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Abstract Traditionally, Biot’s formulation is employed

to model the behavior of saturated soils. The u − pw
(solid displacement – pore water pressure) formulation

can be considered as the standard one, since involves

a good computational performance together with ex-

cellent accuracy for slow and moderate speed phenom-

ena. Dynamic processes can be studied even if the ac-

celeration of the water is neglected, what occurs in

the undrained limit. It is well known that u − pw for-

mulation might display instabilities in the undrained-

incompressible limit. Several techniques have been pro-

posed to overcome this issue, principally within an im-

plicit time integration scheme for small strains. In this

paper, a robust implementation of the Divergence of

the Momentum Equation technique is presented for an

explicit u − pw approach within the framework of Op-

timal Transportation Meshfree scheme at finite strain.

Several examples are provided in order to assess the

good performance of the proposed methodology.
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1 Introduction

Porous media dynamics at large strain is a cutting-

edge issue in the field of computational geomechanics.

In this respect, the u − w − pw and u − w Biot for-

mulations, where no dynamic terms are suppressed, are

of paramount significant [27]. However, these formu-

lations are computationally expensive compared with

the u − pw formulation, since the latter requires, for

each node, fewer degrees of freedom than the former

ones. Although there are several problems where it is

necessary to employ a complete formulation, since ev-

ery dynamic term becomes important, the majority of

the dynamic problems in saturated soils can be covered

by the u− pw formulation without loss of accuracy, as

most of them fall within its range of application [64].

Nevertheless, these formulations are not exempted

from numerical drawbacks depending on the spatial dis-

cretization of the numerical method, even for the mesh-

free approach herein presented. An unstable behavior in

numerical solutions of saturated porous media is usu-

ally manifested by an over-stiffening of the mechani-

cal solution and a great and fictitious space variabil-

ity of the water pressure field, occasionally leading to

non-uniqueness and mesh-dependence of the solutions

as well as some instabilities. The occurrence of this

kind of pathologies is connected with the undrained-

incompressible limit of the coupled problem. While this

type of pathology in the u−w−pw and the u−pw for-

mulations is connected with the undrained-incompressible

limit, that is analogous to the incompressible limit in

solid mechanics problems [46], in the u−w the pathol-

ogy appears when the compressibility of the fluid is

some orders of magnitude higher than the compress-

ibility of the mixture [40]. In order to overcome this

numerical issue in the hydromechanical response of a
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saturated porous media, several alternatives have been

proposed in the specialized literature.

The first approach aims to stabilize the pore pres-

sure term by the inclusion of new terms in the formu-

lation. Monforte et al. [34] assessed two of these tech-

niques: Divergence of the Momentum Equation (DME)

and Polynomial projection technique (PPP). The DME

was proposed for water problems by Hafez and Soli-

man [18] and later improved for the u−pw formulation

by Pastor [45]. On the other hand, the PPP [14] was

applied to the u − pw first by White and Borja [59]

and extended by Sun et al. [57] and by Gavagnin et al.

[17], being the first one for small strain and the latter

for finite strain.

A different approach relies on an average pressure

projection. The intrinsic idea is inspired by the work

of Hughes [22] and the recent developments of the B-

bar method [16]. Furthermore, the strategy behind is

analogous to the diamond elements one (Hauret, Kuhl

and Ortiz [19]). This approach has been extended to

large strain formulations by Simo et al.[55,54] and De

Souza Neto and co-workers [12,11], considering the F-

Bar technique as a volume averaging procedure, chang-

ing the volumetric part of the strain tensor by a non-

local one. More recently, Sun and coworkers [57,56] have

proposed a novel alternative, starting from the work of

Moran et al. [35]. Related techniques have been ex-

tended to multiphase formulations for small and large

strains in the context of the Optimal Transportation

Meshfree method [36,43,41,42,40,37]. Also in the fi-

nite volume field exist several approaches that stabilize

the poromechanical instabilities through macroelement

techniques (see the work of Camargo et al. [9,8]).

Furthermore, stable formulations can be also achieved

by tuning the time discretization, as the split-operator

[23,68]. Some of these implementations employ frac-

tional steps techniques, that provides a stabilization

which allows the employment of the same order of inter-

polation in mixed formulations. This was first noticed

by Schneider et al. [52] and Kawahara and Ohmiya [25].

Zienkiewicz and coworkers [66] explained the reasons

why the fractional step technique provides stabilization

for computational fluid dynamic problems. This tech-

nique was also applied by Pastor et al. [46] for coupled

analysis in saturated soil problems, and extended later

by Li et al. [31], being worth mentioning the works

of White and Borja [59] and Mira et al. [33]. In the

geotechnical field, fractional step techniques have been

proposed within several meshfree techniques such as the

SPH formulations proposed by Blanc and Pastor [4] and

the MPM ones proposed by Kularathna et al. [26].

Finally, different order of interpolation for pore pres-

sure and displacement has been the main technique to

obtain smooth results, although it requires a stronger

computational effort as requires larger number of nodes

for the solid phase than for the pore water pressure.

