
Additional Evaluations
This document complements the main paper (https://doi.
org/10.1145/3572848.3577480) by providing additional per-
formance evaluations.

1 NUMA-Aware Iteration
We evaluate the individual performance impact of NUMA-
aware iteration (Section 4.1 in the main paper). In the other
benchmarks in the main paper, this optimization was in-
cluded in the “memory layout optimization” group. We com-
pare the simulation runtime with all optimizations enabled,
to executions in which “NUMA-aware iteration” is turned
off. This benchmark shows that this mechanism reduces the
runtime between 1.07× and 1.38× (median: 1.30×).

2 BioDynaMo Memory Allocator
To evaluate the performance of the BioDynaMo memory
allocator (Section 4.3 in the main paper), we compare it with
glibc’s version of ptmalloc2 [3] and jemalloc [1] using our
five benchmark simulations. A comparison with tcmalloc [2]
was impossible due to deadlock issues that we discovered
during benchmarking. Only the epidemiology use case uses
additional memory during agent sorting and balancing. Since
the BioDynaMo memory allocator only covers agents and
behaviors, we need to use another allocator for the remaining
objects.

This requirement results in four tested configurations per
simulation, as illustrated in Figure 1. The BioDynaMo mem-
ory allocator improves the overall simulation runtime up
to 1.52× over ptmalloc2 (median: 1.19×) and up to 1.40×
over jemalloc (median 1.15×). The allocator consumes 1.41%
less memory than ptmalloc2 and 2.43% less memory than
jemalloc on average.

3 Scalability
Figure 10c in the main paper demonstrates the scalability be-
havior of BioDynaMowith different optimization settings for
the cell proliferation simulation. Figure 2 shows the scaling
results of this benchmark for all simulations.

Figure 1.Memory allocator comparison (left: speedup, right:
memory consumption).

(a) Legend for (b)–(f)

(b) Cell proliferation

(c) Cell clustering

(d) Epidemiology

(e) Neuroscience

(f) Oncology
Figure 2. Detailed strong scaling analysis for all simulations
using only ten time steps. The left column shows the speedup
with respect to a single-thread execution, while the right
column presents the total runtime.

https://doi.org/10.1145/3572848.3577480
https://doi.org/10.1145/3572848.3577480


Breitwieser, et al.

References
[1] Jason Evans. 2011. Scalable memory allocation using jemal-

loc. http://www.facebook.com/notes/facebook-engineering/scalable-
memory-allocation-using-jemalloc/480222803919.

[2] Sanjay Ghemawat and Paul Menage. 2007. TCMalloc: Thread-caching
malloc. https://goog-perftools.sourceforge.net/doc/tcmalloc.html. Ac-
cessed: November 30, 2022.

[3] Wolfram Gloger. 2006. Ptmalloc. http://www.malloc.de/en. Accessed:
November 30, 2022.

http://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-jemalloc/480222803919
http://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-jemalloc/480222803919
https://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://www. malloc. de/en

	1 NUMA-Aware Iteration
	2 BioDynaMo Memory Allocator
	3 Scalability
	References

