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jectory collection; 2) MT in Trento, for the use case MT1 Monitoring of crowded areas;
and 3) the experimental pilot UNS in Novi Sad, for the use case UNS1 Drone experi-
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tection, and, distributed inference and social learning are described, with particular
implications and relevance for MARVEL. Finally, a novel strategy for the design of fed-
erated learning protocols based on the metric of large deviations is presented.
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Executive summary

This document is the final report for the work carried out in the context of Task
3.2 of the MARVEL project: “MARVEL’s personalized federated learning realization for
extreme-scale analytics,” describing the research, innovation, and development contri-
butions carried out in the context of the task. Specifically, the deliverable describes the
task’s contributions along the following five axes.

First, the task has led to the development of a novel open-source software compo-
nent for personalised federated learning dubbed FedL. The deliverable describes the
methodological approach behind the developed component, including efficient sam-
pling of heterogeneous devices. It also provides implementation and deployment de-
tails of the component, how the component is integrated into the MARVEL framework,
as well as extensive performance evaluation results.

Second, the deliverable describes how the developed FedL component has been
applied to three MARVEL’s use cases: 1) GRN4 Traffic junction trajectory collection, in
the Malta pilot; 2) MT1 Monitoring of crowded areas, in the Trento pilot; and 3) UNS1
Drone experiment, for monitoring large space public events, in the experimental pilot
in Novi Sad. It also explains how the FedL component can be applied to two highly
relevant deep learning tasks, also utilised in MARVEL use cases: visual crowd counting
(VCC), and audio-visual crowd counting (AVCC).

Third, the deliverable describes the privacy-preserving features of the employed
federated learning methods, as well as additional privacy-preserving mechanisms, such
as differential privacy, that have been employed in the design of FedL and more broadly
for the work carried out in the task.

Fourth, the deliverable describes the Edge-to-Fog-to-Cloud (E2F2C) infrastructural
patterns and systems that have been employed in the context of the development of
FedL and more broadly, in the context of work on this task.

Fifth, the deliverable describes the task results in a broader context of personalised
federated learning for extreme-scale analytics. Namely, the task produced several novel
methodologies and results for: 1) personalised federated learning and clustering; 2)
decentralised and unsupervised anomaly detection; 3) federated feature selection for
efficient data compression and communication; 4) nonlinear mappings design for more
robust federated learning; and 5) development of large deviations (rare events) metrics
for performance evaluation and design of federated and distributed learning methods.
These results have led to several publications in the respective field. In this context,
the objective of this deliverable is to provide brief summaries of the results of these
papers, the progress beyond state-of-the-art that they achieve, and their relevance to
the MARVEL project.
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1 Introduction

1.1 Purpose and scope of the document

The main purpose of this document is to report on research, innovation, and develop-
ment results achieved in the context of Task 3.2 of the MARVEL project, explain the
task’s contributions achieved towards WP3 and overall project’s objectives, and link the
results achieved with the related MARVEL’s key performance indicators (KPIs).

In more detail, the deliverable describes the following contributions achieved. First,
the task has led to the development of a novel open-source software component for
personalised federated learning dubbed FedL. This document provides details on the
scientific methodology behind FedL, its implementation, deployment and MARVEL R1
integration details, and extensive performance evaluation. It also describes how FedL
has been applied to specific deep learning models for VCC and AAVC, and the three
MARVEL’s use cases: 1) GRN in Malta, for traffic analysis and anomaly detection; 2)
MT in Trento, for city monitoring and situational awareness; and 3) experimental pilot
UNS in Novi Sad, for monitoring large space public events. Second, the deliverable
describes the privacy enhancement methodologies and tools utilised in the context of
FedL and more broadly the work carried out in the task. Third, it outlines the edge-fog-
cloud architectural and deployment patterns utilised in the task. Next, the deliverable
describes research results obtained in the context of the task that have contributed
to the state-of-the-art in personalised federated learning. These research efforts have
resulted in a number of scientific publications, whose results are briefly outlined in
the deliverable, focusing on their contributions beyond state-of-the-art, as well as their
relevance to MARVEL. These research results include 1) novel methodologies for per-
sonalised federated learning and model clustering; 2) decentralised and unsupervised
anomaly detection; 3) federated feature selection for efficient data compression and
communication; 4) nonlinear mappings design for more robust federated learning; and
5) rare event (large deviations) metrics for the analysis and design of federated and
distributed learning methods. We refer the reader to the accompanying papers for full
details on the research results achieved, also provided in the Appendix of this docu-
ment. Finally, the deliverable describes how the FedL component will be utilised and
exploited in the Release 2 (R2) period of the MARVEL project, e.g., in the context of
the second integrated solution and further MARVEL use cases.

1.2 Intended readership

The deliverable is primarily intended for researchers, developers and practitioners in
the domain of federated learning and related domains. Secondly, the deliverable is of
interest to professionals with a non-technical background that work in the domain of
smart cities and related domains, as the deliverable describes some examples on useful
applications of deep learning in the domain. Thirdly, the deliverable may be of interest
to a more broad audience generally interested in the subject. While the text necessarily
includes some technical content, an intention has been made to reduce the degree of
highly technical details, such as extensive mathematical definitions and proofs. An
interested reader is referred to the accompanying scientific papers.

MARVEL - 13- December 31, 2022

DRAFT



MARVEL D3.4 H2020-ICT-2018-20/No 957337

1.3 Contribution to WP3 and project objectives

The deliverable contributes to the following WP3 objectives:

• (i) Define and execute measures ensuring privacy preservation during data process-
ing: The deliverable describes how differential privacy has been incorporated in
the FedL component for improving privacy preservation;

• (ii) Follow a personalised federated learning approach to train and execute ML mod-
els at the Edge, Fog and Cloud: The task has developed a novel component for
personalised federated learning dubbed FedL; the report also describes how the
models have been trained via FedL and executed over various Edge-to-Fog-to-
Cloud architectural and deployment patterns;

• (iii) Train new or updated ML algorithms for audio-visual classification and analyt-
ics: The deliverable describes how new models for several audio-visual tasks have
been trained, including VCC and AVCC tasks.

• (iv) Optimise ML deployment in the E2F2C infrastructure in a continuous manner:
Even though this WP3 objective is not central to the current task, the deployment
of models for each use case has been optimised with respect to the computational
and storage capabilities of edge, fog and cloud elements for each specific use case.

• (v) Deploy ML algorithms at all layers of E2F2C: The deliverable describes how
FedL has been deployed at edge, fog, and cloud layers for each of the three use
cases considered in the deliverable.

• (vi) Implement light-weight ML models for deployment at the edge: The task has de-
veloped federated unsupervised anomaly detection methods wherein lightweight
models such as lightweight autoencoders have been deployed at the edge.

Regarding contributions to the overall MARVEL’s objectives, we refer the reader to
the analysis below of the specific MARVEL project’s KPIs that are relevant to the current
task.

1.4 Positioning of FedL in MARVEL’s architecture

Figure 1 shows the MARVEL’s conceptual architecture, grouping the components in
seven subsystems, and described in detail in D1.31, with subsequent revisions reported
in D6.12. MARVEL’s federated learning component FedL is part of the Optimised E2F2C
Processing and Deployment Subsystem, shown in violet in the figure (other subsys-
tems are shaded in the figure), whose functional role is to enable optimised realisa-
tion and deployment of various MARVEL services and functionalities. This subsystem
consists of two types of components: 1) components that aim at optimising the plat-
form’s operation, in terms of model accuracy through federated training – FedL, model
size through model compression – DynHP, and GPU-based pattern matching accelera-
tion – GPURegex; and 2) Kubernetes-based deployment through MARVdash platform,

1MARVEL D1.3: Architecture definition for MARVEL framework, 2021. https://doi.org/10.
5281/zenodo.5463897

2MARVEL D6.1: Demonstrators execution – initial version, 2022. https://doi.org/10.5281/
zenodo.6862995
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Figure 1: MARVEL’s conceptual architecture

which facilitates deployment of MARVEL services. The main interface of FedL within
MARVEL’s architecture is with the AI model Repository (AIMR). This is a database of
machine learning and deep learning models produced or used within MARVEL, and
is part of the Audio, Visual and Multimodal AI subsystem; examples of such mod-
els include visual and audio-visual crowd counting (VCC, AVCC), visual and audio-
visual anomaly detection (ViAD, AVAD), and other. The interface of FedL with AIMR
is described in detail in Section 2.3.1, while Section 2.3.2 describes the data handling
pipeline of the models trained by FedL in their inference phase.

1.5 Relation to other work packages

Task 3.2 is part of WP3 which is responsible for the development of MARVEL’s so-
lution for AI-based distributed algorithms for multimodal perception and situational
awareness. As such, it carries out algorithm design based on the requirements and
state-of-the-art analysis set out in WP1. It performs model training based on the data
that has been collected and prepared in WP2. It also makes use of the E2F2C frame-
work patterns and data anonymisation techniques developed in WP3 (anonymisation)
and WP4 (voice activity detection). The FedL component that Task 3.2 develops is in-
tegrated in the MARVEL framework in the context of WP5. FedL and other Task 3.2
contributions are then applied in real-world experiments within WP6. Exploitation of
the task’s results is being carried out in the context of WP7.

1.6 Connection to Key Performance Indicators

1.6.1 Project-related KPIs

KPI-O1-E3-1: Number of incorporated safety mechanisms (e.g. for privacy, voice anonymi-
sation) ≥ 3. Status: Achieved.
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This KPI is also addressed under T3.1, T4.2 and T4.3, as detailed in D3.3 and
D4.4, where components for video anonymisation – VideoAnony, audio anonymi-
sation – AudioAnony, and Voice Activity Detection – VAD, are described together
with a number of safety mechanisms, including also end-to-end security and data
and code integrity verification components – EdgeSec VPN and EdgeSec TEE.

