now use the sin link as long as the formula specifies a model that can be represented
by a identity matrix. Obviously, you cannot use covariates with the sin link. See section C.10 for more
explanation. Even though RMark constructs the design matrix for you, you still need to understand the
concepts described in the book about design matrices and counting parameters. Having the description
of RMark in an appendix to this book is intentional and appropriate because initially it is best to learn
to use the standard interface so that you understand what RMark is doing.

In manuscripts, cite this appendix for RMark and in describing it make sure to say something like
“we used the R (R Development Core Team 2007) package RMark (Laake 2013) to construct models for
program MARK (White and Burnham 1999).” Use citation("RMark") in R to get the proper citation
for R.∗

If you have no experience with R we highly recommend that you start by reading C.1 and C.24
and either a good introductory text on R or the online material on the R home page (which is found at
http://www.r-project.org/). Once you become moderately comfortable with R, read sections C.2-C.12
and follow along with the examples. After reading section C.12 you should be able to import your own
data and work through the more advanced sections in C.13-C.16. Specific examples of models beyond

∗ Laake, J. L. (2013). RMark: An R Interface for Analysis of Capture-Recapture Data with MARK. AFSC Processed Rep 2013-01,
25p. Alaska Fish. Sci. Cent., NOAA, Natl. Mar. Fish. Serv., 7600 Sand Point Way NE, Seattle WA 98115.
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CJS are given in section C.17-C.20 and we expect to add more sections like this in future revisions. If
you want to know how to export RMark models to use features of the MARK interface see section
C.21. Examples of using R for further computation on results like creating delta method variances are
described in C.22. If you encountererrors orproblems, see C.23 fora list of common errors and suggested
solutions.

Some of the examples displayed here will only work with version 1.7.3 of RMark or later and the
December, 2007 version or later of mark.exe.

C.1. RMark Installation and First Steps

There are a number of tasks that you need to accomplish prior to using RMark. Since you are reading
this appendix, chances are good that you will have already installed MARK on your computer. If not,
refer to the Foreword of this book.

If you haven’t already done so, you must install R from the R Project website

http://cran.r-project.org/

Select ‘Windows95 or later’, then select base and finally select r-v.v.v-win32.exe (where v.v.v is
the current version (e.g., R-2.6.1-win32.exe)). Select run and then follow the directions and choose the
default setup by clicking on “next” at each prompt. Download and save the RMark package (RMark.zip)
from www.phidot.org. Start R from either the desktop icon or from the Start/All Programs list. From
within R, select Packages from the menu and then choose Install package(s) from local zip at the
bottom of the menu list:

Doing so will show a “select files” window. Navigate to the location where you saved the RMark.zip
and select the zip file. This will load the package into c:\Program Files\R\R-v.v.v\library, where
v.v.v represents the current version of R that you are using (e.g., 2.6.1). Note that R installs each
version into separate sub-directories of c:\Program Files\R. Any updates for RMark can be installed
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as described above over previous versions. If you update R versions, you need to repeat the RMark

installation.

You only need to install RMark once but to use RMark you will need to issue the command
library(RMark) in R to attach the package every time you start R. R should respond by displaying
the version number that you have installed (e.g. 1.7.3 as shown below) and it will give details about the
build date and time and the version of R that was used to build the package:

This is RMark 1.7.3 Built: R 2.6.1; i386-pc-mingw32; 2007-12-20 09:57:44; windows

Most of the time the version of R that you are using can be newer than the R version used to build
RMark. However, there are exceptions and if you are having problems with error messages that you
cannot resolve, check that the version numbers agree. To avoid manually entering the command each
time you initiate R, you have a couple of options. You can edit and enter the library(RMark) command
into the file named “RProfile.site” with any text editor. It is located in the directory C:\Program
Files\R\R-v.v.v\etc\ where v.v.v represents the R version. If you add the library(RMark) command
to rprofile.site, the RMark package will be loaded anytime you start R. For additional material on
RProfile.site see C.24.

Alternatively, you can write a function .First=function()library(RMark) and save it into any
.Rdata workspace from which you will do MARK analyses. The .First() function is run anytime
that particular .Rdataworkspace is opened. See section C.13 and R documentation for more on writing
functions.

If you didnot select the default location forMARK in the installation process (C:\Program Files\Mark)
where RMark will expect it, then you need to set a variable MarkPath to point to the location of the
mark.exe file. This is best to do in either the RProfile.site file or .First function. As an exam-
ple, if you installed MARK to d:\myfiles\mymark, then in RProfile.site, then add the command
MarkPath="d:/myfiles/mymark/" or MarkPath="d:\\myfiles\\mymark\\" (note: Windows uses a back-
slash ("\") to separate sub-directories in a path but in R they are either represented by either a double
backslash ("\\") or the simpler single forward slash ("/")). The default value is MarkPath="C:/Program
Files/Mark/". Anotheruseful variable that can be set is MarkViewer. By default this is set to notepad.exe
but you can set it to any program like wordpad.exe or any text editor you prefer. You need to specify the
full directory specification and program name unless the directory is in the PATH environment variable.

MARK creates several files when it runs a model (.inp,.out,.vcv,.res) and RMark retains and uses
these four files in the directory where they were created. Everything else RMark creates is contained in
the .Rdata file which is the R workspace. Thus, it is best to create a sub-directory for each set of data you
are going to analyze with RMark. After you have created the sub-directory copy an empty .Rdata file
into the new sub-directory and then you can initiate an R session by simply double-clicking the .Rdata
file and any files RMark creates will be contained within the subdirectory. It is typically best to start with
an empty .Rdata workspace. After a fresh install of R, the file C:\Program Files\R\R-v.v.v\.Rdata is
empty and can be copied to start with an empty workspace. Or all of the workspace contents can be
deleted using the commandrm(list=ls(all=TRUE)) oruse ’remove all objects’ under the ’Misc’ item
in the R menu. This is particularly important if you want to mimic some of the examples described in
this appendix.

Beyond this appendix, there is an extensive amount of documentation written for each function
contained in RMark. You can see this documentation using ?markwithin R after library(RMark) or to
see the entire help file double-click on the file

C:\Program Files\R\R-v.v.v\library\RMark \chtml\RMark.chm

where v.v.v is the R version that you are using. From there you can view or print the entire contents
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(currently 144 pages).

C.2. A simple example (return of the dippers)

Let’s start with a very simple example to explain some of the basic aspects of using RMark. Create an
empty directory and copy a .Rdata file to it. Double click the .Rdata file to initiate R with that workspace.
If there are any objects in the workspace (use ls() to see the contents) remove any objects the ’remove
all objects’ under the ’Misc’ menu item. Type library(Rmark) to attach the package if you have not
setup R such that the RMark package is always attached.

For your first example, we will use the well-known dipper data set that accompanies MARK (the
dipper data, and all of the other example data files referred to in the MARK book and this ap-
pendix are found at http://www.phidot.org/software/mark/docs/book/. In the drop-down menu
‘Book chapters & data files’, select ‘Example data files’). In fact, the dipper data set and a number
of others are already contained in the RMark package and they can be accessed with the data function
which extracts the dataframe from the library and puts a copy into your workspace. In addition, with
each example set of data, there is some example code for RMark to demonstrate use of that particular
model. You can run the example code by typing example(dipper), but for this tutorial we will take a
simple example and enter each command. If you type data(dipper) and then type ls(), it should only
show dipper as the contents of your workspace.

> data(dipper)

> ls()

[1] "dipper"

(Note: The object dipper is a dataframe which is equivalent to a table in MS-ACCESS). Let’s get a
summary of dipper and display the first 5 records to see that it is in the correct format for RMark:

> summary(dipper)

ch sex

Length:294 Female:153

Class :character Male :141

Mode :character

> dipper[1:5,]

ch sex

1 0000001 Female

2 0000001 Female

3 0000001 Female

4 0000001 Female

5 0000001 Female

From the above you see that dipper has a field named “ch” which is a character string containing
the capture (encounter) history and it has a field called “sex” which is a factor variable. We can tell that
“sex” is a factor variable because summary shows the frequency of the levels of the factor variable. If it
was a numeric variable, summary would show the min, mean, max etc.

We can run a very simple analysis with the mark function and assign it to the object “myexample” as
follows:

> myexample=mark(dipper)
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The output on the screen will be:

Output summary for CJS model

Name : Phi(~1)p(~1)

Npar : 2

-2lnL: 666.8377

AICc : 670.866

Beta

estimate se lcl ucl

Phi:(Intercept) 0.2421484 0.1020127 0.0422035 0.4420933

p:(Intercept) 2.2262658 0.3251093 1.5890516 2.8634801

Real Parameter Phi

1 2 3 4 5 6

1 0.560243 0.560243 0.560243 0.560243 0.560243 0.560243

2 0.560243 0.560243 0.560243 0.560243 0.560243

3 0.560243 0.560243 0.560243 0.560243

4 0.560243 0.560243 0.560243

5 0.560243 0.560243

6 0.560243

Real Parameter p

2 3 4 5 6 7

1 0.9025835 0.9025835 0.9025835 0.9025835 0.9025835 0.9025835

2 0.9025835 0.9025835 0.9025835 0.9025835 0.9025835

3 0.9025835 0.9025835 0.9025835 0.9025835

4 0.9025835 0.9025835 0.9025835

5 0.9025835 0.9025835

6 0.9025835

So what happened and what did that do? First of all let’s dissect the command. The piece of code
mark(dipper) called the function mark with the data file dipper and used it for the value of its first
argument which is called data. The equal sign (or <- can be used) was used to assign the result of
the mark function to the object myexample which is stored in the .Rdata workspace (although only in
memory until the workspace is saved to disk).

So what actually happened inside of the mark function? It constructed and ran an analysis using the
dataframedipperand the defaultvalues for the function argumentsmodel("CJS")andmodel.parameters
which for this model is to construct Phi(.)p(.) (i.e., {ϕ·p·}) in MARK notation and Phi(∼1)p(∼1) in
R notation. It also used the default values for other function arguments such as time.intervals and
assumed that there was no group structure for the analysis. Numerous steps were involved but all you
need now is the abbreviated version.

The function mark examined the capture history (ch) to determine the numberof occasions,developed
all the necessary structure that it needed,created an .inpfile forMARK, ran mark.exe in the background
and extracted relevant parts of the MARK output files that it needed to create a list of results. If you
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use the R function list.files() you’ll see that your directory now contains 4 more files which are the
input and the 3 output files from mark.exe and each with the prefix mark001.

> list.files()

[1] "mark001.inp" "mark001.out" "mark001.res" "mark001.vcv"

The file mark001.inp is the file that would be equivalent to what you would see if you used “Save
Structure” rather than directly running the model in the MARK interface. mark001.out is the text
output file from MARK with all the results. mark001.res is the file of residuals (not currently used by
RMark) and mark001.vcv is a binary file containing the variance-covariance matrices and parameter
estimates. All of these files are “linked” to the result object in R by the base filename. In this case
myexample is linked to “mark001”. Files are numbered sequentially for each analysis with the first
available number, but more on that later.

The results from MARK were put into the object myexample which is a list. If you don’t understand
the concept of a list in R, refer to the R tutorial in section C.24. The list created by RMark is a slightly
special list because it has been assigned to a class which means that R will treat it differently based on its
class. The differential treatment occurs when generic functions like print and summary are called with
the object. You can see the class of an object with the class function as follows:

> class(myexample)

[1] "mark" "CJS"

It has 2 classes with the first being mark and the second being the type of mark-recapture model which
is “CJS” (Cormack-Jolly-Seber) by default. You need to know this only to understand that when you
use functions like print and summary that R actually calls print.mark and summary.mark. When MARK

was finished with the analysis it called summary (summary.mark) which created the output on the screen.
You can see the output again on the screen by simply typing summary(myexample). If you want to save
those results to a file, you can use cut and paste to the clipboard or you can use the sink function to
save any screen output to a file. Use sink(myfilename) before issuing the command that generates the
output and use any valid file specification in place of myfilename. To restore output to the screen use
sink().

Let’s discuss the summary output to learn some more about RMark. The first part of the summary
describes the type of model and some basic information. This simple analysis was for the CJS type
of analysis and the model name defaults to the concatenation of the formulas used for each of the
parameters in the model which was simply Phi(∼1)p(∼1). The symbol ∼ is used to begin a formula
when the dependent variable on the left is not specified and implied. The “1” represents an intercept
so “∼ 1” is a model with only the intercept which is equivalent to the ‘dot’ in MARK notation. We will
explain much more about specifying formulas later.

After the model description, summary provides the number of parameters in the model, the −2 log(L)

value and the AICc value for the model. We’ll see later that the contents of this portion can vary
depending on options for parameter counting and use of ĉ. Next the estimates, standard errors and
confidence intervals for the β’s are listed as they are shown similarly in the MARK output. The estimates
are labeledwith the type ofparameter (e.g.,Phiorp forCJS) andadditionalnames related to the variables
in the formula. For this model they are labeled intercept but later we’ll see more informative labels. All
of the labels for β and real parameters are done automatically and not manually by the user.

The real parameters are shown next in PIM format. For the CJS model, each of the parameters uses an
upper-right triangular format for the PIM. The real values are shown for each parameter type (e.g., Phi
and p in this case) and if there were groups defined, the values would be shown by group with a group
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label. The rows of the triangular PIMS are labeled with the cohort value (time of cohort release) and
the columns are labeled with either the beginning time for time-interval parameters like Phi (survival
from time 1 to 2 is labeled with 1) or with the time for the occasion for occasion-specific parameters
like p (re-capture probability at time i is labeled with i). This labeling is controlled by the value given
to the beginning time of the experiment (begin.time) and by the lengths of the time intervals between
occasions (time.intervals). For our simple example, we used the default of begin.time=1 and all the
time intervals being 1 so the rows are all labeled from 1 to 6 and the columns are labeled 1 to 6 for Phi
to represent survival intervals 1→ 2, 2→ 3, · · · , 6→ 7 and for p the columns are labeled 2 to 7 for the
recapture occasions. Had we set begin.time to 1990, the rows and columns for Phi would have been
labeled 1990 to 1995 and the columns for pwould have been labeled 1991 to 1996.

By showing the real parameters in PIM format it can become readily obvious how the model is
parameterized. Although this example is not a particularly good one, it is clear that the constant model
was used as all of the real parameters are the same. We’ll see more informative examples later.

A summary is nice and later we’ll see other types of summaries but how do you look at the whole
output file like you do in MARK? All you have to do is type the name of the object containing the results
(e.g. myexample) and hit enter. R looks for a print method for the object when you type the name of the
object (this is discussed in the R primer at the end of this appendix). When you type the name of an
object with class mark, it will use the function print.mark to display the object. The function print.mark
uses the Windows program notepad.exe to display the complete output file from mark.exe. Until you
close the viewer you cannot continue in the R session that issued the call to the viewer. If you want to
use a different program for viewing output files, simply assign the file specification for the program as
a character string to the object MarkViewer.

Had we not assigned the results of mark(dipper) to myexample, R would have called print.mark to
view the output file, and once it was closed, the summary output would have been displayed but no
object would have been saved in the R workspace. However, the input and 3 output files would still be
in the directory but they would not be linked to an object in the R workspace. If you were to make this
mistake, you can create a MARK object in the R workspace and link the existing files to it by using the
exact same call to MARK but adding the filename argument and specifying the base filename for the
orphaned files. To see how this works, type mark(dipper) again but without assigning it to an object
and it will create the files mark002.*, because it is the second analysis that you have run. Then enter the
following:

> myexample2=mark(dipper,filename="mark002")

The code will respond with a query when it sees that the files already exist.

Create MARK model with existing file (Y/N)?y

By entering “y” it will rebuild the model object and link the files to myexample2.

Occasionally you will run models and even create an R object for them but later decide to delete the R

objects in the workspace. Deleting the R object will not delete the linked files. The function cleanupwill
purge orphaned input and output files. By typing ?cleanup you will see the help file that describes this
function. By typing cleanup(ask=FALSE), all the orphaned files will be deleted. If you want to selectively
delete the files, use cleanup() and you will be asked to confirm each file deletion.

To see how this works, remove myexample2, list the files, use cleanup and then list the files again as
shown below:
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> rm(myexample2)

> list.files()

[1] "mark001.inp" "mark001.out" "mark001.res" "mark001.vcv" "mark002.inp"

[6] "mark002.out" "mark002.res" "mark002.vcv"

> cleanup(ask=FALSE)

> list.files()

[1] "mark001.inp" "mark001.out" "mark001.res" "mark001.vcv"

C.3. How RMark works

So now that you know how to create, summarize and print a simple model, let’s learn more about how
RMark works so you can fully understand the more realistic examples. To build and run the simple
model for the dipper data you did not have to create PIMS nor a design matrix as you might in MARK,
because RMark did it for you. But you may be saying to yourself, that is not really any different than
the ability of the MARK interface to create pre-specified models. In some ways that is true but with a
big difference. The RMark package widens the concept of pre-specified models to include user-defined
formulas for model definition rather than the limited list of formulas in the MARK interface.

So how does it do that? Well with a few tricks and the R function model.matrix, it is surprisingly
simple. The first trick is to realize that your options for developing models are limited by the PIM
structure you choose and to fit completely general models without restrictions you need to use what
MARK calls the all-different PIM structure. An all-different PIM is the default PIM type used in RMark

(although there are some situations where it is useful to specify a simpler PIM structure - see section
C.11). You can see the PIM structure by using the PIMS function for Phi and pwith myexample as follows:

> PIMS(myexample,"Phi",simplified=FALSE)

group = Group 1

1 2 3 4 5 6

1 1 2 3 4 5 6

2 7 8 9 10 11

3 12 13 14 15

4 16 17 18

5 19 20

6 21

> PIMS(myexample,"p",simplified=FALSE)

group = Group 1

2 3 4 5 6 7

1 22 23 24 25 26 27

2 28 29 30 31 32

3 33 34 35 36

4 37 38 39

5 40 41

6 42

Each of the 21 real parameters in Phi (ϕ) and another 21 real parameters in p are given their own
unique index, thus the term ‘all-different’.
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The second trick is realizing that you can automatically create and assign “design data” to the real
parameters based on the model and group structure. This is truly the crux of RMark and what makes
it possible to use formulae to create models. We use the term “design data” to represent “data” about
the model structure, or design. The design data that are created depends on the type of model (e.g, CJS,
Multistrata) and the group structure. For a CJS model without groups, the "design data” are occasion
(time), age and cohort-specific data. Separate design data are defined for each parameter (e.g., p and ϕ
forCJS models) to allow flexibility and differences in the way design data are handled foreach parameter.
Also, for labeling it is better to keep them separate since some parameters like Phi represent an interval
and others like p are for an occasion.

Using our first simple example let’s describe the design data for the all-different PIMS shown above.
There are many different kinds of design data that can be created for any particular example, but there
are always several kinds of data that can be created automatically by default. For this example, they are
cohort, time and age. We will first describe the design data for p which is represented by the indices
22 to 42. Imagine a table of data with 21 rows (one for each parameter) labeled 22 to 42. Let’s define
a cohort variable that represents the release cohort for each parameter. Rows 22-27 would contain a 1
because they are all for the first cohort, rows 28-32 would contain a 2,. . . , and row 42 would contain a 6.
Likewise, if we wanted to create a time variable, then row 22 would contain a 2, rows 23 and 28 would
contain a 3,. . . , and rows 27,32,36,39,41, and 42 would contain a 7 because all of those are in the last
column for time 7. Likewise we can define a variable we’ll call age which is really time-since-marking
(TSM) unless all the animals are first released at the same age (e.g., banding young of the year birds).
Age(TSM) is zero upon first release but it is 1 at the first recapture occasion and age is constant along
the diagonals. To create an age variable, the rows 22,28,33,37,40 and 42 in our design data would each
have a 1 in the age field, rows 23,29,34,38, and 41 would contain a 2,. . . , and row 27 would contain 6.

We will defer describing how the design data are actually created and can be manipulated but we
will show you a summary and list of the first 10 rows of the design data for p beginning with index 22
of our design data object, that were created for myexample to explain the concept further.

group cohort age time Cohort Age Time

1:21 1:6 1:6 2:1 Min. :0.000 Min. :1.000 Min. :0.000

2:5 2:5 3:2 1st Qu.:0.000 1st Qu.:1.000 1st Qu.:2.000

3:4 3:4 4:3 Median :1.000 Median :2.000 Median :4.000

4:3 4:3 5:4 Mean :1.667 Mean :2.667 Mean :3.333

5:2 5:2 6:5 3rd Qu.:3.000 3rd Qu.:4.000 3rd Qu.:5.000

6:1 6:1 7:6 Max. :5.000 Max. :6.000 Max. :5.000

group cohort age time Cohort Age Time

22 1 1 1 2 0 1 0

23 1 1 2 3 0 2 1

24 1 1 3 4 0 3 2

25 1 1 4 5 0 4 3

26 1 1 5 6 0 5 4

27 1 1 6 7 0 6 5

28 1 2 1 3 1 1 1

29 1 2 2 4 1 2 2

30 1 2 3 5 1 3 3

31 1 2 4 6 1 4 4

You will likely notice that there are more fields than we described and that some appear to be the
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same field. First off there is a group field that we didn’t describe and it is always 1. This example did
not have any group structure, thus all dippers were put in the same group numbered 1. We’ll describe
the use of grouping variables later. The cohort, age and time fields are created as factor variables as
you can notice by the summary that shows the counts of the number of entries with each value (level) of
the variable. Then there are continuous versions of these variables named Cohort, Age, and Timewhich
have been defined such that they start at 0 for Cohort and Time. In the summary the min, max, mean and
quartiles are shown for these numeric variables. Capitalization was used to remain consistent with
the MARK notation (actually, a Colorado State convention) of p(t) to represent fitting a model with a
separate parameter for each occasion (level of time) and p(T) is a continuous trend with an intercept
and slope as shown below. In RMark, these same models would be ∼time and ∼Time respectively.

So far this “trick” may just seem like added complication to the PIM concept. However, that is not the
case once you know about the R function model.matrix which creates design matrices from a formula
and data. Now that we have created “design data” for the real parameters, we only need to specify a
formula using those data to create the design matrix. While you will never use model.matrix directly
with the RMark package, it is useful to see a demonstration of it to understand how RMark works. It
is also a useful way to check to make sure your model formula is correct. On the next page, we’ll create
the design matrix for the first 10 rows (representing parameters 22-31) for the following models for p:
∼time, ∼Time, ∼Time + age:

model.matrix(~time,myexample$design.data$p[1:10,])

(Intercept) time3 time4 time5 time6 time7

1 1 0 0 0 0 0

2 1 1 0 0 0 0

3 1 0 1 0 0 0

4 1 0 0 1 0 0

5 1 0 0 0 1 0

6 1 0 0 0 0 1

7 1 1 0 0 0 0

8 1 0 1 0 0 0

9 1 0 0 1 0 0

10 1 0 0 0 1 0

> model.matrix(~Time,myexample$design.data$p[1:10,])

(Intercept) Time

1 1 0

2 1 1

3 1 2

4 1 3

5 1 4

6 1 5

7 1 1

8 1 2

9 1 3

10 1 4

> model.matrix(~Time+age,myexample$design.data$p[1:10,])
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(Intercept) Time age2 age3 age4 age5 age6

1 1 0 0 0 0 0 0

2 1 1 1 0 0 0 0

3 1 2 0 1 0 0 0

4 1 3 0 0 1 0 0

5 1 4 0 0 0 1 0

6 1 5 0 0 0 0 1

7 1 1 0 0 0 0 0

8 1 2 1 0 0 0 0

9 1 3 0 1 0 0 0

10 1 4 0 0 1 0 0

Once the design data are defined, the R function does all the work of creating the design matrix for
any formula using the design data. The design matrix is created using the convention called treatment
contrasts. That means the first level is used as the intercept and the parameters for the remaining levels
are an additive amount relative to the intercept. Also note that model.matrix automatically provides
all of the label names for the β parameters as the column names of the design matrix.

If you only had these automatic design data, RMark would be fairly useful but would still be less than
optimal. Later we’ll show how you can manipulate and extend the design data to make it completely
general and much more useful for designing models beyond these basic cookie-cutter types.

While all-different PIMS are necessary to enable creation of any model, they become problematic
when the size of the problem is such that the number of real parameters (number of rows in the design
matrix) exceeds 5,000. For some data sets and models this happens easily. Some large models will not
run in mark.exe due to insufficient memory when the variance-covariance matrix for the real parameters
is created. However, even if MARK can run the model it is quite inefficient and slow to use a design
matrix with say 5000 real parameters and only 2 columns for the Phi(.)p(.) model.

This difficulty led to ‘trick number 3’ which is the concept of simplifying the design matrix. If you
have the Phi(.)p(.)model with 5,000 real parameters, 2,500 of the design matrix rows would have a 1
in column 1 and a 0 in column 2 and the other 2,500 rows would have a 0 in column 1 and a 1 in column
2. That is quite redundant and really all one needs is the 2 unique rows to convey the information in the
5,000 rows. After the design matrix is created with the all-different PIMS, RMark simplifies it to contain
only the unique rows and re-codes the PIMS. A link is maintained between the original indices and
the new simplified indices. Simplification has important consequences for the viability of the modeling
approach in RMark and the speed at which mark.exe completes the analysis.

To see the simplified and recoded PIMS for a model, you can use the PIMS function but this time
using the default value of simplified=TRUE. If you use it with myexample as below you’ll see that the
42 parameters have been recoded to the 2 unique parameters.

> PIMS(myexample,"Phi")

group = Group 1

1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1

3 1 1 1 1

4 1 1 1

5 1 1

6 1

Appendix C. RMark - an alternative approach to building linear models in MARK



C.3. How RMark works C - 13

> PIMS(myexample,"p")

group = Group 1

2 3 4 5 6 7

1 2 2 2 2 2 2

2 2 2 2 2 2

3 2 2 2 2

4 2 2 2 2

5 2 2

6 2

If you can simplify and recode the PIMS to the unique values, why would you want to keep the
links to the original all-different indices? Because the original all-different PIMS provides a compatible
foundation for all the analyses of the same data set using the same underlying type of model (e.g., CJS).
With the all-different PIMS it is easier to display real parameters in PIM format, associate labels to the
real parameters and to use model averaging on the real parameters from different models which will
have different simplified PIM coding.

It should be helpful to examine the recoded PIMS for some other models, so without describing how
we got them, we show the recoded PIMS for parameter pwith ∼time,∼Time and∼Time+agemodels with
Phi(∼1) as shown above for design matrices:

~time or ~Time group = Group 1

2 3 4 5 6 7

1 2 3 4 5 6 7

2 3 4 5 6 7

3 4 5 6 7

4 5 6 7

5 6 7

6 7

~Time + age group = Group 1

2 3 4 5 6 7

1 2 3 4 5 6 7

2 8 9 10 11 12

3 13 14 15 16

4 17 18 19

5 20 21

6 22

Notice that the recoded PIMS for the ∼Time+age model has 21 different parameters as with the all-
different PIMS because with that model all of the rows of the design matrix for p are different. However,
the PIM is recoded to start at 2 because Phi(∼1) only requires a single parameter.

To a large extent the PIM/design simplification is transparent to you as a user in analyzing the data
except that simplification does create a conflict between the labeling of real parameters in the MARK

output and the labeling of real parameters in output from summary and other functions in R. When the
PIMS are simplified there is no attempt to create a unique meaningful label for the real parameters in
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the input file sent to mark.exe. It uses the label associated with the first real parameter translated to
the new PIM coding. However, the labeling of real parameters in R is maintained with the use of the
all-different PIM structure. So use R when you want to look at real parameter values with their labels
and ignore the labels in the MARK output file for real parameters.

PIM simplification is done for all parameters except for parameters that use the mlogit links like ψ
in the multistrata model and pent in POPAN. The mlogit link assures that the sum of a specified
set of probabilities sums to 1 but it is implemented in MARK by using a sum of the unique real
parameters indices and not the full set of real parameters. So for example, if you had 5 strata (A to
E) and you wanted to estimate 4 real parameters for transitions from A by constraining equality for
D and E (ψAB , ψAC , ψAD

� ψAE). If you give these 4 parameters indices 1 to 4, then the mlogit link
will work properly because it will sum across all 4, but if you give the parameters the indices 1,2,3,3
to constrain the last two parameters then the sum will be only the first 3 parameters and it will not
sum the third parameter twice. Thus, an all-different PIM structure is required for parameters that use
the mlogit link and any equality constraints must be implemented with the design matrix without any
simplification of the PIMS. This restriction on mlogit links does not affect how you use RMark but may
affect the speed at which MARK computes the parameter estimates because the number of parameters
and the size of the design matrix is larger without PIM simplification.

As we showed above, model.matrix in R is the workhorse for creation of design matrices from
formula; however, it cannot directly cope with individual covariates in the design matrix structure
of MARK which uses the name of the individual covariate in the design matrix. To be generally useful,
the formula notation needed to encompass individual covariates and this led to ‘trick number 4’ which
is probably the only clever trick in the RMark implementation. But we’ll delay divulging it until section
C.16.

There are just a few things more you should understand before we move on. Note that the indices
are “stacked on top of each other” to get unique indices for all of the parameters. Thus, for our example
there are 21 ϕ parameters numbered 1 to 21 and 21 p parameters numbered 22 to 42. This ordering of
the index numbers is done in a consistent fashion for each model. For example, p always follows ϕ in
the CJS model. However, in most places in the code where you have to specify indices (see C.11 - fixing
real parameters) it will typically only need to identify the parameter with the parameter-specific index
which is the row number in the design matrix. Thus, in most cases for p, the parameters are identified
by the indices 1 to 21. The only exception is situations in which you are referring to parameter indices
across parameter types (e.g., both ϕ and p) as with the function covariate.predictions (C.16).

For most models in MARK, the design matrix could be displayed in the following manner:

design for parameter 1 0 0 0

0 design for parameter 2 0 0

0 0
. . . 0

0 0 0 design for parameter k

where none of the different types of parameters (e.g., p , ϕ etc) share columns of the design matrix.
Parameter types can share the same covariate (e.g., ϕt pt), but the effect of that covariate is not the same
for the different types of parameters so the covariates are represented by different columns in the design
matrix. For most models, this works quite well but there are some exceptions including parameters “p”
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and “c” in the closed and robust design models, parameters “p1” and “p2” in the MSOccupancy model,
and “GammaPrime” and “GammaDoublePrime” in the robust design models. In each of these cases the
parameter has a different name but it is effectively the same type of parameter, so it is quite reasonable
to build models in which they “share” covariates or are equated. To accommodate this exception, the
parameter listed first is set as the dominant parameter and the formula for the dominant parameter is
given a special argument “share” that can be set to TRUE or FALSE. If it is set to TRUE, then the design
data are combined ‘on the fly’ and an extra column is added for the non-dominant parameter to enable
fitting additive models. See section C.19 for an example.

C.4. Dissecting the function “mark”

Now that you have been introduced to some of the ideas on the inner workings of RMark like design
data and PIM structure and simplification,we’ll discuss the steps that are taken in producing an analysis
and along the way we will expand the concept of design data to include group structure. The function
mark is actually quite simple because it is a convenience function that calls 5 other functions that actually
do the work in the following order:

1. process.data

2. make.design.data

3. make.mark.model

4. run.mark.model

5. summary.mark

Why do you care? Primarily because the function has dual calling modes for efficiency and to enable
adding/modifying the design data. Depending on the arguments that you pass mark, it will either start
with process.data or it will skip directly to make.mark.model. This allows you to do the first 2 steps
once, optionally modify the design data, and then run a whole series of models on the data without
repeating the first 2 steps in each call to mark.

C.4.1. Function process.data

The first function process.data literally does what its name implies. It takes the input data frame
and the user-defined arguments and creates a list (processed data) containing the data and numerous
defined attributes that the remaining functions use in defining the analysis models. The following are
the primary attributes that are set:

1. model: the type of analysis model (e.g., “CJS”, “Known”, “POPAN”); see help for
function mark (?mark) for a complete listing of the supported models

2. begin.time: the time of the first capture/release occasion for labeling

3. time.intervals: the lengths of the time intervals between capture occasions

4. groups: the list of factor variables in the data to define groups

5. initial.ages: the age of animals at first capture/release corresponding to the levels
of the age grouping variable (age.var)
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6. nocc: number of capture/encounter occasions which is determined from the con-
tents of the “ch” field in the data and the type of analysis model(model).

As an example, we will use the dipper data and the field sex to create 2 groups in the data and define
fictitious beginning time and time intervals for the data:

> data(dipper)

> dipper.process=process.data(dipper,model="CJS",begin.time=1980,

time.intervals=c(1,.5,1,.75,.25,1),groups="sex")

The resulting object (dipper.process) is a list containing the data and its attributes. The names of
the elements of the list can be viewed with the names function:

> names(dipper.process)

[1] "data" "model" "mixtures" "freq"

[5] "nocc" "nocc.secondary" "time.intervals" "begin.time"

[9] "age.unit" "initial.ages" "group.covariates" "nstrata"

[13] "strata.labels"

Note that there are many more attributes than described above. Some – like mixtures, nstrata,
nocc.secondary and strata.labels – are only relevant to specific models but these are often included
with a default, NULL or empty value for models in which they are not relevant. Specific elements of
the list can be extracted as illustrated:

> dipper.process$nocc

[1] 7

> dipper.process$group.covariates

sex

1 Female 2 Male

> dipper.process$begin.time

[1] 1980

> dipper.process$strata.labels

character(0)

> dipper.process$nocc.secondary

NULL

> dipper.process$time.intervals

[1] 1.00 0.50 1.00 0.75 0.25 1.00

From the first 5 rows of the field freq it is obvious that this is the structure used to create the frequency
data for the MARK input file with the defined grouping structure and the column labels as the group
labels:

> dipper.process$freq[1:10,]

sexFemale sexMale

1 1 0

2 1 0

3 1 0

4 1 0

5 1 0
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The structure of the encounter history and the analysis depends on the analysis model that you
choose like “CJS” above. Thus, it is necessary to process the data frame (data) containing the encounter
history and a chosen model to define the relevant values which will be used by the remaining functions.
For example, number of capture occasions (nocc) is automatically computed based on the length of the
encounter history (ch) in data; however, this is dependent on the type of analysis model. For models
such as “CJS”, “Pradel” and others, it is simply the length of ch. Whereas, for “Burnham” and “Barker”
models, the encounter history contains capture and resight/recovery values so nocc is one-half the
length of ch. Likewise, the number of time.intervals depends on the model. For models, such as
“CJS”, “Pradel” and others, the number of time.intervals is nocc-1; whereas, for capture-recovery (or
resight) models the number of time.intervals is nocc. The default time interval is unit time (1) and if
this is adequate, the function will assign the appropriate length; otherwise the appropriate number of
values must be given.

A processed data frame can only be analyzed using the model that was specified in the call to
process.data. The model value is used by the functions make.design.data and make.mark.model to
define the design data and the appropriate input file structure for MARK. Thus, if the data are going
to be analyzed with different underlying models, create different processed data objects possibly using
the type of model as an extension. For example,

dipper.cjs=process.data(dipper,model="CJS")

dipper.popan=process.data(dipper,model="POPAN")

The process.data function will report any inconsistencies in the lengths of the capture history values
and when invalid entries are given in the capture history. For example,with the “CJS” model, the capture
history should only contain 0 and 1 whereas for “Barker” it can contain 0,1,2. For “Multistrata” models,
the code will automatically identify the number of strata (nstrata) and strata labels (strata.labels)
based on the unique alphabetic codes used in the capture histories. For “Robust” design models, the
number of secondary occasions (nocc.secondary) is determined by the specified time.intervals.

The argument begin.time specifies the time for the first capture/release occasion. This is used
in creating the levels of the time factor variable in the design data and for labeling parameters. If
begin.time varies by group, enter a vector of times with one for each group.

The argument groups can contain one or more character strings specifying the names of factor
variables contained in data. A group is created for each unique combination of the levels of the factor
variables. Further examples of grouping and use of age variables will be given later and they can be
found in the help documentation with R (?process.data and ?example.data).

C.4.2. Function make.design.data

The next step is to create the design data and PIM structure which depends on the selected type of
analysis model (e.g., CJS or Multistrata), number of occasions, grouping variables and other attributes of
the data that were defined in the processed data, which is the first and primary argument to the function
make.design.data that creates the design data. For parameters with triangular PIMS the default design
data are cohort, age and time and any grouping factor variables that were defined. For parameters with
square PIMS, there is only one row so the cohort variable is not automatically included in the design
data but there are ways to create a cohort structure in this case with groups.

In creating the factor variables for cohort, age, and time, a separate factor level is created for each
value of the variable. However, you can optionally bin the values into intervals in creating the factor
variable. For example, if birds were always classified as either young (< 1) or as adult (1+), then
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age.bins could be specified in the call to make.design.data. However, if you wanted the option to
model age based on all levels of the factor and other models with some ages collapsed into intervals
then it is best to allow make.design.data to create the default factor variables and create additional
design data with the function add.design.data or using R statements and functions. There are many
other features of make.design.data including restricting parameters to use “time” or “constant” PIMS,
setting the subtraction stratum for “Multistrata” models, and automatic removal of unused design data.
These features are described in the help files (?make.design.data and ?add.design.data) and they are
described in more detail in later sections.

For now, a simple example with the dipper data will suffice to illustrate this step and explain the
basic concepts. But before we do that we’ll reprocess the data to use annual time intervals rather than
the fictitious ones used above:

> dipper.process=process.data(dipper,model="CJS",begin.time=1980,groups="sex")

The result of a call to make.design.data is a list of design data, so one naming convention is to use
ddl (design data list) as the suffix and the data name as the prefix as follows:

> dipper.ddl=make.design.data(dipper.process)

Before we look at the design data, let’s run a simple model with mark but this time rather than
specifying the data file, we’ll specify the processed data and the design data list. When MARK is called
with these 2 arguments it recognizes that they have already been created and skips to step 3 to create
and run the model directly.

> myexample2=mark(dipper.process,dipper.ddl)

Output summary for CJS model Name : Phi(~1)p(~1)

Npar : 2

-2lnL: 666.8377

AICc : 670.866

Beta

estimate se lcl ucl

Phi:(Intercept) 0.2421484 0.1020127 0.0422035 0.4420933

p:(Intercept) 2.2262658 0.3251093 1.5890517 2.8634800

Real Parameter Phi Group:sexFemale

1980 1981 1982 1983 1984 1985

1980 0.560243 0.560243 0.560243 0.560243 0.560243 0.560243

1981 0.560243 0.560243 0.560243 0.560243 0.560243

1982 0.560243 0.560243 0.560243 0.560243

1983 0.560243 0.560243 0.560243

1984 0.560243 0.560243

1985 0.560243

Group:sexMale

1980 1981 1982 1983 1984 1985
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1980 0.560243 0.560243 0.560243 0.560243 0.560243 0.560243

1981 0.560243 0.560243 0.560243 0.560243 0.560243

1982 0.560243 0.560243 0.560243 0.560243

1983 0.560243 0.560243 0.560243

1984 0.560243 0.560243

1985 0.560243

Real Parameter p Group:sexFemale

1981 1982 1983 1984 1985 1986

1980 0.9025835 0.9025835 0.9025835 0.9025835 0.9025835 0.9025835

1981 0.9025835 0.9025835 0.9025835 0.9025835 0.9025835

1982 0.9025835 0.9025835 0.9025835 0.9025835

1983 0.9025835 0.9025835 0.9025835

1984 0.9025835 0.9025835

1985 0.9025835

Group:sexMale

1981 1982 1983 1984 1985 1986

1980 0.9025835 0.9025835 0.9025835 0.9025835 0.9025835 0.9025835

1981 0.9025835 0.9025835 0.9025835 0.9025835 0.9025835

1982 0.9025835 0.9025835 0.9025835 0.9025835

1983 0.9025835 0.9025835 0.9025835

1984 0.9025835 0.9025835

1985 0.9025835

If you are following along with these commands and did not get the results above make sure that
you reprocessed the data with the annual intervals and then created the design data before entering the
call to mark because the results will vary with different time intervals. Notice that the results are exactly
the same as the first analysis we did with the dipper data; however, the real parameter summaries are
displayed for each sex because it was used to define groups.

Now let’s look at the non-simplified PIMS for ϕ and compare them to the design data that were
created.

> PIMS(myexample2,"Phi",simplified=FALSE)

group = sexFemale

1980 1981 1982 1983 1984 1985

1980 1 2 3 4 5 6

1981 7 8 9 10 11

1982 12 13 14 15

1983 16 17 18

1984 19 20

1985 21

group = sexMale

1980 1981 1982 1983 1984 1985

1980 22 23 24 25 26 27

1981 28 29 30 31 32
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1982 33 34 35 36

1983 37 38 39

1984 40 41

1985 42

To accommodate the group structure 42 possible real parameter indices were created for Phi with
1-21 for females and 22-42 for males. The same structure was also created for p. If we look at the names
of the design data list

> names(dipper.ddl)

[1] "Phi" "p" "pimtypes"

we see that there are 3 elements in the list. The first 2 are the design data for the parameters in the
CJS model (Phi and p) and the last is a list of the type of PIMS used which in this case is the default of
all-different. We can examine the design data for Phi as follows (with abbreviated output):

> dipper.ddl$Phi

group cohort age time Cohort Age Time sex

1 Female 1980 0 1980 0 0 0 Female

2 Female 1980 1 1981 0 1 1 Female

3 Female 1980 2 1982 0 2 2 Female

4 Female 1980 3 1983 0 3 3 Female

5 Female 1980 4 1984 0 4 4 Female

6 Female 1980 5 1985 0 5 5 Female

7 Female 1981 0 1981 1 0 1 Female

8 Female 1981 1 1982 1 1 2 Female

9 Female 1981 2 1983 1 2 3 Female

10 Female 1981 3 1984 1 3 4 Female

<...>

22 Male 1980 0 1980 0 0 0 Male

23 Male 1980 1 1981 0 1 1 Male

37 Male 1983 0 1983 3 0 3 Male

38 Male 1983 1 1984 3 1 4 Male

39 Male 1983 2 1985 3 2 5 Male

40 Male 1984 0 1984 4 0 4 Male

41 Male 1984 1 1985 4 1 5 Male

42 Male 1985 0 1985 5 0 5 Male

Rows (indices) 1 and 22 have the same design data except that row 1 is for females and row 22 is
for males. Any grouping variables are automatically included into the design data. A field “group”
is created which is a unique combination of the different values of each grouping variable and then
a separate field is included for each grouping variable. With a single grouping variable, like sex, the
2 fields are identical. The pre-defined models in MARK like {ϕg∗t} are equivalent to using the field
group in the formula. As we will show later, the inclusion of each grouping variable allows additive
models to be created with the grouping variables rather than just using the group field which is the full
interaction of the grouping variables.
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C.5. More simple examples

Hopefully you now have a basic understanding of how PIMS, design data and design matrices are
created in RMark and we can move on to learning how to specify formula for analysis models. Along
the way we’ll reiterate and expand on the material we have presented so far. We will continue on with
the dipper data withsex used for groups to describe using formulawith the existing design data created
by default and then we’ll consider examples that work with user-defined supplemental design data.

Following along the lines of MARK, a model is described by sub-models for each parameter of the
particular type of mark-recapture analysis. With the dipper data we have been using the CJS model with
parameters ϕ and p, and so far we have been using the default model which is a constant value for each
parameter. A parameter specification (sub-model) is defined by a list, although in most circumstances
the list will only contain a single element named the formula. For reasons that will be obvious later, the
parameter specifications should be assigned to an object named with a prefix being the parameter name
and the suffix being a description for the formula or some other strategy like numbering. For example,
with the simple model we have constructed so far the parameter specifications would be:

> Phi.dot=list(formula=~1)

> p.dot=list(formula=~1)

The parameter specifications are used with the mark argument model.parameters to define the model.
The default model we ran earlier could also be specified as:

> myexample2=mark(dipper.process,dipper.ddl,model.parameters=list(Phi=Phi.dot,p=p.dot))

Now the parameter specification Phi.dot and p.dot are identical so you could have done the
following:

> myexample2=mark(dipper.process,dipper.ddl,model.parameters=list(Phi=Phi.dot,p=Phi.dot))

and gotten the same results but that could be a bit confusing and lateryou’ll see that there are advantages
to having a separate parameter specification object for each parameter even if they have the same values.

So, let’s create some more parameter specifications solely for demonstration purposes as some of
these models may not make sense for the dipper data:

Phi.time=list(formula=~time)

Phi.sex=list(formula=~sex)

Phi.sexplusage=list(formula=~sex+age)

p.time=list(formula=~time)

p.Time=list(formula=~Time)

p.Timeplussex=list(formula=~Time+sex)

By including the dot models,we could easily specify 16 (4×4) different models forall the combinations
of these parameter specifications. Hmm, how do we name all these models to keep them straight? One
way is to use the data name and add on the parameter specifications as in the following examples:

dipper.phi.dot.p.dot=

mark(dipper.process,dipper.ddl,model.parameters=list(Phi=Phi.dot,p=p.dot))

dipper.phi.time.p.dot=

mark(dipper.process,dipper.ddl,model.parameters=list(Phi=Phi.time,p=p.dot))

dipper.phi.sex.p.dot=
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mark(dipper.process,dipper.ddl,model.parameters=list(Phi=Phi.sex,p=p.dot))

dipper.phi.sex.p.Timeplussex=

mark(dipper.process,dipper.ddl,model.parameters=list(Phi=Phi.sex,p=p.Timeplussex))

dipper.phi.time.p.time=

mark(dipper.process,dipper.ddl,model.parameters=list(Phi=Phi.time,p=p.time))

dipper.phi.sexplusage.p.dot=

mark(dipper.process,dipper.ddl,model.parameters=list(Phi=Phi.sexplusage,p=p.dot))

See how easy it is? No messing with PIMS or design matrices. You are certainly getting the idea but
let’s look at the last 3 models in more detail to learn some more. If you ran these by simply copying the
text into R, the output will have passed by on the screen but we can simply repeat it with the summary
function:

> summary(dipper.phi.sex.p.Timeplussex)

Output summary for CJS model

Name : Phi(~sex)p(~Time + sex)

Npar : 5

-2lnL: 664.1672

AICc : 674.3101

Beta

estimate se lcl ucl

Phi:(Intercept) 0.1947163 0.1403108 -0.0802928 0.4697254

Phi:sexMale 0.7547928 0.1989333 -0.3351165 0.4447022

p:(Intercept) 1.2297543 0.6455548 -0.0355331 2.4950417

p:Time 0.3162690 0.2255297 -0.1257693 0.7583073

p:sexMale 0.4290287 0.6660079 -0.8763468 1.7344042

Real Parameter Phi Group:sexFemale

1980 1981 1982 1983 1984 1985

1980 0.5485258 0.5485258 0.5485258 0.5485258 0.5485258 0.5485258

1981 0.5485258 0.5485258 0.5485258 0.5485258 0.5485258

1982 0.5485258 0.5485258 0.5485258 0.5485258

1983 0.5485258 0.5485258 0.5485258

1984 0.5485258 0.5485258

1985 0.5485258

Group:sexMale

1980 1981 1982 1983 1984 1985

1980 0.5620557 0.5620557 0.5620557 0.5620557 0.5620557 0.5620557

1981 0.5620557 0.5620557 0.5620557 0.5620557 0.5620557

1982 0.5620557 0.5620557 0.5620557 0.5620557

1983 0.5620557 0.5620557 0.5620557

1984 0.5620557 0.5620557

1985 0.5620557

Real Parameter p Group:sexFemale
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1981 1982 1983 1984 1985 1986

1980 0.7737756 0.8243386 0.8655639 0.8983077 0.9237786 0.9432727

1981 0.8243386 0.8655639 0.8983077 0.9237786 0.9432727

1982 0.8655639 0.8983077 0.9237786 0.9432727

1983 0.8983077 0.9237786 0.9432727

1984 0.9237786 0.9432727

1985 0.9432727

Group:sexMale

1981 1982 1983 1984 1985 1986

1980 0.8400746 0.8781527 0.9081557 0.9313485 0.9490134 0.9623168

1981 0.8781527 0.9081557 0.9313485 0.9490134 0.9623168

1982 0.9081557 0.9313485 0.9490134 0.9623168

1983 0.9313485 0.9490134 0.9623168

1984 0.9490134 0.9623168

1985 0.9623168

Let’s look at the mark result object some more so you can see how to extract various parts of the
results. We see that the names of the elements are:

> names(dipper.phi.sex.p.Timeplussex)

[1] "data" "model" "title" "model.name"

[5] "links" "mixtures" "call" "parameters"

[9] "time.intervals" "number.of.groups" "group.labels" "nocc"

[13] "begin.time" "covariates" "fixed" "design.matrix"

[17] "pims" "design.data" "strata.labels" "mlogit.list"

[21] "simplify" "model.parameters" "results" "output"

The field output is the link to the input and output files

> dipper.phi.sex.p.Timeplussex$output

[1] "mark012"

The value may be different for you depending on how many models you have run and whether
you removed models and used the cleanup function. The element pims is the all-different PIMS for
the model but the extractor function PIMS produces clearer output than simply typing the command
dipper.phi.sex.p.Timeplussex$pims. The element model.parameters is simply the value of the mark
argument with the same name; whereas, the parameters field is for internal use with various attributes
set for each parameter. Likewise, the links between the simplified PIMS and the non-simplified PIMS
contained in the list element simplify is only useful internally. The design matrix for the simplified
model structure is also contained in the result as a matrix:

> dipper.phi.sex.p.Timeplussex$design.matrix

Phi:(Intercept) Phi:sexMale p:(Intercept) p:Time p:sexMale

Phi gFemale c1980 a0 t1980 "1" "0" "0" "0" "0"

Phi gMale c1980 a0 t1980 "1" "1" "0" "0" "0"

p gFemale c1980 a1 t1981 "0" "0" "1" "0" "0"

p gFemale c1980 a2 t1982 "0" "0" "1" "1" "0"

p gFemale c1980 a3 t1983 "0" "0" "1" "2" "0"

p gFemale c1980 a4 t1984 "0" "0" "1" "3" "0"
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p gFemale c1980 a5 t1985 "0" "0" "1" "4" "0"

p gFemale c1980 a6 t1986 "0" "0" "1" "5" "0"

p gMale c1980 a1 t1981 "0" "0" "1" "0" "1"

p gMale c1980 a2 t1982 "0" "0" "1" "1" "1"

p gMale c1980 a3 t1983 "0" "0" "1" "2" "1"

p gMale c1980 a4 t1984 "0" "0" "1" "3" "1"

p gMale c1980 a5 t1985 "0" "0" "1" "4" "1"

p gMale c1980 a6 t1986 "0" "0" "1" "5" "1"

The list element of most interest is results, a list containing extracted values from the MARK output
files:

> names(dipper.phi.sex.p.Timeplussex$results)

[1] "lnl" "deviance" "npar" "n"

[5] "AICc" "beta" "real" "beta.vcv"

[9] "derived" "derived.vcv" "covariate.values" "singular"

The definitions of the elements are as follows:

• lnl: −2 logL Likelihood value

• deviance: difference between null deviance and model deviance

• npar: Number of parameters (always the number of columns in design matrix)

• n: effective sample size

• AICc: Small sample corrected AIC using npar

• beta: data frame of β parameters with estimate, standard error (se), lower confi-
dence limit (lcl), and upper confidence limit (ucl)

• real: data frame of unique (simplified) real parameters with estimate, standard er-
ror (se), lower confidence limit (lcl), and upper confidence limit (ucl), and notation
for fixed parameters

• beta.vcv: variance-covariance matrix for β

• derived: dataframe of derived parameters if any

• derived.vcv: variance-covariance matrix for derived parameters if any

• covariate.values: dataframe with fields Variable and Valuewhich are the covari-
ate names and value used for real parameter estimates in the MARK output

• singular: indices of β parameters that are non-estimable or at a boundary

The individual elements can be extracted using list notation. For example, the data frame of the β
parameters:

> dipper.phi.sex.p.Timeplussex$results$beta

estimate se lcl ucl

Phi:(Intercept) 0.1947163 0.1403108 -0.0802928 0.4697254

Phi:sexMale 0.7547928 0.1989333 -0.3351165 0.4447022

p:(Intercept) 1.2297543 0.6455548 -0.0355331 2.4950417

p:Time 0.3162690 0.2255297 -0.1257693 0.7583073

p:sexMale 0.4290287 0.6660079 -0.8763468 1.7344042
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or the data frame of the unique (simplified) real parameters:

> dipper.phi.sex.p.Timeplussex$results$real

estimate se lcl ucl fixed

Phi gFemale c1980 a0 t1980 0.5485258 0.0347473 0.4799376 0.6153188

Phi gMale c1980 a0 t1980 0.5620557 0.0349965 0.4927116 0.6290571

p gFemale c1980 a1 t1981 0.7737756 0.1130024 0.4911177 0.9237935

p gFemale c1980 a2 t1982 0.8243386 0.0721225 0.6387191 0.9256861

p gFemale c1980 a3 t1983 0.8655639 0.0495235 0.7365526 0.9368173

p gFemale c1980 a4 t1984 0.8983077 0.0424479 0.7803679 0.9564497

p gFemale c1980 a5 t1985 0.9237786 0.0418005 0.7910491 0.9748739

p gFemale c1980 a6 t1986 0.9432727 0.0411246 0.7866317 0.9868417

p gMale c1980 a1 t1981 0.8400746 0.0970652 0.5603827 0.9558434

p gMale c1980 a2 t1982 0.8781527 0.0627026 0.6956116 0.9578565

p gMale c1980 a3 t1983 0.9081557 0.0430622 0.7823503 0.9645393

p gMale c1980 a4 t1984 0.9313485 0.0345158 0.8248454 0.9750509

p gMale c1980 a5 t1985 0.9490134 0.0312841 0.8397867 0.9850955

p gMale c1980 a6 t1986 0.9623168 0.0291539 0.8408254 0.9919649

Remember that the labels for the real parameters in the simplified model can be misleading due to the
simplification process. To view all of the real parameters with standard errors, use summary as follows
(the output has been abbreviated):

> summary(dipper.phi.sex.p.Timeplussex,se=T)

Output summary for CJS model Name : Phi(~sex)p(~Time + sex)

Real Parameter p

par.index estimate se lcl ucl fixed

p gFemale c1980 a1 t1981 3 0.7737756 0.1130024 0.4911177 0.9237935

p gFemale c1980 a2 t1982 4 0.8243386 0.0721225 0.6387191 0.9256861

p gFemale c1980 a3 t1983 5 0.8655639 0.0495235 0.7365526 0.9368173

p gFemale c1980 a4 t1984 6 0.8983077 0.0424479 0.7803679 0.9564497

p gFemale c1980 a5 t1985 7 0.9237786 0.0418005 0.7910491 0.9748739

p gFemale c1980 a6 t1986 8 0.9432727 0.0411246 0.7866317 0.9868417

p gFemale c1981 a1 t1982 4 0.8243386 0.0721225 0.6387191 0.9256861

p gFemale c1981 a2 t1983 5 0.8655639 0.0495235 0.7365526 0.9368173

p gFemale c1981 a3 t1984 6 0.8983077 0.0424479 0.7803679 0.9564497

p gFemale c1981 a4 t1985 7 0.9237786 0.0418005 0.7910491 0.9748739

p gFemale c1981 a5 t1986 8 0.9432727 0.0411246 0.7866317 0.9868417

p gFemale c1982 a1 t1983 5 0.8655639 0.0495235 0.7365526 0.9368173

p gFemale c1982 a2 t1984 6 0.8983077 0.0424479 0.7803679 0.9564497

p gFemale c1982 a3 t1985 7 0.9237786 0.0418005 0.7910491 0.9748739

p gFemale c1982 a4 t1986 8 0.9432727 0.0411246 0.7866317 0.9868417

p gFemale c1983 a1 t1984 6 0.8983077 0.0424479 0.7803679 0.9564497

p gFemale c1983 a2 t1985 7 0.9237786 0.0418005 0.7910491 0.9748739

p gFemale c1983 a3 t1986 8 0.9432727 0.0411246 0.7866317 0.9868417

p gFemale c1984 a1 t1985 7 0.9237786 0.0418005 0.7910491 0.9748739

p gFemale c1984 a2 t1986 8 0.9432727 0.0411246 0.7866317 0.9868417
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p gFemale c1985 a1 t1986 8 0.9432727 0.0411246 0.7866317 0.9868417

p gMale c1980 a1 t1981 9 0.8400746 0.0970652 0.5603827 0.9558434

p gMale c1980 a2 t1982 10 0.8781527 0.0627026 0.6956116 0.9578565

p gMale c1980 a3 t1983 11 0.9081557 0.0430622 0.7823503 0.9645393

p gMale c1980 a4 t1984 12 0.9313485 0.0345158 0.8248454 0.9750509

The par.index field is the index within the simplified set of real parameters (i.e., the recoded
parameter index). The label for the real parameter uses a short hand notation in which g is for group,
c for cohort, a for age and t for time. After each letter is the value of the variable. In other types of
mark-recapture models, like Multistrata, additional values are added like s for stratum, and t for to
stratum, for movement from one stratum to another stratum.

C.6. Design covariates in RMark

There are 2 types of covariates used in RMark. You have already seen examples of the first type which
is the design covariate (design data). Design covariates are linked to the parameters in the model and
specify differences in the parameters associated with the model structure (e.g., time, cohort) or with
group structure of the animals (e.g., sex) because different parameters are used for different groups of
animals. The second type of covariate is individual covariates which specify differences in the individual
animals. The distinction between the types is not entirely clear-cut because design covariates for group
structure are individual covariates because each animal has its own value. However, group design
covariates have 2 important restrictions: 1) they must be a factor variable which means they will typically
have a small number of unique values (e.g., sex=M or F), and 2) the value cannot change over time.
Thus, individual covariates are typically used for numeric variables (e.g., mass, length) or for covariates
where the value changes over time (e.g., trap dependence). You can code factor variables as individual
covariates by creating k − 1 dummy variables (0/1) for a factor variable with k levels, but it is usually
better to use factor variables as group design covariates. Design covariates are stored in the design data
(ddl) and individual covariates remain with the encounter history data. Use of individual covariates in
data and models is described in C.16 and in this section we demonstrate how the flexibility of design
covariates can be used to expand the usefulness of model formula.

So far, all of the examples we have created have only used the design data created by default using
the group and model structure. While that may be all that is needed in many instances, additional
design data can be created and used in formula and this substantially adds to the flexibility of model
development. What kinds of design data can be added and why would you want to do that? Any data
that are relevant to the model and group structure can be added to the design data. These can be dummy
variables that enable “effects” to be modeled for subsets of any of the design data fields. For example,
below we will create a design data field called Flood for the dipper example which is 1 in years with
floods and 0 in non-flood years. Dummy variables are equivalent to coding a column in the design
matrix as you do with the standard MARK interface. Or the added design data fields may create a
factor variable with new intervals of existing design data. For example, we’ll create a design data field
that bins ages as young (0 and 1) and sub-adult (2-3), and adult (4+) (note: this and other treatments of
the dipper data may not be realistic for dippers). Finally, the added design data could be a numeric field
that is specific to some parameter. For example, we’ll create an effort field for each sampling occasion
in the dipper data to model capture probability.

Design data can be created and modified with any relevant R statement or function. We will start
with a simple example using the dipper data using the fictitious dates we assigned. With the dipper
data, between sampling occasions 1981-1982 and 1982-1983 there were severe floods that could have
reduced survival in those periods and capture probability may have differed in 1982 (note: use of these
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dates may not reflect the true situation). To model this effect, we will define a Flood variable that is 1
for flood periods and 0 otherwise. Remember that there are different design data for each parameter,
so a Flood field has to be defined for each parameter that will use the field in the model. Because the
timing of the effect varies for ϕ and p, the definitions of those variables are different.

> dipper.ddl$Phi$Flood=0

> dipper.ddl$Phi$Flood[dipper.ddl$Phi$time==1981 | dipper.ddl$Phi$time==1982]=1

> dipper.ddl$p$Flood=0

> dipper.ddl$p$Flood[dipper.ddl$p$time==1982]=1

The first statement above creates a Flood field for Phi and assigns the value 0 to all values. The second
statement assigns 1 to Flood for those rows in the dataframe for which time is either 1981 (for interval
1981 to 1982) or 1982 (for interval 1982 to 1983). The last 2 statements define the Flood variable for
capture probability. Once the data have been created they can be used in models as shown below:

> Phi.Flood=list(formula=~Flood)

> p.Flood=list(formula=~Flood)

> dipper.phi.flood.p.dot=

mark(dipper.process,dipper.ddl,model.parameters=list(Phi=Phi.Flood,p=p.dot))

> dipper.phi.flood.p.flood=

mark(dipper.process,dipper.ddl,model.parameters=list(Phi=Phi.Flood,p=p.Flood))

While you can use any R statement to create design data, in many instances the design data you are
creating is a modification of existing data or merges new data with existing data, so some functions
were created to simplify the process. If the new design data are simply creating bins (intervals) of time,
age, or cohort, then you can use the function add.design.data. For example, if we want to create age
intervals for survival (young, sub-adult, and adult) as we described above, we can do it as follows:

> dipper.ddl=add.design.data(dipper.process, dipper.ddl,

parameter="Phi", type="age", bins=c(0,1,3,6),name="ageclass")

If we summarize the design data for Phi, we see that the variable we chose to name ageclass has
been defined properly:

> summary(dipper.ddl$Phi)

group cohort age time Cohort Age

Female:21 1980:12 0:12 1980: 2 Min. :0.000 Min. :0.000

Male :21 1981:10 1:10 1981: 4 1st Qu.:0.000 1st Qu.:0.000

1982: 8 2: 8 1982: 6 Median :1.000 Median :1.000

1983: 6 3: 6 1983: 8 Mean :1.667 Mean :1.667

1984: 4 4: 4 1984:10 3rd Qu.:3.000 3rd Qu.:3.000

1985: 2 5: 2 1985:12 Max. :5.000 Max. :5.000

Time sex Flood ageclass

Min. :0.000 Female:21 Min. :0.0000 [0,1]:22

1st Qu.:2.000 Male :21 1st Qu.:0.0000 (1,3]:14

Median :4.000 Median :0.0000 (3,6]: 6

Mean :3.333 Mean :0.2381

3rd Qu.:5.000 3rd Qu.:0.0000

Max. :5.000 Max. :1.0000
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It is always a good idea to examine the design data after you have created it to make sure that the
intervals were defined as expected and that they included the entire range of the data. In the definition
of ageclass, a “(” means the interval is open on the left which means that value is not included in the
interval. Whereas a square bracket (“[” or “]”) is for a closed interval which means the interval end point
is included. If we decided that the intervals should be shifted to the left, the easiest way is as follows:

> dipper.ddl=add.design.data(dipper.process, dipper.ddl,

parameter="Phi", type="age",

bins=c(0,1,3,6),name="ageclass",right=FALSE,replace=TRUE)

Had we not used replace=T, we would have gotten the following error:

Error in add.design.data(dipper.process, dipper.ddl, parameter =

"Phi", : Variable ageclass already in design data. Use

replace=TRUE if you want to replace current values

Now ageclass defines the intervals 0,1 to 2, and 3+ for modeling age effects in Phi:

> summary(dipper.ddl$Phi$ageclass)

[0,1) [1,3) [3,6]

12 18 12

Had we issued the following function call:

> dipper.ddl=add.design.data(dipper.process, dipper.ddl,

parameter="Phi", type="age",bins=c(1,3,6),name="badageclass")

then when we summarized the field, the presence of NAs make it apparent that the defined bins did not
span the range of the age field:

> summary(dipper.ddl$Phi$badageclass)

[1,3] (3,6] NA’s

24 6 12

The NAs occurred in this case because 0 was excluded. Notice that the intervals are always closed
on the far left and far right. Since we do not want this field, by assigning NULL to the field

> dipper.ddl$Phi$badageclass=NULL

it is removed from the design data for Phi:

> names(dipper.ddl$Phi)

[1] "group" "cohort" "age" "time" "Cohort" "Age" "Time" "sex"

[8] "Flood" "ageclass"

In many situations the additional design data are simply covariates to be used in place of occasion/-
time effects. Examples are effort, weather, or observers which vary for occasions and may be useful to
simplify modeling of capture probability rather than time-varying parameters. For this situation, the
function merge_design.covariates was created. The following is an example in which fictitious effort
data were created for the dipper data:
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> df=data.frame(time=c(1980:1986),effort=c(10,5,2,8,1,2,3))

> dipper.ddl$p=merge_design.covariates(dipper.ddl$p,Xdf)

> summary(dipper.ddl$p$effort)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.000 2.000 2.000 3.095 3.000 8.000

So why is the maximum value for effort only 8 and not 10? For the CJS model there is no capture
probability for 1980, so the value is ignored. The function is less forgiving if you forget to include data
for one of the times:

> df=data.frame(time=c(1980:1985),effort=c(10,5,2,8,1,2))

> dipper.ddl$p=merge_design.covariates(dipper.ddl$p,df)

Error in merge_design.covariates(dipper.ddl$p,df) :

df does not contain a time value for each time in design data

The dataframe can contain any number of covariates with any valid names and the only restriction is
that it must contain a field named timewith values that match those in the design data. The dataframe
can be created as above or functions like read.table can be used to import data in a file into a dataframe.
For more details on these functions, refer to the R help files on read.table and data.frame.

