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PUBLISHABLE SUMMARY 
The goal of WP3 “Personalized Medicine” is to establish a standardized process to enable personalized 
decision-making that can be utilized for multiple outcomes of interest and can be applied to observational 
healthcare data from any patient subpopulation. 

In the first report (D3.2) on the implementation of the analytical pipeline for personalized medicine, we 
introduced the analytical pipelines for Patient-Level Prediction and Population-Level Effect Estimation. 
Furthermore, we discussed our initial work for the development of a pipeline for Risk Stratified Effect 
Estimation to assess heterogeneity of treatment effect.  

In the second report (D3.4) we provided an update on the work done in the second year, including 
heterogeneity of treatment effect (HTE), and disease trajectory analyses. That deliverable included an 
overview of use cases in which the analytical pipelines have been applied and described the advances made 
in methodological research, the start of a natural language processing pipeline, and work done to develop a 
pipeline for disease trajectories. 

In this third report we introduce new additional analytical tools and provide a further update on the 
methodological research. 

This work falls under Task 3.2. “Development of an integrated patient-level prediction pipeline” (M6-M60), 
Task 3.3 “Development of an integrated risk-effect estimation pipeline” (M6-M60), and Task 3.4 
“Development of a pipeline for disease trajectory analysis” (M12-M36). 
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1. INTRODUCTION 
The goal of WP3 is to build analytical pipelines that can utilize all the data in the OMOP Common Data Model 
(CDM) for patient-level prediction (PLP), population-level effect estimation (PLE), heterogeneity of treatment 
effect (HTE), and disease trajectory analyses. In this short deliverable we provide an update on the analytical 
pipeline development and methodological research.  

In this reporting period many additional agile development steps have been made on the R packages that 
have been described in more detail in previous deliverables (see Table 1). This includes the addition of 
functionality, documentation updates, code restructuring, etc. The packages are currently hosted on GitHub 
within EHDEN, OHDSI, and the Erasmus MC GitHub organization but these will in the near future be located 
in the OHDSI repository. We refer to these repositories for more details on the release updates etc. For 
example, in the PatientLevelPrediction R package functionality was added to perform recalibration of 
predictive models as discussed as next step in deliverable D3.4 and logged in the package news. 

 

Table 1. Overview of R packages  

Package Description 

OHDSI/PatientLevelPrediction An R package for performing patient level prediction in an 
observational database in the OMOP CDM. 

OHDSI/CohortMethod An R package for performing new-user cohort studies in an 
observational database in the OMOP CDM. 

OHDSI/RiskStratifiedEstimation An R package for performing effect estimation in risk strata 
to assess treatment effect heterogeneity 

EHDEN/Trajectories An R package for detecting and visualizing statistically 
significant event sequences in OMOP CDM data. 

mi-erasmusmc/Triton An R package for creating covariates from unstructured text 
in OMOP CDM data. 

mi-erasmusmc/Explore An R package for finding a short and accurate decision rule 
in disjunctive normal form by exhaustive search 

mi-erasmusmc/AssociationRuleMining An R package that implements association rule mining and 
frequent pattern mining against the OMOP-CDM 

Table 1 contains two new analytical tools, which we will describe in the methods research section below: one 
for searching exhaustively for optimal decision rules, and one for performing association-rule mining and 
frequent-pattern analysis. 

For most of our work articles have already been submitted to peer-reviewed journals and made available as 
preprint for community feedback. Where applicable we have added links to these preprints, and other 
material such as posters, videos, and demos. 