To provide an additional privacy preservation mechanism, specifically for the fed-
erated training process, the MARVEL’s federated learning component FedL incor-
porates a differential privacy mechanism within each FedL client’s training. This
is achieved by adding a controllable amount of noise to the client’s local model
updates, thus masking the original data and reducing the likelihood of gradient
inversion. Details of the differential privacy implementation within FedL are pro-
vided in Section 2.2.2.

KPI-O2-E1-1: Standard non-personalised federated learning improvement (performance
and speed) at least 10% Status: Achieved.

Regarding training speed, an adaptive FL protocol, called FedL NUS, described
in Section 2, was proposed and developed that accounts for communication and
node availability statistics thus effectively increasing training speed compared to a
standard protocol. For clients that exhibit heterogeneities, the protocol achieves
significant improvements both on standard FL benchmarks as well on MARVEL
data in terms of the training speed over the baseline FedAvg [1]. On the LEAF
benchmark (widely adopted and most commonly used benchmark for FL) [2],
specifically the MNIST dataset [3], FedL with NUS strategy reaches an accuracy
of 88%, which is only 2.3%(= 88/90) lower relative to the accuracy of 90% of the
baseline algorithm FedAvg, while at the same time achieving significant savings in
the number of communicated data. Specifically, in the same experiments, to reach
the indicated accuracy, FedAvg requires the transmission of 120 megabytes (MB)
in total, while FedL NUS requires in total less than 80 MB of transmitted model
data, savings of more than 33%. See Section 3.3 for details on performance results
and experiments carried out.

Regarding performance improvement, a novel methodology for client model per-
sonalisation based on convex clustering was developed, which accounts for per-
sonalised data mixtures, tuning the models to the local data distribution to achieve
improved model accuracy.

iKPI-1.1: At least three (3) tools for complex/federated/distributed systems handling ex-
tremely large volumes and streams of data Status: Achieved.

As a result of the work carried out in T3.2, UNS has delivered FedL component
implementing the non-uniform client sampling (NUS) strategy that is particularly
well-suited for federated training with a large number of participating clients
with arbitrary data modalities, including multimodal data streams; see Section 2
and 3 for detailed descriptions of FedL. Second, within T3.2 a novel methodology
for client clustering within FL with a matching algorithm is developed that finds
hidden cluster structures in an arbitrarily large pool of clients. The relevance
of this methodology is to facilitate model search for a newly arriving client by
checking only a small number of model candidates, which are provided by the
tool, and hence significantly reducing the complexity of the overall process when
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a very large number of clients/datasets are participating in the training; see Sec-
tions 4 and 5 for details. Third, a tool for Dynamic split computing for distributing
DL architectures to two consecutive tiers of the E2F2C architecture is developed
within T3.3 (AU, UNS). The tool can operate on DL models of large sizes (large
number of layers) and is suitable for data of large volumes (such as video); this
work is reported in D3.13. Further, within T3.2 a tool is proposed for optimising
data exchange protocols in fully distributed systems with complexity exhibited
both in topology (e.g., generic topology) and inherent system randomness (link
failures, node failures). For such systems, we develop a tool for adaptively opti-
mising communication frequencies of nodes’ interactions/data transmission and
observe that important communication savings can be achieved with respect to
a time-constant strategy, with negligible performance deterioration; the details
can be found in Section 10. Finally, a contribution to this KPI is the novel ana-
lytical framework based on the theory of large deviations for stochastic gradient
descent–based learning algorithms, including federated learning, and the accom-
panying design metrics that show advantages over the standard mean-square er-
ror metrics, being able to analytically capture the geometrical interplay between
the noise distribution and loss functions, higher-order noise moments, noise skew
and other parameters that impact learning performance; details are provided in
Section 9. Additional contributing tools/methods to this KPI include: the tool
for unsupervised anomaly detection tasks on distributed and federated edge de-
vices, Section 6, the federated feature selection tool, Section 7, and the method
for handling heavy-tailed gradient noise often exhibited with DL models training,
applicable to centralised or federated settings, Section 8.

iKPI-3.1: Accuracy ratio (> 95%) of training of deep learning models with respect to full
dataset training. Status: Achieved.

On the LEAF benchmark (widely adopted and most commonly used benchmark
for FL), specifically MNIST dataset, FedL with NUS strategy reaches an accuracy
of 88%, which is only 2.3%(= 88/90) lower relative to the accuracy of 90% of
the baseline algorithm FedAvg, while at the same time achieving significant sav-
ings in the number of communicated data. Specifically, in the same experiments,
to reach the indicated accuracy, FedAvg requires transmission of 120 MB in to-
tal, while FedL NUS requires in total less than 80 MB of transmitted model data,
achieving savings of more than 33%. We consider here the full dataset training
to be the method that adopts a bucket sampling across the users’ data, that is,
we consider stochastic gradient descent (SGD) where a mini-batch is formed by
sampling data from all users. Compared with this benchmark, we approach its
accuracy to within 95%, 90% versus 88% achieved by NUS. Similar improvements
are reported for experiments over MARVEL data, as detailed in Section 3. We eval-
uate the performance on MARVEL data for visual crowd counting (VCC) training
task using the SASNet VCC model. The obtained savings due to the employed pro-
tocol are significant: for 100 training epochs, FedAvg requires transferring > 50%
more (model) data – 46 gigabytes (GB) vs 28 GB. The FedL-NUS training process
results in higher accuracy for 2 clients that exhibit similarity in their data (MT
and UNS), showing clear benefits of federated training (see Table 4 for details).

3MARVEL D3.1: Multimodal and privacy-aware audio-visual intelligence – initial version, 2021.
https://doi.org/10.5281/zenodo.6821318
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iKPI-12.1: Reduced training time by at least 10% compared to standard approach. Status:
Achieved.

An adaptive FL protocol was proposed and developed within T3.2 that accounts
for communication and node availability statistics thus effectively reducing train-
ing time compared to a standard protocol. For clients that exhibit heterogeneities,
the protocol achieves an improvement of ≈ 30% on both the standard benchmark
dataset (LEAF) and of ≈ 50% on MARVEL data in terms of the training speed over
the baseline FedAvg, with higher accuracy for the majority of clients. The details
are provided in Section 3.3. Additional contribution to this KPI is the analysis
and unification of various nonlinear gradient mappings designed for handling
heavy-tailed gradient noise and thus with potential to increase the speed and
communication efficiency of ML/DL training, as elaborated in Section 8.

1.7 Structure of the report

The remainder of the deliverable is structured as follows. Overall, the report consists
of two main parts. The first part contains Sections 2 and 3 and is devoted to the FedL
component. Section 2 describes the component, while Section 3 explains how it is
applied to the targeted MARVEL’s use cases, within MARVEL R1. The second part of
the deliverable (Sections 4–10) describes the research results carried out in the context
of the task that led to four scientific publications and three preprints (undergoing peer
review). This part of the deliverable describes these results on a section-per-paper basis.
For each section (and an associated paper), main approach, progress beyond state-of-
the-art, evaluation results, and relevance to MARVEL, have been described. Specifically,
Sections 4 and 5 deal with clustered personalised federated learning, summarising the
work reported in:

• A. Armacki, D. Bajovic, D. Jakovetic and S. Kar, “Personalized Federated Learning
via Convex Clustering,” 2022 IEEE International Smart Cities Conference (ISC2),
2022, pp. 1-7, DOI: 10.1109/ISC255366.2022.9921863, Appendix A4 and

• A. Armacki, D. Bajovic, D. Jakovetic and S. Kar, “One-Shot Federated Learning for
Model Clustering and Learning in Heterogeneous Environments,” 2022, Zenodo,
https://doi.org/10.5281/zenodo.7537614, Appendix B

Section 6 is on decentralised and unsupervised anomaly detection, reported in:

• M. Nardi, L. Valerio, and A. Passarella, “Anomaly Detection through Unsupervised
Federated Learning,” Proc. of the 18th IEEE Int. Conference on Mobility, Sensing
and Networking (MSN), 2022, Appendix C

Section 7 considers federated feature selection, reported in:

• P. Cassará, A. Gotta and L. Valerio, “Federated Feature Selection for Cyber-Physical
Systems of Systems,” in IEEE Transactions on Vehicular Technology, vol. 71, no.
9, pp. 9937-9950, Sept. 2022, DOI: 10.1109/TVT.2022.3178612., Appendix D5

Section 8 considers robust learning by employing a generic nonlinearity in the learning
process, reported in:

4https://doi.org/10.5281/zenodo.7007248
5https://doi.org/10.5281/zenodo.6901227
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• D. Jakovetic, D. Bajovic, A. Sahu, S. Kar, N. Milosevic, D. Stamenkovic, “Non-
linear Gradient Mappings And Stochastic Optimization: A General Framework
With Applications To Heavy-Tail Noise,” accepted for publication in SIAM Journal
on Optimization, 2022, Zenodo, https://doi.org/10.5281/zenodo.7538446
Appendix E

Sections 9 and 10 deal with the large deviations analysis and design of distributed
inference and learning methods, reported in:

• D. Bajovic, D. Jakovetic, and S. Kar, “Large deviations rates for stochastic gradient
descent with strongly convex functions,” 2022, Zenodo, https://doi.org/10.
5281/zenodo.7537625, Appendix F