Let’s create another model that uses those new design data.

> Phi.ageclass.plus.sex=list(formula=~ageclass+sex)

> p.effort.plus.sex=list(formula=~effort+sex)

> dipper.phi.ageclassplussex.p.effortplussex =

mark(dipper.process,dipper.ddl,model.parameters=list(Phi=

Phi.ageclass.plus.sex,p= p.effort.plus.sex))

Output summary for CJS model

Name : Phi(~ageclass + sex)p(~effort + sex)

Npar : 7

-2lnL: 665.1266

AICc : 679.3946

Beta

estimate se lcl ucl

Phi:(Intercept) 0.1964602 0.1750104 -0.1465602 0.5394805

Phi:ageclass[1,3) 0.1033126 0.2258833 -0.3394186 0.5460439

Phi:ageclass[3,6] -0.1287800 0.4376419 -0.9865582 0.7289982

Phi:sexMale 0.0306891 0.2046965 -0.3705160 0.4318943

p:(Intercept) 2.3193847 0.5699104 1.2023604 3.4364090

p:effort -0.0901470 0.1098187 -0.3053917 0.1250977

p:sexMale 0.4862940 0.6626337 -0.8124681 1.7850561

Real Parameter Phi Group:sexFemale

1980 1981 1982 1983 1984 1985

1980 0.5489577 0.5743870 0.5743870 0.5169136 0.5169136 0.5169136
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1981 0.5489577 0.5743870 0.5743870 0.5169136 0.5169136

1982 0.5489577 0.5743870 0.5743870 0.5169136

1983 0.5489577 0.5743870 0.5743870

1984 0.5489577 0.5743870

1985 0.5489577

Group:sexMale

1980 1981 1982 1983 1984 1985

1980 0.5565444 0.5818718 0.5818718 0.5245725 0.5245725 0.5245725

1981 0.5565444 0.5818718 0.5818718 0.5245725 0.5245725

1982 0.5565444 0.5818718 0.5818718 0.5245725

1983 0.5565444 0.5818718 0.5818718

1984 0.5565444 0.5818718

1985 0.5565444

Notice the diagonal patterns in Phi as it relates to the final ageclass definition that we used.

It is also possible to assign group-specific and time-specific covariates to the design data with the
merge_design.covariates function. The following is an example using the dipper data in which effort
is sex (group) specific. A dataframe (df) is constructed with the group and time-specific effort values
and this is then used in the call to merge_design.covariates. See the help file for that function for more
details.

> df=data.frame(group=c(rep("Female",7),rep("Male",7)),

time=rep(c(1980:1986),2),effort=c(10,5,2,8,1,2,3,20,10,4,16,2,4,6))

> df

group time effort

1 Female 1980 10

2 Female 1981 5

3 Female 1982 2

4 Female 1983 8

5 Female 1984 1

6 Female 1985 2

7 Female 1986 3

8 Male 1980 20

9 Male 1981 10

10 Male 1982 4

11 Male 1983 16

12 Male 1984 2

13 Male 1985 4

14 Male 1986 6

> dipper.process=process.data(dipper,group="sex",begin.time=1980)

> dipper.ddl=make.design.data(dipper.process)

> dipper.ddl$p=merge_design.covariates(dipper.ddl$p,df,bygroup=TRUE)

> dipper.ddl$p

group cohort age time Cohort Age Time sex effort

1 Female 1980 1 1981 0 1 0 Female 5

2 Female 1980 2 1982 0 2 1 Female 2

3 Female 1980 3 1983 0 3 2 Female 8
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<...>

29 Male 1981 2 1983 1 2 2 Male 16

30 Male 1981 3 1984 1 3 3 Male 2

31 Male 1981 4 1985 1 4 4 Male 4

32 Male 1981 5 1986 1 5 5 Male 6

<...>

40 Male 1984 1 1985 4 1 4 Male 4

41 Male 1984 2 1986 4 2 5 Male 6

42 Male 1985 1 1986 5 1 5 Male 6

C.7. Comparing results from multiple models

We have put together quite a few models with lots of different names! So how do we keep track of the
models and how do we summarize them for model selection and possible model averaging of parameter
estimates? Later we will explain more organized approaches but they all tie back to the functions we will
use now. The first function is collect.models which collects all of the models that have been run into a
single list and it calls the function model.table, although the latter can be called separately. Although
collect.models does have arguments in most cases it will be called without arguments and assigned
to a list that you can name to help you remember its contents:

> dipper.cjs.results=collect.models()

What did this do? It looked through all of the objects in the workspace and collected any object that
had a class of “mark”. If the workspace included more than one type of MARK model, like “CJS” and
“POPAN”, it would have issued a warning message. Although it does not matter for this session, the
collection of objects can be limited to a particular type of model as follows:

> dipper.cjs.results=collect.models(type="CJS")

Like the models which have a class of “mark” the list resulting from collect.models has a class
of “marklist” and some of the generic functions treat it differently. For example, the print function
provides a listing of the model.table element of the list rather than printing each list element which
are the various model results.

> dipper.cjs.results

model npar AICc DeltaAICc weight Deviance

3 Phi(~Flood)p(~1) 3 666.1597 0.00000 0.5767865187 77.62566

4 Phi(~Flood)p(~Flood) 4 668.1557 1.99605 0.2126073874 77.58357

2 Phi(~1)p(~1) 2 670.8660 4.70638 0.7548324523 84.36055

11 Phi(~1)p(~1) 2 670.8660 4.70638 0.7548324523 58.15788

12 Phi(~1)p(~1) 2 670.8660 4.70638 0.7548324523 84.36055

5 Phi(~sex)p(~1) 3 672.7331 6.57343 0.0215582207 84.19909

9 Phi(~time)p(~1) 7 673.9980 7.83838 0.0114533494 77.25297

6 Phi(~sex)p(~Time + sex) 5 674.3101 8.15044 0.0097987244 81.69012

7 Phi(~sex + age)p(~1) 8 678.9925 12.83286 0.0009427448 80.17008

8 Phi(~sex + age)p(~Time) 9 679.1198 12.96015 0.0008846140 78.21000

1 Phi(~ageclass + sex)p(~effort + sex) 7 679.3946 13.23491 0.0007710649 82.64951

10 Phi(~time)p(~time) 11 679.5879 13.42824 0.0007000190 74.47310
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The table of model results is fashioned along the lines of the results table shown in the MARK

interface. By default the table is displayed in ascending order for AICc . The number on the left hand-
side of the table is the order of the model in the list. If we look at the names of the list elements we see
that the first 12 are the names of the models that we created and the last is the model.table which is
the dataframe that is displayed above.

> names(dipper.cjs.results)

[1] "dipper.phi.ageclassplussex.p.effortplussex"

[2] "dipper.phi.dot.p.dot"

[3] "dipper.phi.flood.p.dot"

[4] "dipper.phi.flood.p.flood"

[5] "dipper.phi.sex.p.dot"

[6] "dipper.phi.sex.p.Timeplussex"

[7] "dipper.phi.sexplusage.p.dot"

[8] "dipper.phi.sexplusage.p.Time"

[9] "dipper.phi.time.p.dot"

[10] "dipper.phi.time.p.time"

[11] "myexample"

[12] "myexample2"

[13] "model.table"

The model with the lowest AICc is the third model in the list. Notice that models 2, 11 and 12 are all
the same model. That is because the collection includes the first examples we created named myexample
and myexample2. We certainly don’t want models duplicated in the list and especially if we use model
averaging. There are different ways they can be removed from the list. One approach would be to use
the rm function in R to remove them from the workspace and then recreate the list. The more direct
approach would be to use the function remove.mark to remove models 11 and 12 as follows:

> dipper.cjs.results=remove.mark(dipper.cjs.results,c(11,12))

> dipper.cjs.results

model npar AICc DeltaAICc weight Deviance

3 Phi(~Flood)p(~1) 3 666.1597 0.00000 0.6478308242 77.62566

4 Phi(~Flood)p(~Flood) 4 668.1557 1.99605 0.2387947959 77.58357

2 Phi(~1)p(~1) 2 670.8660 4.70638 0.0615863089 84.36055

5 Phi(~sex)p(~1) 3 672.7331 6.57343 0.0242136031 84.19909

9 Phi(~time)p(~1) 7 673.9980 7.83838 0.0128640885 77.25297

6 Phi(~sex)p(~Time + sex) 5 674.3101 8.15044 0.0110056589 81.69012

7 Phi(~sex + age)p(~1) 8 678.9925 12.83286 0.0010588651 80.17008

8 Phi(~sex + age)p(~Time) 9 679.1198 12.96015 0.0009935742 78.21000

1Phi(~ageclass + sex)p(~effort + sex) 7 679.3946 13.23491 0.0008660389 82.64951

10 Phi(~time)p(~time) 11 679.5879 13.42824 0.0007862422 74.47310

Each of the 10 models is stored in the list and the individual named objects in the workspace are no
longer needed. The names of the model objects can be collected with the function collect.model.names
and easily removed as follows:

> rm(list=collect.model.names(ls())) # result of function used as argument to ’rm’

> ls()

[1] "df" "dipper" "dipper.cjs.results"

[4] "dipper.ddl" "dipper.process" "p.dot"

[7] "p.effort.plus.sex" "p.Flood" "p.time"
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[10] "p.Time" "p.time.fixed" "p.Timeplussex"

[13] "Phi.ageclass.plus.sex" "Phi.dot" "Phi.Flood"

[16] "Phi.sex" "Phi.sex.plus.age" "Phi.sexplusage"

[19] "Phi.time"

The objects defined for the parameter model specifications (e.g., p.flood) remain but the model
results were removed from the workspace. You can summarize,print, and manipulate any of the models
by simply referring to the model as a particular list element (e.g., summary(dipper.cjs.results[[3]])).
Maintaining the model results in a marklist is a muchtidierway to organize results of analyses; however,
more importantly, model averaging requires the results to be contained in a marklist. Also, adjusting
model selection for over-dispersion is much easier if the models are maintained in a marklist.

C.8. Producing model-averaged parameter estimates

The function model.average provides model averaging of the real parameters either for a single type of
parameter (e.g., “Phi” or “p”) or for all parameters. No facility is provided for model averaging the beta
parameters although all of the values are available in the marklist to do so. All of the real parameters
can be averaged over the models as follows:

> dipper.mod.avg=model.average(dipper.cjs.results,vcv=TRUE)

By default, the function returns a dataframe of the model averaged estimates with standard errors but
not confidence intervals. If you include vcv=TRUE, it will return a list with a dataframe named estimates
which includes the estimates with standard errors and confidence intervals and a variance-covariance
matrix.

> names(dipper.mod.avg)

[1] "estimates" "vcv.real"

Model-averaged estimates, standard errors and confidence intervals are provided in the estimates
dataframe:

> summary(dipper.mod.avg$estimates)

par.index estimate se lcl ucl

Min. : 1.00 Min. :0.4771 Min. :0.02991 Min. :0.3833 Min. :0.5719

1st Qu.:21.75 1st Qu.:0.6023 1st Qu.:0.03016 1st Qu.:0.5339 1st Qu.:0.6667

Median :42.50 Median :0.7506 Median :0.03357 Median :0.6609 Median :0.8066

Mean :42.50 Mean :0.7364 Mean :0.03439 Mean :0.6592 Mean :0.7956

3rd Qu.:63.25 3rd Qu.:0.9000 3rd Qu.:0.03433 3rd Qu.:0.8237 3rd Qu.:0.9454

Max. :84.00 Max. :0.9034 Max. :0.04926 Max. :0.8241 Max. :0.9593

The field par.index is the parameter index for the all-different PIM. In this case the first 42 (2
groups of 21) are for Phi and the last 42 are for p. Unless you need a covariance between parameters of
different types, it is more useful to construct the model-averaged estimates by parameter type because
the default design data are added to the estimates dataframe which provides some context for the
estimates.

> dipper.Phi.mod.avg=model.average(dipper.cjs.results,"Phi",vcv=TRUE)

> dipper.Phi.mod.avg$estimates[1:5,]
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par.index estimate se lcl ucl fixed group cohort age time Cohort Age Time sex

1 1 0.6024905 0.03488516 0.5325433 0.6684866 Female 1980 0 1980 0 0 0 Female

2 2 0.4771467 0.04853963 0.3839480 0.5719644 Female 1980 1 1981 0 1 1 Female

3 3 0.4776554 0.04857463 0.3843736 0.5725222 Female 1980 2 1982 0 2 2 Female

4 4 0.6023430 0.03432131 0.5335474 0.6673187 Female 1980 3 1983 0 3 3 Female

5 5 0.6022495 0.03435730 0.5333826 0.6672924 Female 1980 4 1984 0 4 4 Female

The estimates, standard errors and variance-covariance matrix are constructed as described by
Burnham and Anderson (2002: chapter 4). Confidence intervals for the model-averaged estimates were
somewhat more challenging. To provide valid intervals for bounded parameters (e.g., 0 < ϕ < 1),
the model-average variance-covariance matrix of the real parameters are transformed to a variance-
covariance matrix for the estimates transformed into the appropriate link space using the Delta-method
(see Appendix B). Then asymptotic 95% normal confidence intervals are constructed for the transformed
link values and the interval end points are then back-transformed into real parameters. That same
method is used to construct confidence intervals for the real parameters for a single model in MARK.

C.9. Quasi-likelihood adjustment

An estimate of ĉ for over-dispersion can be derived using the TEST2+TEST3 χ2/df from program
RELEASE (see Chapter 5 for full details).

Program RELEASE can be run with the function release.gof as shown below with the dipper data:

> data(dipper)

> dipper.processed=process.data(dipper,model="CJS",groups="sex")

> release.gof(dipper.processed)

RELEASE NORMAL TERMINATION

Chi.square df P

TEST2 7.5342 6 0.2743

TEST3 10.7735 15 0.7685

Total 18.3077 21 0.6295

If you add the argument view=TRUE, the RELEASE output file named (Releasennn.out) will be
displayed in a window.

Alternatively ĉ can be estimated using the median ĉ procedure but this is not currently supported in
RMark. However, you can export the input file and the output from the global model to MARK and
use the MARK interface to run the median ĉ procedure. See section C.21 for a description of exporting
to MARK.

Adjustments for over-dispersion are implemented with the function adjust.chat which sets the
value of chat for an individual model or all models in a marklist. For example, we will set the value of
ĉ to 2 for the set of dipper results we just created:

> dipper.cjs.results=adjust.chat(2,dipper.cjs.results)

Doing so does nothing more than setting an element called ĉ in each model to 2 in this case. It does
not adjust standard errors or confidence intervals in any of the model objects but that is done with
functions that extract the results (e.g., get.real). However, it does adjust the model.table values:
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> dipper.cjs.results

model npar QAICc DeltaQAICc weight QDeviance chat

3 Phi(~Flood)p(~1) 3 336.1083 0.000000 0.4661602174 38.81283 2

2 Phi(~1)p(~1) 2 337.4472 1.338942 0.2386644310 42.18028 2

4 Phi(~Flood)p(~Flood) 4 338.1254 2.017100 0.1700307784 38.79179 2

5 Phi(~sex)p(~1) 3 339.3950 3.286715 0.0901226832 42.09955 2

6 Phi(~sex)p(~Time + sex) 5 342.2265 6.118215 0.0218766933 40.84506 2

9 Phi(~time)p(~1) 7 344.1330 8.024731 0.0084330973 38.62649 2

1 Phi(~ageclass + sex)p(~effort + sex) 7 346.8313 10.722996 0.0021880957 41.32475 2

7 Phi(~sex + age)p(~1) 8 347.6689 11.560662 0.0014393600 40.08504 2

8 Phi(~sex + age)p(~Time) 9 348.7762 12.667990 0.0008274011 39.10500 2

10 Phi(~time)p(~time) 11 351.1128 15.004529 0.0002572427 37.23655 2

The model.table now contains QAICc values and the remaining computations based on it instead
of AICc . The ordering of the models is also changed in this case.

C.10. Coping with identifiability

Now let’s look at the summary output from the Phi(∼time)p(∼time) model which we know will be
over-parameterized because only the product of the last ϕ and p are estimable:

Output summary for CJS model

Name : Phi(~time)p(~time)

Npar : 12 (unadjusted=11)

-2lnL: 656.9502

AICc : 681.7057 (unadjusted=679.58789)

Beta

estimate se lcl ucl

Phi:(Intercept) 0.9354557 0.7685213 -0.5708461 2.4417575

Phi:time1981 -1.1982745 0.8706688 -2.9047853 0.5082364

Phi:time1982 -1.0228292 0.8049137 -2.6004601 0.5548017

Phi:time1983 -0.4198589 0.8091476 -2.0057882 1.1660705

Phi:time1984 -0.5360978 0.8031424 -2.1102571 1.0380614

Phi:time1985 0.2481368 244.9012000 -479.7582200 480.2544900

p:(Intercept) 0.8292835 0.7837354 -0.7068380 2.3654050

p:time1982 1.6556230 1.2913788 -0.8754795 4.1867256

p:time1983 1.5220926 1.0729148 -0.5808205 3.6250057

p:time1984 1.3767410 0.9884819 -0.5606835 3.3141654

p:time1985 1.7950894 1.0688773 -0.2999101 3.8900889

p:time1986 -0.0147563 187.0364400 -366.6061900 366.5766800

Real Parameter Phi Group:sexFemale

1980 1981 1982 1983 1984 1985

1980 0.7181808 0.4346709 0.4781705 0.6261176 0.5985334 0.7655931

1981 0.4346709 0.4781705 0.6261176 0.5985334 0.7655931

1982 0.4781705 0.6261176 0.5985334 0.7655931

1983 0.6261176 0.5985334 0.7655931
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1984 0.5985334 0.7655931

1985 0.7655931

Group:sexMale

1980 1981 1982 1983 1984 1985

1980 0.7181808 0.4346709 0.4781705 0.6261176 0.5985334 0.7655931

1981 0.4346709 0.4781705 0.6261176 0.5985334 0.7655931

1982 0.4781705 0.6261176 0.5985334 0.7655931

1983 0.6261176 0.5985334 0.7655931

1984 0.5985334 0.7655931

1985 0.7655931

Real Parameter p Group:sexFemale

1981 1982 1983 1984 1985 1986

1980 0.6962034 0.9230769 0.9130435 0.9007892 0.9324138 0.6930734

1981 0.9230769 0.9130435 0.9007892 0.9324138 0.6930734

1982 0.9130435 0.9007892 0.9324138 0.6930734

1983 0.9007892 0.9324138 0.6930734

1984 0.9324138 0.6930734

1985 0.6930734

Group:sexMale

1981 1982 1983 1984 1985 1986

1980 0.6962034 0.9230769 0.9130435 0.9007892 0.9324138 0.6930734

1981 0.9230769 0.9130435 0.9007892 0.9324138 0.6930734

1982 0.9130435 0.9007892 0.9324138 0.6930734

1983 0.9007892 0.9324138 0.6930734

1984 0.9324138 0.6930734

1985 0.6930734

Note that the number of parameters is shown as 12 and AICc is calculated based on 12, but an
unadjusted parameter count and AICc are also shown with the proper count of 11. The mark function
assumes that all parameters are identifiable and if the parameter count in the MARK output is
less than the number of columns in the design matrix, it adjusts the count and AICc value if the
default value of the argument adjust=TRUE is used. It also keeps the values reported by MARK in
results$npar.unadjusted and results$AICc.unadjusted and these are reported in summary.

Why not trust the values computed by MARK? The ability of MARK to count the number of
parameters correctly is impaired when using design matrices and it will often not count parameters that
are estimable but are at a boundary (0 or 1 forϕ or p) which can happen easily with sparse data sets (the
technical details of how MARK counts parameters are presented in Chapter 4). Overly complex models
that have numerous parameters that are at boundaries can appear to be the best model because the
parameters are counted improperly. It is more conservative to assume that all parameters are estimable.

When you know that some parameters are not identifiable and should not be counted there are a
couple of ways to proceed. One approach is to fix the value of one of the parameters to 1 so it will not
be counted and the other parameter is then an estimate of the product of the parameters. This can be
done with the argument fixed in the parameter specification list as follows:

p.time.fixed=list(formula=~time,fixed=list(time=1986,value=1))

dipper.phi.time.p.time=
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mark(dipper.process,dipper.ddl,model.parameters=list(Phi=Phi.time,p=p.time.fixed))

Output summary for CJS model Name : Phi(~time)p(~time)

Npar : 11 -2lnL: 656.9502 AICc : 679.5879

Beta

estimate se lcl ucl

Phi:(Intercept) 0.9354601 0.7685246 -0.5708483 2.4417684

Phi:time1981 -1.1982793 0.8706724 -2.9047973 0.5082387

Phi:time1982 -1.0228337 0.8049168 -2.6004706 0.5548031

Phi:time1983 -0.4198627 0.8091504 -2.0057975 1.1660720

Phi:time1984 -0.5361021 0.8031460 -2.1102683 1.0380640

Phi:time1985 -0.8128580 0.7947326 -2.3705340 0.7448179

p:(Intercept) 0.8292792 0.7837366 -0.7068447 2.3654031

p:time1982 1.6556296 1.2913815 -0.8754783 4.1867374

p:time1983 1.5220968 1.0729155 -0.5808177 3.6250112

p:time1984 1.3767444 0.9884827 -0.5606817 3.3141704

p:time1985 1.7950930 1.0688789 -0.2999097 3.8900957

p:time1986 0.0000000 0.0000000 0.0000000 0.0000000

Real Parameter Phi Group:sexFemale

1980 1981 1982 1983 1984 1985

1980 0.7181817 0.4346708 0.4781705 0.6261177 0.5985334 0.5306122

1981 0.4346708 0.4781705 0.6261177 0.5985334 0.5306122

1982 0.4781705 0.6261177 0.5985334 0.5306122

1983 0.6261177 0.5985334 0.5306122

1984 0.5985334 0.5306122

1985 0.5306122

Real Parameter p Group:sexFemale

1981 1982 1983 1984 1985 1986

1980 0.6962025 0.9230771 0.9130435 0.9007891 0.9324138 1

1981 0.9230771 0.9130435 0.9007891 0.9324138 1

1982 0.9130435 0.9007891 0.9324138 1

1983 0.9007891 0.9324138 1

1984 0.9324138 1

1985 1

Fixing parameters can get a little tricky with additive models, so an alternative approach is to
use adjust=FALSE with mark to accept the parameter counts from MARK or afterward you can use
the function adjust.parameter.count to change the parameter count to a new value and AICc is
subsequently recalculated. If you are going to accept the MARK parameter counts, make sure they
are correct! In complex models with dozens of parameters, it is quite possible that the optimization
code does not reach the global maximum and parameters end up at boundaries and are not counted.
Indices for the parameters that are not counted by MARK are stored in results$singular. You should
always check these parameters and ascertain whether it is likely that they are at boundaries and whether
they are estimable. If you have any doubts, rerun the model with new starting values as we show in the
next example.

The final example we ran earlier demonstrates a situation in which a parameter is at a boundary but
is properly estimated:

Appendix C. RMark - an alternative approach to building linear models in MARK



C.10. Coping with identifiability C - 38

> summary(dipper.phi.sexplusage.p.dot)

Output summary for CJS model

Name : Phi(~sex + age)p(~1)

Npar : 8 (unadjusted=7)

-2lnL: 662.6472

AICc : 678.9925 (unadjusted=676.91513)

Beta

estimate se lcl ucl

Phi:(Intercept) 0.1647608 1.696575e-01 -0.1677680 0.4972896

Phi:sexMale 0.0830684 1.995167e-01 -0.3079844 0.4741211

Phi:age1 0.0173059 2.538808e-01 -0.4803006 0.5149123

Phi:age2 0.3599325 3.692076e-01 -0.3637144 1.0835793

Phi:age3 -0.0402832 5.407864e-01 -1.1002246 1.0196581

Phi:age4 0.2645044 8.873705e-01 -1.4747419 2.0037506

Phi:age5 -19.8742890 1.076391e-08 -19.8742890 -19.8742890

p:(Intercept) 2.2565572 3.289010e-01 1.6119113 2.9012031

Real Parameter Phi Group:sexFemale

1980 1981 1982 1983 1984 1985

1980 0.5410973 0.5453913 0.6282445 0.5310793 0.6056982 2.755882e-09

1981 0.5410973 0.5453913 0.6282445 0.5310793 6.056982e-01

1982 0.5410973 0.5453913 0.6282445 5.310793e-01

1983 0.5410973 0.5453913 6.282445e-01

1984 0.5410973 5.453913e-01

1985 5.410973e-01

Group:sexMale

1980 1981 1982 1983 1984 1985

1980 0.5616421 0.5658982 0.6474300 0.5517010 0.6253534 2.994585e-09

1981 0.5616421 0.5658982 0.6474300 0.5517010 6.253534e-01

1982 0.5616421 0.5658982 0.6474300 5.517010e-01

1983 0.5616421 0.5658982 6.474300e-01

1984 0.5616421 5.658982e-01

1985 5.616421e-01

Real Parameter p Group:sexFemale

1981 1982 1983 1984 1985 1986

1980 0.9052146 0.9052146 0.9052146 0.9052146 0.9052146 0.9052146

1981 0.9052146 0.9052146 0.9052146 0.9052146 0.9052146

1982 0.9052146 0.9052146 0.9052146 0.9052146

1983 0.9052146 0.9052146 0.9052146

1984 0.9052146 0.9052146

1985 0.9052146
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Group:sexMale

1981 1982 1983 1984 1985 1986

1980 0.9052146 0.9052146 0.9052146 0.9052146 0.9052146 0.9052146

1981 0.9052146 0.9052146 0.9052146 0.9052146 0.9052146

1982 0.9052146 0.9052146 0.9052146 0.9052146

1983 0.9052146 0.9052146 0.9052146

1984 0.9052146 0.9052146

1985 0.9052146

> dipper.phi.sexplusage.p.dot$results$singular

[1] 7

The seventh β for the age 5 ϕ effect is at a boundary such that survival from age 5 to 6 is estimated to
be zero, We can see if this a numerical problem by rerunning the model and changing the initial value
for beta 7 using the initial argument of mark as follows:

> initial= dipper.phi.sexplusage.p.dot$results$beta$estimate

> initial[7]=0

> dipper.phi.sexplusage.p.dot

=mark(dipper.process,dipper.ddl,model.parameters

=list(Phi=Phi.sexplusage,p=p.dot),initial=initial)

Setting the “singular” βs to zero and refitting the model will often help the optimization move away
from the boundary and find the global maximum. That is the approach that is taken if you set the
argument retry in mark to a non-zero value. Upon fitting a model and finding singular β values, it
will refit the model the specified number of times, using the initial values from the previous fitting but
setting the initial value of singular βs to 0. However, in this case, re-running the analysis produces the
same result. A quick check of the capture histories for the first release cohort shows that there was not
a single encounter of the first cohort on the last occasion:

> dipper$ch[substr(dipper$ch,1,1)==1]

[1] "1000000" "1000000" "1000000" "1000000" "1000000" "1000000" "1000000"

[8] "1000000" "1000000" "1010000" "1010000" "1100000" "1100000" "1100000"

[15] "1100000" "1100000" "1100000" "1101110" "1111000" "1111000" "1111100"

[22] "1111110"

Thus, with an assumed constant capture probability the best explanation of not seeing any on the
seventh occasion is that survival from age 5 to 6 was 0. The parameter is identifiable and is being
estimated correctly but it is at a boundary and is not being counted correctly by MARK. Moral of the
story is to be careful counting parameters (this point has been made at several points in this book). The
philosophy incorporated into RMark is that it is safer to over-count parameters rather than risk fitting
an overly-complex model to sparse data.

The ability of MARK to count parameters can be improved by using the sin link which is now
supported by RMark as long as the resulting design matrix for the parameter is an identity matrix. The
sin link can be used for some parameters and a different link for others, so the entire design matrix need
not be an identity matrix. If the model formula contains any design or individual covariates then the sin
link is not allowed. Also, to use the sin link the formula cannot be additive or use an intercept. If either
of the above occurs, an error message will be generated if you specify the sin link. To specify an identity
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design matrix there must be a 1:1 relationship between the β’s and the real parameters. Because RMark

simplifies the PIMS this can occur even when the group structure is quite complex. As an example, we
will use example.datawhich has sex, age and region factors for grouping. Even though there are many
parameters in the all-different formulation we can use the sin link with the intercept model (as shown
below) because there is one β and one real.

> data(example.data)

> example.processed=process.data(example.data,groups=c("sex","age","region"),initial.ages=c(0,1,2))

> example.ddl=make.design.data(example.processed)

> mark(example.processed,example.ddl,model.parameters=list(Phi=list(formula=~1,link="sin")),output=F)

For the ∼timemodel there is also one β for each real parameter but if we specify the model with the
sin link, we get an error message:

> mark(example.processed,example.ddl,

model.parameters=list(Phi=list(formula=~time,link="sin")),output=F)

Error in make.mark.model(data.proc, title = title, covariates = covariates, :

Cannot use sin link with non-identity design matrix

The error occurs because∼time creates a design matrix with an intercept and a β for each time beyond
the first time, so it is additive which is not allowed. However, we can specify a design matrix without an
intercept using ∼-1 + time as shown below, or ∼-1+sex:

> mark(example.processed,example.ddl,model.parameters=list(Phi=list(formula=~-1+time,link="sin")),output=F)

> mark(example.processed,example.ddl,model.parameters=list(Phi=list(formula=~-1+sex,link="sin")),output=F)

Likewise, we can use the sin link with full interaction models as long as the intercept is removed.

> mark(example.processed,example.ddl,model.parameters=

list(Phi=list(formula=~-1+region:time,link="sin")),output=F)

But again you cannot have any additive terms even in the case of adding 2 two-way interactions:

> mark(example.processed,example.ddl,model.parameters=

list(Phi=list(formula=~-1+region:time+sex:time,link="sin")),output=F)

Error in make.mark.model(data.proc, title = title, covariates = covariates, :

Cannot use sin link with non-identity design matrix

But the 3-way interaction model can use the sin link:

> mark(example.processed,example.ddl,model.parameters=

list(Phi=list(formula=~-1+sex:region:time,link="sin")),output=F)

C.11. Fixing real parameter values

Parameter confounding presented a situation in which it was useful to fix specific real parameter values
and in C.10 we showed how that could be done with the fixed argument of the parameter specification
list. However, there are other instances in which real parameter values need to be fixed and there
are several ways in which fixed parameters can be specified with RMark. In addition to parameter
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confounding, real parameters are typically fixed in circumstances in which there are no data to estimate
the parameter (i.e., a structural zero). For example, imagine a scenario where you conducted a “CJS”
study in which new animals were only released every other year. In those years with no releases there
cannot be any recaptures from that cohort to estimate the parameters. For the limiting case in which
only one cohort is released and then followed through time, see discussion about pim.type at the end
of this section. Another example would be a Multistrata model in which the strata are defined such that
some transitions are not possible, so they would be fixed to 0.

There are 2 generalapproaches to specification offixedparameters.The firstapproachwas introduced
in C.10 using the fixed argument which identifies specific parameters by their indices and specifies their
fixed values. The second approach is to delete the rows from the design data for the parameters that are
to be fixed at a single default value for each type of parameter (e.g.,ϕ or p). If you need to fix parameters
of the same type to different values (e.g., some p � 0 and others p � 1), you need to use the first approach.
The second approach is most useful when all the parameters are being fixed to the same value because
of missing data (i.e., structural zero). We will use the dipper data to illustrate how to fix real parameters
using these different approaches.

There are 4 different forms for the fixed argument. The first sets all of the parameters of a particular
type to the same value. For example, the following poor and non-realistic model would set all of the ϕ
values to 1 for the dipper data.

> dipper.processed=process.data(dipper,groups=("sex"),begin.time=1980)

> dipper.ddl=make.design.data(dipper.processed)

> dipper.ddl$p

> Phidot=list(formula=~1)

> Phi.1=list(formula=~1,fixed=1)

> mark(dipper.processed,dipper.ddl,model.parameters=list(Phi=Phi.1))

Output summary for CJS model

Name : Phi(~1)p(~1)

Npar : 1

-2lnL: 981.2354

AICc : 983.2449

Beta

estimate se lcl ucl

Phi:(Intercept) 0.000000 0.0000000 0.000000 0.0000000

p:(Intercept) -1.018446 0.0777791 -1.170893 -0.8659991

Real Parameter Phi

Group:sexFemale

1980 1981 1982 1983 1984 1985

1980 1 1 1 1 1 1

1981 1 1 1 1 1

1982 1 1 1 1

1983 1 1 1

1984 1 1

1985 1

Group:sexMale

1980 1981 1982 1983 1984 1985
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1980 1 1 1 1 1 1

1981 1 1 1 1 1

1982 1 1 1 1

1983 1 1 1

1984 1 1

1985 1

Fixing all of the parameters to one value is most useful to simplify the model structure. For example,
setting the fidelity parameter (F) in the Burnham model for the case in which the recovery and recapture
areas are the same or setting the resight probability (R and RPrime) in the Barker model to zero to get
the Burnham model.

The other forms of the fixed argument involve specifying a set of times, cohorts, ages, groups or
generic indices and a set of one or more values. The first 4 are simply short-cuts for the most general
approach of specifying indices. Let’s start with a generalization of the approach given in C.10 in which
we want to fix p � 0 in 1982 and 1984 (presumably because of no sampling):

> p.time.fixed=list(formula=~time,fixed=list(time=c(1982,1984),value=0))

> mark(dipper.processed,dipper.ddl,model.parameters=list(p=p.time.fixed))

Real Parameter p

Group:sexFemale

1981 1982 1983 1984 1985 1986

1980 0.9343357 0 0.5387934 0 0.8816249 0.9999979

1981 0 0.5387934 0 0.8816249 0.9999979

1982 0.5387934 0 0.8816249 0.9999979

1983 0 0.8816249 0.9999979

1984 0.8816249 0.9999979

1985 0.9999979

Group:sexMale

1981 1982 1983 1984 1985 1986

1980 0.9343357 0 0.5387934 0 0.8816249 0.9999979

1981 0 0.5387934 0 0.8816249 0.9999979

1982 0.5387934 0 0.8816249 0.9999979

1983 0 0.8816249 0.9999979

1984 0.8816249 0.9999979

1985 0.9999979

The same approach will work if you specify certain age, cohort or group values. The use of group is
restricted to the group numbers and not the factor variables defining the groups.

Now you would think that the following would work to constrain p for 1982 to 0 and p for 1986 to
1, but it does not (although the programming could be changed) because it expects to have as many
values as there are parameters associated with times 1982 and 1986.

> p.time.fixed=list(formula=~time,fixed=list(time=c(1982,1986),value=c(0,1)))

> mark(dipper.processed,dipper.ddl,model.parameters=list(p=p.time.fixed))

Lengths of indices and values do not match for fixed parameters for p

Error in make.mark.model(data.proc, title = title, covariates = covariates,
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That brings us to the final approach which is to specify the parameter indices and the values for those
parameters. The indices are the row numbers of the design data for the parameter. For example, in the
first 10 rows of the p design data, the indices for 1982 are 2 and 7:

dipper.ddl$p[1:10,]

group cohort age time Cohort Age Time sex

1 Female 1980 1 1981 0 1 0 Female

2 Female 1980 2 1982 0 2 1 Female

3 Female 1980 3 1983 0 3 2 Female

4 Female 1980 4 1984 0 4 3 Female

5 Female 1980 5 1985 0 5 4 Female

6 Female 1980 6 1986 0 6 5 Female

7 Female 1981 1 1982 1 1 1 Female

8 Female 1981 2 1983 1 2 2 Female

9 Female 1981 3 1984 1 3 3 Female

10 Female 1981 4 1985 1 4 4 Female

Now you certainly don’t want to look them up and type them in because you will almost certainly
make a mistake and it would disable automatic updating of the model if the group structure changed or
another occasion was added. The solution is to use a little R code to define the set of indices as follows:

> p1982.indices=as.numeric(row.names(dipper.ddl$p[dipper.ddl$p$time==1982,]))

> p1982.indices

[1] 2 7 23 28

> p1986.indices=as.numeric(row.names(dipper.ddl$p[dipper.ddl$p$time==1986,]))

> p1986.indices

[1] 6 11 15 18 20 21 27 32 36 39 41 42

The above code selects the indices which have a time of 1982 and stores it into p1982.indices and
likewise for 1986. That code will work even if the group or data structure changes as long as the
begin.time doesn’t change but even that part of the code could be automated. Now you don’t want to
count how many values need to be set to 0 and 1, so again we use some R code to do the work:

> p1982.values=rep(0,length(p1982.indices))

> p1986.values=rep(1,length(p1986.indices))

> p1982.values

[1] 0 0 0 0

> p1986.values

[1] 1 1 1 1 1 1 1 1 1 1 1 1

Finally, you can put it all together as follows:

> p.time.fixed=list(formula=~time,fixed=list(index=c(p1982.indices,p1986.indices),

value=c(p1982.values,p1986.values)))

> mark(dipper.processed,dipper.ddl,model.parameters=list(p=p.time.fixed))

Real Parameter p

Group:sexFemale

1981 1982 1983 1984 1985 1986

1980 0.9720207 0 0.8387273 0.8880947 0.938504 1

Appendix C. RMark - an alternative approach to building linear models in MARK



C.11. Fixing real parameter values C - 44

1981 0 0.8387273 0.8880947 0.938504 1

1982 0.8387273 0.8880947 0.938504 1

1983 0.8880947 0.938504 1

1984 0.938504 1

1985 1

Group:sexMale

1981 1982 1983 1984 1985 1986

1980 0.9720207 0 0.8387273 0.8880947 0.938504 1

1981 0 0.8387273 0.8880947 0.938504 1

1982 0.8387273 0.8880947 0.938504 1

1983 0.8880947 0.938504 1

1984 0.938504 1

1985 1

It may help to examine the value for fixed, which we can see is a list with the 2 sets of indices
($index) pasted (concatenated) together and a set of values ($value), which contain 4 zeros for the 1982
parameters and 12 ones for the 1986 parameters.

> list(index=c(p1982.indices,p1986.indices),value=c(p1982.values,p1986.values))

$index

[1] 2 7 23 28 6 11 15 18 20 21 27 32 36 39 41 42

$value

[1] 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

The above approach is completely general and you can use the same pattern and simply change the
subset of parameters that are selected. Without showing the results, the following snippet of code could
be used to set p in 1982 for females to 0 but for males it sets p in 1984 to 0:

> p1982.f=as.numeric(row.names(dipper.ddl$p[dipper.ddl$p$time==1982&

dipper.ddl$p$sex=="Female",]))

> p1984.m=as.numeric(row.names(dipper.ddl$p[dipper.ddl$p$time==1984&

dipper.ddl$p$sex=="Male",]))

> p.time.fixed=list(formula=~time,fixed=list(index=c(p1982.f,p1984.m),value=0))

> mark(dipper.processed,dipper.ddl,model.parameters=list(p=p.time.fixed))

Now if the parameters need to be fixed to model structural zeros in the data, then deleting the design
data for the parameters representing the missing data is typically the easiest approach. To demonstrate
with an example, below we stripped the 1982 cohort from the dipper data and saved it in xdipper.
After processing the data and making the design data, we deleted the ϕ and p design data for 1982
by copying all design data other than the data for the 1982 cohort. When the model is run, the default
summary shows blanks for parameters with deleted design data. When the model is summarized with
the argument show.fixed=TRUE, then the default parameter values of p � 0 and ϕ � 1 are shown for
the 1982 cohort.

> xdipper=dipper[!substr(dipper$ch,1,3)=="001",]

> xdipper.processed=process.data(xdipper,groups=("sex"),begin.time=1980)

> xdipper.ddl=make.design.data(xdipper.processed)
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> xdipper.ddl$p=xdipper.ddl$p[xdipper.ddl$p$cohort!=1982,]

> xdipper.ddl$Phi=xdipper.ddl$Phi[xdipper.ddl$Phi$cohort!=1982,]

> xdipper.model=mark(xdipper.processed,xdipper.ddl)

> summary(xdipper.model,show.fixed=TRUE)

Real Parameter Phi

Group:sexFemale

1980 1981 1982 1983 1984 1985

1980 0.5886486 0.5886486 0.5886486 0.5886486 0.5886486 0.5886486

1981 0.5886486 0.5886486 0.5886486 0.5886486 0.5886486

1982 1.0000000 1.0000000 1.0000000 1.0000000

1983 0.5886486 0.5886486 0.5886486

1984 0.5886486 0.5886486

1985 0.5886486

Group:sexMale

1980 1981 1982 1983 1984 1985

1980 0.5886486 0.5886486 0.5886486 0.5886486 0.5886486 0.5886486

1981 0.5886486 0.5886486 0.5886486 0.5886486 0.5886486

1982 1.0000000 1.0000000 1.0000000 1.0000000

1983 0.5886486 0.5886486 0.5886486

1984 0.5886486 0.5886486

1985 0.5886486

Real Parameter p

Group:sexFemale

1981 1982 1983 1984 1985 1986

1980 0.8919246 0.8919246 0.8919246 0.8919246 0.8919246 0.8919246

1981 0.8919246 0.8919246 0.8919246 0.8919246 0.8919246

1982 0.0000000 0.0000000 0.0000000 0.0000000

1983 0.8919246 0.8919246 0.8919246

1984 0.8919246 0.8919246

1985 0.8919246

Group:sexMale

1981 1982 1983 1984 1985 1986

1980 0.8919246 0.8919246 0.8919246 0.8919246 0.8919246 0.8919246

1981 0.8919246 0.8919246 0.8919246 0.8919246 0.8919246

1982 0.0000000 0.0000000 0.0000000 0.0000000

1983 0.8919246 0.8919246 0.8919246

1984 0.8919246 0.8919246

1985 0.8919246

Because structural zeros can be a common occurrence with missing cohorts, a function argument
remove.unusedwas added to make.design.data. If it is set to TRUE, then the design data is automatically
deleted for any cohorts without any releases. Thus, the example above can be run with the following
commands:
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> xdipper.ddl=make.design.data(xdipper.processed,remove.unused=TRUE)

> xdipper.model=mark(xdipper.processed,xdipper.ddl)

> summary(xdipper.model,show.fixed=TRUE)

Some of the parameters have a natural default value (Table C.1) that is assigned if the design data
are deleted but on occasion you may want to change the default value or assign a default value to a
parameter that has no assigned default value. That is accomplished by setting the argument default in
the parameter specification list. In the following rather silly example, the defaults for the above analysis
are set to p � 0.9 and ϕ � 0.5:

> xdipper.model=mark(xdipper.processed,xdipper.ddl,

model.parameters=list(p=list(default=.9),Phi=list(default=.5)))

> summary(xdipper.model,show.fixed=TRUE)

In some cases,you can handle the structuralzeros by using a PIM type other than the default “alldiffer-
ent”. It can be useful to use pim.type="time" or pim.type="constant" in the call to make.design.data.
If you choose one of these simpler PIM structures, you cannot use formula for that parameter that is
more complex than the structure allows. A constant PIM can be useful to simplify a model by fixing a
real parameter at a value (F � 1 for Burnham model) or only allowing models with a single parameter
to be estimated. A time PIM can be used in a similar situation for triangular PIMS which can be useful
with the CJS model for a single release cohort. Using pim.type="time" eliminates the need for deleting
the unneeded design data and the summary printout of real parameters is limited to a single line. We
demonstrate with the dipper data which is restricted to the data from the first release cohort:

> data(dipper)

> dipper=dipper[substr(dipper$ch,1,1)=="1",]

> mark(dipper,design.parameters=list(p=list(pim.type="time"),

Phi=list(pim.type="time")))

Real Parameter Phi

1 2 3 4 5 6

1 0.6043321 0.6043321 0.6043321 0.6043321 0.6043321 0.6043321

Real Parameter p

2 3 4 5 6 7

1 0.8207724 0.8207724 0.8207724 0.8207724 0.8207724 0.8207724

Had we not used pim.type="time", then summary would have shown the entire triangular PIM even
if the design data were deleted.

C.12. Data Structure and Import for RMark

So far we have only used the dipper data that accompanies RMark and have not discussed data
requirements. There are numerous other example datasets to demonstrate other models in RMark

(e.g., BlackDuck, mallard, mstrata and many others). However, to use RMark for your own data you
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need to understand the requirements for the data structure and how to input data. Data for RMark must
exist in an R dataframe with some formatting and naming conventions. There are numerous ways to
create dataframes in R but we will describe two functions in RMark to help in creating the necessary
dataframe.

The format for data input with RMark is different than with MARK, but a function convert.inp
was written to convert an .inp file used for MARK to a dataframe for RMark. The conversion is
necessary because the data format and structures for MARK and RMark have a fundamental difference
in handling groups, as illustrated below. The formats are similar in that each record (row) contains a
capture history which can represent one or more animals as specified by the count (freq) and any
number of covariates can be tacked on at the end of the record. However, with MARK, group structure
is accommodated by having a count (freq) for each group but the data do not contain any information
about what was used to construct the groups. The group structure is only represented by group labels.
In comparison with RMark, each record only represents animals from a single group and the record
can contain columns for factor variables that are used to define the group structure.

First we will start with a simple example to show how easy it is to convert an .inp file and then we’ll
work into more complicated examples. The \Examples subdirectory of MARK contains a file pradel.inp
which can be converted to a dataframe for RMark and we can look at the first 5 rows with the following
commands:

> pradel=convert.inp("C:/Program Files/MARK/Examples/pradel.inp")

pradel[1:5,]

ch freq

1 0000000000001 47

2 0000000000010 36

3 0000000000011 12

4 0000000000100 30

5 0000000000101 8

The first argument value “C:/Program Files/MARK/Examples/pradel.inp” is the name of the MARK

.inp file which is shown here with the full path and file specification. Make sure to use a single
forward slash or two backslashes to separate sub-directories (note: forward slash? backward slash? The
differences reflect the convention used in R to accommodate different directory naming conventions
between Windows on the one hand, and almost everything else on the other). The extension is assumed
to be .inp but if it is something different, you can specify the extension with the filename (e.g.,
“pradel.txt”).

If there is no group structure or covariates as in the above example then the conversion is quite easy,
but it does not get much more complicated. Now let’s consider the MARK example Pass3MStrata5.inp
which has 2 covariates weight and length and also uses comments to identify each row uniquely. First
we will show what happens if you get it wrong:

> p3m5=convert.inp("C:/Program Files/MARK/Examples/Pass3MStrata5.inp")

Error in convert.inp("C:/Program Files/MARK/Examples/Pass3MStrata5.inp") :

Number of columns in data file does not match group/covariate specification

We forgot to specify the 2 covariates that were in the file, so let’s try it again:

> p3m5=convert.inp("C:/Program Files/MARK/Examples/Pass3MStrata5.inp",

covariates=c("weight","length"))
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> p3m5[1:5,]

ch freq weight length

1 U00000000000 1 1295 548

2 00000000000U 1 2653 671

3 000000D0D000 1 1324 528

4 0000000000W0 1 1415 570

5 0000D0000000 1 982 500

You can see that it ignored the comments contained on each row of the file. If they are unique and
we wanted to use them to label the data, we would change it to:

> p3m5=convert.inp("C:/Program Files/MARK/Examples/Pass3MStrata5.inp",

covariates=c("weight","length"),use.comments=TRUE)

> p3m5[1:5,]

ch freq weight length

1F1-16C-1054 Upper Green U00000000000 1 1295 548

1F1-567-2B3A Upper Green 00000000000U 1 2653 671

1F1-70D-3E7F Desolation 000000D0D000 1 1324 528

1F1-770-5307 White 0000000000W0 1 1415 570

1F1-940-3256 Desolation 0000D0000000 1 982 500

Hadthe comments notprovidedunique labels then the conversion wouldhave failedand theuse.comments
argument would have to be deleted.

Now let’s consider how to convert an .inp file that contains a group structure. We will use the MARK

example file huggins.inpwhich has 2 groups. The example doesn’t label those groups but we’ll assume
that the first group was for females and the second for males. To convert the file, we need to specify a
value for the argument group.dfwhich is a dataframe that specifies the covariates that will be assigned
to each group in the RMark dataframe. The rows of group.df must correspond to the columns of the
frequency field in the .inp file. In this simple example, there are 2 columns so there will be 2 rows in
our dataframe which will be specified as group.df=data.frame(sex=c("Female","Male")).

Let’s dissect that command. First c("Female","Male") creates a vector by pasting (concatenating)
the strings ‘‘Female’’ and ‘‘Male’’. Then the vector is assigned to “sex” which will be the name in
the R dataframe for that group factor value. So the commands to convert and look at the first and last
few records are:

> huggins=convert.inp("C:/Program Files/MARK/Examples/huggins.inp",

group.df=data.frame(sex=c("Female","Male")))

> head(huggins)

ch freq sex

1:1 0101010 1 Female

1:2 0011000 1 Female

1:3 1001100 1 Female

1:4 1100101 1 Female

1:5 0101010 1 Female

1:6 1011011 1 Female

> tail(huggins)

ch freq sex
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2:389 0001111 1 Male

2:390 0010000 1 Male

2:391 1000101 1 Male

2:392 0100000 1 Male

2:393 1010100 1 Male

2:394 1001010 1 Male

Now let’s move onto a more complicated group structure. Below is a table showing the first 4 records
from the swift dataset (multi_group.inp file) that is described in chapter 6. Groups represent 2 levels
of sex (female/male) and 2 levels (good/poor) of colony and because there are 4 groups, there are an
equivalent number of frequency fields for each capture history. For example there are 145 Females in
‘poor’ colonies with the capture history 0010 and 171 Males in ‘good’ colonies with the same capture
history. Here are the first 4 records in the file:

history female, good female, poor male, good male, poor

0010 150 145 171 167;
0011 200 205 179 183;
0100 213 198 131 77;
0101 14 26 32 50;

As shown below, the same 4 records expand to 16 records in the RMark format because each record
corresponds to a single animal or group of animals. If one or more of the frequencies is zero the record
is not needed. While the MARK format can be more compact it is less flexible in modifying the group
structure. The RMark data formatcan be created from the MARK formatwith the functionconvert.inp.
The function call for this example would be:

multigroup=convert.inp("multi_group",

group.df=data.frame(sex=c(rep("Female",2),rep("Male",2)),

Colony=rep(c("Good","Poor"),2)))

Here is the format of the RMark dataframe for same multi_group.inp data file.

history frequency sex colony

0010 150 female good

0011 200 female good

0100 213 female good

0101 14 female good

0010 145 female poor

0011 205 female poor

0100 198 female poor

0101 26 female poor

0010 171 male good

0011 179 male good

0100 131 male good

0101 32 male good

0010 167 male poor

0011 183 male poor

0100 77 male poor

0101 50 male poor
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The function argument group.df specifies the factor variables that will be used to define the 4 groups
in the .inp file. It is a dataframe and it must contain a record for each group in the left to right order
they are given in the .inp file. In this file the first 2 groups are for females and the last 2 are for males
and the colony type alternates (good, poor, good, poor). Let’s dissect the value assigned to group.df:

data.frame(sex=c(rep("Female",2),rep("Male",2)),colony=rep(c("Good","Poor"),2))

The call to function data.frame creates an R dataframe with 2 columns named sex and colony. The
names can be any valid name and the order in the dataframe is not relevant. Had there been more fields
they could have been added by assigning more columns in the dataframe. What does matter is that the
columns are all of the same length and for this particular dataframe the order of the rows must match
the order of the columns in the MARK .inp file.

sex=c(rep("Female",2),rep("Male ",2))

creates a vector of length 4 that is “Female", “Female", "Male", "Male". The function rep() creates a vector
by repeating the first argument value ("Female” or “Male") the number of times specified as the second
argument value (2 in this case). The function c() concatenates (pastes) together its arguments in the
order they are specified. So it sticks together the 2 vectors each with 2 elements into a single vector of
length 4.

The code

colony=rep(c("Good","Poor"),2)

repeats the vectorc("Good","Poor") twice to yield a vector with 4 elements “Good","Poor","Good", “Poor”
which is the order we want.

The resulting group.df looks as follows:

sex Colony

1 Female Good

2 Female Poor

3 Male Good

4 Male Poor

Notice that the values are not shown in quote marks as they were specified. When columns in a
dataframe are specified with character strings they are coerced into factor variables by default and that
is what we want in this case. What is stored in the dataframe is actually an index to a factor level
(numerically 1 or 2 in this case) and what is shown is the label for the factor. This is apparent if we ask
for a summary of the fields (columns) or look at just a single column:

> summary(group.df)

sex Colony

Female:2 Good:2

Male :2 Poor:2

> group.df$sex

[1] Female Female Male Male Levels: Female Male.
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By default, levels of a factor variable are assigned in alphabetical order.

These variables are then assigned to the matching capture history and frequency to create a record
in the resulting RMark dataframe which has been named multigroup in this example. The resulting
dataframe multigroupwould look like the representation of the table above if it were sorted by sex and
colony for the first four records.

If the MARK .inp file also contains individual covariates, the names of these are specified in the
covariates argument of convert.inp. For example, the call to convert.inp for the example file indcov1
from chapter 11 is:

indcov1=convert.inp("indcov1",covariates=c("cov1","cov2"))

The call specifies that the two covariates should be named cov1 and cov2 in the RMark dataframe.
In this example, there was only a single group, so group.df was not specified.

The final argument for convert.inp is use.comments which can be either TRUE or FALSE (default).
Comments in MARK .inp files are given as values between /* and */ and these are ignored in the
conversion if they span several lines or the whole line is a comment. However, in some cases the comment
is used to specify a label for each capture history (e.g., a tag number for the animal) and it may be useful
to retain its value in the RMark dataframe. If the values of the comments are unique, you can specify
use.comments=TRUE and it will use the value for the row name of the dataframe. This is shown using
the blckduck.inp file that accompanies MARK:

> bd=convert.inp("blckduck",covariates=c("age","weight","winglen","ci"),

use.comments=TRUE)

The first 5 records of the resulting dataframe show the row names as 01, 04, · · · , 07 as follows:

> bd[1:5,]

ch freq age weight winglen ci

01 1100000000000000 1 1 1.16 27.7 4.19

04 1011000000000000 1 0 1.16 26.4 4.39

05 1011000000000000 1 1 1.08 26.7 4.04

06 1010000000000000 1 0 1.12 26.2 4.27

07 1010000000000000 1 1 1.14 27.7 4.11

If you do not have an existing MARK .inp file, an RMark dataframe can be constructed from a space
or tab-delimited text file using the function import.chdata. The function specification is:

> import.chdata(filename, header = TRUE, field.names = NULL, field.types = NULL)

The argument filename specifies the path (if not in directory with workspace) and name (with
extension) of a text file. The first field in the file should be the capture history string. It cannot contain
any spaces or other delimiting characters and it must be named “ch". All other fields can be in any order.
The group frequency is not needed if each record specifies the data for a single animal. If frequency is
in the file, it should be named "freq". The first record in the file can be the names of the fields. If the
fields are named, the first field must be named ch (for capture history) and if frequency is specified it
must be named freq. All other field names for individual covariates can be given any valid name. If the
first line contains the field names then the argument header should be specified as the default of TRUE.
If the first line in the file does not contain the field names, then they should be specified as a vector
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of strings with the argument field.names. Fields other than “ch” should be given a specified field type
unless all fields should be treated as factor variables. The possible field types are “f","n” and “s” for
factor, numeric and the last specifies that the field should be skipped and not imported.

The following are function calls to import the text files for 3 of the examples accompanying RMark.
The files can be found in Rdata.zip in C:\Program Files\R\R-v.vv\library\RMark\data where v.vv is
the R version number.

> example.data<-import.chdata("example.data.txt",field.types=c("n","f","f","f"))}

> edwards.eberhardt<-import.chdata("EdwardsandEberhardt.txt",field.names="ch",

header=FALSE)

> dipper<-import.chdata("dipper.txt",field.names=c("ch","sex"),header=FALSE)

The first imports example.data with 4 fields beyond the capture history. The first field is numeric
(weight) and the last 3 are factor variables (age,sex,region) that are used as grouping variables. The first
6 lines of the file are as follows:

ch weight age sex region

1011101 8.3095857 1 M 1

1110000 11.1449917 1 M 2

1000000 4.0252345 1 M 3

1000000 8.6503865 1 M 4

1010000 9.4225103 1 M 1

The field names are on the first line of the data file so they are not specified with the field.names
argument. The next function call is for the Edwards-Eberhardt rabbit data and it has a single field
(the capture history) which is not named on the first line, so it is specified with field.names="ch" and
header=FALSE. The last example imports the familiar dipper data which has 2 fields (capture history
and sex) which are specified with the field.names=c("ch","sex") and since sex is a factor variable,
the field.types argument need not be specified, but header=FALSE is included because the first line
does not include field labels.

The above data format and input functions work for most of the models supported by RMark with
one exception. They do not work with the nest survival model which does not have an encounter history
field (ch) and requires a much different data format. See the mallard and killdeer datasets for examples
of data entry for the nest survival model. For models with an encounter history, the format for ch
depends on the type of model. For a description of the relevant format see the example(s) provided
for each model supported by RMark or the model structure description in MARK. When the data are
processed with the process.data function, it checks to make sure that ch only contains values that are
valid for the chosen analysis model. For example, for CJS models, each digit in ch can be either a “0”,
“1” or “.” where “.” implies a missing value. In contrast, ch for Multistrata models can contain either
“0” or an alphabetic character which represents the stratum in which it was observed.

C.13. A more organized approach

So far we have introduced RMark by typing various commands into R and storing the model results in
the workspace and then aggregating them into a list. This is a reasonable way to introduce the material
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but it is not the way we recommend that you conduct your analyses. In this section we will suggest an
alternative approach that uses scripts with functions. We recommend this approach for the following
reasons:

1. the R statements can be stored in a separate text script that canbe easily documented

2. the analysis can be easily repeated with the script

3. functions provide an easy way to create a set of models quickly and avoid acciden-
tally aggregating models from different data sets or model types. We will use the
swift data set (aa.inp) from Chapter 4 as the example.

begin sidebar

Using R functions to ease the workload

R statements can be typed into a text script file and “sourced” into R with the “File | Source R code” menu

selection. R expects the script file to have an extension of .R so it is easiest to use it. You can enter and edit

the script file with any text editor but you may find it more convenient to work with an editor like TINN-R

(https://sourceforge.net/projects/tinn-r) which was designed to work with R. Such an editor has several

advantages including built-in help with R, syntax checking and highlighting which helps identify mismatched

braces, brackets and parentheses, and automatic sending of scripts or parts of scripts to R for execution.

Scripts can contain any valid R statements and function calls. So you could simply enter a sequence of statements

like we demonstrated in the previous sections. However, we recommend creating a function to define and run the

models and then the script contains the definition of the function and the statements to import data and run

the function. We recommend using functions because of some of the limitations of collect.models and to take

advantage of the function mark.wrapper that we have not introduced yet. But first we will give a brief description

of functions in R.

An R function is a set of R statements that can accept arguments and can return a single value. The RMark

package is simply a collection of R functions with associated help files. All of the built-in R functions are in packages

but functions can live outside of packages so you can create functions and store them in scripts or in workspaces.

So what is the difference between scripts and functions? A script is a collection of R statements that can be sourced

in and they are interpreted in the context of the workspace (.Rdata) as if you were typing them at the keyboard. A

function is subtly different because when a function is executed it effectively creates its own local workspace (called

a frame in R-speak) which contains variables and objects that are defined within the function. The function can use

the values of its arguments, the objects it creates and the function can reference any objects from the frame in which

it was defined. We will create a simple function that demonstrates this using the ls(). A function is composed of a

name, an argument list and the body of the function contained in a set of braces ({}). Below we define a very simple

function which we call myls which has no arguments (no values listed between the parentheses) and the body of

the function is a single statement which calls ls():

myls=function() { ls() }

To illustrate the concept of frames we will call ls() and then myls()which calls ls()within the function.

[1] "aa" "aa.models" "aa.results"

[4] "df" "dipper" "dipper.cjs.results"

[7] "dipper.ddl" "dipper.mod.avg" "dipper.mod.avg.adj"

[10] "dipper.Phi.mod.avg" "dipper.process" "model.table"

[13] "myls" "p.dot" "p.effort.plus.sex"

[16] "p.Flood" "p.time" "p.Time"

[19] "p.time.fixed" "p.Timeplussex" "Phi.ageclass.plus.sex"

[22] "Phi.dot" "Phi.Flood" "Phi.sex"

[25] "Phi.sex.plus.age" "Phi.sexplusage" "Phi.time"

[28] "summary.mark"

> myls()

character(0)

The call to ls() shows the contents of the workspace but the call to ls()within myls() contains no objects because

there have been no objects defined within the function. For further illustration we will give myls() an argument,

define an object and print out some results to show how objects are referenced within functions.
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myls=function(x) {

cat(paste("p.dot = ",p.dot,"\n"))

y=x+1

p.dot=y

cat("p.dot = ",p.dot,"\n") ls()

}

> p.dot

$formula ~1

> myls(1)

p.dot = ~1

p.dot = 2

[1] "p.dot" "x" "y"

> p.dot

$formula ~1

The function was designed to show that p.dot from the workspace which we defined earlier could be referenced

from within the function but once a value was assigned to p.dot within the function it became an object with its

own definition within the function that was independent and did not change the p.dot in the workspace. The call

to ls()within the function shows that there are 3 objects within the local function “workspace” named x (the value

of the calling argument) and y and p.dot defined in the function. Functions return the value of the object in the

last line of the body of the function (e.g., result of ls() in this case) or more specifically a return() statement can

be used and multiple values can be returned via a list(). Functions can modify objects in the workspace with the

use of the <<− assignment operator but it is not a recommended programming practice.

Because ls() only operates on objects defined within the function – functions like collect.models() and

mark.wrapper() can be limited to that range of objects for selection. The function collect.models() is not

particularly clever and it is possible for it to unknowingly aggregate analyses from different data sets if they have

the same name. It does recognize when it is aggregating models of different type (e.g., CJS and POPAN) and will issue

a warning. It will also issue a warning if the name of the processed data varies between models being collected but

if the data are different but use the same object name it does not discriminate. However, if the models are collected

within a function it will only collect those defined within the function preventing any unforeseen problems. Also,

mark.wrapperworks well within functions to define the set of models to run and we will demonstrate it here with

the analysis of the swift data set from chapter 4.

end sidebar

We will use the swift dataset (Chapter 4) to demonstrate the use of scripts with functions. In the swift
example, ϕ is thought to vary by colony, by time, or by colony and time (colony*time) because one
colony has been classified as poor and the other as good. Capture probability p is thought to be either
constant or vary by time. All of the pairings are considered for a total of 6 models to evaluate. Such a
scheme is exactly how mark.wrapper was designed to operate. A set of specifications is given for each
parameter and all possible combinations of the specifications of the parameters in the model (e.g.,ϕ and
p for CJS) are created for analysis. A function create.model.list identifies the model specifications by
collecting any object named with a parameter name from the particular model followed by a period and
any text description can follow the period. This is why we chose to name parameter specifications like
Phi.time and p.dot as we did. Because it will collect any such objects it is best to use create.model.list
within a function such that it will only collect those defined within the function.

Below we define the script that we created to analyze the swift data. The script imports the data,
creates and runs the models, adjusts for over-dispersion and model averages the parameters. We have
used comments identified by text following a # sign to document our analysis. We recommend liberal
use of comments to help you understand what you were doing and thinking at the time that you created
an analysis.