  

https://github.com/OHDSI/PatientLevelPrediction/blob/master/NEWS.md
https://github.com/OHDSI/PatientLevelPrediction
https://github.com/OHDSI/CohortMethod
https://github.com/OHDSI/RiskStratifiedEstimation
https://github.com/EHDEN/Trajectories
https://github.com/mi-erasmusmc/Triton
https://github.com/mi-erasmusmc/Explore
https://github.com/mi-erasmusmc/AssociationRuleMining
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2. METHODS RESEARCH 
2.1 Exhaustive Search for Optimal Decision Rules 
Many PLP models are developed and published in literature, but only few are used in clinical practice [1]. 
EXPLORE (Exhaustive Procedure for LOgic-Rule Extraction) is an exhaustive search algorithm designed to find 
optimal decision rules [2]. This algorithm has several features that make it attractive for PLP models. First, 
the resulting prediction model is a (short) decision rule and can thus be considered interpretable, which can 
contribute to create trustworthy AI [3]. Second, the exhaustive search nature of the algorithm allows users 
to specify additional constraints on the model (e.g. restricting the rule length and forcing certain features to 
be included in the model) and/or performance (e.g. minimum specificity and sensitivity). The aim of this work 
in EHDEN is to investigate the potential of EXPLORE for PLP models by comparing its performance with two 
more frequently used methods for PLP. 

EXPLORE [2] generates decision rules of pre-specified length in disjunctive normal form (DNF). A formula in 
DNF is a disjunction of terms (OR, ∨ ), where the terms are conjunctions (AND,  ∧) of literals, and the literals 
are feature-operator-value triples (A > a). An example of a DNF formula is (A > a ∧ B = b) ∨ C ≥ c; the resulting 
decision rule has the form: if (DNF formula) then class = 1 else class = 0. To find the best decision rule, 
EXPLORE performs an exhaustive search of all possible rules of pre-specified length using smart techniques 
to reduce the search space. For example, by reducing the number of values that need to be checked for each 
feature (subsumption pruning) and disregarding subspaces that cannot contain the optimal decision rule 
(branch-and-bound). The exhaustive search approach guarantees that we find an optimal decision rule and 
allows users to specify additional constraints while optimizing over a chosen performance metric. For more 
details on the EXPLORE algorithm we refer to the original publication [2].   

The R package that implements the EXPLORE algorithm, is currently under development and can be 
downloaded from GitHub: https://github.com/mi-erasmusmc/explore/.  

Results on standard University of California Irvine (UCI) datasets show that EXPLORE can achieve similar 
performance for prediction problems compared to LASSO logistic regression and RandomForest (see Figure 
1), while the model size is substantially smaller. Moreover, the results show EXPLORE’s capability to learn 
under different types of constraints. Another benefit that should be further explored in future research is the 
possibility to add mandatory features in the model based on domain knowledge, to enhance the face value 
and generalizability of the resulting model. 

 The current results are limited in the sense that the studied prediction problems are simpler than real-world 
settings. Routinely collected health care data is typically more complex; it contains a much larger number of 
observations, thousands of features, and possibly more variation in the values of features. These are all 
factors that will influence the computational feasibility of EXPLORE. In the upcoming months we plan to 
investigate this further by adding EXPLORE to the PatientLevelPrediction package and evaluating the 
feasibility and performance on real-world clinical prediction problems using the Integrated Primary Care 
Information (IPCI) database mapped to OMOP CDM. 

  

https://github.com/mi-erasmusmc/explore/
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Figure 1: Comparison performance of AUC on standard UCI datasets between LASSO logistic regression, RandomForest, 

and EXPLORE (maximum rule length 3). 
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2.2 Association-Rule and Frequent-Pattern Mining 

Data-mining tasks aim to extract and analyze information to support decision making [4]. This includes 
pattern mining, dating back to the mid-1990s. Initially stated as a problem in the ‘market basket’ domain, 
pattern mining aims to discover structure and correlations in databases. Applying such methods to 
observational health data seems promising to reveal interesting and sometimes unexpected patterns [5]. For 
example, association-rule mining aims to answer the question, ‘Given a cohort of patients, which concepts 
are most likely to occur together?’ It could be used to measure the association between two or more 
concepts from any domain in the CDM, such as conditions, drugs, procedures, etc. Association rules are 
usually required to satisfy a user-specified minimum support and a user-specified minimum confidence at 
the same time. 

