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Abstract. Software testing is an important part of engineering trust-
worthy information systems. End-to-end testing through Graphical User
Interface (GUI) can be done manually, but it is a very time consuming
and costly process. There are tools to capture or manually define scripts
for automating regression testing through a GUI, but the main challenge
is the high maintenance cost of the scripts when the GUI changes. In
addition, GUIs tend to have a large state space, so creating scripts to
cover all the possible paths and defining test oracles to check all the ele-
ments of all the states would be an enormous effort. This paper presents
an approach to automatically explore a GUI while inferring state mod-
els that are used for action selection in run-time GUI test generation,
implemented as an extension to the open source TESTAR tool. As an
initial validation, we experiment on the impact of using various state
abstraction mechanisms on the model inference and the performance of
the implemented action selection algorithm based on the inferred model.
Later, we analyse the challenges and provide future research directions
on model inference and scriptless GUI testing.
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1 Introduction

The world around us is strongly connected through software and information
systems. Graphical User Interface (GUI) represents the main connection point
between software components and the end users, and can be found in most
modern applications. Testing through GUI is an important way to prevent end
users from experiencing the effects of software bugs. Although GUI testing can
be done manually, it is a very time consuming and costly process [14]. There
are various tools to capture or manually define scripts for regression testing of
GUIs, but the main challenge is the high maintenance cost of the scripts when
the GUI changes [25]. In addition, GUIs tend to have a large state space, so
creating scripts to cover all the possible paths and defining test oracles to check
all the elements of all the states would be an enormous effort.

Scriptless GUI testing aims to lower the maintenance costs compared to
scripted testing. In scriptless testing, there are no scripts that define the se-
quences of test steps prior to test execution. Instead, the testing tool decides
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on-the-fly during test execution which test steps are being executed, based on
the action selection mechanism (ASM) being used. Although there are no test
scripts to maintain, there might be some system specific instructions for the tool
that require maintenance.

testar (testar.org), an open-source tool for scriptless GUI testing, is based
on agents that implement various ASMs. The underlying principles are very
simple: generate test sequences of (state,action)-pairs by starting up the System
Under Test (SUT) in its initial state, and continuously select and execute an
action to bring the SUT into another state. Various case studies have shown
that testar effectively complements the existing manual practices and can find
undiscovered failures in a SUT with reasonably low setup costs [27]. However,
testar suffers from not knowing exactly what has been tested, failing to give
test managers the information they need for decision making.

In [13, 27], the first steps are described towards an extension of TESTAR to
infer state models during GUI exploration. This feature allows creating a map
of where in the SUT the tool has been and what it has done during testing. De
Gier et al. [13] use the model to define offline oracles (i.e., after testing) that
consisted of querying the model for accessibility information. However, inferring
state models can be purposeful for TESTAR in various other ways. For example,
the inferred models can be used for TESTAR’s ASMs during and after the model
inference, or defining various types of offline oracles that are based on comparing
models between different releases or versions of a System Under Test (SUT).
The models could also serve as visual reference models for testers or users, or be
valuable for model-based GUI testing (MBGT) tools [3]. MBGT has not been
widely adopted, because creating the models requires modelling expertise and
a lot of effort [7]. If we can infer even initial models, these problems might be
(partially) solved.

There are a few existing approaches for inferring models during automated
exploration of the GUI that are described in Section 2. However, automated GUI
exploration is challenging, and existing tools are mostly academic prototypes or
abandoned open source projects. State space explosion is still an open challenge
for the inference of state-based models through GUI. Most programs with a GUI
have a huge number of possible states, and to make the size of the models man-
ageable, some information has to be abstracted away. It is challenging to define
a suitable level of abstraction and find an equilibrium between the necessary
expressiveness of the extracted models and the computational complexity [19].
Abstracting away too much information might make a model unsuitable for its
purpose (i.e., ASM, MBGT, oracles, etc) and lose opportunities to discover faults
and changes between versions. Abstracting away too little information might re-
sult in state space explosion, making the model less suitable for its purpose. Most
of the related work does not explain in sufficient detail how they deal with the
abstraction, raising questions whether their solutions are generally applicable or
simply tailored for the applications used in validation.