Mira et al. [33] in the u− pw formulation and Jeremić

et al [24] within u−U − pw formulation employed dif-

ferent order of interpolation for the different variables.

A summary of the different stabilization techniques

in the context of small strain regime can be found in

Markert et al. [32].

In this research, the explicit u − pw is employed

due to its computational benefits, which come from

both the explicit Newmark predictor-corrector scheme,

which was first developed by Navas et al. [40] for the

explicit u− pw formulation, and the intrinsic computa-

tional saving benefits of the employment of the u− pw
against the complete formulations. Regarding the ap-

plication of this formulation in a finite deformation ap-

proach, the first works were tested simulating the con-

stitutive behavior of the solid phases with linear elastic

(Diebels and Ehlers [13]), Cam-Clay (Borja et al. [5,

6]) and Drucker-Prager theories (Armero [1]) as well

as with anisotropic materials [62]. At the same time,

Ehlers and Eipper [15] applied a new elastic non-linear

constitutive model to reproduce the compaction of the

soil. Implicit schemes were employed in these works,

being necessary the linearization of the derivatives of

the u − pw equations. Furthermore, Sanavia et al.[49]

considered several neglected terms in the linearization

of the previous works and extended the methodology to

unsaturated soils [51]. Moreover, with meshfree schemes,

we find excellent contributions to the explicit u − pw
approach (see [60,63]) in the small strain approach. The

recent work of Navas et al. [40] shows excellent results

within an explicit scheme at large strain.

In the present research, a novel robust stabilized

predictor-corrector explicit algorithm for the u − pw
formulation at large strain is proposed. The numerical

framework considered in order to implement this new

stabilized formulation is the Optimal Transportation

Meshfree (OTM) scheme [28,2]. The door is opened

to any extension to traditional or novel computational

techniques, which can be easily made by adapting the

spatial discretization.

The rest of the paper is structured as follows. The

problem formulation is summarized in Section 2. The

explicit methodology, as well as the constitutive mod-

els of the solid response, are drawn in Section 3. The

stabilization technique is detailed in Section 4. Appli-

cations to several problems are illustrated in Section

5. Relevant conclusions are depicted in Section 6. The

definitions of all symbols used in the equations are pro-

vided in the nomenclature appendix.
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2 Biot’s equations: u-pw formulation

The u − pw formulation is one of the most common

forms of the Biot’s equations [3]. This theory is based

on three statements: the mechanical response of a solid-

fluid mixture, the continuity of flux through a differen-

tial domain of saturated porous media and the cou-

pling between the aforementioned phases. The deriva-

tion of the formulation is widely encountered in the lit-

erature. All the equations presented hereinafter, are de-

rived from those presented by Lewis and Schrefler [27],

later proposed for the finite strain setting by Sanavia

and Navas [50,51,42].

Respecting the notation, bold symbols has been em-

ployed herein for vectors and matrices as well as letters

of the Latin alphabet for scalar variables. Let u repre-

sents the displacement vector of the solid skeleton, w

the displacement vector of the fluid phase with respect

to the solid and pw the pore water pressure, which is

assumed positive for compression. Terzaghi’s effective

stress [58] is considered being defined for incompress-

ible solid constituents as:

σ = σ′ − pwI, (1)

where σ′ is the effective Cauchy stress tensor, σ is

the total Cauchy stress tensor (both positive in ten-

sion) and I is the second order unit tensor. Further-

more, Ds/Dt is the material time derivative following

the movement of the solid particles, also defined as □̇.

The main assumption with respect to the full Biot’s

formulation lies on neglecting the accelerations of the

fluid phase. Thus, the linear balance equation of the

mixture reads:

div [σ′ − pw I]− ρü+ ρg = 0. (2)

The continuity equation, also known as mass bal-

ance equation, is employed as well:

div(u̇) + div(ẇ) +
ṗw
Q

= 0 (3)

Moreover, both linear momentum balance equation

of the fluid phase, defined through the Darcy’s theory,

and the equilibrium of the mass, can be written together

in order to reduce the number of degrees of freedom of

our problem:

˙pw = −Q [div u̇+ κ div (ρwg − ρwü− grad pw)] . (4)

In equations (2) and (4) ρ is the density of the mix-

ture while ρw and ρs are the fluid and solid particle

densities, respectively. These three densities are related

to each other through the expression:

ρ = nρw + (1− n)ρs, (5)

where n is the porosity defined by the ratio of volume

of voids, Vv, with respect to the total volume, VT =

Vv + Vs, where Vs is the volume of the solid grains:

n =
Vv
VT

=
Vv

Vv + Vs
. (6)

The soil is considered totally saturated. Thus, Vv
is equal to the water volume. Furthermore, the volu-

metric compressibility of the mixture, Q [64], has been

calculated considering incompressible solid constituents

as

Q =
Kw

n
, (7)

where Kw is the bulk modulus of the fluid phase,

usually considered as water.