Table 2. Association rule and frequent pattern mining parameters 

Parameter Description 

minimum support Threshold for the minimum number of patients who have the concept set 
in their medical history, e.g., (obesity, diabetes) 

minimum 
confidence 

Threshold for determining how often the left-hand side of a rule occurs 
together with the right-hand side, e.g., (obesity, diabetes) -> (heart 
failure) 

Another example are frequent-pattern mining methods that take into account the chronological ordering of 
concepts. These methods can be used to answer the question, “What are the most frequent sequences of 
concepts observed in a cohort of patients?” Frequent patterns are required to satisfy a minimum support. 

We are developing an open source R package called AssociationRuleMining, which acts as a framework to 
perform association-rule and frequent-pattern mining analysis using data in the OMOP CDM. The framework 
provides an opportunity to assess the temporal structures of the medical history of patients, which can be 
used to characterize patients or can be used in PLP. 

The AssociationRuleMining R package makes use of the open-source association rules implementation such 
as “Apriori” [6], “Eclat” [7], and “FP-Growth” [8] for mining highly associated sets of concepts, and “SPADE” 
[9], for mining frequent patterns. The AssociationRuleMining Package is fully integrated in the OHDSI 
framework using DatabaseConnector and FeatureExtraction, and runs on any defined cohort. The resultant 
frequent patterns can be automatically added as custom covariates for use with other OHDSI packages, such 
as PatientLevelPrediction [10]. 

After execution, the generated association rules or frequent patterns can be explored in R. Depending on the 
size of the cohort and the settings, the number of extracted patterns can be very large. We are therefore 
working on methods to visualize the results interactively. We are exploring interactive networks (Figure 2) to 
visualize rules and interactive Sankey diagrams to visualize frequent patterns (Figure 3). 

  

https://github.com/mi-erasmusmc/AssociationRuleMining
https://github.com/OHDSI/DatabaseConnector
https://github.com/OHDSI/FeatureExtraction
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Figure 2: Top-5 association rules with highest support in a myocardial infarction cohort. A rule can contain 
multiple concepts (blue arrows) that are associated with an outcome (red arrow). The size of the red circles 

indicates the level of support (the bigger the circle the higher the support). For example, Coronary 
arteriosclerosis and Viral sinusitis were observed to be associated to Myocardial infarction with high 

support. 

 

 

Figure 3: Sankey diagram showing frequent patterns in a myocardial infarction cohort. Connections between nodes 
indicate succession of events, in this case diagnoses. 
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Our ultimate aim is to assess the value of different association-rule and frequent-pattern methods in 
prediction problems (see next section) and for characterization of patient populations (future work).  

Predictive analytics using frequent patterns 

Electronic Health Records (EHRs) constitute a rich source of longitudinal information describing patients’ 
encounters with the healthcare system. This longitudinal dimension, usually referred to as temporality, can 
be described as the timing and spacing of occasions of measurements over a period of time [11]. It can consist 
of a variety of information including and not limited to diagnoses, symptoms, drug prescriptions, and 
laboratory data, as well as unstructured clinical notes and/or radiological images. Temporal information 
therefore offers a unique opportunity to study the progress of health in patients; it is however a largely 
unexplored field.  

Temporal pattern mining of EHR data has the potential to uncover previously unknown relationships among 
comorbidities (conditions occurring together and in a temporal order) and treatment pathways (drugs 
prescribed in a temporal order), which can complement clinical knowledge and traditional medical research 
methods[12]. PLP models that make use of standard machine learning algorithms usually do not incorporate 
any form of temporality: concepts are used as features that contain a single numeric or categorical value 
[13]. Previous work has attempted to introduce temporality as an additional attribute through temporal 
abstraction of consecutive events to be further included as features in prediction models with substantial 
improvement over their atemporal counterparts [14-16]. Further, various deep learning algorithms have 
been developed that are able to incorporate the temporal dimension [17, 18]. However, these models are 
suffering from issues of interpretability hindering further their adoption in clinical practice.  