The main contributions of this paper are:

– A description of the model inference functionality implemented into TESTAR.
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– A new algorithm for ASM based on the inferred model.
– An initial validation of the test effectiveness of the new ASM in terms of code

coverage and reached states.
– An initial validation of the approach by experimenting on how various ab-

straction mechanisms affect the inferred models.

The rest of the paper is organised as follows. Section 2 presents related work.
Section 3 presents TESTAR and our approach to infer state models. Section 4
presents the use of models for action selection and experiments on the test ef-
fectiveness of the implemented ASM. Section 5 describes the experimentation to
find out how various abstraction mechanisms affect the inferred models. Section
6 analyses the findings and challenges, and provides future research directions.
Finally, Section 7 presents the main conclusions.

2 Related work

The earliest automated GUI testing tools were so called capture and replay
(C&R) tools. Using them, a test engineer manually inputs all the interactions
by using mouse and keyboard while having the tool recording the test case.
Afterwards, the test sequence could be executed automatically as part of a re-
gression test set. The main advantage of C&R tools is that they are easy to use
and testers do not have to write test scripts by hand. The disadvantage is that
the recorded scripts are fragile for GUI changes and maintenance of the scripts
is costly since the out-dated test cases have to be manually recorded again [23].

Model-based GUI testing (MBGT) [3, 11, 16] aims to reduce the effort for cre-
ating and maintaining the test scripts by generating the test cases from a model.
MBGT approaches require that the GUI and its expected behavior is modelled
on a higher level of abstraction than the GUI itself. The modelling language
should be understandable by a tool that uses it to automatically generate tests.
An advantage of this type of testing is that it is possible to precisely specify
the exact test specifications that a GUI should conform to. Another advantage
is that when the GUI changes, the test scripts do not have to be manually up-
dated. Instead, the model is updated and the scripts/tests are generated again.
The main disadvantages are that model-based GUI testing approaches require a
deep knowledge of the application domain and expert knowledge of formal mod-
elling methods and languages to manually create a model of the GUI. Modelling
requires also quite a lot of time and effort.

There are a few GUI testing approaches that allow automated GUI model in-
ference, a.k.a., GUI ripping [20] or GUI reverse engineering [15]. We can roughly
distinguish 3 forms of automated model discovery: (1) static analysis, (2) dy-
namic analysis and (3) a hybrid combination of both static and dynamic tech-
niques [17, 4]. Model inference through static analysis uses the program’s source
code to infer a model of the GUI [26, 12]. Static techniques concentrate only on
the structure of the GUI, not taking the run-time behaviour of the GUI into
consideration in the model.
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Fig. 1: TESTAR operational flow to generate sequences of (state,action)-pairs
by starting up the SUT and continuously select and execute an action to bring
the SUT into another state.

The dynamic model inference approaches analyse the GUI while the system
is running [6]. To automatically explore the GUI, APIs or libraries are used to
get access to all the GUI elements in a specific state of the application. To create
a model, these tools are able to recognise whether the application is in a state
that the tool has already visited before, or whether the state is being visited for
the first time. Examples of tools using model inference through dynamic analysis
are GUITAR [24], GUI Driver [5], Crawljax [21], Extended Ripper [8], GuiTam
[22] and Murphy Tools [6]. Some approaches, e.g., [18], combine dynamic and
static analysis for model extraction. As mentioned, the challenge that has to be
solved for all these tools is to define a suitable level of abstraction for the model
inference that ensures that the model is useful for its purpose (e.g., ASMs, offline
oracles, visualisation of testing, etc). Most of the related work does not explain
in sufficient detail how they deal with abstraction. In this paper, we will make a
first attempt to research how the abstraction level affects the results when using
the models.

3 State model inference for TESTAR

The operational flow of TESTAR is shown in Fig. 1. When the SUT has started,
TESTAR captures the current state of the GUI using APIs like Windows Au-
tomation API (WUIA) (for desktop), Selenium Web Driver (for web), or the
Java access bridge (for Swing). This (concrete) state consists of all the proper-
ties (that are available through the API) of all the widgets that are part of the
GUI. Subsequently, to derive the actions that it is able to perform in that state,
it cycles through all the widgets and adds all possible actions associated with the
widgets to a pool. Sometimes, if the SUT includes custom widgets and the API
does not detect all the widget attributes, the user has to provide TESTAR with
some extra configuration to detect all the available actions correctly. From this
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Fig. 2: TESTAR operational flow including model inference

action pool, one is selected by the ASM of TESTAR and executed. TESTAR has
several ASMs available, for example based on random, prioritising new actions,
or execution count [10].