On the other hand, g represents the gravity acceler-

ation vector and κ the permeability matrix. This ma-

trix can be written in terms of krw, the hydraulic con-

ductivity, κ [m/s], and the specific weight of the water

through the following equation:

κ = krw
κ

ρwg
I. (8)

krw is set as 1 when full saturation is to be consid-

ered.

3 Implementation tools

In this section, spatial and time discretization, as well

as the constitutive models employed in this research,

are briefly explained.

3.1 Spatial discretization

The Optimal Transportation Meshfree [28,29,21], as

one of the most trending meshfree methods, is employed

in the present research. Its fulfillment within geotech-

nical multiphase problems [38] makes this methodol-

ogy a robust alternative to Material Point Method or

Smoothed Particle Hydrodynamics, among others. Sim-

ilarly to the first one, OTM is based on a particle-to-

node interpolation, where the shape functions that re-

lates both sets are based on the work of Arroyo and

Ortiz [2], who defined the Local Max-Ent shape func-

tion (LME) of the material point with respect to the

nodal neighborhood. For the readers’ knowledge, the

equation of the shape function and the achievement of

the first derivatives of the shape function, as well as the

details of every parameter, are depicted in [28,2].
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Applying the standard Galerkin procedure to the

weak counterpart of Eqs. (2) and (30) (See [51,48] for

details), the following equations are obtained:

Rs −Rpw −M sü+ fext, s = 0, (9)

−Cu̇+Mwü+ fext, w −Rw = ˙pw, (10)

where:

Rs =

NP∑
P=1

VPσ
′∇N

Rpw =

NP∑
P=1

VP pw∇N

Rw =

NP∑
P=1

VPQκ pw∇N

fext, s = M sg −
∫
∂Ωτ

σ′nNdΓ

fext, w = Mwg +

∫
∂Ωpw

pwnNdΓ,

while the mass and damping matrices, are written

as follows:

Mw =

NP∑
P=1

QρwκVPBmN

M s =

NP∑
P=1

VP ρN

Cw =

NP∑
P=1

QVPBmN.

In these expressions Vp is the volume associated with

the material point P while Np range from the neigh-

borhood points associated with P. The matrix B is the

symmetric shape function gradient operator while m

the identity matrix in Voigt notation. Thus, Bm repro-

duces the divergence operation.

3.2 Explicit integration

The coupled problem in the time domain is solved in

this research through the explicit central difference New-

mark time integration scheme. Let the current step

k + 1, and assuming the solution in the previous step,

k, has been already obtained, the relationship between

displacement, velocity and acceleration, uk+1, u̇k+1 and

ük+1, follows the Newmark scheme for each phase:

ük+1 = ük +∆ük+1,

u̇k+1 = u̇k + ük∆t+ γ∆t∆ük+1,

uk+1 = uk + u̇k∆t+
1

2
∆t2ük + β∆t2∆ük+1,

pwk+1
= pwk

+ ṗwk
∆t+ θ∆t∆ṗwk+1. (11)

By considering θ = γ = 0.5 and β = 0 the Predictor

and Corrector terms read as follows:

u̇k+1 = u̇k + (1− γ)∆t ük + γ∆t ük+1, (12)

pwk+1
= pwk

+ (1− γ)∆t ˙pwk + γ∆t ˙pwk+1; (13)

where the underlined terms are the predictor ones, de-

noted as u̇k+∗ and pwk+∗ , respectively.

On the other hand, the stability of this method is as-

sured through the Courant-Friedrichs-Lewy (CFL) con-

dition, being the time step, ∆t, smaller than h
Vc
, where

h represents the discretization size and Vc is the velocity

of the p-wave (see [65]), defined by:

Vc =

√(
D +

Kf

n

)
1

ρ
, where D =

2G(1− ν)

1− 2ν
. (14)

It bears to emphasize several aspects about the pre-

dicted step. About the stress, it has to be calculated in

this predicted step through the predicted displacement

as follows:

σ′
k+∗ = σ′(F k+∗) = σ′(F (uk+∗))

The logarithmic strain, as the strain measure to be em-

ployed in the reference configuration, has to be calcu-

lated from the tensor b, the Left Cauchy-Green strain

tensor (b = FFT ), which depends on the displacement

on the predicted step as well:

bk+∗ = b(Fk+∗) = b(F(uk+∗))

Moreover, solid velocities and water internal forces must

be evaluated in the predicted step, k+∗. In Section 4, all

these premises will be considered in a pseudo-algorithm,

written once the stabilization is taken into account.

3.3 Constitutive models for the solid phase

A brief note of the employed constitutive models is out-

lined in this Section: a hyper-elastic model for soils and

another one that involves plastic deformation which fol-

lows the Drucker-Prager failure criterion, both devel-

oped in a finite strain approach.

As mentioned before, for elastic materials, a non-

linear law, considering the influence of the Jacobian

calculation, the initial porosity n0 and the compaction

point of the soil, is employed (see Ehlers and Eipper [15]).