In this work we aim to assess the predictive value of frequent patterns as potential candidate predictors in 
clinical prediction models, using standard machine learning algorithms. Specifically, we aim to test several 
feature sets containing frequent patterns extracted from databases mapped to the OMOP CDM to evaluate 
their predictive value, using standard algorithms such as LASSO and xgboost. The candidate frequent patterns 
will be generated using the AssociationRuleMining package and model development and validation will be 
implemented using the PatientLevelPrediction package. We have fully integrated the two packages to 
execute this study.  

We aim to generate and test the predictive value of several sets of candidate features. First, three different 
sets of frequent patterns consisting of the full, closed and maximal sets will be generated that represent 
frequent patterns as binary features. Second, frequent patterns will be represented as continuous features 
indicating the frequency of each pattern for each patient. Third, frequent patterns will be clustered and 
included as categorical variables representing cluster membership. 

Additionally, we will consider further pre-processing steps. Initially, removing repeated concepts from the 
extracted frequent patterns can substantially remove redundancy and reduce the final set of candidate 
features. This will be achieved in two different ways. In the first, we will consider only the first occurrence of 
a concept from the medical history of patients. In the second, we will concatenate consecutive concepts from 
the resulting frequent patterns. Further, for sequential rules (rules with chronological ordered events) we 
make use of a minimum support and minimum confidence criterium. In addition, a distinction will be made 
for patterns that indicate higher frequency in one of the two outcome classes, producing in this way highly 
discriminative patterns.  

The primary source of data will be the OMOP CDM format of the Dutch Integrative Primary Care Information 
(IPCI) database. We will use information for conditions, drug prescriptions and procedures, and further 
consider the use of continuous information such as measurements and laboratory tests. We aim to make use 

https://ohdsi.github.io/PatientLevelPrediction/
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of higher levels of abstraction from the OMOP CDM such as the condition and drug eras and explore the 
feasibility of the other generalisations, such as single phenotype use from the OHDSI phenotype library.  

2.4 Predictive Analytics Using Unstructured Data  
The Text Represented In Terms Of Numeric-features (TRITON) package discussed in D3.4, was updated with 
several new features. We developed TRITON as a standardized Natural Language Processing (NLP) pipeline 
tool, within the OHDSI framework, for extracting textual features in a data-driven and language-independent 
manner. This tool extends the FeatureExtraction framework in the form of a custom covariate builder and 
constructs a set of text-based covariates. TRITON is publicly available on GitHub at github.com/mi-
erasmusmc/Triton. 

Additional to the ability to create sparse bag-of-word text representations, it is now also possible to create 
dense text representations such as topic models and word or document embeddings. Furthermore, TRITON 
now has the ability of creating features based on information in the CDM note_nlp table. The note_nlp table 
is populated with clinical concepts extracted from the text and can include contextual information (e.g., 
negation, experiencer, temporal aspects, severity). In the upcoming period we will further develop the NLP 
pipeline and apply it to multiple use cases. 

The aim of the EHDEN use cases is to determine the added value of textual data in EHRs for improving PLP 
models. This is currently done in two ways. First, we are performing a systematic review on the use of 
unstructured text data in clinical prediction models. We will summarize the prediction problems and 
methodological landscape and determine whether the information extracted from text data has value 
supplementing that of structured data. This systematic review is in its last phase and nearly ready for 
publication.  

Second, we will investigate a variety of methods to generate text-based features and determine whether 
predictive performance improves if these features are used on their own and in addition to the features 
based on coded information. Different feature sets will be generated using the TRITON framework and tested 
for their predictive value. Apart from the bag-of-words, topic model, and embedding text representations 
that will be considered, we will also perform clinical concept extraction by detecting SNOMED CT and UMLS 
concepts and their contextual information in the text. The publicly available MedSpacy python library [19] 
provides a modular pipeline for concept extraction applicable to multiple languages. 

  

https://github.com/mi-erasmusmc/Triton
https://github.com/mi-erasmusmc/Triton
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2.5 Deep Learning – Attention-Based Models 
The OHDSI community has developed a framework for developing and validating predictions models on 
observational data standardized to the OMOP CDM [10]. Although the framework supports deep learning 
models, the focus of research using the PLP framework has mostly been on traditional machine learning 
models. Recently, there have been rapid advances in the deep learning field which might work well on the 
type of observational data that are in the OMOP CDM.  