# Swift.R

#
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# CJS analysis of the swift data from Chapter 4 of Cooch and White

#

# Import data (aa.inp) and convert it from the MARK inp file format to the \textbf{RMark}

# format using the function convert.inp It is defined with 2 groups:

# Poor and Good to describe the quality of the colony. This structure is defined

# with the group.df argument of convert.inp. It expects that the file aa.inp is

# in the same directory as the current workspace.

#

aa=convert.inp("aa",group.df=data.frame(colony=c("Poor","Good")))

#

# Next create the processed dataframe and the design data. We’ll use a group

# variable for colony so it can be used in the set of models for Phi. Factor

# variables (covariates with a small finite set of values) are best handled by using

# them to define groups in the data.

#

aa.process=process.data(aa,model="CJS",groups="colony")

aa.ddl=make.design.data(aa.process)

#

# Next create the function that defines and runs the set of models and returns

# a marklist with the results and a model.table. It does not have any arguments

# but does use the aa.process and aa.ddl objects created above in the workspace

# The function create.model.list is the function that creates a dataframe of the

# names of the parameter specifications for each parameter in that type of model.

# If none are given for any parameter, the default specification will be used for

# that parameter in mark. We used the adjust=FALSE argument because we know that

# the models time in Phi and p have extra parameters so we will accept the parameter

# counts from MARK and not adjust them. The first argument of mark.wrapper is the

# model list of parameter specifications. Remaining arguments that are passed to

# mark must be specified using the argument=value specification because the arguments

# of mark were not repeated in mark.wrapper so they must be passed using the

# argument=value syntax.

#

aa.models=function()

{

Phi.colony=list(formula=~colony)

Phi.time=list(formula=~time)

Phi.colony.time=list(formula=~time*colony)

p.dot=list(formula=~1)

p.time=list(formula=~time)

cml=create.model.list("CJS")

results=mark.wrapper(cml,data=aa.process,ddl=aa.ddl,adjust=FALSE)

return(results)

}

#

# Next run the function to create the models and store the results in

# aa.results which is a marklist.

#

aa.results=aa.models()

#

# Adjust for estimated overdispersion of chat=1.127

#

aa.results=adjust.chat(1.127,aa.results)

#
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# Compute model averaged parameters

#

aa.model.avg.p=model.average(aa.results,"p",vcv=TRUE)

aa.model.avg.Phi=model.average(aa.results,"Phi",vcv=TRUE)

The table of model results is the same as that shown in chapter 4.

> aa.results

model npar QAICc DeltaQAICc weight QDeviance chat

2 Phi(~colony)p(~time) 9 330.2689 0.000000 7.058575e-01 99.08106 1.127

1 Phi(~colony)p(~1) 3 332.1239 1.855043 2.791898e-01 113.75240 1.127

5 Phi(~time)p(~1) 8 338.1891 7.920167 1.345472e-02 109.19262 1.127

6 Phi(~time)p(~time) 13 342.8825 12.613639 1.287360e-03 102.69603 1.127

3 Phi(~time * colony)p(~1) 15 346.6140 16.345062 1.992654e-04 101.78298 1.127

4 Phi(~time * colony)p(~time) 20 352.3334 22.064458 1.141513e-05 95.44214 1.127

As well the model averaged capture probabilities shown in Chapter 4 are given below and the results
are accurate to 7 places to the right of the decimal. Note that RMark only provides the unconditional
standard error and the confidence interval based on it and does not provide the percentage due to model
uncertainty.

> aa.model.avg.p$estimates[1:2,]

par.index estimate se lcl ucl fixed group cohort age time Cohort Age Time colony

1 57 0.7502636 0.12064459 0.4698781 0.9732465 Good 1 1 2 0 1 0 Good

2 58 0.7230819 0.09321616 0.5118358 0.8667183 Good 1 2 3 0 2 1 Good

begin sidebar

Automating annual survey analyses

The swift example with the models we defined above is not a particularly involved analysis and it does not require

much additional work with the standard MARK interface because each of the models we used are within the

pre-defined set of models. However, even in this case, the RMark interface does have an advantage if the data set

is routinely updated with an additional year of data. If you add a year of data with the standard MARK interface,

you have to start from scratch to re-create the MARK project and the defined set of models; whereas, with the

RMark interface it would only require re-running the script after changing the data. In some cases, it may be

necessary to modify the script but in most cases even that will not be necessary because the PIM and design data

structure are recreated automatically with the new data structure that adds another occasion. R has numerous

ways of importing data including packages that provide direct access into EXCEL and ACCESS databases. This

enables creating a script that requires no user intervention after the data are updated in the appropriate database.

The ability to run R in batch mode with scripts opens the door to developing an interactive user interface that

would run RMark with R and automate the script development. Such a system is currently being used with an R

package for distance sampling analysis.

end sidebar

C.14. Defining groups with more than one variable

So far the examples we have shown did not really expand on the pre-defined models in the MARK

interface except for the use of age and cohort. The pre-defined models in MARK include group (g)
as one of the factors but what happens when groups are composed of two or more factor variables?
Consider the multi_group.inp example described in Chapter 6 which has 6 sampling occasions and
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groups defined by colony and sex. If you include g in a model for these data, it will fit 4 parameters
for Poor-Female, Good-Female, Poor-Male, and Good-Male. Fitting g is equivalent to fitting ∼colony*sex
which is the full interaction model for colony and sex. Within the pre-defined models in MARK there
is no capacity to fit any of the sub-models: ∼colony, ∼sex, and ∼colony+sex and to fit those models you
need to create a design matrix which is described in chapter 6. When you jump to g*t models, fitting
sub-models becomes even more important. What if capture probability varied by time and colony and
survival varied by sex and time? Both of these are sub-models of the g*t pre-defined model and require
a design matrix.

This is where the formula notation and automatic design matrix development starts to become quite
useful. Once the group variables are defined, creating the full interaction model and the sub-models
requires no more work than any of the other models that we have developed so far.

Below is a script that provides an analysis with a variety of models:

# Multi_group.R

#

# CJS analysis of the multi_group data from Chapter 6 of Cooch and White

#

# Import data (multi_group.inp) and convert it from the MARK inp file format to the RMark

# format using the function convert.inp It is defined with 4 groups:

# Poor-Female, Good-Female, Poor-Male and Good-Male to describe the q

# quality of the colony and 2 sexes. This structure is defined

# with the group.df argument of convert.inp which has 4 rows and 2 fields sex and colony

#

multigroup=convert.inp("multi_group",

group.df=data.frame(sex=c(rep("Female",2),rep("Male",2)),colony=rep(c("Good","Poor"),2)))

#

# Next create the processed dataframe and the design data. We’ll use a group

# variable for colony so it can be used in the set of models for Phi. Factor

# variables (covariates with a small finite set of values) are best handled by using

# them to define groups in the data.

#

multigroup.process=process.data(multigroup,model="CJS",groups=c("sex","colony"))

multigroup.ddl=make.design.data(multigroup.process)

#

# Next create the function that defines and runs the set of models and returns

# a marklist with the results and a model.table.

#

multigroup.models=function()

{

Phi.colony=list(formula=~colony)

Phi.sex=list(formula=~sex)

Phi.sex.plus.colony=list(formula=~sex+colony)

Phi.sex.time.plus.colony=list(formula=~sex*time+colony)

p.time=list(formula=~time)

p.colony.plus.sex=list(formula=~colony+sex)

p.colony.time=list(formula=~time*colony)

cml=create.model.list("CJS")

results=mark.wrapper(cml,data=multigroup.process,ddl=multigroup.ddl)

return(results)

}

#
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# Next run the function to create the models and store the results in

# multigroup.results which is a marklist.

#

multigroup.results=multigroup.models()

#

# Compute model averaged parameters

#

multigroup.model.avg.p=model.average(multigroup.results,"p")

multigroup.model.avg.Phi=model.average(multigroup.results,"Phi")

The results table from the run is:

> multigroup.results

model npar AICc DeltaAICc weight Deviance

12 Phi(~sex * time + colony)p(~time) 13 15440.75 0.000000 0.95888873 100.41075

11 Phi(~sex * time + colony)p(~time * colony) 17 15447.95 7.198505 0.02622000 99.58174

10 Phi(~sex * time + colony)p(~colony + sex) 12 15449.08 8.330000 0.01489127 110.74725

9 Phi(~sex + colony)p(~time) 7 15907.94 467.182000 0.00000000 579.62086

8 Phi(~sex + colony)p(~time * colony) 11 15912.68 471.927000 0.00000000 576.34862

6 Phi(~sex)p(~time) 6 15936.95 496.191000 0.00000000 610.63318

5 Phi(~sex)p(~time * colony) 10 15938.44 497.686000 0.00000000 604.11265

3 Phi(~colony)p(~time) 6 15996.61 555.860000 0.00000000 670.30226

2 Phi(~colony)p(~time * colony) 10 16000.36 559.606000 0.00000000 666.03275

7 Phi(~sex + colony)p(~colony + sex) 6 16004.56 563.801000 0.00000000 678.24333

4 Phi(~sex)p(~colony + sex) 5 16031.57 590.818000 0.00000000 707.26243

1 Phi(~colony)p(~colony + sex) 5 16079.25 638.493000 0.00000000 754.93785

There is quite a jump in ∆AICc (DeltaAICc) from model 10 to model 9. This could be from exclusion
of *time in ϕi or may be due to lack of convergence. Because model 9 is simpler than models 10-12,
the latter is unlikely but we will use this as an opportunity to show how you can easily re-run a model
using initial values from another model. The following uses the function rerun.mark to re-run model
9 using initial values from model 12 and stores the result back into the marklist in position 9:

> multigroup.results[[9]]=rerun.mark(multigroup.results[[9]],

data=multigroup.process,ddl=multigroup.ddl,initial=multigroup.results[[12]])

A quick look at the summary output reveals the identical AICc values so the model converged to the
same values. If the value had changed, we would have had to reconstruct the model.table as shown
later. When we use model.average to obtain model-averaged real parameters we get a warning message
that model 11 was dropped because some of the beta variances were negative:

> multigroup.model.avg.p=model.average(multigroup.results,"p")

Model 11 dropped from the model averaging because one or more beta variances

are not positive

> multigroup.model.avg.Phi=model.average(multigroup.results,"Phi")

Model 11 dropped from the model averaging because one or more beta variances

are not positive

Negative variances for the β’s are symptomatic of something amiss so those models are dropped by
default primarily as a way to draw attention to the issue. Negative variances are set to zero in MARK so
they show up with an SE=0.00000 in the output and this behavior is mimicked in RMark, In this case,
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the negative variances occur because one of the parameters is at a boundary. ϕ for females at time 4 is
1 and this probably occurs because of confounding between ϕ and p for time 4. MARK reported 16 of
the 17 parameters were estimable and that beta 5 (female time 4) was singular. We can either re-run this
model and set adjust=FALSE or we can use the function adjust.parameter.count to reset the count to
16 as follows:

> multigroup.results[[11]]=adjust.parameter.count(multigroup.results[[11]],16)

Number of parameters adjusted from 17 to 16

Adjusted AICc=15445.94

Unadjusted AICc = 15445.95

Once the number of parameters has been adjusted the model of table results must be recalculated:

multigroup.results$model.table=model.table(multigroup.results)

multigroup.results

model npar AICc DeltaAICc weight Deviance

12 Phi(~sex * time + colony)p(~time) 13 15440.75 0.000000 0.91731475 100.41075

11 Phi(~sex * time + colony)p(~time * colony) 16 15445.94 5.190998 0.06843961 99.58174

10 Phi(~sex * time + colony)p(~colony + sex) 12 15449.08 8.330000 0.01424564 110.74725

9 Phi(~sex + colony)p(~time) 7 15907.94 467.182000 0.00000000 579.62086

8 Phi(~sex + colony)p(~time * colony) 11 15912.68 471.927000 0.00000000 576.34862

6 Phi(~sex)p(~time) 6 15936.95 496.191000 0.00000000 610.63318

5 Phi(~sex)p(~time * colony) 10 15938.44 497.686000 0.00000000 604.11265

3 Phi(~colony)p(~time) 6 15996.61 555.860000 0.00000000 670.30226

2 Phi(~colony)p(~time * colony) 10 16000.36 559.606000 0.00000000 666.03275

7 Phi(~sex + colony)p(~colony + sex) 6 16004.56 563.801000 0.00000000 678.24333

4 Phi(~sex)p(~colony + sex) 5 16031.57 590.818000 0.00000000 707.26243

1 Phi(~colony)p(~colony + sex) 5 16079.25 638.493000 0.00000000 754.93785

The parameters can be model averaged across all models by using drop=FALSE as follows:

> multigroup.model.avg.p=model.average(multigroup.results,"p",drop=FALSE)

Warning message:

Improper V-C matrix for beta estimates. Some variances non-positive.

in: get.real(model.list[[i]], parameter, design = model.list[[i]]$design.matrix,

> multigroup.model.avg.Phi=model.average(multigroup.results,"Phi",drop=FALSE)

Warning message:

Improper V-C matrix for beta estimates. Some variances non-positive.

in: get.real(model.list[[i]], parameter, design = model.list[[i]]$design.matrix,

A warning message is given about the negative variances and clearly it does not make sense to
consider model averaged estimates of ϕ for time 4 and p for time 5 but the remaining real parameters
are unaffected.
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C.15. More complex examples

Now we will consider some more complex examples that require more knowledge about designing
formulas in situations where the factors are not fully crossed which means that some interactions do
not exist in the data structure. We will use the example from Chapter 7 that uses age.inp. These data
were derived from a study in which only young were marked and released (CJS design) but the young
were then recaptured through time as they aged. With such a design not all ages are represented in all
years so these factors are not fully crossed. A fully crossed design would have data for each combination
of factors. In year 1 of the experiment there are only young birds that were just banded. In year 2 there
are birds that are ages 0 and 1, in year 3 there are birds of ages 0 to 2, etc. The general solution to this
type of problem is to create dummy variables (numeric 0/1 coding) and create interactions of effects
using the : operator which includes the interactions without the main effects. This a very useful tool
because it allows you to limit the range of an effect to the subset of parameters that have a value of 1
for the dummy variable. To understand this fully, look at the PIM chart in section 7.1.1 which shows an
age by time model in which age is limited to 2 classes of young (age 0) and adult (age 1+). The structure
shows time varying probabilities for young with indices 1 to 6 and time varying probabilities for adults
with indices 7 to 11. There are no adults at time 1 so there are only 5 survival probabilities for adults
and 6 for young.

The PIM chart in 8.1.1 can be created with a formula by creating a 0/1 dummy variable for each
age grouping. For example, let’s assume that we created a dummy variable called young that is 1 for
a young animal and 0 for an adult and then another variable called adult that is 1 for adult and 0 for
young. If you construct a formula with the interaction of young and time (a factor variable), it will create
a parameter for each time for young animals (indices 1 to 6) and by default it creates an intercept. To
demonstrate this we will convert the input file, process the data and create the design data we need:

> #

> # Import data from age.inp file with convert.inp

> #

> age=convert.inp("age")

> #Process data for CJS model

> age.process=process.data(age,model="CJS")

> #Make default design data

> age.ddl=make.design.data(age.process)

> #

> # Add a young/adult age field to the design data for Phi which we have named ya.

> # It uses right=FALSE so that the intervals are 0 (young) and 1 to 7 (adult).

> #

> age.ddl=add.design.data(age.process,age.ddl,"Phi","age",bins=c(0,1,7),right=FALSE,name="ya")

> #

> # Add a field to the Phi design data that is equivalent except that it is a numeric

> # dummy coding variable with value 1 for young and 0 for adult; field is named young

> #

> age.ddl$Phi$young=0

> age.ddl$Phi$young[age.ddl$Phi$age==0]=1

> #

> # Likewise add an adult 0/1 numeric field to the Phi design data

> # which is simply =1-young

> age.ddl$Phi$adult=1-age.ddl$Phi$young

Notice that we were able to create the adult field from the young field by subtraction. Now, let’s show
what model.matrix does with the formula ∼young:time to give you a more complete understanding.
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First we will look at the non-simplified PIMS for ϕ by wrapping the default mark model call within a
call to PIMS:

> PIMS(mark(age,output=F),"Phi",simplified=F)

group = Group 1

1 2 3 4 5 6

1 1 2 3 4 5 6

2 7 8 9 10 11

3 12 13 14 15

4 16 17 18

5 19 20

6 21
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That shows there are 21 possible different parameters for ϕ which will match the number of rows in
the following design matrix created by model.matrix:

> model.matrix(~young:time,age.ddl$Phi)

(Intercept) young:time1 young:time2 young:time3 young:time4 young:time5 young:time6

1 1 1 0 0 0 0 0

2 1 0 0 0 0 0 0

3 1 0 0 0 0 0 0

4 1 0 0 0 0 0 0

5 1 0 0 0 0 0 0

6 1 0 0 0 0 0 0

7 1 0 1 0 0 0 0

8 1 0 0 0 0 0 0

9 1 0 0 0 0 0 0

10 1 0 0 0 0 0 0

11 1 0 0 0 0 0 0

12 1 0 0 1 0 0 0

13 1 0 0 0 0 0 0

14 1 0 0 0 0 0 0

15 1 0 0 0 0 0 0

16 1 0 0 0 1 0 0

17 1 0 0 0 0 0 0

18 1 0 0 0 0 0 0

19 1 0 0 0 0 1 0

20 1 0 0 0 0 0 0

21 1 0 0 0 0 0 1

attr(,"assign")

[1] 0 1 1 1 1 1 1

attr(,"contrasts")

attr(,"contrasts")$time

[1] "contr.treatment"

The resulting design matrix is rather simple and with the exception of the intercept it is an identity
matrix for indices (rows) 1,7,12,16,19,21 which are the ϕ parameters for young. The intercept is the
ϕ parameter (β in link space) for adults and the time dependent probabilities for the young are the
intercept plus the appropriate column for each time. So let’s do the same with the adult field:

> model.matrix(~adult:time,age.ddl$Phi)

(Intercept) adult:time1 adult:time2 adult:time3 adult:time4 adult:time5 adult:time6

1 1 0 0 0 0 0 0

2 1 0 1 0 0 0 0

3 1 0 0 1 0 0 0

4 1 0 0 0 1 0 0

5 1 0 0 0 0 1 0

6 1 0 0 0 0 0 1

7 1 0 0 0 0 0 0

8 1 0 0 1 0 0 0

9 1 0 0 0 1 0 0

10 1 0 0 0 0 1 0

11 1 0 0 0 0 0 1

12 1 0 0 0 0 0 0

13 1 0 0 0 1 0 0

14 1 0 0 0 0 1 0
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15 1 0 0 0 0 0 1

16 1 0 0 0 0 0 0

17 1 0 0 0 0 1 0

18 1 0 0 0 0 0 1

19 1 0 0 0 0 0 0

20 1 0 0 0 0 0 1

21 1 0 0 0 0 0 0

attr(,"assign")

[1] 0 1 1 1 1 1 1

attr(,"contrasts")

attr(,"contrasts")$time

[1] "contr.treatment"

Notice that the second column in the matrix is all zeros because there are no design data for an adult
at time 1. The code in RMark simply removes any column containing all zeroes because it is not needed.
For the matrix above, that would create 6 parameters for a model that had one constant young survival
and 5 time dependent probabilities for adults; whereas ∼young:time had 7 parameters with a constant
adult survival and 6 time dependent probabilities for young.

So what happens if we use ∼young:time + adult:time to try and construct the equivalent to the
PIM chart in 8.1.1? To save space we won’t show the entire design matrix but will show the following
summaries:

> dim(model.matrix(~young:time + adult:time,age.ddl$Phi))

[1] 21 13

> colSums(model.matrix(~young:time + adult:time,age.ddl$Phi))

(Intercept) young:time1 young:time2 young:time3 young:time4 young:time5 young:time6

21 1 1 1 1 1 1

time1:adult time2:adult time3:adult time4:adult time5:adult time6:adult

0 1 2 3 4 5

After deleting the one column of all zeroes, the resulting design matrix will still have 12 columns
but there are only 11 unique parameters as shown in the 8.1.1 PIM chart. The solution is to remove the
intercept which can be done by adding -1 to the formula. Below we show the same summaries using
the correct formula:

> dim(model.matrix(~-1+ young:time + adult:time,age.ddl$Phi))

[1] 21 12

> colSums(model.matrix(~-1+young:time + adult:time,age.ddl$Phi))

young:time1 young:time2 young:time3 young:time4 young:time5 young:time6 time1:adult

1 1 1 1 1 1 0

time2:adult time3:adult time4:adult time5:adult time6:adult

1 2 3 4 5

After deleting the zero-sum column it will have the appropriate 11 parameters for the design matrix.
Let’s fit this model and examine the simplified PIM structure and design matrix.

> Phi.yaxtime=list(formula=~-1+young:time+adult:time)

> p.dot=list(formula=~1)

> age.Phi.yaxtime.p.dot=mark(age.process,age.ddl,model.parameters=list(Phi=Phi.yaxtime,

p=p.dot),output=FALSE)
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> PIMS(age.Phi.yaxtime.p.dot,"Phi")

group = Group 1

1 2 3 4 5 6

1 1 2 3 4 5 6

2 7 3 4 5 6

3 8 4 5 6

4 9 5 6

5 10 6

6 11

> age.Phi.yaxtime.p.dot$design.matrix[,1:11]

Phi:young:time1 Phi:young:time2 Phi:young:time3 Phi:young:time4 Phi:young:time5 Phi:young:time6

Phi g1 c1 a0 t1 "1" "0" "0" "0" "0" "0"

Phi g1 c1 a1 t2 "0" "0" "0" "0" "0" "0"

Phi g1 c1 a2 t3 "0" "0" "0" "0" n "0" "0"

Phi g1 c1 a3 t4 "0" "0" "0" "0" "0" "0"

Phi g1 c1 a4 t5 "0" "0" "0" "0" "0" "0"

Phi g1 c1 a5 t6 "0" "0" "0" "0" "0" "0"

Phi g1 c2 a0 t2 "0" "1" "0" "0" "0" "0"

Phi g1 c3 a0 t3 "0" "0" "1" "0" "0" "0"

Phi g1 c4 a0 t4 "0" "0" "0" "1" "0" "0"

Phi g1 c5 a0 t5 "0" "0" "0" "0" "1" "0"

Phi g1 c6 a0 t6 "0" "0" "0" "0" "0" "1"

p g1 c1 a1 t2 "0" "0" "0" "0" "0" "0"

Phi:time2:adult Phi:time3:adult Phi:time4:adult Phi:time5:adult Phi:time6:adult p:(Intercept)

Phi g1 c1 a0 t1 "0" "0" "0" "0" "0" "0"

Phi g1 c1 a1 t2 "1" "0" "0" "0" "0" "0"

Phi g1 c1 a2 t3 "0" "1" "0" "0" "0" "0"

Phi g1 c1 a3 t4 "0" "0" "1" "0" "0" "0"

Phi g1 c1 a4 t5 "0" "0" "0" "1" "0" "0"

Phi g1 c1 a5 t6 "0" "0" "0" "0" "1" "0"

Phi g1 c2 a0 t2 "0" "0" "0" "0" "0" "0"

Phi g1 c3 a0 t3 "0" "0" "0" "0" "0" "0"

Phi g1 c4 a0 t4 "0" "0" "0" "0" "0" "0"

Phi g1 c5 a0 t5 "0" "0" "0" "0" "0" "0"

Phi g1 c6 a0 t6 "0" "0" "0" "0" "0" "0"

p g1 c1 a1 t2 "0" "0" "0" "0" "0" "1"

The numbering of the PIM is different but the structure is identical to the PIM chart in 8.1.1, Also, by
rearranging the rows of the design matrix you could make it into an identity matrix because each row
and each column have only a single 1.

Below is the script that we wrote to do the analysis above and fit other models for comparison. It
includes models other than those fitted in Chapter 7.

# markyoung_age.R - script for fitting models for age.inp in which only young are marked

#

#

# Import data from age.inp file with convert.inp

#

age=convert.inp("age")

#Process data for CJS model

age.process=process.data(age,model="CJS")

#Make default design data

age.ddl=make.design.data(age.process)

#

# Add a young/adult age field to the design data for Phi which we have named ya.

# It uses right=FALSE so that the intervals are 0 (young) and 1 to 7 (adult).

#
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age.ddl=add.design.data(age.process,age.ddl,"Phi","age",bins=c(0,1,7),right=FALSE,name="ya")

#

# Add a field to the Phi design data that is equivalent except that it is a numeric

# dummy coding variable with value 1 for young and 0 for adult; field is named young

#

age.ddl$Phi$young=0

age.ddl$Phi$young[age.ddl$Phi$age==0]=1

#

# Likewise add an adult 0/1 numeric field to the Phi design data which is simply =1-young

#

age.ddl$Phi$adult=1-age.ddl$Phi$young

markyoung_age.models=function()

{

#Create formulas for Phi

# A constant survival model

Phi.dot=list(formula=~1)

# A fully age depdendent but time invariant survival model

Phi.age=list(formula=~age)

# A limited age model (young/adult) but time invariant survival model

Phi.ya=list(formula=~ya)

# Limited age-time interaction survival model; young vary by time but adult

# survival is time invariant. The intercept is the adult value

Phi.yxtime.a=list(formula=~young:time)

# Fully age (young/adult) and time varying survival model with the time effect

# interacting with age. We cannot use ya*time because there are no adults for time1

# The -1 removes the intercept which is not needed because the young:time creates a

# parameter for each time for the young animals and the adult:time creates a parameter

# for each time that has adults. It is equivalent to a PIM coding for the problem

# but still uses a design matrix.

Phi.yaxtime=list(formula=~-1+young:time+adult:time)

#Create formulas for p

p.dot=list(formula=~1)

p.time=list(formula=~time)

#Create model list

cml=create.model.list("CJS")

#Run and return complete set of models

return(mark.wrapper(cml,data=age.process,ddl=age.ddl))

}

# Run analysis function and store in marklist

> markyoung_age.results=markyoung_age.models()

Below is the model results table:

> markyoung_age.results

model npar AICc DeltaAICc weight Deviance

9 Phi(~young:time)p(~1) 8 5050.502 0.000000 0.57098900 139.7729

7 Phi(~-1 + young:time + adult:time)p(~1) 12 5051.756 1.254100 0.30500249 132.9714

10 Phi(~young:time)p(~time) 13 5053.875 3.372900 0.10573331 133.0730

8 Phi(~-1 + young:time + adult:time)p(~time) 17 5057.385 6.883649 0.01827521 128.5015

5 Phi(~ya)p(~1) 3 5169.603 119.101100 0.00000000 268.9136

1 Phi(~age)p(~1) 7 5170.234 119.731864 0.00000000 261.5153

2 Phi(~age)p(~time) 12 5174.617 124.114840 0.00000000 255.8321

6 Phi(~ya)p(~time) 8 5175.432 124.930200 0.00000000 264.7031
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4 Phi(~1)p(~time) 7 5385.402 334.900600 0.00000000 476.6840

3 Phi(~1)p(~1) 2 5418.139 367.637300 0.00000000 519.4538

> #get summary of model 8 to see how it denotes parameter counts and AICc

> summary(markyoung_age.results[[8]])

Output summary for CJS model

Name : Phi(~-1 + young:time + adult:time)p(~time)

Npar : 17 (unadjusted=16)

-2lnL: 5023.183

AICc : 5057.385 (unadjusted=5055.3628)

Beta

estimate se lcl ucl

Phi:young:time1 -1.2946578 0.1785905 -1.6446952 -0.9446205

Phi:young:time2 0.2484213 0.1388986 -0.0238200 0.5206626

Phi:young:time3 0.1464425 0.1308574 -0.1100380 0.4029230

Phi:young:time4 -0.8908855 0.1337821 -1.1530983 -0.6286726

Phi:young:time5 -0.8497168 0.1327969 -1.1099988 -0.5894348

Phi:young:time6 -0.9103939 0.0000000 -0.9103939 -0.9103939

Phi:time2:adult 0.2003894 0.3472809 -0.4802813 0.8810600

Phi:time3:adult 1.1011872 0.2531575 0.6049984 1.5973760

Phi:time4:adult 1.0734292 0.2089632 0.6638612 1.4829971

Phi:time5:adult 0.8498674 0.1874681 0.4824300 1.2173048

Phi:time6:adult 1.2672109 0.0000000 1.2672109 1.2672109

p:(Intercept) 0.4519732 0.3418917 -0.2181345 1.1220810

p:time3 0.0452004 0.3796693 -0.6989513 0.7893522

p:time4 0.1410901 0.3679322 -0.5800569 0.8622371

p:time5 0.1825269 0.3691351 -0.5409778 0.9060316

p:time6 0.4714351 0.3766168 -0.2667339 1.2096041

p:time7 0.3346337 0.0000000 0.3346337 0.3346337

Real Parameter Phi

1 2 3 4 5 6

1 0.2150655 0.5499304 0.7504825 0.7452485 0.7005393 0.7802649

2 0.5617879 0.7504825 0.7452485 0.7005393 0.7802649

3 0.5365453 0.7452485 0.7005393 0.7802649

4 0.2909271 0.7005393 0.7802649

5 0.2994923 0.7802649

6 0.2869192

Real Parameter p

2 3 4 5 6 7

1 0.6111083 0.6217949 0.6440677 0.6535092 0.7157361 0.6871023

2 0.6217949 0.6440677 0.6535092 0.7157361 0.6871023

3 0.6440677 0.6535092 0.7157361 0.6871023

4 0.6535092 0.7157361 0.6871023

5 0.7157361 0.6871023

6 0.6871023
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> # show model.table using parameter counts from MARK

> model.table(markyoung_age.results[1:10],adjust=F)

model npar AICc DeltaAICc weight Deviance

9 Phi(~young:time)p(~1) 8 5050.502 0.0000 0.55330256 139.7729

7 Phi(~-1 + young:time + adult:time)p(~1) 12 5051.756 1.2541 0.29555501 132.9714

10 Phi(~young:time)p(~time) 13 5053.875 3.3729 0.10245821 133.0730

8 Phi(~-1 + young:time + adult:time)p(~time) 16 5055.363 4.8611 0.04868422 128.5015

1 Phi(~age)p(~1) 6 5168.224 117.7226 0.00000000 261.5153

5 Phi(~ya)p(~1) 3 5169.603 119.1011 0.00000000 268.9136

2 Phi(~age)p(~time) 11 5172.601 122.0989 0.00000000 255.8321

6 Phi(~ya)p(~time) 8 5175.432 124.9302 0.00000000 264.7031

4 Phi(~1)p(~time) 7 5385.402 334.9006 0.00000000 476.6840

3 Phi(~1)p(~1) 2 5418.139 367.6373 0.00000000 519.4538

This final results table has the same values as the equivalent table in Chapter 7 except that it contains
more models including the best models.

Now let’s take the next step presented in chapter 7 and consider the situation in which both young
and adults are marked and released. The primary goal of this exercise is to evaluate whether adult
survival differs for the 2 groups: marked as young versus marked as adult.

age_ya=convert.inp("age_ya",group.df=data.frame(age=c("Young","Adult")))

# Process data for CJS model; an initial age is defined as 1 for adults and 0

# for young. They are assigned in that order because they are assigned in order of

# the factor variable which is alphabetical with adult before young. It does not

# matter that adults could be a mixture of ages because we will only model young (0)

# and adult (1+).

age_ya.process=process.data(age_ya,group="age",initial.age=c(1,0))

# Make the default design data

age_ya.ddl=make.design.data(age_ya.process)

#

# Add a young/adult age field to the design data for Phi which we have named ya.

# It uses right=FALSE so that the intervals are 0 (young) and 1 to 7 (adult).

#

age_ya.ddl=add.design.data(age_ya.process,age_ya.ddl,"Phi","age",bins=c(0,1,7),

right=FALSE,name="ya")

#

# Next create a dummy field called marked.as.adult which is 0 for the group

# marked as young and 1 for the group marked as adults.

#

age_ya.ddl$Phi$marked.as.adult=0

age_ya.ddl$Phi$marked.as.adult[age_ya.ddl$Phi$group=="Adult"]=1

Look through the design data for ϕ so you understand how each of the added fields are defined. Pay
particular attention to the difference between the ya field and marked.as.adult. The field ya represents
age classes and they change over time for an individual marked and released as young whereas the
marked.as.adult is a dummy variable for the grouping and it is static.

> age_ya.ddl$Phi

group cohort age time Cohort Age Time initial.age.class ya marked.as.adult

1 Adult 1 1 1 0 1 0 Adult [1,7] 1

2 Adult 1 2 2 0 2 1 Adult [1,7] 1

3 Adult 1 3 3 0 3 2 Adult [1,7] 1
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4 Adult 1 4 4 0 4 3 Adult [1,7] 1

5 Adult 1 5 5 0 5 4 Adult [1,7] 1

6 Adult 1 6 6 0 6 5 Adult [1,7] 1

7 Adult 2 1 2 1 1 1 Adult [1,7] 1

8 Adult 2 2 3 1 2 2 Adult [1,7] 1

9 Adult 2 3 4 1 3 3 Adult [1,7] 1

10 Adult 2 4 5 1 4 4 Adult [1,7] 1

11 Adult 2 5 6 1 5 5 Adult [1,7] 1

12 Adult 3 1 3 2 1 2 Adult [1,7] 1

13 Adult 3 2 4 2 2 3 Adult [1,7] 1

14 Adult 3 3 5 2 3 4 Adult [1,7] 1

15 Adult 3 4 6 2 4 5 Adult [1,7] 1

16 Adult 4 1 4 3 1 3 Adult [1,7] 1

17 Adult 4 2 5 3 2 4 Adult [1,7] 1

18 Adult 4 3 6 3 3 5 Adult [1,7] 1

19 Adult 5 1 5 4 1 4 Adult [1,7] 1

20 Adult 5 2 6 4 2 5 Adult [1,7] 1

21 Adult 6 1 6 5 1 5 Adult [1,7] 1

22 Young 1 0 1 0 0 0 Young [0,1) 0

23 Young 1 1 2 0 1 1 Young [1,7] 0

24 Young 1 2 3 0 2 2 Young [1,7] 0

25 Young 1 3 4 0 3 3 Young [1,7] 0

26 Young 1 4 5 0 4 4 Young [1,7] 0

27 Young 1 5 6 0 5 5 Young [1,7] 0

28 Young 2 0 2 1 0 1 Young [0,1) 0

29 Young 2 1 3 1 1 2 Young [1,7] 0

30 Young 2 2 4 1 2 3 Young [1,7] 0

31 Young 2 3 5 1 3 4 Young [1,7] 0

32 Young 2 4 6 1 4 5 Young [1,7] 0

33 Young 3 0 3 2 0 2 Young [0,1) 0

34 Young 3 1 4 2 1 3 Young [1,7] 0

35 Young 3 2 5 2 2 4 Young [1,7] 0

36 Young 3 3 6 2 3 5 Young [1,7] 0

37 Young 4 0 4 3 0 3 Young [0,1) 0

38 Young 4 1 5 3 1 4 Young [1,7] 0

39 Young 4 2 6 3 2 5 Young [1,7] 0

40 Young 5 0 5 4 0 4 Young [0,1) 0

41 Young 5 1 6 4 1 5 Young [1,7] 0

42 Young 6 0 6 5 0 5 Young [0,1) 0

>

Before we go too far with this example, we’ll show the simplified PIMS for the∼ya*timemodel which
we could not fit in the previous example but we can fit now because adults were marked at time 1.

> PIMS(mark(age_ya.process,age_ya.ddl,model.parameters=list(Phi=list(formula=~ya*time)),

output=F),"Phi")

group = ageAdult

1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 3 4 5 6

3 3 4 5 6

4 4 5 6
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5 5 6

6 6

group = ageYoung

1 2 3 4 5 6

1 7 2 3 4 5 6

2 8 3 4 5 6

3 9 4 5 6

4 10 5 6

5 11 6

6 12

The numbering is slightly different than what is shown in the second and final sets of PIMS from
section 8.1.2, but if you look closely you’ll see that the structure is identical with survival varying over
time and interacting with age as defined by young/adult age classes. Hmm, that is quite close to what
we want for the structure to evaluate whether adult survival is different between the 2 groups. All we
really need to do is add marked.as.adult to the formula. Let’s fit that model for ϕ and the sub-model
given above and assume that capture probability varies by group but is time-invariant:

age_ya.models=function() {

Phi.ya.time.plus.marked.as.adult=list(formula=~ya*time+marked.as.adult)

Phi.ya.time=list(formula=~ya*time)

p.marked.as.adult=list(formula=~marked.as.adult)

cml=create.model.list("CJS")

results=mark.wrapper(cml,data=age_ya.process,ddl=age_ya.ddl,output=FALSE)

return(results) }

age_ya.results=age_ya.models()

Variable marked.as.adult used in formula is not defined in data

Error in make.mark.model(data.proc, title = title, covariates =

covariates, :

Variable marked.as.adult used in formula is not defined in data

Error in make.mark.model(data.proc, title = title, covariates =

covariates, :

No mark models found Error in collect.models() :

What did we do wrong? We defined marked.as.adult and the spelling and punctuation is correct.
You will make this mistake which is why we showed it. The error message could be made better because
itdoes not tellyou where the problem occurs,but remember thatdesign data is specific to eachparameter
and we only defined the marked.as.adult field for ϕ but we just used it above for the formula for p.
That is the problem. One solution would be to use ∼group for the formula for p because that will give
the same model with a slightly different parameterization. Another solution is to create the design data
as follows and re-run the analysis:

> age_ya.ddl$p$marked.as.adult=0

> age_ya.ddl$p$marked.as.adult[age_ya.ddl$p$group=="Adult"]=1

> age_ya.results=age_ya.models()
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> age_ya.results

model npar AICc DeltaAICc weight Deviance

2 Phi(~ya * time + marked.as.adult)p(~marked.as.adult) 15 13846.48 0.000 0.5304622 274.5737

1 Phi(~ya * time)p(~marked.as.adult) 14 13846.72 0.244 0.4695378 276.8261

Did we get the models and parameter counts correct? With the ∼ya*time model shown in the final
set of PIMS in 8.1.2 there are 12 parameters for ϕ and for our model with p there are 2 parameters (one
for each group) so that is 14 and it matches the count for model 1. Our model 2 adds a single parameter
for ϕ so that makes 15 also matching the results. If we look at the simplified PIMS for ϕ with model 2
we see that the structure matches the PIMS laid out for this problem with 17 indices, but they are not
numbered in the same order:

> PIMS(age_ya.results[[2]],"Phi")

group = ageAdult

1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 3 4 5 6

3 3 4 5 6

4 4 5 6

5 5 6

6 6

group = ageYoung

1 2 3 4 5 6

1 7 8 9 10 11 12

2 13 9 10 11 12

3 14 10 11 12

4 15 11 12

5 16 12

6 17

The design matrix also does not match the one shown in 8.1.2 because the rows are ordered differently
and the effects are parameterized differently so the betas will be different but the real parameters would
be the same. The design matrix shown below is a cosmetically edited version of the contents contained
in age_ya.results[[2]]$design.matrix to make it more visually apparent. The design matrix is stored
as a matrix of strings so the "" were removed, the marked.as.adult column was moved over, the column
headers were renamed to use adult rather than the factor ya:[1,7]. The intercept (the first column) is
for young- time1 which is apparent when you see that row 7 (the index for this parameter) is the one
with a single 1 in the row. The second column is the additive age-effect for adult survival and the third
column is the marked.as.adult effect which is 1 for only the first 6 rows (indices 1-6). Columns 4-8 are
baseline time effects for times 2 to 6. Finally, columns 9-13 are the interaction of time with age for adults.
All of these columns would be the same for model 1 except that column 3 would not be included.

Adult Adult 1 1 1 1 0 0 0 0 0 0 0 0 0 0

Adult Adult 2 1 1 1 1 0 0 0 0 1 0 0 0 0

Adult Adult 3 1 1 1 0 1 0 0 0 0 1 0 0 0

Adult Adult 4 1 1 1 0 0 1 0 0 0 0 1 0 0

Adult Adult 5 1 1 1 0 0 0 1 0 0 0 0 1 0

Adult Adult 6 1 1 1 0 0 0 0 1 0 0 0 0 1
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Young Young 7 1 0 0 0 0 0 0 0 0 0 0 0 0

Young Adult 8 1 1 0 1 0 0 0 0 1 0 0 0 0

Young Adult 9 1 1 0 0 1 0 0 0 0 1 0 0 0

Young Adult 10 1 1 0 0 0 1 0 0 0 0 1 0 0

Young Adult 11 1 1 0 0 0 0 1 0 0 0 0 1 0

Young Adult 12 1 1 0 0 0 0 0 1 0 0 0 0 1

Young Young 13 1 0 0 1 0 0 0 0 0 0 0 0 0

Young Young 14 1 0 0 0 1 0 0 0 0 0 0 0 0

Young Young 15 1 0 0 0 0 1 0 0 0 0 0 0 0

Young Young 16 1 0 0 0 0 0 1 0 0 0 0 0 0

Young Young 17 1 0 0 0 0 0 0 1 0 0 0 0 0

It is also useful to distinguishhere between TSM (time since marking) andage models.This distinction
is made based on the initial age that is assigned to groups. If the initial ages for the groups are identical
(and technically 0) then age in the design data is really TSM. Age and TSM are the same when everything
is the same age at marking like in the example when only young were marked. If you assign different
initial ages to groups to represent actual age, you can still define a TSM field in the design data as
age-initial age but make sure to use numeric values like Age or convert factors to numeric values to do
the calculation.

Let’s go back to the dipper data to show some more complications that can arise when the design is
not fully crossed. In this case, we will assume that dippers are all released at age 0 and we expect that
survival is time dependent for young (age 0) but not for all adults (1+). Also, we expect age differences
in adult survival and we expect that the age differences might be different for males and females. Also,
we expect that adult capture probability changes when they reach age 2 for females and age 3 for males.
This is most likely bogus for dippers but then again it is just an example. So how do we go about building
a set of models? First, we need to set up the design data that we need for the structure that we have
identified. The following code processes the data, makes the default design data and then creates fields
adult (0/1) and young (0/1) in the ψ design data and the variable shift (0/1) in p which was defined
to create a sex-specific timing of a shift in capture probability possibly associated with the onset of
breeding age.

> dipper.processed=process.data(dipper,begin.time=1980,groups="sex")

> dipper.ddl=make.design.data(dipper.processed)

> dipper.ddl$Phi$adult=0

> dipper.ddl$Phi$adult[dipper.ddl$Phi$age>=1]=1

> dipper.ddl$Phi$adult[dipper.ddl$Phi$Age>=1]=1

> dipper.ddl$Phi$young=1- dipper.ddl$Phi$adult

> dipper.ddl$Phi

> dipper.ddl$p$shift=0

> dipper.ddl$p$shift[dipper.ddl$p$Age>=3&dipper.ddl$p$sex=="Male"]=1

> dipper.ddl$p$shift[dipper.ddl$p$Age>=2&dipper.ddl$p$sex=="Female"]=1

> dipper.ddl$p

With these fields defined we can consider how to construct formula for various models that we
propose. First we will consider the ϕmodels and we will use the R functions model.matrix and colSums
to examine how the model is constructed. Using model.matrix within colSums will show the columns
in the design matrix and if they are non-zero. For example, if we want time dependent survival for the
young we could do as follows:
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> colSums(model.matrix(~young:time,dipper.ddl$Phi))

(Intercept) young:time1980 young:time1981 young:time1982 young:time1983 young:time1984 young:time1985

42 2 2 2 2 2 2

This formula would create 6 parameters for young survival and then an intercept which would apply
to adults which would have a constant survival. If we wanted to add an age and sex dependent survival
for adults it would look as follows:

> colSums(model.matrix(~young:time+adult:age:sex,dipper.ddl$Phi))

(Intercept) young:time1980 young:time1981 young:time1982 young:time1983

42 2 2 2 2

young:time1984 young:time1985 adult:age0:sexFemale adult:age1:sexFemale adult:age2:sexFemale

2 2 0 5 4

adult:age3:sexFemale adult:age4:sexFemale adult:age5:sexFemale adult:age0:sexMale adult:age1:sexMale

3 2 1 0 5

adult:age2:sexMale adult:age3:sexMale adult:age4:sexMale adult:age5:sexMale

4 3 2 1

However, it has 17 non-zero columns but we only need 16 parameters (6 for age 0 and 5 each for the
ages 1-5 for both male and female). The solution as noted above was to use the -1 to remove the intercept
to get 16 parameters:

> colSums(model.matrix(~-1+young:time+adult:age:sex,dipper.ddl$Phi))

young:time1980 young:time1981 young:time1982 young:time1983 young:time1984

2 2 2 2 2

young:time1985 adult:age0:sexFemale adult:age1:sexFemale adult:age2:sexFemale adult:age3:sexFemale

2 0 5 4 3

adult:age4:sexFemale adult:age5:sexFemale adult:age0:sexMale adult:age1:sexMale adult:age2:sexMale

2 1 0 5 4

adult:age3:sexMale adult:age4:sexMale adult:age5:sexMale

3 2 1

Now, what if we wanted a model with age effects and an additive sex effect solely for adults:

> colSums(model.matrix(~-1+young:time+adult:age+adult:sex,dipper.ddl$Phi))

young:time1980 young:time1981 young:time1982 young:time1983 young:time1984 young:time1985 adult:age0

2 2 2 2 2 2 0

adult:age1 adult:age2 adult:age3 adult:age4 adult:age5 adult:sexMale

10 8 6 4 2 15

That works as expected with 12 non-zero columns for the 12 parameters (6 for young, 5 for ages and
1 additive sex effect (male) for the adult age classes.

However, if we wanted an additive sex effect for each age including young, things go awry:

> colSums(model.matrix(~-1+young:time+adult:age+sex,dipper.ddl$Phi))

sexFemale sexMale young:time1980 young:time1981 young:time1982 young:time1983 young:time1984

21 21 2 2 2 2 2

young:time1985 adult:age0 adult:age1 adult:age2 adult:age3 adult:age4 adult:age5

2 0 10 8 6 4 2

because the -1 does not remove the intercept and it simply changes the design matrix to have separate
intercepts for each sex and we end up with 13 parameters instead of 12 as above. Although it will
not affect model.matrix, the solution for RMark is to set the argument remove.intercept=TRUE in the
parameter specification as shown below. That will force removal of the intercept and can always be used
in place of the -1 in a formula. If you use remove.intercept=TRUE, do not use the -1 in the formula.

On the next page is the script for this analysis which examines a sequence of models for ϕ including
those above and a sequence for p including the shift in p. Given that this example was contrived it
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should be surprising that these imaginary models were not particularly good ones, but we show the
results to demonstrate that the number of parameters were correct.

do.complicated.dipper.models=function()

{

# retrieve data, process it for CJS model and make default design data

data(dipper)

dipper.processed=process.data(dipper,begin.time=1980,groups="sex")

dipper.ddl=make.design.data(dipper.processed)

# create additional Phi fields adult and young

dipper.ddl$Phi$adult=0

dipper.ddl$Phi$adult[dipper.ddl$Phi$Age>=1]=1

dipper.ddl$Phi$young=1- dipper.ddl$Phi$adult

# create additional p field for sex-specific shift in p at "breeding" age

dipper.ddl$p$shift=0

dipper.ddl$p$shift[dipper.ddl$p$Age>=3&dipper.ddl$p$sex=="Male"]=1

dipper.ddl$p$shift[dipper.ddl$p$Age>=2&dipper.ddl$p$sex=="Female"]=1

# define models for Phi

Phi.dot=list(formula=~1)

Phi.ytime=list(formula=~young:time)

Phi.ytime.plus.adultxagexsex=list(formula=~young:time+adult:age:sex,remove.intercept=TRUE)

Phi.ytime.plus.adultxage.plussex=list(formula=~young:time+adult:age+sex,remove.intercept=TRUE)

Phi.ytime.plus.adultxage.plusadultxsex=list(formula=~young:time+adult:age+adult:sex,

remove.intercept=TRUE)

# define models for p

p.dot=list(formula=~1)

p.time=list(formula=~time)

p.shift=list(formula=~shift)

p.shiftxsex=list(formula=~shift*sex)

# create model list

cml=create.model.list("CJS")

# run and return models

return(mark.wrapper(cml,data=dipper.processed,ddl=dipper.ddl))

}

complicated.results=do.complicated.dipper.models()

complicated.results

model npar AICc DeltaAICc weight Deviance

1 Phi(~1)p(~1) 2 670.8660 0.000000 5.877454e-01 84.36055

2 Phi(~1)p(~shift) 3 672.8926 2.026520 2.133713e-01 84.35857

5 Phi(~young:time)p(~1) 8 674.6677 3.801640 8.783621e-02 75.84524

3 Phi(~1)p(~shift * sex) 5 675.9918 5.125757 4.530490e-02 83.37182

6 Phi(~young:time)p(~shift) 9 676.7273 5.861220 3.136472e-02 75.81745

4 Phi(~1)p(~time) 7 678.7481 7.882080 1.141872e-02 82.00306

9 Phi(~young:time + adult:age + adult:sex)p(~1) 13 679.7517 8.885695 6.913294e-03 70.39112

7 Phi(~young:time)p(~shift * sex) 11 680.1781 9.312101 5.585887e-03 75.06334

13 Phi(~young:time + adult:age + sex)p(~1) 13 681.2700 10.403965 3.235913e-03 71.90939

10 Phi(~young:time + adult:age + adult:sex)p(~shift) 14 681.7379 10.871858 2.560916e-03 70.23888

8 Phi(~young:time)p(~time) 13 682.5149 11.648835 1.736508e-03 73.15426

14 Phi(~young:time + adult:age + sex)p(~shift) 14 683.3693 12.503268 1.132763e-03 71.87029

17 Phi(~young:time + adult:age:sex)p(~1) 17 684.4892 13.623220 6.470601e-04 66.51214
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11 Phi(~young:time+adult:age+adult:sex)p(~shift*sex) 16 684.9887 14.122623 5.040812e-04 69.18147

18 Phi(~young:time + adult:age:sex)p(~shift) 18 686.5849 15.718830 2.269283e-04 66.42716

15 Phi(~young:time + adult:age + sex)p(~shift * sex) 16 687.0127 16.146713 1.832209e-04 71.20556

12 Phi(~young:time + adult:age + adult:sex)p(~time) 18 687.9284 17.062380 1.159152e-04 67.77071

16 Phi(~young:time + adult:age + sex)p(~time) 18 689.2101 18.344070 6.106960e-05 69.05240

19 Phi(~young:time + adult:age:sex)p(~shift * sex) 20 689.8623 18.996264 4.407607e-05 65.31111

20 Phi(~young:time + adult:age:sex)p(~time) 22 692.6151 21.749106 1.112835e-05 63.62686

C.16. Individual covariates

As promised,we will now divulge the fourth trick in RMark which was needed to encompass individual
covariates. You do not need to know how this trick works to use RMark and we are only describing
it here in case someone wanted to use it in another similar application. If you look through the help
file for make.mark.model you will see that there are arguments for a parameter specification called
component and component.name. These arguments were included before the fourth trick was discovered
and included. Now they are no longer needed. Those arguments were used to create additional columns
that were pasted onto the design matrix to include individual covariates. This was done because
individual covariates are entered into the design matrix for MARK as a string which contains the name
of the covariate rather than 0 or 1 or other numeric value. There is no direct way to use model.matrix
to do add these covariate names - thus the trick.

When RMark encounters an individual covariate (a name not in the design data), it creates a dummy
variable in the design data for that covariate. The covariate name is used for the dummy variable name
and it is given the value 1 for each row in the design data. Then the entire formula with the individual
covariate and the modified design data is passed to model.matrix to create the design matrix which is
only partially complete. RMark then processes the design matrix further to add the covariate names for
MARK. Any columns with names that contain any individual covariate are modified in the following
way: 1) any 0 values are left as is, 2) any value of 1 is changed to a string with the name of the covariate,
and 3) if the value is neither 1 or 0, then it uses the product construct used in MARK design matrices
and the value is replaced with the string “product(value,covariate_name)". The final step enables the
use of formula containing interactions of individual covariates and design data covariates.

There is actually one more step that RMark does to enable time-varying covariates. If you use an
individual covariate name that does not exist in the data, then it will look for variables that have that
name as the prefix and a sequence of suffixes that match the values of the time variable in the design data
for that particular parameter. This means that the variable names have to be constructed in a fashion
that is consistent with the value chosen for begin.time and which is consistent with the labeling of times
which is different for interval parameters such as ϕ and occasion parameters like p. If RMark finds a set
of covariates that are properly named, then it constructs the design matrix using the covariate names
that are appropriate for each row in the design matrix based on the value of the time field for that
specific parameter.

Well with that said there is not much more to say about individual covariates except to show some
examples that demonstrate how they are used in formula and how covariate-specific real parameter
estimates can be computed after the model is fitted. To do that, we will continue to abuse the dipper
data and create some imaginary weight data which was the weight of the bird at the time of first capture.
We will fit models in which weight affects survival for all times for both sexes ( weight) and then with a
sex effect and sex-weight interaction ( sex*weight). We will also show how the affect of the covariate can
be limited to the first survival post-capture ( young:weight). The following is the script that examines
these and other models. Comments are given to explain each ϕ model.
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# retrieve data, create some imaginary weight data using a random normal

> data(dipper)

> dipper$weight=rnorm(294,10,2)

> do.dipper.covariate.example=function()

{

# process the data for CJS model and make default design data

dipper.processed=process.data(dipper,begin.time=1980,groups="sex")

dipper.ddl=make.design.data(dipper.processed)

# create additional Phi fields adult and young

dipper.ddl$Phi$adult=0

dipper.ddl$Phi$adult[dipper.ddl$Phi$Age>=1]=1

dipper.ddl$Phi$young=1- dipper.ddl$Phi$adult

# define models for Phi

Phi.dot=list(formula=~1)

# weight only for all survivals

Phi.weight=list(formula=~weight)

# sex and sex-dependent slope for weight

Phi.weight.x.sex=list(formula=~weight*sex)

# same intercept for male/female with a sex-dependent slope for weight

Phi.weight.sex=list(formula=~weight:sex)

# effect of weight only for first time post-capture; if you exclude the

# adult term, then an adult would have the intercept survival which would

# be the value for weight=0

Phi.weight.plus.sex=list(formula=~adult + young:weight)

# define models for p

p.dot=list(formula=~1)

p.time=list(formula=~time)

# create model list

cml=create.model.list("CJS")

# run and return models

return(mark.wrapper(cml,data=dipper.processed,ddl=dipper.ddl))

}

> covariate.results=do.dipper.covariate.example()

The results really do not matter because the example and data are bogus, but it is useful to examine
the resulting design matrix that was constructed for some of these models. You can look at the simplified
design matrix easily as follows:

> covariate.results[[3]]$design.matrix

Phi:(Intercept) Phi:weight p:(Intercept)

Phi gFemale c1980 a0 t1980 "1" "weight" "0"

p gFemale c1980 a1 t1981 "0" "0" "1"

> covariate.results[[5]]$design.matrix

Phi:(Intercept) Phi:adult Phi:young:weight p:(Intercept)

Phi gFemale c1980 a0 t1980 "1" "0" "weight" "0"

Phi gFemale c1980 a1 t1981 "1" "1" "0" "0"

p gFemale c1980 a1 t1981 "0" "0" "0" "1"

> covariate.results[[7]]$design.matrix

Phi:(Intercept) Phi:weight:sexFemale Phi:weight:sexMale p:(Intercept)
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Phi gFemale c1980 a0 t1980 "1" "weight" "0" "0"

Phi gMale c1980 a0 t1980 "1" "0" "weight" "0"

p gFemale c1980 a1 t1981 "0" "0" "0" "1"

> covariate.results[[9]]$design.matrix

Phi:(Intercept) Phi:weight Phi:sexMale Phi:weight:sexMale p:(Intercept)

Phi gFemale c1980 a0 t1980 "1" "weight" "0" "0" "0"

Phi gMale c1980 a0 t1980 "1" "weight" "1" "weight" "0"

p gFemale c1980 a1 t1981 "0" "0" "0" "0" "1"

These are the simplified design matrices which are used after the PIMS have been recoded from
all-different to the unique values. The non-simplified design matrix would contain 42 rows for ϕ and
42 rows for p. Notice that the resulting number of rows in the simplified design matrix depends on the
formulas used which determine the unique number of parameters required.

It is useful to examine the design matrix to make sure you get the model you think that you specified
with the formula. Even though RMark creates the PIMS and design matrix for you, it does not mean
that you can shut off your brain and stop thinking. As an example, it would be very easy to make
a mistake and specify the one model as ∼young:weight. At first glance that might seem to do what
you want to restrict the effect of weight to the first capture ϕ and it does do that but it also stupidly
assigns adult survival to the intercept which is the value where weight=0. Even though RMark removes
the drudgery of creating design matrices, it does not eliminate the possibility of making a mistake by
incorrect specification of the model. Examining the design matrix and using model.matrix (if there are
no individual covariates) is the best way to prevent those mistakes.

Once you have fitted models using individual covariates, you will often want to compute predicted
values at one or more covariate values. There are several functions to do this including compute.real
but the most complete and easiest to use is covariate.predictions. Below we compute the value of
survival for young in 1980 (index=1) for a range of values for weight and then plot the predicted values
with confidence intervals as a function of weight. Because we used covariate.results (a marklist of
models) the predictions are averaged over the models in the list and the estimates of precision include
model uncertainty. See the help file for detailed information about covariate.predictions. Note that
the names of the fields in the dataframe must match the names of covariates that you used in the model
(e.g., weight).

> minmass=min(dipper$weight)

> maxmass=max(dipper$weight)

> mass.values=minmass+(0:30)*(maxmass-minmass)/30

> Phibymass=covariate.predictions(covariate.results,data=data.frame(weight=mass.values),indices=c(1))

# Plot predicted model averaged estimates by weight with pointwise confidence intervals

> plot(Phibymass$estimates$covdata, Phibymass$estimates$estimate,

type="l",lwd=2,xlab="Mass(kg)",ylab="Survival",ylim=c(0,1))

> lines(Phibymass$estimates$covdata, Phibymass$estimates$lcl,lty=2)

> lines(Phibymass$estimates$covdata, Phibymass$estimates$ucl,lty=2)

Now let’s consider time-varying individual covariates. RMark contains a pre-programmed time-
varying covariate which is either age or TSM (time-since-marking) but it is handled via the parameter
structure rather than with an individual covariate with the data. But it is a good example, because it
illustrates that the value of time-varying covariates need to be known for each animal at each occasion
regardless of whether it was caught or not at the occasion. Thus, the time-varying covariate cannot
be one that requires capturing and handling of the animal. Beyond, age an obvious candidate for a
time-varying individual covariate for the CJS model is a trap-dependence covariate. The idea here is
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that animals that were caught on a previous occasion are more likely to be caught on the next occasion.
If ei is the value of the capture history at occasion i, then it becomes the time varying covariate for
modeling pi+1. In a CJS model only p2 , . . . , pk are estimated for a history with k occasions, so the time
varying covariates are e1 , . . . , ek−1 for those parameters. Below with the dipper data we construct a
sequence of covariates labeled td1981, . . . , td1986 that contain the capture history entry for the years
1980 to 1985 for each dipper. They are labeled with the 1981 to 1986 suffix because those will be the
times for the capture probabilities if we use begin.time=1980. Had we not included the assignment of
begin.time, the times would default to begin at 1, and the variables would have to be named td2,. . . ,td7
to be properly handled by the formula. First we start with a function that creates the trap dependence
variable. It was written as a function because it is general and could be used elsewhere; although it
would have to be changed if the time intervals between occasions were not 1.

> create.td=function(ch,varname="td",begin.time=1)

#

# Arguments:

# ch - capture history vector (0/1 values only)

# varname - prefix for variable name

# begin.time - time for first occasion

#

# Value:

# returns a datframe with trap-dependent variables

# named varnamet+1,...,varnamet+nocc-1

# where t is begin.time and nocc is the

# number of occasions

#

{

# turn vector of capture history strings into a vector of characters

char.vec=unlist(strsplit(ch,""))

# test to make sure they only contain 0 or 1

if(!all(char.vec %in% c(0,1)))

stop("Function only valid for CJS model without missing values")

else

{

# get number of occasions (nocc) and change it into a matrix of numbers

nocc=nchar(ch[1])

tdmat=matrix(as.numeric(char.vec),ncol=nocc,byrow=TRUE)

# remove the last column which is not used

tdmat=tdmat[,1:(nocc-1)]

# turn it into a dataframe and assign the field (column) names

tdmat=as.data.frame(tdmat)

names(tdmat)=paste(varname,(begin.time+1):(begin.time+nocc-1),sep="")

return(tdmat)

}

}

Next we follow with the script that adds the variables to the dipper data and then uses the time-
varying covariate in a few models. Note that you only use the prefix (e.g., td) in the formula and
RMark adds the relevant suffix for the parameter.
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> do.dipper.td=function()

{

# get data and add the td time-varying covariate, process the data

# and create the design data

data(dipper)

dipper=cbind(dipper,create.td(dipper$ch,begin.time=1980))

dipper.processed=process.data(dipper,begin.time=1980)

dipper.ddl=make.design.data(dipper.processed)

# create additional p field adult

dipper.ddl$p$adult=0

dipper.ddl$p$adult[dipper.ddl$p$Age > 1]=1

# define models for Phi

Phi.dot=list(formula=~1)

# define models for p

p.td=list(formula=~td)

p.td.adult=list(formula=~td:adult)

p.td.time=list(formula=~td:time)

p.time.plus.td=list(formula=~time+td)

# create model list

cml=create.model.list("CJS")

# run and return models

return(mark.wrapper(cml,data=dipper.processed,ddl=dipper.ddl))

}

> td.results=do.dipper.td()

Rather than focusing on the results, let’s look at the design matrices for the models involving the
time-varying covariate. In the first model (∼td), we see that it added each covariate that matched the
correct time dependent covariate that matched the parameter for 1981 to 1986 which we can see with
the call to PIMS are indices 2 through 7.

> td.results[[1]]$design.matrix

Phi:(Intercept) p:(Intercept) p:td

Phi g1 c1980 a0 t1980 " 1" "0" "0"

p g1 c1980 a1 t1981 "0" "1" "td1981"

p g1 c1980 a2 t1982 "0" "1" "td1982"

p g1 c1980 a3 t1983 "0" "1" "td1983"

p g1 c1980 a4 t1984 "0" "1" "td1984"

p g1 c1980 a5 t1985 "0" "1" "td1985"

p g1 c1980 a6 t1986 "0" "1" "td1986"

> PIMS(td.results[[1]],"p")

group = Group 1

1981 1982 1983 1984 1985 1986

1980 2 3 4 5 6 7

1981 3 4 5 6 7

1982 4 5 6 7

1983 5 6 7

1984 6 7

1985 7
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Now, if the experiment was one in which the animals were released we might not want to have a trap
dependence for the first occasion after the initial release because it might not reflect trap dependence.
We can limit the effect to occasions other than the first after release by interacting td with the adult
design covariate (∼adult:td). Note that parameter 2 does not have the trap-dependence effect and thus
td1981 is not used.

> td.results[[2]]$design.matrix

Phi:(Intercept) p:(Intercept) p:td:adult

Phi g1 c1980 a0 t1980 "1" "0" "0"

p g1 c1980 a1 t1981 "0" "1" "0"

p g1 c1980 a2 t1982 "0" "1" "td1982"

p g1 c1980 a3 t1983 "0" "1" "td1983"

p g1 c1980 a4 t1984 "0" "1" "td1984"

p g1 c1980 a5 t1985 "0" "1" "td1985"

p g1 c1980 a6 t1986 "0" "1" "td1986"

> PIMS(td.results[[2]],"p")

group = Group 1

1981 1982 1983 1984 1985 1986

1980 2 3 4 5 6 7

1981 2 4 5 6 7

1982 2 5 6 7

1983 2 6 7

1984 2 7

1985 2

Now, if you thought that the trap dependence effect might vary by time, you could interact timewith
td(∼time:td). Note that here the time effect is only for those caught on the previous occasion. Bit of a
strange model without the main effect for time.

> td.results[[3]]$design.matrix

Phi:(Intercept) p:(Intercept) p:td:time1981 p:td:time1982 p:td:time1983 p:td:time1984 p:td:time1985 p:td:time1986

Phi g1 c1980 a0 t1980 "1" "0" "0" "0" "0" "0" "0" "0"

p g1 c1980 a1 t1981 "0" "1" "td1981" "0" "0" "0" "0" "0"

p g1 c1980 a2 t1982 "0" "1" "0" "td1982" "0" "0" n "0" "0"

p g1 c1980 a3 t1983 "0" "1 "0" "0" "td1983" "0" "0" "0"

p g1 c1980 a4 t1984 "0" n "1" "0" n "0" "0" "td1984" "0" "0"

p g1 c1980 a5 t1985 "0" n "1" "0" "0" "0" "0" "td1985" "0"

p g1 c1980 a6 t1986 "0" "1" "0" "0" "0" "0" "0" "td1986"

Finally, another model might be one with a time effect and an additive trap dependence effect
(∼time+td).