This law follows the subsequent definition of the Kirk-

choff stress tensor:

τ ′ = G(b− I) + λn20

(
J

n0
− J

J − 1 + n0

)
I, (15)

In order to reproduce elasto-plastic behavior at large

strain, the Drucker-Prager yield criterion proposed by
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Sanavia and coworkers for large strain is employed [51,

48]. The relationship between left Cauchy-Green strain

tensor b, calculated at the current configuration, and

the small strain tensor ε is made through Ortiz, Simo

and coworkers’ research [10,44,53]:

be trial
k+1 = ∆Fk+1b

e
k+1(∆Fk)

T , (16)

εe trial
k+1 =

1

2
logbe trial

k+1 (17)

Trial stress measures are also computed from the elastic

trial strain as:

ptrialk+1 = K (εevol)
trial
k+1 , (18)

strialk+1 = 2G (εedev)
trial
k+1 . (19)

where G and K represent the shear and bulk moduli

of the solid respectively. The yield conditions for the

classical and apex regions are calculated in a different

manner for the proposed yield criterion.

Once known which algorithm to employ, one of the

following expressions applies:

Φcl = ∥strialk+1 ∥ − 2G∆γ + 3α
F
[ptrialk+1 − 3Kα

Q
∆γ]

−βck+1, (20)

Φap =
β

3α
F

[
ck +H

√
∆γ21 + 3α2

Q
(∆γ1 +∆γ2)2

]
−ptrialk+1 + 3Kα

Q
(∆γ1 +∆γ2) , (21)

where ∆γ1 =
∥strial

k+1 ∥
2G , ∆γ and ∆γ2 are the objective

functions in the Newton-Raphson scheme for the classi-

cal or apex regions accordingly. In equations (20) and (21)

H is the hardening parameter of the material, ck rep-

resents the cohesion and αF ,αQ and β depend on the

friction and dilatancy angles as well as the shape of

the yield surface. For details of the calculation of the

equivalent plastic strain, see [51,48].

4 Stabilization of the water phase

The necessity of stabilization in the developed u − pw
formulation lies on the work of Zienkiewicz & Tay-

lor [67]. Assuming incompressible constituents, the Biot

modulusQ is larger than the compressibility of the solid

skeleton. Traditionally, the usual condition required for

the u − pw problem is given by nu ≥ npw
(see, for

instance, Pastor et al [45]). However, this condition, al-

though necessary, must be fulfilled in any assembly of

elements of the mesh [67,45]. See [20] for a detailed

study of the stability conditions of the three-field for-

mulation.

The pore pressure term in the algebraic equation has

been traditionally the one which suffers the aforemen-

tioned oscillations. Thus, the majority of the available

techniques have this term as the target one, depart-

ing from the stabilization techniques employed in the

context of Computational Fluid Dynamics. Brezzi and

Pitkaranta [7] proposed to add to the pressure term,

the so-called Kpp position in the implicit mixed solid

u− p formulation, the stabilizing term:

h

∫
Ω

(∇N)
T · ∇N dΩ, (22)

which is equivalent to the one proposed by Hughes et

al [23]. This term, when working with the u − pw im-

plicit saturated formulation, is analogous to the Kpwpw

term, i.e. the pore pressure position of the continuity

equation, Eq. (4) (see Pastor et. al. [45] for details).

Based on Petrov-Galerkin theory; the added term

is proportional to the product of the linear momen-

tum equation by
h2

2µ
∇N . Indeed, both techniques are

proportional to h, the mesh size in Finite Element ap-

proaches or the nodal distance in meshfree methodolo-

gies. This fact leads to an interesting issue when the

mesh is refined: the proposed term tends to zero and,

thus, the consistency is preserved.

The methodology to be explained hereinafter is in-

heritor of the work of Hafez and Soliman [18] proposed

to stabilize the Navier-Stokes equations and the one

proposed by Pastor et. al. [45], which adapted the for-

mer one to the hydromechanical problem in quasi-static

conditions (u − pw formulation). That work was later

extended to a formulation valid for the full Biot equa-

tions by Monforte et. al. [34]. All these works are based

on adding the divergence of the momentum equation to

the mass balance equation.

In our case, in the explicit scheme, Eq. (10) may

suffer numerical instabilities in the undrained limit. If

κ tends to zero, Mw, fext, w, and Rw∗ tend to be much

smaller than Cu̇. It leads to the situation that the

pore pressure velocity depends only on the solid ve-

locity, what means that no influence of the pore water

phase affects the results. Due to this fact, spurious pore

pressure oscillations are obtained. Moreover, in the in-

compressible limit, the increasing of the compressibility

of the mixture, Q, aggravates this situation since tends

to increase the obtained result.

