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Working Paper 5: Point Clouds. Scatterplots and Tables as 
User Interfaces of Artificial ‘Intelligence’. 
 

 
“Categories are central to being in the world. Big data 
does not do away with categories at all” (Bowker 
2014, 1797). 
 
“Cultural techniques are promoting the achievements 
of intelligence through the senses and the externaliz-
ing operationalization of thought processes” (Krämer 
and Bredekamp 2003, 18). 
 
 
 

Abstract 
Scatterplots and tabular structures are the main graphical user interfaces for the diagram-
matic depiction of large image data collections, which have been processed with visual recog-
nition tools. This study discusses various media visualisations as case examples: ARTigo 
(LMU Munich), Imgs.ai (UC Santa Barbara/Bildarchiv Foto Marburg), iArt (Universities of 
Munich and Hannover), Vikus Viewer (FH Potsdam), and X Degrees of Separation (Google). 
It further investigates how these projects employ visualisation algorithms like PCA, t-SNE 
and UMAP in relation to artificial weighted networks such as VGG19 or CLIP and provides 
practical proposals how to deal with the identified problems. 
 
 
 

1 Introduction 
This working paper evaluates visualisation concepts for The Curator’s Machine, a machine 
learning software module that is being developed in the scope of the research project Train-
ing the Archive. The Curator’s Machine is aimed at automating curatorial decisions for large 
image sets with the help of pattern recognition and artificial intelligence (Bönisch 2021; Hun-
ger 2021a, 2021b).  
 
The results of machine learning processes are arranged in user interfaces based on diagram-
matic principles. Building on the thesis that spatial relationships dominate knowledge for-
mation in diagrams, the task of this text is to investigate visualisations used in machine learn-
ing. Thus, the text develops a syntax of visualisations that identifies several diagrammatic 
types essential for Training the Archive: the table, the scale diagram and scatterplot, and the 
k-nearest-neighbours method. A further section describes three layers of reduction and re-
construction of reality in visualisations that stem from weighted networks (convolutional 
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neural networks).1 The three layers include 1.) data collection, 2.) statistics/computation and 
3.) visualisation. These introductory considerations are followed by a central section with 
case studies that I have chosen due to their proximity to our project in terms of content and 
technology. The user interface illustrations examine ARTigo, an art-historical search engine 
(LMU Munich), the experimental art-historical image search Imgs.ai (UC Santa Barbara/ 
Bildarchiv Foto Marburg), the interactive tool for analysing image datasets iArt (Universities 
of Munich and Hannover), the project Vikus Viewer with curated datasets (FH Potsdam), 
and finally the path-oriented image experiment X Degrees of Separation (Google). I then 
draw conclusions for the prototype of Training the Archive, which can be generalised for 
similar user interfaces. Before the text explores the syntax of media visualisations, two rele-
vant concepts must be introduced and located: diagrams and media visualisations. 
 
1.) Diagrams constitue visual arguments. They serve to visualise facts by placing graphic ele-
ments in spatial relationships that can be ‘read’. Diagrams are often hybrids of textual and 
graphical elements. The strength of text-graphic hybrids is that they can present numbers 
and categories, that is quantitative and categorical information objects from different 
knowledge domains, combined in one visualisation. This unification in two-dimensional 
spatiality is one of humanity’s most important tools of cognition (Krämer 2010). The goals  
of the interfaces are to validate or falsify hypotheses and to provoke new research questions. 
Observing how the design itself – the interface and diagrammatic operation – influences 
these goals is therefore worthwhile. 
Human reading, seeing and understanding of diagrams is based on visual hierarchies. In a 
visual hierarchy, I interpret ‘top’ as better compared to ‘bottom’. First comes before second, 
so I read from the top down. I also read left before right because the eye finds its hold on the 
left text border. The hierarchies listed here are examples from the author’s own linguistic 
sphere. In other cultural and historical contexts, the hierarchies are different, such as in Ara-
bic or Hebrew, which are read from right to left. The cultural techniques of comprehending 
reading and writing however, have one thing in common: the spatial organisation of what is 
recorded and the often unspoken, culturally and technically learned hierarchies and orders 
permeate reading and what is read. 
In the following paper, I examine those diagrammatic representations that make image  
information accessible as a visual argument using examples from the field of artificial ‘intelli-
gence’, computer vision and data visualisation. This study therefore is positioned as part of 
interface criticism, which understands interfaces not only as a transition between ‘the inside’ 
and ‘the outside’, but also as “autonomous zones of activity” (Galloway 2012, vii). 
 
2.) The visual methods discussed here are “media visualisations” (Manovich 2020, 215), be-
cause they explore visual patterns in large amounts of data. The spatial arrangements of data 
objects create visual arguments. But most importantly, media visualisations do not represent 

 
 
1 To avoid the anthropomorphising term ‘neural network’, I use ‘weighted network’ as an alternative. For more on 
this and in general for the technological procedures of machine learning in ‘Convolutional Neural Networks’ see 
(Hunger 2021a, 2–7, 9 and FN 1). 
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data objects in an abstracted way, such as by points, graphemes or numerical representation, 
but rather as icons, that is as reduced, visual references to the original data objects. Media 
visualisations are also characterised by interactivity and the availability of different scales. In 
many user interfaces, it is possible to zoom into the image collections or individual images. 
This constant oscillation between detail and overview allows new knowledge to emerge in 
ever new visual configurations. 
User interfaces that display image collections, on websites or AI software for example, form 
the image datasets algorithmically into ordered arrangements. In these sets, the individual 
image vanishes in favour of the overview. The referentiality of the individual image is no 
longer of interest, but rather the synopsis of the relations between the images. However, the 
display of mass images, which now appear as operative images, comes with its own problems. 
These will be explored in the case studies. 

1.1 Syntax of media visualisations 

The following section discusses the visualisation types ‘tables’, ‘scale diagrams and scatter-
plot’ and ‘k-nearest neighbour’, which are often used for media visualisations. We can look 
into them to identify certain strengths and weaknesses of the visualisations for generating 
knowledge. A number of other visualisations, such as network diagrams, maps, infographics 
and others are not discussed here because they do not apply to the visualisations in the 
framework of The Curator’s Machine.  

Tables 

Tables provide an overview and allow the entries to be recorded, looked up and operational-
ised. By entering the data in rows and columns and through the operations of grouping, sort-
ing and summing, the data is brought into ever new constellations of knowledge, so that it 
serves people as a cognition tool for producing new knowledge. We can distinguish between 
statistical, mathematical, transactional/process-related, and knowledge-building tables. 
Statistical tables owe their rise to the development of nation states from the 17th century on-
wards, in which state structures were systematically underpinned by recording population, 
production and the budget. For this purpose, data was intentionally produced by collecting 
observations and transferring them into tabular grids. 
Mathematical tables comprise, on the one hand, data obtained from empirical observation, 
for example the orbit of celestial bodies, and, on the other, calculated series of numbers that 
could be used for further calculations, such as square numbers, interest and compound inter-
est, logarithms and trigonometric functions. The development of calculating machines and 
computers replaced mathematical tables. They enable these calculations to be made ad hoc or 
stored in spreadsheets and databases. 
Knowledge-building tables assemble pieces of knowledge in the form of an overview. They 
allow knowledge on topics such as art-historical, secular-historical or political events to be 
arranged chronologically or categorically and served on the one hand as a tool for rote learn-
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ing and on the other for generating new knowledge. They tie in with the new knowledge or-
der of the emerging museums, academies and encyclopaedias from the 16th century onwards, 
which established our present-day science and knowledge ordering systems. 
Transactional tables have become fundamental management and process tools (see Fig. 1 for 
an example). They represent current statuses as ‘transactions’ and were historically used for 
activities such as changing account balances at banks, organising internal work in companies, 
and the coordinated processing of services, such as the combination of flight and passenger 
data at airlines. The transaction data recorded in them describe the respective current status 
of an object or procedure and serve to ensure the controlled processing of a transaction from 
its defined beginning to its defined end. 
 