A relevant advance in the field of deep learning is that of attention-based models [20]. Attention is a 
mechanism where the relations between the input features of a sequence are learnt. These relations are 
then used to build representations which are used for the task of interest. These types of models have 
improved the state-of-the art in diverse fields such as natural language processing and computer vision. 
Recently there has been work done in translating these models to EHR data [21, 22]. While it has been hard 
to improve upon a strong linear baseline on EHR data, one approach in particular shows promising results 
where a model learns, using reverse distillation, from a strong linear baseline and then subsequently 
outperforms it. 

We implemented a recent attention-based model and integrated it into the PLP framework. The model is the 
Self-Attention with Reverse Distillation (SARD) model [22] and we used a windowed L1 regularized linear 
regression model (LASSO) as baseline. We predicted mortality in the following year after a first occurrence 
of a general practitioner’s visit after the patient reached the age of 60. We used condition, drug and 
procedure codes as features from 3 years before the index date. The data used was the IPCI database from 
the Netherlands. We split the data into 60% training set, 20% validation set and 20% test set with a stratified 
split. Loss on validation set was used for early stopping and to select the best hyperparameters. Results are 
reported for the test set. For LASSO a full grid search was used to select hyperparameters. C is the parameter 
controlling the sparsity, we searched over a grid of C from 0.0001 to 10,000 spaced evenly on a log scale with 
20 values. For SARD a randomized search of hyperparameters was used with 100 samples, then with the 
resulting model a full grid search was done over the values of alpha=[0, 0.05, 0.1, 0.15, 0.2]. Alpha is the 
parameter that controls the influence of distillation loss vs cross entropy loss during fine-tuning of the SARD 
model.  

For our task, the population at risk includes 150,277 patients with 3329 outcomes. The hyperparameters 
selected for the linear model are a C of 0.01 and windows of [30, 90, 180, 365 and 1095] days before index. 
For SARD the selected hyperparameters were 2 attention heads with embedding dimension of 32 per head. 
The number of attention layers was 6 with no dropout and alpha was 0.15. For SARD all concepts in visits 
over 365 days before index were considered to be part of the same visit.  

The linear baseline performs well with an area under the curve (AUC) of 82.5% while SARD reached 86.3% 
AUC (Figure 4). These results are in line with those in [22]. 

Attention-based deep learning models are promising, although a simple linear baseline is still competitive. 
When fully integrated into the PLP framework these kinds of models can be used in a fast and straightforward 
way on various OMOP CDM databases. Future work will explore other classes of attention-based models, 
look at their performance with external validation as well as explore the interpretability of the attention 
weights. 
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Figure 4: Receiver-operating curves of the two models 

  



 

D3.6 – Third Report on the implementation of the analytical pipeline for personalized 
medicine 

WP3 – Personalized Medicine Version: v1.1 – Final 

Author(s): Peter Rijnbeek et al. Security: PU 15/27 

 

© Copyright 2021 EHDEN Consortium  

 

2.6 Iterative Pairwise External Validation 
External validation of prediction models is increasingly being seen as a minimum requirement for acceptance 
in clinical practice [23-25]. The lack of interoperability of healthcare databases, however, has been the 
biggest barrier to this occurring at a large scale. Recent improvements in database interoperability enable a 
standardized analytical framework for model development and external validation [26, 27]. External 
validation of a model in a new database lacks context, whereby the external validation can be compared to 
a benchmark in this database [28-30]. Iterative pairwise external validation (IPEV) is a framework which uses 
a rotating model development and validation approach to contextualize the assessment of performance 
across a network of databases. As a use case we developed and validated models to predict 1-year risk of 
heart failure in patients initializing a second pharmacological intervention for type 2 diabetes. 