Thus, the objective is to add a new term, which

is equal to zero in order to avoid nonphysical results,

but avoids leaving the pore pressure value just in the

hands of the velocity of the solid phase. Following the

aforementioned works ([45,34]), in our proposal, the di-

vergence of the linear momentum balance equation of

the mixture, Eq. (2), will be employed. This equation,

multiplied by the parameter α= α(h), yields:

α [∇ · (∇ · σ′)−∇ · (∇pw)− ρ∇ · ü] = 0, (23)
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taking into account the divergence of the volumetric

forces is equal to zero. If the solid skeleton behavior is

elastic, which can be perfectly assumed even if the ma-

terial plasticizes, the divergence of the solid displace-

ment can be expressed in terms of the volumetric stress

invariant, p′, and the bulk modulus, K, as:

∇ · u =
p′

K
. (24)

From the same assumption, the divergence of the in-

ternal forces can be expressed as (see Pastor et. al. [45]

for details):

∇ · (∇ · σ′) = −λ+ 2G

K
∇ · (∇p′) , (25)

where λ and G are the Lamé constant and shear mod-

ulus of the soil skeleton.

On the other hand, the displacement of the water

is negligible if small permeability is employed, which is

the case of the undrained limit, the goal of the proposed

stabilization technique. Thus, from the integration on

time of the equation (3) and plugging definition (24),

we can obtain:

pw
Q

=
p′

K
. (26)

Thus, considering Eq. (25), the divergence of the inter-

nal forces of both fluid and solid phases yields:

∇ · (∇ · σ′ −∇pw) = −λ+ 2G

Q
∇ · (∇pw)−∇ · (∇pw)

= −Q+ λ+ 2G

Q
∇ · (∇pw) . (27)

Taking into account Eqs. (23) and (27), the diver-

gence of momentum of the mixture can be rewritten

as:

αQ [−∇ · (∇pw)− ρ∇ · ü] = 0. (28)

We have considered the incompressible limit, where λ

and G are much smaller than the bulk modulus of the

water phase, Q.

Pastor and coworkers proposed that the parameter

α may depend on the density of the mixture and the

critical time step, which is the time step that is able to

capture the P wave of the saturated media. The main

components of this reference time step are the charac-

teristic P-wave velocity, Vc, and the element size, h:

α = τ0
∆t2crit
ρ

= τ0
h

ρVc
. (29)

Finally, as Eq. (28) is equal to zero, we can add

directly to Eq. (4) without losing physical meaning:

˙pw = −Qdiv u̇−Qκ div (ρwg) (30)

+Q (κ ρw − αρ)div (ü) +Q (κ − α) div(grad pw).

Rewriting Eq. (30) in a matrix form, the stabilized

system of equations yields:

Rs −Rpw −M sü+ fext, s = 0 (31)

−Cu̇+Mw∗ü+ fext, w −Rw∗ = ˙pw (32)

where the ∗ terms are the stabilized terms, that are

built as:

Rw∗ =

NP∑
P=1

Q(κ − α)VP pw∇N

Mw∗ =

NP∑
P=1

Q(κρw − αρ)VPBmN (33)

4.1 Explicit stabilized pseudo-algorithm

The explicit scheme is similar to the one proposed by

Navas et al. [39] with the introduction of the stabi-

lization terms. Following, the pseudo-algorithm of the

whole model is proposed, being the superscript p em-

ployed for material point calculations.

1. Explicit Newmark Predictor (γ = 0.5, β = 0)

uk+1 = uk +∆tu̇k + 0.5∆t2 ük,

u̇k+∗ = u̇k + (1− γ)∆t ük,

pwk+∗ = pwk
+ (1− γ)∆t ṗwk

.

2. Update position of Nodes and Material points

xk+1 = xk +∆uk+1,

xpk+1 = xpk +

Nb∑
a=1

∆uak+1N
a(xpk).

3. Calculation of the deformation gradient and related

parameters

∆Fk+1 = I +

Nb∑
a=1

∆uak+1 ⊗∇Na(xpk),

Fk+1 = ∆Fk+1Fk,

V = JV0 = detFV0,

n = 1− 1− n0
J

.

4. Update density and mass. Construct lumped mass

ρk+1 = nk+1ρw + (1− nk+1)ρs.

5. Remapping nodes and material neighbors.

6. Calculation of stresses σ′
k+∗ and internal forces,

Rs
k+∗ and Rw

k+∗, through the constitutive model.
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7. Computing ük+1 from Eq. (9):

ük+1 = [M s]
−1 [

Rs
k+∗ −Rw

k+∗ + fext, s
k+1

]
8. Calculate ˙pwk+1 from Eq. (10):

˙pwk+1 = −Cu̇k+∗ +Mw∗ük+1 + fext, w
k+1 −Rw∗

k+∗

9. Explicit Newmark Corrector

u̇k+1 = u̇k+∗ + γ∆t ük+1,

pwk+1
= pwk+∗ + γ∆t ṗwk+1

.

5 Verification examples

Three different verification examples are considered in

this section. The first verification case deals with a con-

solidation process in a saturated column of soil sub-

jected to a bilinear loading at the surface The second

one allows us to verify also the 2D component behav-

ior, analyzing the behavior of the pore water pressure

distribution along a 2D stratum when it is loaded by a

strip footing. Finally, the third verification case assesses

the failure of a vertical wall of saturated soil, aiming to

analyze the performance of the proposed stabilization

technique in a traditional geotechnical problem.