 

Fig. 1: Transactional table for the production of steel tyres for vehicles in the Midvale Steel Works 1883. The re-
spective transaction can be addressed via the order no. The first column shows the workflow of the transaction 
from beginning to end (Taylor 1903, 86). 

 
Tables are among the cultural techniques of knowledge production: their use must  
be learned.  
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The following visual arguments characterise the table: Firstly, the tabular grid creates a con-
struct that makes entering data possible at all. Secondly, the reading eye jumps between rows 
and columns to gain an overview of the individual information objects (the row) according 
to different categories (per column). Thirdly, empty space indicates missing data and data yet 
to be generated, and fourthly, the spatial relationships within the table change through rear-
rangement (filtering, ordering, grouping) of the data in the grid (Hunger 2022, 76–128).  
Tables thus enable a unifying, common thinking space us and allow us to combine both  
categorical/qualitative and quantitative data in a uniform grid. 

Scale diagrams and scatterplots 

Scale diagrams, such as bar charts and scatterplots, consist of graphic elements (lines, rectan-
gles or bars, points) distributed in a two-dimensional space, which is spanned by two scales 
with quantitative or qualitative values (X-axis and Y-axis). They facilitate the representation 
of time series, rankings, percentage distribution, deviations in relation to the zero value and 
distributions of the total values (e.g. bell curve as normal distribution). The scales usually 
have even spacing so that a grid is created (Wilke 2019, 13–25). 
The visual arguments of scale diagrams are oriented towards the alternating viewing of the 
scales and the values represented by graphic elements. The graphic elements allow a number 
of patterns to be identified as visual relations: focal points, distributions, trends and tenden-
cies, comparisons. Elements can be grouped by colour and thus additionally dimensioned  
beyond the two-dimensional distribution (Tufte 1983, 28–39; Few 2005, 2012, 87–136). The 
experiential knowledge of graphic design has led to numerous ways of using diagrams. 
Quantities, for instance, are most easily compared by means of bar diagrams. If not only nu-
merical but also categorical qualities need to be compared, then we can use grouped and 
stacked bar charts. For visualising distributions, we prefer histograms, density plots or violin 
plots. For proportions that can be indicated by percentages, we use pie charts and bar charts. 
Relations can be displayed as scatterplots, bubble charts and slope graphs, as matrixes or cor-
relograms. For geographical data, maps and also geographical heat maps are suitable (Wilke 
2019, 37–44). 
In principle, scale diagrams also include scatterplots, which show distributions within a da-
taset. Why in principle? As we will see later, the user interfaces examined here dispense with 
the scales. This is accompanied by a loss of information, as meanings that were previously 
contained in the scales become less clear. Before we delve into this, however, we turn to ‘clas-
sic’ scatterplots, i.e. those with scales. 
Scatterplots highlight correlations, clusters, patterns, trends and outliers in a set of data 
points by organising related points into aggregations, spatially close to one another. “Central 
to many of these techniques is preserving the meaning of distance between objects as an indi-
cator of similarity” (Sarikaya and Gleicher 2018, 2). In this context, similarity means that sev-
eral data objects are alike in at least one characteristic, whereby on the one hand an overall 
similarity can be addressed, and on the other a partial similarity in which data objects are 
similar in certain individual aspects. However, the visual features of scatterplots are not com-
plete ‘proofs’ in the mathematical sense, but rather serve as proxies for correlations. Scatter-
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plots have been defined as “a plot of two variables, x and y, measured independently to pro-
duce bivariate pairs (xi, y), and displayed as individual points on a coordinate grid typically 
defined by horizontal and vertical axes, where there is no necessary functional relation be-
tween x and y” (Friendly and Denis 2005, 105). In other words, the relationship between data 
is clearly visible in a table or bar chart when x and y are linearly correlated. However, if – as 
in the practical examples discussed below – the function between x and y is mathematically 
complex, or if x is correlated to several other parameters, then this relationship is difficult to 
‘read’ in a tabular display. Scatterplots have an advantage here because their data points can 
be evaluated as proxies for correlations by viewing them and can lead to new insights. 
 

 

Fig. 2: Historical scatterplot: “The spectral class [B, A, F, G, K, M, N – relating to the color spectrum of the per-
ceived light, F.H.] appears as the horizontal coordinate, while the vertical one is the […] visual magnitude [meas-
ure of light energy, F.H.] which each star would appear to have if it should be brought up to a standard distance, 
corresponding to a parallax of 0.1“ (Russell 1914, 285). Giant stars are at the top and dwarf stars are more likely to 
be at the bottom right. 

Genealogies trace the development of scatterplots back to the naturalist and eugenicist  
Francis Galton, who, starting in the 1880s, demonstrated the phenomena of regression and 
statistical correlation through tabular visualisation (Friendly and Denis 2005, 109–113).2 
While it would be going too far to list the many contributions of other statisticians and 
graphic artists, we should at least mention the astronomer John Frederick W. Herschel,  

 
 
2 Media theorist Wendy Chun draws attention to the problematic genealogy of correlation and linear regression  
as eugenic methods developed by Francis Galton (see Chun 2021, 59–66). 
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who used a scatterplot, i.e. a graphical solution, to predict the elliptical orbits of double stars 
despite incomplete data. The terms ‘scatter diagram’ and ‘scatter plot’ came into increasing 
use between 1906 and 1920, when the technique was described in textbooks on statistics and 
data visualisation (Friendly and Denis 2005, 116–119). 
The density of the respective clusters shows the degree of correlation within the respective 
clusters. More widely scattered data points indicate a lower correlation between the data 
points. Correlation lines (regression analysis) allow researchers to see trends, use them to 
make predictions when appropriate, and visualise deviations from these trends. “As opposed 
to other graphic forms – pie charts, line graphs, and bar charts – the scatterplot offered a 
unique advantage: the possibility to discover regularity in empirical data (shown as points) 
by adding smoothed lines or curves designed to pass “not through, but among them,” so as to 
pass from raw data to a theory-based description, analysis, and understanding” (Friendly and 
Denis 2005, 128). 
The scatter plot above by astronomer Henry Norris Russel, for instance, shows from left to 
right that the majority of stars in classes A and B (low spectral colour) are very bright. Most 
stars in classes K and M are dimmer and in the reddish spectrum (higher spectral colour). In 
the middle of the diagram are red stars of high brightness. Blue and red super giants and red 
and white dwarf stars are outliers. 
Aggregations thus create a visual order similar to grouping, although the delineation of 
groups is not as sharp as it is in the tabular grid where columns and rows delineate the data. 
Grouping allows a summary of data as ‘AND’ or ‘OR’, so that visual cognitive operation 
places the knowledge objects in groups based on similarities, but not necessarily congruency. 
In this way, focal points, distributions, tendencies, comparisons and outliers can be dis-
played. 
 

 

Fig. 3: Five typical distributions in scatterplots (quoted after Sarikaya and Gleicher 2018, 5). 
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Computer visualisation experts Alper Sarikaya and Michael Gleicher have identified a num-
ber of cognitive operations with scatterplots: the identification and location of an object, the 
comparison of objects (belonging to object classes, for example ‘furnishing object: desk’, or 
‘art historical epoch: Impressionism’), an exploration of the neighbourhood and the data, the 
search for a pattern (cluster, correlation) and its characterisation (dense, widely scattered, 
etc.), and the identification of anomalies and outliers (Sarikaya and Gleicher 2018, 3). They 
also show five typified distributions in scatterplots, which are commonly encountered:  
1. random distribution, 2. linear correlation, 3. cluster formation, 4. curvature (e.g. in the 
form of a sine curve), and 5. overlapping data points (See Fig. 3). 