• D. Bajovic, “Inaccuracy rates for distributed inference over random networks with
applications to social learning,” 2022, Zenodo, https://doi.org/10.5281/zenodo.
7537631, Appendix G

Finally, some conclusions and future work directions are outlined in Section 11.
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PART I: MARVEL’s federated learning realisation – com-
ponent FedL

2 MARVEL’s federated learning realisation: FedL

2.1 Motivation

We first discuss the motivation for privacy preservation in each of the MARVEL pilots,
GRN, MT and UNS, and how federated learning can help in that aspect.
GRN pilot. GRN plans to provide stakeholders operating in the transport arena, such as
transport authorities, transport consultants, and researchers in transport with new ser-
vices that would assist the end-users in short-term and long-term studies and decision-
making. For this purpose, GRN is collecting road traffic data from various visual and
audio devices installed around the island of Malta. Inevitably the sensors may collect
personal data (PD) related to the general public that needs to be removed or trans-
formed to comply with the GDPR legislation. GRN has identified three classes of PD
that could be present in video and audio data; (a) human faces and vehicle number
plates are features that would enable individuals to be identified in video data, (b) hu-
man beings can be identified from the recording of their voice data, and (c) PD may
be present in the content of the speech signals. The removal or transformation of these
types of data would be in line with the DPO’s requests to preserve the privacy of any
citizen that is recorded by the MARVEL framework.
MT pilot. The final goal of the Municipality of Trento is to effectively use the vast
amount of multimodal data daily provided by the audio-visual sensors distributed in
the city for improving the quality of life of citizens, the quality of the city services and
for supporting the administrator better understand and develop the city. Unfortunately,
this scenario raises severe privacy issues as unaware citizens are recorded by the audio-
visual sensors, which, in turn, poses limitations on what can be done with the recorded
data. In particular, the MT Data Protection Officer (DPO) allowed only anonymised
data to be shared across the consortium and introduced restrictions on the access by
FBK, as the technical supporting partner of MT in MARVEL, to the raw data. Besides
removing citizens’ identities from the audio-visual stream, an additional option is to
move the algorithms on processing nodes close to the data sources (i.e., edge) or within
the authority network (i.e., fog).
UNS pilot. In general, given the nature of the UNS use cases which are all based on
staged recordings, where participants gave their consent to audio-visual recordings via
cameras and microphones, privacy regulations do not directly apply, and no specific
issues are present. However, the use case implementations account for restrictions
that would apply in any future real-life deployment and, therefore, audio and video
anonymisation is applied on edge devices. With regards to model training, there is also
a clear need to preserve data privacy and keep the data local (i.e., within the end user’s
premises) during the training process.

Federated Learning is one of the most popular techniques for privacy preservation
in Machine Learning (ML) and Deep Learning (DL) solutions. ML and especially DL
models are very data dependent. In both supervised and unsupervised learning scenar-
ios high quality, data is key to having a performant model. The amount of data is also
extremely important and it is always useful for the model performance to use all the
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available data at a given time. This characteristic of ML and DL models also comes with
the question of privacy. In a traditional learning process, the data needs to be given to
the algorithm which performs the model training. As the data needs to be shared, it
can be very difficult to guarantee privacy. In our concrete case, we have several data
collection points divided into three positional groups: MT, GRN, and UNS. To have high-
performance models, ideally, we would want to use all the data available from these
collection points. But the data cannot be shared due to privacy concerns, regulations
and so on. While the MARVEL project implements techniques such as anonymisation,
it is still paramount to have other solutions for the preservation of privacy in data, such
as Federated Learning (FL). In an FL scenario, we develop a distributed system where
data never leaves its source, i.e., allowed data processing entity, but rather we use the
data for learning where it is collected. We are still able to share what has been learned
by local FL clients by sharing the learned model parameters. In the end, we obtain a
global model which is very close in performance to the theoretical non-existent model
trained on all the data. The key difference being that the data never left its source, and
therefore privacy risks are minimal.

2.2 FedL Component Description

In this section we will describe the MARVEL federated learning component FedL, fo-
cusing on its conceptual and implementation details. Deployment and integration in
MARVEL R1 use cases is described in Section 3. We will also discuss our newly devel-
oped strategy: non-uniform sampling (NUS) strategy as an alternative to the widely
used FedAvg strategy [1] and how privacy preservation can be further reinforced by
the usage of techniques such as differential privacy.

FedL is a pure software component developed in Python programming language. At
its base, it adopts commonly used Python numerical libraries such as NumPy [4] and
pandas [5], in addition to various DL frameworks such as Pytorch [6] and Tensorflow
[7].

FedL implements Federated Learning through usage of the Flower (flwr) library [8],
which is a highly adaptable and extensible FL library for Python. Flower was mainly
chosen as the basis for FedL implementation because it allows for custom FL strate-
gies, which is a very important feature for our future research. Flower also supports
extensions to the FL process through various interfaces, another important feature to
us. Finally, it is framework agnostic which means that any DL and ML framework can
be used with it as long as model exporting and importing of parameters is supported.
So far we have used FedL with both TensorFlow models (custom AVCC model, AU) and
PyTorch models (VCC model SASNet, open-source, adapted by AU). Our contributions
and additions to the open-source library such as custom strategy and client code will
be explained in the following sections.

In an FL scenario, we differentiate two types of software agents: the FL clients and
the FL server. The relation is usually one-to-many, meaning that for many clients we
have one server. The clients’ role is to use local data to train a specific ML model and
share its knowledge (through parameter sharing with the server) with other clients. The
server’s role is to collect the parameters sent by clients and perform some ”averaging”
operation in order to create a global model which is then shared with all the clients to
continue local training. The advantage of such a system is that FL clients still benefit
from the data of other clients without explicitly requiring access to it.
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class AVCCClient(fl.client.NumPyClient):
def __init__(self, *args, **kwargs):

super().__init__(*args, **kwargs)
self.model, self.train_sequence, self.test_sequence,

self.val_sequence = train_backbone(0)

def get_parameters(self):
return self.model.get_weights()

def fit(self, parameters, config):
self.model.set_weights(parameters)
self.model = train_backbone(1)
return self.model.get_weights(), len(self.train_sequence), {}

def evaluate(self, parameters, config):
self.model.set_weights(parameters)
loss, accuracy = self.model.evaluate(self.test_sequence)
return loss, len(self.test_sequence), {"accuracy": accuracy}

Figure 2: Minimal code example of a FedL TensorFlow (v2) client. Only three methods
need to be implemented: for obtaining the parameters, for training and for evaluation.
Training parameters are shared as standard NumPy arrays.

For communication between clients and the server, the gRPC protocol6 is used which
means that stable networking has to be set up between clients and the server. In the
case of the MARVEL project this was done through software-defined networking (SDN)
within the main Kubernetes cluster which was set up for the project.

In real-world systems, various clients can become unavailable due to networking,
or other issues. Our research and our newly developed strategy, NUS, are developed in
order to address these often encountered communication constraints, by developing a
client selection process where not all clients need to be available for training and only
clients with globally beneficial model changes are chosen to perform the learning. This
not only allows for some clients to be offline during learning but also saves significant
amounts of bandwidth in model parameter transfers. Our strategy will be explained in
greater detail in the following sections.

For third-party users adopting our component, the machine learning training code
has to be modified with FL in mind. This means a custom client Python class has to be
written which defines how model parameters are shared and how the received global
model parameters are to be used for local clients.

On the server side, a configuration must be provided with hyperparameters such as
number of rounds to perform, the fraction of clients used for training and evaluation,
and so on. Another important setting for the server is strategy implementation. We
use the custom, NUS strategy, while FedAvg [1] is generally used as a default strategy.
FedAvg strategy performs a simple parameter averaging process by polling all FL clients
and averaging over all the received client updates, providing an average global model.
In our tests, this strategy performed well, despite its simplicity but for flaky commu-
nication and to save data transfers we encourage users to use our NUS strategy. We

6Google Remote Procedure Calls https://github.com/grpc/grpc/releases
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will present full results and implementation details in the Results section 3.3 of this
document.

2.2.1 Non-uniform sampling (NUS) strategy: theory and implementation

Communication issues are ubiquitous in our everyday life. When designing a system
that has a high impact on human quality of life, these issues have to be accounted for.
Flaky communication can be very difficult to solve in FL scenarios. When updates are
not sent from the client to the server usually that client becomes out of sync with the
global model and its learning process stagnates (client starvation). Another side effect
is that other clients do not benefit from the unresponsive clients’ data/updates. Finally,
if a high fraction of clients must be present for the learning process, it can become
completely stagnant as responsive clients wait for unresponsive clients.

In a complex system with many components which communicate via the same
means (e.g., same networking interfaces), it is also paramount to minimise commu-
nication without suffering a performance loss. This is especially important for systems
that span multiple layers of the architecture such as our own MARVEL system which
operates on the Cloud, Fog, and Edge layers. The edge layers are very interesting and
important in any FL setting as the edge devices usually collect the data and sometimes
are powerful enough to immediately perform training with the collected data. As net-
working in any large system (ours included) can be very heterogeneous, edge devices
may not have a stable communication channel with other components, and minimising
data transfers would be very helpful, especially taking into account that edge devices
are often wirelessly connected and hence energy savings by less frequent transfers are
of high relevance.

For all these reasons, we implemented the NUS federated learning strategy to be
tested and used in the FedL component of the MARVEL architecture.