After the action has been executed and the GUI has reached a new state,
TESTAR will again capture the new state and derive, select and execute an
action. This process repeats until the specified stop condition, for example the
test sequence length or the occurrence of an error condition, is reached.

State abstraction is an important facet of scriptless GUI testing. TESTAR
has an implementation to calculate state identifiers based on hashes over a se-
lected set of widget attributes. This selected set defines the abstraction level.
The abstraction level determines the number of different states TESTAR will
distinguish. This can evidently influence test effectiveness and is related to the
equilibrium explained in Section 1. To gather evidence about the suitable set of
widget attributes for state abstraction, we run experiments that are described
in Section 5.

TESTAR uses dynamic analysis techniques to infer a model. The flow for
capturing the state model is depicted in Fig. 2. The state of the SUT is constantly
saved into the OrientDB graph database together with available actions and the
executed action. The state model can be queried by an ASM, like in Section 4,
but also by a human, an offline oracle, or other MBGT approaches.

As indicated, the model will be built incrementally with subsequent TESTAR
runs. All states (concrete and abstract) that are visited during a run are stored
in the database. For analysis and reporting, the structure of the inferred model
is divided into three layers as shown in Fig. 3.

The top layer is an abstract state model. It allows for example ASMs to
use the model for action selection, or end users to analyse the behaviour of the
SUT. Creating the abstract model requires the identification of unique states at
a suitable abstraction level. As indicated, this means trying to avoid state space
explosion, while simultaneously not losing the purposefulness of the model. Too
abstract states can introduce non-determinism in the inferred model.
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Fig. 3: Layered design of the state model

Fig. 4: Visualization of an example model inferred by TESTAR

The mid layer is the concrete model. This model contains all the information
that can be extracted through the APIs used by TESTAR. The concrete state
model will contain too many states to drive the execution of TESTAR or serve
as a visual model for humans. It will serve as information storage, e.g., when a
specific part of the abstract model requires deeper analysis. Each concrete state
of this layer will be linked to an abstract one in the top layer, and each action
will be linked to an abstract transition.

The bottom layer is the management layer, and its purpose will be to record
meta information about the executed test sequences. Where the abstract and
concrete layers describe the SUT, the management layer describes the execution
of the tests in TESTAR. The individual test sequences will be linked to the
concrete states and actions of the middle layer.

Fig. 4 shows an example of the layered model, where the SUT was extremely
simple (only 3 abstract and 3 concrete states). The management layer has in-
formation about the exact sequence generated by TESTAR. During the model
inference, when TESTAR arrives to a new state and discovers actions that have
not been executed before, we use “BlackHole” state as their destination to mark
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Algorithm 1 ASM statemodel: select an unvisited action

Require: s . The state the SUT is currently in
Require: State Model . The state model that is being inferred
Require: path . Path towards an unvisited action
1: if path 6= empty then . ASM is following a previously determined path
2: a ← path.pop() . Selected action is next one on the path
3: else . If the path is empty, we will create a new one to an unvisited action
4: reachableStates = getReachableStatesWithBFS(s,State Model )
5: unvisitedActions ← empty
6: while (unvisitedActions == empty ∧ reachableStates 6= empty) do
7: s′ = reachableStates.pop()
8: unvisitedActions ← getActions(State Model, s′,unvisited)
9: end while

10: if unvisitedActions 6= empty then . Unvisited actions found with BFS
11: ua ← selectRandom(unvisitedActions) . Randomly select an unvisited
12: path ← pathToAction(ua) . Calculate path from s to walk to ua
13: a ← path.pop() . Selected action in s is next one on the path to ua
14: else . No unvisited action found with BFS
15: availableActions ← getActions(State Model, s,all) . Get all actions in s
16: a ← selectRandom(availableActions)
17: end if
18: end if
19: return a

unvisited actions. When a previously unvisited action is visited and TESTAR
observes the SUT behaviour, the destination of the executed abstract action is
updated with the observed abstract state.