5.1 Consolidation of a column of soil

In this problem, an idealization of a semi-infinite stra-

tum of soil through a 2D column is employed. The

height and width of the column are HT = 10m and

L = 1m, respectively. Horizontal displacement is for-

bidden in the vertical boundaries, while vertical dis-

placement is blocked in the rigid base. In addition, the

top boundary is considered perfectly drained (pw = 0).

This geometry and boundary conditions are depicted in

Fig. 1. Also, the load ramp considered is presented.

Sabetamal et al. [47] proposed a particular mesh

in order to be able of a proper capturing of the wave

provoked by the load. The upper meter of the stratum

is discretized with a 0.25 m., meanwhile a discretization

of 0.5 m. size is employed for the rest of the stratum. A

similar discretization is employed in this research within

the OTM configuration.

The objective of the present section is the verifica-

tion of the methodology in the undrained-incompressible

limit. A stratum of soil suffers the application of a pres-

sure which follows the curve of Fig. 1.B. The load is

applied gradually until reaching Pmax at t0 = 7.5 s.

Following, the l when the load is kept constant until

P=P(t)

Γ4

Γ3

Γ2

Γ1

H
T =

 1
0 

m

L = 1 m

Γ1 :  pw=0
Γ2 :  ux=0
Γ3 :  uy=0
Γ4 :  ux=0

100 Pa

P(t)

t (s)7.5

A) B)

Fig. 1 Geometry, load and boundary conditions of the col-
umn of soil problem

Table 1 Parameters of the consolidation problem

E [MPa] 4.0 Kw [MPa] 2.2× 104

ν 0.2857 Ks [MPa] 1034

n 0.363 ρw [kg/m3] 1000

k [m/s] 1.0e-5 ρs [kg/m3] 2700

7.5 s. The water and solid parameters are presented in

Tab. 1, being the non-linear elastic material of Eq. (15)

employed for the solid model of the problem.

The solutions obtained, with and without the stabi-

lization technique, are seen in Fig. 2 for the two cases.

In this figure, the pore pressure distribution, when the

whole load is applied (7.5 s.), is plotted. The typical

positive-negative pattern of an unstable pore pressure

distribution is observed for the unstabilized case. Also,

spurious maximum values, close to 500 Pa, are observed

in this case, meanwhile the maximum value of the sta-

bilized case is close to the total amount of load, 100 Pa.

Also, in Fig. 2, the pore pressure distribution obtained

with a quadratic finite element scheme can be observed.

A similar pattern can be appreciated between the pro-

posed approach and the quadratic finite element one.

However, oscillations close to the top of the column ap-

pear in the distribution obtained with the finite element

approach. These oscillations are not present in the re-

sults obtained with the proposed approach.

If this pore pressure is plotted along the depth,

Fig. 3, the oscillations are seen for the unstabilized case

in the 3 first meters of the stratum of the column. The
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Fig. 2 Pore pressure distribution, when the whole load is
applied (7.5 s.) for A) Unstabilized, B) Stabilized and C)
Quadratic Finite Element cases.
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Fig. 3 Pore pressure along depth, when the whole load is
applied (7.5 s.) for A) Unstabilized, B) Stabilized and C)
Quadratic Finite Element cases.

stabilization technique allows to mitigate this unrealis-

tic behavior, smoothing out the solution without losing

physical information. Although the pore pressure distri-

bution obtained with the quadratic finite element ap-

proach improves the unstabilized result, it still presents

some oscillations close to the top of the column.

Γ1

Γ2

Γ3

Γ4

10
 m

10 m

1 m

λ  = 8.4 MPa
G = 5.6 MPa
ρs = 2500 kg/m3

ρw = 1000 kg/m3

Γ1 :   ux=0
Γ2 :   uy=0
Γ3 :  Symmetry (ux=0)
Γ4 :   pw=0

P=P(t)

A

B
Kw = 1e4 MPa
k = 1e-7 m/s
n = 0.33

P
 (

M
P
a)

Fig. 4 Geometry, material parameters and boundary condi-
tions of a square domain of water saturated porous material
loaded by a strip footing.

5.2 Strip footing load

The following example is based on a saturated stra-

tum loaded by a vibrating strip footing. Fig. 4 presents

the geometry, boundary conditions as well as the his-

tory load of the aforementioned footing. This verifica-

tion case was firstly studied by Li et al. [30] through

the finite element method and later with the Material

Point Method by Zhao and Choo [61]. The permeability

of the soil stratum in the present work is similar to the

one considered by Zhao an Choo, which is lower than

the original one. The traditional Neo-Hookean model

is employed. The material parameters are depicted in

Fig. 4. It is worth mention that comparison against

these works is not possible since no damping parameter

is employed in the present research. However, it is possi-

ble to capture similar trends that were observed in the

previous works. Moreover, they considered an incom-

pressible pore water phase, whereas compressibility of

the pore water is taken as 1e10 Pa in the present work.