We will now describe our strategy at a high level of abstraction. NUS operates not
only on client parameters but also on client meta-parameters which are used to judge
clients and estimate whether their updates are significant and important for the model.
These meta-parameters describe what happened in one FL step (round) on the client
itself. Meta-parameters include the number of processed data points, stability of the
network connection to the server (with polling and response times), gradient variance,
and average parameter difference to the global model. Our strategy requires clients
to send this information (or a subset of) to the server upon which the server runs a
client selection process to choose the subset of clients that will be polled to perform an
update. Only the clients with important and significant updates to the global model are
selected to share their parameters, while others are skipped. This saves the amount of
data being transferred without affecting the performance of the global model.

From the implementation standpoint, NUS requires both the client and the server
code to be modified.

On the client side, the modifications are minor. Every round of training a client
receives specific fitting instructions. These instructions specify whether the client needs
to send an update in the next iteration of the learning process. The server controls
which clients are required for the next step. The client, depending on these fitting
instructions either sends the model parameters or censors their message. Clients also
respond to the server polling requests to signal their availability. In every training step,
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the clients also need to respond with meta-data about their current training stage. We
report the following parameters:

1. batch size – current batch size used by the client

2. num examples – number of samples processed in a specific training step

3. fit duration – amount of time taken for this current step

4. gradient norm – current model gradient norm

5. model diff – current model difference to the global model (measured with a spe-
cific metric, e.g., mean squared error).

Based on these parameters the server decides whether an update needs to be re-
trieved from a specific client. In more detail, for each client, the server solves an op-
timisation problem that optimises the client selection probabilities for the next round
for all the clients. The optimisation problem takes into account each client’s respon-
siveness, local data variance, and the norm of the distance between the client’s current
gradient and the global gradient estimate from the previous round. It is important to
specify also that validation is being performed at every round of the FL training process.
Global models are used and validation is done on a per-client basis. In this way we can
monitor how the global model is performing with specific client’s data.

On the server side, NUS is implemented as a custom strategy for the Flower frame-
work7. All the clients receive the same initial model, instantiated by the server, to
avoid issues with random weight initialisation in case of training a blank model. If
a pre-trained model is used (e.g., from the MARVEL AI model repository, detailed in
Section 2.3.1 further ahead) it can also be shared with the clients. In every training
round after receiving information (as described above) from the clients, the server de-
cides the configuration to be used for the continuation of the training process. When
client model parameters are gathered, the NUS strategy performs parameter averaging
in the same way as the FedAvg strategy, while the main difference is the client selection
process, as described above.

2.2.2 Differential privacy implementation

By using FL in our system, we already significantly increased the privacy and safety
of the employed data. The data being collected is never shared with other clients, or
in other words, never has to leave its origin. Another issue to be discussed is about
what exactly is being shared between clients. As we mentioned already, the FL process
shares only model parameters between clients and the server. The server then performs
an averaging (or similar) operation on the client updates and creates a global model.
The issue with this approach in some systems is that the model parameters may contain
useful (or private) information collected from the data. In the case of MARVEL, the data
is encrypted before the sharing process, but the privacy aspects can be improved even
further with the usage of differential privacy.

Differential Privacy (DP) is a method introduced in 2006 in [9] to enable publicly
sharing information about a given dataset while disabling (or minimising) the chance

7https://flower.dev/
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model = SASNet()
optimizer = torch.optim.SGD(model.parameters(), lr=0.05)

privacy_engine = PrivacyEngine(
model,
batch_size=32,
sample_size=len(train_loader.dataset),
alphas=range(2,32),
noise_multiplier=1.3,
max_grad_norm=1.0,

)

privacy_engine.attach(optimizer

Figure 3: Code snippet of DP-SGD “wrapper” around PyTorch’s SGD, configuration that
enables differential privacy in FedL.

to discover information about any individual datum from the dataset. A perfect differ-
entially private method would always provide the same results no matter which sample
is excluded, but this is very difficult to achieve in practice. As a realistic alternative, a
privacy budget (ϵ) is introduced to achieve the desired privacy level, but at the cost of
incurring certain privacy which depends on the way the privacy budget is used. The
most common method to use DP is to add independent Gaussian noise to the raw in-
put data. Another option (that we will demonstrate) is to use DP-aware optimisation
algorithms such as DP-SGD [10]. This approach is more suitable for FL scenarios as it
does not apply noise to the input data but rather to the gradients in every step in the
gradient descent.

To use differential privacy methods in FedL, we use the state-of-the-art open-source
Opacus [11] library and its DP-SGD implementation.

2.3 FedL interfaces and the inference pipeline

This section explains the interfaces of FedL within the MARVEL architecture, as well as
the management of results of the FedL models in their inference phase.

2.3.1 FedL and MARVEL AI repository

The AI Model Repository (AIMR) is an internal component of the MARVEL architec-
ture devoted to the storage of AI models designed and trained during the project. In
principle, any AI component will access this repository to upload/retrieve an AI model.
As an example, each instance of a FedL client can access a specific model (e.g., VCC)
and train it. The new update model is then uploaded to the AIMR to be shared with
the other components. Another example regards the compression pipeline, involving
DynHP. In this case, DynHP accesses the AIMR to (i) retrieve the original definition of
a model, (ii) find a suitable compression, and (iii) upload the compressed model to the
AIMR.
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The AIMR service is offered and managed by MinIO8. The files are organised hi-
erarchically and per pilot. Specifically, it offers dedicated folders, one for each Use
Case covered by MARVEL. Each of these folders contains all the versions of the corre-
sponding AI Models. A human-readable JSON description (called Model Descriptor)
accompanies all the models stored on the AIMR. It is based on the FIWARE standard.
The description contains all the necessary information describing the specific AI Model
and the pointers to the file containing the Models’ parameters and/or binary file, ac-
cording to how these models are implemented and deployed. This metadata could be
of use for humans to have an idea of which model to select for building a docker image
for a specific purpose. Both AI models and Model Descriptors follow a specific naming
convention. The naming convention is hierarchical, and it includes the following fields:

• <component_name>

• <output_format>

• <partner>

• <type>

• <version_number>

Example: avcc-headcount-au-full-v0.1.
Further and complementary details on the AI model repository can be found in

D5.49. We discuss below the current collection of AI models offered by the AI model
repository.

TAU provided four models for the AI model repository that were specifically trained
to be used in several R1 use cases. Models included in the repository are provided
in serialised and optimised PyTorch JIT format 10 to allow models to be transferable
across various setups and platforms. These models are standalone, and they contain all
processing blocks needed for inference: audio feature extraction (FFT layers) and the
actual AI model. Input to these models are single-channel audio segments of appropri-
ate length, and the output is a vector containing class-wise output values. For GRN3,
the Audio Tagging (AT) model is capable of labeling given 5-second audio segments
into predefined labels describing the traffic speed and amount. The model architecture
is based on the structure used for PANNs audio embeddings [12]: a 10-layer CNN with
4 convolutional layers based on VGG-like CNNs [13]. For MT3, a similar model archi-
tecture is utilised to label 1-second audio segments into predefined labels describing
the overall scene (e.g., fighting in the parking lot or stealing a car). For GRN4, the
sound event detection (SED) model is capable of detecting the activity of four vehicle
types (e.g., car and bus) in given 1-second audio segments. The model architecture
for GRN4 is based on a 6-layer CNN with four convolutional layers based on AlexNet
[14] using also in for pre-trained audio neural networks (PANN) audio embeddings.
For MT3, the SED model is capable of detecting the activity of ten sound event classes
related to human actions in parking places in given 1-second audio segments, and the
model architecture is similar to the one used for GRN3 and MT3 for AT.

8https://min.io/
9MARVEL D5.4: MARVEL Integrated framework – initial version, 2022. Confidential.

10https://pytorch.org/docs/stable/jit.html
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AU provides models for several different visual or audio-visual tasks, such as crowd
counting and anomaly detection. For visual crowd counting (VCC), a SASNet model
[15] is provided, which takes a high-resolution image (preferably 1024×768) as input
and outputs a density map detailing the density of the crowd at each location of the
input image. The values of this density map can be summed in order to obtain the
total number of people present in the scene. SASNet uses the first 10 layers of VGG-16
[13], pre-trained on ImageNet, to extract features, and then adds several convolution
layers at different scales in order to obtain density and confidence maps at each scale,
which are then merged to obtain a single combined density map. For audio-visual
crowd counting (AVCC), an AudioCSRNet model [16] is provided, which takes as input
a high-resolution image (preferably 1024×576) as well as a 1-second audio waveform
which corresponds to the ambient audio of the scene. The waveform should start 0.5
seconds before the image was taken and end 0.5 seconds afterwards. Similar to VCC,
the output of AVCC is a density map. AudioCSRNet uses the first 10 layers of VGG-16
[13], pre-trained on ImageNet, to extract visual features, and uses the first 6 layers of
VGGish [17], pre-trained on AudioSet, to extract audio features. These visual and audio
features are then fused and processed together using 6 fusion blocks which contain
dilated convolutions.

The FedL component interfaces with the AIMR in both obtaining and saving models
to it. At the start of an FL process, a model can be obtained from the AI model reposi-
tory to be used as a starting point for further training. This can lead to very significant
improvements in convergence times. FedL also uses the AIMR to store trained mod-
els after the Federated Learning process is complete. FedL provided models that are
significantly different from other models in the AIMR as they represent global models,
trained on all available data for a specific use case type. Other models are trained for
specific use cases. Global models can be further improved with model compression and
other techniques supported by the MARVEL components, such as DynHP.

For communication, FedL uses directly the MinIO interface of the AIMR for storage
and retrieval of model parameters and metadata; further details of AIMR operation and
interfaces with FedL as well as with other MARVEL components are reported in D5.4.
The model format is dependent on the use case, but generally compatible with other
components of the MARVEL framework. For this purpose, we use the general MLModel
schema11 from the Smart Data Models initiative12.