K-nearest neighbours 

Based on scatterplots, clustering and path displays are playing an increasing role in visual 
representations of (art) collections by means of machine learning. In the process, the user  
interface makes the affiliation of data objects visible through common colouring or network 
lines connecting individual data points.3 The k-nearest neighbours result from mathematical 
similarity, which is made visible through the proximity of data objects to each other. K indi-
cates how many classificatory subsets the total data are divided into, i.e. K=3 results in three 
clusters (aggregations). 
The most common uses of the k-nearest neighbour algorithm are currently clustering and 
path representation: 
 
1.) Clustering: Clustering is in turn divided into two different methods. For one, media visu-
alisation can be achieved via discretised, ‘structured’ data, i.e. images labelled with keywords. 
In this process, previously labelled known images are used as the basis for locating unknown 
images in the multi-dimensional latent space of weighted (‘neural’) networks. Depending on 
which feature space the unknown images are closest to, they also receive the corresponding 
label. In clustering, i.e. classifying images into three clusters for example, one of the labels 
‘cat’, ‘dog’ or ‘horse’ is spatially assigned. 
In addition to discrete assignments, we can use k-nearest neighbour algorithms for ‘continu-
ous regression’ in similarity calculations. In this case, rather than assigning a discrete label,  
a continuous number space, a graph, is spanned based on the comparison data points. The 
location of a data point is determined in relation to the k-nearest neighbours, i.e. when con-
sidering k=3, from the ratio, namely the mean value, to the three nearest neighbours. The  
result is a numerical value that indicates the degree of similarity in relation to the neighbours, 
which in turn is used for the distribution in a scatterplot (Fig. 13). 
 
2.) Path: The principle of the nearest neighbour in the multidimensional space of weighted 
networks is used to construct a path leading from start to destination between these image 
data. Historically, this procedure goes back to the bridge problem, which Leonhard Euler 

 
 
3 James E. Dobson develops an insightful genealogy of the k-nearest neighbours algorithm in the chapter The Cul-
tural Significance of k-NN (Dobson 2019). He describes k-nearest neighbours as a means that allowed classification 
to be derived directly from data, in apparent elimination of subjective human categorisation. 
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first described in 1736. The algorithm gradually developed from this problem provides a 
mathematical solution for the shortest path between two points in a city while crossing a se-
ries of bridges (See Euler in: König 1936, 290–301). In visual computing projects, the path is 
used for the visual traversal of latent space, as illustrated in the practical example X Degrees  
of Separation. In this example, the viewers select an initial image and a target image and in 
several steps, i.e. intermediate images, the algorithm establishes a connection between the 
start and the destination based on the nearest neighbours. I will discuss how clustering and 
pathway behave in concrete terms in greater detail in one of the case studies. 
 
Tables, scatterplots and k-nearest neighbours – what they all have in common is spatial dis-
tribution as a visual argument for the purpose of generating knowledge. Having covered the 
syntax of diagrams in media visualisations by means of weighted networks, we now turn to 
discussing the reduction and reconstruction of reality as an additional aspect. 

1.2 Three layers of reduction and reconstruction of reality 

Visualisations are reductions and reconstructions of reality. But they are only the last and 
most visible layer. The second layer is computation and statistics, and the first layer is data 
collection. This is relevant because each layer of reductive and constructive information pro-
cessing introduces its own political and ethical values, which remain invisible to the observer. 
As we can see in the practical examples, reduction and reconstruction stand in an operative 
relationship to one other. The reality reduced in the data space undergoes its reconstruction 
in diagrams and only becomes operational through these steps. 
 
First layer ‘data collection’: As early as the data collection phase, an information model is 
used to decide which parts of reality are to be collected as data and which are literally left 
splitt off and excluded. These exclusions are not ‘bad’ per se, because generating new know-
ledge requires concentration and clarity. This leads to a spatial, temporal or spatio-temporal 
segmentation of the world, as Bowker/Star (1999, 10) note. The data collection already estab-
lishes standards, and in the course of standardisation reality is reduced and at the same time 
also reconstructed (compare Gitelman 2013; Bowker 2014, 1797). But reduction does not oc-
cur solely as exclusion, as the example of ‘data doubles’ illustrates (D. Haggerty and Ericson 
2000). Data Doubles are representations of a person or an object at a specific point in time. 
They are always reconstructions. Since a person’s data can never be fully captured, missing 
information is compensated for – by correlation with comparison groups, for instance. Data 
from different sources are often combined with each other, so that here, too, we can speak of 
a reconstruction. The reconstruction of reality in data occurs on the basis of an information 
model, in other words, on the basis of an understanding of which part of reality is to be in-
cluded in the processing and which is to be excluded. In the header of a table, for instance, 
the column labels define which data can be entered and this constitutes the information 
model then. Since persons and objects change over time, data doubles per se are never identi-
cal to the ‘original’. They are historically incorrect, incomplete, fragmented and reduced. Re-
duction thus occurs both as exclusion and through temporal divergence. 
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Second layer ‘statistical computation’: The weighted networks of artificial ‘intelligence’ are 
reduction machines. They reduce large pixel sets, such as image sizes of 5000×3000 pixels, to 
computable dimensions as in the case of the pre-trained weighted network ResNet 50 to di-
mensions of 229×229 pixels. In addition, because many modules in convoluted weighted 
(‘neural’) networks expand the number of data points (features), the multi-dimensional la-
tent space between the modules must be reduced again and again in order to guarantee com-
puting performance. Algorithms such as principal component analysis (PCA) are used for 
this purpose. If, for example, the dimensions are to be reduced from 1024 to 256, the algo-
rithm filters out those dimensions with the greatest variance and then makes further use of 
them. To the PCA method, content-related reasons concerning the question of which dimen-
sions should be reduced are irrelevant. The algorithm carries out the reduction solely on the 
basis of maximum variance, not on the basis of content criteria. In addition to the reduction, 
a reconstruction also takes place through interpolation and merging of datasets, especially in 
those modules of convolutional ‘neural’ networks that expand the number of features. 
 
Third layer ‘visualisation’: The already reduced data in these underlying layers are then re-
duced again in the visualisation through graphic representation. Data, i.e. socially mediated 
references to facts, become points in a scale diagram, a node and relation in a network dia-
gram or a cell entry in a table or colour coding. Algorithms such as PCA, MDS, PCS, t-SNE 
or UMAP dramatically reduce the high dimensional spaces of weighted networks for visual 
output to only two dimensions, the X and Y axes in scatterplot diagrams. 
The reference to the originally collected fact becomes weaker, almost homeopathic (Fig. 2).4  
 
 

Layer Reduction Reconstruction 
Data collection Spatial, temporal or  

spatio-temporal segmentation 
of the world 

Information model 

Statistical computation in  
weighted networks 

Algorithmic reduction of data 
volumes in favour of compu-
ting speed 

Merging and  
extrapolation 

Visualisation Reduction of the dimensions 
of weighted networks for two-
dimensional representation 
Symbols, graphs, points 

Image representations 
(icons) 

Fig. 4: Reduction and reconstruction of reality in visualisations based on weighted networks (convolutional neural 
networks). 

 
 

 
 