4 Using the inferred models for action selection

TESTAR was extended with a new ASM (ASM statemodel). The algorithm
prioritises actions that have not yet been visited and can be found in Algorithm
1. The goal is to select a new action when in state s. It uses the State Model and
maintains a path of actions that leads to a specific unvisited action it wants to
prioritise. If a path has been previously identified (i.e., path is not empty, line
1), the ASM just selects the next action on that path. If the path is empty, the
ASM will try to find an unvisited action. It does so by searching (in BFS order)
for unvisitedActions (line 8) from all the states that are reachable from s in the
state model (line 4). Since s is reachable from s in 0 steps, s itself is the first state
that gets checked for unvisited actions (line 7). If unvisited actions are found, it
randomly selects one (ua, line 11) and updates the path to the state where that
action can be found (line 12). Then it selects the first action that leads towards
that action (line 13). If no unvisited actions are found, the ASM just randomly
selects an action from those available in state s.
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Table 1: Java Access Bridge properties and the possible impact of using the
attribute for state abstraction in Rachota

Attribute API Abstract representation impact

Title name Visual name of the widget. In Rachota this is a dynamic
attribute because widgets update the current time.

HelpText description Tooltip help text of the widget. In Rachota this at-
tribute is static.

ControlType role Role of the widget. Cannot always distinguish different
elements, and hence can cause non-determinism.

IsEnabled states Checks if the widget is enabled or disabled.
Boundary rect Pixel coordinates of the widgets’ position. Even one

pixel change would result in a new state, so it was
considered too concrete for the experiments.

Path childrenCount
+ parentIndex

Position in the widget-tree. Useful for differentiating
states based on the structure of the widget tree.

To measure the performance of the new ASM statemodel, we research the
following question: How do different levels of abstraction affect the automated
GUI exploration of ASM statemodel as compared to random (ASM random)?

GUI exploration is measured in terms of code coverage (instruction and
branch) and the number of discovered states. Code coverage is measured us-
ing JaCoCo [1]. These metrics are collected after each executed action. To be
able to measure code coverage, we use open source Rachota [2] as our SUT. It is
a Java Swing application for timetracking different projects. It has the following
characteristics:

Java Classes 52
Methods 934
LLOC 2722
Classes incl. Inner classes 327

Each test run contains one sequence of 300 actions, which is enough [10] to
show the differences between ASMs. To be able to form valid conclusions and to
deal with the randomness, we repeat each test run 30 times [9].

To define different abstraction levels, we need to select attributes from the
available ones. In Table 1 are the widgets attributes from the Java Access Bridge
API that are implemented in TESTAR for Java Swing applications. We investi-
gated 4 levels of abstraction:
1. Abstract: ControlType (cf. was defined in [13])
2. Intermediate: ControlType, Path
3. Dynamic: ControlType, Path, Title (including the dynamic attribute Title)
4. Customised Abstraction: ControlType, Path, HelpText, IsEnabled (this one

was customised for Rachota following the impacts described in Table 1)
The results of the code coverage measurements are in Fig. 5. They clearly

show that the level of abstraction affects the GUI exploration performance of
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Fig. 5: The code coverage (%) that was reached when comparing ASM random
with 4 different abstraction levels of the ASM statemodel

the ASM statemodel. Having too high or too low level of abstraction nega-
tively impacts the performance. However, the ASM statemodel outperformed
ASM random, even with a less suitable abstraction. This means that model-
based ASMs are a promising way to improve effectiveness of scriptless testing.

To investigate the impact of the changing levels of abstraction used in the ex-
periments on the number of abstract and concrete states created, we run longer
test runs of 3000 actions, again run 30 times for each configuration. The results
are shown as a box plot in Fig. 6. Results show that too concrete level of abstrac-
tion creates almost as many abstract states as concrete states. As expected, the
customised level creates more abstract states compared to abstract and interme-
diate configurations, but significantly less than the dynamic one. The customised
level finds most concrete states, which indicates slightly better GUI exploration
capability and matches the code coverage results.

5 Defining a suitable level of abstraction

The challenge is to select a suitable subset of widget attributes for state abstrac-
tion that does not cause state-explosion. Since non-determinism of the resulting
model negatively impacts its usefulness for ASMs, we run experiments to re-
search the following question: Can we identify widget attributes that, when used
in state abstraction, generate deterministic models?