The method follows a 2-step process involving 1) development of baseline and data-driven models in each 
database according to best practices; 2) validation of these models across the remaining databases. We 
introduce a heatmap visualization that supports the assessment of the internal and external model 
performance in all available databases. We leveraged the power of the OMOP CDM to create an open-source 
software package to increase the consistency, speed and transparency of this process. 

 
Figure 5. A heatmap of the AUC values across internal validation (values on the lead diagonal) and external validations 

of the developed prediction models. The colour scale runs form red (low discriminative ability) to green (high 
discriminative ability). The upper section details the performances for the data-driven model. The lower half details the 

same but then for the Age and Sex model. Abbreviations: ccae: Commercial Claims and Encounters, mdcd: Medicaid, 
mdcr: Medicare, optum EHR: optum electronic health records. 

A total of 403,187 patients were included in the study from 5 databases. We developed 5 models which when 
assessed internally had a discriminative performance ranging from 0.73 to 0.81 AUC with acceptable 
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calibration. When externally validating these models in a new database, three models achieved consistent 
performance and in context often performed similarly to models developed in the database itself. The 
visualization, in Figure 5, of IPEV provided valuable insights and allows for the direct comparison between 
the models across the databases and across the models within a database. From this the model developed 
in the CCAE (Commercial Claims and Encounters) database is identified as the best performing model overall. 

Using IPEV lends weight to the model development process. The rotation of development through multiple 
databases provides context to model assessment leading to improved understanding of transportability and 
generalizability. The inclusion of a baseline model in all modelling steps provides further context to the 
performance gains of increasing model complexity. The CCAE model was identified as a candidate for clinical 
use. The use case demonstrates that IPEV provides a huge opportunity in a new era of standardized data and 
analytics to improve insights and trust in prediction models at an unprecedented scale. This paper is currently 
under submission for publication. 
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2.7 Continuous Risk-Based Assessment of Treatment Effect Heterogeneity 
Predictive approaches to treatment effect heterogeneity aim at the development of models predicting either 
individualized effects or which of two (or more) treatments is better for an individual. Earlier work presented 
here focused on the implementation of a risk-based approach to the assessment of treatment effect 
heterogeneity in the observational setting. This approach focuses on evaluating treatment effects within risk 
subgroups and has been shown to increase power for the detection of treatment effect heterogeneity. 
However, it does not provide individualized benefit predictions which are very important in the substrate of 
personalized medicine. Our aim in this case was to summarize and compare different easy-to-implement risk-
based methods for deriving patient-level predictions of absolute benefit of a specific treatment relative to a 
comparator in a simulation study. We started from the randomised control trial setting, where the 
implementation of these methods is more straightforward. We intend, however, to extend our methods to 
the observational setting in the future. 

For the simulations we simulated data using diverse assumptions for a baseline prognostic index of risk and 
the shape of its interaction with treatment (none, linear or quadratic). In each sample we predicted absolute 
benefit using: models with the Prognostic Index (PI)  and a constant relative treatment effect; models 
including a interaction of treatment with the PI; stratification in quarters of the PI; nonlinear transformations 
of the PI (restricted cubic splines with 3, 4 and 5 knots); an adaptive approach using Akaike’s Information 
Criterion. We evaluated predictive performance using root mean squared error and measures of 
discrimination and calibration for benefit. Starting from a base case scenario (sample size 4,250, treatment 
odds ratio 0.8, AUC of the PI 0.75), we varied the sample size, the treatment effect strength, the PI’s 
discriminative ability, and the size of constant treatment-related harms on the absolute scale. 

Our analyses simulated data in 648 scenarios. Models including a PI by treatment interaction performed best 
with smaller sample sizes and/or lower AUC of the PI. Otherwise, Restricted Cubic Splines (RCS) (3 knots) 
models proved more robust for the majority of the deviation settings. The adaptive approach was unstable 
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with smaller sample sizes. Therefore, we conclude that, depending on the setting, the linear interaction or 
the RCS (3 knots) model should be preferred. 