4 This analysis also applies to three-dimensional representations, which in principle resemble two-dimensional 
reductions, and merely introduce the third dimension as a further parameter in reduction algorithms such as 
PCA, MDS, PCS, t-SNE and UMAP. 
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But a new type of visualisation adds new visual enrichment after these many reductions:  
“Rather than representing text, images, videos, or other media though new visual signs such 
as points, rectangles, and lines, media visualizations build new representations out of the 
original media. Images remain images; text remains text” (Manovich 2020, 197f.). Even if one 
may not completely follow Manovich in this statement (“images remain images, text remains 
text”), he nevertheless brings up an important point. The operationality of ‘classical’ dia-
grams is more abstract through symbolic representation than is the case in media diagrams, 
which depict what is represented by means of icons – iconically. Due to the high capacity of 
computing power, media representations that were difficult to achieve before the 2000s are 
now possible in real time and enable new diagrammatic solutions for visual knowledge. In 
this way, as will be explained in the practical examples, the table and scatterplot can be filled 
not with abstract points, lines and the like, but with image representations and, alongside the 
spatial distribution, create an additional depth of information that permits new visual inter-
pretations (Fig. 12). A ‘reconstruction’ of reality occurs here in diagrammatic representa-
tions. Each graphic construction creates a new space into which the data objects are trans-
ferred, based on the grid that this space provides. A dimensional reduction of the original 
images is carried out to either the same height or the same width. Along with these scalings 
comes a whole series of interpretational problems as we will see in the case studies. 
The first part of this study discussed the syntax of various media visualisations, with a focus 
on tables and diagrams, especially scatterplots and clustering using k-nearest neighbour pro-
cedures. While the visual tools of knowledge mentioned above have spatial references in 
common as a knowledge-forming operation, there are differences in the way they are read.  
In a further step, we identified three layers of reduction and reconstruction of reality:  
1.) in the course of data collection, which transfers the objects from reality into data struc-
tures, 2.) through statistical computation in weighted networks and the dimensionality  
reductions there using PCA, and 3.) in the course of visualisation, during which the high  
dimensional spaces are reduced to two dimensions X and Y for scatterplot diagrams using 
algorithms such as PCA, MDS, PCS, t-SNE and UMAP. Finally, the paper outlined which 
knowledge operations are relevant to The Curator's Machine and how spatial arrangement 
becomes operationalisable in each case. 
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2 Practical examples of AI visualisation 
The following projects were selected because of their proximity to Training the Archive in 
terms of dealing with large image collections. The examples selected were reviewed in the 
spirit of constructive criticism. They were not chosen to diminish their achievements or 
characteristics, but to highlight the need for detailed expertise when making decisions on in-
formation, visualisation and user interfaces. In the following section, we will discuss the pro-
jects ARTigo, Imgs.ai, iART, Vikus Viewer and X Degrees of Separation before formulating  
a further course of action in the summary.  

2.1 ARTigo – the art history search engine 

ARTigo (https://www.artigo.org) is a semantic image search engine that makes the databases 
of the Diathek of the Institute of Art History at LMU Munich searchable. ARTigo does not 
use artificial intelligence algorithms, but rather invites the users of the website to provide the 
images with structured metadata in the scope of a crowd intelligence process (Bry, Schefels, 
and Schemainda 2018). The following section discusses the user interface of the search en-
gine. No machine learning procedures have been used thus far, but ARTigo processes collec-
tions of art objects in a similar way to The Curator's Machine and is therefore relevant to our 
project. The strength of ARTigo, in contrast to many artificial intelligence projects, lies in its 
focus on the semantic aspects of the images – the content and meaning of each individual 
image has been annotated and verified. As a result, the referentiality of each individual image 
in the database remains verifiably preserved. LMU Munich has thus far refrained from trans-
ferring semantic meaning to other images by means of machine learning, but the dataset 
lends itself to such an approach. 

Tabular grid 

In the standard view, the search results are arranged in a table, with one row marking each 
search entry (Fig. 5). The columns consist of a tag cloud belonging to the picture, an image 
and the classic art historical metadata of artist, title, location and date. This listing thus fol-
lows the index card logic that we often find in relational databases. The most relevant result 
to the query is arranged at the top according to the visual top-bottom logic, and the individ-
ual entries are separated from each other by white spaces. This view focuses on the scrolling 
display of individual entries to allow a selection of one or a more entries through activating 
the filter options. 

https://www.artigo.org
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Fig. 5: ARTigo results display in tabular form with three columns and one entry per row (screenshot, 2/12/2022). 

 
The search result can be refined by clicking on a term in the tag cloud. The terms act as  
filters. In this example, the search term has been ‘mountains’ (Fig. 5). By clicking on ‘trees’  
in the tag cloud, the search set is limited to those images annotated as ‘mountains’ and ‘trees’ 
in the tags. Similarly, clicking on the metadata positioned to the right of the image allows 
searches for paintings with ‘mountains’ present in the location ‘Munich’. 
The search operates according to the principle of the closed-world assumption. The search 
can find only what is contained in the database. Nothing else can be found, i.e. the search en-
gine is not linked to the outside world – through open data access or links with bibliographic 
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aggregators, for instance.5 No separate visualisation exists to indicate this circumstance; the 
search list simply comes to its end. The predefined categories determine the search process. 
You can search by title, artist, location, date and keywords. 

Matrix view 

 

Fig. 6: ARTigo interface in matrix format (screenshot, 2/12/2022). 

If the options “show metadata” and “show description” are deselected in the ARTigo user in-
terface, the display format changes to a matrix. However, the reading orientation of this ma-
trix is unclear and is not visually supported (e.g. by spacing that would create rows). The in-
terface does not explicitly communicate the mode change from the three-column grid of the 
table to a new ordering of images. This view fundamentally changes the order in which the 
results are displayed. Rather than being displayed from top to bottom as before, they are now 
displayed from left to right. The most relevant result for the query is at the top left and the 
subsequent results are now sorted from left to right until the page margin. The various image 
sizes are limited to a maximum of 200px in height and width, whereby the images are re-
duced in size, but not to scale, uncropped and displayed in the correct aspect ratio. As a re-
sult, many portrait formats create the impression that the results are to be read from top to 

 
 
5 A bibliographic aggregator is a “service that collects, unifies, manages, maintains and shares metadata from  
cultural and knowledge institutions” (https://pro.deutsche-digitale-bibliothek.de/glossar/aggregator). 

https://pro.deutsche-digitale-bibliothek.de/glossar/aggregator
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bottom and many landscape formats create the impression that the grid runs from left  
to right. 
Overall, ARTigo is a valuable step towards making historical art collections accessible 
through a search engine function. However, my description clearly shows that cooperation 
with user interface experts would have contributed additional expertise to the project. 

2.2 Imgs.ai – an experimental art historical image search 

Imgs.ai (https://imgs.ai) is an experimental platform for exploring image collections through 
machine learning. It is based at the University of California, Santa Barbara and the German 
Documentation Centre for Art History – Bildarchiv Foto Marburg. The software technology 
CLIP (Radford et al. 2021) enables a content-based search for unclassified images and image 
content by means of text queries, known as prompts. In addition, images can be set as posi-
tive or negative templates for further searches, and uploading your own images allows you to 
compare them with the visual orders of museum and image collections. The images are 
sorted according to the k-nearest neighbour principle, which displays similar images from 
the collection closer to each other. Imgs.ai gives curators and researchers the option of using 
their own images or keywords to search for similar images in the available museum collec-
tions even if the collections are not annotated. 

Tabular grid 

Imgs.ai’s user interface consists of a section with numerous filtering options, such as the da-
taset used (Metropolitan Museum, Rijksmuseum), the weighted network used (VGG 19, raw, 
CLIP-vit, Poses),6 an upload option for one’s own images as search terms and a selection for 
the column width of the display, 124 pixels wide for example, and for the number of neigh-
bouring images between 10 and 100. The image data is arranged horizontally in columns. By 
clicking on a picture, you can find its URL on the Internet or go directly to the high-resolu-
tion picture file on the websites of the institutions of origin. 
The various image sizes are limited to a column width of 32px to 224px, selectable via the 
menu item ‘size’. All images are reduced in size accordingly and displayed uncropped and in 
the correct aspect ratio. The number of columns is determined by the available screen width 
in relation to the column width selected. 
 

 
 
6 Pose can identify human poses, especially the relationship of arms, legs to the body (Toshev and Szegedy 2014); 
VGG 19 is a weighted network of 19 layers pre-trained on ImageNet (Simonyan and Zisserman 2015); CLIP is 
trained on combined image data and word embeddings (image captions and metadata), e.g. by training with anno-
tated Flickr images (Radford et al. 2021). 

https://Imgs.ai
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Fig. 7: Imgs.ai interface with the etching “Charles Carrol of Carrolton” (ca. 1835) from the collection of the Met-
ropolitan Museum New York as a prompt. ‘Poses’ was chosen as the embedding here, so that in principle similar 
ratios of head, shoulders and arms are shown (screenshot, 2/12/2022). 
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Fig. 8: Same search parameters as in the previous figure, but the k-nearest neighbours are not calculated using the 
Poses network but rather using VGG-19 (screenshot, 2/12/2022). 