The SUT used is the desktop application “Notepad”, specifically version
1909, OS Build 18363.535. We use Notepad because it is a Windows desktop
application and hence we can use the Windows Automation API that gives us
over 140 attributes to choose from. That gives more choice compared to the 6 at-
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Fig. 6: The number of abstract states (top layer) and concrete states (mid layer)

tributes of the Java Bridge from Table 1. For testing, we use the ASM statemodel
from Algorithm 1.

We have seen in the previous section (and Figure 6) that widget attributes
used for abstraction should not be dynamic because they lead to state space ex-
plosion. Dynamic attributes are not stable because they can change their value
during, or in between, runs without a detectable reason. Potentially stable at-
tributes selected for our experiment are in the first column of Table 2.

First, we run an experiment with only one attribute in the state abstraction.
A test run consisted of 4 sequences, with a maximum of 50 actions per sequence.
Running some initial tests, these values showed to be enough to detect non-
determinism. We run 12 consecutive test runs for each widget attribute because
we have 12 Virtual Machines (VMs) available. Table 2 shows the results. Dis-
played are the used widget attributes, the average number of generated test steps
executed in the test for each attribute, and the total number of steps taken in
each test run, before non-determinism was encountered. The results are ordered
by the total number of steps executed over all 12 tests, starting with the widget
attributes that “lasted the longest” before the model became non-deterministic.
Although none of the models that were generated were deterministic, WidgetTi-
tle, WidgetBoundary and WidgetHasKeyboardFocus attributes noticeably stand
out from the other attributes by the average number of steps executed.

Second, we run an experiment with two attributes in the state abstraction.
Combining 2 widget attributes, gives 171 possibilities. Instead of doing 4 test se-
quences of 50 steps each, we upgraded the number of actions per sequence to 100.
The reason for the upgrade was the hypothesis that these combinations should
last longer before the state model inference module encounters non-determinism.
Each combination is tested 16 times, making for a total of 2736 test runs. In
summary, none of the 171 combinations was able to produce a deterministic
model. Moreover, after the 48 best performing combinations, the average num-
ber of steps executed per test run declines quickly. Within these 48 combinations,
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Table 2: Number of generated test steps before the model became non-
deterministic using a single widget attribute for state abstraction.

Attribute Avg Total

WidgetTitle 95.5 14,74,74,79,79,92,92,93,108,136,145,160
WidgetBoundary 90.6 5,61,64,77,79,83,84,103,105,115,155,156
WidgetHasKeyboardFocus 82.1 38,55,67,68,70,72,78,87,100,105,118,128
WidgetIsKeyboardFocusable 21.6 9,12,14,16,17,17,19,20,26,28,28,53
WidgetSetPosition 20.4 10,11,12,12,13,16,18,21,21,22,26,63
WidgetIsContentElement 20.3 7,9,14,15,17,17,18,21,24,27,35,39
WidgetIsOffscreen 19.7 6,9,11,14,14,15,15,18,19,27,29,59
WidgetGroupLevel 19.1 7,10,11,11,12,13,15,18,22,29,33,48
WidgetClassName 19.0 11,11,15,16,17,19,19,19,21,22,26,32
WidgetIsControlElement 16.9 8,11,11,12,13,13,16,16,20,24,28,31
WidgetIsEnabled 16.8 7,8,14,15,15,16,16,19,19,20,25,28
WidgetControlType 16.3 8,13,13,13,13,13,17,17,18,19,25,27
WidgetOrientationId 16.2 8,9,12,13,16,16,17,19,19,21,21,23
WidgetIsPassword 15.8 6,10,10,12,14,14,17,17,19,20,22,28
WidgetZIndex 15.6 9,11,12,12,13,14,15,16,16,19,22,28
WidgetIsPeripheral 15.4 7,8,9,13,14,14,16,19,20,21,22,22
WidgetSetSize 15.0 7,9,10,12,14,15,16,17,17,18,21,24
WidgetFrameworkId 15.0 8,11,12,13,13,14,15,16,17,18,21,22
WidgetRotation 14.7 8,9,12,12,13,14,16,16,16,20,20,20

we find that there are 3 attributes that occur 17 times, where as the next best
attribute occurs only 3 times. The 3 best performing attributes are again: Wid-
getTitle, WidgetBoundary and WidgetHasKeyboardFocus.