2.3.2 Inference results management

We describe how the management of data produced by FedL models in their infer-
ence phase is achieved in MARVEL. For this functionality, data management platforms
DatAna and DFB are used.
DatAna and E2F2C management of inference results. DatAna is one of the MARVEL
Data Management Platforms. DatAna’s main functionality is providing the means to get
the results from all inference models to the cloud and to the Data Fusion Bus (DFB) for
further aggregation and storage. This entails the connection with the different inference
models using a message broker (based on MQTT13) and the provision of dedicated

11https://github.com/smart-data-models/dataModel.MachineLearning/
blob/master/MLModel/README.md

12https://smartdatamodels.org/
13https://mqtt.org/
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data pipelines for each of the inference components. These data pipelines are able to
transform the inference results into specific MediaEvent, Alert or Anomaly data models,
based on and extended from their Smart Data Models initiative counterparts adopted
in MARVEL. These data pipelines reside either at the edge, fog or cloud layers. DatAna
allows then the transfer of the transformed results from the specific layer where the
computation takes place to the cloud, and eventually to the DFB via dedicated Kafka
topics.

For the R1, DatAna has implemented data pipelines using Apache NiFi (deployed in
the MARVEL framework via MARVdash) data flows for several use cases and inference
components. In particular, DatAna implements so far NiFi data flows for CATFlow (ve-
hicles and pedestrians), TAD, ViAD, AVAD, VCC, AVCC, AT and VAD inference models,
shown in Figure 1, but it is extensible to develop new pipelines for other models in any
of the existing layers and/or use cases.

During the execution of the models, the data managed within DatAna can be moni-
tored using the NiFi graphical user interface, giving the administrator the possibility of
even start and stop processors and to debug the process and visualise data in each step
of the pipeline. More details on DatAna can be found in D2.214.
Data Fusion Bus and cloud management and storage of inference results. The
Data Fusion Bus (DFB) is responsible for aggregating AI inference results received from
DatAna through a Kafka messaging system, fusing and persistently storing them in an
Elastic Search (ES) repository. It also re-distributes these results to SmartViz and Data
Corpus both in real time through Kafka and by providing access to the historical data
stored in the ES repository.

Due to the nature and central role of the DFB in the operation of the MARVEL AI
Inference pipeline, it is positioned at the cloud layer. The internal operation of the DFB
can be described as follows:

• The DFB receives AI inference results in real time from the DatAna component
instance that is deployed at the cloud using the DFB Kafka messaging system.
Distinct Kafka topics are configured for publishing the results of each AI com-
ponent that has produced them. DatAna publishes AI inference results to these
topics after transforming them according to the MARVEL data models that comply
with the specification of Smart Data Models standard.

• The DFB relays the incoming AI inference result data streams in real time to
SmartViz and Data Corpus by allowing them to subscribe to the associated Kafka
topics where they are published.

• The DFB also includes an ES connector module that transfers all incoming AI
inference results to the DFB Persistent Storage Repository, which is based on Elas-
tic Search technology. The module also performs data fusion operations on AI
inference results originating from selected AI components.

• The DFB exposes a REST API to SmartViz to allow it to perform data queries and
access all archived inference results in its ES repository.

14MARVEL D2.2: Management and distribution Toolkit – initial version, 2022. https://doi.org/
10.5281/zenodo.6821195
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• The DFB can receive user-generated verifications of AI inference results from
SmartViz when they are published as messages to a DFB Kafka topic that is re-
served for this purpose. The DFB ES connector module then uses these verifica-
tions to update the respective archived AI inference result entries in the Persistent
Storage repository. The verifications are also relayed to the Data Corpus, which is
subscribed to the same Kafka topic where the verifications are published.

• Finally, the DFB also communicates with the MARVEL HDD component by access-
ing a REST API exposed by the HDD. The DFB uses this REST API to dispatch
the currently applied Kafka topic partitioning information and to receive recom-
mendations from HDD for updating the Kafka topic partitions to optimise their
performance.

During the operation of the DFB, the administrator can monitor the status of the
DFB Kafka messaging system through a dedicated tool, built with Grafana. The inbound
and outbound traffic in each Kafka topic is visualised in real time as a graph. Other key
statistics can also be visualised at the same time on the monitoring dashboard.

The DFB administrator can also access the archived data that are persistently stored
in the ES repository using the associated Kibana tool. AI inference results from specific
AI components can be isolated based on the implemented ES indices. The user can also
filter the data using time ranges and perform composite queries based on the available
fields of the stored AI inference results. In addition, Kibana offers various options for
visualising data statistics. More details on DFB can be found in D2.2.
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3 FedL Implementation in R1

Complementary to the description provided in Section 2, we now focus on the imple-
mentation details. This section describes FedL realisation and integration in MARVEL
R1, related to the actual use cases where FedL has been deployed, including details of
the infrastructure, models, data, and finally performance results. We first describe in
detail the two models, VCC and AVCC, that have been used within FedL in R1.

3.1 AVCC and VCC models

The visual crowd counting (VCC) model is responsible for counting the total number
of people that are present in a given scene. The input to this model is a high-resolution
RGB colour image of a scene containing people, and the output that this model provides
is a density map, which is a single-channel image that specifies the density of the crowd
at each pixel of the input image. The values in this density map can be summed to get
the total count in the form of a single number. The annotations used for training this
model are in the form of head annotations, where the location of the center of each
person’s head is specified. This model utilises the SASNet architecture, shown in Figure
4, which is a high-performing DNN on Shanghai Tech datasets15.

Figure 4: SASNet architecture. Image taken from Song, Qingyu, et al. “To choose or
to fuse? scale selection for crowd counting.” Proceedings of the AAAI Conference on
Artificial Intelligence. Vol. 35. No. 3. 2021.

Similar to VCC, the audio-visual crowd counting (AVCC) model is also responsible
for counting the total number of people that are present in a given scene. However,
AVCC is the multi-modal version of this task where ambient audio from the scene is
also available in addition to the image. Thus, alongside the high-resolution RGB image
of the scene, the input to AVCC (as mentioned in Section 2) also includes a 1-second
raw audio waveform taken from the scene, starting 0.5 seconds before the image was

15https://paperswithcode.com/dataset/shanghaitech
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Figure 5: AudioCSRNet architecture. Image taken from: Bakhtiarnia, Arian, Qi Zhang,
and Alexandros Iosifidis. “Single-layer vision transformers for more accurate early exits
with less overhead.” Neural Networks 153 (2022): 461-473.

captured and ending 0.5 seconds afterwards. Similarly, the output of this model is a
density map detailing the density of the crowd for every pixel of the input image, which
can be summed to obtain the total count. This model is also trained using only visual
annotations in the form of head annotations, and the audio is not annotated. Features
extracted from the ambient audio of the scene are especially useful in situations where
the quality of the image is low, for instance, due to low illumination, occlusion, low
resolution or noisy capture device. This model uses the AudioCSRNet architecture,
shown in Figure 5, which is a high-performing audio-visual DNN on the DISCO dataset
[18]. In this architecture, the raw waveform is not directly used as the input to the
DNN; instead, the raw waveform is first converted to the frequency domain to obtain a
mel spectrogram, which is then passed on to the DNN. Mel spectrograms are a special
type of spectrogram that use frequency bins that are adjusted based on the human
auditory system.

3.2 FedL deployment

The deployment of FedL in MARVEL R1 is done across each of the three MARVEL pilots,
and specifically within use cases 1) GRN4 Traffic junction trajectory collection, in the
Malta pilot; 2) MT1 Monitoring of crowded areas, in the Trento pilot; and 3) UNS1
Drone experiment, for monitoring large space public events, in the experimental pilot
in Novi Sad. For each pilot, the respective FedL client is deployed at the pilot’s fog layer,
the details of which are provided in Section 3.2.1. The deployment of the FedL clients
and the server is achieved through the MARVdash Kubernetes dashboard, the details of
which are given in Section 3.2.2. We next discuss details of the infrastructure used for
FedL deployment within MARVEL R1.

3.2.1 Infrastructure at MT, GRN, UNS

MT FedL fog layer. The fog tier architecture of MT uses cases, designed and hosted
by FBK, implements a peculiar and articulated solution. To account for data access re-
strictions introduced by the MT DPO, which allows only FBK to access raw data from
a centrally managed workstation, the fog tier is split into two separate nodes to dis-
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Figure 6: Infrastructure of the MT fog, implemented at FBK premises (taken from D5.4)

entangle the edge layer (which is part of the MT operational network) and the Kuber-
netes cluster managed via MARVdash. Details about this specific design, the protocol
and software implementations, and the characteristic of the two nodes are available in
D5.4. As insight of the overall architecture design of the MT use cases, with emphasis
on the fog tier, we report here Figure 6 from D5.4. Briefly, MTFOG1 connects via VPN
to the cameras and microphones and is not part of MARVdash. MTFOG2 is within the
Kubernetes cluster and communicates with MTFOG1 via the local area network. In this
way: access to MTFOG1 is restricted and controlled by standard FBK’s security proto-
col; anonymised video and audio streams are made available by MTFOG2 to the nodes
in the Kubernetes cluster and can host the components developed by the consortium.
Table 1 shows the specifications of the FBK fog layer.

Table 1: Specifications of the FBK fog work-station in the Kubernetes cluster.