 
 

18 

In Fig. 7, horizontal orientation results solely from the image formats and does not receive 
any further visual support. In this vertical visual logic, the first and closest image to the 
search query is placed at the top left of column 1. Further images follow in the column with 
descending ‘similarity’ from top to bottom. At the eighth image, the eye jumps to the top of 
column two. 
According to the k-nearest neighbour principle, this image is further away from the first im-
age than all the images in column 1, but in this graphical solution it is directly next to the 
first image. This reveals a problem with matrix ordering in vertical columns. They generate a 
specific reading order. The display in a scale-oriented grid is fundamentally problematic for 
the underlying knowledge task because proximity and distance relationships are inadequately 
represented due to the grid. 
When images with very similar aspect ratios appear in this column-oriented matrix, visual 
order is further disrupted, because it is unclear to the reading eye how the image arrange-
ments are oriented: from top to bottom or from left to right? 
Using the img.ai interface example, we see that for k-nearest neighbours a matrix-shaped ar-
rangement is rather unsuitable, as a divergence arises from calculated statistics and visual 
mapping. 

2.3 iART – an interactive tool for analysing image datasets 

iART (https://labs.tib.eu/iart) is an interactive analysis and retrieval tool for image collec-
tions focusing on art history. The DFG-funded research project of the LMU Munich, the 
University Library of Hannover (TIB) and the University of Paderborn arranges the image 
data according to weights as k-nearest neighbour. 
It aims to combine three different knowledge-generating modes: pattern recognition and 
classification through deep learning, similarity analysis through clustering and k-nearest 
neighbour analysis, and application of user preferences through filtering tools. According to 
the project developers, the interface is oriented towards the Google user interface design, as  
it is familiar and users are accustomed to it (Schneider and Kohle 2021, 6:50 min). 
The project used data from collections provided and classified by third parties. Therefore, it 
could dispense with conducting its own time-consuming classification work. The approxi-
mately 1 million images stem from the numismatic collection KENOM, the Wikimedia 
Commons category “Art_by_Subject”, the Rijksmusem Amsterdam and other smaller da-
tasets with approximately 60,000 images, including ARTigo (Springstein 2021). The criteria 
for the appearance of certain artistic positions are based on how often an artist is included  
in the datasets. The German-American landscape painter Albert Bierstadt (1830–1902), for  
instance, dominates the search query for ‘mountain’, as his images with the keyword ‘moun-
tain’ are well represented in the Wikimedia Commons collection. It follows that romantic  
depictions of mountains by Bierstadt are represented in large numbers in the search results, 
and this could give the impression that his works were of outstanding artistic importance  
(in reality, they were only well keyworded). 
The visual search is not only based on the metadata itself, but also on embeddings. Embed-
dings are mathematical translations of words expressed as vectors. These vectors are related 

https://labs.tib.eu/iart
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to each other mathematically-spatially in order to model meaning contexts, whereby words 
with similar vectors (should) result in a similar meaning context. This makes it possible to 
specify, for instance, that the word ‘painting’ has a similarity to ‘sculpture’ of 0.845, to 
‘painter’ of 0.842 and to ‘watercolour’ of 0.841 on a scale of 1, while the similarity to ‘create’  
is only 0.359.7 
Because certain word combinations of the metadata lie close to each other in weighted net-
works, the images distributed in the latent space are positioned correspondingly close to each 
other. In doing so, the authors refer to classical principles of order: “Ordering criteria that 
were already common in the early modern Wunderkammer, such as colour, material, or 
function, can be applied as well as more iconographically based classification principles that, 
e.g., examine objects for biblical motifs or Christian themes” (Springstein et al. 2021, 1). The 
interface allows for the selection of different embeddings of pre-trained weighted networks: 
CLIP, Wikimedia and ImageNet, whereby the more precise designations of the embeddings 
(e.g. versions, datasets) are not stored in the interface. This makes the underlying genealogies 
and biases of the training datasets non-transparent for researchers. 
In the following section, we will discuss the two main viewing modes, image grid and distri-
bution, with reference to iART. 

Tabular grid 

 

Fig. 9: iART, Search term ‘mountain’ without grouping/clustering (screenshot, 2/12/2022). 

In the grid, results are displayed in order of relevance. When hovering over an individual im-
age, additional information, such as metadata and a link to a high-resolution version, appears 

 
 
7 For an example, see the display at https://embeddings.sketchengine.eu. 

https://embeddings.sketchengine.eu.
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(Fig. 9). Since the images are adjusted to the same height, the size relationships between the 
images are lost. The images are displayed as a continuous set of data, with the first image rep-
resenting the most ideal mountain and then organised horizontally, row by row, the degree 
of the mountain’s calculated relevance sinking in a decreasing ranking. Thus the user's gaze 
sweeps from left to right and then jumps to the next line. The order results from the word 
embeddings in the multi-dimensional space of the weighted network based on the CLIP logic 
(Springstein et al. 2021, 2). This relevance view can be sorted by image title or chronologi-
cally, by year. 
 

 

Fig. 10: The search term ‘mountain’ divided into three clusters (screenshot, 2/12/2022). 

An additional mode groups the grid view into clusters. Each cluster formed is given its own 
line, which scrolls infinitely to the right. This display has the advantage that the eye actually 
sweeps through a continuous dataset from left to right and does not have to jump to the next 
line at the page margin, as discussed in the example of the Imgs.ai interface. 
The clusters are formed automatically – in this example with the search term ‘mountain’. The 
clusters are identified by very similar keywords, some of which only differ in order: 

Cluster 1: 110 images – landscapes, trees, mountains, landscape 
Cluster 2: 485 images – landscapes, landscape, oil on canvas, trees 
Cluster 3: 405 images – landscapes, landscape, trees, mountains 

 
Upon inspection, we notice that cluster 1 includes many drawings, predominantly from Japa-
nese culture. These images nearly always contain Japanese characters. Cluster 2 mainly shows 
oil paintings and differs from the other two clusters in its brilliant, high-contrast colouring. 
Cluster 3 contains watercolour paintings, ink drawings, chalk drawings and some photo-
graphs, but also engravings with rather subdued and restrained colours. Colour saturation 
could therefore be one of the criteria according to which the clusters were formed. However, 
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other factors may also play a role in the clustering, such as the sensitivity of the underlying 
language embedding CLIP for specific word groups, or the tendency of weighted networks, 
discussed in Working Paper 2, to distinguish image data based on textures rather than out-
lines as humans would, the phenomenon known as texture bias.8 If the Japanese drawings, 
ink drawings and prints gathered in cluster 1 did not contain Japanese characters, the algo-
rithm may have clustered them differently. We would have to establish this through experi-
mentation.  
In the search entry, the abbreviation EN indicates that an English-language entry is expected. 
However, entries in other languages are possible and produce surprising results (Fig. 11). 
 

    

Fig. 11: Left: Results of the German search query ‘Gebirge‘, with mostly postcard illustrations; Right: Results for 
the English search query ‘mountains’ with mainly paintings (screenshot, 2/12/2022).  

Scatterplot 

The iART interface allows another view of the same dataset by using a scatterplot. The Scat-
terplot reduces the dimensions of the latent data space using the Uniform Manifold Approxi-
mation and Projection algorithm (UMAP) (McInnes, Healy, and Melville 2020), a refine-
ment of the t-SNE algorithm (Springstein et al. 2021, 2).9 UMAP reduces the high dimen-
sional output of weighted networks along the variances of individual dimensions, while 
maintaining the relative distances of the images in the respective dimension as much as pos-
sible.10 “UMAP is derived from the axiom that local distance is of more importance than long 
range distances. […] Multi-dimensional scaling specifically seeks to preserve the full distance 
matrix of the data, and as such is a good candidate when all scales of structure are of equal 
importance” (McInnes, Healy, and Melville 2020, 45). In this context, it is crucial to note that 

 
 
8 Cf. (Geirhos u. a. 2019). 
9 The authors of UMAP point out that UMAP lacks the strong interpretability of the reduction algorithm PCA 
(Principal Component Analysis), which means that one cannot make such strong statements about how the inside 
of the algorithm comes to decisions. “In particular the dimensions of the UMAP embedding space have no spe-
cific meaning, unlike PCA where the dimensions are the directions of greatest variance in the source data.” (McIn-
nes/Healy, 2018, 45).  
10 For novices wishing to gain a better understanding, the following YouTube tutorials are recommended: Principal 
Component Analysis (PCA), Step-by-Step, https://www.youtube.com/watch?v=FgakZw6K1QQ and t-SNE, Clearly 
Explained, https://www.youtube.com/watch?v=NEaUSP4YerM. 

https://www.youtube.com/watch?v=FgakZw6K1QQ
https://www.youtube.com/watch?v=NEaUSP4YerM.