For our next experiment, we used the combination of these 3 and run this
combination 16 times. Unfortunately, none of the test runs made it to the full
400 possible steps. Moreover, the average and median are lower than the highest
results from the 2 attribute combinations.

In our next experiment, we tried using combinations of 5 attributes, selecting
the 3 highest scoring attributes from the 2 attribute experiment again, and then
adding on all the possible combinations of 2 widget attributes from the other 16
attributes. This gives us a total of 120 combinations and we run each of them
8 times. Again, no combination resulted in a deterministic model. Surprisingly,
the more concrete abstraction using five attributes resulted non-determinism
faster than three attributes in the previous experiment. This is probably due to
dynamic nature of some of the attributes.

As the use of 5 attributes for abstraction also resulted in non-determinism, we
opt to make the model even more concrete by incorporating all 32 of the control
pattern properties into our tests. To make some headway, we will take the 3
high scoring general properties again (WidgetTitle, WidgetHasKeyBoardFocus
and WidgetBoundary), and combine them with all the combinations of 2 control
patterns. This results in 492 possible combinations, and running each one 8 times
makes a total of 3936 test runs.
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(a) Notepad ’Replace’ dialog (b) Notepad ’Cannot find’ popup

Fig. 7: Notepad examples of non-determinism

Several widget combinations were able to reach the limit of 400 sequence
actions without encountering non-determinism in the model, and all of these
combinations included the ‘Value‘ control pattern. Even though some combina-
tions made it to 400 sequence steps 3 or 4 times out of the 8 test runs, they also
encountered certain actions that led to non-determinism in the model. ‘Value‘
pattern is a very ‘concrete‘ attribute: 1) Using the ‘Value‘ pattern can lead to
models of infinite size, in the case that the application accepts text input that
is not bounded. Hence, ideally, we would like to not use it in our abstraction
mechanism. 2) Even while using this very concrete widget attribute, we still
encountered plenty of non-determinism in the state models.

Analysing the reasons for non-determinism, we found actions that lead to
different states depending on the history of actions and states traversed before.
For example, in Notepad, if the ‘Replace’ option in the ‘Edit’ menu is clicked, the
‘Replace’ dialog is opened (see Fig. 7a). If the text written in the ‘Find what’ field
is not found in the Notepad document, clicking ‘Find Next’ or ‘Replace’ buttons
will result in the same popup dialog (see Fig. 7b), having only an ‘OK’ button.
Clicking that button will lead back to ‘Replace’ dialog, but the focus remains
on the button that was pressed before, and if WidgetHasKeyBoardFocus was
used in the state abstraction, clicking the ‘OK’ button leads to 2 different states
based on the action that was taken in the previous state. In this case, altering
the abstraction level by adding more widget attributes would not remove the
non-determinism, because the concrete states for the 2 visitations of the popup
screen are also the same.

5.1 Including the predecessor state

Another solution we can try is to incorporate the state’s incoming action into
our state identifier [6]. In some situations, the state could depend on the previous
state, requiring taking the previous state into account in the state identification
algorithm. Consequently, we decided to include the predecessor state and the
incoming action in the state abstraction.

The first experiments run with all the combinations of widget attributes
used in the experiments from Section 5 including the previous state identifier.
Non-determinism related to viewing the status bar was still happening.
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Subsequently, we included the incoming action in addition to the previous
state in the abstraction identifier. Using the same attributes as the experiments
in Section 5 allowed for comparison of the results. The average number of steps
executed before encountering non-determinism increased significantly when us-
ing 1 or 2 widget attributes and including the incoming action. However, with
more widget attributes, the results seemed to get worse, probably because in
those experiments the widget attributes were selected for their good performance
without incoming action. With incoming action, the best performing widget at-
tributes were different. When executing the experiments including pattern at-
tributes with incoming action, the combination of the ValuePattern and the
‘incoming action‘ seems very successful. In fact, the following 3 combinations
did not encounter any non-determinism during their 8 test runs of 400 actions:
1. Boundary, HasKeyboardFocus, LegacyIAccessiblePattern, Title, ValuePattern;

2. Boundary, DropTargetPattern, HasKeyboardFocus, Title, ValuePattern;

3. Boundary, ExpandCollapsePattern, HasKeyboardFocus, Title, ValuePattern.

As some of the detected cases of non-determinism were due to various length
of text inputs, we run an additional experiment disabling input actions, only
allowing left click actions. We found that the average number of executed steps
before encountering non-determinism was increased. However, the model may
be partial, and some functionality of the SUT may be excluded from the model.