Hardware component Specifications
CPU Intel Xeon E5-1620
GPU Tesla K40 11GB

Hard Drive 512GB
RAM 20GB

GRN FedL fog layer. GRN has provided a workstation with GPU as part of the fog layer.
The AV streams from the Zejtun Cameras will be processed on the fog layer. Table 2
shows the specifications of the GRN fog layer.
UNS FedL fog layer. For FedL training, a SUPERMICRO SYS-7049A Server SuperWork-
station node is used, with the specifications presented in Table 3. Additionally, there is
a local network storage appliance: QNAP TVS-682-8G with 4 × 3TB SATA3 disks under
RAID protection, with NFS/SMB/S3 protocols enabled. All infrastructure components
are locally connected with multiple redundant 1G Ethernet links. UNS infrastructure is
currently hosted “behind” an HTTP(S) proxy for Internet connectivity.
FedL cloud server. The server for the FedL component is deployed in the cloud layer
of the MARVEL architecture. The only requirement for its deployment is a working net-
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Table 2: GRN fog work-station specifications.

Hardware component Specifications
CPU Intel core I 7 11700K
GPU RTX3070 8GB

Hard Drive 2Tb
RAM 32Gb

Table 3: UNS fog server specifications.

Hardware component Specifications
CPU 2 × Intel Xeon Silver 4110 2.1 GHz

8C/16T CPU
GPU Nvidia TitanXP

Hard Drive 3 × 300GB SSD, 1 × 1TB SSD
RAM 128 GB DDR4

work configuration so that clients can be reached, and vice-versa. In our configuration,
exactly one FedL server is deployed per each model being currently trained/in use.

3.2.2 MARVdash deployment

Both the FedL client and server components can be run in a containerised environment
(Docker/Kubernetes). They were designed from the initial phases to be compatible and
suitable for use in the MARVEL system architecture.

Both components are built with specific Dockerfiles through which they can also
receive configuration parameters. Specific to MARVEL, we also developed deployment
templates for the MARVdash web interface as can be seen in Figures 7 and 8. Many
of the parameters (such as data path, number of epochs, GPU usage, and so on) can
be configured through the Web interface of MARVdash. We also allow configurable
execution of clients in specific parts of the MARVEL architecture (e.g., cloud or specific
fog locations). On the server side, we allow for configuring of chosen strategy and
number of rounds.

When the services are deployed (see Figure 9), we can monitor and inspect their
state through the built-in Kubebox MARVdash service (Figure 10).
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Figure 7: FedL client being set up for deployment at MARVdash platform.

Figure 8: FedL server being set up for deployment at MARVdash platform.

Figure 9: FedL components running in MARVEL cloud, both clients and server deployed
as standalone components.
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Figure 10: Monitoring of FedL components running in MARVEL cloud, through Kube-
box service.

3.3 FedL Performance Evaluation

In this section, we describe benchmarks of our FedL component and more specifically
the custom NUS strategy both on standard FL benchmark datasets such as from the
LEAF benchmark [2] and the actual MARVEL datasets. For benchmarking, we monitor
model performance (loss curves, validation metrics) and data transfers as our strategy
aims to minimise data transfers while preserving performance.

3.3.1 Benchmarks with FedAvg baseline

In our first experiments, we test the NUS strategy and compare it to FedAvg strategy
on two widely-used image classification datasets: MNIST [3] and FashionMNIST [19].
MNIST dataset contains images of hand-written digits and it is often used nowadays
as a deep learning testing dataset, while FashionMNIST contains images of clothing in
the same format as the MNIST dataset. Both datasets contain grayscale images of 28
by 28 pixels. While simplistic, these datasets proved useful to validate our code for
correctness.

In both use cases, we see similar behaviours with our strategy. Loss values over
training epochs have a similar curvature, and while global loss is slightly higher for our
NUS strategy, performance remains unaffected. The data savings become larger as the
model grows, where one of the main benefits of our strategy comes into light.
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Figure 11: FedL training process with the MNIST dataset.

Figure 12: Data transfer overview of FedL training process with the MNIST dataset.

In Figures 11 and 12 we observe training curves on the MNIST dataset, where we
see similar global accuracy (close to 0.9) with significant (up to 40%) data transfer
savings compared to FedAvg baseline. It is important to note that we simulate a realistic
scenario where we do not divide the dataset equally and independently over clients, but
rather use random splits and random sampling.

In Figure 13 we see a similar experiment for the Fashion MNIST, FMNIST, dataset16,
where we monitor values of the loss function and the amount of the data being trans-
ferred. We again see similar loss curves with significant data savings and we also note
similar validation global accuracy values as can be seen in Figure 14. Although this
issue has not occurred in the reported simulation, we would like to note that some
clients may become starved (if they have received a small partition of the dataset in
our random splitting methods) and their performance may stagnate. This can be re-
lated to the nature of the dataset a client is employing in the training process. Some
clients may work with a smaller dataset that has a higher variance, or with a dataset
with a significantly different underlying distribution than the rest of the clients which
may cause the server to rarely poll them. This issue is apparent only in smaller datasets,
and we will work on correcting this issue in the future.

16Data set available at https://github.com/zalandoresearch/fashion-mnist.
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Figure 13: FedL training process with the FMNIST dataset.

Figure 14: Data transfer overview of FedL training process with the MNIST dataset.

3.3.2 Benchmarks with MARVEL data

After successfully verifying our strategy implementation on smaller datasets, we now
benchmark on real MARVEL data. We explain next the details of the datasets employed
and the experiments carried out.
VCC task. For these tests we used the crowd counting task which is relevant for each
of the MARVEL pilots, specifically for 1) GRN4 Traffic junction trajectory collection, to
monitor the number of people at junctions, including bus stops; 2) MT1 Monitoring
of crowded areas, to estimate crowd density/number of people; and 3) UNS1 Drone
experiment, for monitoring crowd behaviour in large space public events. The model
used is a visual crowd-counting neural network model SASNet (as described in earlier
sections of this document), where we note that the code was further extended (the
client side in particular) to be compatible with FedL.
Datasets. Each of the three pilot sites, namely, GRN, MT and UNS, had a local dataset
acquired, anonymised and annotated previously for the VCC training tasks. MT has
provided the dataset ”TrentoOutdoor – real recording” (as defined in D2.117) process-
ing the streams of cameras from Piazza Duomo and Piazza Fiera, respectively. MT, in
collaboration with FBK, collected and anonymised more than 500 videos, out of which
170 videos were annotated for VCC. The videos were annotated using the CVAT soft-
ware [20] to provide the number of detected people, with a total of 700 frames. GRN
contributed with more than 660 video snippets from GRN static cameras, in the Zejtun
and Mgarr locations. All data was subsequently anonymised (faces, licence plates) and

17MARVEL D2.1: Collection and analysis of experimental data, 2021. https://doi.org/10.
5281/zenodo.5052713
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Figure 15: User interface of CVAT showing one annotated frame from UNS drone-based
recordings.

annotated using CVAT software. For the VCC task, 71 frames that contain pedestrians
were selected for VCC training. UNS collected the dataset for VCC within the staged
recording that was carried out at Petrovaradin fortress, in Novi Sad. For recording
purposes, the DJI P4 Multispectral Drone was used. Video capturing was performed
from different heights varying between 10-20 meters. Videos were recorded using the
following configuration: HD resolution (720x1280 pixels), 30fps (frames per second),
H.264 codec and MP4 format. No anonymisation was necessary as all participants
signed consent for the recording; we also note that in this type of experimental setup,
identification of individuals is generally difficult due to the higher and overhead cam-
era position. In total around 800 annotated frames are provided for VCC training. The
figure below shows one annotated frame from the UNS staged recordings in the user
interface of CVAT.
Experiments. To evaluate the performance of FedL on MARVEL data, we similarly as
before monitor model performance (loss, accuracy metrics) and data transfers. The
results are presented in Table 4. Firstly, we experimented with the FedAvg strategy in
FedL (Figure 16). In this experiment we see that the global model improves validation
metrics (since this is a crowd counting model, we use mean absolute error) for one
out of three use cases, the MT use case. For the two other use cases the performance
remains similar. We believe this is because the MT use case model benefits greatly
from the UNS data which contains similar image data taken from a similar viewpoint.
Additional data helps with the model performance, and because inputs are similar we
see a performance improvement.

In the second experiment we use our custom NUS strategy (Figure 17) and note
similar loss curves (mean and standard deviation values) to both the FedAvg baseline
and standard non-federated approach where local training only was used.

Regarding the performance, we see that the NUS approach outperforms both the
FedAvg approach and the standard non-federated, local learning approach in two use
cases: UNS and MT. The GRN use case has performance degradation, and while moni-

MARVEL - 38- December 31, 2022

DRAFT



MARVEL D3.4 H2020-ICT-2018-20/No 957337

toring the client selection process we noticed that our strategy rarely selects this client.
This is because the distribution of the data samples in MT and UNS use cases are quite
similar while for GRN the corresponding distribution is different. For this reason it be-
comes “starved” of updates in our process. Both the UNS and MT use cases benefit (as
a majority) from the global model, while we somewhat degrade the performance of the
GRN use case which works better with a specific model trained on its data.

Since the model is large, the data savings are large as well. Over one training
process of 100 epochs we see reduction in model parameter transfers of around 23
gigabytes. Despite this, the global model (for two out of three) use cases outperforms
the use case-specific models, which was the main goal of our strategy: to retain or
increase performance while reducing data transfers.

Figure 16: FedL training process with the SASNet Crowd Counting model and MARVEL
data. On the top we see loss curves of the non-federated standard approach, and on
the bottom the FedL loss curves (FedAvg strategy).