 
 

22 

all dimensional scales are similarly important in UMAP. This is different from PCA and t-
SNW, which use the two scales with the largest variance, then yield the X and Y axes. 
 
 

 
Fig. 12: Scatterplot for the term ‘mountain’ with three clusters (screenshot, 2/12/2022). 
 
 
A visual comparison of different dimensionality reduction algorithms used for scatterplots, 
such as PCA, t-SNE, UMAP, by the McInnes/Healy research team shows strikingly different 
visual results for the same dataset. Thus, the dimension reductions of t-SNE and UMAP dif-
fer in that UMAP's reduced dimensions make clearer delimitations of the groupings among 
themselves than those of t-SNE (McInnes, Healy and Melville 2020, Fig. 4). In practice, ex-
plaining the exact differences to users of the user interface would be going a step too far. 
However, some hints, through explanatory videos for instance, would be helpful because 
most people are not as experienced in reading scatterplots as they are in reading charts such 
as tables (compare Fig. 3). 
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Fig. 13: The view of the clusters can be additionally clarified with coloured dots and colour overlays. Cluster 2 also 
contains pictures with green dots, which therefore belong to cluster 3 (screenshot, 2/12/2022). 

 
In order to make the distributions and affiliations to the respective clusters visible, the im-
ages of the scatterplot are additionally colour-coded with a small, coloured dot in iART. This 
makes clusters visually recognisable, but more importantly it clarifies which outliers belong 
to which cluster. 
 

 

Fig. 14: Three clusters are formed by means of CLIP-embedding (screenshot, 2/12/2022, red captions  
by the author). 
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The advantage of the scatterplot is that in principle all images present in the resulting set can 
be represented. In the grid view, by contrast, the respective cluster set is not completely rep-
resented because the screen width limits it. You can only see what fits on the screen, without 
the possibility of zooming in (Fig 11). 
iART offers numerous other options. In principle, users can import their own image inven-
tories, combine the cluster display with keyword filters and search terms, and in particular, 
make use of an image search (‘Search by Image’) similar to the Imgs.ai project. However, a 
detailed discussion on this topic reaches beyond the scope of the present paper. 
 
iART is a complex research tool that requires more thorough documentation, such as video 
tutorials. iART is an open analysis tool for exploring large image sets and offers numerous 
usage options, which are only briefly presented here. iART needs to provide more guidance 
and explanation on the user face’s extensive range of organisational tools. 

2.4 Vikus Viewer 

Vikus Viewer (https://vikusviewer.fh-potsdam.de) is part of a research project on the display 
of large image sets on websites, based at the Urban Complexity Lab of the University of  
Applied Sciences Potsdam 2014–2017.11 Christopher Pietsch originally designed and pro-
grammed Vikus Viewer for the research project Past Visions (Katrin Glinka, Christopher  
Pietsch and Marian Dörk). His implementation builds on Nikhil Thorat's Teachable  
Machine, based on the machine-learning framework Tensorflow. The project, which was  
released in 2017 and has been under development since 2015, is likely to be one of the earliest 
such approaches not only in Germany but worldwide. 
In the course of workshops, lectures and conferences, the research group investigated inter-
faces and their generalisability. In doing so, they resorted to two ‘classic’ methods for order-
ing knowledge: 1.) temporal ordering and 2.) keywords in objects’ metadata. 
The following section describes another iteration of the Past Visions project, entitled Vikus 
Viewer – Vincent van Gogh. It is based on 986 drawings and paintings by Vincent van Gogh 
(1853–90) from the collection of the Van Gogh Museum, Amsterdam. Like the other collec-
tions Vikus used, this one was curated, meaning that project collaborator Viktoria Brügge-
mann additionally curated and corrected the data from the Van Gogh Museum. In the course 
of user interface experiments in the summer of 2014, designer and programmer Christopher 
Pietsch introduced another method of ordering knowledge – in a scatterplot. Pietsch drew  
on his work with generative design, in particular Kyle McDonald's Module in open frame-
work, which also enabled similarity analysis in the C++ language as part of creative coding 
practices. 
Particularly noteworthy is the approach of publishing the underlying web-based software as 
open source on the Gitlab platform. The sustainability considerations are also reflected in a 

 
 
11 This case refers to the Vikus Viewer – van Gogh, one of many visual research projects of this working group. See 
also https://uclab.fh-potsdam.de/projects and in: Von der Wolke zum Pfad – Visuelle und assoziative Exploration 
zweier kultureller Sammlungen (Brüggemann et. al. 2022). 

https://vikusviewer.fh-potsdam.de
https://uclab.fh-potsdam.de/projects
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conference paper by the authors, who list some minimum requirements: “This primarily  
includes chronological classification and keywording based on a controlled vocabulary.  
In addition, the collection should be digitised in sufficiently good quality (and be available  
as a jpg) so that full use can be made of the zoom function (from overview to detail). The  
required collection data must be available in standardised CSV format” (Glinka, Pietsch and 
Dörk 2017, 205). 

Tabular grid 

In the tabular view, the entire dataset is displayed by year. An additional line contextualises 
the years by noting the artistic periodisation. Above the years are the icons of the corre-
sponding images in the column (Fig. 15). Within any one year, the images are in random or-
der. An order based on similarity, on light-dark values or alphabetically by title would also 
have been possible. In fact, in the default setting, the picture icons are so tiny that colourful-
ness and light-dark contrast are the most visible characteristics. However, a stepless zoom 
feature allows the user to select other image sizes that reveal more detail. 
 
 

 

Fig. 15: Tabular chronological ordering by year and creative period. As in a bar chart, the quantities of paintings 
present in the collection are visible, with the largest number in his final year of life (screenshot, 2/12/2022). 
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Fig. 16: Detail view and metadata of an individual image (screenshot, 2/12/2022). 

The slanted keywords in the top bar function as inclusive filters, so that a user can select to 
display all the images throughout the years that contain metadata with a given keyword, such 
as ‘landscape’. Clicking on an individual images zooms in for a larger view of the image and 
its metadata (Fig. 16).  
 

Scatterplot 

 

Fig. 17: Scatterplot display by similarity for the Van Gogh data corpus (screenshot, 2/12/2022, red captions  
the author). 
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Even at first glance, the scatterplot of van Gogh’s paintings and drawings reveals a clearly  
visible distribution, but we see too much at once and all is too small to make more precise 
statements (see Fig. 18). Zooming in on individual regions reveals a cluster of sketches – 
spreading out from the lower left – with the paper becoming increasingly darker towards the 
top. Paintings increasingly appear from the middle onwards, with a cluster of landscapes in 
the upper right. These are interrupted in the upper right by detailed landscape drawings, 
which are much more elaborate than the sketches, before a series of painted portraits gathers 
in the lower right. This first glance also informs the viewer that the collection of the Van 
Gogh Museum, Amsterdam, consists mainly of drawings and sketches and that the number 
of colour paintings is in the minority. The images do not appear in any form of chronological 
order, although stylistic similarities sometimes result in chronological clusters, such as in the 
outline-like sketches from van Gogh's later creative phase, on the far left. 
 

 

Fig. 18: Clustering of the Van Gogh collection using Vikus Viewer (screenshot, ibid.). 