First, the spatial distribution of the pore pressure

shows oscillations, since it lies on the incompressible-

undrained limit (Fig. 5). The values are not so severer

than in the previous example, since no negative values

are achieved. It can be due to the 2D configuration

of the problem or the dynamic behavior of the load.

However, unrealistic peak values are obtained.

The phenomenon is studied at t=0.1 s. In Fig. 5,

the distribution of the pore pressure is depicted for

the unstabilized and stabilized solutions and also the

quadratic finite element scheme. The unstabilized pro-

file shows a spurious oscillation, which is alleviated in

the stabilized and the finite element solutions. The dif-

ference between the stabilized and the finite element

solutions lies in the peak, which is more pronounced
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for the finite element one. This peak is quickly allevi-

ated along the depth in both cases, being quicker in the

finite element approach than in the stabilized solution.

The value of the peak can be observed in Fig. 6. In this

figure, the distribution of the pore pressure along the

depth is depicted, located under the edge of the strip

footing. While the stabilized solution and the quadratic

one show a smooth transition, with a peak of around

3 MPa, the unstabilized solution oscillates around the

correct solution providing unreal values, with a peak of

4 MPa.

Next, the time evolution of the pore water pressure

at two different locations (A and B in Fig. 4, i.e., a

shallow and a deep location) is analyzed.

As it can be appreciated in Fig. 7, the main dif-

ference can be encountered in the location at point A,

shallow zone. Effectively, in Fig. 7.A, there is an impor-

tant overestimation of the peak values that is mitigated

along the depth, as it can be observed in Fig. 7.B. Al-

though the overall trend is not greatly affected with

depth, several peaks appear. In the present case, as the

material is Neo-Hookean, these peaks scarcely affect the

final result. However, with different constitutive materi-

als, as in the following application case, the found peaks

would alter the final result.

The differences between the quadratic and the sta-

bilized solutions are depicted clearer in point B, where

the quadratic one is able to dissipate pore pressure more

efficiently than the proposed solution.

5.3 Vertical cut

In this final application, the proposed stabilization tech-

nique is applied to model a drainage process induced by

a strip rigid footing over a square domain of a hyper-

elastoplastic saturated soil. The failure of the material,

leaded by the applied load, takes the shape of a typi-

cal vertical cut with an inclined shear band. A similar

problem was previously assessed by Sanavia et al. [49,

50] in a quasi static regime and by Navas et al. [41,42]

for a dynamic approach, considering different dilatancy

angles in order to see the performance of the soil de-

pending on the properties. In this case, only the case

of friction angle 20◦ and dilatancy 0◦ is studied. The

geometry and material properties are shown in Fig. 8.

A gradual displacement of 1 m at the boundary Γ4 is

applied along the 10 s of the simulation, being the em-

ployed time step 1 ms. A nodal spacing of 0.833 m.,

forming a regular 12×12 nodal discretization, is con-

sidered.

Pore pressure results are depicted, at the final stage,

in Fig. 9. For the stabilized simulation, it was reached
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Fig. 5 Pore pressure distribution at time t=0.1 s for both A)
Unstabilized and B) Stabilized cases.
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Fig. 7 Pore pressure evolution at locations A and B of the
Fig. 4 along the time.

the final time of 10 s. However, for the non stabilized

case, the simulation breaks out at 1 s. due to the in-

fluence of the spurious pore water pressure distribution

over the solution process. In the third row, the solu-

tion obtained with a T6-P3 finite element technology,

whithout stabilizing, is also shown. The results are sim-

ilar to the stabilized one. In the referred bibliography

we found distributions of pore pressure similar to the

stabilized one, taking into account that, in this case,

the permeability was lowered to reach undrained con-

ditions. Despite this fact, the trend of the behavior of

uy = uy(t)

Γ1

Γ2

Γ3

Γ4

10
 m

10 m

Γ5

5 m

K = 8.333 MPa
G = 3.486 MPa
c0 = 100 kPa
H = -10 kPa
Φ = 20º 
Ψ = 0º
Kw = 1e4 MPa
k = 1e-6 m/s
n = 0.33
ρs = 2700 kg/m3

ρw = 1000 kg/m3

P

Γ1 :   ux=0
Γ2 :   uy=0
Γ3 :   Free
Γ4 :   uy=uy(t)
Γ5 :   pw=0

Fig. 8 Geometry, material parameters and boundary condi-
tions of a square domain of water saturated porous material

the soil is well captured. Contrary, the unstabilized one

presents the typical oscillations, that become bigger due

to the plastic behavior of the soil.

Regarding the relation with the development of the

shear band, the three solutions have been depicted in

Fig. 10. It can be observed how the stabilized one and

the quadratic one are similar to those reached by Sanavia

and coworkers for the case ϕ = 20◦ and ψ = 0◦. Never-

theless, as we mentioned before, the spurious pore water

pressure spatial distribution affects the spatial distribu-

tion of plastic zones and the subsequent development of

the shear band mechanism.