Table 4: Overview of final validation metrics (mean absolute error) for the SASNet
model with local training, federated learning with FedAvg, and federated learning with
NUS. Significant improvement for the MT use case.

FedL w/ NUS FedL w/ FedAvg Local training

UNS 2.08898305892944 3.10862731933594 2.36223340034485
MT 27.6216239929199 30.0927715301514 40.3407440185547
GRN 9.12610340118408 0.690046668052673 0.626943290233612
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Figure 17: FedL training process, NUS strategy enabled, with the SASNet Crowd Count-
ing model and MARVEL data. Top curves are of FedAvg experiment, bottom are NUS
experiment.

Figure 18: Overview of data transfers for the FedL training process, NUS strategy en-
abled, with the SASNet Crowd Counting model and MARVEL data.
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Figure 19: Overview of data transfers for the FedL training process, NUS strategy en-
abled, with the SASNet Crowd Counting model and MARVEL data.

3.4 FedL conclusions and future work

3.4.1 Contribution to MARVEL KPIs

The delivery of the FedL with the NUS strategy with the achieved performance on
both standard benchmarks and real-life MARVEL data, reported in Section 3.3, directly
enable fulfillment of the iKPI-3.1 and iKPI-12.1, and contribute to the fulfillment of
the KPIs KPI-02-E1-1 and iKPI-1.1, as detailed in Section 1.6. The differential privacy
module of FedL contributes to the fulfillment of the KPI KPI-O1-E3-1, details of which
can also be found in Section 1.6.

3.4.2 FedL in R2

FedL as a component is feature complete and ready to use. We are still experimenting
with various parameters and trying to further improve our client selection process in
the custom NUS strategy.

For the MARVEL data, we experimented with the crowd counting use cases. It
would be also interesting to experiment with the audio-visual anomaly detection use
cases. The risk in this is that anomaly detection data we possess so far are very specific
to the location where they are acquired. A global model may not be able to converge
on all the data, but this remains to be experimented with in the future.
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PART II: Further contributions to personalised federated
learning

4 Personalised Federated Learning via Convex Cluster-
ing

In this section, we briefly describe the results that have been published in the pa-
per [21], Appendix B, and where MARVEL UNS researchers are two paper co-authors.

4.1 Context and State-of-the-art

Personalised federated learning generally refers to federated learning approaches that,
besides generalisation harnessed by accounting for the data from multiple FL users,
also enable personalisation. That is, each user in general can learn a distinct model
that is fine-tuned to the users’ local data. More formally, with personalised FL over N
users, we would like to solve the following optimisation problem:

minimizex1,...,xN∈Rd

1

N

N∑

i=1

fi(xi), (1)

subject to appropriately defined constraints. Here, fi is the loss function associated
with i-th user, i = 1, ..., N . Various types of constraints can be introduced in (1), giving
rise to different personalised FL approaches. They include, for example, multi-task
learning [22], [23], fine-tuning [24], [25], knowledge distillation [26], [27], [28],
[29] and clustering-based approaches [30], [31], [32]. A notable approach is given in
[33], that proposes a formulation which adds in the objective of (1) the following term:
λ
∑

i̸=j ∥xi − xj∥2, where λ > 0 is a regularisation parameter, and ∥ · ∥ is the Euclidean
norm. The role of the regularisation, depending on the value of λ, is to trade-off the
generalisation and personalisation abilities of the FL model. A smaller λ means more
distinct local models and hence a stronger degree of personalisation, but also a lower
generalisation ability in general.

4.2 Description of the method

In paper [21], we have proposed a novel approach to personalised FL. The approach
makes possible simultaneous personalisation, generalisation, and model clustering.
Specifically, the paper [21] introduces the following novel formulation:

minimizex1,...,xN∈RdF (x1, . . . , xN) =
1

N

N∑

i=1

fi(xi) + λ
∑

j ̸=i

∥xi − xj∥. (2)

Here λ > 0, is a parameter, and ∥ · ∥ denotes the Euclidean norm. Compared with (1),
formulation (2) also involves regularisation, controlled with λ > 0. The regularisation
forces that the local solutions for some pairs of nodes be close one to another.

Formulation (2) is related to reference [33]. However, instead of the sum of norms
of pairwise distances, [33] uses the sum of squared norms of distances; this leads to
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several distinctive features of (2). In more detail, the contributions of [21] are the
following. First, it gives a new formulation for personalised FL (2). The solution of
the formulation exhibits a clustering structure while at the same time preserving gen-
eralisation abilities. Furthermore, the reference gives a condition on the penalty λ that
leads to clustering of the users’ personalised models according to a ground truth un-
known beforehand. Next, the method in [21] works without knowing the true number
of clusters (distinct models) in advance. Moreover, [21] develops an efficient algorithm
for federated learning over conventional FL architectures with the server-users topol-
ogy that solves (2), using the Parallel Direction Method of Multipliers (PDMM) [34].
Finally, numerical studies corroborate findings and compare the achieved results with
alternative state-of-the-art personalised FL approaches in [23].

4.3 Application and relevance to MARVEL

The proposed method is of direct relevance to MARVEL smart city scenarios. For ex-
ample, for a crowd counting task, it might be expected that different cities exhibit
similarities of their “crowd distributions” in the relevant public areas (e.g., main city
squares). This may be addressed through the proposed personalisation via clustering
approach, which automatically clusters the cities (i.e., models) according to this simi-
larity. This method contributes to the fulfillment of the KPIs KPI-02-E1-1 and iKPI-1.1,
as detailed in Section 1.6.

4.4 Evaluation

We next present evaluation results for the method in [21]. The experimental setup is as
follows. A supervised binary classification problem is considered. The data has K = 3
clusters. For each cluster, for each label/class (±1), the data is uniformly distributed
over a 2D ellipse. There are 200 (training) data points for each cluster, 100 points per
class. There are 20 FL users belonging to each cluster. Each user has 10 data points.
The data for all users in the same cluster is from the same distribution. We use the
squared Hinge loss function; that is, at user i, the loss function is given by:

fi(x) = c
∥w∥2
2

+
1

m

m∑

j=1

max
{
0, 1− ℓij(⟨w, aij⟩ − b)

}2
.

Here, m represents the number of (local) data points, (aij, ℓij)mj=1, are the data points
and class labels at user i, c > 0 is a penalty parameter that controls the regularisation,
while x =

[
w, b
]
∈ Rd+1, d = 2, is the vector that defines the classifier. We set c = 10−3.

In order to benchmark the method in [21], the method is compared with that of
[23], the non-personalised (global) FL, and the users’ models trained by each user in
isolation. In addition, an oracle model is considered that (for an unfair setting) knows
beforehand the clustering structure. For the oracle model, for each user i in cluster Ck,
the oracle lets user i’s classifier vector equal to xi = argminx

∑
j∈Ck

fk(x). All problem
formulations are solved using CVXPY [35], [36].

We measure testing accuracy of the corresponding classifiers. In more detail, con-
sider xi – a classifier vector for user i obtained through training via any of the consid-
ered methods. For each user i, testing accuracy of xi is evaluated with respect to the full
testing data set for the cluster to which user i belongs. Then, average testing accuracy
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across all users i = 1, . . . , N is evaluated. The testing data is generated by drawing new
samples from the same distributions according to which the training data is generated.

Figure 20: Average classification accuracy across all users and all clusters versus λ.

Figure 20 shows the testing accuracy for all the considered methods. We can see
that, clearly, the cluster-wide oracle that knows the cluster structure beforehand ex-
hibits the best performance. The method in [21] exhibits a peak accuracy that is com-
parable with a state of the art method [23]. At the same time, the proposed method
produces clustered models, unlike the method in [23].

For the performance of the proposed PDMM solver, we refer the reader to [21, 37].

4.5 Conclusions

Reference [21] has proposed a novel formulation for personalised FL. A distinctive fea-
ture of the formulation is that it enables users’ model clustering, i.e., assigning same
users’ models to the users that belong to the same cluster. The users’ clustering struc-
ture is not known beforehand and is determined by the similarity of users’ local costs
and their data. The paper establishes theoretical guarantees on the cluster structure
recovery. It also provides a PDMM-based FL algorithm to solve efficiently for the pro-
posed formulation. Numerical evaluations demonstrate that the proposed personalised
FL approach exhibits a comparable accuracy with state-of-the-art, while at the same
time it produces clustered users’ models.
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5 One-shot clustered federated learning

In this section, we briefly describe the results in [38], Appendix B, where MARVEL UNS
researchers are two work’s co-authors.

5.1 Context and State-of-the-art

Clustered federated learning (CFL) refers to scenarios where FL users can be partitioned
into disjoint groups (clusters); users in the same cluster have similar data and require
mutually equal (similar) models, while users from different clusters require different
models. It is then desirable to ensure collaboration among users from the same cluster,
and completely avoid, or utilise in a reduced (controlled) way, the effect of data of
users from a different cluster. At the same time, the users’ assignment across clusters is
not known beforehand.

Several recent works study CFL, e.g., [39], [40], [41], [42], [43]. References [39]
and [40] develop methods that iteratively estimate cluster membership and perform
model updates. The authors of [41] develop a robust CFL method where adversarial
users may be present. Reference [42] develops a method that successively bi-partitions
the current set of users based on cosine similarity and does not require prior knowledge
of the number of clusters K. When a bi-partitioning of users is done, a full FL training
over each partition needs to be carried out. To the best of our knowledge, none of
the CFL works (other than [38]) is concerned with developing a CFL method that is
communication-efficient, i.e., that utilises only one round of communication between
the server and the users.