The image data is distributed by similarity using the activation layer of the ImageNet-trained 
weighted network Mobile-Net.12 We can therefore assume that many of the issues raised in 
the paper “Why so many windows?” – How the ImageNet image database influences auto-
mated image recognition of historical images (Hunger 2023) are applicable, namely in relation 
to the pre-trained shapes in ImageNet (which are inherently unaware of the concept of art), 
the ahistoricity of ImageNet, and the texture bias described by Geirhos et al. 2019. Geirhos et 
al. had determined that for ImageNet-based weighted networks, the mathematical optimisa-
tions respond preferentially to textures. For example, a cat overlaid with elephant skin is clas-

 
 
12 This procedure is similar to the one described in Bönisch 2021, which was also used for the first prototype of 
Training the Archive's The Curator's Machine. 
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sified as an elephant (Geirhos et. al. 2019, 1). In short: texture, as a mode of machinistic-sta-
tistical similarity, influences clustering more than outline, which is the primary mode of hu-
man perception. 
Clustering was based on the activations extracted from ImageNet/MobileNet using the t-SNE 
algorithm. In order to reduce the density of the interface, the research team then added addi-
tional spacing between the images so that they are more widely distributed and create less 
visual overlap. 
 

 

Fig. 19: Selection of all images filtered for the keyword ‘nature’ arranged by similarity in the cluster view (screen-
shot, 2/12/2022). 

In addition to the machine-automated clustering of image data based on statistical pixel sim-
ilarities, Vikus Viewer offers an overlay mode. As with tabular displays, the scatterplot can be 
supplemented with categorical, human-curated information. Selecting one of the categorical 
keywords from the upper filter bar hides the inapplicable images in the scatterplot (and reor-
ganises them in an outer circle). Images categorised by the human-curated keyword remain 
in the same place, so that the relationship between clustering and keyword is visible. This 
view raises questions about the ontology of keywords, but also shows that machine-statistical 
clustering creates new orderings, but not necessarily according to humane criteria. 
One potential options, which we don’t see realised in this early project, but in Imgs.ai for in-
stance, is changing the clustering based upon the selection of negative or positive images. 
Another potential option would be manually grouping certain images via drag and drop 
(changing their weights) and the machine-statistical reaction through recalculating all other 
weights and positions in the cluster.13 

 
 
13 Many statements already made in the corresponding section on iArt’s scatterplot and clustering also apply to the 
Vikus Viewer section. I have not repeated them here. 
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2.5 X Degrees of separation as tabular k-nearest neighbour path 

X Degrees of Separation (https://artsexperiments.withgoogle.com/xdegrees/) is a visual ex-
periment on the Google Arts platform. It is a collaboration between artist Mario Klingemann 
and Simon Doury (Google Cultural Institute), which makes about 250,000 image data objects 
from museum collections available as part of the Google Arts & Culture project (status 2017), 
in the form of Big Data and machine learning. The project invokes another display format: 
the k-nearest neighbour path. In contrast to the overview mode in tables and scatterplots, 
this form of visualisation promises a ‘close reading’ of the visual material. The aim is to un-
fold a narrative using automation, thereby guiding the viewer through the extensive and al-
most unmanageable material and making unexpected connections visible.14 
The interface offers a range of images, from paintings to photographs of objects, to choose 
from. The user selects one image as the starting point and another as the destination, result-
ing in the creation of a nearest neighbour path between the two. 
  

 

Fig. 20: Pathway connecting a self-portrait of Frida Kahlo from 1945 as the starting point to a portrait photograph 
of the artist from 1941 (screenshot, 2/12/2022). 

In the tabular display of X Degrees of Separation, the image heights are adjusted to each 
other so that the original proportions are lost. The algorithm is oriented towards correlation 
in form, such as hair and face, fabric with drapery and relatively monochromatic back-
grounds. It takes users on a wild ride through art history that remains both ahistorical and 
incoherent (Fig. 20). In terms of art history, Frida Kahlo's works could be positioned in rela-
tion to or in distinction from the Mexican Muralists or Surrealism, for instance (Deffebach 
2015). However, these do not appear here at all. Outside this observation, added value could 
lie in the accidental (re)discovery of corresponding artistic positions, but this thesis would 
have to be tested in the scope of a concrete curatorial project. 

 
 
14 An implementation with PyTorch: https://dzlab.github.io/dl/2019/02/02/X-Degrees-Separation/. 
 

https://artsexperiments.withgoogle.com/xdegrees/
https://dzlab.github.io/dl/2019/02/02/X-Degrees-Separation/
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Fig. 21: Pathway leading from a 15th century sculpture by Tilman Riemenschneider to a woman's 20th century  
slipper (screenshot, 2/12/2022). 

In a second example, the bright, monochrome background that serves to highlight the ob-
jects stands out as a constant that presumably helps to make the images k-nearest neighbours 
(Fig. 21). Referring to the effectiveness of texture bias (Geirhos et. al. 2019), we can assume 
that the outline plays a very minor role in the distribution of images in the latent space of the 
weighted networks. This is apparent, when in the penultimate picture, for instance, the shoe 
(intended as an outline) points to the right, whereas in the target picture it points to the left. 
The sculptures are characterised by folds, which also characterise Eugene C. Miller's men's 
boot – a possible explanation for the transition. It is striking that the sculpture by Henry Gli-
censtein is similarly aligned in outline to the boot by Miller that follows it. No art-historical 
connections are discernible. 
 
These two tests provide insight into the potential and limitations of a k-nearest neighbour 
experiment.15 It is certainly suitable for interactive projects in museum collections to  
make lesser-known aspects of a collection accessible to the public. Ultimately, there is  
one consideration to keep in mind: exploration projects do not necessarily have to be  
based on resource-intensive machine learning. The Science Museum of London’s Never  
been Seen project, for instance, presents a technically simpler possibility. On the website 
https://thesciencemuseum.github.io/never-been-seen/, a random generator selects the digital 
copy of an object in the collection that has never been viewed online by a person before.  

 
 
15 Another k-nearest neighbour approach, the cooperation between FH Potsdam and the Staatliche Museen Berlin 
A Visual Exploration of Two Museum Collections (https://visualisierung.smb.museum) is described in detail in 
(Brüggemann et. al. 2022). The questions raised here by the example of X Degrees of Separation apply in a similar 
way to the pathway display in A Visual Exploration of Two Museum Collections. 

https://thesciencemuseum.github.io/never-been-seen/
https://visualisierung.smb.museum
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3 Conclusions 

3.1. Knowledge through observation 

Media visualisations become interactive because the human gazing-as-thinking continually 
creates orders of meaning-generating, which according to media philosopher Sybille Krämer, 
are spatially oriented: “In the diagrammatic inscription, the surface serves as a space of order 
and arrangement, and topological relationships such as above/below, left/right, central/ 
peripheral become components that constitute meaning. There is no writing without a read-
ing and writing direction, no diagram without an orientation [...]” (Krämer 2010, 36). One  
of the effects of diagrammatic arrangement is that the two-dimensional surface enables a 
simultaneous presence that homogenises the information objects. Krämer argues that hu-
mans, starting from their own physicality, gain knowledge by means of directionality, i.e. 
they create meaning through orders, arrangements and patterns. 
The process of human recognition is essentially based on visual similarities. The eye and 
brain recognise the edges of objects and the components, and the more context there is, the 
better, facilitating the recognition of even previously unseen objects (Biederman 1987). In the 
process of seeing-recognising, the eye sweeps over the surface and identifies distinctions or 
similarities based on proximity and distance. During this process, similarity and proximity 
have an additive effect on human recognition performance (Kubovy and van den Berg 2008).  
Recent research supposes a multistage vision-cognition that includes moments of encoding, 
selection and decoding of visual information. Central to this process is that the brain blocks 
out a large part of the image context – in favour of individual components, on which it sub-
sequently concentrates for decoding (Zhaoping 2019). 
In summary, we can state for media visualisations that the wandering human gaze is  
capable of generating new knowledge by means of visual similarities and spatial allocations 
and that this cultural-technical process of observation is shaped by media, history and cul-
ture. Hence, the user interface of The Curator's Machine, as a knowledge tool comparable to 
Latour's ‘laboratory’ (Latour 1987, 63–101), is involved in the generation of new knowledge. 
Special attention must be paid to the experimental set-up of the ‘lab’, i.e. the design of the 
user interface. 