> td.results[[4]]$design.matrix

Phi:(Intercept) p:(Intercept) p:time1982 p:time1983 p:time1984 p:time1985 p:time1986 p:td

Phi g1 c1980 a0 t1980 "1" "0" "0" "0" "0" "0" "0" "0"

p g1 c1980 a1 t1981 "0" "1" n "0" "0" "0" "0" "0" "td1981"

p g1 c1980 a2 t1982 "0" "1" "1" "0" "0" "0" "0" "td1982"

p g1 c1980 a3 t1983 "0" "1" "0" "1" "0" "0" "0" "td1983"

p g1 c1980 a4 t1984 "0" "1" "0" "0" "1" "0" "0" "td1984"

p g1 c1980 a5 t1985 "0" "1" "0" "0" "0" "1" "0" "td1985"

p g1 c1980 a6 t1986 "0" "1" "0" "0" "0" "0" "1" "td1986"

> PIMS(td.results[[4]],"p",simplified=F)
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group = Group 1

1981 1982 1983 1984 1985 1986

1980 22 23 24 25 26 27

1981 28 29 30 31 32

1982 33 34 35 36

1983 37 38 39

1984 40 41

1985 42

When RMark runs MARK with an individual covariate model, it does not standardize the covariates
(MARK does this on the fly) and MARK computes the real parameter estimates using the mean
of the covariate value which may not be particularly useful. We’ll again demonstrate the use of
covariate.predictions to show how you can get the predicted values of p with td=0 and 1 using
this final model 4. This is a useful example to show how you limit predictions for covariates to specific
parameters because in this case each covariate only applies to one parameter. To do so, the dataframe
that is passed to the function should contain a field named indexwhich is the parameter index for the
non-simplified PIM which is shown above. We want to compute a value of p for td=0 and td=1 for each
time which can be specified with indices 22 through 27. The following 3 commands create the necessary
dataframe as we can tell from the output:

> cov.df=data.frame(rbind(diag(rep(1,6)),diag(rep(0,6))))

> names(cov.df)=paste("td",1981:1986,sep="")

> cov.df$index=rep(22:27,2)

> cov.df

td1981 td1982 td1983 td1984 td1985 td1986 index

1 1 0 0 0 0 0 22

2 0 1 0 0 0 0 23

3 0 0 1 0 0 0 24

4 0 0 0 1 0 0 25

5 0 0 0 0 1 0 26

6 0 0 0 0 0 1 27

7 0 0 0 0 0 0 22

8 0 0 0 0 0 0 23

9 0 0 0 0 0 0 24

10 0 0 0 0 0 0 25

11 0 0 0 0 0 0 26

12 0 0 0 0 0 0 27

The following gets the predicted values and plots them for td=1 and td=0 as 2 different lines:

> p.est=covariate.predictions(td.results[[4]],data=cov.df)

> plot(1981:1986,p.est$estimates$estimate[1:6],type="b",ylim=c(0,1),xlab="Time",

ylab="Capture probability",pch=1)

> lines(1981:1986,p.est$estimates$estimate[7:12],type="b",pch=2)

> legend(x=1984,y=.2,legend=c("td=1","td=0"),pch=1:2)

C.17. Multi-strata example

So far we have only used the CJS model in describing the RMark package. Now we switch to giving
some examples with some of the other models supported by RMark (Table C.1). In general, there is
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little difference in using any of the models within RMark except for differences in the model parameters
and some subtle differences due to the model structure. Each of the models in RMark comes with an
example data set which shows a sample of analyses which often mimic the results in the sample MARK

.dbf for that model.

We start off with the Multistrata model because it is a fairly useful model and it follows naturally
from a discussion of time-varying covariates. The strata in the Multistratum model can be viewed
as a time-varying factor variable for each animal except that the stratum (state) for each animal need
not be known at each occasion. For the Multistrata model we use the mstrata data that corresponds
to the mssurv example that accompanies MARK. For the Multistrata model there are 3 parameters:
ψ (transition), S (survival) and p (capture). There are additional design data for these parameters to
accommodate the strata. The strata labels are determined by the alphabetic characters used in the
encounter history and need not be A to C like in this example. Below we show summaries for the
design data for ψ and p (S is similar) for this example:

> data(mstrata)

> mstrata.processed=process.data(mstrata,model="Multistrata")

> mstrata.ddl=make.design.data(mstrata.processed)

> summary(mstrata.ddl$Psi)

group cohort age time stratum tostratum Cohort Age Time

1:36 1:18 0:18 1: 6 A:12 A:12 Min. :0.0000 Min. :0.0000 Min. :0.000

2:12 1:12 2:12 B:12 B:12 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:1.000

3: 6 2: 6 3:18 C:12 C:12 Median :0.5000 Median :0.5000 Median :1.500

Mean :0.6667 Mean :0.6667 Mean :1.333

3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:2.000

Max. :2.0000 Max. :2.0000 Max. :2.000

A B

Min. :0.0000 Min. :0.0000

1st Qu.:0.0000 1st Qu.:0.0000

Median :0.0000 Median :0.0000

Mean :0.3333 Mean :0.3333

3rd Qu.:1.0000 3rd Qu.:1.0000

Max. :1.0000 Max. :1.0000

C toA toB toC

Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000

1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000

Median :0.0000 Median :0.0000 Median :0.0000 Median :0.0000

Mean :0.3333 Mean :0.3333 Mean :0.3333 Mean :0.3333

3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000

Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000

summary(mstrata.ddl$p)

group cohort age time stratum Cohort Age Time A

1:18 1:9 1:9 2:3 A:6 Min. :0.0000 Min. :1.000 Min. :0.000 Min. :0.0000

2:6 2:6 3:6 B:6 1st Qu.:0.0000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:0.0000

3:3 3:3 4:9 C:6 Median :0.5000 Median :1.500 Median :1.500 Median :0.0000

Mean :0.6667 Mean :1.667 Mean :1.333 Mean :0.3333

3rd Qu.:1.0000 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:1.0000

Max. :2.0000 Max. :3.000 Max. :2.000 Max. :1.0000

B C

Min. :0.0000 Min. :0.0000
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1st Qu.:0.0000 1st Qu.:0.0000

Median :0.0000 Median :0.0000

Mean :0.3333 Mean :0.3333

3rd Qu.:1.0000 3rd Qu.:1.0000

Max. :1.0000 Max. :1.0000

For all of the parameters, a stratum factor variable is included in the design data and a dummy
variable (0/1) is included and named with the stratum label. Forψ parameters which describe transition
from one stratum to another stratum, there are bothstratum and tostratum factor and dummy variables.

Additional design data can be added with merge_design.covariates which can add data based on
group and time variables. But if you want to add design data that is specific to particular strata then
you’ll need to write your own code. You can use the R function merge or if it is just one or two covariates
you can use specific R statements that add the covariate as in the following example that adds a distance
covariate to the mstrata example.

> run.mstrata=function()

{

# Process data

mstrata.processed=process.data(mstrata,model="Multistrata")

# Create default design data

mstrata.ddl=make.design.data(mstrata.processed) # Add distance covariate

mstrata.ddl$Psi$distance=0

mstrata.ddl$Psi$distance[mstrata.ddl$Psi$stratum=="A"&mstrata.ddl$Psi$tostratum=="B"]=12

mstrata.ddl$Psi$distance[mstrata.ddl$Psi$stratum=="A"&mstrata.ddl$Psi$tostratum=="C"]=5

mstrata.ddl$Psi$distance[mstrata.ddl$Psi$stratum=="B"&mstrata.ddl$Psi$tostratum=="C"]=2

mstrata.ddl$Psi$distance[mstrata.ddl$Psi$stratum=="B"&mstrata.ddl$Psi$tostratum=="A"]=12

mstrata.ddl$Psi$distance[mstrata.ddl$Psi$stratum=="C"&mstrata.ddl$Psi$tostratum=="A"]=5

mstrata.ddl$Psi$distance[mstrata.ddl$Psi$stratum=="C"&mstrata.ddl$Psi$tostratum=="B"]=2

# Create formula

Psi.distance=list(formula=~distance)

Psi.distance.time=list(formula=~distance+time)

p.stratum=list(formula=~stratum)

S.stratum=list(formula=~stratum)

model.list=create.model.list("Multistrata")

mstrata.results=mark.wrapper(model.list,data=mstrata.processed,ddl=mstrata.ddl)

return(mstrata.results)

}

> mstrata.results=run.mstrata()

> mstrata.results

The code that creates the models in the MARK example (mssurv) can be found by typing ?mstrata
in RMark or can be run by typing example(mstrata). Constructing models for the Multistrata
parameters is essentially the same as with the CJS model with the exception of ψ which is different
due to its unique structure. For each stratum, there are transition parameters to the other strata and
the probability of remaining in the stratum is computed by subtraction. Thus, for the mstrata example
there is a transition from A to B and A to C and A to A is computed by subtraction. The same holds for
the other strata. Thus, the stratum and tostratum factors are not fully crossed by default.

> table(mstrata.ddl$Psi[,c("stratum","tostratum")])

tostratum

stratum A B C
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A 0 6 6

B 6 0 6

C 6 6 0

Thus, to specify the interaction of stratum and tostratum to estimate each ψ parameter without
restriction you would use Psi.s=list(formula=∼-1+stratum:tostratum) and to fit the model with
time varying transitions the model the ψ specification would be

> Psi.sxtime=list(formula=~-1+stratum:tostratum:time)

The transition that is computed by subtraction can be changed with the subtract.stratum argument
of the make.design.data function. For this example the default call is equivalent to:

> mstrata.ddl=make.design.data(mstrata.processed,parameters=

list(Psi=list(subtract.stratum=c("A","B","C"))))

but they can also be set such that the same stratum is computed by subtraction for all stratum:

> mstrata.ddl=make.design.data(mstrata.processed,parameters=

list(Psi=list(subtract.stratum=c("B","B","B"))))

which does provide fully-crossed stratum and tostratum factors.

> table(mstrata.ddl$Psi[,c("stratum","tostratum")])

tostratum

stratum A C

A 6 6

B 6 6

C 6 6

But, that may not be the best reason for the choice of setting the subtract.stratum. Sometimes the
choice may be decided based on model convergence. Some choices will yield better convergence if one
or more of the ψ parameters is at a boundary.

In some cases, you may want to choose the subtract.stratum because you want to specify some
ψ values to be set to zero. The easiest way to constrain specific ψ to zero is to delete the design data
because that is the default value. However, the ψ that you want to set so zero cannot be computed by
subtraction, so you need to set the subtract.stratum appropriately. For example, what if you wanted
to set PsiAA=PsiBB=PsiCC=0? That could be done with the following code for the mstrata example:

> mstrata.ddl=make.design.data(mstrata.processed,parameters=

list(Psi=list(subtract.stratum=c("B","A","A"))))

> mstrata.ddl$Psi=mstrata.ddl$Psi[!(mstrata.ddl$Psi$stratum==

"A"&mstrata.ddl$Psi$tostratum=="A"),]

> mstrata.ddl$Psi=mstrata.ddl$Psi[!(mstrata.ddl$Psi$stratum==

"B"&mstrata.ddl$Psi$tostratum=="B"),]

> mstrata.ddl$Psi=mstrata.ddl$Psi[!(mstrata.ddl$Psi$stratum==

"C"&mstrata.ddl$Psi$tostratum=="C"),]

Appendix C. RMark - an alternative approach to building linear models in MARK



C.17. Multi-strata example C - 84

> mymodel=mark(mstrata.processed,mstrata.ddl)

> summary(mymodel,show.fixed=T)

Real Parameter Psi

Stratum:A To:A

1 2 3

1 0 0 0

2 0 0

3 0

Stratum:A To:C

1 2 3

1 0.5014851 0.5014851 0.5014851

2 0.5014851 0.5014851

3 0.5014851

Stratum:B To:B

1 2 3

1 0 0 0

2 0 0

3 0

Stratum:B To:C

1 2 3

1 0.5014063 0.5014063 0.5014063

2 0.5014063 0.5014063

3 0.5014063

Stratum:C To:B

1 2 3

1 0.4999394 0.4999394 0.4999394

2 0.4999394 0.4999394

3 0.4999394

Stratum:C To:C

1 2 3

1 0 0 0

2 0 0

3 0

In other cases, the choice may be determined based on the ability to restrict equality for specific
transitions. For example, if you had an example with 2 strata (A & B) and you wanted to set PsiAB=PsiBB
you coulddo thatby setting subtract.stratum=c("A","A") andfitting the intercept(constant)model
for ψ. That gets more difficult with 3 or more strata. However, sometimes you can use design data to
create constraints. For example, with the mstrata data, if you wanted to fit PsiAB=PsiBA=PsiCA and
PsiAC=PsiBC=PsiCC, then you could use the following subtract.stratum and formula:

> data(mstrata)
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> mstrata.processed=process.data(mstrata,model="Multistrata")

> mstrata.ddl=make.design.data(mstrata.processed,parameters

=list(Psi=list(subtract.stratum=c("A","B","B"))))

> mark(mstrata.processed,mstrata.ddl,model.parameters=list(Psi=list(formula=~toC)))

<...>

Real Parameter Psi

Stratum:A To:B

1 2 3

1 0.2175964 0.2175964 0.2175964

2 0.2175964 0.2175964

3 0.2175964

Stratum:A To:C

1 2 3

1 0.2132953 0.2132953 0.2132953

2 0.2132953 0.2132953

3 0.2132953

Stratum:B To:A

1 2 3

1 0.2175964 0.2175964 0.2175964

2 0.2175964 0.2175964

3 0.2175964

Stratum:B To:C

1 2 3

1 0.2132953 0.2132953 0.2132953

2 0.2132953 0.2132953

3 0.2132953

Stratum:C To:A

1 2 3

1 0.2175964 0.2175964 0.2175964

2 0.2175964 0.2175964

3 0.2175964

Stratum:C To:C

1 2 3

1 0.2132953 0.2132953 0.2132953

2 0.2132953 0.2132953

3 0.2132953

Now because the other parameters are computed by subtraction, it also set PsiAA=PsiBB=PsiCB.

What if you only wanted to set PsiBC=PsiCC? First, you could define a dummy variable bc.toC that
was 1 for strata B and C for the transitions to C as follows:

> mstrata.ddl$Psi$bc.toC=0
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> mstrata.ddl $Psi$bc.toC [mstrata.ddl $Psi$stratum%in%c("B","C")&

mstrata.ddl $Psi$tostratum=="C"]=1

Then using the same subtract.stratum values you would naturally try:

mark(mstrata.processed,mstrata.ddl,model.parameters=list(Psi=list(formula=~bc.toC)))

<...>

Real Parameter Psi

Stratum:A To:B

1 2 3

1 0.222929 0.222929 0.222929

2 0.222929 0.222929

3 0.222929

Stratum:A To:C

1 2 3

1 0.222929 0.222929 0.222929

2 0.222929 0.222929

3 0.222929

Stratum:B To:A

1 2 3

1 0.1731952 0.1731952 0.1731952

2 0.1731952 0.1731952

3 0.1731952

Stratum:B To:C

1 2 3

1 0.3962874 0.3962874 0.3962874

2 0.3962874 0.3962874

3 0.3962874

Stratum:C To:A

1 2 3

1 0.1731952 0.1731952 0.1731952

2 0.1731952 0.1731952

3 0.1731952

Stratum:C To:C

1 2 3

1 0.3962874 0.3962874 0.3962874

2 0.3962874 0.3962874

3 0.3962874

You might have been expecting that PsiAB=PsiBA=PsiCA=PsiAC but now we get PsiAB=PsiAC and
PsiCA=PsiBA but the pairs differ. From the design matrix with just 2 columns you would not expect to
get 3 different estimates. To understand what is happening you need to understand the mlogit link and
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how it relates to the β’s. Below are the equations for each of the above ψ parameters using β0 as the
intercept and β1 as the value for bc.toC:

ψAB
� ψAC

�
exp(β0)

1 + exp(β0) + exp(β0)

ψBA
� ψCA

�
exp(β0)

1 + exp(β0) + exp(β0 + β1)

ψBC
� ψCC

�
exp(β0 + β1)

1 + exp(β0) + exp(β0 + β1)

Due to the way the mlogit link is constructed, if you restrict parameters across a partial subset of the
strata, then it may not be possible to construct the model you want. The solution is to change the link
function to logit as shown below.

> mark(mstrata.processed,mstrata.ddl,model.parameters

=list(Psi=list(formula=~bc.toC,link="logit")))

<...>

Real Parameter Psi

Stratum:A To:B

1 2 3

1 0.1993645 0.1993645 0.1993645

2 0.1993645 0.1993645

3 0.1993645

Stratum:A To:C

1 2 3

1 0.1993645 0.1993645 0.1993645

2 0.1993645 0.1993645

3 0.1993645

Stratum:B To:A

1 2 3

1 0.1993645 0.1993645 0.1993645

2 0.1993645 0.1993645

3 0.1993645

Stratum:B To:C

1 2 3

1 0.3990723 0.3990723 0.3990723

2 0.3990723 0.3990723

3 0.3990723

Stratum:C To:A

1 2 3
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1 0.1993645 0.1993645 0.1993645

2 0.1993645 0.1993645

3 0.1993645

Stratum:C To:C

1 2 3

1 0.3990723 0.3990723 0.3990723

2 0.3990723 0.3990723

3 0.3990723

Why not use the logit link all of the time? You can do that but the mlogit link was chosen as the
default for RMark because it provides a natural constraint to make sure the real values sum to 1. If
you choose to use the logit link, then just beware that MARK enforces the constraint by penalizing
the likelihood and that may not be as stable numerically. Clearly, to build some models you may be
required to use the logit link. Make sure to look at the penalty value in the MARK output to make
sure that the penalty value is 0. The logit link does have the additional advantage that the PIMS can be
simplified whereas they cannot be simplified with the mlogit link. But, beware that some of the RMark

code for computation on the results from MARK has been written specifically for the mlogit link.

The ψ estimates for the subtract.stratum are not given by MARK. Obviously, computing the point
estimate is simple by summing the other values and subtracting from 1. However, computing the
standard error and confidence interval is more tedious. To avoid doing this by hand, the function
TransitionMatrix was created to compute each real parameter, standard error and confidence interval.
At present, it only works if you use the mlogit link withψ. See the help file for that function andget.real
for more details. The following will run the example code for mstrata and then compute the transition
matix.

> example(mstrata)

> Psilist=get.real(mstrata.results[[1]],"Psi",vcv=T)

> Psivalues=Psilist$estimates

> TransitionMatrix(Psivalues[Psivalues$time==1,],vcv.real=Psilist$vcv.real)

$TransitionMat

A B C

A 0.6020772 0.1993450 0.1985778

B 0.1993452 0.6020771 0.1985777

C 0.2003789 0.2003787 0.5992424

> $se.TransitionMat

A B C

A 0.01863979 0.01412477 0.01413614

B 0.01412478 0.01863984 0.01413616

C 0.01422173 0.01422172 0.01871430

> $lcl.TransitionMat

A B C

A 0.5650384 0.1730952 0.1723155
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B 0.1730954 0.5650382 0.1723153

C 0.1739486 0.1739485 0.5620711

> $ucl.TransitionMat

A B C

A 0.6379827 0.2284757 0.2277414

B 0.2284760 0.6379827 0.2277414

C 0.2297083 0.2297081 0.6353057

C.18. Nest survival example

The nest survival model is quite different than most of the other models in MARK because it is not

based on an encounter history. At present, neither convert.inp nor import.chdata will handle data
entry for nest survival data. The data must be imported into an R dataframe and certain fields must be
included with specific names. Two examples are provided in RMark. The killdeer example is the data
that accompanies MARK and the mallard example provided by Jay Rotella is documented in

Rotella, J. J., S. J. Dinsmore, T. L. Shaffer. 2004. Modeling nest-survival data: a comparison of
recently developed methods that can be implemented in MARK and SAS. Animal Biodiver-

sity and Conservation 27:187-204.

The dataframe must contain the following variables with these names:

• FirstFound: day the nest was first found

• LastPresent: last day that a chick was present in the nest

• LastChecked: last day the nest was checked

• Fate: fate of the nest; 0=hatch and 1=depredated

It can also contain a field Freq which is the frequency of nests with this data. If it is always 1 then it
is not needed. The dataframe can also contain any number of other covariate or identifier fields. If your
dataframe contains a variable AgeDay1, which is the age of the nest on the first occasion then you can
use a variable called NestAge in the formula which will create a set of time-dependent covariates named
NestAge1,NestAge2,. . . ,NestAge(nocc-1) which will provide a way to incorporate the age of the nest in
the model. The use of AgeDay1 and NestAgewas added because the age covariate in the design data for
the parameter S (survival) assumes all nests are the same age and is not particularly useful. This effect
could be incorporated by using the add() function in the design matrix but RMark does not have any
capability for doing that and it is easier to create a time-dependent covariate to do the same thing.

The file killdeer.inp and mallard.txt come with RMark. The code below provides examples for
importing and setting up nest survival data for RMark. Modify the path to Rmark as needed.

# EXAMPLE CODE FOR CONVERSION OF .INP TO NECESSARY DATA STRUCTURE

# read in killdeer.inp file

> killdeer=scan("C:/Program Files/R/R-2.6.0/library/RMark/data/killdeer.inp",

what="character",sep="\n")

# strip out ; and write out all but first 2 lines which contain comments
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> write(sub(";","",killdeer[3:20]),"killdeer.txt")

# read in as a dataframe from tab-delimited text file and assign names

> killdeer=read.table("killdeer.txt")

> names(killdeer)=c("id","FirstFound","LastPresent","LastChecked",

"Fate","Freq")

# Read in data, which are in a simple text file that

# looks like a MARK input file but (1) with no comments or semicolons and

# (2) with a 1st row that contains column labels

> mallard=read.table("C:/Program Files/R/R-2.6.0/library/RMark/data/mallard.txt",

header=TRUE)

The help files for killdeer and mallard provide example code for analysis of nest survival data. In
particular, the script in the mallard help file is a nice example constructed by Jay Rotella. It demonstrates
the benefits of RMark and provides a useful model for scripting an entire analysis from model building
to prediction and plotting. It uses an alternative approach with find.covariates, fill.covariates
and compute.real functions which were created before covariate.predictions. We have extended
this example further here to include a 3-D plot:

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#

# Example of use of RMark for modeling nest survival data - Mallard nests example #

# The example runs the 9 models that are used in the Nest Survival chapter #

# of the Gentle Introduction to MARK and that appear in Table 3 (page 198) of #

# Rotella, J.J., S. J. Dinsmore, T.L. Shaffer. 2004. Modeling nest-survival data: #

# a comparison of recently developed methods that can be implemented in MARK and SAS. #

# Animal Biodiversity and Conservation 27:187-204. #

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#

> data(mallard)

# Treat dummy variables for habitat types as factors

> mallard$Native=factor(mallard$Native)

> mallard$Planted=factor(mallard$Planted)

> mallard$Wetland=factor(mallard$Wetland)

> mallard$Roadside=factor(mallard$Roadside)

# Examine a summary of the dataset

> summary(mallard)

# Write a function for evaluating a set of competing models

> run.mallard=function()

{

# 1. A model of constant daily survival rate (DSR)

Dot=mark(mallard,nocc=90,model="Nest",model.parameters=list(S=list(formula=~1)))

# 2. DSR varies by habitat type - treats habitats as factors

# and the output provides S-hats for each habitat type

Hab=mark(mallard,nocc=90,model="Nest",

model.parameters=list(S=list(formula=~Native+Planted+Wetland)),

groups=c("Native","Planted","Wetland"))

# 3. DSR varies with vegetation thickness (Robel reading)

# Note: coefficients are estimated using the actual covariate

# values. They are not based on standardized covariate values.

Robel=mark(mallard,nocc=90,model="Nest",
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model.parameters=list(S=list(formula=~Robel)))

# 4. DSR varies with the amount of native vegetation in the surrounding area

# Note: coefficients are estimated using the actual covariate

# values. They are not based on standardized covariate values.

PpnGr=mark(mallard,nocc=90,model="Nest",model.parameters=list(S=list(formula=~PpnGrass)))

# 5. DSR follows a trend through time

TimeTrend=mark(mallard,nocc=90,model="Nest",model.parameters=list(S=list(formula=~Time)))

# 6. DSR varies with nest age

Age=mark(mallard,nocc=90,model="Nest",model.parameters=list(S=list(formula=~NestAge)))

# 7. DSR varies with nest age & habitat type

AgeHab=mark(mallard,nocc=90,model="Nest",

model.parameters=list(S=list(formula=~NestAge+Native+Planted+Wetland)),

groups=c("Native","Planted","Wetland"))

# 8. DSR varies with nest age & vegetation thickness

AgeRobel=mark(mallard,nocc=90,model="Nest",

model.parameters=list(S=list(formula=~NestAge+Robel)))

# 9. DSR varies with nest age & amount of native vegetation in surrounding area

AgePpnGrass=mark(mallard,nocc=90,model="Nest",

model.parameters=list(S=list(formula=~NestAge+PpnGrass)))

#

# Return model table and list of models

#

return(collect.models() )

}

> mallard.results=run.mallard() # This runs the 9 models above and takes a minute or 2

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#

# Examine table of model-selection results #

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#

> mallard.results # print model-selection table to screen

> options(width=100) # set page width to 100 characters

> sink("results.table.txt") # capture screen output to file

> print.marklist(mallard.results) # send output to file

> sink() # return output to screen

> system("notepad results.table.txt",invisible=FALSE) # view results in notepad

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#

# Examine output for constant DSR model #

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#

> mallard.results$Dot # print MARK output to designated text editor

> mallard.results$Dot$results$beta # view estimated beta for model in R

> mallard.results$Dot$results$real # view estimated DSR estimate in R

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#

# Examine output for ’DSR by habitat’ model #

Appendix C. RMark - an alternative approach to building linear models in MARK



C.18. Nest survival example C - 92

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#

> mallard.results$Hab # print MARK output to designated text editor

> mallard.results$Hab$design.matrix # view the design matrix that was used

> mallard.results$Hab$results$beta # view estimated beta for model in R

> mallard.results$Hab$results$beta.vcv # view variance-covariance matrix for beta’s

> mallard.results$Hab$results$real # view the estimates of Daily Survival Rate

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#

# Examine output for best model #

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#

> mallard.results$AgePpnGrass # print MARK output to designated text editor

> mallard.results$AgePpnGrass$results$beta # view estimated beta’s in R

> mallard.results$AgePpnGrass$results$beta.vcv # view estimated var-cov matrix in R

# To obtain estimates of DSR for various values of ’NestAge’ and ’PpnGrass’

# some work additional work is needed.

# First, a simpler name for the object containing the preferred model results

> AgePpnGrass=mallard.results$AgePpnGrass

# Build design matrix with ages and ppn grass values of interest

> fc <- find.covariates(AgePpnGrass,mallard)

# iterate through sequence of ages and proportion grassland

# values to build prediction surfaces

> seq.ages <- seq(2, 26, by=2)

> seq.ppn <- seq(0.01,0.99,length=89)

> point <- matrix(nrow=89, ncol=length(seq.ages))

> lower <- matrix(nrow=89, ncol=length(seq.ages))

> upper <- matrix(nrow=89, ncol=length(seq.ages))

> colnum <- 0

> for (iage in seq.ages) {

fc$value[1:89]=iage # assign sequential age

colnum <- colnum + 1

fc$value[fc$var=="PpnGrass"]=seq.ppn # assign range of values to PpnGrass

design=fill.covariates(AgePpnGrass,fc) # fill design matrix with values

point[,colnum] <- compute.real(AgePpnGrass,design=design)[,"estimate"]

lower[,colnum] <- compute.real(AgePpnGrass,design=design)[,"lcl"]

upper[,colnum] <- compute.real(AgePpnGrass,design=design)[,"ucl"]

}

# Predicted surfaces shown in a window that can be rotated and zoomed by user

# left mouse button=rotate, right mouse=zoom

> library(rgl)

> open3d()

> bg3d("white")

> material3d(col="black")

> persp3d(seq.ppn, seq.ages, point, aspect=c(1, 1, 0.5), col = "lightblue",

xlab = "grass", ylab = "age", zlab = "DSR", zlim=range(c(upper,lower)),

main="Daily survival rate (with CI)", sub="for model ’age and proportion grassland’")

> persp3d(seq.ppn, seq.ages, upper, aspect=c(1, 1, 0.5), col = "yellow", add=TRUE)

> persp3d(seq.ppn, seq.ages, lower, aspect=c(1, 1, 0.5), col = "yellow", add=TRUE)

> grid3d(c("x","y+","z"))

# see rgl.snapshot(file="snapshot.png") for creating png image of generated surfaces
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The script fits 9 models to the data, then goes on to examine the best model and produce predicted
point estimates and confidence intervals for a grid of values for the covariates (proportion native
vegetation, and nest age). The 3 surfaces are then graphed, using a dynamic graphics library available
in R, named rgl. This permits viewing of the surface by rotating and tilting, then capturing the most
illuminating view of the surfaces (shown below).

C.19. Occupancy examples

The occupancy models are more similar to the encounterhistory models in MARK than the nest survival
example but the histories relate to sites rather than animals and the values are presence(1)/absence(0)
or counts of animals at a site. At present there are 13 different occupancy models in MARK that are
supported by RMark:

Occupancy, OccupHet, RDOccupEG, RDOccupPE, RDOccupPG, RDOccupHetEG, RDOccupHetPE,

RDOccupHetPG, OccupRNPoisson, OccupRNNegBin, OccupRPoisson, OccupRNegBin, MSOccupancy.

Hetmeans it uses the Pledger mixture for the detection probability model and those with RD are the
robust design models. The 2 letter designations for the RD models are shorthand for the parameters that
are estimated: 1) for EG, ψ, ǫ, and γ are estimated, 2) for PE, γ is dropped and 3) for PG, ǫ is dropped.
For the latter 2 models, ψ can be estimated for each primary occasion.

The last 5 models include the Royle/Nichols count (OccupRPoisson, OccupRNegBin) and presence
(OccupRNPoisson, OccupRNNegBin) models with Poisson and Negative Bionomial versions and the
multi-state occupancy model (MSOccupancy). Each of the models and parameters are shown in Table
C.1.

Example datasets are provided with RMark for each of the models. See the example datasets
salamander and weta for Occupancy and OccupHet, Donovan.7 for an example of OccupRNPoisson and
OccupRNNegBin, Donovan.8 for an example of OccupRPoisson and OccupRNegBin, RDSalamander for
an example of the robustdesign models andNicholsMSOccupancy foran example ofMSOccupancy. Here
we provide more in-depth description and examples for the Occupancy and MSOccupancy models.

Imagine a scenario in which you wanted to model species-habitat dependent occupancy with detec-
tion probability dependent on effort which varied by occasion and site.
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An example dataset (mydata.txt) might look as follows in a tab-delimited file with the variable names
in the first row:

ch freq Species Habitat Effort1 Effort2 Effort3 Effort4 Effort5

00111 1 LGB Forest 5 2 14 2 5

00111 1 LGB Forest 5 3 16 3 5

10011 1 LGB Forest 4 2 11 2 4

10110 1 LGB Forest 5 3 15 3 5

00.00 1 LBB Forest 5 3 16 3 5

00000 1 LBB Forest 6 3 19 3 6

00010 1 LBB Forest 3 1 8 1 3

000.0 1 LBB Forest 5 3 16 3 5

00000 1 LBB Forest 4 2 13 2 4

00111 1 LBB Forest 4 2 12 2 4

00000 1 LBB Forest 5 2 14 2 5

00111 1 LBB Forest 3 2 10 2 3

00000 1 LBB Grassland 4 2 11 2 4

00000 1 LBB Grassland 3 2 10 2 3

00000 1 LBB Grassland 4 2 12 2 4

00000 1 LBB Grassland 2 1 6 1 2

00100 1 LGB Grassland 5 2 15 2 5

00100 1 LGB Grassland 4 2 13 2 4

Note the use of “.” for cases in which as site was not visited. The file could be imported with the
command

> CovOccup=import.chdata("mydata.txt",field.types=c("n","f","f","n","n","n","n","n"))

which denotes that freq is a numeric field ("n"), Species and Habitat are factor variables ("f") and
Effort1 → Effort5 are numeric. A field.type is not given for ch because it is always assumed to
be a character string and must always be the first field in each record. The naming of Effort1→ Effort5
assumes that you’ll use the default of begin.time=1 because it is a time-varying covariate. An example
run in RMark could be as follows:

# fit an additive Species+Habitat Psi model and Effort model for p

> mark(CovOccup,model="Occupancy",group=c("Species","Habitat"),

model.parameters=list(Psi=list(formula=~Species+Habitat),p=list(formula=~Effort)))

Time-varying covariates are particularly useful for occupancy models because they relate to the site
so they should always be known for each time (occasion). In most cases the time-varying covariates
would be values like effort, weather, number of observers for detection probability but they could also
be used for ψ. If the time-varying covariates are factor variables then you will need to create a dummy
variable for the levels. For example, let’s say you had 2 different observers doing the site visits and you
thought that one observer might be more diligent than the other at searching. A factor variable with k

levels requires k−1 dummy variables. In this case, k � 2, so we only need one dummy variable that we’ll
assign to observer2. If the site was visited by observer2 on occasion j then the variable observer2j
would be assigned a 1 and a 0 otherwise. You would need observer21→ observer2n if you had n visits
(occasions) to each site.
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Some example data might look as follows in which observer 2 visited site 1 on occasions 2 and 4, and
site 2 on occasions 1 and 5:

ch freq Species Habitat Observer21 Observer22 Observer23 Observer24 Observer25

00111 1 LGB Forest 0 1 0 1 0

00111 1 LGB Forest 1 0 0 0 1

The variable Observer2 could be used in place of Effort in the example formulas shown above.
If the factor covariate had more levels then you would have to add additional variables and they
would also be included in the formula. You can think of those variables as you would columns
in a design matrix except that their values would vary across sites/occasions. However, if you get
many levels of the factor variable and many site visits, it is rather onerous to create all of those
variables. Therefore, with a slightly clever usage of model.matrix, we created and added a function
called make.time.factor to convert time-varying factor variables into a set of time-varying dummy
variables. We demonstrate its usage with the weta dataset which is analyzed in MacKenzie et al.
(2006) on pg 116-122, and which accompanies the program PRESENCE (which can be obtained from
http://www.mbr-pwrc.usgs.gov/software/presence.html). From their Excel file we constructed the
text file weta.txtwhich is in the data subdirectory of the RMark package. The following is the first few
lines of the data:

ch Browse Obs1 Obs2 Obs3 Obs4 Obs5

0000. 1 1 3 2 3 .

0000. 1 1 3 2 3 .

0001. 1 1 3 2 3 .

0000. 0 1 3 2 3 .

0000. 1 1 3 2 3 .

The variables Obs1 → Obs5 contain the number of the observer that conducted the visit 1 to 5 and
a “.” if the site was not visited. Each variable is read in as a factor variable with the following call to
import.chdata:

> weta=import.chdata("weta.txt",field.types=c(rep("f",6)))

Each observer factor has 3 levels: 1,2,3 (excluding "."). To construct, dummy variables from a factor
variable, one level is chosen as an intercept (observer 3 in this case) and you need k − 1 (3-1=2)
dummy variables for each time (visit). As with the time-varying effort variable above, these time-
varying covariates have a suffix that creates a linkage with the time (visit). The following call to
make.time.factor, creates those dummy variables (Obs11,. . . ,Obs15,Obs21,. . . ,Obs25) from 1 → 5 and
replaces them in the data frame:

> summary(weta)

ch Browse Obs1 Obs2 Obs3 Obs4 Obs5

Length:72 0:37 .:19 .:15 .:12 .:24 .:28

Class :character 1:35 1:21 1:17 1:20 1:18 1:15

Mode :character 2:12 2:20 2:20 2:15 2:14

3:20 3:20 3:20 3:15 3:15

> weta=make.time.factor(weta,"Obs",1:5,intercept=3)

> summary(weta)
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ch Browse Obs11 Obs21 Obs12 Obs22

Length:72 0:37 Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000

Class :character 1:35 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000

Mode :character Median :0.0000 Median :0.0000 Median :0.0000 Median :0.0000

Mean :0.2917 Mean :0.1667 Mean :0.2361 Mean :0.2778

3rd Qu.:1.0000 3rd Qu.:0.0000 3rd Qu.:0.0000 3rd Qu.:1.0000

Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000

Obs13 Obs23 Obs14 Obs24 Obs15

Min. :0.0000 Min. :0.0000 Min. :0.00 Min. :0.0000 Min. :0.0000

1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.00 1st Qu.:0.0000 1st Qu.:0.0000

Median :0.0000 Median :0.0000 Median :0.00 Median :0.0000 Median :0.0000

Mean :0.2778 Mean :0.2778 Mean :0.25 Mean :0.2083 Mean :0.2083

3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:0.25 3rd Qu.:0.0000 3rd Qu.:0.0000

Max. :1.0000 Max. :1.0000 Max. :1.00 Max. :1.0000 Max. :1.0000

Obs25

Min. :0.0000

1st Qu.:0.0000

Median :0.0000

Mean :0.1944

3rd Qu.:0.0000

Max. :1.0000

Then the phrase Obs1+Obs2 can be used in a formula to include an observer effect. See the help for
weta or use example(weta) to explore the example further.

If by chance or design, a single observer was used for all sites on each occasion but the observers
varied with occasion, then it isn’t necessary to use a time-varying covariate and you can simply assign
the observer level to the design data and use it in a model as follows (do not expect reasonable results
with just 2 lines of data):

mydata.txt contents:

ch freq Species Habitat

00111 1 LGB Forest

00111 1 LGB Forest

> CovOccup=import.chdata("mydata.txt",field.types=c("n",rep("f",2)))

> CovOccup.process=process.data(CovOccup,model="Occupancy")

> CovOccup.ddl=make.design.data(CovOccup.process)

> CovOccup.ddl$p=merge_design.covariates(CovOccup.ddl$p,

df=data.frame(time=1:5,observer=c("2","3","1","2","3")))

> CovOccup.ddl$p

group age time Age Time observer

1 1 0 1 0 0 2

2 1 1 2 1 1 3

3 1 2 3 2 2 1

4 1 3 4 3 3 2

5 1 4 5 4 4 3

> mark(CovOccup.process,CovOccup.ddl,model.parameters=list(p=list(formula=~observer)))
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For this simple case, we could have simply used an assignment statement to create observer, but
had there been groups of sites, then merge_design.covariates is a better approach. Also, note the
use of quote marks for the observer value to create a factor variable. If the quotes had not been used,
the variable would have been improperly treated as a numeric variable (i.e., observer 2 effect is twice
observer 1 effect).

Next, we’ll move onto an example analysis of the MSOccupancy model that can be compared to the
results in the recent manuscript by Nichols et al. (2007). We chose this model to demonstrate the
relatively rare situation where parameters can share columns in the design matrix. As described in
section C.3, most parameters do not share columns in the design matrix and for the exceptions, the
argument share=TRUE or FALSE was added to the formula for the dominant parameter which was
specified arbitrarily (p1 in this case). In this case, p1 and p2 are detection probabilities for states 1 and
2 and often we will want to fit models where these parameters are equated or share covariate values.
When share=TRUE, only a formula for the dominant parameter is specified but if share=FALSE, then a
formula for both parameters are expected.

Nichols et al. (2007) specified 4 different models for detection probability: 1) variation in time but not
by state (1/2), 2) time-invariant and p1 � p2 , 3) time-invariant but p1 , p2, and 4) time and state varying.
For the first 2 models, p1 and p2 share columns in the design matrix and in the last 2 they do not share
columns. The parameter specifications for these models are:

1. p1=list(formula=∼time,share=TRUE)

2. p1=list(formula=∼1,share=TRUE)

3. p1=list(formula=∼1,share=FALSE)
p2=list(formula=∼1)

4. p1=list(formula=∼time,share=FALSE)
p2=list(formula=∼time)

The script with these formulas that replicates the results of Nichols et al. (2007) is shown below. Note
that there are some very minor differences in the AIC values which may be due to rounding.

# To create the data file use:

# NicholsMSOccupancy=convert.inp("NicholsMSOccupancy.inp")

#

# Create a function to fit the 12 models in Nichols et al (2007).

> do.MSOccupancy=function()

{

# Get the data

data(NicholsMSOccupancy)

# Define the models; default of Psi1=~1 and Psi2=~1 is assumed

# p varies by time but p1t=p2t

p1.p2equal.by.time=list(formula=~time,share=TRUE)

# time-invariant p p1t=p2t=p1=p2

p1.p2equal.dot=list(formula=~1,share=TRUE)

#time-invariant p1 not = p2

p1.p2.different.dot=list(p1=list(formula=~1,share=FALSE),p2=list(formula=~1))

# time-varying p1t and p2t

p1.p2.different.time=list(p1=list(formula=~time,share=FALSE),p2=list(formula=~time))

# delta2 model with one rate for times 1-2 and another for times 3-5; delta2 defined below

Delta.delta2=list(formula=~delta2)

Delta.dot=list(formula=~1) # constant delta
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Delta.time=list(formula=~time) # time-varying delta

# Process the data for the MSOccupancy model

NicholsMS.proc=process.data(NicholsMSOccupancy,model="MSOccupancy")

# Create the default design data

NicholsMS.ddl=make.design.data(NicholsMS.proc)

# Add a field for the Delta design data called delta2.

# It is a factor variable with 2 levels: times 1-2, and times 3-5.

NicholsMS.ddl=add.design.data(NicholsMS.proc,NicholsMS.ddl,

"Delta",type="time",bins=c(0,2,5),name="delta2")

# Create a list using the 4 p models and 3 delta models (12 models total)

cml=create.model.list("MSOccupancy")

# Fit each model in the list and return the results

return(mark.wrapper(cml,data=NicholsMS.proc,ddl=NicholsMS.ddl))

}

# Call the function to fit the models and store it in MSOccupancy.results

> MSOccupancy.results=do.MSOccupancy()

# Print the model table for the results

> print(MSOccupancy.results)

# Adjust model selection by setting chat=1.74 used in the paper

> MSOccupancy.results=adjust.chat(chat=1.74,MSOccupancy.results)

# Print the adjusted model selection results table

> print(MSOccupancy.results)

The script also illustrates how to use add.design.data to accommodate their use of delta2 and it
also shows a feature that was recently added to create.model.list and mark.wrapper. These functions
were originally designed to construct all possible combinations of parameter specifications. However,
this example shows how those functions can now cope with lists that include more than one parameter
specification. For example, the p2 formula here will only be paired with the p1 formula contained in the
list

> p1.p2.different.time=list(p1=list(formula=~time,share=FALSE),p2=list(formula=~time))

and not with other p1 formula where it would not be appropriate (i.e., share=TRUE).

C.20. Known fate example

The known fate model (model="Known") has only one parameter S for survival. It uses the LD format
for data entry. Below is the data description from the MARK help file (see also Chapters 2 and 16):

"The data coding for the known fate model requires a 1 in the L part of the encounter history for every occasion

that the animal is alive at the start of the interval and its fate is known through the interval. A 10 means the

animal lived through the interval, and a 11 means the animal died during the interval. There is no code of 01

allowed in the known fate model – this means that the animal was not alive at the start of the interval, so could not

have died. To censor an animal for an interval where you don’t know what was happening, use the 00 code. Thus,

the encounter history 00101000101100means that the animal lived through intervals 2 and 3, was censored for

interval 4, lived through 5, and died in interval 6.”

We will use the Blackduck known-fate example that accompanies MARK and RMark and using
example(Blackduck) to run some of the models that are in the Blckduck.dbf/.fpt files with MARK.
Our main focus in this section will be to show some of the flexibility in RMark for handling time and
age that can be useful with analysis of known fate data that span several years and ages with possibly
overlapping time intervals. We will use (and likely abuse) the Blackduck example by arbitrarily dividing
the data in half with the first half initiated 1 Jan 2000 and the second half in 1 Jan 2001. We’ll also pretend
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that each occasion represents 0.25 years, so the 8 occasions represent 2 years. Thus, the data for 2000
will span 1 Jan 2000 - 31 Dec 2001 and the data for 2001 will span 1 Jan 2001 to 31 Dec 2002. Also, weŠll
have birds that were initially age 0 and age 1, so they can range in ages from 0 to 3 throughout the course
of the data. The following code retrieves and defines the data with year and BirdAge changed to factor
variables show they can be used to define groups:

data(Blackduck)

Blackduck$year=c(rep(2000,24),rep(2001,24))

Blackduck$year=factor(Blackduck$year)

Blackduck$BirdAge=factor(Blackduck$BirdAge)

Next we want to process the data and set the parameters to define the group, time and age structure
that we have created. The group structure is defined with groups=c("year","BirdAge") and age.var=2
specifies that the second group variable ("BirdAge") should be treated as the factor for variable for
defining initial ages. The age of the animals at the time of release for the 2 age groups were specified
with initial.age=c(0,1). They could have been different from the values of BirdAge. Next, the time
intervals between occasions are set at 0.25 for each occasion. Finally, the initial time of release for each
of the 4 groups is specified with begin.time=c(2000,2001,2000,2001). Had the ordering of the group
variables been swapped then it would have been specified as begin.time=c(2000,2000,2001,2001)
with age.var=1.

> Blackduck.process=process.data(Blackduck,model="Known",groups=c("year","BirdAge"), age.var=2,

initial.age=c(0,1), time.intervals=rep(.25,8), begin.time=c(2000,2001,2000,2001))

Now let’s create and examine the design data to understand what has been done.

> Blackduck.ddl=make.design.data(Blackduck.process)

> Blackduck.ddl

$S

group age time Age Time year BirdAge

1 20000 0.25 2000.25 0.25 0.00 2000 0

2 20000 0.5 2000.5 0.50 0.25 2000 0

3 20000 0.75 2000.75 0.75 0.50 2000 0

4 20000 1 2001 1.00 0.75 2000 0

5 20000 1.25 2001.25 1.25 1.00 2000 0

6 20000 1.5 2001.5 1.50 1.25 2000 0

7 20000 1.75 2001.75 1.75 1.50 2000 0

8 20000 2 2002 2.00 1.75 2000 0

9 20010 0.25 2001.25 0.25 1.00 2001 0

10 20010 0.5 2001.5 0.50 1.25 2001 0

11 20010 0.75 2001.75 0.75 1.50 2001 0

12 20010 1 2002 1.00 1.75 2001 0

13 20010 1.25 2002.25 1.25 2.00 2001 0

14 20010 1.5 2002.5 1.50 2.25 2001 0

15 20010 1.75 2002.75 1.75 2.50 2001 0

16 20010 2 2003 2.00 2.75 2001 0

17 20001 1.25 2000.25 1.25 0.00 2000 1

18 20001 1.5 2000.5 1.50 0.25 2000 1

19 20001 1.75 2000.75 1.75 0.50 2000 1
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20 20001 2 2001 2.00 0.75 2000 1

21 20001 2.25 2001.25 2.25 1.00 2000 1

22 20001 2.5 2001.5 2.50 1.25 2000 1

23 20001 2.75 2001.75 2.75 1.50 2000 1

24 20001 3 2002 3.00 1.75 2000 1

25 20011 1.25 2001.25 1.25 1.00 2001 1

26 20011 1.5 2001.5 1.50 1.25 2001 1

27 20011 1.75 2001.75 1.75 1.50 2001 1

28 20011 2 2002 2.00 1.75 2001 1

29 20011 2.25 2002.25 2.25 2.00 2001 1

30 20011 2.5 2002.5 2.50 2.25 2001 1

31 20011 2.75 2002.75 2.75 2.50 2001 1

32 20011 3 2003 3.00 2.75 2001 1

As you can see, each of the 4 groups (year-age) has 8 S parameters and it assigns the proper time
and age values; although it is labeling based on the end of the interval unlike with ϕ. This allows easy
modeling of age and time effects even though the cohorts overlap and start at different times and ages.
While it is possible to do the same with MARK, the pre-defined models are not setup correctly and the
necessary bookkeeping with the PIMS is even more difficult because the time is not the same for each
column in the PIM. In RMark, we can easily create Age and Timemodels as follows:

> mark(Blackduck.process,Blackduck.ddl,model.parameters=list(S=list(formula=~Time)))

<...>

Real Parameter S

1 2 3 4 5

Group:year2000.BirdAge0 0.4662898 0.5396722 0.6113742 0.6785598 0.7390873

Group:year2001.BirdAge0 0.7390873 0.7917159 0.8360831 0.8725213 0.9018106

Group:year2000.BirdAge1 0.4662898 0.5396722 0.6113742 0.6785598 0.7390873

Group:year2001.BirdAge1 0.7390873 0.7917159 0.8360831 0.8725213 0.9018106

6 7 8

Group:year2000.BirdAge0 0.7917159 0.8360831 0.8725213

Group:year2001.BirdAge0 0.9249493 0.9429801 0.9568809

Group:year2000.BirdAge1 0.7917159 0.8360831 0.8725213

Group:year2001.BirdAge1 0.9249493 0.9429801 0.9568809

mark(Blackduck.process,Blackduck.ddl,model.parameters=list(S=list(formula=~Age)))

<...>

Real Parameter S

1 2 3 4 5

Group:year2000.BirdAge0 0.8116342 0.8024874 0.7930097 0.7832001 0.7730587

Group:year2001.BirdAge0 0.8116342 0.8024874 0.7930097 0.7832001 0.7730587

Group:year2000.BirdAge1 0.7730587 0.7625866 0.7517865 0.7406622 0.7292189

Group:year2001.BirdAge1 0.7730587 0.7625866 0.7517865 0.7406622 0.7292189

6 7 8

Group:year2000.BirdAge0 0.7625866 0.7517865 0.7406622
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Group:year2001.BirdAge0 0.7625866 0.7517865 0.7406622

Group:year2000.BirdAge1 0.7174632 0.7054034 0.6930490

Group:year2001.BirdAge1 0.7174632 0.7054034 0.6930490

mark(Blackduck.process,Blackduck.ddl,model.parameters=list(S=list(formula=~Age+Time)))

<...>

Real Parameter S

1 2 3 4 5

Group:year2000.BirdAge0 0.6781671 0.6936336 0.7086762 0.7232748 0.7374130

Group:year2001.BirdAge0 0.9380706 0.9421129 0.9459066 0.9494650 0.9528010

Group:year2000.BirdAge1 0.2809199 0.2956494 0.3108173 0.3264028 0.3423816

Group:year2001.BirdAge1 0.7374130 0.7510774 0.7642580 0.7769480 0.7891434

6 7 8

Group:year2000.BirdAge0 0.7510774 0.7642580 0.7769480

Group:year2001.BirdAge0 0.9559270 0.9588550 0.9615962

Group:year2000.BirdAge1 0.3587260 0.3754053 0.3923856

Group:year2001.BirdAge1 0.8008429 0.8120479 0.8227619

C.21. Exporting to MARK interface

Not all of the features in MARK are in RMark (e.g., median-ĉ), so it is useful to be able to export from
RMark and import into the MARK interface. If you have read elsewhere (like in the previous version
of C.21 ) about using the function export.chdata and export.model to export data and models into
MARK interface, do not use that approach. Even though there was a warning in the help file about
making sure the structure was setup the same in MARK as in RMark, errors were made and confusion
and questions resulted because the results did not match when they were re-run in the MARK interface.

Thus, to avoid those problems and make it much easier, the function export.MARKwas implemented,
and Gary White added the ‘File | RMark Import’ menu item to the MARK interface. As an example,
the following will export the ubiquitous dipper data file and the models contained in dipper.results
created in example(dipper).

> example(dipper)

> dipper.processed=process.data(dipper,groups=("sex"))

> export.MARK(dipper.processed, "dipperproject", dipper.results)

If only NULL is returned then everything worked fine. The above code will create dipperproject.Rinp
and dipperproject.inp and will rename all of the output files in dipper.results to have .tmp extensions
so the MARK interface will know they need to be imported.

Next, open the MARK interface and choose ‘File | RMark Import’ and browse to the location and
select dipperproject.Rinp. MARK will create a .dbf and .fpt files with the names dipperproject and
then populate with the models from dipper.results. Note that you must manually delete the .tmp files.
If you let them remain in the directory and try to import from another project it will try to import those
model results as well.
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C.22. Using R for further computation and graphics

One of the nice side benefits of RMark is that all of the power of R is available for further computation
and plotting with the MARK output which is brought into the mark model object. We recommend
exploring the various online sources of help with R graphics.

In addition to graphics, the entire R environment is available for further computation with the results.
Some of this has already been done for you with functions like covariate.predictions (C.16) and
TransitionMatrix (C.17) but there are always different computations that can follow once an analysis
is completed. The most important feature about the choice of R for a statistical environment and the
reason for its expansive growth is that it is open source. There is literally a worldwide collection of
programmers who are continually developing and adding code to the R environment. R as an open
source environment has at least 4 important consequences for the R user:

1. cutting edge analysis techniques are always being added to the environment

2. anything you probably need for computation has already been written so search before
you write new code

3. all of the source code (including RMark) is available for you to examine so you can
learn from other R programmers, modify it for your own needs and you can see how
the code works

4. as a user it is up to you to make sure you are using it properly and to verify that the
results are accurate or at least make sense.

This last point applies equally to commercial software but the advantage with open source software
is that you can look at the code. We’ll finish this paragraph with one last bit of soapbox commentary
about science and software. The R environment is a useful model for the scientific community because
it is open source and thus transparent and available to anyone willing to learn.

Enough of that! So let’s explore an example that frequently appears on the MARK support forum
which is the computation of a Delta method variance. Appendix B provides a thorough explanation
of the underlying theory, and how a Delta method variance can be constructed ‘by hand’. While it is
obviously important to understand how the calculations are done, and the general limits of the method,
once you have done one or two by hand there is little gain in learning. So once the learning is done
why not automate what you need? Not surprisingly there is R code available to construct Delta method
variances/covariances. As part of the msmpackage foranalysis of multi-state Markov and hidden Markov
processes, C. H. Jackson of the MRC Biostatistics Unit at Cambridge University provided a function
called deltamethod for computation of Delta method variances of any function that can be differentiated
with the R function deriv for symbolic differentiation of simple expressions. The code is quite simple
because most of the work is in working out the derivatives and that is handled by the deriv function:

> deltamethod<- function (g, mean, cov, ses = TRUE)

{

cov <- as.matrix(cov)

n <- length(mean)

if (!is.list(g))

g <- list(g)

if ((dim(cov)[1] != n) || (dim(cov)[2] != n))

stop(paste("Covariances should be a ", n, " by ", n,

" matrix"))
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syms <- paste("x", 1:n, sep = "")

for (i in 1:n) assign(syms[i], mean[i])

gdashmu <- t(sapply(g, function(form) {

as.numeric(attr(eval(deriv(form, syms)), "gradient"))

}))

new.covar <- gdashmu %*% cov %*% t(gdashmu)

if (ses) {

new.se <- sqrt(diag(new.covar))

new.se

}

else new.covar

}

If you install the R package msm (use Packages/Install Packages) from CRAN, then you can issue
the command library(msm) to load the package and make the function deltamethod available in the R

environment. In this example of using deltamethod we will compute the variances (or standard error,
its square root) and covariances of ϕ and p from the Phi(∼1)p(∼1) model of the dipper data using
the β’s and their variances and covariances. This is not a particularly useful "further computation” but
we chose it to show how MARK constructs these values and also to show that computation with the
deltamethod function agrees with the MARK output. We start by fitting the model, displaying the
summary with standard errors shown for the unique real parameters and extracting and displaying the
β estimates:

> data(dipper)

> mymodel=mark(dipper,brief=TRUE)

Model: Phi(~1)p(~1) npar= 2 lnl = 666.83766 AICc = 670.86603

> summary(mymodel,se=TRUE,showall=FALSE)

Output summary for CJS model

Name : Phi(~1)p(~1)

Npar : 2

-2lnL: 666.8377

AICc : 670.866

Beta

estimate se lcl ucl

Phi:(Intercept) 0.2421484 0.1020127 0.0422035 0.4420933

p:(Intercept) 2.2262658 0.3251093 1.5890516 2.8634801

Real Parameters

estimate se lcl ucl fixed

Phi g1 c1 a0 t1 0.5602430 0.0251330 0.5105493 0.6087577

p g1 c1 a1 t2 0.9025835 0.0285857 0.8304826 0.9460113

> betas=summary(mymodel)$beta
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> betas

estimate se lcl ucl

Phi:(Intercept) 0.2421484 0.1020127 0.0422035 0.4420933

p:(Intercept) 2.2262658 0.3251093 1.5890516 2.8634801

We can see the confidence intervals for β’s are simple normal 95% confidence intervals:

> beta.lcl=betas$estimate-1.96*betas$se

> beta.lcl

[1] 0.04220351 1.58905157

> beta.ucl=betas$estimate+1.96*betas$se

> beta.ucl

[1] 0.4420933 2.8634800

Now let’s compute the confidence intervals for the real parameters which are the inverse logit (in
general inverse of the chosen link function) of the lower and upper limits on the β’s.

> exp(beta.lcl)/(1+exp(beta.lcl))

[1] 0.5105493 0.8304826

> exp(beta.ucl)/(1+exp(beta.ucl))

[1] 0.6087577 0.9460113

We can individually compute the standard errors for the real parameters with calls to deltamethod
using the inverse logit function where x1 refers to beta:

> deltamethod(~exp(x1)/(1+exp(x1)),mean=betas$estimate[1],cov=betas$se[1]^2)

[1] 0.02513295

> deltamethod(~exp(x1)/(1+exp(x1)),mean=betas$estimate[2],cov=betas$se[2]^2)

[1] 0.02858573

We can get the same results with a single call to deltamethod by using a list of functions and the
variance-covariance matrix for betawhich is in results$beta.vcv:

> deltamethod(list(~exp(x1)/(1+exp(x1)),~exp(x2)/(1+exp(x2))),

mean=betas$estimate,mymodel$results$beta.vcv)

[1] 0.02513295 0.02858573

or we can get the variance-covariance matrix of the real parameters by setting ses=FALSE:

> deltamethod(list(~exp(x1)/(1+exp(x1)),~exp(x2)/(1+exp(x2))),

mean=betas$estimate,mymodel$results$beta.vcv,ses=FALSE)

[,1] [,2]

[1,] 0.0006316653 -0.0001842868

[2,] -0.0001842868 0.0008171439

For closed population modeling, the R package WiSP (Wildlife Simulation Package, available from
http://www.ruwpa.st-and.ac.uk/estimating.abundance/WiSP/index.html) can be used to simulate
populations and sampling designs. Data simulated by WiSP can be converted into a form usable by
RMark using a conversion function transform.to.rmark() found in the WiSP package. This enables
the examination of estimator performance prior to the conduct of field experiments.
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C.23. Problems and errors

The RMark code includes some error traps but there are a number of errors that can occur if the models
or data are not setup properly. In no particular order, we give some errors that can occur, an explanation,
and some possible fixes. We do not discuss R syntax errors which can occur easily if improper syntax
is used.

As part of minimizing/checking erors, we suggest that you use an editor like Tinn-R (available from
https://sourceforge.net/projects/tinn-r) that provides R syntax checking to develop scripts.

1. The following error message or one like it that occurs when mark.exe is running or
afterwards, occurs when something is amiss with the data, model setup for MARK

or you interrupted the job:

Error in if (x4 > x2) { : argument is of length zero

********Following model failed to run : [name of model]**************

S.dot.p.dot.Psi.dot

Error in extract.mark.output(out, model, adjust) :

MARK did not run properly. If error message was not shown, re-run

MARK with invisible=FALSE

Solution: Look at the most current input and output files in the directory to
see if you can discern what happened. Error messages and the output will
often move across the screen too quickly to read but you can always look at
them with a text editor to discover the reason for the problem. The obtuse
error above occurs because the output file is incomplete and the function
extract.mark.output cannot find relevant fields in the output file.

2. The following error message occurs when a variable used in a formula cannot be
found in the design data or as an individual covariate:

Variable marked.as.adult used in formula is not defined in data

Error in make.mark.model(data.proc, title = title, covariates = covariates,

Solution: Check your the spelling of your variable name. Remember that R

is case specific so check capitalization. If you added design data, make sure
that you added the data to the design data for parameter that is generating
the error for this variable. If it is a time-varying covariate make sure that
the times match the prefixes of the covariate names.

3. If you get an error like the following, you have created an incomplete factor variable
in the design data.

Error in make.mark.model(data.proc, title = title, covariates = covariates, :

Problem with design data. It appears that there are NA values

in one or more variables in design data for p

Make sure any binned factor completely spans range of data

Solution: Examine the design data identified in the error message and
redefine the factor variable.

Appendix C. RMark - an alternative approach to building linear models in MARK



C.23. Problems and errors C - 106

4. If you get either of these error messages, there is a problem with the individual
covariate that you have specified in the formula.

The following individual covariates are not allowed because

they are factor variables:

The following individual covariates are not allowed because

they contain NA:

Solution: Use summary(data) where data is the dataframe containing your
data. Examine the variable it names to see where it contains NA or if it is a
factor variable. A factor variable cannot be used as an individual covariate.
It is best to use factor variables in the group structure definition. If you
want to use a factor variable as an individual covariate you need to create
numeric dummy variables (0/1). See section C.16.

5. The following error occurs when you attempt to fix real parameters and the number
of values does not match the number of indices.

Lengths of indices and values do not match for fixed parameters for p

Solution: Refer to section C.11 to review how real parameters can be fixed
at specific values.

6. The following error occurs when you specify a vector of initial values but the the
number of values does not match the number of β’s (number of columns in the
design matrix).

Length of initial vector doesn’t match design matrix

Solution: Use another existing model to specify the initial values. or use
model.matrix to compute the number of parameters will be fit. If the model
has already run, extract the β estimates into a vector to verify the count or
edit it and use as the initial values.

7. The following error occurs when you specify a formula that manages to create a
design matrix which has all zeros for one or more real parameters (rows). This will
most likely occur with the incorrect specification of interactions and the intercept
is removed.

One or more formulae are invalid because the design matrix has all

zero rows for the following non-fixed parameters

Solution: Use model.matrix with the formula and design data and review
the way you are constructing the formula.

8. The following errorwilloccur if you pass the wrong data argument tomake.design.data

Error in if (model == "CJS") par.list = c("Phi", "p") :

argument is of length zero

Solution: Use the processed dataframe and not the original dataframe in
the call the make.design.data.
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It is reasonable to check an RMark model by creating it with the MARK interface and compare the
results. If you do that, recognize that both interfaces use the same mark.exe to fit the model to the data.
Thus, if there is a difference then it results from a difference in either the data or the model structure.
Presumably, you are using the same data but it doesn’t hurt to check the output from each model to see
that it used the same data. A difference in the model is the most likely reason for any difference. If the
deviance and the real parameters match but the β’s are different, that is not a real concern because the
same model can be fit with different beta structures. The differences in the β’s can occur if different link
functions are chosen or a different structure for the design matrix was used. However, if the deviances
or real parameters are different then it should be investigated further. A difference in the link function
can create difference in the real parameters if there is a problem with convergence of one of the models.
However, the most likely difference is an error in the PIM structure or design matrix. Only a tedious
search of the PIMS and design matrices will identify the problem. While it is always possible that there
is an error in the RMark code, numerous examples have been tested in both pieces of software to check
agreement.

C.24. A (very) brief R primer

There are a numberofvery goodbooks and tutorials for learning R. See the R home page athttp://www.r-
project.org/ and browse the links under Documentation on the left panel. If you have questions, refer
to the FAQ or use the Search utility. They are available from R Homepage or from within R under the
Help menu. There is a phenomenal amount of material on the web that can help you get started with
R. If you have problems and cannot find the answer with the materials on the web, a very active user
group can be found on the R-help list server (see Mailing Lists on the home page). If you subscribe
and post messages, please read the posting guide! The search utilities will search the R-help list server.
There is a good chance your question has already been answered, so please read the FAQ and search
before you post a question.

We have no intention of producing a full R tutorial here but we will provide some very beginner
concepts and some others that are particularly relevant to using RMark. You can start R with the R icon
or by double-clicking a .Rdata file which is an R workspace where everything is stored by R. If you
start R with the icon, it will use the default .Rdata workspace located where you installed R (typically
c:/Program Files/R/Rvvvvv, where vvvvv represents the version). You will most likely want to have
more than one .Rdata workspace and there are many ways to create them, but the simplest is to use
Windows to copy the default workspace and to paste it in whatever directory you choose. When you
then double-click that particular .Rdata file, it will open it with R.

To avoid manually entering the command each time you initiate R, you can edit and enter the
library(RMark) command into the file named "RProfile.site” with any text editor. It is located in
the directory

C:\Program Files\R\R-v.v.v\etc\

where v.v.v represents the R version. If you add the library(RMark) command to rprofile.site, the
RMark package will be loaded anytime you start R.The RProfile.site file is also a good place to make
generic customizations to R. For example, adding the command options(chmhelp=TRUE)will mean that
the help commandwilluse the compiledhelp tool forwindows. Oryou can use options (htmlhelp=TRUE)
to use the non-compiled html help. Either of those is better than using the default which does not allow
hyperlinks. If you set up either help option you can enter “?mark” to see all the help categories for
RMark. If you chose to use htmlhelp, click on index to see the complete list. The “rprofile.site” file
is also a good place to change options like the default editor etc. See help for “options” and “Startup”
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from within R.