 

 
Figure 6: On the right-hand side we present the root mean squared error of the different methods in scenarios based 
on the base case (OR=0.8, true prediction AUC=0.75, N=4250) and introduce different sizes and shapes of deviations 

(linear, quadratic and non-monotonic) and moderate or strong treatment-related harms applied to the treated 
patients. On the left-hand side we present the true evolution of absolute benefits in each scenario 
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2.8 Disease Trajectories  
Identifying temporal disease sequences (trajectories) where one event leads to another provides a great 
interest for researchers around the globe. This allows describing progressions and treatment patterns within 
the dataset or population and predicting future illnesses from the existing ones. Therefore, the number of 
trajectory studies has been slowly increasing over time. However, the full potential of these kinds of studies 
has not been revealed, and we believe it is primarily because of two reasons. First, the lack of syntactic and 
semantic interoperability of health data makes network studies a challenge. Second, there has not been a 
standardized open-source implementation of an analytical framework for performing this type of analysis. 

Using the OMOP CDM is an effective method for tackling the first issue. For the second issue, we have 
developed a four-step framework based on significant temporal event pair detection and implemented it as 
an open-source R package. The proposed framework for detecting temporal health event trajectories consists 
of the following steps: 1. Define a study cohort; 2. Specify study parameters; 3. Identify temporal clinical 
event pairs; and 4. Count trajectories that consist of temporal clinical event pairs.  

 
Figure 7. The 20 most prevalent event sequences among Type 2 diabetes mellitus patients having a relative risk >2 in 

Estonian electronic health records. Five event pairs that passed validation in the IPCI database (Netherlands) are 
shown with black arrows. 

For the first time, there is a complete software package for detecting disease trajectories in health data. We 
used it on a population-based Estonian dataset to replicate a large Danish population-based study as proof 
of concept. Out of 40,711 temporal event pairs observed in Denmark and 22,618 in Estonia, the overlap was 
small (2290 pairs). We also conducted a disease trajectory detection study for Type 2 Diabetes patients in 
the Estonian and Dutch databases. Out of 943 pairs identified in the first dataset, 117 of them were confirmed 
in the other. We analysed the causes of the differences and have described them as challenges of these kinds 
of studies. We have demonstrated the framework on a poster in OHDSI Symposium 2021 (available at 
https://www.ohdsi.org/2021-global-symposium-showcase-71/, figure below), prepared a scientific 
manuscript “Trajectories: a framework for detecting temporal clinical event sequences from health data 

https://www.ohdsi.org/2021-global-symposium-showcase-71/
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standardised to the OMOP Common Data Model”, and submitted it to a peer-reviewed journal. The 
manuscript is also available in pre-print:  

https://www.medrxiv.org/content/10.1101/2021.11.18.21266518v1 

 

  

https://www.medrxiv.org/content/10.1101/2021.11.18.21266518v1
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2.9 Systematic Review on Clinical Prediction Modelling 
Before implementing a prediction model in clinical practice, it is important to ensure that its prediction 
performance is generalizable and robust by externally validating the model across various databases. This 
systematic review aims to provide further insights into the conduct and reporting of clinical prediction model 
development and validation over time. We focus on assessing the reporting of information necessary to 
enable external validation by other investigators. In particular, the prediction problem definition needs to be 
clearly reported and the final model needs to be completely presented.   

We searched Embase, Medline, Web-of-Science, Cochrane Library and Google Scholar to identify studies that 
developed one or more multivariable prognostic prediction models using EHR data published in the period 
2009-2019. The search was performed on November 15, 2019. We extracted data on data origin, data 
characteristics, data handling, modelling method, prediction problem definition, final model presentation, 
and model validation. To investigate the trends in the period 2009-2019, we assessed the extracted data for 
the periods 2009-2014 and 2015-2019 separately.  