After running more experiments on trying to produce a deterministic model,
we had to conclude that it is not a trivial effort. Also, the quest for inferring
a deterministic model by making the abstraction more concrete resulted with
huge increase in the number of abstract states. We discuss the implications on
possible future research directions in Chapter 6.

6 Findings, challenges and future research directions

6.1 State abstraction

Our first finding is that tuning the abstraction level for model inference seems
to be highly dependent on the specific SUT. While tuning the abstraction level,
the following SUT-specific characteristics should be taken into account:
– Dynamic increment of widgets: In some applications, for example Rachota,

we can find dynamic lists of elements on which we can constantly add new
items. This constantly creates new widgets and states in the model causing a
state and action explosion.

– High number of combinatorial elements: In some applications, for exam-
ple Notepad, we can find multiple scroll lists with a large number of different
elements, and from a functional point of view it is not important to cover all
of these options (for example, Notepad Font selection).

– Slide actions: In some applications where scrolling actions are required, the
exact scrolling coordinates from start to end can cause a change in the number
of widgets visible in the state. Depending on the state abstraction and how the
widget tree is obtained, this can create new states and cause a high number
of combinatorial possibilities.
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– Popup information: In some applications, for example Rachota, a descrip-
tive popup message may appear for a few seconds in the GUI when the mouse
is hovered over some of the widgets. This could result in a new state for the
model, and it might cause non-determinism, if the hovering over a widget was
not an intentional action that was executed on purpose.

A second finding is that trying to produce a deterministic state model is far
from a trivial effort. There are various options to address the challenges of non-
determinism in the inferred models. 1) The first could be to let the models have
non-determinism and deal with it when using them. For action selection this
means that we have to be able to detect when the modelled behaviour differs from
the observed behaviour, and temporarily change the action selection to prevent
getting stuck during GUI exploration. Another solution, and an interesting future
research topic, could be using the concrete state model to navigate through states
that have non-determinism in the abstract state model. 2) The second option
would be to try to infer a deterministic model. This would require more SUT-
specific ways to dynamically adjust the abstraction, for example based on the
type of the widget, or even based on a specific widget in a specific state. TESTAR
currently allows triggered behaviour that overrides normal action selection, so
we plan to implement a similar way to trigger change in the calculation of state
identifiers, for example ignoring a specific widget during the state abstraction. An
example of a widget to be ignored from the state model could be a dynamically
changing advertisement in a website. 3) A third option could be to correct non-
deterministic models after run-time. Nevertheless, we have not seen this kind of
technique used in a model-based testing tool yet.

Other interesting future research directions include automatically adjusting
the level of abstraction, analysing the screenshots in addition to the attributes
of the widget tree, and/or visualising the results of state abstraction for the user
and learning from the user input to find a suitable level of abstraction.

6.2 Applying the inferred models in testing

One of the core objectives for this work was to use the inferred models for a new
action selection mechanism (ASM) for TESTAR. The new ASM was presented
in Algorithm 1 and initial experiments show that it is better than random.
Although this is a good result by itself, it is also a step towards implementing
more advanced ASMs. For example ASMs based on reinforcement learning (RL)
and artificial intelligence (AI) need some kind of model for learning, and the
inferred model can serve that purpose.

Another advantage of the inferred state models is that human testers can use
them during testing. For instance, it is interesting to have an overall view of an
application’s execution flow: to see the details about a certain state or executed
action; to identify the path to a state where an application failed; and to obtain
various metrics about the state model. Although some of this information can be
obtained by querying the OrientDB database and outputting it as textual data,
e.g., in tabular format, we advocate that it would be best realised by visualising
the data in a way that is more intuitively understandable for humans.
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Abstract state models can also allow performing conformance testing. Con-
formance testing is used to determine how a system under test conforms to meet
the individual requirements of a particular standard. Before using inferred ab-
stract models, the domain experts have to validate them in order to use the
automatically generated test cases for conformance testing. This also requires
suitable visualisation.