To avoid making changes to RProfile.site each time you update R, you can use the Windows
ControlPanel and select System/Advanced/EnvironmentVariables to create an environment variable
named R_PROFILE. For example, you can create a subdirectory,

C:\Program Files\R\RProfile\

and then copy your edited Rprofile.site to that subdirectory. Then define the environment variable
R_PROFILE with the value

C:\Program Files\R\RProfile\RProfile.site

and it will always be used for each R session even if you update R.

You quit R with the command q() and it will ask whether you want to save the workspace image.
If you select No, then any R objects you created/deleted/changed during the session will not be saved.
You can save the workspace during the session with the File/Save Workspace or using the disk icon on
the toolbar. This is not a bad idea to avoid losing work.

R is case-sensitive. Q and q are not the same. Some functions (e.g., rowSums) will even mix cases in
the function name so be aware. Object names can have mixed cases, periods and underscore to improve
readability (e.g., my.list, squirrel_results, DipperModels).

The symbol # is used for comments and anything to the right of the # is ignored in a line. You’ll see
them in examples below and in the help files for RMark and other help files.

The parentheses after q are necessary. Try typing qwithout the parentheses and what you’ll get is a
listing of the function “q". However when you type q(), it executes the function “q", and “()” represents
the arguments for the function which happens to be empty in this case.

Almost everything you do in R will be executing functions that accept arguments and return a value.
The functions and the values returned by executing functions can all be stored as named objects in the
workspace. Assignment of function values to an object is done with the assignment operator which can
be either <- or = (or <<- for global assignment within functions). Typing x=1+1 or x <- 1+1, assigns
the numeric result 2 to the object named x. Typing x=mean(1:50), assigns the mean of the sequence of
numbers from 1 to 50 to x. The definition of a function is an assignment of R code to an object with
a specific function name. You can see a listing of the names of the objects in the workspace by typing
ls().

If you execute a function and do not assign the result (if any) to an object, a default print function for
that object will display it on the screen or to a file (if you use the sink function) and nothing becomes
of it. The function ls() is a good example. As it says in the help file for ls, the function returns a
vector of character strings giving the names of the objects in the specified environment. That vector of
character strings can be assigned to an object but if you simply type ls(), the character string is printed
(displayed) on the screen.

Within R you can get help for any function by simply typing ? followed by the function name. For
example, ?ls. If you don’t know the name of the function but have some keywords to describe it, use the
function help.search("my key words") or browse through the help manuals which can be accessed
from the Help menu. A reference card of commonly used R functions can also be useful - see

http://cran.r-project.org/doc/contrib/Short-refcard.pdf

You can access the fullhelp file forRMark by opening the file RMark.chm (compiledhelp file) contained
in the install directory c:/Program Files/R/Rvvvvv/library/RMark/chm (where vvvvv represents the
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R version number). If you only want to know the arguments of a function, you can use the function
args(function) to list the argument names and default values of the function. For example, type
args(ls) to see that the ls function does have arguments but the default values are typically used,
so you only need to type ls().

Values for function arguments can be assigned by their order in the function call and by specifying
argument=value. The advantage of the latter format is that it is not order-specific. Both formats can be
used in the same function call and it is a typical choice to specify the first few common arguments by
order and then specifying less often used arguments by name. As an example, we will use the function
rnorm which generates random values from a normal distribution. If you type args(rnorm), you’ll
see the following: function (n, mean = 0, sd = 1). This means that the function has 3 arguments
named n, mean and sd. The latter 2 have default values of 0 and 1, so if you don’t specify values for
those arguments they will be assigned 0 and 1 respectively. The argument "n” is the number of random
values to be generated and its value must be given because it has no default. By typing rnorm(100), you
will generate n � 100 random values from a standard normal distribution with mean 0 and standard
deviation 1. If you don’t assign them to an object they will simply be displayed on the screen. If you
wanted an sd of 5, you could do that by either of the following calls: rnorm(100,,5) or rnorm(100,sd=5).
The first form assigns the argument values solely by position in the argument list and the second uses
both formats with n being assigned 100 because of its first position and sd is assigned 5 with a named
value. Naming arguments does make the code more readable and you could choose to specify all the
arguments by name with rnorm(n=100, mean=0, sd=5) and that is perfectly suitable. If you forget to
assign a value to an object which does not have a default, an error will be issued. For example, you may
see something like the following:

> rnorm(mean=2)

Error in rnorm(mean = 2) : argument ‘‘n’’ is missing, with no default

You can write your own functions that are stored in the workspace,but most functions you will use are
in base R packages or other contributed packages that can be optionally installed with R. The multitude
of contributed packages on CRAN (Comprehensive R Archive network) can be found from the R home
page. While most contributed packages are on CRAN, there are other supported packages such as
RMark that can be found on the web. Packages must be installed and then loaded with the library()
function as described above for RMark. Once you have installed RMark and used the library(RMark)
function you can access the help and use the functions. Remember that R is case-sensitive so RMark is
not the same as Rmark.

There are several different kinds of data structures in R. The most basic is a vector and while most
objects in R are generalizations of vectors, here we are referring to a vector as an ordered collection
of items of the same type. For example, c(4,2,1) is a numeric vector with the first item being 4, the
second 2 and the third being 1. As you might expect, c() is a function - the concatenate function that
puts together items of the same type or coerces them to the same type. Numeric vectors can be created
with sequences such as 1:5 which is the sequence from 1 to 5 and by various functions (e.g., seq, rep).
Vectors can also contain character or logical values. For example, c("apple","orange","grape") is a
vector of character strings of fruit names. Logical vectors are typically created by comparison operators
such as equality (��), not equal (!�), less than (<), greater than (>), not greater than (<�), and not less
than (>�). Both of the following commands create a logical vector of length 5 with different values:

> 1:5 ==2

[1] FALSE TRUE FALSE FALSE FALSE

> 1:5 >2

[1] FALSE FALSE TRUE TRUE TRUE
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Logical values (vector of length 1) can also be created with the %in% operator:

> "orange" %in% c("apple","orange","grape")

[1] TRUE

> "pineapple" %in% c("apple","orange","grape")

[1] FALSE

Other data structures include matrices, arrays, dataframes (tables) and lists. Matrices are rectangular
structures with each element restricted to be the same type (e.g., numeric, character, logical) and arrays
are generalizations of matrices to higher dimensions. While matrices are used in RMark (e.g., design
matrix), the primary data structures are lists and dataframes. You need to know how to construct and
manipulate both types of data structures to be able to run models other than the most rudimentary
ones.

Lists are the most predominant data structure in RMark because they are used to specify argument
values and most functions return lists. Dataframes are special cases of lists, so we’ll start by describing
lists. A list is a collection of data structures that are not restricted to be the same type/structure. A list
can contain numeric vectors, character vectors, a matrix, other lists and so on and so forth. It is a truly
generic structure that lets you paste together different kinds of data structures. A list is often the value
returned from a function because a function can only return a single object and often it is the only way
to return many different types of values by pasting them into a single list. Likewise, lists can be used to
paste together different types of data (e.g, character, numeric, logical) that are related to be passed as
value for a function argument.

Everyone is familiar with grocery and "to do” lists so we’ll use them as examples. To create a very
strange grocery list in R called groceries you would use the list() function:

> groceries=list(fruits=c("oranges","apples","grapes"),

meat=c("steak", "chicken"), milk=c(1,.5) )

If you wanted to see the contents of groceries it would look as follows:

> groceries

$fruits

[1] "oranges" "apples" "grapes"

$meat

[1] "steak" "chicken"

$milk

[1] 1.0 0.5

The groceries list has length 3 as you can ascertain with the length function:

> length(groceries)

[1] 3

It contains 3 vectors with the first being character vectors named "fruits” and "meat” and the third is
a numeric vector containing the size in gallons and named "milk". The first vector contains 3 elements,
and the second and third vectors each contain 2 elements. You can extract the meat vector in several
ways.
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> groceries$meat

[1] "steak" "chicken"

>

> groceries[[2]]

[1] "steak" "chicken"

>

> groceries[["meat"]]

[1] "steak" "chicken"

The double-square brackets are used to extract a list element by number or name. What is returned is
the contents of the list element which is a character vector in this case. Now notice what happens when
you use single brackets instead:

> groceries[2]

$meat

[1] "steak" "chicken"

> groceries["meat"]

$meat

[1] "steak" "chicken"

Single brackets provide a subset of the list and the result is a list and not just the contents of the list.
The difference between the single and double brackets is shown below with the is.list function. With
single brackets the result is a list and with double brackets it is not a list.

> is.list(groceries["meat"])

[1] TRUE

> is.list(groceries[["meat"]])

[1] FALSE

In most cases with RMark you will use the [[]] to extract the contents of a single list element. On
some occasions, you would like to extract several list elements and this is done with the single brackets:

> groceries[c("meat","milk")]

$meat

[1] "steak" "chicken"

$milk

[1] 1.0 0.5

> groceries[2:3]

$meat [

1] "steak" "chicken"

$milk

[1] 1.0 0.5

In both cases above, a list with 2 elements is returned. If you try to extract more than one list element
with [[]], an error will result:
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> groceries[[2:3]]

Error in groceries[[2:3]] : subscript out of bounds

> groceries[[c("meat","milk")]]

Error in groceries[[c("meat", "milk")]] : subscript out of bounds

In RMark, you’ll most often extract specific list elements either by name (groceries$meat) or by
position (groceries[[2]]).

Lists can contain lists as elements and while this can look rather bizarre at first, it is extremely handy.
Assume that we had a "to do” list as follows:

todo=list(for.wife=c("grocery","cut grass","dry cleaner"),

for.me=c("watch tv","drink beer", "nap"))

If we concatenate the lists it merges them into a single list with all the different elements:

> c(todo,groceries)

$for.wife

[1] "grocery" "cut grass" "dry cleaner"

$for.me

[1] "watch tv" "drink beer" "nap"

$fruits

[1] "oranges" "apples" "grapes"

$meat

[1] "steak" "chicken"

$milk

[1] 1.0 0.5

Alternatively, we can also create a list of lists as follows:

> mylists=list(todo=todo,groceries=groceries)

> mylists

$todo

$todo$for.wife

[1] "grocery" "cut grass" "dry cleaner"

$todo$for.me

[1] "watch tv" "drink beer" "nap"

$groceries

$groceries$fruits

[1] "oranges" "apples" "grapes"

$groceries$meat

[1] "steak" "chicken"
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$groceries$milk

[1] 1.0 0.5

I can extract each sub-list as described previously:

> mylists$todo

$for.wife

[1] "grocery" "cut grass" "dry cleaner"

$for.me

[1] "watch tv" "drink beer" "nap"

> mylists$groceries

$fruits

[1] "oranges" "apples" "grapes"

$meat

[1] "steak" "chicken"

$milk

[1] 1.0 0.5

Lists of lists are used to provide a generic structure in RMark to accommodate varying parameters
within the different MARK models. Likewise, design data for the parameters is represented as a list of
dataframes.

That brings us to the final data structure we’ll discuss. A dataframe is a specialized list in which each
element is a named vector and each vector is of the same length but not necessarily of the same type.
A dataframe is rectangular like a matrix. In a dataframe, all the values in a column (the list element
vectors) are of the same type but one column can be numeric, the next column could be character and
another could be logical. It is easiest to conceptualize dataframes as similar to tables like in ACCESS or
any other database package.

We can show the link between lists and dataframes by using the as.data.frame function to convert
the todo list to a dataframe.

> todo.data=as.data.frame(todo)

> todo.data

for.wife for.me

1 grocery watch tv 2 cut grass drink beer 3 dry cleaner nap

The columns of the dataframe todo.data are the 2 vectors contained in the todo list. This worked
because each vector was of the same length. If we did the same conversion with the groceries list, an
error occurs because the vectors are of unequal length:

> as.data.frame(groceries)

Error in data.frame(fruits = c("oranges", "apples", "grapes"), meat

= c("steak", :

arguments imply differing number of rows: 3, 2
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Notice that in the conversion from list to dataframe the quotation marks around the character strings
vanished. Dataframes were designed for analysis and character strings aren’t typically very useful for
analysis but character strings can be used to represent the names of factor variable levels. By default,
the character strings were coerced into a factor variable:

> todo.data$for.me

[1] watch tv drink beer nap Levels: drink beer nap watch tv

> is.factor(todo.data$for.me)

[1] TRUE

The columns (variables) of todo.data are factor variables and the names of the levels for the factor
variable for.me are "drink beer", "nap" and "watch tv". Note that the levels are alphabetized by default
and the numeric values of for.me are determined by the order of the levels:

> as.numeric(todo.data$for.me)

[1] 3 1 2

In RMark, dataframes are used for the capture history and related covariate data for animals. They
are also used for design data which describes the model structure.
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APPENDIX D

Variance components and random effects

models in MARK . . .

Kenneth P. Burnham, USGS Colorado Cooperative Fish & Wildlife Research Unit

The objectives of this appendix are

• to introduce to biologists the concept and nature of what are called (alternative names
for the same essential idea) ‘variance components’, ‘random effects’, ‘random coefficient
models’, or ‘empirical Bayes estimates’

• present the basic theory and methodology for fitting simple random effects models,
including shrinkage estimators, to capture-recapture data (i.e.,Cormack-Jolly-Seberand
band or tag recovery models)

• extend AIC to simple random effects models embedded into the otherwise fixed-effects
capture-recapture likelihood.

• develop some proficiency in executing a variance components analysis and fitting
random effects model in program MARK

Much of the conceptual material presented in this appendix is derived from a paper authored by
Kenneth Burnham and Gary White (2002) – hereafter, we will refer to this paper as ‘B&W’. It is assumed
that the reader already has a basic knowledge of some standard encounter-mark-reencounter models
as described in detail in this book (e.g., dead recovery and live recapture models – referred to here
generically as ‘capture-recapture’).

We introduce the subject of – and some of the motivation for – this appendix by example. In the
following we consider two relatively common scenarios (out of a much larger set of possibilities) where
a ‘different analytical approach’ might be helpful.

scenario 1 – parameters as random samples

Consider a Cormack-Jolly-Seber (CJS) time-specific model {Stpt} wherein survival (S) and capture
probabilities (p) are allowed to be time varying for (k + 2) capture occasions, equally spaced in time.
If k ≥ 20 we are adding many survival parameters into our model as if they were unrelated; however,
more parsimonious models are often needed. Consider a reduced parameter model – at the extreme,
we have the model {S.pt} wherein S1 � S2 � · · · � Sk � S.. However, this model may not fit well even if
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the general (time-dependent) CJS model fits well and there is no evidence of any explainable structural
time variation, such as a linear time trend, in this set of survival rates, or variation as a function of an
environmental covariate. Instead, there may be unstructured time variation in the Si that is not easily
modeled by any simple smooth parametric form, yet which cannot be wisely ignored. In this case it
is both realistic and desirable to conceptualize the actual unknown Si as varying, over these equal-
length time intervals, about a conceptual population mean E(S) � µ, with some population variation,
σ2 (Fig. E.1).

Figure D.1: Schematic representation of variation in occasion-specific parameters θi , as if the parameters were

drawn randomly from some underlying distribution with mean µ and variance σ2.

Here, by population, we will mean a conceptual statistical distribution of survival probabilities, such
that the Si may be considered as a sample from this distribution. Hence, we proceed as if Si are a random

sample from a distribution with mean µ and variance σ2. Doing so can lead to improved inferences
on the Si regardless of the truth of this conceptualization if the Si do in fact vary in what seems
like a random, or exchangeable, manner. The parameter σ2 is now the conventional measure of the
unstructured variation in the Si, and we can usefully summarize S1 . . . Sk by two parameters: µ and σ2.
The complication is that we do not know the Si; we have only estimates Ŝi , subject to non-ignorable
sampling variances and covariances, from a capture-recapture model wherein we traditionally consider
the Si as fixed, unrelated parameters. We would like to estimate µ and σ2, and adjust our estimates to
account for the different contributions to the overall variation in our estimates due to sampling, and the
environment. For this, we consider a random effects model.

scenario 2 – separating sampling + environmental (process) variation

Precise and unbiased estimation of parameter uncertainly (say, the SE of the parameter estimate) is
critical to analysis of stochastic demographic models. Consider for example, the estimation of the risk
of extinction. It is well known (and entirely intuitive) that any simply stochastic process (say, growth
of an age- or size-structured population through time) is more likely to go extinct the more variable a
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particular ‘vital rate’ is (say, survival or fertility). Thus, if an estimate of the variance of a parameter is
biased high, then this tends to bias high the probability of extinction. We wish to use only estimates of
environmental (or process) variation alone, excluding sampling variation, since it is only the magnitude
of the former that we want to include in our viability models (White 2000).

Precise estimation of process variation is also critical for analysis of the relationship of the variation
of a particular demographic parameter to the projected growth of a population. The process variation
in projected growth, λ, is a function of the process variance of a particular demographic parameter. To
first order, and assuming no covariances between the ai j elements, this can be expressed as

v̂ar(λ) ≈
∑

i j

(

∂λ

∂ai j

)

v̂ar(ai j ).

From this expression, we anticipate that natural selection will select against high process variation in
a parameter that λ is most ‘sensitive’ to (i.e., for which ∂λ/∂ai j is greatest) (Pfister 1998; Schmutz 2009).
Thus, robust estimation of the process variance of fitness components is critical for life history analysis.

In this appendix, we will consider estimation of variance components, and fitting of random effects
models, using program MARK. We begin with the development of some of the underlying theory,
followed by illustration of the ‘mechanics’ of using program MARK, by means of a series of ‘worked
examples’.

D.1. variance components – some basic background theory

The basic idea is relatively simple. We imagine that the Si are distributed randomly about E(S) � µ

(Fig. E.1). The variation in Si is σ2, as if S1, . . . Sk are a sample from a population. It is not required
that the sampling be random – merely that the S1, . . . , Sk are exchangeable (or, more formally, that the
conceptual residuals (µ−Si ) shouldappear like an iid sample,withno remaining structural information).
There are no required distributional assumptions, such as normality.

If we knew the Si then it follows that

Ê(S) � S̄ σ̂2
�

∑k
(Si − S̄)

2

k − 1
.

Of course, except in a computer simulation, we rarely if ever know the Si. What we might have are ML
estimates Ŝi, and estimates of conditional variation v̂ar

(

Ŝi
�� Si

)

.

We can express our estimate of Ŝi in standard linear form as the sum of the mean µ, the deviation of
the Si from the mean, δi , and the error term ǫi

Ŝi � µ + δi + ǫi ,

where δi � (Si − µ) and ǫi � (Ŝi − Si ). Substituting into our expression for Ŝi ,

Ŝi � µ + δi + ǫi

� µ + (Si − µ)
︸ ︷︷ ︸
↑ σ2

(process
variance)

+ (Ŝi − Si ).
︸ ︷︷ ︸
↑ var(Ŝi |Si )

(sampling
variance)
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Here (and hereafter) we distinguish between ‘process’ (or, environmental) variation, σ2, and ‘sampling’
variation, var

(

Ŝi
�� Si

)

. We refer to the sum of process and sampling variation as total variation, σ2
total .

total variation � σ2
total � process variation + sampling variation

� σ2
+ var

(

Ŝi
�� Si

)

.

It is important to note that sampling variation var
(

Ŝi
�� Si

)

depends on the sample size of animals
captured, whereas process variance σ2 does not. It is also important to note that if there is sampling
covariation, then this should be included in our expression for total variance, σ2

total

σ2
total � σ

2
+

[
E
(

var
(

Ŝi
�� Si

))

+ E
(

cov
(

Ŝi , Ŝ j
�� Si , S j

))]
.

For fully time-dependent models, the sampling covariances of Si and S j are often very small for many
of the data types we work with in MARK, especially relative to process and sampling variance, and the
covariance term can often be ignored. We will do so now, for purposes of simplifying the presentation
somewhat, but will return to the issue of sampling covariances later on.

If we assume for the moment that all the sampling variances are equal, then the estimate of the overall
mean survival is just the mean of the k estimates:

¯̂S �

∑k Ŝi

k
,

with the theoretical variance being the sum of process and sampling variance divided by k:

v̂ar
( ¯̂S

)

�

σ2
+ E

[
var

(

Ŝi
�� Si

)]
k

.

Our interest generally lies in estimation of the process variation. By algebra, we see that process
variance can be estimated by, in effect, subtracting the sampling variation from the total variation.

σ2
total � process variation + sampling variation

� σ2
+ v̂ar

(

Ŝi
�� Si

)

∴ σ2
� σ2

total − v̂ar
(

Ŝi
�� Si

)

.

Hence, we need an estimate for σ2
total and var

(

Ŝi
�� Si

)

.

If we assume that S1, . . . , Sk are a random sample, with S̄ � Ê(S), and population variance σ2, then
from general least-squares theory

ˆ̄S �

∑k wi Ŝi
∑k wi

,

where

wi �
1

σ2
+ v̂ar

(

Ŝi
�� Si

) .
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Given wi , the theoretical variance of ˆ̄S is

var
( ˆ̄S

)

�
1

∑k wi

.

However, although var
(

Ŝi
�� Si

)

is estimable, we would still need to know σ2.

An alternative approach which leads to an empirical (data-based) estimator is

v̂ar
( ˆ̄S

)

�

∑k wi

(

Ŝi − ˆ̄S
)2

(∑k wi

) (

k − 1
)
.

We note that if there is no process variation (σ2
� 0), then the above reduces to the familiar case of k

replicates.

More generally, if we assume that the weights, wi are equal (or nearly so), then we can re-write the
empirical estimator as

v̂ar
( ˆ̄S

)

�

∑k (Ŝi − ˆ̄S
)2

(k − 1)
, if wi � w,∀i

where

ˆ̄S �

∑k Ŝi

k
.

The assumption that the weights, wi are equal is generally reasonable if (i) the var
(

Ŝi
�� Si

)

are all
nearly equal, or if (ii) they are all small, relative to σ2. In theory, when the Si vary, then the var

(

Ŝi
�� Si

)

will also vary. In contrast, with low sampling effort, such that var
(

Ŝi
�� Si

)

is much larger than process
variance σ2, it might be sufficient to use the approximation

wi �
1

var
(

Ŝi
�� Si

) .

In this case, only relative weights wi would be needed (since an estimate of σ2 is not needed).

Now, assume for the moment we are interested in estimating the process variation around the mean
S̄. If we also assume that there is no sampling covariance, and that wi � w, and

∑k wi � 1, then we
estimate the total variance as

σ2
total � v̂ar

( ¯̂S
)

�

∑k (Ŝi −
¯̂Si

)2

(k − 1)
,

and the sampling variance as the mean of the estimated sample variances

E
[

v̂ar
(

Ŝi
�� Si

) ]

�

∑k var
(

Ŝi
�� Si

)

k
.

Hence, our estimate of process variance would be

σ̂2
�

∑k−1 (Ŝi −
¯̂Si

)2

k − 1
−

∑k var
(

Ŝi
�� Si

)

k
.
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However, this estimator (which is essentially the estimator described by Gould & Nichols, 1998∗) is
not entirely correct (or efficient). It was derived under the strong assumption that the sampling variances
are all equal (i.e., that SE(Ŝi ) are all identical). In practice, this is usually not the case, and thus we refer
to the preceding as a ‘naïve’ estimator of process variance.

Instead, we need to weight them to obtain an unbiased estimate of σ2. As noted earlier, general least-
squares theory suggests using a weight wi

wi �
1

σ2
+ var

(

Ŝi
�� Si

) .

Hence, the estimator of the weighted mean survival is

¯̂S �

∑k wi Ŝi
∑k wi

,

with theoretical variance

var
( ¯̂S

)

�
1

∑k wi

,

and empirical variance estimator

v̂ar
( ¯̂S

)

�

∑k wi

(

Ŝi −
¯̂S
)2[∑k wi

] (
k − 1

)
.

When the wi are the true (but unknown) weights, we have

1
∑k wi

�

∑k wi

(

Ŝi −
¯̂S
)2[∑k wi

]
(k − 1)

,

which if we normalize the weights (such that they sum to 1), gives

1 �

∑k wi

(

Ŝi −
¯̂S
)2

(k − 1)
.

Since

wi �
1

σ2
+ var

(

Ŝi
�� Si

) and ¯̂S �

∑k wi Ŝi
∑k wi

,

then

1 �

∑k wi

(

Ŝi −
¯̂S
)2

(k − 1)
�

k∑ 
1

σ2
+ var

(

Ŝi
�� Si

)

(

Ŝi −
k∑

.
1

σ2
+ var

(

Ŝi
�� Si

) Ŝi

)2
(k − 1)

∗ Gould, W. R. & J. D. Nichols. (1998) Estimation of temporal variability of survival in animal populations. Ecology, 79, 2531-2538.
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We then solve (numerically) for σ̂2 (which is the only unknown in the expression) – it is convenient
to use the naïve estimate for σ2 calculated earlier as a starting point in the numerical optimization.

A confidence interval can be constructed for σ2 by solving two modified versions of this equation.
We assume we want a (1 − α)% CI, where α � αU + αL (where U and L stand for upper and lower,
respectively). For the upper limit, we solve for σ2 in the following

k∑ 
1

σ2
+ var

(

Ŝi
�� Si

)

(

Ŝi −
k∑ 1

σ2
+ var

(

Ŝi
�� Si

) Ŝi

)2
(k − 1)

�

χ2
k−1,αL

k − 1
,

where χ2
n−1,αL

is the critical value for the central χ2 distribution corresponding to (k − 1) df and αL

percentile.

To find the lower limit, we substitute χ2
k−1,1−αU

in the RHS of the preceding, and solve for σ2. If the

lower limit does not have a positive solution for σ2 (since σ ≥ 0), then we set the lower CI to 0 and adjust
to a one-sided CI by redefining αU � α.

Burnham et al. (1987) describe simplified versions of these estimators for the CI if all the var
(

Ŝi
�� Si

)

are the same, or nearly so.

D.2. variance components estimation – worked examples

Here, we introduce the ‘mechanics’ of the variance decomposition, using a series of progressively more
complex examples. We begin with a simple example loosely based on a ‘known fate’ analysis, where
survival is estimated as a simple binomial probability, and where there is no covariance among samples.

D.2.1. Binomial survival – simple mean (no sampling covariance)

Imagine a simulated scenario where we are conducting a simple ‘known fate’ analysis (Chapter 16). In
each of 10 years (k � 10), we mark and release n � 25 individuals, and determine the number alive, y,
after 1 year (since this is a known-fate analysis, we assume there is no error in determining whether
an animal is ‘alive’ or ‘not alive’ on the second sampling occasion). Here, though, we’ll assume that
the survival probability in each year, Si , is drawn from N(0.5, 0.05) (i.e., distributed as an independent
normal random variable with mean µ � 0.5 and process variance σ2

� 0.052). Conditional on each Si ,
we generated yi (number alive after one year in year i) as an independent binomial random variable
B(n, Si ). Thus, our ML estimate of survival for each year is Ŝi � yi/n, with a conditional sampling
variance of v̂ar

(

Ŝi
�� Si

)

� [Ŝi (1 − Ŝi)]/n, which given µ � 0.5, and σ2
� (0.05)

2 is approximately 0.01.

Table E.1 (top of the next page) gives the values of Si , yi and Ŝi for our ‘example data’. Clearly, for a
‘real analysis’, we would not know the true values for Si – we would have only Ŝi , and generally only
have ÊS

(

var
(

Ŝi
�� Si

) )

as v̂ar
(

Ŝi
�� Si

)

.

In Table E.1 we see that the empirical standard deviation of the 10 estimated survival rates (i.e., the Ŝi)
is 0.106. However, we should not take (0.106)

2 as an estimate of σ2 because such an estimate includes
both process and sampling variation. Clearly, we want to subtract the estimated sampling variance from
the total variation to get an estimate of the overall process variation.
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Table D.1: Single realization from simple binomial survival example, k � 10, E(S) � 0.5, σ � 0.05, where
Ŝi � yi/n are B(25, Si ), hence expected SE(Ŝi |S) ≈ 0.1

year (i) Si Ŝi ŜE
(

Ŝi
�� Si

)

1 0.603 0.640 0.096
2 0.467 0.360 0.096
3 0.553 0.480 0.100
4 0.458 0.440 0.100
5 0.506 0.480 0.100
6 0.498 0.320 0.093
7 0.545 0.600 0.098
8 0.439 0.400 0.098
9 0.488 0.560 0.099
10 0.480 0.560 0.099

mean 0.504 0.484 0.100
SD 0.050 0.106

using the manual approach...

From section D.1, if we make the strong assumption that all the sampling variances are equal, then the
estimate of the overall mean is the mean of the k estimates:

¯̂S �

∑k Ŝi

k
,

with the theoretical variance being

v̂ar
( ¯̂S

)

�

σ2
+ E

[
var

(

Ŝi
�� Si

)]
k

.

In other words the total variance is the sum of the process (environmental) variance, σ2, plus the
expected sampling variance, E

[

var
(

Ŝi
�� Si

)]

.

From section D.1, and assuming equal weights wi , where
∑k

� 1, we estimate the total variance as

v̂ar
( ¯̂S

)

�

∑k (Ŝi −
¯̂Si

)2

(k − 1)
,

and the expected sampling variance as the mean of the sampling variances

E
[
v̂ar

(

Ŝi
�� Si

) ]
�

∑k var
(

Ŝi
�� Si

)

k
.
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Thus, we can derive an estimate of the process (environmental) variance σ2 by algebra

σ̂2
�

10∑(

Ŝi −
¯̂Si

)2

(10 − 1)
−

10∑

var
(

Ŝi
��� Si

)

10
.

Thus, from Table (E.1), the process variance for our k � 10 samples is estimated as

σ2
�

10∑(

Ŝi −
¯̂Si

)2

(10 − 1)
−

10∑

var
(

Ŝi
��� Si

)

10

�

(
0.10064

9

)

− 0.00959

� 0.0016

∴ σ �
√

0.0016 � 0.040

While our estimate of process variance is not much different from the true underlying value (for this
example, true σ2

� 0.0025), we noted that this naïve estimator is not entirely correct, since it assumes
equal sampling variances. To obtain an unbiased estimate of σ2, we weight the sampling variance by

wi �
1

σ2
+ var

(

Ŝi
�� Si

) .

From section D.1, we derive an estimate of process variance over the k � 10 samples by solving
(numerically) the following for σ2

1 �

10∑

wi

(

Ŝi −
¯̂S
)2

(10 − 1)

�

10∑ 1

σ2
+ var

(

Ŝi
�� Si

)

*....,
Ŝi −

10∑

wi Ŝi

10∑

wi

+////-

2

(10 − 1)

�

10∑


1

σ2
+ var

(

Ŝi
�� Si

)
*,Ŝi −

10∑ 1

σ2
+ var(Ŝi |Si )

Ŝi
+-

2
(10 − 1)

.

For the present example, our estimated process variance is σ̂2
� 0.00195.

now using MARK...

While estimating process variance ‘by hand’ is relatively straightforward for this example, we are clearly
interested in using the capabilities of program MARK to handle the ‘heavy lifting’ – especially for more
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complex problems. Here we will introduce some of the ‘mechanics’ in using program MARK to estimate
process variance for our simulated ‘known fate’ data. The data (number of marked and released animals
that survive the one-year interval; see Table E.1) are formatted for the ‘known fate’ data type, and are
contained in binomial-example.inp.

Since our purpose here is to demonstrate the mechanics of ‘variance components analysis’, and not
‘known fate analysis’,we’ve gone ahead and built the basic general model {St} for you. Start MARK, and
open up binomial-example.dbf (note: you’ll need to have binomial-example.fpt installed in the same
directory where you have binomial-example.dbf). There is only one model in the browser (for now) –
model ‘S(t) -- general model’. [At some point, you should look at the underlying PIM structure, to
see how we are using the known fate data type to model survival using a simple binomial estimator.]

Retrieve model ‘S(t) -- general model’, and look at the real parameter estimates (shown below). If
you compare these survival estimates with those ‘done by hand’ in Table E.1, we see they are identical.

Next, we will use MARK to handle the estimation of process variance for us. Start by having a look at
the ’Output | Specific Model Output | Variance Components’ menu. You’ll see that we can execute
a variance components analysis on either the β estimates, the real parameter estimates, or on any derived
parameter(s). Here, we are interested in the real parameters, so, select that option.

You will then be presented with a window (shown at the top of the next page) asking you to
specify which parameters you want to include in the variance component estimation, plus some options
concerning the specification of the design matrix, followed by various output options. Note that we
specify parameters ‘1 to 10’ to be included in the estimation. Since the ‘data’ were generated based on
a sample of survival values drawn from a normal distribution with unknown parametric mean µ and
variance σ2, it should make intuitive sense that we are going to fit a ‘mean model (i.e., intercept only).
This is checked by default (we will consider other DM specifications elsewhere). For output options, we
will accept the default options (selected) – note that at this point, we are not considering the fitting of
a ‘random effects model’ (at least, not directly), so we leave that box unchecked.
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Once you have completed entering the parameters and specifying the DM and the output options,
click ‘OK’. MARK will respond (generally very quickly) by outputting the estimates from the VC analysis
into an editor window, shown below (MARK will also generate a plot of various estimates – ignore and
close the plot for now):

Starting from the top – the first line reports a ‘Beta-hat’ of 0.482526. As you might recall from Chapter
6, this is in fact our most robust estimate of the mean survival probability. Note that it is close, but not

identical to the simple arithmetic mean ¯̂Si � 0.484. We will outline the reasons for the differences later
– for now, we’ll accept with deferred proof the statement that ‘Beta-hat’ represents our best estimate
for mean survival, since it is the estimate of the expected value of S as a random variable. This estimate
is followed by the estimate of ‘SE(Beta-hat)’. We’ll defer discussing this for a moment.

Appendix D. Variance components and random effects models in MARK . . .



D.2.2. Binomial example extended – simple trend D - 12

Next, a table of various parameter estimates. The first two columns should be self-explanatory –
the ML estimates of survival Ŝi (‘S-hat’), followed by the binomial standard error for the estimate
(‘SE(S-hat)’. Next, the ‘shrinkage’ estimates S̃i (‘S-tilde’) and their corresponding SE and RMSE. The
derivation, use and interpretation of the shrinkage estimates is developed in section D.3.

Finally, the estimates for process variation (the G matrix we’ll get to later). First, MARK reports the
‘na\"{\i}ve estimate of sigma^2’= 0.001595. This is exactly the same value as the ‘first approximation’
we derived ‘by hand’ in the preceding section. This is followed by the ‘Estimate of sigma^2’ =
0.0019503 (and the ‘Estimate of sigma’ = 0.044162). Both estimates are identical to those we derived
‘by hand’ using the ‘weighted means’ approach in the preceding section.

Now, about the ‘SE(Beta-hat)’ noted above. For this example, in the absence of sampling covariance,
it is estimated as the square-root of the sum of estimated process variation, σ̂2, and sampling variation,
E
[

v̂ar
(

Ŝi
�� Si

)]

, divided by k, where k is the number of parameter estimates. For our present example,
with k � 10,

‘SE(Beta-hat)’ �

√

σ̂2
+ E

[

v̂ar
(

Ŝi
�� Si

) ]

k

�

√

(0.0019503+ 0.0095872)

10
� 0.03396

which is what is reported by MARK (to within rounding error). Thus, our estimate of total variance

(i.e., the value of the numerator inside the square-root) would be (ŜE
2
× k) � (0.033962 × 10) � 0.01153.

The ‘SE(Beta-hat)’ is useful for calculating 95% CI for ‘Beta-hat’. For this example, we can construct
a reasonable CI for ‘Beta-hat’ as 0.482526± (1.96 × 0.033946) → [0.4160, 0.5491].

D.2.2. Binomial example extended – simple trend

Here we consider a similar scenario, again involving a simple ‘known fate’ analysis with no sampling
covariance among samples. In each of 15 years (k � 15), we mark and release n � 25 individuals,
and determine the number alive, y, after 1 year. Here, though, we assume that the true mean survival
probability in each year, S̄i , is declining over time (from 0.60 in the first year, to 0.46 in the final year).
We’ll assume that the survival probability in each year, Si , is drawn from N(S̄i , 0.05). Conditional on
each Si , we generated yi (number alive after one year in year i) as an independent binomial random
variable B(n, Si ). Table D.2 (top of the next page) gives the values of Si , yi and Ŝi for our ‘example data’.

Now, in the preceding example, the survival probability in each year, Si, was drawn from N(0.5, 0.05)

(i.e., distributed as an independent normal random variable with mean µ � 0.5 and process variance
σ2

� 0.052). Here, though, not only is there random variation around the mean, but the mean itself
declines over time. In this example there are 2 sources of process variation: the random variation around
the mean survival in any given year, and the decline over time in the value of the mean. As such, we
anticipate that the actual process variance will be > (0.05)

2.∗ We also anticipate that if we estimate
process variance using a model based on a simple mean (i.e., where we assume that process variation
is due only to variation around a mean survival which is the same in all years) the estimate will be
biased high (since it will conflate within- and among-year sources of variation). What about sampling
variation? The imposition of a trend does not influence sampling variation – in each year, sampling is

∗ The actual value of the process variance, accounting for both within and among season variation, is σ2
� 0.0045. We’ll leave it

to you as an exercise to derive this value yourself.
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based on a binomial with the same number of individuals ‘released’ each year.

Table D.2: Single realization from simple binomial survival example, k � 15, S declining linearly from 0.6→ 0.46
(S̄ � 0.53), σ � 0.05, where Ŝi � yi/n are B(25, Si ) – hence expected SE

(

Ŝi
�� S

)

≈ 0.1.

year (i) Si Ŝi ŜE
(

Ŝi
�� Si

)

1 0.647 0.560 0.0099
2 0.595 0.440 0.0099
3 0.667 0.440 0.0099
4 0.580 0.640 0.0092
5 0.532 0.640 0.0092
6 0.475 0.720 0.0081
7 0.624 0.360 0.0092
8 0.516 0.400 0.0096
9 0.640 0.520 0.0100
10 0.430 0.480 0.0100
11 0.503 0.400 0.0096
12 0.509 0.520 0.0100
13 0.533 0.360 0.0092
14 0.394 0.360 0.0092
15 0.490 0.240 0.0073

mean 0.542 0.472 0.0093
SD 0.081 0.129

We’ll test both expectations, using data contained in binomial-example-trend.inp. Again, we’ve
provided you with some ‘pre-built’ models to start with (contained in binomial-example-trend.dbf
and binomial-example-trend.fpt). We’ll avoid doing the same ‘hand calculations’ we worked through
in the preceding example (same basic idea, but a fair bit messier because of having to account for both
within and among year variation), and simply use MARK.

Start MARK, and open up binomial-survival-trend.dbf. You’ll see that there are 2 ‘pre-built’
models in the browser: ‘S(t) - DM’ (simple time variation) and ‘S(T) - DM’ (a trend model, where
annual estimates are constrained to follow a linear trend). The ‘-DM’ simply indicates that both were
constructed using a design matrix. Based on AICc weights, there is clearly far more support for the
trend model (which is the true generating model) than the model with simple time variation.

Our purpose here is not to do ‘model selection’ (we’ll get there). Our present interest is on estimating
the variance components. So, first question. Which model do we want to estimate variance components
from? This is a more subtle question than it might seem. On the one hand, if we didn’t know there
was a trend, it might seem that we should select the time-dependent model since it is more general.
On the other hand, you might have prior information suggesting a trend, and might think that it is
a better model. Or, you might build both models, see that the trend model has the most support in
the data, and use that model as the basis for estimating variance components. You need to think this
through carefully. We are trying to estimate process variance – we want to estimate the magnitude of
the joint within- and among-year variation in our data. Thus, we want to use the most general model
possible. In this case, model ‘S(t) - DM’. We don’t use model ‘S(T) - DM’, since the estimates from
that model are constrained to fall on a straight line. Meaning, the only remaining variation would be
the annual variation in mean survival (as estimated by the regression equation). Meaning, that any
estimate of process variation from such a model would massively underestimate true process variation
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in the data. Start by retrieving model ‘S(t) - DM’. Then, select ‘Output | Specific model output |
Variance components | Real parameter estimates’. With 15 samples we specify ‘1 to 15’.

What about the ‘design matrix specification’? Recall from the preceding example that we used
the default ‘Intercept Only (mean)’ specification. However, there are 2 other options available to
you: ‘linear trend’, and ‘user specified’. In effect, the first 2 options (‘intercept only’ and ‘linear
trend’) are there simply for your convenience, since both models are very commonly used. You could,
however, build either model by selecting the ‘user specified’ option (which essentially is the option
you select if you want to build a specific model directly, using the design matrix). We’ll defer using
the ‘user specified’ option for now, and simply compare the ‘intercept only’ and ‘linear trend’
models. We’ll start with the default ‘intercept only’ option.

Once you click the ‘OK’ button, MARK will respond with the estimates of year-specific survival
probabilities, and the estimates of total and process variance (shown at the top of the next page). Again,

the first line is the estimate of the overall mean, ˆ̄S � 0.4711, and SE � 0.0342 (representing total variance).
Note that the reported mean is very close to the mean of the true Si (Table D.2), S̄i � 0.472.

What about the estimated variance? The estimate of process variance σ̂2
� 0.00825, which as we

anticipated is almost twice as large as the true process variance in the data (σ2
� 0.0045). Thus, the

estimated SE for total variance will also be biased high.

Now, let’s do a variance components analysis on the time-dependent model, by checking the ‘linear
trend’ DM option, as shown below:
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The parameterestimates are shown at the top of the nextpage. Note thatwe no longerhave an estimate
of a single ‘Beta-hat’ (i.e., we no longer have an estimate of just the mean). What we do have, though,
is an estimate of the intercept (β̂1 � 0.61353), and the slope of the decline over time (β̂2 � −0.017643).
Both are quite close to the values of β̂1 � 0.64 and β̂2 � −0.0102, estimated from a regression of the true
Si (Table D.2) on year. This is not surprising. The estimated process variance, σ̂2 � 0.0031995, is much
more consistent with the true process variance, σ2

� 0.0045, than was our estimate under the ‘intercept
only’ model.

D.2.3. what about sampling covariance?

In the preceding examples, we considered situations where there was no sampling covariance. While
this is a useful place to start, it is not particularly realistic in many situations,where sampling covariances
are potentially not small. Recall that our simple (naïve) estimator for process variance, σ̂2, for some
parameter θ was given as

σ̂2
�

k−1∑
(

θ̂i −
¯̂θ
)2

k − 1
− E

[
var

(

θ̂i
�� Si

) ]
.

This is a suitable first approximation when sampling covariances are 0, or nearly so.

However, when sampling covariances are significant, then we need to modify the estimator for σ2 to
explicitly account for the sampling covariance.

σ̂2
�

k−1∑
(

θ̂i −
¯̂θ
)2

k − 1
− E

[
var

(

θ̂i
�� θi

) ]
+ E

[
cov

(

θ̂i , θ̂j
�� θi , θj

) ]
.
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To illustrate how sampling covariance is handled, we simulated a data set of live-encounter (CJS)
data, 21 occasions, 350 newly marked individuals released at each occasion, under true model {ϕt pt}.
Apparent survival, ϕi , over a given interval i was generated by selecting a random beta deviate drawn
from B(0.7, 0.005). The encounter probability pi at a sampling occasion i was generated by selecting
a random beta deviate drawn from B(0.35, 0.005). The simulated live-encounter data are contained in
normsim-VC.inp. The estimates ϕ̂i from model {ϕt pt} are shown at the top of the next page. For a time-
dependent model, the terminal ϕ and p parameter estimates are confounded (reflected in the estimated
ŜE(ϕ̂20) � 0.000). This becomes important when we specify the parameters in the variance-components
analysis.

Estimation of σ2 under the naïve model is straightforward. The only additional complications are that
(i) the terms in the estimator are calculated over ϕ1 → ϕ19, and (ii) we have to calculate the mean of the
sample covariances to estimate E

[
cov

(

ϕ̂i , ϕ̂ j
�� ϕi , ϕ j

)]
. In practice, this second step isn’t too difficult,

depending on your facility with computers. You simply need to find a way to calculate the mean of the
off-diagonal elements of the V-C matrix (keeping in mind you’re calculating the mean over ϕ1 → ϕ19).
For the present example, ̂̄cov

(

ϕ̂i , ϕ̂ j
�� ϕi , ϕ j

)

� −0.00008. Thus,

σ̂2
�

k−1∑
(

ϕ̂i − ¯̂ϕ
)2

k − 1
− E

[
var

(

ϕ̂i
�� ϕi

)]
+ E

[
cov

(

ϕ̂i , ϕ̂ j
�� ϕi , ϕ j

)]

�

(
0.11531

18

)

−
(
0.0338

19

)

− 0.00008

� 0.004552

Clearly, the proportional contribution of the covariance term is very small (2%). This will often be
the case, especially for time-dependent models.

If we analyze these live-encounter data using the variance components routines in MARK, using
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the ‘intercept only’ mean model, the reported value for the ‘naïve’ estimate (shown at the top of the
next page) matches the value we derived by hand on the preceding page. The estimate based on the
‘weighted’ estimator is almost identical – and both are not too far off the true value of σ2

� 0.005.

The near equivalence of the ‘naïve’ and ‘weighted’ estimates reflects the fact that sampling variation
is small, relative to process variance, in this example (small sampling variance is not surprising, given
that the data were generated under a model with p � 0.35 and 350 individuals marked and released on
each sampling occasion). Recall from section D.1 that from least-squares theory, we should weight our
estimates of total and sampling variance to obtain an unbiased estimate of process variance, σ2, using
a weight wi :

wi �
1

σ2
+ var

(

ϕ̂i
�� ϕi

) .

For this example, var
(

ϕ̂i
�� ϕi

)

≪ σ2 ,∀i, and so wi ≈ 1/σ2, which is a constant (since σ2 is a constant).
Thus, for this example, the weighting does not change the naïve estimate.

You may have noticed that the ML estimates (‘S-hat’) are very close to what we identified earlier as
‘shrinkage’ estimates (‘S-tilde’). Is the near-equivalence of the ‘naïve’ and ‘weighted’ estimates for σ2

related to the ‘closeness’ of the ML and ‘shrinkage’ estimates?

D.3. random effects models and shrinkage estimates

In this section, we introduce what we will refer to as ‘random effects’ models. We’ll begin by having
another look at the results from the simple binomial example (section D.2.1), shown on the top of the
next page. From left to right are the ML estimates, Ŝi (‘S-hat’), the estimated standard error for the ML
estimate, ŜE

(

Ŝi
�� S

)

(‘SE(S-hat)’), the corresponding ‘shrinkage’ estimate, S̃i (‘S-tilde’), the estimated
standard error for the shrinkage estimate, ŜE

(

S̃i
�� Ŝi

)

, and the estimated residual mean-squared error
(RMSE) for the shrinkage estimate, FRMSE

(

S̃i
�� Ŝi

)

(‘RMSE(S-tilde)’).

Appendix D. Variance components and random effects models in MARK . . .



D.3. random effects models and shrinkage estimates D - 18

Here is a plot of the ML estimates, Ŝi (green line), the ‘shrinkage’ estimates, S̃i (blue line), and the
model estimates (for the mean model, corresponding to the estimated mean β̂ � 0.4825; red line).

We are familiar with the ‘ideas’ behind the ML estimates, Ŝi, and the idea of an overall estimate of
the mean survival, Ê(S), hopefully makes some intuitive sense. But, what are ‘shrinkage’ estimates?
We’ll start with a short-form explanation, focussing on the basic ideas, then jump down into the weeds
a bit for a deeper (more technical) discussion. The concept of a ‘shrinkage’ estimate is perhaps not the
easiest thing to understand.∗ We will follow this by illustrating the mechanics of building and fitting
these models in MARK, through a series of ‘worked examples’.

∗ In his definitive text on matrix population models, Hal Caswell comments that understanding eigenvalues and eigenvectors
(which feature prominently in demographic analysis) requires ‘not only a mechanical understanding, but a real intuitive grasp
of the slippery little suckers...’ (p. 662, 2nd edition). We submit the same sentiment applies to ‘shrinkage’ estimates.
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D.3.1. the basic ideas...

Looking at the tabular output and the plot, there are notable differences in point estimates,and precision,
between the the ML estimates and the shrinkage estimates. If you look carefully, you’ll notice that
for most years, the shrinkage estimate falls somewhere between the ML estimate, and the mean. The
shrinkage method is so called because each residual arising from the fitted reduced-parameter model
(Ŝi − Ê(S)) is ‘shrunken’, then added back to the estimated model structure for observation i under
that reduced model. In a heuristic sense, the S̃i are derived from the ML estimates by removal of the
sampling variation.

When sampling covariances are zero∗, the shrinkage estimator used in MARK for the mean-only
model (although the structure applies generally) is

S̃i � Ê(S) +

√√√
σ̂2

σ̂2
+ ÊS

[
v̂ar

(

Ŝi
�� Si

) ] × [

Ŝi − Ê(S)
]

.

The first term on the right-hand side (RHS) of the expression is the estimate of the mean survival, Ê(S).
The last term, [Ŝi − Ê(S)], is simply the residual of the ML estimate from the model. But what about the
middle term on the RHS?

We will generally refer to √√√
σ̂2

σ̂2
+ ÊS

[
v̂ar

(

Ŝi
�� Si

) ] ,
as the ‘shrinkage coefficient’, and it clearly is a function of the proportion of total variance – i.e., the sum
σ2

+ var
(

Ŝi
�� Si

)

– due to process (environmental) variation, σ2. The square-root is used because then

σ̂2 .
�

∑k (S̃i − ¯̃S
)2

k − 1
and Ê(S)

.
�

¯̃S.

If there is no process variation (i.e., σ2
� 0), then the shrinkage coefficient is evaluated at 0, and

thus the shrinkage estimate would be the mean, Ê(S). In other words, if you have no environmental
variation, then the only variation in the system is sampling. If you remove the sampling variation (which
we noted earlier is what shrinkage is doing, at least heuristically), then this makes sense – without
process or sampling variation, every shrinkage estimate would simply be the mean, i.e., S̃i � Ê(S). In
contrast, with increasing process variance (i.e., increasing σ2), we see that as σ2 > var

(

Ŝi
�� Si

)

(i.e.,
as the proportion of total variance due to process variance increases), then the shrinkage coefficient
approaches 1.0, and the shrinkage estimate would approach the ML estimate, Ŝi.

This relationship is depicted in the following diagram where the arrows indicate the direction that
decreasing or increasing process variance σ2 has on the value of the shrinkage estimate, S̃i , relative to
the arithmetic average of the ML estimate Ŝi and the mean Ê(S).

Ê(S) S̃i Ŝi

↓ σ2

↑ σ2

Thus, another way of looking at it is to view the shrinkage estimate is analogous to an ‘average’

∗ The full shrinkage estimator, accounting for non-zero sampling covariances, is presented in section D.3.2.
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between the two estimates. This is important when we consider model averaging – we defer discussion
of that important topic until section D.5.

We should note that a shrinkage coefficient different than

√√√
σ̂2

σ̂2
+ ÊS

[
v̂ar

(
Ŝi

�� Si

) ]

could be used. However, this particular shrinkage coefficient has a very desirable property: if we treat
the S̃i as if they were a random sample, then their sample variance almost exactly equals σ̂2. This also
means that a plot of the shrinkage residuals (as implicit in the plot at the top of the preceding page)
gives a correct visual image of the process variation in the Si .

This starts to point us in the direction of answering the basic question ‘why derive shrinkage
estimators for the Si?’. The answer in part comes from the observation we just made that the sample
variance of the shrinkage estimates is very close to the estimate of process variance, σ̂2. So, the shrinkage
estimates are ‘improved’, relative to the ML estimates, since they should have better precision. If we
look at the estimates for the binomial survival example, we see that the improvements gained by the
shrinkage estimators, S̃i , appears substantial – they have about 50% better precision (simply compare
ŜE

(

S̃i
�� Si

)

to ŜE
(

Ŝi
�� Si

)

).

However, because the ML estimates are unbiased, and the shrinkage estimators are biased (as we will
explain), a necessary basis for a fair comparison is the sum of squared errors (SSE). The SSE is a natural
measure of the closeness of a set of estimates to the set of Si . For example, for the binomial survival
example, the SSE for the ML estimates is

SSEMLE �

10∑
(

Ŝi − Si

)2
� 0.067

while for the shrinkage estimates, the SSE is

SSEshr inka ge �

10∑
(

S̃i − Si

)2
� 0.019

Clearly, in this sample the shrinkage estimates, as a set, are closer to truth. The expected SSE is the
mean square error, MSE (= E[SSE]), which is a measure of average estimator performance.

Those of you with some background in statistical theory might see the connections between the
preceding and James-Stein estimation, wherein (in highly simplified form) when 3 or more parameters
are estimated simultaneously, there exist combined estimators more accurate on average (that is, having
lower expected MSE) than any method that considers the parameters separately. For example, let θ is
a vector consisting of n ≥ 3 unknown parameters. To estimate these parameters, we take a single
measurement Xi for each parameter θi , resulting in a vector X of length n. Suppose the measurements
are independent, Gaussian random variables, such that X ∼ N(µ, 1). The most obvious approach to
parameter estimation would be to use each measurement as an estimate of its corresponding parameter:
θ̂ � X. James-Stein demonstrated that this standard (LS) estimator is suboptimal in terms of mean
squared error, E(θ − θ̂). In other words, there exist alternative estimators which always achieve lower
mean squared error, no matter what the value of θ is. For example, it can be shown that a combined
estimator of the sample and global mean is a better predictor of the future than is the individual sample
mean, since the total MSE of the combined estimator is lower than if using the sample means themselves.
This clearly points to partof the theory underlying the use of shrinkage estimators – James-Stein says that
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a combined estimator (say, of the ML estimate and the random mean, which is of course our shrinkage
estimate) will have a lower MSE than will the ML estimates themselves (with the degree of improvement
increasing with increasing number of sample means being combined).

It is important to note, however, that the combined estimator will be closer to optimal overall, since
it minimizes the MSE of the estimates overall. However, it is possible that any one individual estimate
could be ‘incorrectly shrunk’ (relative to the true value of the parameter), even in the wrong direction.
So, shrinkage is conceptually optimal for the set of parameters, but not necessarily for any individual
parameter).

If these ideas are new to you, papers by Efron & Morris (1975, Data analysis using Stein’s Estimator
and its generalizations, JASA 70: 311-319; 1977, Stein’s paradox in statistics, Scientific American 238: 119-
127) are quite accessible, and provide excellent introductions to the subject.

begin sidebar

shrinkage estimators and 95% confidence limits

For the ML estimates, an approximate 95% confidence interval on Si is given by Ŝi ± 2 ŜE
(

Ŝi
�� Si

)

.

This procedure will have good coverage in this example. However, for the shrinkage estimator if we

use S̃i ± 2 ŜE
(

S̃i
�� Si

)

, coverage will be negatively affected by the bias of S̃. Theory (discussed in B&W)

shows that the correct expected coverage occurs for the interval S̃i ± 2 FRSME
(

S̃i
�� Si

)

, where
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�

√
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)

+
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)2.

The expectation over Si of EMSE
(

S̃i
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)

�
[FRSME
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S̃i
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) ]2 is approximately the mean square

error for S̃i , MSEi . For the ML estimates,

FRSME
(

Ŝi
�� Si

)

� ŜE
(

Ŝi
�� Si

)

,

because Ŝi is unbiased. The unbiasedness of the ML estimates in the general model, together with a

high correlation between Ŝi and S̃i , and the assumption that Si are random, allows an argument thatFRMSE
(

S̃i
�� Si

)

is an estimator of the unconditional sampling standard error of S̃i (over conceptual

repetitions of the data). It then follows that this RMSE can be a correct basis for a reliable confidence

interval. It is rare to have a reliable estimator of the MSE for a biased estimator, but when this occurs

it makes sense to use ±2
√EMSE rather than ±2 ŜE, as the basis for a 95% CI.

end sidebar

D.3.2. some technical background...

Most random effects theory assumes conditional independence of the estimators. In the introduction
to this section, we started by having another look at the simple binomial survival example introduced
earlier in section D.2.1. In that example, there was no sampling covariance – the estimates were all
independent of each other.

However, more generally in capture-recapture studies, the estimators Ŝ1, . . . , Ŝk are pairwise con-
ditionally correlated. Thus, a more general, extended theory is required, which we develop here in
summary form – complete details are found in B&W. While some of the math can get a bit ugly, some
familiarity with the ideas (at least) is helpful in more fully understanding ‘what MARK is doing’. In the
following, vectors (all column) are underlined. Matrices are in bold font. A matrix, X, may be a vector
if it has only a single column. In that case, we do not underline X.
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First, we assume Ŝ � S+ δ, given S. Conditional on S, δ (which has a zero expectation) has a variance-
covariance matrix W, and E

(

Ŝ �� S
)

� S for large samples. Second, unconditionally S is a random
vector with expectation Xβ and variance-covariance matrix σ2I, where I is the identity matrix. (Note:
the vector β is different than the beta parameters of the MARK link function). Thus, the process errors

ǫi � Si−E(Si) are independent with homogeneous variance σ2. Also, we assume mutual independence
of sampling errors δ and process errors ǫ. We fit a model that does not constrain S, e.g., {St}, and hence
get the maximum likelihood estimates Ŝ and an estimate of W.

Let S be a vector with n elements, and β have k elements. Unconditionally,

Ŝ � Xβ + δ + ǫ,

VC(δ + ǫ) � D � σ2I + W.

We want to estimate β and σ2, an unconditional variance-covariance matrix for β̂, a confidence

interval on σ2, and to compute a shrinkage estimator of S (i.e., S̃) and its conditional sampling variance-
covariance matrix. In this random effects context the maximum likelihood estimator is the best con-
ditional estimator of S. However, once we add the random effects structure we can consider an un-
conditional estimator of S (S̃) and a corresponding unconditional variance-covariance for S̃, which
incorporates σ2 as well as W and has (n − k) degrees of freedom (if we are assuming large df for
W and ‘large’ σ2).

For a given σ2 we have
β̂ � (X′D−1X)

−1X′D−1Ŝ.

Note that here D, hence β̂, is a function of σ2. Now we need a criterion that allows us to find an

estimator of σ2. Assuming normality of Ŝ (approximate normality usually suffices), then the weighted
residual sum of squares (Ŝ − Xβ̂)

′D−1Ŝ − Xβ̂) is central χ2-distributed on (n − k) degrees of freedom.

Hence, by the method of moments,∗

n − k � (Ŝ − Xβ̂)
′D−1

(Ŝ − Xβ̂).

This equation defines a 1-dimensional numerical-solution search problem. Pick an initial (starting)
value of σ2, compute D, then compute β̂, then compute the right-hand side of the preceding expression.

This process is repeated over values of σ2 until the solution, as Ŝ, is found. This process also gives β̂.

The unconditional variance-covariance matrix of β̂ is VC(β̂) � (X′D−1X)
−1.

Now we define another matrix as

H � σ

√

D

� σ

√

σ2I + E(W)

�

√

I +
1

σ2
E(W).

(Here we only need H at σ̂.)

∗ Which is why the random effects estimation procedure in MARK is sometimes referred to as ‘the moments estimator’.
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The recommended shrinkage estimate (which is what is used in MARK) is

S̃ � H(Ŝ − Xβ̂) + Xβ̂

� HŜ + (I −H)Xβ̂.

To get an estimator of the conditional variance of these shrinkage estimators (which is not exact as the
estimation of σ2 is ignored here, as it is for the variance-covariance matrix of β̂), we define and compute
a projection matrix G as follows:

G � H + (I −H)AD−1.

Hence,

S̃ � GŜ.

In other words, G is the projection matrix which ‘maps’ the vector of ML estimates to the vector of
shrinkage estimates.

The conditional variance-covariance matrix of the shrinkage estimator is then VC
(

S̃ �� S
)

� GWG′,
whereas W � VC

(

S̃ �� S
)

. Because S̃ is known to be biased, and because the direction of the bias is
known, an improved basis for inference is VC

(

S̃ �� S
)

� GWG′+ (S̃− Ŝ)(S̃ − Ŝ)
′. The square-roots of the

diagonal elements of this matrix are

FRMSE
(

S̃i
�� S

)

�

√

v̂ar
(

S̃i
�� S

)

+
(

S̃i − Ŝi

)2
.

As discussed earlier, confidence intervals should be based on this RMSE. The RMSE can exceed the
SE

(

Ŝi
�� Si

)

, but on average, the RMSE is smaller.

D.3.3. Deriving an AIC for the random effects model

We will have started with a likelihood for a model at least as general as full time variation on all the
parameters, say L(S, θ) � L(S1 , . . . , Sk , θ1 , . . . , θℓ ). Under this time-specific model, {St , θt}, we have
the MLEs, Ŝ and θ̂, and the maximized log-likelihood, logL(Ŝ, θ̂) based on K � k + ℓ. Thus (for large
sample size, n), AIC for the time-specific model is the (now) familiar −2 logL(Ŝ, θ̂) + 2K.

The dimension of the parameter space to associate with this random effects model is Kre ,

Kre � tr(G) + ℓ,

where G is the projection matrix mapping Ŝ onto S̃ (see above), and ℓ is the number of free parameters
not being modeled as random effects. tr(G) is the matrix trace (i.e., the sum of the diagonal elements of
G). The tr(G) (and thus Kre ) is generally not integer.∗

Note that the mapping of S̃ � GŜ is a type of generalized smoothing. It is known that the effective
number of parameters to associate with such smoothing is the trace of the smoother matrix.

Finally, the large-sample AIC for the random effects model is

AIC � −2 logL(S̃, θ̃) + 2Kre .

∗ Which is why the number of parameters reported for random effects models is generally not integer.
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A more exact version, AICc , for the random effects model may, by analogy, be taken as

AICc � −2 logL
(
S̃, θ̃

)
+ 2Kre + 2

(
Kre

(

Kre + 1
)

n + Kre − 1

)

.

For a full derivation of the AIC, in both a fixed and random effects context, see Burnham & Anderson
(2002).

D.4. random effects models – some worked examples

In the following, we introduce the ‘mechanics’ of fitting random effects models in MARK, using a series
of progressively more complex examples. Many of the steps were introduced earlier in the context of
variance components analysis (section D.2). We begin by revisiting the simple binomial (‘known fate’)
analysis we introduced in section D.2.1.

D.4.1. binomial survival revisited – basic mechanics

We begin our analysis of the ‘known fate’ data by considering a candidate set of 2 approximating models:
model {St}, and model {S.}. Recall that the former model is our general ‘time-dependent’ model – this
is the model we used in our estimation of variance components as detailed in section D.2.1. The second
model, {S.} is a model where survival S is constrained to be constant over time. Fit both models,and
add the results to the browser:

Clearly, there is overwhelming support in the data for the time-constant model, {S.}.

Let’s have a look at a plot of the estimates from model {St}:
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The point estimates Ŝi appear to vary over time, but notice that the confidence bounds on each
estimate appear to overlap over all intervals. This is perhaps the underlying explanation for why, despite
apparent variation in the point estimates Ŝi , there is essentially no support in the data for the general
time-varying model, {St}, relative to a model which constrains the estimates to be constant over time,
{S.}.

However, we know logically that Si cannot truly be constant over time. There must be some true
variation in survival, but our data are insufficient (apparently) to support a time-varying model where
‘time’ is modeled as an unconstrained fixed effect. Rather than concluding ouranalysis of these data here
(especially when such a conclusion is based on data insufficiency, rather than biological plausibility), we
continue by fitting a random effects model, which we will propose as ‘intermediate’ between constant
models, and fully time-dependent models. We will submit at this point that a random effects model
is, in fact, such an intermediate model (support for this statement will be developed in a later section).
Here, we will try to fit a model where survival varies around some unknown mean µ, with unknown
process variance σ2 – clearly, this corresponds to the ‘intercept only (mean)’ model we first saw in
section D.2.1 when we introduced variance components estimation in MARK. Such a model also makes
some intuitive sense, if our intuition is guided by the time-series plot of the estimate Ŝi shown on the
previous page, where it might be reasonable to ‘imagine’ each Si as ‘bouncing randomly’ around some
mean survival probability, µ (with the magnitude of the ‘bouncing’ around the mean being determined
by the process variance, σ2).

Formally, we will refer to this model as {Sµ,σ2}. How do we build such a model in MARK? Easy
enough – we simply run through the steps we need for a variance components analysis for model {St}
(which should be familiar to you by now, if you’ve reached this point in this appendix – if not, go back
and review section D.2.1): retrieve our general model {St}, specify parameter indices ‘1 to 10’ in the
variance component estimation window, and now, before hitting the ‘OK’ button, we ‘check’ the box to
build the random effects model in the lower right-hand corner of the ‘Variance Component Estimation’
window:

Now,click the ‘OK’ button. As before,MARK will respond by outputting various parameters estimates
(Ŝi , S̃i , σ̂

2) to the editor, and generating a plot of the time-series for the estimates of survival, and the
mean model. The derivation and analysis of both was presented in some detail at the beginning of
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section D.3 and in section D.3.1, so we won’t repeat them here.