6 Conclusions

The stabilization of the explicit Newmark predictor-

corrector solution of the Biot’s u−pw formulation is pro-

vided in this manuscript. This formulation has been at

large strain within the Optimal Transportation Mesh-

free method, although it can be extended to some other

well-known meshfree schemes, such as Smooth Particle

Hydrodynamics or Material Point Method. The stabi-

lization is achieved through the addition of a stabiliza-

tion term, which comes from the divergence of the mo-

mentum equation.

The proposed methodology was previously demon-

strated to work in a robust way in dynamic problems

of saturated soils, mainly under drained conditions, but

in this research it has been extended to the undrained-

incompressible limit. Furthermore, the methodology ac-

counts with the potential strength of an explicit scheme.

Elastic and plastic materials have been tested, showing

excellent results, mainly with the second one, since the

spurious peak values are catastrophic by means of un-

real plasticizing of the material.
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The first example has demonstrated the performance

of the proposed methodology in the traditional Terza-

ghi’s scheme. The second one extends this elastic scheme

to 2D conditions in order to visualize the propagation

of the waves along the domain. Harmonic loading has

been employed to assess the behavior of the pore pres-

sure along the time. Finally, a typical plastic problem

has been analyzed. Under the light of the proposed

stabilization technique, the expected shear band is at-

tained. However, without stabilizing the problem, the

plastic zone dissipates creating spurious plastic zones

along the domain, being impossible the formation of the

shear band. The wide range of applications allows us to

validate the proposed methodology under dynamic con-

ditions.

The present research opens the door of the explicit

simulations of saturated soils by some other meshfree

methods. Next steps will present this formulation in

the Material Point Method. Moreover, this methodol-

ogy is feasibly transferable to unsaturated conditions by

adding the influence of the degree of saturation and the

air phase. Because of the nature of the explicit scheme,

this formulation arises easily from the proposed in this

paper.
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Nomenclature

– b = FF T : left Cauchy-Green tensor

– b: body forces vector

– c: cohesion (equivalent to the yield stress, σY )

– C (time integration scheme): damping matrix

– Ds□
Dt ≡ □̇: material time derivative of ⊓⊔ with respect

to the solid

– F = ∂x
∂X : deformation gradient

– g: gravity acceleration vector

– G: shear modulus

– h: nodal spacing

– H: hardening modulus, derivative of the cohesion

against time.

– I: second order unit tensor

– J = detF : Jacobian determinant

– k: intrinsic permeability

– k: permeability tensor

– K: bulk modulus

– Ks: bulk modulus of the solid grains

– Kw: bulk modulus of the fluid

– M : mass matrix

– n: porosity

– N(x), ∇N(x): shape function and its derivatives

– p: solid pressure

– pw: pore pressure

– P (time integration scheme): external forces vector

– Q: volumetric compressibility of the mixture

– R: internal forces vector

– s = σdev: deviatoric stress tensor

– t: time

– u: displacement vector of the solid

– U : displacement vector of the water

– vs = u̇: velocity vector of the solid

– vws: relative velocity vector of the water with re-

spect to the solid

– w: relative displacement vector of the water with

respect to the solid

– Z(x,λ): denominator of the exponential shape func-

tion

– α
F
, α

Q
and β: Drucker-Prager parameters

– β, γ: time integration schemes parameters

– β, γ: LME parameters related with the shape of the

neighborhood

– ∆γ: increment of equivalent plastic strain

– εp: equivalent plastic strain

– ε: small strain tensor

– ε0: reference plastic strain

– κ: hydraulic conductivity

– λ: Lamé constant

– λ: minimizer of logZ(x,λ)

– µw: viscosity of the water

– ν: Poisson’s ratio



13

– ρ: current mixture density

– ρw: water density

– ρs: density of the solid particles

– σ: Cauchy stress tensor

– σ′: effective Cauchy stress tensor

– τ : Kirchhoff stress tensor

– τ ′: effective Kirchhoff stress tensor

– Φ: plastic yield surface

– ϕ: friction angle

– ψ: dilatancy angle

Superscripts and subscripts

– dev: superscript for deviatoric part

– e: superscript for elastic part

– k: subscript for the previous step

– k+1: subscript for the current step

– p: superscript for plastic part

– s: superscript for the solid part

– trial: superscript for trial state in the plastic calcu-

lation

– vol: superscript for volumetric part

– w: superscript for the fluid part relative to the solid

one
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sumptions in soils. Géotechnique 30(4), 385–395 (1980).
DOI 10.1016/j.ocecoaman.2012.02.008

66. Zienkiewicz, O.C., Codina, R.: A general algorithm for
compressible and incompressible flow. part i: the split
characteristic based scheme. International Journal for
Numerical Methods in Fluids 20, 869–885 (1995)

67. Zienkiewicz, O.C., Taylor, R.L.: The finite element
method. Volume 1: Basic formulation and linear prob-
lems, vol. 3. McGraw-Hill, London (1994)

68. Zienkiewicz, O.C., Wu, J.: Incompressibility without
tears-how to avoid restrictions of mixed formulations,. In-
ternational Journal for Numerical Methods in Engineer-
ing 32, 1184–1203 (1991)