3.2 The limits of clustering 

What is surprisingly obvious is that the issues developed here in the material coincide with  
a more fundamental problem of big data and artificial ‘intelligence’: “In claiming that data 
make decisions, scientists and others displace multiple forms of ideologically influenced  
subjectivity that are heavily involved in the curation of datasets, selection of available codes, 
algorithms, parameters, and the labeling of known data” (Dobson 2019). The more the inves-
tigation of the case studies progressed, the more the question arose as to whether scatterplots 
are capable of saying anything at all about the underlying data.  
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The tests showed that while clustering based on similarity was partially interpretable, other 
information, such as trends, which become visible in classic scatterplots through linear re-
gression lines and labelling of the scales, were not available. Thus, the scatterplots examined 
here often remain enigmatic and are difficult to interpret. This problem runs through all the 
case studies I have examined and requires further research. 
We should take this observation a step further. The information design theorist Edward 
Tufte noted with urgency in 1983 in his standard work The Visual Display of Quantitative In-
formation: “Graphics must not quote data out of context” (Tufte 1983, 74). But the question 
as to what the context of scatterplots without scale labelling is remains open, as information 
designer Michael Correll polemically notes in a blog post: “Nobody with any actual connec-
tion to your data knows what the axes of the resulting chart mean beyond a very basic folk-
algorithmic ‘these points are close together so I guess they are similar,’ and you could have 
communicated that information directly with hierarchical clustering or an adjacency matrix 
or something other than whatever unique set of linear algebra or machine learning dark 
magics you had to do to make your weird, uninterpretable, scatterplot” (Correll 2022).  
Tufte’s dictum and Correll’s critique draw particular attention to the absence of graphic con-
text (which would provide meaning) in today's visualisations from weighted networks. 
 

 

Fig. 22: In this example we can see clustering’s arbitrary similarity in the example of the t-SNE map experiment. 
The photographed objects from various collections (spoons, tools, instruments) have been ordered according to 
the colour of the image background: white at the top, greenish-grey in the middle, grey dark-grey at the bottom. 
(Screenshot Google Arts & Culture, t-SNE Map).  

Clustering without scales does not yield any information about the two dimensions accord-
ing to which the points of the cluster are represented (Sarikaya and Gleicher 2018, 5). We can 
therefore read it in two ways: 1.) Intuitively as a statement about the correlation between the 
data points and 2.) as a statement about the inner configuration of the weighted networks. 
This results in an interpretational problem. Since no parameters are given, viewers have no 
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idea what the diagram is presenting to them. Is it the correlation of data points? Or is it the 
inner structure of the underlying weighted networks, the convolutional ‘neural’ networks? 
 
Despite these fundamental doubts, all is not lost. After all, scatterplots serve as excellent ex-
ploration interfaces. To a certain extent, they are able to compensate for the disadvantage  
of tabular displays, in which correlation is expressed by sequence, which in turn is distorted 
by arbitrary line breaks. The distributions of scatterplots allow – starting from a centre –  
spatial orientations in numerous reading directions and thus a higher degree of visual free-
dom than the orientation in the table row, which points in only one direction. The almost 
random arrangement of similarity distributions in scatterplots proves advantageous when  
it occurs in conjunction with categorical ordering principles (filters, search functions, etc.) 
and visual zoom options. In this case, it is possible to counter the inherent visual problems  
of tabular display, especially faulty visual hierarchies. 
However, scatterplots come with their own set of problems, because, as in the underlying 
weighted networks (the convolutional neural networks), how ‘similarity’ is actually consti-
tuted remains intransparent. The knowledge gained from ‘similarity distributions’ is there-
fore limited. Other visual metaphors or ordering principles should be further explored. These 
would presumably also have to relate more strongly to the categorial ontologies, which are 
inscribed in collection objects in digitisation (as metadata) but are eliminated in the multi-
dimensional space of weighted networks (especially the convolutional neural networks). 

3.3 Practical implications for the further work of Training the Archive 

The Curator's Machine being developed in the scope of Training the Archive will only be 
able to address some of the issues raised through new approaches. For more fundamental 
new visual solutions, a different and much more extended research design is needed. The  
following section identifies some practical conclusions and suggestions: 
 
Concepts: The user interfaces, which visualise non-trivial concepts of machine learning be-
yond tabular (and thus practised) displays, use concepts such as ‘k-means clustering’, ‘global 
weights’, or ‘distance: angular/Manhattan’. These new ordering concepts have not yet been 
adequately explained and documented in the user interfaces. Their effect can at best be deter-
mined by trial and error – hence the need for better documentation and/or explanation of 
these options. 
Discrimination: In some projects, discriminatory language, such as the racist terms ‘negro’, 
or sexist descriptions like ‘slut’ or ‘bitch’, generated relevant hits. This highly problematic  
behaviour affected both projects with historical ontologies, and projects with word-embed-
dings such as CLIP. Of the case studies examined, only the narrowly defined and curated 
projects of the Vikus viewer were immune to these discriminatory language and image  
politics. 
Language Embedding: Switching language from English to German, as has been shown,  
creates changes in media – from paintings of mountains to postcard views of mountains, for 
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instance. Users should therefore be better informed about the working language of the  
embeddings. Alternatively, it may be useful to limit the languages to a single language. 
Correlation line: A visible correlation line within the clusters would provide orientation as  
to how strongly the individual data points are oriented towards the (statistical) mean. 
Outliers: A filter view that only shows outliers, i.e. data points that are far away from the 
mean of a cluster, would be helpful so that they can be inspected individually. 
Scale: Displays of the images in relation to each other are not to scale, as all objects are  
adjusted to a uniform dimension. A possible solution would be to indicate the degree of  
reduction as a percentage in the images (as an overlay). 
Drag & Drop and Grouping: One display function that would be desirable from the user’s 
point of view is interactive sorting via drag-and-drop in order to group items. This would be 
similar to the Imgs.ai project’s visual search function, in which the positive or negative selec-
tion of images results in a reordering of the latent space. According to the current goals, the 
drag-and-drop option for The Curator's Machine is to be interactively interconnected with 
the recalculation of visual similarities and enable further options, such as visual groupings.  
Help/maintenance: Only some of the projects listed have institutionalised technical support. 
We were able to reach the project leaders of the projects that were still in the experimental 
stage, and they responded when availability allowed. As a result, Training the Archive needs 
to initiate a permanent hosting solution and institutionally based technical contact persons 
in cooperation with the RWTH. 
 
Interactive media visualisations like the ones presented here enable an interplay between 
cognitive operations. They do so by interpreting the collection objects diagrammatically as 
data objects (first layer), operationally (second layer), and via a graphical user interface (third 
layer) through user interventions. Conversely, user interfaces can be ‘read’ in terms of which 
cognitive operations they offer to establish relations: selecting, filtering, sorting, ordering, 
grouping, summing, comparing similarities. 
Tables, scatterplots and k-nearest neighbours – what they have in common is spatial distri-
bution as a visual argument that aims at generating knowledge. At the same time, it became 
obvious to what extent the visualisations are reductions and reconstructions of reality. These 
lead to an interpretation problem when using convolutional weighted networks, since it  
remains unclear when looking at scale-free diagrams which parameters have been set in  
relation to each other. Therefore, it also remains unclear whether the viewers actually see 
similarities of data points or rather interpretations of the configurations of those convolu-
tional weighted networks that were used for the calculation. 
This text has conducted a close, critical reading of user interfaces based on numerous case 
studies. The tabular display and the distributed media visualisations in scatterplots were at 
the centre of this discussion. From the preceding considerations, we require more research 
on visualising the results of artificial ‘intelligence’. 
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