Here, we introduce the next step, which is the actual ‘fitting’ of the estimated random effects model
to the data. You may have noticed that in addition to the editor window (containing the parameter
estimates) and the plot, MARK has also brought up a ‘Setup Numerical Estimation Run’ window, the
general contents of which will be familiar to you from other analysis you’ve done with MARK.

The biggest ‘visual’ difference is that MARK has modified the model name. Now, the model is called
‘{S(t)f(t) -- sin link: Random Effects Trace G=4.7017092}’. The part of the model name to the
left of the colon is what we originally used to name the model. The part to the right (which MARK has
added) indicates that we’re now running a random effects model, and that the ‘trace’ of the G matrix is
4.7017092. Recall from section D.3.2 that the trace of the G matrix is a related to the number of estimated
parameters used in the derivation of the AIC (and that because tr(G) is generally non-integer, that the
number of estimated parameters for random effects models is also usually non-integer). We’ll modify
the title by adding the words ‘intercept only (mean)’ somewhere in the title box, to indicate that the
model we’re fitting is the ‘intercept only (mean)’ model. Once done, click the ’OK to run’ button
and add the results to the browser (if you get a warning about MARK not being able to import the
variance-covariance matrix, ignore it).

Several things to note here. First, our random effects model now has some significant support in the
data (AICc weight is 0.383). While not the most parsimonious model in the candidate set, it is clearly
better supported than the fixed effect time-dependent model. However, given that a time-invariant
model is not logically plausible, then we should select a model where survival varies over time. If we
make such a logical choice, then (based on the ideas present in section D.3) our best estimate for annual
survival Si would be the shrinkage estimates S̃i from our random effects model, {S

µ,σ2}.

Second, look at the number of parameters that MARK reports as having beenestimated for this model
(4.70171). We see that this number is identical to tr(G). Recall from section D.3.3 that the dimension of
the parameter space (analogous to the number of estimated parameters in the usual sense) to associate
with a random effects model is Kre ,

Kre � tr(G) + ℓ,

where tr(G) is the trace of the G matrix, and ℓ is the number of free parameters not being modeled as a
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random effect. In this case, all 10 parameters in the model, S1, . . . , S10 are being modeled as a random
effect, so ℓ � 0, and thus Kre � tr(G) � 4.70171.

If we next look at the estimates of Si (below)

we see that all of the estimates are ‘fixed’ at the value of S̃i . As fixed parameters in the fitted model,
there is no standard error (or CI) estimated (since there is nothing to be estimated for a fixed parameter,
obviously).

Finally, if you click on the ‘model notes’ button in the browser toolbar

you will be presented with a ‘copy’ of the variance components analysis which was first output to the
editor.

This is convenient, since it allows you to ‘store’ the variance components analysis for any particular
random effects model you fit to the data (note that the variance components analysis is output to the
‘model notes’ only if you run the random effects model).
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D.4.2. a more complex example – California mallard recovery data

Here we introduce the mechanics, and some of the challenges, of fitting of ‘random effects’ models in
MARK. We will use a long-term dead recovery data set based on late summer banding of adult male
mallards (Anas platyrhynchos), banded in California every year from 1955 to 1996 (k � 41) (Franklin et

al., 2002). The total number of birds banded (marked and released alive) was 42,015, with a total of 7,647
dead recoveries. In a preliminary analysis, the variance inflation factor was estimated as ĉ � 1.1952.
The recovery data are contained in california-male-mallard.inp. For your convenience, we’ve also
generated 3 candidate models: {St ft}, {ST ft}, and {S. ft}, where the capital ‘T’ subscript is used to
indicate linear trend. These models are contained in the associated .dbf and .fpt files.

Note that we use time-structure for the recovery parameter f . We do so not simply because such a
model often makes more ‘biological sense’ than a model where f is constrained (say, f.), but because
any constraint applied to f will impart (or ‘transfer’) more of the variation in the data to the survival
parameter S, such that the estimated process variance σ̂2 will be ‘inflated’, relative to the true process
variance. In general, you want to estimate variance components using a fully time-dependent model,
for all parameters, even if such a model is not the most parsimonious given the data.

Here are the results of fitting these 3 models to the data:

Based on the relative degree of support in the data it would seem that there is essentially no support
for a model where survival is constrained to follow a linear trend, or for a model where survival is
constrained to be constant over time. All of the support in the data (among these 3 models) is for model
{St ft}. If this was all we did, we’d come to the relatively uninteresting and uninformative conclusion
that there is temporal variation in survival. A plot of the estimates from this model seems to be consistent
with this conclusion:
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However, rather than concluding our analysis of these data here, or perhaps add some models where
annual variation is modeled using a fixed effects approach where annual estimates are constrained to be
linear functions of one or more covariates, we might consider models which are ‘intermediate’ between
constant models, and fully time-dependent models. We will submit that a random effects model is, in
fact, such an intermediate model.

Let’s try to fit a model where survival varies around some unknown mean µ, with unknown process
variance σ2 – clearly, this corresponds to the ‘intercept only (mean)’ model. As was the case in our
first example involving binomial ‘known fate’ survival,we will refer to this model as {S

µ,σ2 ft}. Go ahead
and set up this model, first making sure that the fully time-dependent model is the ‘active’ model (by
retrieving it). Specify parameter indices ‘1 to 41’ for the variance component estimation, make sure
‘intercept only (mean)’ is selected, and that the ‘random effects model’ button is checked:

When you click the ‘OK’ button, you’ll be presented with the estimates of the mean, the ML and
‘shrinkage’ estimates, and the various estimates of the process variance (to save some space, we’ve
snipped out a number of the estimates for Si).
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A plot of the ML and shrinkage estimates, and the model from which the shrinkage estimates were
derived (in this case, the intercept only mean model), is shown below:

Finally, we come to the estimation run window.

Again, we notice that MARK has modified the model name. Now, the model is called‘{S(t)f(t) --
sin link: Random Effects Trace G=32.0229017}’. The part of the model name to the left of the colon
is what we originally used to name the model. The part to the right (which MARK has added) indicates
that we’re now running a random effects model, and that the ‘trace’ of the G matrix is 32.0229. Again,
we’re going to modify the title slightly, to indicate that the model we’re going to fit is the ‘intercept
only (mean)’ model – we’ll simply add the words ‘intercept only’ somewhere in the title box.
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We hit the ‘Ok to run’ button and...

Clearly, something has gone wrong. Generally when you see the phrase ‘numerical convergence
never reached’ (or something to that effect) embedded in an error message, your first response should
be to consider trying ‘better’ starting values. Often, such convergence issues reflect some underlying
‘problems’ with the data (sparseness, one or more parameters estimated near either 0 or 1), and MARK

is potentially having difficulty estimating the likelihood – a problem which might be exacerbated (or
simply an artifact) of the default starting values used in the numerical optimization.

One straightforward approach is to use different starting values – in this case, the ML estimates
from model {St ft}. To do this, simply check the ‘provide initial parameter estimates’ box in the
numerical estimation run window, before running the random effects model. Now, when you click ‘OK
to run’, you will be presented with a window asking you to specify the initial parameter estimates for
the numerical estimation. To use the estimates from model {St ft}, simply click the ‘retrieve’ button,
and select the appropriate model (labeled ‘S(t)f(t) -- sin link’). This will populate the boxes in the
‘initial values’ windows with the ML estimates. Then, once you click the ‘OK’ button, MARK will
attempt the numerical optimization. For this example, using these different starting values solves the
problem – the random effects model converges successfully.

An alternative approach which also generally works (albeit at the expense of some extended computa-
tional time in many cases), and which does not require good starting values for the optimization (which
you may not always have), is to use simulated annealing for the numerical optimization. You may recall
(from Chapter 10) that you can specify using simulated annealing for the optimization by selecting
the ‘alternate optimization’ checkbox on the right-hand side of the ‘run numerical estimation’
window. What simulated annealing does during the optimization is to periodically make a random
jump to a new parameter value. It is this characteristic is what allows the algorithm more flexibility in
finding the global maximum (in cases where there may in fact by local maxima in the likelihood; see
Chapter 10 for a discussion of this in the context of multi-state models), and minimizes the chances that
the numerical solution is determined by starting values (simulated annealing starts with the defaults,
but then makes the random jumps around the parameter space, as described).

To use simulated annealing for our mallard analysis, you simply retrieve model {St ft} (our general
model), run through the variance components analysis (remembering to check the ‘random effects
model’ box), and then try again – this time, before hitting the ‘OK to run’ button for the generated
random effects model, make sure the ‘Use Alt. Opt. Method’ button is checked. Change the title (we’ll
add ‘intercept only model -- SA’ to indicate both the model, and the optimization method used
to maximize the likelihood), then click ’OK to run’. Simulated annealing takes significantly longer to
converge than does the default optimization routine – how much longer will depend on how fast your
computer is. Nonetheless, this approach also works fine, and yields the same model fit as the model fit
using different initial values for the optimization. We’ll only keep one of these in the browser (shown
at the top of the next page).

Appendix D. Variance components and random effects models in MARK . . .



D.4.2. a more complex example – California mallard recovery data D - 32

We see that the ‘intercept only’ random effects model has virtually all the support in the data,
even relative to our previous ‘best model’ {St ft}. Again, we note that the number of parameters
estimated for the random effects model is non-integer. Note, however, that the number of parameters
estimated (74.02363) is not simply tr(G) (=32.02363). The difference between the two values is (74.02363-
32.02363)=42. Where does the 42 come from? Recall that the number of parameters estimated for the
random effects model, Kre is given as Kre � tr(G) + ℓ, where ℓ is the number of free parameters not
being modeled as a random effect. In our mallard example, we modeled the 41 survival parameters
S1, . . . , S41 as a random effect, but we left the recovery parameter f modeled over time as a simple fixed
effect. How many f parameters in our model? ℓ � 42, which of course is why the number of parameters
estimated is 42 more than tr(G).

What more can we about our results so far? Consider the improvement in precision achieved by the
shrinkage estimates, S̃i , from model {Sµ,σ ft} compared to the ML estimates, Ŝi from model {St ft}. As

discussed in section D.3.2, a convenient basis for this comparison is the ratio of average FRMSE to ŜE:

FRMSE
(

S̃i
�� Si

)

ŜE
(

Ŝi
�� Si

)
�

0.06476

0.07870
� 0.823

The average precision of the shrinkage estimates is improved, relative to MLEs,by 18%,hence confidence
intervals on Si would be on average 18% shorter.

Let’s continue by fitting a linear trend random effects model. First, retrieve model {St ft}. Then, start
a ‘variance components’ analysis – this time, selecting the ‘linear trend’ design matrix specification,
instead of the default ‘intercept only (mean)’. Here is a truncated listing of the numerical estimates.
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We see that the estimated process variance is nearly half the value estimated from the intercept only
model. We also see that the estimate for the slope is positive (β̂ � 0.0034). This is reflected in the plot of
the ML and shrinkage estimates against the model, shown below:

Next, we’ll go ahead and fit the estimated ‘linear trend’ RE model to the data, after adding the
phrase ‘linear trend’ to the title.

Here is the results browser with the ‘linear trend’ random effects model results added:

We see clear evidence of strong support for random variation in the individual Si around the trend
line – this model has almost twice the support in the data as the next best model (our intercept only
model). What is of particular note is that if we hadn’t built the random effects models, and had based our
inference solely on the 3 starting models, we would have concluded there was no evidence whatsoever
of a trend, when in fact, the random effects trend model ended up being the best supported by the data.

The simple random effects models we used here are both necessary for inference about process
variation, σ2, and also for improved inferences about time-varying survival rates.

D.4.3. random effects – environmental covariates

Here, we consider fitting a random effects model when survival differs as a function of some envi-
ronmental covariate. Suppose we have some live encounter (CJS) data collected on a fish population
studied in a river that is subject to differences in water level. You hypothesize that annual fish survival
is influenced by variation in water level. We have k � 21 occasions of mark-recapture data (contained
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in level-covar.inp). Over each of the 20 intervals between occasions, water flow was characterized as
either ‘average’ (A) or ‘low’ (L) (more specific covariate information was not available). Here is the time
series of flow covariates: {AAAALLLAAALALALLLLAL}.

We begin our analysis by considering 3 fixed effect models for apparent survival, ϕ: {ϕtpt}, {ϕ.pt}
and {ϕleve lpt}. Here are the results from fitting these 3 models to the data:

We see strong evidence for variation over time in apparent survival, but no support for an effect of
water level. If you look at the estimates from model {ϕleve l} for average (ϕ̂av g � 0.709, SE � 0.0106) and
low (ϕ̂low � 0.650, SE � 0.0100), the lack of any support for this model may not be surprising. At least,
based on considering water level as a fixed effect.

Now let’s consider some random effects models. We’ll build 2 different models – one a simple
intercept only (mean) model, which would seem to be consistent with the strong support for the simple
time variation model {ϕt}, and one where survival is thought to vary randomly around a level-specific
mean. In other words, we hypothesize µlow , µav g . We’ll assume, however, that σ2

low � σ2
hi gh . This is

not directly testable using the moments-based variance components approach in MARK, but is testable
using an MCMC approach (see appendix E).

By this point, building and fitting the intercept only model for the survival parameters ϕ1 → ϕ19

(remember, we don’t include ϕ20 since it is confounded with our estimate of p21 for our time-dependent
model) should be straightforward,so we’ll skip the description of the mechanics,and will simply present
the results – we’ve added the ‘intercept only’ model to the browser (below).

We see strong evidence that the intercept only random effects model is more parsimonious given the
data than any other model.

Now, we consider the final model where survival is though to vary randomly around a level-specific
mean. We’ll refer to this as model {ϕµlevel σ

2
level

}. How do we construct this model in MARK? Here
we finally make use of the ‘User Specified’ design matrix option in the variance components setup
window (shown at the top of the next page). Simply retrieve the time-specific fixed effect model {ϕt pt},
start the variance components analysis, specify the parameters (1 to 20), and check the ‘User Specified’
design matrix option. Make sure you’ve also checked the ‘Random Effects Model’ option as well.

Now, all we need to do is click the ‘OK’ button. Once you do so, MARK will present you with a small
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pop-up window asking you to specify how many covariate columns you want in the user-specified
design matrix. The default is 3, but here, for our model, we need only 2: one to code for the intercept,
and one to code for the water level (a single column since there are only two levels of the water covariate).
The design matrix entry window is shown at the top of the next page.

Note that there are only 19 rows in the DM, since we’re applying a random effect to ϕ1 → ϕ19 only.
Also note the small ‘pop-up’ window indicating that ‘When you have filled out the design matrix,
click OK to continue’. Meaning you should do as it says – specify your design matrix for the survival
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parameters, and then when you’re sure it’s correct, click the ‘OK’ button.

First we’re presented with a plot (below), showing the ML and shrinkage estimates, and (importantly
here) the underlying model (the red line).

The red line clearly indicates that there are 2 separate means being modeled, for the low and average
water flow years, respectively. The estimated process variance is σ̂2

� 0.00313, and the estimate for
β̂1 � 0.0717 in the linear model indicates that survival is higher in ‘average’ water level years (since we
used ‘low’ level years as the reference level in our design matrix, above). What is also very important
here, is that the shrinkage estimates are clearly not constrained to fall exactly ‘on the red line’ – they
represent shrunk estimates of apparent survival as if each estimate was drawn randomly from a sample
with a water level-specific mean.

OK, what about the results of fitting this random effects model to the data?

What is especially noteworthy here is that the random effects model with water level-specific means,
{ϕµlevel σ

2
level

}, is now the most parsimonious model in the model set, despite ‘water level’ having
no support whatsoever when considered in a fixed effects design. The near equivalence of the AICc

weights between this model and the simpler ‘intercept only’ random effects model suggest that we
can’t differentiate between the two, but whereas our initial conclusion strongly rejected the hypothesis
that there was an influence of water level on apparent survival, our random effects modeling would
suggest that perhaps we shouldn’t be quite so sure.
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D.4.4. worked example – λ – Pradel model

We conclude with analysis of a famous set of data, the moth (Gonodontis bidenta) data reported on by
Bishop et al. (1978) and compulsively analyzed by many others (e.g., Link & Barker 2005). The data
consist of records for 689 male moths that were captured, marked, and released daily over 17 days in
northwest England. These moths were nonmelanic; demographic parameters were estimated as part of
a larger study looking at comparative fitness of distinct color morphs.∗

Here we will use random effect Pradel models (Chapter 13), focussing on estimation of process
variance, and possible trend, in realized growth rate λ. The data we’ll work with are contained in
moth-example.inp. Our focus here is on variation in λ. Recall that in a Pradel model, λ an be estimated
as either a structural (real) parameter (for data type ‘survival and lambda’), or as a derived parameter
(for any of the other Pradel model data types). For the purposes of estimating process variance on λ, it
doesn’t particularly matter which data type we use, since we can estimate process variance for either real
or derived parameters. We have already seen variance components analysis of real parameters in earlier
examples, so here, we’ll demonstrate the process of estimation for λ as a derived parameter. So, let’s
select the data type ‘Pradel survival and seniority’. 17 occasions. Now, you may recall that there are
some challenges with parameter confounding for fully time-dependent Pradel models. As is often the
case, some of these problems can be handled by applying constraints to one or more parameters. Since
our purpose here is simply to demonstrate some mechanics, and not conduct an exhaustive analysis of
these data, we’ll avoid some of these issues by simply setting the encounter probability p to be constant
over time. So, our general model will be {ϕt p.γt}. Go ahead and modify the PIM chart to construct this
model, and add the results to the browser. Model deviance is 236.708. Here are the derived estimates

Note that MARK generates derived estimates of λ, and log λ. While there are important considera-
tions as to which is more appropriate for analysis (see discussion in Chapter 13), our purpose here is
simply to demonstrate some of the ‘mechanics’, so we’ll focus on estimates of λ on the linear scale.

∗ The underlying motivation for this study should be very familiar to any of you with some background in evolutionary biology.
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Let’s construct a random effects model for λ, using {ϕt p.γt} as our general model. The steps are the
same, except that when you access the ‘variance components’ sub-menu, you need to specify ‘derived
parameter estimates’ for the parameter type. You’ll be asked to select either ‘Lambda Population
Change’ or ‘log(Lambda) Population Change’. We’ll select the former.

Now, for the first ‘challenge’ – specifying the parameter index values for λ. You might simply assume
that you would select all of them: 1 to 16. However, here (and generally), we need to be a bit careful.
When specifying the parameters to include in the random effect, you should not include parameters
that are confounded, or that are otherwise known to have ‘issues’. For Pradel models, there is potential
for confounding, but constraining encounter probability p to be constant over time should solve some
of that problem. However, experience has shown that the first and last estimates of λ in Pradel models
are often biased. If you look at the estimates for λ̂1 and λ̂16 shown on the previous page, you’ll see some
evidence that this might be the case for these data. For example, λ̂1 � 3.217. This is often a judgement
call (for example, you might say that λ̂11 � 3.55 is even larger, so using scale as evidence for a ‘problem’
with λ̂1 is perhaps not a great criterion). For now, we’ll be ‘conservative’, and include only λ2 → λ15 in
specifying the random effect.

Now, for one important difference in fitting random effects models to derived parameters – you can’t.
If you look in the lower-right-hand corner, you’ll notice that the ‘Random Effects Model’ check-box has
been ‘greyed-out’.

If you think about it, this should make some sense. The random effects ‘constraint’ can be applied
only to real (structural) parameters in the model. Here, we are estimating λ as a derived parameter
(i.e., by algebra), and thus we can’t build and fit a random effects model using the Pradel ‘Survival and
seniority only’ data type. We’ll revisit this point in a moment. Go ahead and click the ‘OK’ button. The
plotof the real estimates λ̂i andshrinkage estimates λ̃i is shown at the top of the nextpage. The estimated

mean ˆ̄λ � 1.147, with an estimated process variance of σ̂2
� 0.722. The plot shows clear evidence of

fairly large swings in realized growth – this is not overly surprising for an insect, where large changes
in reproduction and survival are relatively commonplace (there aren’t enough data available to test for
‘boom-bust’ cycles, another common occurrence with insect growth dynamics).

Now, what if we wanted to fit a random effects model for λ, and not simply estimate the mean
and process variance? To do this, we need to change the data type, to one where λ is included as
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a structural parameter in the model. Simply select ‘PIM | Change data type’. You will be presented
with a box contained the different data types you can apply to these data. You’ll see that one of those
data types presented is ‘Pradel survival and lambda’. Since that is the only model containing λ as a
real structural parameter, select that data type, and click ‘OK’.

You’ll find that you’ve been returned back to the browser view – with no indication that anything
has changed. But, if you look at the PIM chart, you’ll see that the current ‘active’ model structure is
{ϕt ptλt}. In other words, the parameter structure of the model has changed (as expected), but the
underlying model has reverted back to the fully time-dependent model. MARK has basically assumed
that if you’re switching data types, you are (in effect) starting over. So, we want to make the encounter
probability p constant, so that our general model under this data type, {ϕt p.λt} is consistent with the
general model we used under the data type where λ was estimated as a derived parameter.

Go ahead and run model {ϕtp.λt}, and add the results to the browser.

Unfortunately we see that these are not the same models, even though in theory they should be – the
model deviances and the number of estimated parameters are both different. There might be a couple
of issues here. First, if you look at the estimates, you’ll see that the first and final estimates of apparent
survival ϕ and the final estimate of λ are both poorly estimated, and are probably confounded (despite
setting p constant). Second, and perhaps more likely, the logical constraint that λi > ϕi is not enforced
for 1 or more parameters. This is not uncommon in fitting the ‘Pradel survival and lambda’ model
(for discussion of this issue, see the - sidebar - beginning on p. 9 of Chapter 13). As such, comparing

model {ϕt p.λt} with {ϕtp.γt} makes little sense, although the estimates of ˆ̄λ � 1.170 and σ̂2
� 0.697

from model {ϕt p.λt} (using λ2 → λ15) are fairly close to the estimates derived for model {ϕt p.γt}.
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For the moment, we’ll skip over this issue, and focus on some additional ‘mechanics’. Delete model
{ϕt p.γt} from the browser – we’ll focus on model {ϕt p.λt}. We are interested in analysis of trend in
λ. Trend in realized λ is potentially of great significance for conservation and management, and robust
estimation of trend would seem to be something worth pursing. Now, based on the plot of λ̂i and λ̃i

shown at the top of the preceding page, we don’t expect a ‘trend’ model of any flavor to have much
support in the data. But, to demonstrate the mechanics, we’ll proceed anyway.

With model {ϕt p.λt}, we can see there are at least 2 ways we could proceed. We could build an
ultrastructural model where λ is constrained to fall on a straight trend line, or we could build a random
effects trend model. We’ll do both, for purposes of comparison. To make the comparison ‘fair’, we’ll
build the ‘T’ (trend) ultrastructural model applied to λ2 → λ15 only, since these are the parameters we
would use in the random effects model. Then, we’ll build the random effects ‘trend’ model, also using
λ2 → λ15 only, and add the results of both to the browser.

We notice immediately that the random effects modelwith trendactually gets a fairamountof support
in the data, especially relative to the ultrastructural fixed effects trend model. So, despite appearances,
there might be some evidence of trend in the data. Enough that the overall support for this model is
fairly compelling.

At least 2 points to make here. First, there are some general concerns with the ultrastructure approach,
where constraints are applied to λ. Since growth is a function of per capita survival plus per capita

recruitment, λ � ϕ + f , then any constraint applied to λ enforces a strict negative covariance between
ϕ̂ and f̂ (see chapter 13, and discussions in Franklin 2001). Such a covariance is clearly artificial, and
may make little to no biological sense (since it would imply that any increase in survival is perfectly
balanced by an equal and opposite change in recruitment). Second, the random effects approach to
trend analysis can’t be applied to λ when λ is estimated as a derived parameter – you can estimate the
intercept and slope of the trend, and the process variance, but you can’t fit a random effects model for
a derived parameter (i.e., you cannot add it to the browser).

While there are some technical challenges withPradelmodels in general (especially for time-dependent
models,whichare exacerbated forrandom effects models whichare generally applied to time-dependent
models), it seems clear that considering variance components and random effects analysis forλ in Pradel
models has potential to be extremely useful.

D.5. Model averaging?

At this point, you might be asking yourself, ‘what about model averaging?’. This important topic is
introduced in some detail in Chapter 4 (see the Burnham & Anderson ‘model selection’ book for a
comprehensive treatment).

There are at least two issues to consider here. First, if our candidate model set contains both fixed
effect and random effect models, should we model average over the entire set? In fact, MARK does
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nothing ‘mechanically’ to prevent you from doing so. For example, take the mallard analysis intro-
duced in section D.4.2. Assume that we have the following 5 models in the browser – 3 fixed effects
models ({St ft}, {S. ft}, {ST ft}), and 2 random effect models (‘linear trend model’, and ‘intercept
only (mean) model’:

You can go ahead and run the model averaging routines on the survival estimates – MARK simply
assumes you want to average over the entire model set. Your only hint that you might need to be a bit
careful comes when you look at the model averaging output. Here is a snippet of the output for the
mallard analysis, for the parameter corresponding to S1:

Pay particular attention to the right-hand side. Notice that for the 2 random effects models, you get a
‘warning’ about ‘invalid parameter estimates’ with ‘zero SE?’. MARK has ‘noticed’ that the parameter
estimates for parameters modeled as random effects (the survival parameters, in this case) have a zero
SE. MARK ‘suspects’ there might be a problem, but in fact this is exactly what you should see. As
discussed earlier, the random effects model is fit to the data after fixing the random parameters to
their shrinkage estimates, and thus, there is no SE for those parameters. And, since model averaging
intends to generate an unconditional parameter estimate, by accounting for conditional uncertainty
in the parameter for each model, then there are clear problems when one or more of the parameters
‘appear’ to be estimated without any uncertainty (i.e., have zero SE’s). So, if MARK included the random
effect parameter estimates in the model averaging, then the estimate of the unconditional SE for that
parameter would be very negatively biased (i.e., much too small).

The second issue is ‘conceptual’, and relates broadly to the issue of ‘model redundancy’. In the
extreme, having 2 structurally identical models in the same candidate model set would clearly render
model averaged estimates invalid. Model redundancy in the context of AIC selection is discussed in
Burnham and Anderson (sections 4.2.9 and 4.2.10). With some thought, you might see that the random
effects model is substantially redundant to its fixed effects likelihood version. For example, model
{Sµ,σ ft} would be redundant to some degree to model {St ft}.
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In one sense, a random effects model is a model which is intermediate between a time-invariant
(‘dot’, say S.) model, and a fully time-varying fixed effects model (say, St). Recall from section D.3 that
shrinkage estimates S̃i generally lie between Ê(S) and Ŝi . Recall from section D.3.1 that in the absence
of sampling covariance, the shrinkage estimator used in MARK is

S̃i � Ê(S) +

√√√
σ̂2

σ̂2
+ ÊS

[
var

(

Ŝi
�� Si

)] × [
Ŝi − Ê(S)

]
.

Consider the estimates of survival for the first interval from the binomial example presented in section
D.2.1: the ML estimate Ŝ1 � 0.640, the mean survival Ê(S) � 0.484, and the shrunk estimate S̃1 � 0.548.
As shown in the following

Ê(S) S̃1 Ŝ1

0.484 0.548 0.640

‘shrunk toward the mean’

the ML estimate is ‘shrunk’ toward the mean, with the resulting shrinkage estimate, S̃1 being ‘inter-
mediate’ between the mean, Ê(S) (which is equivalent to a ‘dot’ model, in some respects) and the ML
estimate Ŝ1 (which comes from the ‘time-dependent’ model). So, the shrinkage estimate is analogous to
an ‘average’ between the two estimates. As noted in section D.3, the degree of shrinkage is determined
by the magnitude of the process variance σ2, relative to the sampling variance, ÊS[var

(

Ŝi
�� Si

)

]. If the
process variance is relatively small, then the shrunk estimates will approach the estimate for the mean
Ê(S),whereas if the process variance is large relative to the sampling variance, thenthe shrunk estimates
will be closer to the ML estimates, Ŝi. So, the shrinkage model {Sµ,σ , θ}, is intermediate between model
{St , θ} and model {S. , θ}, and is thus strongly analogous to an ‘average model’. As a result, when the
process and sampling variances are similar, the estimates from model {Sµ,σ , θ} will tend to be quite
similar to the model-averaged estimates estimated over model {St , θ} and model {S., θ}.

D.6. caveats, warnings, and general recommendations

Using random effects as a basis for modeling collections of related parameters is a long-standing
approach in statistics and one that can be very effective. Use of the random effects approach in capture-
recapture is relatively new – in the nearly 10 years since the publication of B&W, there have been
relatively few applications of these models to real data, despite what we believe are several interesting
opportunities made available by these methods.

However, we also believe that the methodology needs to be better understood as to any potential
pitfalls and as to its operating characteristics. The following is a summary of our experience to date
with random effects models, particularly as implemented in MARK. This material is largely abstracted
from B&W, and accumulated experience with such models since the time of that publication.

1. the ‘method of moments’ described in the appendix, and as implemented in MARK, has
been shown to perform well, especially when σ2 > 0.025. The method(s) may not do so well
if σ2 → 0. However, we think it reasonable to believe that for a worthwhile study yielding
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good data,process variation,σ2,will generally not be too small, relative to average sampling
variation and it is for these conditions (of ‘good data’) that we need effective random effects
inference methods.

2. Another issue to be aware of, as regards estimation of the parameter σ2, is the matter
of unequal, rather than equal length, time intervals. Let the time interval i have length
∆i . Then we should parameterize the model as Si � (ψi )

1/∆i where now each survival
probability ψi is on the same unit time basis. It may then make biological sense to consider
parameters that are a mean and variation forψ1, . . . , ψk . But this may just as well not make
sense, because the time intervals are intrinsically not comparable as they may be in very
different times of the annual cycle. It becomes a subject matter judgement as to whether
random effects analysis will be meaningful with unequal time intervals. For the moment,
don’t apply random effects models or variance components analysis to situations where
the intervals between sampling occasions are unequal (even specifying unequal interval
length will generally yield negatively biased estimates of process variance, σ2).

3. In practice if there is over-dispersion in the data, as measured by a scalar often denoted
by c (see Chapter 4 and Chapter 5), the estimated sampling variance-covariance must be
adjusted by a reliable ĉ (see discussion in B&W, and Franklin et al. 2002 for an example
with real data).

4. A key design feature to focus on to meet the criterion of ‘having good data’ when applying
random effects is k, the number of estimable random effects parameters (time intervals,
locations, etc.). The sample size for estimating σ2 is k. Therefore, one must not have k too
small; < 10 is too small. Even if we knew all the underlying Si a sample of size k < 10 is too
small for reliable inference about the variation of these parameters (even given a random
sample of them, which is not required here). Inference performance has been shown to
be acceptable when k > 15. The benefits (includes shrinkage estimates) of random effects
models become greater as the number of underlying parameters, k, increases.

5. The other influential design feature is number of individuals marked and released. Both
numbers initially released and numbers recaptured are important to the performance of
inferences from random effects models. While there are no ‘hard and fast’ rules, we can
make some general recommendation. B&W showed that low numbers of marked and
released animals, especially for low survival and encounter probabilities, generally led to
point estimates of σ2 → 0 – this is because the sampling variation was much larger than
process variance in these cases.

6. The situation where inferences from a random effects model are most advantageous seems
to be for when σ2 is about the same as average sampling variance, (Ŝi | Si ) (recall
that sampling variance is strongly influenced by sample size of animals capture and
reencountered, whereas process variance is not). If one or the other variance component
dominates the total variation in the MLE’s Ŝi then the data strongly favor either the simple
model {S.pt} (sample variance dominates), or the general model {Stpt} (process variation
dominates), rather than the random effects model.

However, it is not a problem, as regards inference about σ2, to have large sample sizes
of animals, hence small sampling variances, so that should be one’s design goal. If it then
turns out that sampling variance is similar to process variance, the random effects model
will be markedly superior to model {Stpt}. Thus, in a sense the random effects model is
optimal at the ‘intermediate’ sample size case. As sample size of animals increases, the
random effects model converges to model {Stpt}.

7. A potential technical issue is the ‘boundary effect’ (at least under what is basically a
likelihood approach). As discussed in B&W, if one enforces the constraint S < 1 when
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the unbounded MLE Ŝ ≥ 1, then standard numerical methods used in MARK to get the
observed information matrix fails. As a result, the estimated information matrix is incorrect
for any terms concerning the Ŝ that is at the bound of 1 (and the inverse information
matrix is likely wrong in all elements). Experience shows that, in this case, the resultant
point estimate of σ2 can be very different from what one gets when the survival parameter
MLE’s are allowed to be unbounded. The difference can be substantial. Using an identity
link, B&W found σ̂2 to be unbiased in many cases.∗ With good data we rarely observe an
unbounded MLE of S that exceeds 1. This might be explored in a Bayesian context, where
it is easy (in a MCMC analysis) to allow S to have its distribution over an interval such as 0
to 2 (rather than 0 to 1). B&W considered this, and found a strong effect of the upper-bound
on the point estimate (and entire posterior distribution) for σ2, and for that particular S.
(Note: MCMC applications in MARK are discussed in Appendix E).

D.7. Summary

This appendix has considered random effects models. The name ‘random effects’ can be misleading in
that a person may think it means that underlying years or areas (when spatial variation is considered,
rather than temporal) mustbe selectedat random.This is neither true,norpossible,fora setof contiguous
years. Variance components is a better name, in that at the heart of the method is the separation of
process and sampling variance components. The issue of what inferential meaning we can ascribe to σ2

is indeed tied to design and subject matter considerations. However, the shrinkage estimators do not
depend on any inferential interpretation of σ2; rather, they can always be considered as improvements,
in a MSE sense, over the MLEs based on full time-varying St . The random effects model only requires
that the residuals (Si − XB) are exchangeable.

When are we interested in these sorts of models? Often, if a data set is sparse, but with many (≥ 10)
occasions, model {S(.)} will be selected. Clearly, this is a model, as we know that conditional survival
probability cannot remain exactly the same overany significant lengthof time. While model{S(.)}might
be ‘best’ in the sense of a bias-variance trade-off (i.e., it is identified by AIC as most parsimonious among
the candidate models), it might leave the investigator wondering about the variation in the parameters.
Thus, the estimation of σ2 has relevance. At the other extreme, assume that model {St} is selected; here
the investigator might have (say) 25 estimates of the survival parameters, each perhaps with substantial
sampling variation. This makes it difficult to see patterns (e.g., time trends orassociations) orunderstand
the variation in the parameters. Further, analysis of stochastic population models is often complicated
by uncertainty concerning the relative variation in estimates of one or more demographic parameters.

Random effects models are a very interesting class of models which can address both issues (amongst
many more), but even a partial understanding is somewhat difficult to achieve. The intent of this
appendix was to try to convey the general notion of random effects models, and the idea of ‘variance
components’, as implemented in program MARK, in a reasonably accessible fashion. The subject of
random effects models and variance components as applied to data from marked individuals is treated
in considerably more depth in several of the following papers. An alternative approach to estimating
variance components, based on Bayesian inference (sensu Royle and Link, 2002) and Markov Chain
Monte Carlo (MCMC), is presented in Appendix E.

∗ Note that we do not suggest routinely accepting final inferences that include survivalestimates exceeding 1. In fact, the shrinkage

estimates will generally not exceed 1, so using S̃i and not Ŝi will be the needed improved inference. However, to get to this
final inference it may be desirable to pass through an imaginary space (S > 1), just as imaginary numbers can facilitate real
solutions to real problems. Models only need to possess utility, not full reality.
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APPENDIX E

Markov Chain Monte Carlo (MCMC) estimation in

MARK . . .

Markov Chain Monte Carlo (more conveniently, MCMC) is a parameter estimation procedure that
is frequently (but not exclusively) associated with Bayesian inference, that has been implemented in
MARK for 2 primary purposes:

1. to provide the capability to more flexibly model and estimate the mean and variance (i.e.,
variance decomposition) of both univariate and multivariate hyperdistributions (i.e., the
joint distribution of 2 sets of parameters)

2. to provide the capability to derive more intuitive credibile intervals for the estimated
parameters.

In this appendix, we discuss the basic theory and mechanics of using MCMC in MARK, for a variety
of problems which would be difficult (at best) to implement in any other way. We defer a review of the
theory and mechanics underlying MCMC to an Addendum at the end of the appendix. If you have no
background at all in MCMC, or Bayesian inference, you are encouraged to have a look at the Addendum
before proceeding too far in this appendix.∗ While it is possible to proceed in applying MCMC in MARK

without a fair understanding of ‘how it works’, this is counter to our view that you are always better off
if you actually know a bit about ‘what MARK is doing’. Those of you with stronger backgrounds might
want to flip through the Addendum at some stage, if only to give you some insights as to the details of
how things are implemented in MARK.

It is assumed that the reader already has a basic knowledge of some standard encounter-mark-
reencounter models as described in detail in this book (e.g., dead recovery and live recapture models
– referred to here generically as capture-recapture). We also assume familiarity with the variance
components and random effects models presented in Appendix D – we strongly suggest you work
through Appendix D in full before continuing here, if you have not done so already.

We introduce the subject of – and some of the motivation for – this appendix by example. In the
following we consider two relatively common scenarios (out of a much larger set of possibilities) where
a ‘different analytical approach’ (i.e., MCMC) might be helpful at least, or essential (in the case of the
second example).

∗ Note: we do not mean to imply that this appendix, or the addendum to same, are in any way a substitute for formal study
of MCMC in general, and Bayesian inference in particular. What we present here is only intended as a minimum sufficient
introduction to get you started. Take a class, or study one of the many very good books on the subject.

© Cooch & White (2016) 04.07.2016



E - 2

scenario 1 – parameters as random samples

Consider a Cormack-Jolly-Seber (CJS) time-specific model {Stpt} wherein survival (S) and capture
probabilities (p) are allowed to be time varying for (k + 2) capture occasions, equally spaced in time.
If k ≥ 20 we are adding many survival parameters into our model as if they were unrelated; however,
more parsimonious models are often needed. Consider a reduced parameter model – at the extreme,
we have the model {S.pt} wherein S1 � S2 � · · · � Sk � S.. However, this model may not fit well even if
the general (time-dependent) CJS model fits well and there is no evidence of any explainable structural
time variation, such as a linear time trend, in this set of survival rates, or variation as a function of an
environmental covariate. Instead, there may be unstructured time variation in the Si that is not easily
modeled by any simple smooth parametric form, yet which cannot be wisely ignored. In this case it
is both realistic and desirable to conceptualize the actual unknown Si as varying, over these equal-
length time intervals, about a conceptual population mean E(S) � µ, with some population variation,
σ2 (Fig. E.1).

Figure E.1: Schematic representation of variation in occasion-specific parameters θi , as if the parameters were

drawn randomly from some underlying distribution with mean µ and variance σ2.

Here, by population, we will mean a conceptual statistical distribution of survival probabilities,
such that the Si may be considered as a sample from this distribution. Hence, we proceed as if Si

are a random sample from a distribution with mean µ and variance σ2. The parameter σ2 is now the
conventional measure of the unstructured variation in the Si , and we can usefully summarize S1 . . . Sk

by two parameters: µ and σ2. The complication is that we do not know the Si ; we have only estimates Ŝi ,
subject to non-ignorable sampling variances and covariances, from a capture-recapture model wherein
we traditionally consider the Si as fixed, unrelated parameters. We would like to estimate µ and σ2, and
adjust our estimates to account for the different contributions to the overall variation in our estimates
due to sampling, and the environment.

In Appendix D, we considered estimation of these 2 parameters using a random effects model based
on a ‘methods of moments’ approach. We will see in this appendix how we can not only estimate µ and
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σ2 using MCMC, but how MCMC will allow much greater flexibility for more complex problems than
the ‘method of moments’ approach.

scenario 2 – covariation between 2 structural parameters

In Chapter 8, we introduced ‘dead recovery’ models – so named because the ‘encounter data’ consist
of recoveries of dead marked individuals. One dead recovery parametrization (Brownie) is commonly
used for analysis of recovery data where the mortality event is influenced by harvest. For harvested
species, an individual marked and released alive can experience one of 3 fates (Fig. E.2): (1) it can survive
the year with some probability (S), (2) it can be ‘harvested’ (i.e., some ‘action’ leading to permanent
removal) with some probability (K), or (3) it can ‘die’ from ‘natural’ causes with probability (1− S−K)

(i.e., it might actually die from some reason other than harvest, or permanently emigrate the sampling
area,at which point it appears dead) .Conditional on being harvested, (i) the individual may be retrieved
(probability c), and (ii) reported (i.e., the individual identification number of the harvested individual
is submitted to some monitoring agency), with probability λ). The product (Kcλ) is referred to as the
‘recovery rate’, f.

Figure E.2: Probability of different fates for marked individuals subject to harvest.

Note that f is related to the ‘survival’ process, since an individual which is shot, retrieved and
reported, does not survive. So, there is some anticipated structure relating S and f . Traditionally, the
relationships between survival and harvest are broadly dichotomized as reflecting either additive or
compensatory mortality (Fig. E.3).
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Figure E.3: Patterns of variation in survival, S, and mortality rate due to harvest, K.
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In the case of additive mortality (Fig. E.3a), the sources of mortality are, just that, ’additive’ – they
add together, so that both natural and harvest mortality are combined in some additive way. In contrast,
with compensatory mortality (Fig. E.3b), we are, in effect, assuming that we harvest only those animals
which were likely to have died from natural causes in the first place - harvest does not increase the overall
mortality rate (at least over a certain range). Moreover, if survival is a constant over some range, even
when mortality due to harvest is increasing, then this implies that over that range, natural mortality is
decreasing! This is the key difference between compensatory and additive mortality – in compensatory
mortality, natural mortality varies as a function of how much mortality there is due to harvest, while
in additive mortality, the 2 simply add together. Mechanistically, compensatory mortality is generally
believed to reflect the process(es) of density-dependence, while additive mortality reflects density-
independence. This dichotomy between additive and compensatory mortality was first articulated by
Anderson & Burnham in 1976.

If we assume that cλ is a constant, then any variation in f must be proportional to variation in
K. And thus, the structural relationship between S and f potentially yields important insights in
differentiating between the additive and compensatory hypotheses, which has important implications
for harvest management (since K, and thus f are under management control, at least to some extent; see
the Williams, Nichols & Conroy (2002) book for an exhaustive treatment of the subject). If you look at
figures (E.3a) and (E.3b) for a moment, it should be fairly clear that negative process correlation between
harvest and survival rates is consistent with at least partially additive harvest effect on survival, whereas
process correlations > 0 are consistent with a hypothesis that harvest mortality is fully compensated
by other sources of mortality (Anderson & Burnham 1976).

In theory, then, all we need to do is look at the correlation of estimates of S and f . Easy enough
in principle, but recall that estimates of these two parameters are generally not independent – there
is significant sampling covariance within and between parameters. Thus, we can’t simply take the
estimates and ‘do statistics on statistics’ (i.e., calculate the bivariate correlation ρ between S and f ).
Fortunately, MCMC provides a solution, because MCMC approaches produce parameter estimates that
are not influenced by sampling covariance. So, we can use the MCMC capabilities in MARK to derive
a robust estimate of S and f , and the correlation between them.∗.

The ability to model the covariance between structural parameters in a statistically valid way using
MCMC might also be of some interest for many other data types. For example, a negative correlation
between recruitment f and apparent survival ϕ in Pradel models (Chapter 13) might be consistent
with some hypotheses concerning cost of reproduction. Another example might be the relationship
between abundance and the probability of temporary emigration in robust design models (Chapter 15),
where a negative correlation between N and γ′′ (the probability of temporarily emigrating) might be
consistent with some hypotheses concerning density-dependence of individuals temporarily leaving
the sampled population (which might be of interest if, say, the sampled population represents only
breeding individuals, and temporary emigration is equivalent to non-breeding). Still another example
might involve looking for interesting relationships between apparent survival S and state transition
probabilities ψ, in multi-state models (Chapter 10).

In this appendix, we will consider application of MCMC to estimation of variance components, and
modeling the relationship amongst structural parameters, using program MARK. We will outline the
‘mechanics’ of using program MARK, by means of a series of ‘worked examples’.

∗ For example, this approach has been applied to greater sage-grouse recovery data – Sedinger, J. S., G. C. White, S. Espinosa, E. R.
Parte & C. E. Braun. (2010) Assessing compensatory versus additive harvest mortality: an example using greater sage-grouse.
Journal of Wildlife Management, 74, 326-332. For an experimental approach, see Sandercock, B. K., E. B. Nilsen, H. Brøseth & H. C. J.
Pedersen. (2011) Is hunting mortality additive or compensatory to natural mortality? Effects of experimental harvest on the
survival and cause-specific mortality of willow ptarmigan. Journal of Animal Ecology, 80, 244-58.
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E.1. Variance components analysis revisited - MCMC approach

In Appendix D, we introduced the concept of ‘process variation’ among a set of parameters, and
the mechanics of estimating process variation in MARK, using a moments-based estimator. Here we
introduce an alternative approach, using MCMC.

E.1.1. Example 1 - binomial survival re-visited

We start by re-visiting the binomial survival example introduced in Appendix D. Again, we imagine
a scenario where we are conducting a simple ‘known fate’ analysis (Chapter 16). In each of 10 years
(k � 10), we mark and release n � 25 individuals, and determine the number alive, y, after 1 year (since
this is a known-fate analysis, we assume there is no error in determining whether an animal is ‘alive’ or
‘not alive’ on the second sampling occasion). Here, though, we’ll assume that the survival probability
in each year, Si, is drawn from N(0.5, 0.05) (i.e., distributed as an independent normal random variable
with mean µ � 0.5 and process variance σ2

� 0.052
� 0.0025). Conditional on each Si, we generated

yi (number alive after one year in year i) as an independent binomial random variable B(n, Si ). Thus,
our maximum likelihood estimate of survival for each year is Ŝi � yi/n, with a conditional sampling
variance of v̂ar

(

Ŝi
�� Si

)

� [Ŝi (1−Ŝi)]/n,which given µ � 0.5, and σ2
� (0.05)

2
� 0.0025, is approximately

0.01.

Table (E.1) gives the values of Si , yi and Ŝi forour ‘example data’. Clearly, fora ‘real analysis’,we would
not know the true values for Si – we would have only Ŝi , and generally only have ÊS

(

var
(

Ŝi
�� Si

))

as

v̂ar
(

Ŝi
�� Si

)

. From Table (E.1) we see that the empirical standard deviation of the 10 estimated survival
rates (i.e., the Ŝi) is 0.106. However, we should not take (0.106)

2 as an estimate of σ2 because such
an estimate includes both process and sampling variation. Clearly, we want to subtract the estimated
sampling variance from the total variation to get an estimate of the overall process variation.

Table E.1: Single realization from simple binomial survival example, k � 10, E(S) � 0.5, σ � 0.05, where
Ŝi � yi/n are B(25, Si ), hence expected SE(Ŝi |S) ≈ 0.1.

year (i) Si Ŝi ŜE
(

Ŝi
�� Si

)

1 0.603 0.640 0.096

2 0.467 0.360 0.096

3 0.553 0.480 0.100

4 0.458 0.440 0.100

5 0.506 0.480 0.100

6 0.498 0.320 0.093

7 0.545 0.600 0.098

8 0.439 0.400 0.098

9 0.488 0.560 0.099

10 0.480 0.560 0.099

mean 0.504 0.484 0.100

SD 0.050 0.106
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In Appendix D, we applied an approach based on a linear ‘method of moments’. The results from
the variance components analysis of these data presented in Appendix D are shown below:

Starting from the top – the first line of the output (above) reports a ‘Beta-hat’ of 0.482526.As discussed
in Appendix D, this is our most robust estimate of the mean survival probability. This estimate is
followed by the estimate of ‘SE(Beta-hat)’ which is our most robust estimate of total variance (i.e.,
process + sampling variation). In the absence of sampling covariance, it is estimated as the square-root
of the sum of estimated process variation, σ̂2, and sampling variation, E

[

v̂ar
(

Ŝi
�� Si

) ]

, divided by k,
where k is the number of parameter estimates.

Next, a table of various parameter estimates. The first two columns are the ML estimates of survival
Ŝi (‘S-hat’), followed by the standard error for the estimate (‘SE(S-hat)’. Next, the ‘shrinkage’ estimates
S̃i (‘S-tilde’) and corresponding SE and RMSE.

Finally, the estimates for process variation. First, MARK reports the ‘Naive estimate of sigma^2’=
0.001595. This is followed by the ‘Estimate of sigma^2’ = 0.0019503 (and the ‘Estimate of sigma’ =
0.044162). As discussed in Appendix D, these are the ‘preferred’ estimates for process variance. We
concentrate here on using MCMC in MARK to derive similar – hopefully, identical – estimates for σ.

We begin by opening up the binomial-example.dbf file (from Appendix D). The browser should
contain at least the general model {St}. Retrieve the general model. We’re now going to re-run it, but
this time, making use of the MCMC capabilities in MARK. Click the ‘Run’ icon in the toolbar, and bring
up the ‘Setup Numerical Estimation Run’ window (shown at the top of the next page). Here, notice
that we’ve checked the ‘MCMC Estimation’ box, indicating we want to use the MCMC capabilities in
MARK for the estimation. We’ve also checked the ‘Provide initial parameter estimates’. This has
been shown to be a good standard practice for MCMC-based estimation. Finally, we’ve selected the
‘Logit’ as the link function. Because the logit link is a monotonic transformation (as opposed to the
sin link – see the discussion of ‘link functions’ presented in Chapter 6), evaluation of the moments of
the posteriors is somewhat easier (and less prone to error). Finally, we’ve added the word ‘MCMC’ to
the model name, to indicate that the model will be estimated using MCMC (although this isn’t really
necessary, since the model results are not added to the browser).
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Once you’ve made these changes,click the ‘OK to Run’ button. This will spawn a new window (shown
below) which will allow you to specify the ‘Markov Chain Monte Carlo Parameters’.

We’ll quickly go down the list of those parameters we’re going to need to consider when using MCMC
for the binomial survival example. First, the ‘Random Number Seed’. It defaults to 0,meaning, the random
numbers used to generated the samples will be different for each run. For almost all purposes, this is
entirely acceptable, so we leave the seed at the default value of 0 in most cases. The purpose of this
entry is to allow you to specify a random number seed if you want to duplicate results from a previous
analysis.
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Next, 3 boxes indicating the number of ‘samples’ we want to make. The specific details concerning
these options are detailed in the Addendum to this appendix, but briefly:

Number of ’burn in’ samples – the Metropolis-Hastings algorithm used by MARK takes
random samples from the posterior distribution. Typically, initial samples from the
Markov chain are not completely valid because the chain has not stabilized. The ‘burn
in’ samples allow you to discard these initial samples.

Number of ’tuning’ samples – MCMC is based on acceptance/rejection of a ‘proposed’
value, drawn from a ‘proposal distribution’ – typically N(0, σ), where σ is chosen
estimated to give a 40-45% acceptance rate. That is, σ is estimated during the ‘tuning’
phase to accept the new proposal 40-45% of the time.

Number of samples to store – After the initial ‘burn in’ period (see above), samples from the
posterior distribution are saved to enable computation of summary statistics describing
this (posterior) distribution. [Note: thinning the sample is not an option within MARK,
but can be done after the fact using SAS or R.]

For smaller problems, these defaults are generally sufficient. For larger data sets, and more complex
models, you will typically need to increase the size of the various samples (in particular, the ‘Number
of samples to store’).

Next, a box to let you specify the name of binary file to store samples (it defaults to MCMC.BIN). The
samples are saved in a binary file (meaning, you can’t simply open up the file in an ASCII editor). The
binary file can be read, however, with a SAS code or an R code to perform more sophisticated analysis
than are available from MARK. Example SAS and R code is provided in the MARK helpfile. This box
is followed by another which lets you specify the name of a .CSV file to storE summary data (means,
medians, percentiles...) from the sample data (it defaults to MCMC.CSV). This file can be opened in Excel,
or equivalent spreadsheet software.

Finally, a box to set the default SD of the normal proposal distribution. The default is 0.5. As noted
above, for beta parameters that are not a part of hyperdistributions, the default step size to generate the
next value of the parameter is generated as a random normal variable with a SD specified in this edit
box. Typically, you want to accept the new parameter value about 45% of the time, so you can adjust
this SD to approximately obtain this acceptance rate. (Discussed more fully in the Addendum).

The next 3 sections are particularly important. First, the ‘Hyperdistribution Specification’. One
of the primary purposes of the MCMC algorithm in MARK is to estimate mean and variance of sets
of parameters, i.e., estimate the values of µ and σ given a hyperdistribution of a set of beta parameters.
Using this edit box, you can specify the number of hyperdistributions that you want to model. If you
leave the number of hyperdistributions set to the default of 0,MARK will use MCMC to derive estimates
of parameters and credibility intervals for those estimates, but will not estimate µ or process variance
σ2. For our re-analysis of the binomial survival data, we want to specify 1 hyperdistribution (i.e., to
estimate µ and σ2 among the set of 10 survival estimates).

As you will observe, once you set the number of hyperdistributions to a value > 0, then two options
will be made available (‘active’). First, you can choose to model the hyperdistribution means using a
design matrix. Checking this check box allows you to model the means of the hyperdistributions with
linear models specified in the MCMC hyperdistribution design matrix. For this example, we will not
specify a linear model with a design matrix, so we’ll leave the box unchecked.

Second, you can specify the structure of the variance-covariance matrix among parameters included
in the hyperdistributions. This specification is especially helpful if you are interested in looking at
covariance among different parameters ina particular model (e.g., the covariance of S and f in a Brownie
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dead recovery model; example scenario 2, on p. E-3). Since that is not our interest here (clearly, since
there is only a single parameter type, Si), we will leave this option unchecked as well.

The next item involves the specification of ‘Prior Distributions for Parameters not included
in Hyperdistributions’. Although the most likely use of the MCMC estimation procedure is to
estimate the mean and variance of hyperdistributions, most models in MARK include other nuisance
parameters in the models. These parameters also require a prior distribution. Three options are
provided. The first is to ignore the prior distribution, and never use it to decide whether a new value in
the Markov Chain is accepted or rejected. The second option is to specify a default prior distribution,
consisting of a normal distribution with the mean and variance provided. All parameters not included
in a hyperdistribution will use this normal prior. The third option is to specify the prior distribution for
each parameter individually. However, only normal priors are allowed, so you can only specify a mean
and standard deviation appropriate for each of the non-hyperdistribution parameters.

Finally, a section letting you specify various ‘Convergence Diagnostics’. This group of controls
determines what diagnostic values will be generated. Checking the ‘GIBBSIT sample size’ box will
produce a table of estimated sample sizes for the burn-in period and the samples to store. Selecting
the ‘multiple Markov chains’ option will produce a diagnostic statistic (R̂) useful for determining if
the Markov chains have adequately sampled the posterior distribution (i.e., if the multiple chains have
converged, indicated by R̂ → 1.0). The default is a single chain, which is usually sufficient for simple
problems (such as the binomial survival analysis), given enough samples. The MARK helpfile should
be consulted for further details on these options.

Once you have specified the appropriate values, or want to accept the defaults, click the ‘OK’ button
to continue. Since we have have specified > 0 hyperdistributions to be modeled (1, for this example),
additional dialog windows will request information on these hyperdistributions.

For this example, we have 10 survival parameters (S1, S2, . . . , S10), so we enter ‘1 to 10’ as the
parameters to include in the hyperdistribution. Here,we include all 10 survival parameters. In situations
where one or more parameters are confounded, we generally exclude them from the hyperdistributions
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(similar to excluding confounded parameters in moment-based RE models,as discussed in Appendix D).
Click the ‘OK’ button. Based on the lists of means and standard deviations selected, a new dialog window
appears that is requesting information about how to estimate these hyperparameters.

Four inputs are requested for each hyperparameter. The first edit box is to specify the step size to be
used to generate new parameter values with which to sample the posterior distribution. As with the
default step size, the goal is to tune the estimation so that approximately 45% of the steps are accepted.

The second edit box is to specify an initial value to start the Markov Chain. The default is ‘compute’,
which tells MARK to compute an estimate from the initial values of the beta parameters. It is generally
recommended practice that you should run the model that you want to use for MCMC estimation as a
typical MARK analysis, so that you can provide initial estimates to start the MCMC estimation.

The third and fourth edit boxes specify the parameters for the prior distribution to be used with
this hyperdistribution. For mean parameters, a normally distributed prior is used. The third edit box
specifies the mean, and the fourth edit box specifies the standard deviation. The default values for µ are
mean = 0 and standard deviation = 100, giving a very flat and uninformative prior. For σ parameters, a
γ prior is used to model the σ in a transformation: 1/σ2 is assumed to be distributed as a γ distribution
with parameters α (third edit box) and β (fourth edit box). Again, the defaults of α � β � 0.001 result in
a very flat, uninformative prior. In other words, the defaults specify uninformative ‘flat’ priors for the
two hyperparameters, µ and σ.

Once you click ‘OK’, you’ll be asked to specify ‘starting values’, which you can retrieve from the
general model {St}, which is already in the browser (remember – retrieving from a model in the browser
only works if the model you’re retrieving was run with the same link function as we’re using here –
logit). Once you have set the starting values, and clicked ‘OK’, MARK will spawn a command windows
(‘DOS box’), which will show you the progress of the MCMC sampling (i.e., which chain MARK is
working on, which iteration). In practice, you will quickly discover that this stage can (and frequently
is) be the ‘rate-limiting step’ for using MCMC in MARK (or any other software), especially for complex
problems (which in the context of MARK, can also mean ‘lots of parameters, and lots of data’), where
even the default 10,000 samples (plus 5,000 for burn-in and tuning) can take a very long time. There
isn’t much you can do easily to speed things up – in general, the only guaranteed way to speed things
up is to get a faster computer.

Forour re-analysis of the binomial data, this is a probably a moot point. MARK will probably generate
the 15,000 total samples in only a few seconds on even a ‘mediocre’ computer. Once MARK has finished
generating the samples, the resulting output is not stored in the results browser, or in the results file.
Rather, the output, containing various summary statistics, is placed in an editor window, as well as a
.CSV file that can be opened in Excel, or equivalent spreadsheet software. Summaries are provided for
each of the beta parameters, hyperdistribution parameters, and real parameters are the mean, standard
deviation, median, and mode, plus the percentage of trials when a new value was accepted (labeled
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as the proportion of jumps accepted). In addition, the frequency percentiles of 2.5, 5, 10, 20, 80, 90, 95,
and 97.5, as well as 80%, 90% and 95% highest posterior density intervals, are listed. These values can
be used to create credibility intervals for the parameters (discussed in more detail, below). In addition,
as noted, the binary output file is available to use for additional, more sophisticated analysis, with the
SAS code or R code provided in the MARK helpfile.

When you scroll through the output in the editor window, you’ll eventually come to the summary
statistics for the posterior samples. Here they are for the binomial survival example (note: MCMC is
based on taking random samples from the posterior – the word ‘random’ explicitly indicates that the
values you get in your data summaries are unlikely to precisely match those reported here. But, they
should at least be relatively close).

At the top of the output (above), it is important to note that what you see here are ‘logit link
function parameters’. In other words, you’re presented with the mean (and SD), median and mode
of the distribution of the samples for each parameter (Si, and the hyperparameters µ and σ) on the logit
scale. Meaning, a back-transformation of some sort will be needed to generate parameter estimates on
the real probability scale. More on this in a moment. What information do we glean from the output?
We see that the mean, median, and mode are different for most parameters, occasionally markedly
so. This difference indicates in part that the posterior is potentially not ‘nice and symmetrical’ (if the
distribution was perfectly symmetrical, then the mean, median and mode would be identical). There
is clearly some uncertainty on choosing a particular value (mean, median, mode) to generate back-
transformed estimates on the real probability scale. In general, using the mean seems to work well, but
if in doubt, consult your local Bayesian for their thoughts on the matter.

The right-hand column gives the proportion of jumps for each parameter. Ideally, we’d like this
percentage to be in the 40-50% range (the proportion of jumps is an index to how efficiently we’re
sampling the posterior). Some theory has been proposed that 40-50% is ‘optimal’ for exploring the
posterior (optimal being a function of time to convergence, and the ability to explore all regions of the
posterior distribution), which MARK adopts, in a fashion. As noted on the preceding page, you can
‘tweak’ the jump size by changing the step size MARK uses to generate new parameter values with
which to sample the posterior. In addition to the summary statistics for each of the parameters, MARK

also reports the estimated −2 lnL for the model, including the −2 lnL based on the means of the beta
estimates (where near equality of the two values indicates that using the mean is probably acceptable
for this example).

Finally,MARK reports the DIC (Deviance Information Criterion) for the model,which in theory could
be used for model selection, model averaging, and other purposes. The DIC is a hierarchical modeling
generalization of the AIC (Akaike information criterion) and BIC (Bayesian information criterion). The
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DIC is calculated as the sum of the model deviance – the difference in −2 lnL of the current model
and −2 lnL of the saturated model – and the effective number of parameters. Clearly, the DIC has the
same ‘fit plus parameter penalty’ structure as do the AIC and BIC. And, like the AIC and BIC, it is
an asymptotic approximation as the sample size becomes large. It is only valid when the posterior
distribution is approximately multivariate normal. Because of current challenges (and differences of
opinion) on how best to handle model selection and averaging in a Bayesian context, the DIC is printed
in the output for informational purposes only. Use at your own risk.

Immediately below the summary statistics of the parameters on the logit scale are the percentile
tabulations for each parameter – useful in generating (say) a 95% credibility interval, on the logit scale.
Two different types of percentiles are generated: the first based on simple frequency percentiles for the
posterior distribution (i.e., 2.5%, 5%,...,95%, 97.5%), and a second based on the highest posterior density
(HPD). For unimodal, (more-or-less) symmetric posterior distributions, the frequency percentile- and
HPD-based credible intervals won’t differ much. However, the HPD is potentially the more useful basis
forspecifying a credible intervalwhen the posteriordistribution is skewed,ornot symmetric. In brief, the
HPD is an interval that spans a specified percentage of the distribution (say, 95%), such that every point
inside the interval has a higher plausibility than any point outside the interval. For a simple, univariate
parameter θ with a unimodal posterior probability density, calculation of a simple HPD is relatively
straightforward: (i) sort the posterior values for θ in ascending order, (ii) for j � 1, 2, ...N − [(1 − α]N],
when N posterior samples, compute N (1 − α)% credible intervals (e.g., for a posterior consisting of
N � 1,000 samples, for an α � 0.95 (i.e., for a 95% HPD), you construct 1,000× (1− 0.95) � 50 intervals),
where the credible interval is [θj , θ( j+[(1−α)N]]. Finally, (iii) the HPD interval is the one with the smallest
interval width among all credible intervals generated in step (ii).

Let’s take a closer look at how these intervals differ. Consider a large sample of log-normal random
deviates, with mean and standard deviation on the log scale of 1.0 and 0.5, respectively. The following is
a density plot of the sample data – clearly, this distribution is not symmetrical. The left- and right-hand
grey tails are the 2.5% percentiles, constructed such that the area of both tails is the same, with the dark
(black) area representing 95% of the probability mass:
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The 95% frequency percentiles shown in the figure are [1.0672, 7.2661]. But, consider the probability
of θ � 1. Based on the density plot, θ � 1 is far more likely to occur than θ � 6, and yet θ � 6 is
included in the frequency percentile-based credibility interval, whereas θ � 1 is not. Clearly, this does
not inspire much confidence (pun partially intended...) in our 95% credibility interval for θ based on
simple frequency percentiles.

Contrast this with a credibility based on highest posterior density (HPD), indicated in the following
density plot. Here, the grey tails represent those values of θ where our belief in the credibility of that
values is < 5%, whereas the dark, black area represents the values of θ for which the sum of our belief
in those points (i.e., the area under the curve) is 95%.

The 95% HPD interval shown in the preceding plot, [0.7027, 6.2893], is clearly quite different than
the one based on frequency quantiles (above). The important distinction here is that the probability
at either the left-hand or right-hand ‘border’ between the grey and black regions is identical. In other
words, if you drew a horizontal line parallel to the x-axis, it would intersect the probability function at
the same point at either ‘border’.

Which credibility interval should we report? Well, to some degree, it might seem reasonable to use the
HPD generally, because it is often more defensible than the quantile-based interval when the posterior
distribution is asymmetrical or (worse) multi-modal. When the posterior is symmetrical and unimodal,
then the HPD and quantile-based intervals are effectively identical in practice.