Our initial search resulted in a total of 9,942 papers. After duplicates were removed, 6,235 titles and abstracts 
were screened. From this, 1,075 potentially eligible papers were identified. Upon full-text inspection, 422 
studies were eventually included for data extraction. In total, we extracted data for 579 clinical prediction 
models (with 1-6 models per study). We observed a steep increase over the years in the number of developed 
models, with 135 models in 101 studies in the period 2009-2014 and 444 models in 321 studies in the period 
2015-2019. The percentage of models externally validated in the same paper remained stable at around 10%. 
Throughout 2009-2019, for both the target population and the outcome definitions, code lists were provided 
for less than 20% of the models. For about half of the models that were developed using regression analysis, 
the final model was not completely presented.  

Overall, we observed limited improvement over time in the conduct and reporting of clinical prediction 
model development and validation. We found that the prediction problem definition was often not clearly 
reported, and the final model was often not completely presented, with little to no improvement over time. 
Thus, improvement in the reporting of information necessary to enable external validation by other 
investigators is still urgently needed to increase clinical adoption of developed models. 

Link to preprint: https://doi.org/10.1101/2021.10.22.21265374. 

  

https://doi.org/10.1101/2021.10.22.21265374
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2.10 Prediction Model Library 
The OHDSI community is busy developing prediction models, but these have yet to make an impact on clinical 
practice. A reason for this is that the dissemination and understanding of prediction modelling in healthcare 
can still be improved. The current practice leaves the different models developed by different researchers 
disconnected from each other. A centralized repository, or library, will collate this information together and 
provide improved access and usability for a range of users including regulators, clinicians and prediction 
researchers.  

We created a relational database to store results from multiple OHDSI PLP studies. This database models the 
structure of the results objects generated form model development or validation. An entity relationship 
diagram is available in figure 8. This database can be accessed through a dedicated application, which allows 
for the exploration of the results of multiple studies. It will also provide the ability to select models to 
download, this will then create a package including the required settings and cohort definitions as well as the 
model.  

 
Figure 8. An entity relationship diagram for the database of the prediction model library. 
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The app we developed contains information on more than 600 models and 20,000 different validations. An 
example of the app can be seen in Figure 9. On the landing page, the development models are available with 
various important information displayed including the setting (target, outcome cohorts and time at risk), the 
model performance, and information about the developer and the database used for development. Once a 
model has been selected, more detailed information is then available on the discrimination performance. 
This is available for the model overall as well as at different thresholds. These thresholds can be explored 
interactively. For example a user can set a threshold and then see the sensitivity and specificity at this 
threshold. Further, calibration performance is available graphically as well as using various metrics (E50, E90 
calibration-in-the-large). Plots to explore the calibration in different demographics are also available. Finally,  
a validation tab provides the ability to compare a development setting evaluation with an external validation 
of models. This comparison can be done both quantitatively using various performance metrics as well as 
qualitatively by comparing calibration and AUC plots.  

 

 

 
Figure 9. Screenshot of the library page and model validation exploration. 
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The library provides a unique environment to interactively explore the results and evidence for prediction 
models developed within the OHDSI PLP framework. This provides an improved user experience and allows 
for greater exploration of results by multiple stakeholder groups. 

For a demo of a previous version of the tool see: 

https://www.youtube.com/watch?v=hi2Zs1Bfj54&ab_channel=OHDSI 

A publication is currently being written. 

  

https://www.youtube.com/watch?v=hi2Zs1Bfj54&ab_channel=OHDSI
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3. NEXT STEPS  
In the third year, the methods research and tool developed has progressed considerably and multiple 
manuscripts have been created. The analytical pipelines have also been used in use cases (see D3.7). 

The next steps for WP3 are: 

1. A standing item is to look into federated learning. Initial explorations and interactions with others in 
the OHDSI community have taken place but an implementation plan still needs to be made. 

2. The research on the use of multilingual unstructured text in the context of prediction will continue 
with use cases. 

3. Research on frequent-pattern mining can now be performed using the developed R package. 
4. Further use cases for the disease trajectory pipeline will be explored. 
5. We will look into the problem of class imbalance when building predictive models. 
6. Development of educational material for the use of the developed pipelines will get a priority. 

 

Finally, the EHDEN data network has grown considerably, and we can invite these European data partners to 
participate in the upcoming use cases to further improve the analytics. 
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