Another future research topic is using the inferred models for automatically
finding a shortest path to reproduce a failure. This requires recognising whether a
found failure is a new one or duplicate of the one we try to reproduce. Finally, the
inferred models can be used for automated change detection between consequent
versions of the same SUT. This kind of functionality has been evaluated with
Murphy tools [6], and it is interesting as future research.

7 Conclusions

This paper describes the state model inference extension for TESTAR and re-
ports experiments on the impact of various state abstraction mechanisms for
the purpose of producing a deterministic model, and on the evaluation of the
performance of an action selection algorithm using the inferred models.

The experiments on using various state abstraction mechanisms show that
inferring a deterministic abstract state model is difficult, especially when trying
to prevent the state space explosion. Based on our experiences, and the fact that
in the literature many approaches using inferred models for GUI exploration or
testing do not explain the details about state abstraction, more research and new
more flexible abstraction mechanisms are needed. Also, dealing with the non-
determinism in the inferred models is an important future research direction.

Based on the experiments on the impact of various levels of state abstraction
for the performance of an ASM using the inferred models, we can conclude
that having a suitable level of abstraction improves the performance of GUI
exploration measured in code coverage. Having a too abstract or too concrete
model has a negative impact on the performance. However, in our experiments,
the ASM statemodel performed better than the ASM random with all tested
abstractions.

Finally, as an immediate future work, we plan to conduct experiments on
SUTs from industry in order to demonstrate the effectiveness, efficiency and
usability of the TESTAR tool with the inferred models proposed on this work.
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4. Aho, P., Kanstrén, T., Räty, T., Röning, J.: Automated extraction of GUI models
for testing. Advances in Computers, vol. 95, pp. 49–112. Elsevier (2014)
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16. Kervinen, A., Maunumaa, M., Pääkkönen, T., Katara, M.: Model-based testing
through a gui. In: Grieskamp, W., Weise, C. (eds.) Formal Approaches to Software
Testing. pp. 16–31. Springer Berlin Heidelberg, Berlin, Heidelberg (2006)

17. Kull, A.: Automatic GUI model generation: State of the art. In: 2012 IEEE 23rd
ISSRE Workshops. pp. 207–212. IEEE (2012)

18. Marchetto, A., Tonella, P., Ricca, F.: State-based testing of ajax web applications.
In: 2008 1st ICST. pp. 121–130 (2008)

19. Meinke, K., Walkinshaw, N.: Model-based testing and model inference. In: Mar-
garia, T., Steffen, B. (eds.) Leveraging Applications of Formal Methods, Verifi-
cation and Validation. Technologies for Mastering Change. pp. 440–443. Springer
Berlin Heidelberg, Berlin, Heidelberg (2012)



State model inference through the GUI using run-time test generation 17

20. Memon, A.M., Banerjee, I., Nagarajan, A.: GUI ripping: reverse engineering of
graphical user interfaces for testing. In: 10th WCRE. pp. 260–269 (2003)

21. Mesbah, A., van Deursen, A., Lenselink, S.: Crawling ajax-based web applications
through dynamic analysis of user interface state changes. ACM Trans. Web 6(1)
(2012)

22. Miao, Y., Yang, X.: An FSM based GUI test automation model. In: 11th Interna-
tional Conference on Control Automation Robotics Vision. pp. 120–126 (2010)

23. Nedyalkova, S., Bernardino, J.: Open source capture and replay tools compari-
son. In: Proceedings of the International C* Conference on Computer Science and
Software Engineering. pp. 117–119 (2013)

24. Nguyen, B.N., Robbins, B., Banerjee, I., Memon, A.: GUITAR: an innovative tool
for automated testing of GUI-driven software. Automated software engineering
21(1), 65–105 (2014)

25. Rafi, D.M., Moses, K.R.K., Petersen, K., Mäntylä, M.V.: Benefits and limitations
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26. Silva, J.a.C., Silva, C., Gonçalo, R.D., Saraiva, J.a., Campos, J.C.: The GUISurfer
tool: Towards a language independent approach to reverse engineering GUI code.
In: Proceedings of the 2nd ACM SIGCHI Symposium on Engineering Interactive
Computing Systems. p. 181–186. ACM (2010)

27. Vos, T.E.J., Aho, P., Pastor Ricos, F., Rodriguez-Valdes, O., Mulders, A.: TESTAR
– scriptless testing through graphical user interface. STVR 31(3) (2021)