The biggest potential problem for the HPD is its lack of invariance under transformation. And,neither
the frequency percentile-based probability interval or the HPD interval take the prior distribution
into account. Yet another, computationally more challenging approach which does take the prior into
account is based on the ‘lowest posterior loss’ (LPL) functions. [At present,calculation of LPL credibility
intervals has not been implemented in MARK.] See Bernardo (2005) for the rather messy details.∗

∗ Bernardo, J. M. (2005). Intrinsic Credible Regions: An Objective Bayesian Approach to Interval Estimation. Sociedad de Estadistica
e Investigacion Operativa, 14, 317-384.
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Immediately following the frequency percentile- and HPD-based credible intervals in the MARK

output are the estimates and moments for the individual structural parameters (but note – not the
hyperparameters), back-transformed to real probability scale.

Here are the reconstituted estimates for the binomial survival example:

Now, it is critical to remember that for this analysis, we are estimating a model where we’ve specified
a hyperdistribution for the individual Si, with hyperparameters µ and σ. In other words, this is a mean
(intercept only) random effects model. Thus, the reported estimates for Si (above) are, in fact, shrinkage
estimates, S̃i, where the estimates are ‘shrunk’ towards the common mean of the hyperdistribution.
Shrinkage estimates are introduced and discussed in detail in Appendix D.

Also,note thatwhat is reported foreachparameter is the mean of the posterior,back-transformedfrom
the logit to the real probability scale. For example, from the preceding table of real function parameters,
we see that the estimated mean for parameter S1 on the logit scale was S̃1,logit � 0.0506165.

If we back-transform from this value on the logit scale to the real probability scale, we get

S̃1 �
e0.0506165

1 + e0.0506165
� 0.51265

which is close to what MARK reports for S̃1 � 0.51223 above. Why the slight difference? The answer is
because MARK does not simply back-transform the estimate for S̃1,logit � 0.0506165 (as we have done
here) – rather, MARK takes the entire posterior sample on the logit scale, and back-transforms it to the
real probability scale, and then takes the mean of this back-transformed distribution.

How do these back-transformed estimates of the individual S̃i compare to estimates derived using
maximum likelihood and the ‘method of moments’ approach (from p. E-6)? In the following table (E.2),
we compare the first 5 estimates from both methods (rounded to 3 significant digits). As we can see, the
results from both approaches match pretty well, which they should, given we used a non-informative
prior for both hyperparameters (see the following - sidebar -).

Table E.2: Comparison of shrinkage estimates from the ML ‘methods of moments’ (Appendix D) with shrinkage
estimates from MCMC analysis of the binomial survival data.

i

method 1 2 3 4 5

S̃i (ML) 0.548 0.431 0.482 0.465 0.482

S̃i (MCMC) 0.512 0.463 0.483 0.477 0.484
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begin sidebar

ML estimates and MCMC

In the preceding example, we fit a model where we specified a hyperdistribution for the Si , with

hyperparameters µ and σ. The estimates of the Si values were, therefore, shrinkage estimates, S̃i . How

would we use MCMC to generate what are equivalent to ordinary ML estimates? Simple enough –

we simply re-run the MCMC analysis without specifying the hyperdistribution on the individual Si ,

with a non-informative prior on the beta parameters.

However, we need to think a bit about how MARK handles priors for parameters which are not

included in a hyperdistribution – meaning, in this case, all the parameters. These parameters also

require a prior distribution. As noted earlier, three options are provided in MARK. The first is to

ignore the prior distribution, and never use it to decide whether a new value in the Markov Chain

is accepted or rejected. The second option (which is selected by default) is to specify a default prior

distribution, consisting of a normal distribution with the mean and variance provided. All parameters

not included in a hyperdistribution will use this normal prior. The third option is to specify the prior

distribution for each parameter individually. However, only normal priors are allowed, so you can only

specify a mean and standard deviation appropriate for each of the non-hyperdistribution parameters.

Care must be taken in what prior is used for parameters not included in a hyperdistribution. A

mean of zero is appropriate for most parameters. However, a very large standard deviation will result

in a back-transformed logit value with a ‘U-shaped’ distribution, i.e., the real parameter value is much

more likely to take on the values close to zero or close to 1. A standard deviation of 1.5 results in a back-

transformed distribution that as about 95% of the probability between [0.05, 0.95], so is actually results

in a pretty reasonable prior distribution on the real scale. Further, some consideration must be given to

how the prior distributions of a function of the beta parameters will interact. For example, the intercept

and slope of a trend model might not be appropriately specified as N(0, 1.5) priors,depending on how

the beta parameters are expected to change over the range of the data.

The other consideration about the prior is that if it is non-informative, then the mode of the posterior

posterior distribution, as generated by MCMC, should be identical with the MLE. This can be easily

demonstrated by algebra. Consider estimation of a simple binomial (say, a coin toss experiment). If

the probability of tossing a head is θ, then (from Chapter 1) the probability distribution is given by

the binomial distribution, i.e.,

f
(

x �� θ) � n!

x!(n − x)!
θx

(1 − θ)
n−x .

As discussed briefly in Chapter 1, it is clear that the likelihood given this expression is maximized

at θ � x/n.

In a Bayesian context, we generally imagine placing a prior distribution on the parameter θ. Since

the parameter θ lies within the interval [0, 1], then an appropriate prior is also bounded on the interval

[0, 1]. In the absence of prior information (or belief) we might consider a non-informative (‘flat’) prior

which makes all possible values of θ equally likely. For convenience, the Bayesian often uses a general

prior distribution which makes it convenient to modify the prior to reflect a range of prior beliefs. One

common approach is to take the beta distribution (which is conjugate for the the binomial) such that

P(θ) ∝ θα−1
(1 − θ)

β−1. The shape variables α and β are the prior parameters, and can be chosen to

reflect differing prior beliefs. If α � β � 1, then the distribution is flat (uniform) over the interval [0, 1]

(Fig. E.4). Note also that whenever α � β, the prior distribution is symmetric around θ � 0.5 (it is only

symmetric and flat if α � β � 1).

If we adopt a beta prior on θ, then the posterior is given as

π
(
θ �� x

) ∝ f
(
x �� θ)p

(
θ
) ∝ θx+α−1 (1 − θ)n−x+β−1

Thus, we see that the posterior is itself in the form of a beta distribution, with parameters (x + α)

and (n + b − x).

Appendix E. Markov Chain Monte Carlo (MCMC) estimation in MARK . . .



E.1.1. Example 1 - binomial survival re-visited E - 16

��� ��� ��� ��� ��� ��� ��	 ��� ��� ��� ���

�
�
�
��
�
��
�

�

�

�

�

�������������

�������

�������

�������

Figure E.4: Shape of the beta probability distribution for different values of the shape parameters α and β. The
distribution is symmetric for α � β, and is uniform for α � β � 1.

By the method of moments (see first few pages of Appendix B), we can show that this posterior

distribution has a mean of

x + α

n + α + β
,

and a mode of

x + α − 1

n + α + β − 2
.

Now, both the expected mean and mode of the posterior appear quite different than the MLE of

(x/n). But, look closelyat the expressions for the expected mean and mode of the posterior. You should

see that, in fact, the MLE is embedded in the two expressions.

Why is this important? It is important because this suggests that the Bayesian estimate for θ will

differ from the ML estimate for θ as a function of the values of α and β used in the prior. Given that,

what happens if we use a flat, non-informative prior, α � β � 1? If we do, then we see that the expected

mean of the posterior is

x + α

n + α + β
�

x + 1

n + 1 + 1
�

x + 1

n + 2
,

while for the mode,

x + α − 1

n + α + β − 2
�

x + 1 − 1

n + 1 + 1 − 2
�

x

n
.

In other words, for a ‘flat’, non-informative prior, the mode of the posterior and the MLE are identical.

Also, note that as the sample size increases (i.e., as x and n both increase), then the posterior mean

will converge on the mode and the MLE. (For completeness, we also note that as the sample size gets

larger, the variance of the posterior gets smaller – just as with ML estimation).

So, if we use a non-informative prior, the parameter estimates from MARK should match the MLE

pretty closely. The following table (E.3, top of the next page) compares the MLE and MCMC estimates

for the first 5 parameters. As expected, the estimates are close between the two methods.
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Table E.3: Comparison of maximum likelihood (ML) estimates to estimates from MCMC analysis of the binomial
survival data.

i

method 1 2 3 4 5

S̃i (ML) 0.640 0.360 0.480 0.440 0.480

S̃i (MCMC) 0.635 0.367 0.474 0.450 0.477

end sidebar

Finally, at the bottom of the output, you’ll see some ‘snippets’ of SAS and R code, respectively:

These bits of code contain the values for different variables you need to ‘copy and paste’ into the SAS

or R code to further process the sample data. This code can be found in the MARK helpfile.

One particularly helpful stage of further analysis of the sample data is the visualization of the density
and trace of the posterior samples. For example, here (Fig. E.5) is the time-series (trace) for a single chain
for β6 (based on 25,000 samples), after dropping the tuning and ‘burn-in’ samples:

Figure E.5: Time-series ‘trace’ of posterior samples for β6, on the logit scale. Trace based on 25,000 samples.
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We expect that the trace should look like what has been described as a ‘fuzzy lawn’ – roughly an
equal number of samples above and below some imaginary horizontal line drawn through the central
mass of the samples. More specifically, we hope that the sampler doesn’t seem to get ‘stuck’ at any point
(i.e., that it is able to explore the entire domain of the posterior distribution). Based on this somewhat
subjective criterion, the trace for β6 (Fig. E.5) would probably be considered as ’satisfactory’. [As an
exercise, try changing the step size parameters, and looking at see what this does to the trace. As noted,
we try to set the step size to balance efficiency – moving around the posterior in as few samples as
possible – with the ability to actually ‘reach’ all parts of the posterior. If you try changing the step size,
you’ll develop a fair intuition of how this all works.]

In the following figure (E.6), we compare the sample density for β6 (on the logit scale) and the back-
transformed parameter S̃6 (on the real probability scale).

(a) density plot from posterior sample for β6 (logit) (b) density plot from posterior sample for S̃6 (real)

Figure E.6: Density plots for MCMC samples for β6 (on the logit scale), and the back-transformed value S6 (on
the real probability scale).

Here, we are primarily interested in establishing that the density plots are unimodal. If the plots have
> 1 mode, then there is some chance the sampler was ‘stuck’ in a local minimum, and has biased our
parameter estimates (this is discussed in some detail with respect to multi-state models (Chapter 10),
where such multi-modal posterior distributions are regrettably common). As discussed 9in more detail
earlier, we can also attributes of the ‘width’ of the density plot (wide, narrow) to establish estimated
parameter precision.

These are only 2 of a couple of graphical representations of the MCMC data. In addition, there are a
very large (and seemingly ever-growing) numberof diagnostic tools (some graphical, some analytical) to
allow you to more fully explore the MCMC sample data. In this Appendix, we will be working primarily
with examples where the posterior distribution has ‘good properties’ (although we do include one
example where the results are somewhat ‘problematic’, reflecting some of the fairly common challenges
you might face in practice). Working with MCMC (in MARK, or otherwise) inevitably means you’ll
spend considerable time evaluating and working with these tools.

E.1.2. estimating the hyperparameters µ and σ

OK, so we see how we can use MCMC to derive estimates for the annual survival parameters, either ML
estimates,Ŝi, or shrinkage estimates, S̃i . The most obvious reason we might choose to do so is because
the MCMC approach generates the percentiles we can use to specify a 95% credibility interval. Not only
is this arguably more ‘defensible’ in the conceptual sense (since the credibility interval is perhaps more
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meaningful, and certainly less confusing, than the more familiar ‘frequentist’ 95% confidence interval,
since the latter is based on expectations from a theoretical number of replicates of the data), but the
credible interval may actually perform better (or at least as well) than the profile likelihood-based CI’s
for parameters estimated near the [0, 1] boundaries.

But our primary interest here is the estimation of the hyperparameters for the random effects model.
Recall from p. E-6 that, on the real probability scale, µ̂MOM � 0.482527, and σ̂MOM � 0.0441609 (where
the ‘MOM’ subscript indicates that the estimates were derived using the ‘method of moments’ approach
to variance components analysis discussed in Appendix D). From the results of our MCMC analysis
(p. E-11), we see that µ̂MCMC � −0.0604595, and σ̂MCMC � 0.1792769, on the logit scale (here, the
‘MCMC’ subscript indicates that the estimates were derived using the MCMC approach).

What happens if we take these estimates from the MCMC analysis, and back-transform from the logit
scale to the real probability scale? We’ll start with µ – recall that µ is our best estimate of the overall
mean of the parameter:

µ̂ �
e−0.0604595

1 + e−0.0604595
� 0.48489

which is close to the value estimated using the ‘method of moments’ approach (µ̂MOM � 0.482527). So,
it appears straightforward to derive our estimate of the overall mean µ, by taking the estimate from the
MCMC analysis on the logit scale, and back-transforming to the real probability scale.

What about the estimate of process variance,σ? What happens if we simply back-transform σ̂MCMC �

0.1792769 from the logit to the real probability scale?

σ̂ �
e0.1792769

1 + e0.1792769
� 0.5447

which is clearly not close (not even remotely) to the estimate from the ‘method of moments’ approach
(σ̂MOM � 0.044161), which we accept to be ‘correct’ for these data (see Appendix D).

There are several issues to consider here. First, perhaps we shouldn’t be trying to back-transform at
all, and should evaluate our estimates directly on the logit scale on which they are estimated. Often the
logit scale is the biologically relevant scale at which to work. The logit scale is more likely to provide a
linear scale to model the effects of environmental covariates, e.g., precipitation or temperature. However,
this sidesteps the objective of comparing the estimates of σ from MCMC with those generated by the
‘method of moments’ random effects approach. While we might be satisfied and generally safe using
estimates of process variance from the moments-based approach, that particular method doesn’t apply
well to complex models, and we would like to be able to use the more flexible MCMC approach in
such cases. Moreover, one of the uses of process variance is in analysis stochastic projection models (as
described in the introduction to Appendix D), which are projected using transition probabilities on the
real [0, 1] probability scale, not the logit scale.

A second possibility might be that we’re not properly accounting for the effects of the transformation
on the estimated variance on the transformed scale. If you’ve worked through Appendix B, it might
seem reasonable to consider using the Delta method to estimate the variance µ after transformation
from the logit to real probability scale.

From Appendix B, we write the transformation function f (µ) as

f (µ) �
eµ

1 + eµ

Appendix E. Markov Chain Monte Carlo (MCMC) estimation in MARK . . .



E.1.2. estimating the hyperparameters µ and σ E - 20

Thus, to first order,

v̂ar ≈
(

f ′(µ)
)2
σ2
µ

�

(
∂ f (µ)

∂µ

)2

v̂ar
(

µ̂2)

�
*..,

e µ̂

1 + e µ̂
−

(

e µ̂
)2

(

1 + e µ̂
)2

+//-
2

v̂ar
(

µ̂
)

From p. 11, we see that µ̂MCMC � −0.06046. Now, what should we use for the estimate of the variance
of µ? There are 2 values in the output on p. E-11 that you might consider for the variance term in the
Delta approximation. First, we see that the variance for the posterior for the parameter µ is estimated
as 0.1456782

� 0.0212218. We also have the estimate of σ as a parameter itself, σ̂ � 0.17928, such that
v̂ar(σ̂) � 0.179282

� 0.03214. Let’s try the variance of µ (0.0212218) first.

v̂ar ≈
*..,

e−0.06046

1 + e−0.06046
−

(

e−0.06046)2

(

1 + e−0.06046
)2

+//-
2

(0.0212218)

� 0.0013240

Thus, v̂ar(µ̂) on the logit scale would be approximated as
√

0.0013240 � 0.03214. While this is
considerably closer to the estimate from the ‘method of moments’ approach (0.04416) than our naive
back-transformed estimate of 0.5447, there is still a fair discrepancy (almost 30% difference) between
the estimates.∗

Now, let’s repeat the calculation, but this time, using the estimate of v̂ar(σ̂) � 0.179282
� 0.03214 for

the variance term.

v̂ar ≈
*..,

e−0.06046

1 + e−0.06046
−

(

e−0.06046)2

(

1 + e−0.06046
)2

+//-
2

(0.03214)

� 0.0020051

and, thus, our estimate of σ̂ on the real probability scale would be approximated as
√

0.0020051 � 0.0448.
We are rather pleased to observe that this value is close to the estimate from the ‘method of moments’
analysis (0.0442), differing only in the fourth decimal place.

However, before we become overly satisfied, its important to understand ‘why’ this seems to have
worked. The key is in remembering that µ and σ are being estimated as parameters, and while there
is uncertainty in the estimate of each, such that each has its own sampling variance (based on the
distribution of MCMC samples for each parameter), the estimate of σ̂ (as the mean of the posterior for
the σ parameter) is in fact the best estimate of the random variation of the annual Si around the mean,
µ, which is itself estimated as the mean of the posterior for the µ parameter. So, the correct value to use
for the variance in the Delta approximation is the square of the estimate of σ itself.

∗ In fact, this estimate of 0.03214 is approximately equal to the estimate for σ you would obtain if (i) you took the entire posterior
sample,back-transformed it from the logit scale to the real probability scale, and then (ii) estimated σ from this back-transformed
distribution. If you think hard about what is meant by the estimate of σ you used in the Delta transformation to generate the
value of 0.03214, you should be able to see the reason for this.
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Does this approximation always work? As noted in Appendix B, the Delta method assumes that
the transformation function is effectively linear in the region where most of the data reside. For some
parameters, especially those near the 0 or 1 boundaries, this may not necessarily be the case. Further,
in the present example, we used a non-informative ‘flat prior’. If instead we had used an informative
prior – in particular, a prior that was asymmetrical over the [0, 1] interval – then it is quite likely that
the Delta method may not work particularly well.

begin sidebar

estimating σ by simulation

As noted in Appendix B, where we introduce the Delta method approximation to estimating the

variance of functions of one or more parameters (as we just applied, above), another approach to

estimating the variance is to use numerical simulation or bootstrapping. Such numerical methods are

less convenient in many instances than the Delta method, but are generally less susceptible to violation

of some of the necessary assumption required for the Delta method to perform well.

Here, we introduce a simple approach here for estimating the process variance σ2 , based on MCMC

sample data. We will demonstrate the method using the binomial survival example. Recall that the

‘method of moments’ approach generated estimates of µ̂ � 0.48253 and σ̂ � 0.04416. Recall also that

our MCMC estimates of µ and σ on the logit scale (based on the mean of the posterior distribution for

both parameters) were µ̂MCMC � −0.06046 and σ̂MCMC � 0.17928.

What we’re going to do is simulate data on the logit scale, given estimates of µ and σ, back-transform

the simulated data from the logit scale to the real probability scale, and then estimate σ from these

back-transformed simulated data. The only challenge is deciding how to simulate data on the logit

scale. As noted earlier, MARK samples from the posterior based on the assumption of a logit normal

proposal distribution. Thus, our approach will be to

• simulate a logit normal sample based on
(

µ̂MCMC +N(0, σ̂MCMC)
)

• back-transform the simulated logit normal data to the real probability scale

• estimate µ and σ from the back-transformed simulated data

Here is a snippet of R code that implements this sequence of steps, using parameter estimates from

the binomial survival analysis To facilitate comparison, we also include the estimates of µ and σ from

the ‘methods of moments’ approach (above):

# enter parameters from MCMC

mu=-0.0604595; sigma_mean=0.1792769;

# for comparison, enter parameters from moments RE estimation

s=0.482527; sd=0.0441609;

# initialize vector to hold random samples from logit normal

lnsamp <- vector()

# draw 25000 random samples from logit normal distribution

for (i in 1:25000) { lnsamp[i] <- mu+rnorm(1,mean=0,sd=sigma_mean); }

# back-transform simulated data from logit -> real

backtrans <- vector()

backtrans <- exp(lnsamp)/(1+exp(lnsamp));

# now estimate and assess mean and sigma estimate from back-transformed data

cat("\n Estimation of mu and sigma on back-transformed data from simulated logit normal\n\n")
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cat("This is estimated S (mu): ",mean(backtrans),", compared to moments estimate of ",s,"\n");

cat("This is estimated sigma: ",sqrt(var(backtrans)),", compared to moments estimate

of ",sd);

cat("\n\n [Interest here is in how well the estimates from both approaches match...]\n")

when we execute this script, we get the following results:

Estimation of mu and sigma on back-transformed data from simulated logit normal

This is estimated S (mu): 0.4846203, compared to moments estimate of 0.482527

This is estimated sigma: 0.04444851, compared to moments estimate of 0.0441609

These values estimated from the back-transformed data simulated using estimates of µ and σ from

the MCMC analysis are clearly close to the estimates from the ‘method of moments’ random effects

model.

end sidebar

What about credibility intervals for our estimates for µ̂ and σ̂? Returning to the MARK output for the
analysis of the binomial survival data, we see that the 95% frequency percentile-based interval reported
on the logit scale for µ̂ and σ̂were [−0.3477, 0.2828] and [0.0280, 0.5470], respectively. The 95% HPD for
µ̂ and σ̂ were [−0.3601, 0.2580] and [0.0194, 0.4537], respectively.

Which credibility interval should we report? As discussed earlier, we might generally use the HPD,
because it is often more defensible than the quantile-based interval when the posterior distribution
is asymmetrical or (worse) multi-modal. For the binomial survival data, there is evidence suggesting
that the posterior distribution for the mean µ is likely symmetrical, since the reported mean, median,
and mode are all quite close: -0.0605, -0.0617, and -0.0695, respectively. In contrast, the mean, median
and mode reported for the the variance σ are quite different (0.1793, 0.1251, and 0.0411, respectively),
suggesting the posterior distribution for σ is likely asymmetrical.

Our intuition is supported by visual examination of the probability density plots for both parameters.
We see that the plot for the mean µ (Fig. E.7a) is indeed quite symmetrical, while for the variance σ,
the posterior probability distribution (Fig. E.7b) is quite asymmetrical (strong right-skew) as expected
– reporting the HPD might be more appropriate for this parameter.

(a) density plot from posterior sample for µ (logit) (b) density plot from posterior sample for σ (logit)

Figure E.7: Density plots for MCMC samples for µ and σ (on the logit scale).
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E.1.3. Example 2 – California mallard survival re-visited

Here, we will re-visit an analysis of a long-term dead recovery data set based on late summer banding
of adult male mallards (Anas platyrhynchos), banded in California every year from 1955 to 1996 (k � 41)
(Franklin et al., 2002). This example was introduced in Appendix D (section D.4.2), where we focussed
on the fitting of various random effects models to the mallard recovery data, including a model where
survival, S, varied around some unknown mean µ, with unknown process variance σ2. We referred to
this model as {Sµ,σ2 ft}. If you still have the analysis files for these data that you generated in Appendix D
(california-male-mallard.dbf and california-male-mallard.fpt), this model might still be in your
results browser. If not, you can either go back to section D.4.2 in Appendix D and re-create the model,
or simply follow our summary of the results for fitting this model to the data (below):

Recall that in Appendix D, we used time-structure for the recovery parameter f . We do so because
any constraint applied to f will impart (or ‘transfer’) more of the variation in the data to the survival
parameter S, such that the estimated process variance σ̂2 will be ‘inflated’, relative to the true process
variance. In general, you want to estimate variance components using a fully time-dependent model,
for all parameters, even if such a model is not the most parsimonious given the data. This is also true
if using the MCMC approach we’re introducing here.

We see from the results (above) of fitting model {S
µ,σ2 ft} to the data, that the estimated mean survival

on the real probability scale was µ̂ � 0.630244, and process variance was σ̂2
� 0.08953552

� 0.0080166.
Now, let’s see if we can replicate this analysis, using the MCMC capabilities in MARK. First, retrieve
model {St ft} in the browser to make it the ‘active’ model. We are going to re-run this model, using
MCMC. Make sure that you check the logit link function. If you built the model using the logit link
in the first instance, you can and should check the box telling MARK you will provide initial values
from that model. If not, take a moment and re-run the model first, using standard ML estimation and
the logit link. This is a large (41 years of data), complex dataset, and experience indicates you should
probably use the simulated annealing optimization routine (so check the ‘alternate optimization’ box).
Be advised that convergence can take some time.

Once finished, we’re ready to start our MCMC analysis, Again, re-run the model, checking the ‘logit’
link function, ‘Provide initial parameter estimates’, and (of course) the ‘MCMC Estimation’ check-
boxes.
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Next, you’ll specify the ‘Monte Carlo simulation parameters’. We’ll use the standard defaults
for the number of ‘tuning samples’ (4,000) and ‘burn-in’ (1,000). However, because of the size and
complexity of the data set, and the number of parameters being carried in the model, we’ll increase
the number of MCMC ‘samples to store’ from the default of 10,000 to 25,000. Finally, we’ll set the
‘Number of hyperdistributions’ to 1 (specified by the parameters µ and σ). We’ll use default settings
for everything else. Once you’re ready, click the ‘OK’ button.

Next, you’ll be presented with a popup window asking you to select which parameters you want to
include in the single hyperdistribution. We’re interested in estimatingµ andσ for the survivalparameter,
S. Since all Si and fi parameters are identifiable in a Brownie model (Chapter 8), we enter ‘1 to 41’
(corresponding to survival parameters {S1, S2, . . . , S41}.

Next, we’re asked to enter 4 values specifying the step size, starting value, and the two parameters
governing the ‘Hyperdistribution parameters’. We’ll accept the defaults (i.e., we’ll use default starting
values, step size, and the default noninformative ‘flat’ priors for both µ and σ).

Finally, we’re asked to provide ‘Initial parameter estimates’ – we’ll retrieve starting estimates
from model {St ft} fit with the logit link (by selecting it from the list of candidate models already in the
browser). One the starting values have been retrieved, click the ‘OK’ button, and the MCMC sampler
will start. Remember – we’re doing 30,000 total iterations of the sampler, which for a large and complex
data set, will take some time (15-20 minutes on a typical desktop computer).

Once the MCMC samples are finished, MARK will dump the summary statistics to the editor. Since
our main focus here is on estimation of µ and σ, we’ll focus on that part of the output:

We see that the estimate (on the logit scale) of µ̂MCMC � 0.5678008, and σ̂MCMC � 0.3883343. The
back-transform of µ from the logit to the real probability scale yields

µ̂ �
e0.5678008

1 + e0.5678008
� 0.638256

which is close to the the estimate µ̂ � 0.630244 from the ‘methods of moments’ approach (above), as
expected.

What about σ̂? Recall from the binomial survival analysis we covered earlier that we can’t simply
take a back-transform of σ̂ � 0.3883343 from the logit scale to the real probability scale. Instead, we can
try either the Delta method, or a numerical simulation approach covered in the preceding - sidebar
-. For purposes of comparison, we’ll use both here. Recall that to first order,

v̂ar ≈
*..,

e µ̂

1 + e µ̂
−

(

e µ̂
)2

(

1 + e µ̂
)2

+//-
2

v̂ar
(

µ̂2)

From above, we see that µ̂MCMC � 0.5678008. From the analysis of the binomial survival data, we
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know that we use the estimate of σ as a parameter, σ̂MCMC � 0.3883343, such that v̂ar(σ̂) � 0.38833432
�

0.150805. Thus,

v̂ar ≈
*..,

e0.5678008

1 + e0.5678008
−

(

e0.5678008)2

(

1 + e0.5678008
)2

+//-
2

(0.150805)

� 0.0080391

and, thus, our estimate of σ̂ on the real probability scale would be approximated as
√

0.0080391 �

0.089661, which is close to the estimate from the ‘methods of moments’ analysis (0.089536).

Using the numerical simulation approach, the estimates of µ and σ are

Estimation of mu and sigma on back-transformed scale transformed logit

This is estimated S (mu): 0.633954, compared to moments estimate of 0.630244

This is estimated sigma: 0.0876645, compared to moments estimate of 0.089536

Again, close to the values estimated using the ‘methods of moments’ approach.

However, in our preceding two examples, mean survival was near the middle of the interval (0.4-0.6).
Why is this important? As noted by White et al. (2009), the back-transformation of an estimate of σ to the
value of σ on the real scale depends on the mean of the distribution. So, an estimate of σ � 0.1 with a
mean of 0 on the logit scale results in a back-transformed real variable with a mean of 0.5 and σ � 0.0025

with n large. But, an estimate of σ � 0.1 but with a mean of 4 on the logit scale back-transforms to a
real variable with a mean 0.982 and σ � 0.0018. White et al. noted that because of this relationship,
‘...interpretation of the estimates of the process variance on the logit scale must consider the mean as
well’. Note that on the logit scale, |µ | ≥ 3 when back-transformed is approaching either the 0 or 1
boundary on the real probability interval over [0, 1]. The logit scale on the interval [µ � −3, µ � 3] is
linear, or nearly so.

So, as a final test before moving on, we’ll consider a simulated live encounter mark-recapture (CJS)
data set, where true apparent survival alternates from 0.8 to 0.9 in successive years (i.e., ϕ1 � 0.8, ϕ2 �

0.9, ϕ3 � 0.8 . . . ), with encounter probability constant at p � 0.5. Thus, the true mean survival µ=0.85,
and the true process variance σ2 → 0.0025. The data set consists of 17 sampling occasions, so 16 intervals
for survival, and 16 occasions for recapture. Given that apparent survival alternates between 0.8 and
0.9 in successive years, this means 8 intervals over which survival is 0.8, and 8 intervals over which
survival is 0.9. True µ � 0.85, and true σ2

� 0.00267. For the simulation, we released 500 newly marked
individuals per occasion. To simplify the modeling, and to let us use all 16 estimates of ϕ, we used
model {ϕt p.} as our starting, fixed effects model. Normally, we estimate process variance using a fully
time-dependent model (see Appendix D for a discussion of this point), but fixing p constant eliminates
confounded parameters, and doing so is unlikely to bias results of one method of estimating σ versus
the other.

Using these simulated data (contained in sigmasim.inp), we estimated the process variance, using
both the ‘methods of moments’ and MCMC approaches. Using the ‘methods of moments’ approach,
µ̂MOM � 0.8517, which is pretty close to the true mean of 0.85. Estimated σ̂MOM � 0.0586 (such
that σ̂2

� 0.00344), which is not too far off the true process variance of σ2
� 0.00267. The discrepancy

undoubtedly reflects,at least in part,constraining the encounterprobability p to be constantover time. Of
more importance here, though, is the MCMC estimate, and if our back-transformation of these estimates
from the logit scale to the real scale gives us values close to those from the ‘method of moments’
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approach.

The MCMC analysis (using default values for number of samples), generated estimates of µ̂MCMC �

1.8227 and σ̂MCMC � 0.5188. Using the Delta method, the back-transformed estimate for the mean
on the real scale is µ̂ � 0.8609, which perhaps not surprisingly is quite close to the true mean of 0.85.
For σ, the back-transformed estimate of σ̂ � 0.0621 (such that σ̂2

� 0.00386). So, even when true mean
survival is relatively close to the boundary,estimates of σ from either the ‘method of moments’ approach
(0.0586) or the MCMC approach (0.0621) are quite close. Whether this holds as µ gets much closer to
the boundary needs further study. In such cases, a different link function might be needed (as was the
case for some problems considered in Appendix D). In fact, for this example, using the identity link for
the MCMC analysis, the reported values for µ (0.8516) and σ (0.0621) are identical to those generated
using the back-transformation from parameters estimated on the logit scale.

For now, we will defer further discussion of this issue, and proceed under the assumption that, in
practice, back-transformed estimates of σ from the logit scale to the real probability scale are robust and
unbiased.

E.1.4. Example 3 - environmental covariates re-visited

In the preceding two examples, we explored the mechanics of using MCMC in MARK to derive an
estimate of process variance, σ2. If that is all we were interested in, we might choose not to bother with
MCMC, when the ‘method of moments’ approach has been shown to be extremely robust, and is much
faster computationally than MCMC.

However, as mentioned in the preamble to this Appendix, there are situations where the ‘method of
moments’ approach is insufficiently flexible to allow us to estimate process variance for certain types of
models. We demonstrate this by re-considering an example presented in Appendix D, where apparent
survival is believed to vary as a function of a binary environmental covariate (water level). Again, we
imagine we have some live encounter (CJS) data collected on a fish population studied in a river that is
subject to differences in water level. We hypothesize that annual fish survival is influenced by variation
in water level. For this study, we simulated k � 21 occasions of mark-recapture data (contained in
level-covar.inp). Over each of the 20 intervals between occasions, water flow was characterized as
either ‘average’ (A) or ‘low’ (L) (more specific covariate information was not available). Here is the time
series of flow covariates: {AAAALLLAAALALALLLLAL}.

We began our analysis of these data in Appendix D considering 3 fixed effect models for apparent
survival,ϕ: {ϕt pt}, {ϕ.pt} and {ϕleve lpt}. The results from fitting these 3 models to the data are shown
at the top of the next page. There was strong evidence for variation over time in apparent survival, but
no support for an effect of water level. If you look at the estimates from model {ϕleve l} for average
(ϕ̂av g � 0.709, SE � 0.0106) and low (ϕ̂low � 0.650, SE � 0.0100), the lack of any support for this model
may not be surprising. At least, based on considering water level as a fixed effect.
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Next, we considered 2 different random effects models – one a simple intercept only (mean) model,
which seemed to be consistent with the strong support for the simple time variation model {ϕt}, and
a model where survival was thought to vary randomly around a (water) level-specific mean. In other
words, we hypothesized µlow , µav g . In Appendix D, we also assumed that σ2

low � σ2
hi gh . As noted, this

is not directly testable using the moments-based variance components approach in MARK. But, in fact,
estimating a separate µ and σ for each water level is possible, using an MCMC approach. (Recall that we
included parameters ϕ1 → ϕ19 in the random effect – ϕ20 was not included because it was confounded
with p21.) The results browser containing the 3 fixed effects models, and the 2 random effects models,
is shown below:

What is especially noteworthy here is that the random effects model with water level-specific means,
{ϕµlevel σ

2
level

}, was the most parsimonious model in the model set, despite having no support whatsoever
when considered in a fixed effects design. The near equivalence of the AICc weights between this model
and the simpler ‘intercept only’ random effects model suggested that we couldn’t differentiate between
the two,but whereas our initial conclusion strongly rejected the hypothesis that there was an influence of
water level on apparent survival, our random effects modeling would suggest that perhaps we shouldn’t
be quite so sure.

Here is a plot showing the ML and shrinkage estimates, and (importantly here) the underlying model
(the red line), for model {ϕ

µlevel σ
2
level

}.

The red line clearly indicates that there were 2 separate means being modeled, for the low and average
water flow years, respectively. The estimated process variance is σ̂2

� 0.00313, and the estimate of the
estimate for β̂1 � 0.0717 in the linear model indicates that survival is higher in ‘average’ water level
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years (since we used ‘low’ level years as the reference level in our design matrix, above). What is also
important here, is that the shrinkage estimates are clearly not constrained to fall exactly ‘on the red line’
– they represent shrunk estimates of apparent survival as if each estimate was drawn randomly from a
sample with a water level-specific mean.

Now, let’s look at the estimates for µ and σ from the most parsimonious model, {ϕµlevel σ
2
level

}. The
model was structured to estimate µ separately for each water level. But, recall because of how we
structured the design matrix, what is estimated for µ is the linear model:

logit(ϕ) � β1 + β2(level)

The estimates for the linear model coefficients were β̂1 � 0.645584, and β̂2 � 0.071666 (note that these
coefficients are reported in the real scale, not the logit scale). Since we used a dummy coding of ‘1’ for
an ‘average’ water level year’, then

ϕ̂avg � 0.645584 + 0.071666(1) � 0.717250

and

ϕ̂low � 0.645584+ 0.071666(0) � 0.645584

MARK also reports σ̂ � 0.0559457, but this is calculated over both water levels together (such that we
might predict that 0.0559457 is the average of the process variances for each water level; we deal with
this below). What we want, though, is an estimate of process variance for each water level separately. Is
this possible using the ‘method of moments’ approach? The answer is ‘no’. Both β̂1 and β̂2 are reported
with an estimated SE, but these SE are estimated from the sum of process and sampling variation (i.e.,
total variance). Thus, even though we could, with a bit of algebra, use these SE to come up with estimates
of the variance for both water levels, the calculated variance would be total variance for each water level,
and not process variance, which is what we’re really after.

Our solution is to use the MCMC capabilities in MARK, to directly estimate process variance for
both water levels seperately. We simply specify 2 different hyperdistributions (one for average water
level, and one for low water level), and estimate µ and σ for each hyperdistribution separately. Start by
retrieving the fully time-dependent model {ϕt pt}. We will re-run this model, using MCMC. We will
specify the logit link, and will retrieve estimates from the fixed effects model {ϕt pt} to use as initial
estimates.

Once you click the ‘OK’ button, you’re presented with the window which lets you set the MCMC
parameters. We’ll keep the default values for the number of samples, the specification of priors and will
use a single chain. The only change we need to make to the defaults in this window is the number of
hyperdistributions – now we want 2: one for average water level, and one for low water level.

So, the first thing we do is change the value in the box for ‘Number of hyperdistributions’ from 0
to 2:
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What we need to do next is specify which parameters are included in which hyperdistribution. With
a bit of thought, you should realize that we want to include the parameters corresponding to average
water years in one of the hyperdistributions, and the parameters corresponding to low water years in the
other. MARK gives you a couple of ways to do this – in practice, you’ll decide which one you find easier.
Since this is the first time we’ve dealt with > 1 hyperdistribution, we’ll demonstrate both approaches.

First, in the ‘Hyperdistribution Specification’ box (preceding page), you’ll notice that the second
item in the box is a checkbox to allow you model the ‘hyperdistribution means with a design
matrix’. This is turned ‘off’ (greyed out) by default. The fact that it doesn’t immediately ‘turn on’ when
you set the number of hyperdistributions > 1 suggests there is another, default approach to specifying
the hyperdistributions.

Indeed, there is. The default approach has a couple of steps. First, once you’ve set the number of
hyperdistributions to 2 (above), click the ‘OK’ button. This will bring up a window (shown below) where
you list all the parameters which will be included in a hyperdistribution. You’ve seen this window
before, but in the previous example, we had only a single hyperdistribution. Here, we’re specifying
2 hyperdistributions. However, this is not the point where you assign a given parameter to a given
hyperdistribution – it is merely where you tell MARK how many, and which parameters will, ultimately,
be included in one hyperdistribution or another. For our purposes, we will enter ‘1 to 19’:

Once we click the ‘OK’ button, MARK will present you with a window (shown at the top of the next
page) where you ‘Specify the mean of the hyperdistribution for each parameter’. By default (as
shown), MARK will assume that if you specified two hyperdistributions, that half of the parameters
will be included in the first hyperdistribution (i.e., µ1), and the other half will be included in the
second hyperdistribution (i.e., µ2). But, this default might not be what you want. Moreover, if the total
number of parameters over both hyperdistributions is odd (as it is in the present example, where we
are including 19 parameters in the two hyperdistributions), you can’t divide them evenly between the
two hyperdistributions.
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While this default is fine if a continuous sequence of parameters corresponds to a particular hyper-
distribution, this is clearly not the case here, where each type of year (average water level, low water
level) in our study is associated with a different hyperdistribution. Since this isn’t what MARK defaults
to, what you need to do at this point is go through the list of parameters – all 19 of them – and for each
one in turn, decide which hyperdistribution they belong to, and select (from the drop-down menu)
or manually enter the appropriate choice: mu(1) or mu(2). Now, at this point, you need to remember
which year (interval, parameter) corresponds to which water level. Recall that the time series of water
level covariates was: {AAAALLLAAALALALLLLAL}, where ‘A’ is average, and ‘L’ is low. So, first 4 years had
average water levels, followed by 3 years of low water levels, and so on. In the figure shown below, we’ve
used mu(1) for average water level years, and mu(2) for low water level years. Note we only use the first
19 years, to eliminate confounding between the final ϕ and p estimates.

Once you click the ‘OK’ button, MARK will present the exact same sort of window, except here you
specify the σ hyperparameter for each hyperdistribution. We follow the exact same process as above,
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assigning sigma(1) to average water years, and sigma(2) to low water years.

Once you click the ‘OK’ button, you will be presented with the familiar window for specifying starting
values, step size for the sampler, and the parameters governing the shape of the prior, for each of the 4
hyperparameters. For this example, we’ll accept the defaults.

Finally, you’re asked to enter initial parameter estimates, which you can retrieve from the appropriate
model from the browser. Click ‘OK’, the MCMC sampler will starting running.

Here are the estimates (on the logit scale) for mu(1) and sigma(1) (corresponding to µ̂avg and σ̂avg,
respectively), and mu(2) and sigma(2) (corresponding to µ̂low and σ̂low), where ‘avg’ and ‘low’ are the
two different levels of the water flow covariate.

Now, before we back-transform the MCMC estimates from the logit scale to the real probability
scale, let’s first step back and look at the other way we could have specified the parameters in each
hyperdistribution. We’ll re-run our analysis, except that this time, after specifying 2 hyperdistributions,
we’ll go ahead and check the box which allows us to model the hyperdistribution means using a design
matrix:
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Once we check the box, we’re asked to specify the number of columns in the DM. Since our
classification factor has 2 levels (average, and low), you might instinctively (at this point in the book,
answers to such questions concerning the DM might have reached the level of ‘instinct’) decide that
you need 2 columns: 1 for the intercept, and 1 coding for water level. Now, as we’ll see shortly, adopting
this fairly standard (and familiar) linear models ‘intercept offset’ approach may not be the easiest or
best approach to generating estimates of µ for each hyperdistribution.

After specifying 2 hyperdistributions, and indicating you want a DM with 2 columns, click the ‘OK’
button. You’ll then be asked to specify the parameters you want to include in the hyperdistributions (‘1
to 19’, for this example).

Now, when you click the ‘OK’ button at this stage, MARK will generate a window that represents the
familiar design matrix ‘spreadsheet’ (shown at the top of the next page), with the number of columns
equal to what you specified a couple of steps ago (for this example, 2 columns). Notice that both columns
are initially all 0’s – meaning, you need to manually specify the structure you want for the means of the
hyperdistributions.

Earlier, we suggested that most of you are probably imagining modifying this DM template to reflect
a familiar ‘intercept offset’ linear model. In other words,

logit(ϕ) � β1 + β2(water level)

where β2 would represent the effect of changing water level relative to the reference level. If, for example,
we used a ‘1’ to code for the average water level, then β2 would represent the degree to which apparent
survival in years with an average water level deviated from the years with low water level. Alternatively,
rather than using an ‘intercept offset’ approach, you could simply code each water level in its own
column – in other words, if say the first column represented average water level, then entering a ‘1’ for
each average year. In the second column (which now represents low water level), you’d enter a ‘1’ for
those years with low water levels.
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Both forms of the DM are shown in Fig. (E.8), below:

(a) standard ‘intercept offset’ coding (b) single-factor ‘identity’ coding

Figure E.8: Alternate DM structures for modeling water level effect

In a moment, we’ll address the question of which DM to use, and why. For the moment, assume
we’re using the ‘intercept offset coding’, shown in Fig. (E.8a). Once you click the ‘OK’ button, you’re
presented with a window the lets you specify the σ for each hyperdistribution. In fact, it is exactly the
same window we saw before for σ, and we modify it in exactly the same way:

So, we can use the DM to model the means of the hyperdistributions, but not the variances. This
should make sense (since analysis of variance and linear models in general relate to structural relation-
ships among means, and parsimonious estimates of those models, given the variance).
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Go ahead and finish things up, and run the MCMC sampler for this model, coded using the ‘intercept
offset coding’ DM. Here are results from our analysis:

Now, re-do the analysis, but this time, use the alternate approach to coding the DM, shown in
Fig. (E.8b). Here are the results from our analysis using that DM:

We quickly notice that the σ values are quite similar – this is not surprising, since the DM does not
model σ.

For the estimates of µ, we’ll start with the estimates derived from the model fit using the ‘intercept
offset coding’ (Fig. E.8a). The designbeta(n) estimates correspond to the intercept (β1) and slope (β2)
parameters in the following linear model:

logit(ϕ̂) � β̂1 + β̂2(water level)

� 0.6150444+ 0.3278746(water level)

Thus, during an average water year,

logit(ϕ̂) � 0.6150444+ 0.3278746(1) � 0.9429190

while in a low water year,

logit(ϕ̂) � 0.6150444+ 0.3278746(0) � 0.6150444

Back-transforming from the logit scale to the probability scale for real parameters,

µ̂avg �
e0.9429190

1 + e0.9429190

� 0.719689

µ̂low �
e0.6150444

1 + e0.6150444

� 0.649091

which are close to the estimates from the ‘method of moments’ approach we derived earlier (µ̂avg �

0.717250 and µ̂low � 0.645584).

Now let’s look at the estimates using the DM shown in Fig. (E.8b). We see that β̂1 � 0.951436, while
β̂2 � 0.611496. What are these values? Simple – they are the estimates for logit(ϕ̂avg) and logit(ϕ̂low),
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respectively! There is no linear model – they are estimates for each water level (average, low). [If you
know why, good. If not, go back and study Chapter 6 again!] You’ll notice that these estimates are
similar to the values calculated on the logit scale for each water level, using the linear model (above).
For example, 0.719689 vs. 0.717250 for the average water level. They should, in theory, be identical. And,
if we’d used ML estimation on the data, they would be. But here we are using MCMC, and the slight
differences between the values are because MCMC involves random sampling (and no 2 Markov chains
will yield identical results). Both values are close to those derived by manually specifying the mean of
the hyperdistribution for a set of parameters (top of p. E-28). In fact, this approach, and the approach
using the DM shown in Fig (E.8b) are in fact entirely equivalent (again, the estimates reported differ
slightly, due to the random nature of MCMC estimation).

Finally, what about process variation? Recall that a primary motivation for using MCMC for this
example was because the MCMC approach allows us to estimate process variance σ separately for
each water level. Using the Delta approximation, and our estimates from p. E-28, we find the back-
transform of σ̂MCMC, avg � 0.2029072 on the logit to the real scale yields σ̂avg � 0.040819, while the
back-transformation of σ̂MCMC, low � 0.3101054 on the logit to the real scale yields σ̂low � 0.070622.
While we can’t compare these values to estimates from the ‘method of moments’ approach (since that
approach doesn’t allow us to estimate σ separately for average and low water levels), we recall (from
earlier in this section) that the overall estimated process variance for both water levels together from the
‘method of moments’ analysis was σ̂ � 0.0559457, which is quite close to the average of the estimates
of σ we just derived for each water level using MCMC ([0.04082+0.07062]/2=0.05572).

Some closing comments...

In this example,we clearly didn’t need to use a design matrix (DM) to achieve our objective. Our intent
was simply to demonstrate some of the mechanics, rather than suggesting this was a good approach
for this particular problem. As you know from other chapters in this book, the DM is a powerful tool
for modeling parameters. The same applies here, but keep in mind that the DM available in the MCMC
part of MARK are more limited than the full-blown DM you’ve used for linear models for various data
types (in particular, you are using the DM to model the means of parameters, and the number of means
will always be less than the number of occasions).

Also, you may have noticed that we’ve progressed fairly far into this Appendix without making much
reference to ‘model selection’. While we did mention earlier that MARK generates the DIC for a given
model, we did not do much more than define it, and suggested that you’re welcome to use it, but you’re
on your own if you do (there is a fair bit of literature out concerning use of the DIC for model selection
– especially since the DIC is automatically generated by software like WinBUGS or OpenBUGS). This
isn’t because we’ve suddenly decided that model selection (and related things like model averaging)
are any less important. On the contrary, these continue to be vitally important for the way we analyze
data to address interesting questions. Unfortunately,model selection in the Bayesian context (where you
generally find MCMC being used most frequently (pun completely intended...) is not as straightforward
as evaluating models based on nominal AIC weights. A lot of smart folks are thinking pretty hard about
this problem.

E.2. Hyperdistributions between structural parameters

In the second motivating example presented at the start of this appendix (‘scenario 2’; p. E-3), we
considered an example based on analysis of dead recoverydata, where we had interest in the correlation
between the two structural parameters S (survival) and f (recovery rate). This interest was motivated
by some a priori expectation that predicted that the sign of any correlation between S and f might
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indicate support for one of two competing models relating harvest to mortality. As noted, the difficulty
in assessing the correlation between these two parameters is that there is covariance both within
(over sampling occasions) and between the two parameters. Thus, the parameters are not independent
samples,and we can’t simply take estimates of Ŝi and f̂i and estimate the correlation. This would amount
to little more than ‘doing statistics on statistics’, which is almost always a poor approach.

Here we consider 2 worked examples – one based on a dead recovery analysis, and the other on a
Pradel model approach. Our intent is to focus on the mechanics, rather than provide an exhaustive list
of models where this approach could be implemented. But, it may suffice to say that the approach we’ll
describe here could be used to model covariance among structural parameters in any model where there
might be interest. Other than greater flexibility for handling estimation of process variation (which has
been our focus up until this point), the ability to consider multivariate hyperdistributions is one of
the main motivations for use of MCMC in MARK. Not only are the types of questions which can be
addressed using this approach numerous and varied, in most cases, using MCMC is the only viable
means of considering them.

E.2.1. Example 1 - dead recovery analysis (corr{S, f})

For this example we consider the estimation of the correlation of 2 structural parameters in a Brownie
dead recovery model (survival, S, and recovery rate, f ). To demonstrate the mechanics of using MCMC
in MARK to estimate the correlation, we simulated a data set with 11 occasions (thus, 10 estimates of
survival, and 11 estimates of recovery rate). We drew our set of underlying survival and recovery prob-
abilities used to simulate the data from a random bivariate normal distribution with Si � N(0.8, 0.025),
and fi � N(0.1, 0.015), with ρ(S, f ) � −0.65. In other words, we drew a random sample of survival and
recovery probabilities from a distribution where the 2 parameters were negatively correlated. Recall
(from Chapter 8) that there is one more recovery parameter (k � 11) than survival parameter (k � 10).
Thus, we drew 10 pairs of parameter values for S1→10 and f1→10. For f11, we used f11 � 0.1, which was
the true mean of the distribution from which the fi were drawn. Here is the sample of probabilities we
ended up with for each parameter (rounded to 3 digits).

survival (S) recovery ( f )

0.804 0.118
0.802 0.099
0.807 0.097
0.790 0.109
0.846 0.085
0.787 0.114
0.818 0.092
0.798 0.107
0.797 0.097
0.793 0.123

– 0.100

The correlation of these true parameters used in our simulation ρ(S1→10 , f1→10) � −0.76 (remember
– we took a small sample of parameter values from the underlying bivariate normal distribution with
overall ρ � −0.65. The value -0.76 is the estimate of ρ from this sample). It is this correlation between
ρ(S1→10 , f1→10) that we will try to estimate using MCMC.

Appendix E. Markov Chain Monte Carlo (MCMC) estimation in MARK . . .



E.2.1. Example 1 - dead recovery analysis (corr{S, f}) E - 37

For each sampling occasion, we simulated marking and release of 10,000 individuals.∗ We ran a
single simulation, and used the encounter histories generated by that simulation for our analysis. These
simulated encounter data (in LDLD format) are contained in brownie-corr.inp.

Start MARK, select ‘Dead recoveries | Brownie’ as the data type, set the number of occasions to
11. Click ‘OK’, and then go ahead and fit the full time-dependent default model, {St ft}, using the logit
link. Add the results to the browser.

Now, we’re going to re-run this model, using MCMC. Run the model, but this time, check the ‘MCMC
estimation’ check-box. It is also a good habit to use initial parameter estimates to start the sampler, so
check the ‘Provide initial parameter estimates’ box as well. Then click ‘OK’.

Next, we need to set various parameters to govern the MCMC sampler. We’ll use the default 4,000
tuning and 1,000 burn-in samples, but we’ll increase the number of samples to store from 10,000 to
50,000 (you’ll see why in a moment).

Next, we need to specify 2 hyperdistributions (one for S, and one for f ). And, now, the new step –
we need to check the box to allow us to specify the ‘Variance-covariance matrix’, as shown in the
following:

Afteryou click ‘OK’,we’re asked to specify the ‘Beta parameters to include in the hyperdistributions’.
Our interest is in the correlation between S1→10 and f1→10, so we enter ‘1 to 10, 11 to 20’.

In the next step,MARK defaults to precisely what we want – the mean(mu(1) andmu(2)) and variance
(sigma(1) and sigma(2)) are correctly associated with parameters 1 → 10 and 11 → 20, respectively.
Remember, there is no S11 corresponding to f11, so we use only 10 for each parameter.

Finally, we’re at the point where we want to specify the variance-covariance structure for the 2
hyperdistributions.

∗ In fact, for many important harvested species, samples of newly marked and released individuals are often as larger, or larger.

Appendix E. Markov Chain Monte Carlo (MCMC) estimation in MARK . . .



E.2.1. Example 1 - dead recovery analysis (corr{S, f}) E - 38

What you see pictured above is the variance-covariance matrix, for the 2 hyperdistributions. Along
the left-hand size, you’ll see a column listing the parameters S1 → S10, and f1 → f10. There is no
horizontal reference bar analogous to the vertical reference bar in the linear models DM separating
different types of parameters. Along the diagonal in blue (i.e., immediately above the ‘lower-triangle’
in black) we see 20 ‘blue boxes’ with white lettering (actually, unless you’ve changed the default DM
colors in MARK, what you will see on your computer is red boxes with white lettering – for purposes
of increasing contrast here in the book, we’ve changed from a red color scheme to blue). Starting from
the upper-left corner, and moving down the diagonal, the first 10 cells along the diagonal are labeled
‘sigma(1)’, while the next 10 are labeled ‘sigma(2)’. Remember, in a variance-covariance matrix, the
variances of the parameters are on the diagonal. That is exactly what we see here. But, because we have
‘collected’ parameters into hyperdistributions, we see ‘sigma(1)’ for parameters 1 → 10, rather than
‘sigma(1)’, ‘sigma(2)’,. . . ,‘sigma(10)’.

Now, you should also recall that off the diagonal in a V-C matrix are the covariances between
particular parameters. These you will need to manually enter. If you leave the above diagonal cells
at the default of ‘0’, you would end up simply estimate process variance, ‘sigma(1)’ and ‘sigma(2)’.
However, recall what we are trying to do here – we want to estimate the correlation, ρ, between S1→10

and f1→10, which correspond to parameters 1→ 10 and 11→ 20, respectively. So, S1 is paired with f1, S2

is paired with f2, and so on. Meaning, we need to find the point above the diagonal where parameter S1

(row 1), pairs up with parameter f1 (row 11 – note that the row numbers match the parameter indexing).
So in matrix element [1, 11], we manually type in – carefully – the expression ‘rho(1)’. We do the same
thing for parameter S2 (row 2), and corresponding recovery parameter f2 (row 12) – in matrix element
[2, 12] we again enter the expression ‘rho(1)’. We do not enter ‘rho(2)’ (i.e., we don’t increment the
indexing for ‘rho(n)’), because we are estimating one correlation coefficient (i.e., ‘rho(1)’) between
both sets (hyperdistributions) of parameters.

So, off the diagonal, a diagonal vector of 10 elements where you’ve entered the expression ‘rho(1)’.
You can do this manually, or it may be more efficient to use the design matrix command ‘Copy Value
Diagonal’, especially for large matrices where many values of the rho parameter must be entered. You
also have the option to paste a VC matrix into the window, but you may want to specify the entire
matrix (both above and below the diagonal) and paste it into the window, because trying to construct
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the values to paste with different numbers of elements per row can be painful. For the values below the
diagonal, specify zeros, as these will be ignored.

Note that only zeros or ‘rho’ values are allowable values in the upper off-diagonal portion of the
matrix, and only sigma(n)’s are valid on the diagonal. So, technically, this matrix is a correlation matrix
above the diagonal, and a standard deviation vector on the diagonal.

begin sidebar

more on the MCMC VC matrix...

As mentioned, the default VC matrix is all zero values, which is the same as if no variance-covariance

matrix is specified. On the diagonal of the matrix are the sigma values (which you should not need

to change if they were correctly specified in the specification of the hyperdistribution). You only have

to specify the off-diagonal elements above the diagonal, as the matrix is symmetric and the lower

off-diagonal elements should be blacked out.

In the present example, we’ve specified a VC matrix to estimate the correlation, rho(1), between

2 hyperdistributions. Another potentially useful matrix to estimate the autocorrelation of the beta

parameters is the following (we show the first 5 beta parameters only):

sigma(1) rho(1) rho(1)**2 rho(1)**3 rho(1)**4

sigma(1) rho(1) rho(1)**2 rho(1)**3

sigma(1) rho(1) rho(1)**2

sigma(1) rho(1)

sigma(1)

This VC matrix models the correlation between consecutive parameters. If β1 and β2 are correlated

as rho(1), and β2 and β3 are also correlated as ‘rho(1)’, then β1 and β3 have to be correlated with

‘rho(1)**2’. This autocorrelation matrix can be obtained easily by right-clicking the VC matrix window

and selecting the ‘Autocorrelation matrix’ option for the list of options. Likewise, you can get back

to the default matrix of zero off-diagonal elements with the ‘No correlation’ menu choice.

end sidebar

Back to our example - Once you’ve completed filling out the VC matrix, click the ‘OK’ button.

We’ll accept the defaults for the priors – but will note that the prior for the correlation ρ is U(−1, 1).
More on this in a moment.

Once you’ve pulled in the initial parameter estimates from the appropriate model in the browser, go
ahead and run the MCMC sampler. Here are the results we generated, based on 50,000 samples:

Note that the estimate of the correlation – based on correlation on the logit scale – is ρ̂ � −0.443304.
We need to pause and make several points here.

1. Earlier, we noted that we were going to increase the number of samples from the default
of 10,000 to 50,000. Why? Well, to answer, let’s have a look at the frequency histogram (top
of the next page) based on the distribution of 50,000 samples from the posterior for ρ.
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Clearly, this is not a nicely symmetrical distribution – as such, the most appropriate
‘moment’ of this distribution to use for inference about a point estimate for ρ is open
to some debate. From the results shown above, we see estimates of −0.443304,−0.56065

and −0.99996 for the mean, median, and mode, respectively. Clearly, the reported mode
isn’t plausible. But, what about the mean and median values? Which one should we
choose? In this instance, the point may be moot since the 95% frequency-based credibility
interval for ρ̂ is [−0.9917, 0.6739785], which clearly bounds 1.0. So does the 95% HPD,
[−1.000, 0.2729]. This is not particularly encouraging, given large samples of marked and
released individuals in the simulation, and a relatively strong true negative correlation
between S and f simulated in the data. Some solace, perhaps, given that the estimate is at
least in the right direction (negative), although we know this only because we know the
underlying structure of the true model we used to generate the data. Keeping all of this in
mind, consider that the situation would have been even more uncertain if we’d used the
default of 10,000 samples, instead of 50,000 (try it for yourself).

2. How would the situation change if we used a priori expectation, and changed the prior
on ρ from U(−1, 1) to U(−1, 0), or perhaps a different, informative prior (say,B(5, 2))? You
might recall that when we ran our analysis, the last step involved specifying the priors for
the univariate and any multivariate hyperparameters.

For the univariate hyperparameters µi and σi , four inputs are requested. The first edit box
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is to specify the step size to be used to generate new parameter valueswith which to sample
the posterior distribution. As with the default step size, the goal is to tune the estimation so
that approximately 45% of the steps are accepted. The second edit box is to specify an initial
value to start the Markov Chain. The default is ‘compute’, which tells MARK to compute
an estimate from the initial values of the beta parameters. It is generally recommended
practice that you should run the model that you want to use for MCMC estimation as
a typical MARK analysis, so that you can provide initial estimates to start the MCMC
estimation.

The third and fourth edit boxes specify the parameters for the prior distribution to be
used with this hyperdistribution. For mean parameters, a normally distributed prior is
used. The third edit box specifies the mean, and the fourth edit box specifies the standard
deviation. The default values for µ are mean = 0 and standard deviation = 100, giving a
very flat and uninformative prior over the range of the possible values of the mean. For σ
parameters, an inverse gamma distribution prior is used with parameters alpha and beta.
The mean of a gamma distribution is α times β, and the variance is α times β2. Values of
α � 0.001 and β � 0.001 result in a reasonably flat prior distribution. In other words, the
defaults specify uninformative ‘flat’ priors for µ and σ.

For the multivariate hyperparameter, ρ, the default prior is a beta distribution over the
range specified by the lower bound in the third edit box to the upper bound in the fourth
edit box (see figure at bottom of preceding page). The default values for the range of ρ
are [−1, 1], but to force the correlation to be positive, you might use [0, 1], or forced to be
negative, [−1, 0].

In addition, the fifth and sixth boxes for ρ (above) specify the α and β parameters of the
beta distribution (see - sidebar - starting on p. E-15). The default is α � β � 1.0, which
gives a uniform distribution on the range specified (see Fig. E.4 on p. E-16). The shape of
the beta prior on ρ over the interval [−1, 1] can be changed by modifying the values of α
and β (Fig. E.10):
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Figure E.10: Shape of the beta probability distribution for unequal values of the shape parameters α and β. The
distribution is symmetric around ρ � 0 over the interval [−1, 1] for α � β.
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For our present example, lets see what happens if we use a beta prior for ρ which gives
greater weight to negative values (using, say, B(2, 5) Doing so changes the estimates of
the mean and median on the logit scale for ρ to -0.5389 and -0.5863, respectively. Both are
negative. But, what about the credibility intervals? The frequency percentile-based 95%
interval is [−0.9298, 0.1105], while the HPD is [−0.1275, 0.0046]. We might be somewhat
comforted by the fact that either credibility bound is ‘more supportive’ of a negative
correlation. Of course, the burden would now fall on us to justify the use of an informative
prior, but that is part of the ‘fun’ of ‘being Bayesian’ (at least by some definitions).

3. However, while we might be increasingly satisfied/content with our results, at least those
based on the use of the informative beta prior B(2, 5) (see point 2, above), we must think –
hard – about whether or not this estimate of ρ is robust, and whether or not it represents
what we think (hope?) it does – the covariation of survival S and recovery rate f . In fact,
there might be a real problem here – since f � Kcλ (discussed earlier in the appendix), then
in fact there is an implicit relationship between survival S and the probability of mortality
due to harvest, which is clearly a function of f . In fact, under some assumptions, there is
an intrinsic ‘part-whole’ correlation between S and f such that the null hypothesis for our
analysis might not be ρ � 0, but rather, the null expectation for ρ might be some other non-
zero value. As such, a fair and robust interpretation of ρ̂ would depend on knowing what
this intrinsic correlation might be (for a brief discussion of one approach to estimating the
covariance function for S and f , see last example in Appendix B).

4. Finally, the estimate ρ̂ is reported on the logit scale. OK – you might think,no problem. Back-
transform the estimate from the logit scale to the real probability scale. But, take a moment
to think about it. The correlation ρ is estimated on the interval [−1, 1]. A correlation
of ρ � 0.0 (i.e., no correlation) would back-transform to exp(0)/(1 + exp(0)) � 0.5. If
the correlation was perfectly negative, ρ � −1.0, then the naive back-transformed value
would be exp(−1)/(1 + exp(−1)) � 0.269. In fact, a parameter bounded on the interval
[−1, 1] on the logit scale would back-transform to a parameter bounded on the interval
[0.269, 0.731] on the real probability scale, not [−1, 1] or even [0, 1] – the latter would
require ρ being estimated on the logit scale on the interval [−∞,+∞], while the former
is not mathematically possible, since the back-transform from the logit cannot generate a
transformed value < 0.

Fortunately, it doesn’t matter here. Imagine you have some estimates of 2 parameters
on the real probability scale, say S and f . Suppose they have a true correlation on the real
scale of ρreal. It turns out that if you take the data (i.e., the parameter estimates on the real
scale), and logit transform them, and then calculate the bivariate correlation on the logit
transformed data, you’ll find that ρlogit ≃ ρreal. You can easily prove this for yourself –
simulate a number of sets of parameters from a bivariate normal with known correlation,
transform the data from the real scale to the logit scale, calculate the correlation of the
logit transformed data, and compare with the correlation on the real scale. Given a large
enough number of simulations, you’ll see that indeed ρlogit ≃ ρreal.

Why? Simple – because you’re estimating a parameter (ρ) describing the linear covari-
ance between two parameters, and the transformation from real to logit is itself effectively
linear, over the typical range of data. It is a ‘basic result’ that the bivariate correlation of
X1 and X2 is invariant to a linear transformation. It is also largely invariant to nonlinear
transformation, provided the transformation is monotonic (in other words, the sin link
would not work particularly well). Again, this is easy enough to demonstrate for yourself.
In other words, saying that ‘ρ̂ � x yz on the logit scale’ is effectively the same as saying
that ‘ρ̂ � x yz on the familiar [−1, 1] scale’.
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An additional way you can confirm this for yourself is to re-run the MCMC analysis,
using the identity link. Normally we don’t recommend using the identity link function,
but it tends to be fairly stable for Brownie dead recovery models. The practical advantage
of using the identity link is there is no extra ‘thinking’ involved in considering whether
a parameter is estimated on this scale or that, or how to transform to the real probability
scale. Based on 50,000 samples, and using the identity link, the mean and median for the
estimated posterior for ρ̂were -0.60791 and -0.80254, respectively. Since the logit transform
is essentially linear here, we would not anticipate that using an identity link would change
the estimates much (they don’t - both the mean and median are relatively close to what we
saw above using the logit link).

5. So, we conclude that our best estimate of the correlation between S and f for our simulated
data is probably ρ̂ ≈ (−0.5 ↔ −0.65). But, the credibility interval nearly bounds 0 (using
an informative beta prior on ρ), so we wouldn’t be all that excited by this result. In fact, we
should probably be suspicious of trying to ‘tell a story’ based on only 10 pairs of parameters
in the first place. We re-visit the issue of the length of the time series used in specifying
the hyperdistributions later.

E.2.2. Example 2 - Pradel model

A final example application considers correlation between the process parametersϕ (apparent survival)
and f (recruitment), in a Pradel temporal symmetry model (Chapter 13). We will re-visit the moth
(Gonodontis bidenta) data analysis introduced in Appendix D. The data (contained in moth-example.inp)
consist of records for 689 male moths that were captured, marked, and released daily over 17 days in
northwest England. These moths were nonmelanic; demographic parameters were estimated as part of
a larger study looking at comparative fitness of distinct color morphs.

In Appendix D, we used ‘method of moments’ random effect models, focussing on estimation of pro-
cess variance, and possible trend, in realized growth rate λ. Our focus here is on estimating correlation
between the process parameters which jointly determine realized population change (since λ � ϕ + f ).
We might be interested if they covary positively (such that high survival years are also characterized
by high recruitment – the ‘a good year for one parameter is a good year for another’ hypothesis), or
negatively (such that increased recruitment, say, correlates with reduced survival. Potentially evidence
for the ubiquitous ‘density-dependence’ hypothesis which has featured prominently in population
ecology for a long time).

Go aheadandstartMARK,and import the mothdata. Select the ‘Pradel survival and recruitment’
data type with 17 sampling occasions. For purposes of convenience, let’s set the starting general model
to {ϕt p. ft}. By fixing encounter probability p to be constant over time, we’re eliminating some of the
potential confounding between ϕ and f in a fully time-dependent model. The key word here is ‘some’.
Even with a time-constant p, experience has shown that the first estimates of λ (and as such, ϕ and f )
are likely biased. So, we’ll exclude ϕ1 and f1, and ϕ16 and f16 from our hyperdistributions, and base
our MCMC estimation of correlation between ϕ and f on the remaining 14 estimates.

We’ll fit our general model using ‘parm-specific’ link functions. For ϕ and p, both of which are
bounded [0, 1], we’ll use the logit link. For f (recruitment), which cannot be negative (lower bound of
0), but which can be (and frequently is) ≥ 1, we’ll use the log link. We’ll also use simulated annealing
for the optimization (preliminary analysis shows that the estimation of some parameters for these data
is somewhat sensitive to starting values used in the optimization).

[Note: using ‘parm-specific’ link functions, or the log link for all parameters, yields the same model
deviance. However, the parameter count differs depending on which link function approach is used.]
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Here is a plot of ϕ̂i and f̂i , for occasions i � 2 to 17, where the red line represents estimates for
apparent survival ϕ̂i , and the green line represents estimates for per capita recruitment, f̂i .

There would seem to be some evidence – based on the completely non-rigorous criterion of ‘visual
assessment’ of positive covariation between the two parameters. We of course prefer a better approach,
and will proceed with a formal MCMC estimation of the correlation between ϕi and fi .

Proceed as in the previous example – let’s set the number of samples to 50,000. For specifying the
hyperdistributions, we want to use parameters 2 to 16 for one, and 19 to 33 for the other (remember, we
are dropping the first ϕ and f estimates from the hyperdistributions). Once you have set up mu(1) and
mu(2), and sigma(1) and sigma(2), you’ll be presented with the template for the variance-covariance
matrix. Here, because we have 30 total parameters, the VC matrix is getting a bit dense (shown below)
– almost rivaling some of the DM seen for the more complicated robust design models introduced in
Chapter 15.
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However, if you understood what we did in the preceding example, then this one should not be much
more difficult, despite the scale of the VC matrix. You simply need to remember to ‘match’ up pairs of
ϕ and f parameters. In this case, ϕ2 with f2, ϕ3 with f3, and so forth. The parameter ϕ2 is in row 1,
while parameter f2 is in row 16. This, we click in the cell in row 1, column 16, and enter ‘rho(1)’. We
then simply copy this down the diagonal (using the right-click menu design menu option), as shown.
With some practice, this tends to be relatively easy to accomplish.

Proceed through the next steps, retrieving estimates from the appropriate model in the browser as
initial values, and then start the sampler. Here are the results from our analysis, based on 50,000 samples.

We see that the estimate of the correlation, based on the mean of the posterior, is ρ̂ � 0.7905

(the estimated median was only marginally higher). Of note, here, is that the 95% credibility interval
[0.332, 0.991] doesn’t bound 0, which suggests that our visual intuition concerning a positive covariance
between survival and recruitment for these moth data might be correct (or at least somewhat more
defensible) after all.

However, we need to be somewhat careful here. Earlier, we noted that the back-transformation of
ρ from the logit scale to the real probability scale was generally an identity transformation (i.e., that
the value of ρ on one scale was the same as the value on the other). However, we also noted that this
was strictly true only if (i) the transformation was linear, or nearly so, (ii) monotonic, and (importantly
here), (iii) was the same transformation applied to both parameters included in the multivariate
hyperdistribution. Clearly, this is not will not always be the case case.

What about for the present example, where we’ve applied a logit transform to ϕ, and a log transform
to f ? While both transformations are monotonic, the log transform is clearly non-linear. Can we take
our estimate of ρ̂ � 0.7905 and interpret it ‘as is’? As you might expect, the answer is ‘no’. A simple
simulation will demonstrate the problem. If we take ourMCMC results forµ and σ (above),and simulate
1,000 random samples from a bivariate normal logit-log distribution (ϕ on logit scale, f on log scale),
with ρ̂ � 0.7905 (from above), our scatterplot looks something like Fig. (E.11a) – typical of bivariate
normal data. The estimated correlation of our simulated data (ρ̂ � 0.796) is close to the value of 0.7905
estimated from the MCMC analysis.

However, when we back-transform the bivariate data from the logit scale and the log scale, respec-
tively, to the real scale, the distribution is clearly no longer bivariate normal on the real scale (Fig. E.11b),
to the point where even reporting the estimated bivariate correlation from the back-transformed data
(ρ̂ � 0.618) verges on silly. Clearly, considerable care must be taken in interpreting the MCMC estimate
of ρ, probably generally, but particularly if the two parameters are subjected to different transformations,
especially if one or both transformations is highly non-linear over the range of the data.

Despite this complication in evaluating ρ for Pradel models, at this point, you might imagine building
a model where λ is in the likelihood, and looking for a correlation between λ on one of the vital rates
(say, apparent survival, ϕ), as an approach to partitioning variation in λ due to variation in a particular
vital rate. We’ll leave this and other interesting questions for you to pursue as an exercise.
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(a) logit(ϕ) versus log( f ) (b) anti-logit(ϕ) versus anti-log( f )

Figure E.11: Scatterplots of random samples from a bivariate normal logit-log distribution for logit(ϕ) and log( f )

with ρ̂ � 0.7905, and transformed and back-transformed scales. Values of µ and σ for each parameter are given
in the text.

E.3. caveats, warnings, and general recommendations

Using random effects generally, and MCMC in particular, as a basis for modeling collections of related
parameters is a relatively long-standing approach in statistics and one that can, in many cases, be very
effective. Use of the random effects approach in what we refer to generally as ‘capture-recapture’ is
relatively new – in the nearly 10 years since the publication of the seminal paper by Burnham & White
(2002) on the ‘method of moments’ approach, and despite the recent astronomic rise in the application
of MCMC to this and related problems in estimation, there have been relatively few applications of
these models to real data, despite what we believe are several interesting opportunities made available
by these methods.

However, we also believe that both methodologies need to be better understood as to any potential
pitfalls and as to its operating characteristics. The following is a summary of our experience to date with
random effects models, particularly as implemented in MARK, and with MCMC (also as implemented
in MARK). This material is abstracted from the equivalent section in Appendix D, supplemented with
experience with such models since the time of that publication.

1. The ‘method of moments’ described in Appendix D, and as implemented in MARK, has
been shown to perform well, especially when σ2 > 0.025. This method may not do so well
if σ2 → 0. However, we think it reasonable to believe that for a worthwhile study yielding
good data,process variation,σ2,will generally not be too small, relative to average sampling
variation and it is for these conditions (of ‘good data’) that we need effective random effects
inference methods.

It is less clear how critical these issues are for MCMC estimation of σ2, but a recent paper
by White, Burnham & Barker (2009) suggests that MCMC may not be a complete solution.
Their general conclusion was that MCMC did very well for estimating the parameter mean
µ, but performance was mixed with respect to estimating process variance σ2: for sparse
data (i.e.,≤ 10 occasions), or when process variation was low,performance was poor. When
there were sufficient data, and larger variance, performance was much improved.

2. Another issue to be aware of, as regards to estimation of the parameter σ2, is the matter
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of unequal, rather than equal length, time intervals. Let the time interval i have length
∆i . Then we should parameterize the model as Si � (ψi )

1/∆i where now each survival
probability ψi is on the same unit time basis. It may then make biological sense to consider
parameters that are a mean and variation for ψ1, . . . , ψk . But this may just as well not
make sense, because the time intervals are intrinsically not comparable as they may be
in very different times of the annual cycle. It becomes a subject matter judgement as to
whether random effects analysis will be meaningful with unequal time intervals. For the
moment, don’t apply random effects models or variance components analysis – or MCMC
– to situations where the intervals between sampling occasions are unequal.

3. A key design feature to focus on to meet the criterion of ‘having good data’ when applying
random effects – or MCMC – is simply k, the number of estimable random effects pa-
rameters (time intervals, locations, etc.). The sample size for estimating σ2 is k. Therefore,
one must not have k too small; < 10 is too small. Even if we knew all the underlying
Si a sample of size k < 10 is too small for reliable inference about the variation of
these parameters (even if we had a random sample of them, which is not required here).
Inference performance has been shown to be acceptable when k > 15. The benefits
(includes shrinkage estimates) of random effects models become greater as the number
of underlying parameters, k, increases. And ability to estimate univariate and multivariate
hyperparameters with MCMC also benefits significantly from longer time series.

4. A potential technical issue is the ‘boundary effect’, at least under what is basically a like-
lihood approach. As discussed in Burnham & White (2002), if one enforces the constraint
S < 1 when the unbounded MLE Ŝ ≥ 1, then standard numerical methods used in MARK

to get the observed information matrix fails. As a result, the estimated information matrix
is incorrect for any terms concerning the Ŝ that is at the bound of 1 (and the inverse
information matrix is likely wrong in all elements). Experience shows that, in this case, the
resultant point estimate of σ2 can be very different from what one gets when the survival
parameter MLE’s are allowed to be unbounded. The difference can be substantial. Using
an identity link, Burnham & White found σ̂2 to be unbiased in many cases. With good data
we rarely observe an unbounded MLE of S that exceeds 1. This might be explored in a
Bayesian context, where it is easy (in a MCMC analysis) to allow S to have its distribution
over an interval such as 0 to 2 (rather than 0 to 1). B&W considered this, and found a strong
effect of the upper-bound on the point estimate (and entire posterior distribution) for σ2,
and for that particular S.

5. Another technical issue is accounting for the link function (transformation) when in-
terpreting the estimates for various hyperparameters (µ, σ, ρ), which are generated on
the appropriate transformed scale. For µ and σ, the back-transformation is relatively
straightforward. The only complication is that you need to use the appropriate back-
transformation for σ – either via the Delta method, or a numerical simulation.

For multivariate hyperparameters (say, the correlation ρ between two structural pa-
rameters in a given model), you need to pay particular attention to whether or not both
parameters are subjected to the same transformation, and whether the transformation is
linear or not (at least over the range of the data). For situations where both parameters are
estimated via MCMC on the logit scale, then ρ̂logit � ρ̂real. If,however, the transformations
differ, and are non-linear for one or both parameters, interpretation is more complicated,
and it may not be generally possible to come up with an acceptable interpretation of the
correlation on the real scale.
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E.4. Summary

This appendix has considered using Markov Chain Monte Carlo (MCMC) to estimate (i) mean and
variance of a set of parameters, and (ii) covariation between sets of parameters. The former can also be
accomplished using the ‘method of moments’ approach introduced in Appendix D, such that MCMC
and ‘method of moment’ are best considered as complimentary approaches. In contrast, estimating the
covariance among parameters requires something like MCMC.

At present, application of MCMC in MARK is limited to these two objectives. For more general
application of MCMC to data from marked individuals, you will need to consider BUGS, or the
equivalent. Nonetheless, the ability in MARK to quickly and easily explore patterns of variation and
covariation among structural parameters for the large number of different data types available inMARK

is a significant advance.
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Addendum – mechanics + basic principles of MCMC

Lorem ipsum dolor sit amet, consecteturadipiscing elit. Praesent urna sem,suscipit id aliquam id,mollis
quis tellus. Phasellus varius velit a varius laoreet. Curabiturullamcorperante in lorem rhoncus,a sagittis
orci venenatis. Quisque eu porttitor velit. Nulla auctor pharetra enim, nec feugiat eros adipiscing in.
Donec lacinia neque vehicula, accumsan erat eget, interdum nibh. Aenean rutrum nec nulla nec tempor.
Morbi mollis porttitor tortor. Curabitur at vestibulum ligula. Maecenas tincidunt dignissim nunc, quis
cursus magna dictum et. Vestibulum sodales velit et mauris vehicula, non malesuada turpis pulvinar.

(This addendum still under construction...stay tuned.)
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APPENDIX F

Parameter identifiability by data cloning...

There are 2 reasons why a particular model parameter might not be identifiable. The first is because the
parameter may be confounded with 1 or more other parameters in the model. An example is the last ϕ
and p parameters in a time-specific Cormack-Jolly-Seber model, where only the product of ϕ and p can
be estimated, but not the unique values of each. In this case, the parameters are not identifiable because
of the structure of the model. This is referred to as intrinsic non-identifiability. The second situation arises
either because the data are inadequate, or as an artifact of the parameter being ‘poorly estimated’ near
either the 0 or 1 boundaries. This is referred to as extrinsic non-identifiability. While there has been
significant progress in formal ‘analytical’ analysis of intrinsic identifiability (see Gimenez et al. 2004,
and Hunter & Caswell 2009, and references therein), these methods are complex, and do not apply
generally to problems related to inadequate data or parameters estimated near the boundary. Cloning
the data is a numerical approach which can be used generally to help identify parameters that are not
estimable, for either reason (Lele et al. 2007, Lele et al. 2010).

To apply this approach, the data are cloned by including multiple copies of the encounter histories,
i.e., duplicating the encounter histories. In MARK, all that needs to be done is to multiply the encounter
history frequencies of each group by the number of clones desired. Consider the example of cloning
the data 100 times. An encounter history for an analysis with 2 groups and no individual covariates
that looks like this

11001010010 3 2;

could be cloned 100 times by entering the following encounter history:

11001010010 300 200;

By cloning the data, the sample size is increased without changing the parameter estimates. So, if
the original estimates are compared to the cloned estimates, the values of the estimates will remain the
same for parameters that are not confounded and are otherwise properly estimated.

How does this help us with problems of ‘parameter identifiability’? Here is the key logic step –
because the sample size has been increased by cloning, the standard errors of the cloned estimates will
be smaller than the original standard errors. The expected result for parameters that are estimable is

SE(original) � SE(cloned) × (number of clones)0.5

As an example, if the data are cloned 100 times, then the expected standard errors of the cloned data
will be 1/10 of the original standard errors. The key word here is ‘expected’ – if in fact the estimated
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standard errors are not a fraction of the original values (by some proportion related to the size of the
cloned sample), then this suggests that there may be a problem with parameter identifiability.

F.1. worked example (1) – the Dippers

The following example will use the European Dipper data (contained in ed.inp). Recall that the dipper
data consist of 2 groups (males and females) with 7 encounter occasions. So, for a fully time-dependent
model, {ϕg∗tpg∗t} model, we expect 22 estimable parameters: 5 survival probabilities for males, 5
survival probabilities for females, 5 encounter probabilities for males, 5 encounter probabilities for
females, and 2 confounded estimates of ϕ6 and p7 for each of the 2 groups.

Let’s run model {ϕg∗tpg∗t}, first using the sin link, and then again using the logit link.

We see that both models have the same model deviance (71.4740), but report different number of
estimated parameters. Recall from earlier chapters that the ‘sin link tends to do better at estimating
parameters near the boundaries than the logit link’. Thus, we might suspect that the difference in the
number of reported parameters between the two link functions is due to at least one parameter being
estimated near the boundary. Let’s look at the estimates themselves. From the model fit using the sin
link,
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we see that parameter 6 (male survival probability,final interval) is confounded with parameter 18 (male
encounter probability, final occasion), and that parameter 12 (female survival probability, final interval)
is confounded with parameter 24 (female encounter probability, final occasion). In fact, if you look at
the parameter estimates for the model fit using the logit link, you’ll see essentially the same thing.

So why 22 reported parameters for the model fit with the sin link, and only 21 for the model fit with
the logit link? The answer lies with parameter 14 – encounter probability for the 3rd occasion for males.
We see (from the estimates shown at the bottom of the preceding page) that this parameter is estimated
at 1.000, with a SE of zero (effectively). If we look at the estimates from the model fit using the logit link,
we see essentially the same thing. However, because of the differences in the shape of the respective
link functions near the boundaries (in this case, near the 1.0 boundary), MARK is unable to derive a
robust estimate for survival, and thus, there is some uncertainty as to whether or not survival should
be estimated at 1.0, or if this is an artifact of estimation using a particular link function. Specific details
on how MARK numerically ‘counts’ parameters are given in the addendum to Chapter 4, and won’t be
duplicated here. However, what does remain is the question of whether or not this boundary estimate
for p̂3,male � 1, or not.

F.1.1. structural identifiability – confounded parameters

One approach to resolve this problem,specifically,and the problem ofparameter identifiability generally
is to use data cloning. This is straightforward in MARK. First, highlight the model you want to use for
estimation in the results browser, i.e., {ϕg∗t pg∗t}. For now, select the model fit using the sin link. Then,
select the ‘Output | Specific Model Output | Data Cloning’ menu choice.

This will generate a pop-up menu asking you to specify the number of clones to analyze. The default
of 100 is generally sufficient.
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Once you click the ‘OK’ button, MARK will proceed to fit the same model to the cloned data – the
results of the model fit to the cloned data, and the estimates of the same model fit to the original data
(i.e., your original analysis) will be exported to a single Excel spreadsheet:

Now, step back a few pages and remember the key ‘logic step’ – because the sample size has been
increased by cloning, the standard errors of the cloned estimates will be smaller than the original
standard errors. The expected result for parameters that are estimable is

SE(original) � SE(cloned) × (number of clones)0.5

In this example, the data were cloned 100 times. Thus, the expected standard errors of the cloned
data should be 1/10 of the original standard errors, such that the ratio of the original SE to the cloned
SE should be exactly 10. If this ratio is not close to 10 then this suggests that there may be a problem
with parameter identifiability.

The ratio of the original estimated SE to the SE estimated from the cloned data is given in spreadsheet
column ‘K’ (labeled as the ‘SE Ratio’). We see that for many – but not all – parameters, the ratio is ≈ 10.
Let’s focus on those ratios which are not particularly close to 10 (highlighted in the spreadsheet). For
parameters 6, 12, 18, and 24 the values of the SE Ratio are, 10. We recall that these are the ‘confounded’
parameters mentioned earlier. We refer to these as intrinsically non-identifiable, because the structure
of the model prevents them from being identifiable.
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F.1.2. ‘boundary problems’ – data limits and link functions

All the rest of the parameters in the spreadsheet at the top of the preceding page show a SE Ratio = 10
to at least 5 decimal places, except parameter 14, which happens to have been estimated at its boundary,
i.e. 1.0. We return here to the question we noted before – is this parameter truly estimable as 1.0, or is
it being estimated at 1.0 because (i) it is near the boundary, and (ii) the data, and the link function, are
insufficient to resolve the parameter. To differentiate between the two (i.e., to confirm that this parameter
is truly estimable), we need to compare its profile confidence intervals for the original and cloned data sets.
A parameter at a boundary, e.g., a survival estimate equal to 1, will generally have a zero (or at least
unrealistically small) standard error. Cloning the data does not change this small standard error.

However, if you have computed profile likelihood confidence intervals for this parameter, the profile
likelihood confidence intervals for the cloned data will be considerably shorter (assuming you clone a
100 copies) than the original data. So, data cloning is also useful for verifying that a parameter estimated
at the boundary is also estimable.

begin sidebar

profile likelihoods: a (brief) re-introduction

The classic MLE approach to variance calculation (for purposes of generating CI) is to use the negative

inverse of the 2nd derivative of the MLE evaluated at the MLE. However, the problem with this

approach is that it leads to derivation of symmetrical 95% CI which can yield nonsensical results,

– especially for parameters that are bounded [0, 1] (e.g., UCI>1).

For example, suppose we release 30 animals, and find 1 survivor. We know from last time that the

MLE for the survival probability is 1/30 � 0.03333. We also know (from Chapter 1) that the classical

estimator for the variance, based on the 2nd derivative, is v̂ar(p̂) � p̂(1 − p̂)/N � 0.001074. So, based

on this, the 95% CI using classical approaches would be ±1.96(SE), where the SE = square-root of the

variance. Thus, given var = 0.001074, the 95% CI would be ±1.96(0.03277), or [−0.031, 0.098]. Clearly

nonsensical, since the LCI<0.

Fortunately, there is a better way, using something called the profile likelihood approach, which makes

more explicit use of the shape of the likelihood. Consider the following diagram, which shows the

maximum part of the log likelihood for ϕ, given N � 30, y � 23 (i.e., 23/30 survive).

Profile likelihood confidence intervals are based on the log-likelihood function. For a single

parameter, likelihood theory shows that the 2 points 1.92 units down from the maximum of the log

likelihood function provide a 95% confidence interval when there is no extra-binomial variation (i.e.,
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when c � 1). The value 1.92 is half of the critical value χ2
1 � 3.84. Thus, the same confidence interval

can be computed with the deviance by adding 3.84 to the minimum of the deviance function, where

the deviance is the log-likelihood multiplied by -2 minus the -2 log likelihood value of the saturated

model (for an introduction to saturated models, consult Chapter 5).

Put another way, we use the critical χ2 value of 1.92 to derive the profile - you take the value of the log

likelihood at the maximum (for this example, the maximum occurs at −16.30), add 1.92 to it (yielding

−18.22 - note we keep the negative sign here), and look to see where the −18.22 line intersects with the

profile of the log likelihood function. In this case, we see that the intersection occurs at approximately

0.6 and 0.9. The MLE is 23/30 � 0.767, so clearly, the profile 95% CI is not symmetrical around the

MLE. But, it is bounded [0, 1]. The profile likelihood is the preferred approach to deriving 95% CI.

The biggest limit to using it is computational - it simply takes more work (and computational time) to

derive it.

end sidebar

To specify the use of profile likelihoods, you first select the model you want to clone in the results
browser,{ϕg∗tpg∗t}. Then, re-run the model, this time checking the box specifying ‘profile likelihood
CI’ on the right-hand side of the numerical estimation specification window:

You might add the phrase ‘profile CI’ to the title, so you can identify the model when it is added
to the browser. When you click the ‘OK’ button, you’ll be asked to specify which parameters you want
to estimate the profile likelihood CI for. For this example, we’ll specify all the structural parameters in
the model (1 to 24).
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We can see from the results browser (below) that the model fit (i.e., deviance) is identical (in other
words, changing the way the CI are estimated doesn’t change anything else about the model).

A quick comparison of the CI’s estimated (for the first 4 survival parameters) using the standard 95%
approach

and the profile likelihood CI method

shows clear differences between the two methods for several of the parameters.

OK, back to our problem – parameter estimability. Now that we have the model fit using the profile
likelihood CI in the browser, retrieve it to make sure that it is active. Then, select ‘Output | Specific
Model Output | Data Cloning’, and use the default of 100 clones. This will take a bit longer than the
first time you ‘analyzed the cloned data’ (since profile likelihood CI take significantly longer to estimate
than the classical CI – which is why it is not the default procedure in MARK). As before, once completed,
MARK will export the results from both the original analysis and the analysis of the cloned data into
an Excel spreadsheet (shown at the top of the next page). We are particularly interested in the CI for
parameter 14 (highlighted in the spreadsheet), which we identified earlier as being ‘problematic’ – is
the encounter probability really 1.0, or is that an artifact of the data and the link function used?
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You can now see that the profile interval for parameter 14 has shortened considerably for the cloned
data, with the lower bound changing from 0.732 to 0.997, indicating that this parameter was actually
being estimated. In other words, parameter 14 was extrinsically non-identifiable. In contrast, the 4
intrinsically confounded parameters (6, 12, 18 and 24) still show a relatively wide profile likelihood
confidence interval for the cloned analysis, only slightly reduced from the original values.

F.1.3. choice of link function – does it matter?

In the preceding, we considered data cloning based on model {ϕg∗t pg∗t}, fit using the sin link. Recall
that the number of reported parameters for this model differed depending on whether or not the sin (22
parameters) or the logit link was used (21 parameters). As noted earlier, the difference (for the dipper
example) is due to parameter 14 – the encounter probability for the 3rd occasion for males. While neither
the sin or logit link function estimate this parameter particularly ‘well’, because of the differences in the
shape of the respective link functions near the boundaries (in this case, near the 1.0 boundary), MARK

is both unable to derive a robust estimate of the parameter, and (more to the point), whether or not
the parameter is estimable, and should be counted. Again, specific details on how MARK numerically
‘counts’ parameters are given in the addendum to Chapter 4.

However, while this is ‘interesting’, our immediate interest is whether or not the choice of the link
function influences the data cloning applications we’re introducing here. Here,we replicate the ‘cloning’,
but using model{ϕg∗t pg∗t}fit using the logit link. To do this, select the appropriate model in the browser,
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and retrieve it (to make sure it is the currently ‘active’ model). Then, go ahead and run the data cloning
as before. Here is the Excel spreadsheet containing the results. We have highlighted the confounded
parameters (in red), and the ‘problem’ parameter 14 (in blue).

As we saw when we applied data cloning to the model fit with the sin link, the ratio of the SE for the
confounded parameters is not equal to 10, which we interpret as diagnostic of a confounding problem.
For parameter 14, the ratio is not directly informative – we need to rerun the model using the profile
likelihood approach.

As was the case when we applied this approach to the model fit with the sin link, we see that the CI
for parameter 14 gets significantly smaller when the data are cloned (lower CI changes from 0.732 to
0.998). This is consistent with our determination that in fact parameter 14 is being correctly estimated
at 1.000. So, in this case (and probably generally), the choice of the link function (sin or logit, typically)
shouldn’t make any difference.
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F.2. worked example (2) – AFS monograph example

For this example we use a data set which is distributed with MARK (\examples\AFSMONGR.DBF). These
live encounter data were collected over 6 sampling occasions, with 2 groups (control and treatment).
The .DBF file distributed with MARK shows a series of ‘standard’ CJS models, fit with different link
functions and design matrix structures. As in the first example, we consider model {ϕg∗tpg∗t}. We know
that there will be confounding of the final estimates of survival and encounter probability for each of
the two groups. Here, we focus on the problem of estimates at or near the boundary. For these data,
survival probability over an interval is anticipated to be relatively high. It is just this sort of situation
which can lend itself to the ‘boundary estimate’ problem. If you look at the survival estimates for model
{ϕg∗tpg∗t}, fit using the logit link (shown below), we see clearly that many of the estimates are indeed
fairly close to 1.0. We’ll focus in particular on survival parameter 3, which is reported as ϕ̂ � 0.9999729,
with a classical 95% CI of [0, 1]. Needless to say, we have significant uncertainty about the estimation
of this parameter.

First, let’s see if re-running the model, but using a profile likelihood CI, helps us at all. When a
profile likelihood interval is requested for parameter 3, the following results are obtained: ϕ̂ � 0.999728

(essentially identical to what was reported, above). The profile CI is [0.7728344, 0.9999728]. Here we see
that the optimization procedure used in generating the profile CI was able to move the LCI away from
the boundary at 0. Similar results are obtained if the sin link is used.

However, our purpose here is to consider the application of data cloning to the sort of ‘boundary
estimate’ problem. First, we re-run model {ϕg∗t pg∗t}, using the logit link, first requesting the profile
likelihood CI for parameter 3. Now, we re-run the model, with the data cloned 100 times. From the
generated Excel spreadsheet, the LCI for the cloned data is reported as 0.990629. You can now see that
the profile interval for parameter 3has shortened considerably for the cloned data,with the lower bound
changing from 0.773 to 0.991, indicating that this parameter was actually being estimated.

F.3. worked example (3) – robust design example

In section 15.3 of Chapter 15, we introduced an extension of the classical ‘robust design’ to account
for temporary movements in and out of the sampled population (Kendall et al. 1995a, 1997). In the
extended robust design, we introduced two different parameters to describe temporary movements
into and out of the sample: γ′ and γ′′ (read as ‘gamma-prime’ and ‘gamma-double-prime’, respectively).
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Here we are not concerned with the specific details of this model. Instead, our focus is on parameter
identifiability, using the ‘Markovian movement’ model as an example. As discussed in Chapter 15, to
provide identifiability of the parameters for the Markovian emigration model when parameters are time-
specific, Kendall et al. (1997) stated that γ′′k and γ′k need to be set equal to γ′′t and γ′t , respectively, for
some earlier period. Otherwise these parameters are confounded with St−1. They suggested setting
them equal to γ′′k−1 and γ′k−1, respectively.

Can we ‘demonstrate’ the confounding of St−1 with the γ parameters in the absence of the suggested
constraints (and, by extension, can we show that the constraints do in fact ‘solve’ the confounding),
using data cloning? To address this, we’ll re-visit the ‘simple robust design’ example introduced in
section 15.6.1 in Chapter 15 (the data are contained in rd_simple1.inp). From the analysis of these data
described in Chapter 15, here are the survival and γ estimates from fitting a Markovian time-dependent
model without the ‘identifiability constraints’ suggested by Kendall et al. (1997). The model was fit using
a logit link.

Based on evaluation of the SE and CI of the parameter estimates (shown below), we see some
‘suggestion’ that some of the parameters are ‘not well estimated’, and may be confounded.

We can use data cloning to explore this directly. In the spreadsheet shown below
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we see clear evidence that parameters S4, γ
′′
4 and γ′4 (highlighted in red) are confounded. If we look

closely, we also see that there is some evidence that the survival estimates might be biased, since the
SE ratio for S1 → S3 is somewhat <10, with a negative trend approaching the confounded parameter.
In addition, we see that the SE ratio for abundance estimates N̂ are all≪ 10.

Does fitting the constraint γ′′k−1 � γ′′k and γ′k−1 � γ′k (sensu Kendall et al. 1997) solve the problem of
confounding with Sk? Here are the estimates for S and γ from the constrained model:

We see that, indeed, all of the parameters seem to be ‘well estimated’. We can confirm this assessment
by applying the data cloning approach to this model, we see (below) that all of the S and unconstrained
γ parameters are indeed well-estimated.

Appendix F. Parameter identifiability by data cloning...



F.4. data cloning and ‘unbounded’ parameters F - 13

F.4. data cloning and ‘unbounded’ parameters

In the preceding examples, we considered only parameters that are bounded on the interval [0, 1]. Can
data cloning be robustly applied to estimation of a parameter that is not [0, 1] bounded (say, abundance,
or λ or f in a Pradel model)? There are several considerations in answering this question.

First, remember that the methods described here using data cloning are largely intended to help
identify parameters which are (i) confounded (i.e., intrinsically non-identifiable), or (ii) which might be
poorly estimated given the data (i.e., extrinsically non-identifiable), generally because they are estimated

at either the [0, 1] boundary. Clearly, neither of these criterion apply to some model parameters for some
data types, say, abundance N , since estimates of N are not confounded with structural parameters in
any model, and since boundary issues don’t apply in the usual sense (since Mt+1 must be the lower
boundary, and Mt+1 > 0; see Chapter 14).

Second, and perhaps more importantly, when using data cloning for [0, 1] bounded parameters, only
the SE changes, not the estimates themselves. This will not generally be the case for parameters where
the estimates themselves are functions of the sample size – clearly, abundance is such a parameter. If you
look at the final spreadsheet for the robust design example (section F.3), you will see that the estimate
of abundance using the cloned data is significantly larger than the original estimate (which of course,
is not surprising, since the minimum bound of the estimate of abundance is Mt+1, which is multiplied
by 100 during the cloning).

So, clearly, cloning should not be applied to parameters where the estimate will change as a function
of cloning, and probably should not be applied without considerable care to parameters that are not
simple [0, 1] bounded. We will consider a data type involving such unbounded parameters in the next
worked example (section F.5). Having said that, it is fair to point out that whether or not the cloning
procedure will work for all [0, 1] bounded parameters is somewhat of an ‘open question’.

F.5. worked example (4) – Pradel model example

Our final example re-visits the analysis of a famous set of data, the moth (Gonodontis bidenta) data
reported on by Bishop et al. (1978), presented earlier in Appendix D (section D4.4). The data consist of
records for 689 male moths that were captured, marked, and released daily over 17 days in northwest
England. These moths were non-melanic; demographic parameters were estimated as part of a larger
study looking at comparative fitness of distinct color morphs.

In Appendix D we considered the use of random effect Pradel models, focussing on estimation of
process variance, and possible trend, in realized growth rate λ. Here, we consider using data cloning
to evaluate possible intrinsic non-identifiability in time-dependent Pradel models. The encounter data
for this example are contained in moth-example.inp. We will fit a fully time-dependent model using
the ‘Pradel survival & Recruitment’ data type. Recall (from Chapter 12) that there are 3 structural
parameters specifying this model: ϕ, p and f (where f is the per capita recruitment probability). We
will go ahead and fit model {ϕtpt ft} to the moth data, using the default PIM structure and sin link.
Given 17 sampling occasions, there are 49 structural parameters in the model (16 ϕ, 17 p, and 16 f

parameters).

As an a priori check against possible numerical problems, we’ll use the ‘Alt. Opt. Method’ (i.e.,
simulated annealing). Since the recruitment parameter f is not necessarily bounded [0, 1] we’ll use
the log link function for the recruitment parameters. Once the numerical estimation has finished, we’ll
add the results to the browser. Although there are 49 structural parameters in the model,MARK reports
that only 45 are identifiable, given the structure of the model, and the data.
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Here are the real parameter estimates from model {ϕt pt ft} fit to the moth encounter data:

We show the full set of real parameter estimates because we want to make several points. First,
we should have an intuitive sense by now that there are likely (inevitably?) going to be intrinsically
non-identifiable parameters in fully time-dependent models. Typically, these show up at the ‘end’ of a
time-series. Because the Pradel model uses encounter histories going both ‘backwards’ and ‘forwards’
through time, we might suspect there would be intrinsic non-identifiability of parameters both at the
start and end of the time-series. However, here we have 3 structural parameters (ϕ, p and f ), which may
interact in unexpected ways. Finally, we probably don’t anticipate that intrinsic non-identifiability will
show up in the middle of a time-series for a parameter – non-identifiable parameters ‘in the middle’ of
a time-series are more likely to reflect extrinsic non-identifiability (i.e., limitations of data, or boundary
estimation problems).

Based on our estimates (above) we see good evidence that the final estimates for ϕ, p and f (pa-
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rameters 16, 33 and 49) are all poorly estimated (any parameter with a reported SE of 0.000 is not well
estimated). However, we also see some other parameters that weren’t well estimated. In particular, the
first p and f estimates (parameters 17 and 34) are also reported with SE of 0.000. Finally, several of
the ‘interior’ estimates for ϕ and f (i.e., those in the middle of the time-series) are not well-estimated
(parameters 5, 9, 35, 39 and 40, respectively).

We use the data cloning procedure to identify both the intrinsically and potentially extrinsically
non-identifiable parameters. In the following spreadsheet, we have highlighted the intrinsically non-
identifiable parameters (we’ve edited out some of the rows corresponding to some of the ‘interior
parameters’ to make it fit the page).

We see clearly that, as we suspected, several of the parameters are intrinsically non-identifiable.
Specifically, the first and last p and f parameters, and the final ϕ parameter. We note that some of
these parameters may become identifiable, provided the proper constraints are applied (e.g., if we fix
the first and last p parameters to 1, then all of the f and ϕ parameters become estimable).

Next, we look for extrinsically non-identifiable parameters. We re-run our model, using profile
likelihood estimation for the CI, followed by data cloning on this model run with the profile CI. Given
the number of structural parameters in this model, this can take some time (and, in fact, the profile CI
is not properly estimated for some parameters, due to numerical optimization issues). The results for a
subset of the ‘problem’ parameters are shown at the top of the next page. To start, focus on parameters
5 and 9.
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For parameters 5 and 9,we see that in both instances, the lower CI bound has ‘shortened’ considerably
for the cloned data, indicating that these parameters were actually being estimated. In contrast, the
intrinsically non-identifiable parameters still show a relatively wide profile CI for the cloned analysis,
with only a slight reduction from the original values. Here, for example, and the results for the final ϕ
and first p parameters:

However, recall that both ϕ and p are bounded [0, 1]. How well does our ‘data cloning’ approach
apply for parameters that are not bounded [0, 1]? Say, the recruitment parameter, f , in a Pradel model,
where the upper limit can potentially be > 1. Look back at the parameter estimates for f̂i tabulated at the
top of p. F.14. We see that recruitment parameters 35, 39 and 40 seem to be extrinsically non-identifiable.
The reported CI for all three estimates is effectively [0, 1], which seems suspicious. The first and last
estimates (parameters 34 and 49) are also intrinsically confounded (as we showed earlier). If we re-run
our model using the profile likelihood CI routine, we find that there are several ’numerical problems’ in
estimating the profile CI for some parameters, in particular, some of the recruitment parameters. These
problems were not ‘solved’ by using a different link function (say, the log link for the f parameters). So,
we proceed cautiously, and apply the data cloning approach to the profile CI analysis. We see (below)
that the profile CI reported for the cloned samples are narrower, suggesting that these parameters are
being estimated correctly.
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F.6. Limitations & other thoughts and approaches

As mentioned in our discussion of the ‘robust design’ example (section F.3), data cloning (as currently
implemented in MARK) should not be applied to parameters where the estimate will change as a
function of cloning (e.g., abundance), and probably should not be applied (or applied with some care)
to parameters that are not simple [0, 1] bounded (such as the recruitment parameter f in the Pradel
model in the preceding example). Having said that, whether or not the cloning procedure will work for
all [0, 1] bounded parameters is ‘a work in progress’. Stay tuned.

One limitation in the current implementation of data cloning is that the results are only reported in
the Excel spreadsheet for the real parameters, and not the β parameters. However, you should be able
to work backwards from the real parameters to determine which of the beta parameters are causing the
confounding.

What about other ‘numerical’ approaches to the problem of confounding, and estimability? The two
most commonly suggested are ‘random effects’ (Appendix D), and ‘MCMC’ (Appendix E). The basic
idea motivating consideration of a ‘random effects’ approach is that since a RE model ‘shrinks’ the
estimate toward the model-specified mean, then if a particular ‘boundary estimate’ is not shrunk much
away from the boundary that this estimate is in fact ‘correctly’ estimated near the boundary. Alas, this
is not correct, for both conceptual and practical reasons (see Appendix D). Specifically, the amount of
shrinkage is a function of the relative magnitude of process and sampling variance for a particular
parameter, which has nothing specifically to do with whether or not a parameter is estimated near a
boundary.

There has also been some suggestion that MCMC (see Appendix E) is ‘robust’ to estimation along the
boundary. Again, this is not correct, especially for monotonic link functions (like the logit). The MCMC
sampler in MARK samples on the transformed (beta) scale, and there is no particular reason to assume
it will do better at estimating the parameter (although there is an argument that it will perform well
at generating a credible CI for the estimate – whether or not such an interval is ‘better’ than a profile
likelihood CI is an open question).

begin sidebar

using MCMC to diagnose non-identifiable parameters

While MCMC willnot ‘solve’ the problems ofnon-identifiable parameters, it is possible in some cases to

use MCMC as a tool to diagnose (identify) parameters which are potentially non-identifiable (Gimenez

et al. 2009). Recall that in a Bayesian analysis, the posterior is a function of the likelihood and the prior.

Now, consider intrinsic non-identifiability. In this case, the likelihood surface for the parameter is fairly

‘flat’ (non-informative’, and the posterior will strongly reflect the prior. In the cases of extrinsic non-

identifiability, there is so little ‘information’ in the data for a given parameter, that the posterior again

will strongly reflect the prior. In other words, if the ‘shape’ of the posterior is not appreciably different

than the prior, then there is reason to expect that the parameter is not identifiable.

To demonstrate the basic idea, let’s consider an MCMC analysis of the European Dipper data set

(males and females). As discussed in section F.1, for a fully time-dependent model {ϕs∗t ps∗t}, the final

survival and encounter probability parametersϕk−1 and pk are confounded for both sexes, respectively.

These intrinsically non-identifiable parameters were clearly identified by the data cloning procedure.

Can we achieve the same result using an MCMC approach? Skipping the details of the mechanics

(see Appendix E), let’s consider the trace and density plots for a couple of parameters from this model.

Recall that the default prior used by MARK for MCMC estimation is a uniform (flat) prior.
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First, consider the MCMC output for real parameter 2 (corresponding to ϕ2,m ).

We see that the trace is dense, regular, and symmetrical around the mode. The corresponding

density plot is clearly unimodal, peaked, and very different in shape from the uniform (‘flat’) prior.

This parameter is clearly identifiable, and well-estimated.

Contrast this with the trace and density plot for real parameter 6 (corresponding to ϕ6,m ), which

we know to be intrinsically confounded with real parameter 12 (p7,m ).

Here,we see that not only is the trace plot rather ‘strange looking’ (by various subjective criteria), but

(more informatively), the density plot appears ‘flat’ over most of the range, clearly reflecting the strong

influence of the default uniform (flat) prior. This is ‘diagnostic’ of an intrinsically non-identifiable

parameter.∗ Examination of the other intrinsically non-identifiable parameters for this model (real

parameters 12, 18 and 24) show the same ‘flat’ density plots.

∗ Gimenez et al. (2009) present a more ‘quantitative’ approach to comparing the posterior density and the prior.
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The underlying reason that the posterior plots for parameters that are flat for some distance across

the top is that there is only a limited range for each of the parameters over which the product is defined

to give exactly the same value equal to the MLE of the product (recall that MARK estimates a function

of the product of ϕ and p for the confounded parameters). Further, if you plot the posterior for the

product (by multiplying the 2 values for each sample from the posterior), we would get a ‘pointed’

posterior (the mode of which is what MARK reports). For example, compare the density plot (below)

for the product of the posterior sample for parameters 6 (ϕ6,m ) and 12 (p7,m ), indicated by the red line,

with the density plots for each parameter separately, shown by the black lines.

It is also worth noting that the width of the ‘flat top’ is a function of what the product value is. So,

as the value of the product goes toward one, the width of the posterior for each of the pieces becomes

progressively narrower, and hence your ability to detect non-identifiability declines.

What about an extrinsically non-identifiable parameter? Recall from section F.1 that real parameter

14 (second recapture probability for male Dippers) was estimated at or near the boundary. The data

cloning approach led us to conclude that this parameter was in fact correctly estimated as being at the

boundary. What does the MCMC approach show?

We see (above) that the density plot is strongly left-skewed, as the information in the data ‘piles

up’ against the 1.0 boundary. Since extrinsic non-identifiability is frequently reflected in a parameter
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being estimated at either the [0, 1] boundary, it may be unlikely that the MCMC approach will be of

much use in diagnosing extrinsic non-identifiability.

Further, even for intrinsically non-identifiable parameters, the density plot can be difficult to

interpret, and may in fact bear no particular resemblance to the prior distribution (i.e., does not look

particular similar to the default ‘flat’ uniform prior). For example, consider the robust design analysis

presented in section F.3. In the absence of certain structural constraints,we expect that the final survival

parameter S and the final two γ parameters will be intrinsically confounded (for the example data set,

this involved real parameters 4, 8 and 11). This intrinsic confounding was demonstrated clearly using

the data cloning approach. But, have a look at the trace and density plots for any of these 3 parameters

(below, for parameters 4, 8 and 11, respectively):

While these plots are clearly ‘strange looking’, that is a somewhat ‘subjective’ assessment, and not

based on a clear resemblance of the posterior to the prior. However, even such a ‘subjective assessment

may be enough to warrant further consideration of the identifiability of those parameters.

end sidebar
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F.7. Summary

In this appendix, we’ve briefly introduced a convenient, fairly straightforward method for numerically
assessing whether a parameter is ‘estimable’ or not. This method, based on ‘data cloning’, appears to
work well, especially for ‘standard’ parameters that are [0, 1] bounded (e.g., ϕ and p in a CJS model)
– both for parameters that may be confounded (and thus not separately identifiable) because of the
structure of the model, and for parameters that are poorly estimated because of inadequate data, or
because they are near the [0, 1] boundary.
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APPENDIX G

The ‘data bootstrap. . .’

The following introductory material was adopted liberally from Bishop et al. (2008), the main published
paper describing the data bootstrap in Program MARK. The data bootstrap is also commonly referred
to as the nonparametric bootstrap in the statistical literature. Efron and Tibshirani (1993) and Chernick
(1999) provide extensive descriptions and advice on the use of the bootstrap method.

Independence of sample units is required in survival analyses to obtain appropriate estimates
of sampling variance. The independence assumption is likely violated when sample units include
monogamous mates or siblings. For example, adult pairs of Canada geese (Branta canadensis) typically
mate for life and, therefore, do not behave independently of one another (Anderson et al. 1994, Sheaffer
et al. 2004). Littermates of numerous species access the same nutrient supply and are often subjected
to the same mortality risks. Some degree of biological dependence likely exists among individuals that
use the same resources in time and space.

When the independence assumption is violated, survival point estimates are typically unbiased, but
sample variances are underestimated (Wedderburn 1974, Cox 1983, Firth 1987, Breslow 1990, Schmutz
et al. 1995). This condition is referred to as overdispersion or extra- binomial variation. Sample data will
be overdispersed if siblings each die, or each survive, more often than expected under the assumption
of independence. An overdispersion parameter, or variance inflation factor, c, is required to correct for
overdispersed data, thereby facilitating appropriate inference using quasi-likelihood theory (Wedder-
burn 1974, Burnham and Anderson 2002; see Chapter 4 and Chapter 5).

The simplest approach for estimating c requires only the standard goodness-of-fit (GOF) test statis-
tic for the global (i.e., most parameterized) model and its degrees of freedom (Cox and Snell 1989).
The global model is needed to avoid mistaking model structure variation (i.e., lack of model fit)
for overdispersion (Burnham and Anderson 2002). Chi-square GOF approaches have been used to
address sibling dependence for a variety of species (Winterstein 1992, Gaillard et al. 1998, Schwartz et

al. 2006, Wiens et al. 2006). Unfortunately, these approaches fail to provide an appropriate estimate of c

under many circumstances because of inadequate sample sizes. Instead, more sophisticated numerical
approaches are necessary (Schmutz et al. 1995; Bishop et al. 2008). The data bootstrap we introduce here
provides a method to evaluate whether theoretical variance estimates are valid when the individuals are
considered statistically independent, or whether variance inflation procedures are required to account
for dependence among (say) siblings.

The simulation procedure in MARK allows bootstrapping the encounter histories data to generate
bootstrap replication where an individual covariate is used to identify the blocks of data (litters, family
groups, etc.) that are resampled with the bootstrap procedure. To bootstrap encounter histories, you
select the ‘Bootstrap Data’ option from the ‘Simulation’ menu choices. A potential trap in using
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this procedure is that the encounter history file should be set up to have each history represent the
appropriate number of animals. Typically, this would be 1 animal, but as the example below shows, such
may not be the case. Encounter history files with encounter histories pooled so that the count frequency
is > 1 will work correctly with this procedure because the histories are unpooled for sampling. Be
careful about the group structure of your data – encounter histories within groups are resampled, never
across groups.

Bootstrapping of individual encounter histories will not provide any additional information from
the usual analyses. That is, resampling individual encounter histories produces the same asymptotic
estimates and standard errors as the default maximum likelihood approach in MARK. Where bootstrap-
ping the encounter histories is most useful is when there are dependencies across animals. As described
above, the most typical example of such data are marking of young that are known to be siblings. So,
all the young in a litter or nest are marked. When the encounters of these animals are treated as if they
are independent, the estimates will be generally unbiased, but the standard errors will be too small
because the sampling unit is really the litter or nest, and not the individual animal. So, in the maximum
likelihood estimation assuming independence of individuals, the sample size is assumed to be larger
than it really should be.

G.1. Empirical example

To bootstrap litter or nest data such as described above, include an individual covariate that defines
the nest or litter. This variable can be continuous, such as nest number 1 to the number of nests, or
litter number. The main criterion is that each litter or nest is uniquely identified with this covariate. This
covariate is then used to bootstrap the encounter histories, such that the nests or litters are resampled,
instead of the individual encounter histories.

The example we use here to illustrate the data bootstrap analysis is the neonatal fawn survival study
described in Bishop et al. (2008). Adult female deer commonly produce twins and occasionally triplets.
Siblings should not be assumed to have independent fates, because they have the same dam, share
≈ 0.25 of their genome, and are exposed to nearly identical environmental conditions postpartum.
Maternal body condition and disease status, as well as predation, are mechanisms that could cause
dependence among sibling fates. However, siblings are commonly radio-collared in neonatal survival
studies (Hamlin et al. 1984, Whittaker andLindzey 1999, Carstensen et al. 2003, Jarnemo and Liberg 2005,
Bishop et al. 2008). There are advantages to marking siblings, but the potential dependence of survival
outcomes should be addressed. Sample unit dependence is also encountered in measurements of fetal
survival, which can be made in free-ranging deer populations with the aid of ultrasonography and
vaginal implant transmitters (Bishop et al. 2007). Inclusion of siblings is required when estimating fetal
survival because the fetus sample is obtained from in utero counts, and each of an adult female’s fetuses
must be counted without error. Twin or triplet fetuses cannot be individually marked in utero, and,
therefore, one fetus cannot be randomly chosen to include in the sample and others disregarded.

All fetuses and neonates used in the study described in Bishop et al. (2008) were offspring of free-
ranging, radio-collared adult female mule deer. We administered a nutrition enhancement treatment to
half of the adult females during winter and early spring to meet research objectives described elsewhere
(Bishop et al. 2009). No nutrition treatment was applied to the other half of the adult females, hereafter
control deer. Neonatal fawns were followed for 182 days (26 weeks). The encounter histories were
entered as 182 occasions for 6 groups. The top of the input file (deer-bootstrap.inp), plus the first 3
encounter histories are shown on the next page, where the encounter histories wrap across lines because
of their length (264 characters).
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/* Mule Deer Neonates, Uncompahgre Plateau, 2002-2004

Known Fates

occasions=182 groups=6

occasions represent daily intervals and are expressed in terms of age (i.e., days since birth)

glabel(1)=Control 2002

glabel(2)=Treatment 2002

glabel(3)=Control 2003

glabel(4)=Treatment 2003

glabel(5)=Control 2004

glabel(6)=Treatment 2004

covariate1=Date of capture expressed as the difference between capture date and earliest

capture date of the year

covariate2=Litter ID

covariate3=Estimated Birth Weight

covariate4=Estimated Birth Hind Foot Length */

00001010101010101011000000000000000000000000000000000000000000000

00000000000000000000000000000000000000000000000000000000000000000

00000000000000000000000000000000000000000000000000000000000000000

00000000000000000000000000000000000000000000000000000000000000000

00000000000000000000000000000000000000000000000000000000000000000

000000000000000000000000000000000000000 1 0 0 0 0 0 4 1 2.4335 23.4162 ;

00000010101010101010101010101010101010101010101010101010101010101

01010101010101010101010101010101010101010101010101010101010101010

10101010101010101010101010101010101010101010101010101010101010101

01010101010101010101010101010101010101010101010101010101010101010

10101010101010101010101010101010101010101010101010101010101010101

010101010101010101010101010101010101010 1 0 0 0 0 0 4 1 2.9613 26.021 ;

00000000101010101010101010101010101010101010101010101010101010101

01010101010101010101010101010101010101010101010101010101010101010

10101010101010101010101010101010101010101010101010101010101010101

01010101010101010101010101010101010101010101010101010101010101010

10101010101010101010101010101010101010101010101010101010101010101

010101010101010101010101010101010101010 1 0 0 0 0 0 18 2 3.7237 26.357 ;

Survival was estimated on a weekly basis by creating PIMs with daily survival constant within the
26 weeks. Thus, 26 real parameters are estimated for each of the 6 groups, giving 156 real parameters.

Four individual covariates are specifiedas Jdate= date of capture expressedas the difference between
capture date and earliest capture date of the year, LitID = Litter ID (to be used to perform the bootstrap
resampling, BWt = Estimated Birth Weight, and BHFt = Estimated Birth Hind Foot Length. So, the first
2 encounter histories above correspond to LitId = 1, and the third encounter history is for LitID = 2.

To save you from having to build some of the models described in Bishop et al. (2008), open up
deer-bootstrap.dbf (making sure that deer-bootstrap.fpt is in the same directory).
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To run the data bootstrap, select the ‘Bootstrap Data’ menu choice from the ‘Simulation’ menu in
the Results Browser.

Now you need to provide the information requested in the 5 tab windows (if you are new to running
simulations in MARK, it might be useful to review Appendix A before continuing – here we only
provide a summary of the simulation capabilities in MARK). The ‘Status’ tab just summarizes your
progress in providing the necessary information, and is the tab window shown first (below). You are
returned to the ‘Status’ tab as you move through the other 4 tabs to view your progress.

The ‘Status’ window for a data bootstrap analysis, with all the default values shown. Notice that
none of the 5 messages displayed on the left side of the screen indicate you have specified these values.
After you have completed the entries in the 4 right tab windows, all of these messages will indicate you
have set up the bootstrap analysis. At that time, the ‘Start Simulations’ button will become live for
you to proceed with the numerical analysis.
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To start, select 1 or more models to estimate from the ‘Estimation Models’ tab (below).

You can select models with the 4 push buttons across the top of the window. The ‘Current PIM
Model’ button selects the model you currently have constructed in the PIMs (and the associated design
matrix if you have created one). The ‘Results Database’ push button retrieves the currently highlighted
model from the Results Browser. The ‘File Database’ button retrieves a model from another MARK

file - you will be given a list of the models in the file once you have selected it with the usual Windows
file selection windows. For each of these buttons, you have to manually add the model to the list of
models for which you want estimates with the ‘Add Model’ button in the lower center portion of the
tab window. The fourth button for selection models is the ‘All RD’ button, which automatically adds
all the models in the results database, and is useful for when you want to do model selection using the
bootstrap results. You do not need to use the ‘Add Model’ button with the ‘All RD’ button.

For this example, we’ll assume that the ‘Current PIM Model’ button is selected, and that the high-
lighted model in the results browser is ‘S(trt*year A A2̂ A 3 Jdate BWt Yr*BWt)’. The model name is
filled in, and the link function is changed to ‘Logit’ because this model uses a logit link with the design
matrix.

After the model is added with the ‘Add Model’ button, the ‘Status’ tab now looks like that shown in
at the top of the next page. The ‘Use Alt. Opt. Meth’ check box allows you to specify that the simulated
annealing optimization method be used (which typically takes 10× longer to converge) instead of
the default optimization method. Also notice that now the ‘Remove Highlighted Model’ and ‘Display
Highlighted Model’ buttons are active because there is an active estimation model displayed. You can
continue to add models to the ‘Estimation Model’ list by going back to the estimation models tab.
Likewise, the messages show that the ‘Beta Parameters’ have been set, and the ‘Number of Releases’
have been set. These values are obtained from the data for the estimation model.
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Next, the parameters of the simulation that you want to save in the simulation results database are
selected with the Simulation Specification tab (Figure 4). For this example, we are most interested in
the derived parameters of the survival estimate across the 6-month interval, so we would check the
‘Derived Estimates’ and the Derived SE’ boxes. In addition, we would want to specify more than the
100 simulations, so would likely specify 1,000, or as Bishop et al. (2008) did, 10,000. Chernick (1999)
suggests a minimum of 5,000 given the speed of today’s computers.
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The ‘Extra-binomial Variation (c)’ box is not useful for this example, but provides a method to
add overdispersion to the existing data. That is, the encounter histories are duplicated as necessary
to provide data representing the value of c specified. The ‘Random Seed’ box allows you to specify a
random integer, so that you can repeat the analysis at some future time with exactly the same bootstrap
samples. The value of zero that is the default uses the computer’s clock to generate a random value
to start the resampling process. The ‘Simulation Title’ currently does nothing, so can be left blank.
When the appropriate values have been entered, push the ‘OK’ button to proceed, which returns you to
the Status tab window. The ‘Status’ tab window now shows that the ‘Simulation Parameters’ have
been set.

Because the model being estimated uses values of the individual covariates Jdate (Julian date of
birth) and BWt (birth weight) in the design matrix, we need to specify values to use for the bootstrap
resampling with the ‘Covariate Values’ tab window (below). For the example demonstrated here, these
are the values used to compute the real parameter values (26 weekly survival rates for each of 6 groups),
and thus the survival rate across the entire 26-week interval.

The ‘Covariate Values’ tab window specifies the individual covariate values to use for computing
real and derived parameter values. The default values are all zeros, but in the above screen, the mean
values for Julian date (Jdate) and birth weight (BWt) have been entered because these 2 individual
covariates are used to compute the real parameters in the model being estimated.

After the ‘OK’ button is pushed, you are returned to the ‘Status’ tab window, which now specifies
that the ‘Covariate Values’ have been set.
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The last tab window is the ‘Bootstrap Data’ tab, which is where you select the individual covariate
to be used to resample the data. In our example, the LitID covariate (litter ID) is selected because this
covariate identifies the individual litters. Although the LitId covariate is continuous across all 6 groups,
resampling only occurs within groups to form the resampled dataset for each group.

The ‘(Individual Enc. Hist.)’ value is also displayed in the list of individual covariates, but is
not actually a covariate. Rather, this option can be used to resample the individual encounter histories.
Care must be taken that each encounter history represents the same number of animals, or else the
resampling will be a sample biased towards encounter histories with the most animals.

Clicking on the ’OK’ button returns you to the ‘Status’ tab window, which now shows that ‘Bootstrap
Specifications’ have been set. In addition, the ‘Start Simulations’ push button at the lower right
corner of the window is ‘live’, meaning that all the information needed to perform the bootstrap
sampling process has been provided and you can proceed to the numerical work.

When you click on the ‘Start Simulations’ button, you will be asked to specify a file to store the
bootstrap results into. The default file name is SimResults.DBF - so you should probably provide a more
informative name. We’ll use Bootstrap Results Model1.DBF. For our example here, the values of the
6 derived parameters and their standard errors will be stored for 1000 bootstrap resamples. When the
simulations finish, you can view the results with the ‘View Simulation Results’ menu choice (shown
at the top of the next page). This menu choice takes you to a Windows dialog to select the file where
simulations were placed, in this case ‘Bootstrap Results Model1.DBF’.
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Select this file, and you get the following window.

The column widths can be changed by placing the cursor on the column boundary and dragging.
You will find that you have 6 columns of estimates of the 6 derived parameters (survival rate across the
entire 26 weeks for each of the 6 groups) labeled DERIV1 to DERIV6, and you’ll also have 6 columns with
the standard errors of each of these estimates labeled SED1 to SED6.
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Clicking on the right-most button on this window (the ‘Calculator’ button) will calculate some basic
summary statistics and put them into a notepad window.

Statistical Summary of Numerical Variables

(Number of Observations = 1000)

95% Confidence Interval

Variable Mean Standard Dev. Standard Error Lower Upper

---------- --------------- -------------- -------------- --------------- ---------------

DERIV1 0.526 0.1313 0.0042 0.518 0.534

DERIV2 0.738 0.1099 0.0035 0.732 0.745

DERIV3 0.471 0.0867 0.0027 0.465 0.476

DERIV4 0.613 0.0753 0.0024 0.608 0.618

DERIV5 0.428 0.0749 0.0024 0.423 0.433

DERIV6 0.405 0.0757 0.0024 0.400 0.409

SED1 0.112 0.0094 0.0003 0.112 0.113

SED2 0.090 0.0185 0.0006 0.088 0.091

SED3 0.077 0.0041 0.0001 0.076 0.077

SED4 0.069 0.0036 0.0001 0.069 0.069

SED5 0.073 0.0041 0.0001 0.073 0.073

SED6 0.064 0.0041 0.0001 0.064 0.064

This summary is just a quick look at your results, often enough to verify that everything is working
okay. However, to perform a more intensive analysis,you will need to import the DBF file into a statistical
package or into Excel. As an example, the following SAS code will import the DBF file into SAS.

libname library V9 ’.’;

title ’Analyze Bootstrap Data from Program MARK’;

filename BootData ’BOOTSTRAP RESULTS MODEL 1.DBF’;

proc dbf db4=BootData out=BootstrapData;

proc means;

run;

For our example here, the necessary information to compute overdispersion is available. For DERIV1,
the standard deviation of the 1,000 bootstraps is 0.1313. From the maximum likelihood analysis stored
in the results browser, the standard error of this parameter is 0.1139. So an estimate of c for DERIV1 is
(0.1313)

2/(0.1139)
2
� 1.329, which is in close agreement with the published result of 1.297 in Table 4

of Bishop et al. (2008). Because the bootstrap procedure is a random resampling process, you will never
generate the exact same results unless the same random seed is specified. Further note that the value
of the standard error used above does not match exactly the value of 0.1143 reported by Bishop et al.

(2008) - probably because of a slightly improved optimization procedure currently in MARK over the
procedure used by them.

G.2. Extensions

The data bootstrap procedure can also be used for bootstrapping the model selection process. To do
this, you must compute estimates for all the models with each of the bootstrap resamples. Note that the
‘Status’ tab window (Figure 3) allows more than one estimation model, i.e., you can keep going back
to the ‘Estimation’ tab window (Figure 2) to add additional models. Or you can use the All RD button
in the ‘Estimation’ tab window to add all of the models in your results browser at one time.
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Once the bootstrap resampling is completed, you can then evaluate model selection results, although
these more complex analyses will require analyzing the bootstrap results in a statistical package. For
example the proportion of times a model was selected as the minimum AICc model in the bootstrap
resamples could be taken as the model’s weight. Buckland et al. (1997) suggest more sophisticated
methods of model selection based on bootstrap resampling.

G.3. Limitations

The bootstrap data procedure only works with encounter history files containing encounter histories,
and will not work with the summary input that is allowed for band recovery data or known fate data.
You have to convert these formats to the corresponding encounter histories. One trick to do this is to
use the residuals output file in Notepad, where the data are given as encounter histories.

One issue that users of the bootstrap data procedure should be aware of is how the frequency counts
for encounter histories are handled. These values are maintained with the encounter history, so are not
changed by the bootstrap procedure. So, if for some reason you want to bootstrap individual encounter
histories, you may want to specify each animal separately, each with a frequency of 1. With the use
of the individual covariate to specify the resampling structure, the frequencies can be > 1 and make
perfect sense. As an example, consider an input file for known fate data with 1 occasion. An individual
covariate of Litter, with values of 1 through 4, is also included in the encounter histories file.

11 1 1;

10 2 1;

11 2 2;

10 2 2;

11 1 3;

10 3 4;

The above input file shows 4 litters of size 3, 4, 1, and 3, respectively. For this reason, the count
frequency for each encounter history can exceed 1, because the litter identifier provides the blocking
to bootstrap the encounter histories. Bootstrapping would be performed by resampling from the 4
litters if the ‘Litter individual covariate’ was specified in the ‘Bootstrap Data’ tab window. If
the ‘Indiv. Enc. Hist.’ choice was selected (p. G-8), the preceding file would still generate useful
bootstrap estimates because the encounter histories with counts > 1 would be resampled according to
the encounter history count.

Groups are kept separate in the bootstrap resampling process. Thus, the number of litters is kept
constant for each group in the resampled data. Even though your model being estimated might ignore
or combine groups, the bootstrap resampling will not ignore these groups. The number of unique blocks
of histories within each group will be sampled within that group, and never across attribute groups.
Also, for multi-state data, the bootstrap resampler does not distinguish between initial states, so that
the conditioning on number of animals starting in each state is lost.
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