5.2 Description of the method

Reference [38] proposes a one-shot method for CFL that has the following features.
The method is communication efficient, i.e., it requires only one round of communica-
tion, while it does not need the knowledge of the true number of clusters. For strongly
convex cost functions, the method achieves the (order-) optimal mean squared error
(MSE) decay in terms of the sample size. That is, the MSE decay with respect to the
sample size matches that of a hypothetical oracle that knows (in an unrealistic setting)
the cluster structure beforehand and performs empirical loss minimisation over all the
data that belongs to the same cluster. In other words, it is shown that the method has
optimal MSE guarantees with respect to sample size, equivalent to those of centralised
learning. This is achieved when the number of users is above a threshold that is also ex-
plicitly characterised. Numerical experiments confirm the established theory. They also
demonstrate that the proposed method, in the order-optimality regime, significantly
outperforms state-of-the-art methods in terms of communication cost.

In more detail, the method in [38] works as follows. Here, fi is user i’s cost func-
tion, and Θ is the compact, convex domain that contains the optimal FL model. As a
subroutine, the method makes use of convex clustering, a standard method to cluster
data points; see, e.g., [44]. Convex clustering has a penalty parameter λ that needs to
be appropriately tuned for a successful clustering.

• Each user i, i = 1, ...,m, with m being the number of users, gets its local model θ̂i,
via
θ̂i = argminθi∈Θfi(θi) and sends θ̂i to the server.
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• The server receives {θ̂i}mi=1, sets a convex clustering penalty value
λ from an appropriately defined interval (see [38] for details), and then it per-
forms convex clustering with the local models as inputs.

• For each obtained cluster C ′
k′, k

′ ∈ [K ′], the server performs within-cluster aver-
aging of local models: θk′ = 1

|C′
k′ |
∑

i∈C′
k′
θ̂i.

• The server sends the models to each user according to their cluster assignment,
i.e., each user i ∈ C ′

k′ receives the model θk′.

5.3 Application and relevance to MARVEL

As described in the preceding section, personalisation via clustering is an intuitive and
well-defined approach to automatically group data arising in a given smart city appli-
cation according to the similarity of the underlying data distributions or loss function.
An additional desirable property is to be able to identify such “hidden” clusters in a
communication-efficient manner in order to minimise the amount of (model) data traf-
fic between the different smart city FL clients during the training process. The proposed
method adopts a one-shot strategy to identify cluster structure based on a novel per-
sonalised FL formulation from Section 4. This method contributes to the fulfillment of
the KPI iKPI-1.1, as detailed in Section 1.6.

5.4 Evaluation

We now present evaluation results for the method in [38]. A linear regression problem
is considered. Specifically, for each cluster k, we have that a data pair (a, b) is generated
by:

b = ⟨a, u⋆
k⟩+ ϵ.

Here, ⟨·, ·⟩ denotes the standard inner product of vectors, ϵ is generated from the stan-
dard normal distribution, and we set the number of clusters K = 4. The regressors
u⋆
k are d × 1 vectors with d = 20, where each entry is generated independently from

a uniform distribution, as follows: for cluster 1, U([0, 1]); for cluster 2, U([1, 2]); for
cluster 3, U([−1, 0])m and for cluster 4, U([−2,−1]). Each cluster has Nk = 100, 000
points, generated in the following way: for each a ∈ Rd, we choose 5 components in [d]
that are drawn from a standard normal distribution, while the other components are
set to zero. We measure the error as follows:

ℓ ((a, b);u) = (b− ⟨a, u⟩)2.
There are m = 100 users, where each cluster has 10 users. Each user i ∈ Ck has

n points taken uniformly at random from the corresponding sample Nk. The method
proposed in [38] is compared with the following methods:

• Oracle Averaging, i.e., a method that (in an unfair setting) knows the true cluster
structure and applies the model averaging on each individual cluster.

• Cluster Oracle, i.e., a method that has access to all data points assigned to the
users from the same cluster, and then performing:

uk = argminu

K

m

∑

i∈Ck

fi(u),
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where we recall that the fi is user i’s local cost.

• Local empirical risk minimisers (ERMs), i.e., the method that trains an ERM on
each user’s data in isolation. Naive averaging, i.e., a method that averages all
users’ local ERMs obliviously to data heterogeneity.

Figure 21: Left: Performance of different methods for linear regression, versus the
number of samples available per user.

Figure 21 shows performance for all the methods considered. The left figure shows
the MSE of different methods. The right figure shows the number of clusters produced
by the convex clustering sub-procedure. We can see that the method proposed in [38]
performs on par with the oracle methods, i.e., optimally, when the number of samples
per user is above a threshold, hence confirming the developed theory.

5.5 Conclusions

In this Section, we briefly reviewed the main results from the paper [38] that proposes
a one-shot scheme for communication-efficient clustered federated learning. Future
work will investigate performance evaluation for nonconvex, DL models, such as VCC,
AVCC, and other models developed within MARVEL.
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6 Decentralised and Unsupervised Anomaly Detection

In this section, we present an overview of the paper [45], Appendix C.

6.1 Context and State-of-the-art

Centralised AI assumes that the data generated at the network’s edge has to be centrally
collected for processing. Although effective, such a paradigm also poses several con-
cerns in terms of data privacy and performance, e.g., it is well known that cloud-based
inference might suffer from latency issues. Therefore, the current trend is exploring
ways to move part or the entire AI-related process closer to the network’s edge and
where the data are generated. In this context, new methodologies have been proposed
for training models at the edge and performing inference efficiently. Federated Learning
is the framework where a set of devices, typically edge servers or edge devices holding a
certain amount of local data, collaborate to train an ML model collectively without shar-
ing their data. FL has been extensively investigated assuming that local data is labelled
(supervised learning) and the process is centrally coordinated/controlled. However, the
vast majority of data at the edge is unlabelled and central coordination is not always
possible. In this activity, we explore both aspects: unsupervised and decentralised FL
in a heterogeneous environment.

Precisely, we make the following assumptions on the data collection process. First,
among all the devices in the system, a subset of them observe the same phenomenon
and collect data belonging to the same unknown distribution, e.g., while a set of devices
might collect different realisations of a given handwritten letter or symbol, another
group might have data belonging to a different letter or symbol. Second, the collected
data is unlabelled, i.e., the devices are unaware of which category the collected data
belongs to or even if a commonly named category exists. The local data represents
only a partial view of the overall distribution, which forces them to find other devices
to collaborate with. The computational resources of these devices are limited in that
the model trained must be lightweight and cannot learn a wide variety of data patterns
(differently from what would be expected from a Deep Network trained in a centralised
fashion on a huge amount of data). Finally, the whole system is decentralised: we
assume no central coordination during the process, and the devices must coordinate
alone.

We consider anomaly detection as a specific application case for this peculiar sce-
nario. In our scenario, the normal data belong to multiple classes (in contrast to the
typical AD task involving only a single inlier class). For instance, the methodology pro-
posed, whose output is a set of models each specialised in identifying a single normal
pattern, can be further extended with ensemble-based methods to efficiently tackle the
multi-class anomaly detection problem, as shown in [46]. The challenge addressed
here is the following. In the case of supervised learning, data belonging to each class
are labelled, so each node knows which other nodes “see” the same majority class, and
therefore forming FL groups is straightforward. In unsupervised cases, each node can
detect its majority class from local data but has no direct information to know which
other nodes see the same majority class. Therefore, the main objective of our method-
ology is to identify an effective algorithm for nodes to form consistent groups (i.e.,
groups that see the same majority class) to run a standard FL process across nodes of
the same group.
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The literature on decentralised and unsupervised FL is limited compared to the one
developed for the supervised learning problem. The first work coping with this prob-
lem is [47], where the authors combined federated and unsupervised learning. How-
ever, they considered a rather controlled scenario unsuitable for mobile environments.
Other solutions considered more challenging conditions like non-IID data distributions
and misalignment of representation[48] or coped with domain-specific problems like
speech enhancement [49]. Finally, [50] goes in a similar direction w.r.t. ours dealing
with anomaly detection in the context of intrusion detection. However, they assume
that the local data is labelled.

6.2 Description of the method

We consider a distributed learning system with a set of clients M and a set of data
distributions C, such that |C| ≤ |M |. With data distribution, we refer to a set of identi-
cally distributed data representing a specific pattern (e.g., observations of phenomena
belonging to the same class of events in case of a classification task). We assume that
every client’s local dataset is composed of a portion d ∈ (0%, 50%) of samples from a
single distribution Cout ∈ C, and the remaining (100 − d)% from Cin ∈ C, such that
Cin ̸= Cout. The sample partitions within each client form the outlier and inlier classes,
respectively. This split represents a basic assumption when dealing with AD tasks.

Our methodology is made by two phases:

• Phase 1: Group identification to make the clients join a group (i.e. cluster)
having the same (or similar) majority class Cin.

• Phase 2. Federated Outlier Detection to run multiple standard FL sessions
among clients in the same group to improve the local models of the devices be-
longing to the same group.

Phase 1. First, each device trains locally a standard Anomaly Detection model, e.g.,
One-Class Support Vector Machine. The trained AD model splits the local data between
inliers and outliers such that all the devices can discriminate their local anomalies.
Second, all the devices share their local AD model with their peers. A device i uses
the received models on its local data. The main idea is to test those models on the
local data using the performance of their locally trained models as a benchmark. If the
performance of the j-model is above some predefined threshold, the client i considers
the client j to be in his group. The steps performed by each client are detailed in
Algorithm 1.

At the end of algorithm 1, each client has a local view of which other clients should
belong to its group. However, due to data locality, different clients in the same group
may have different local views regarding the groups’ formation. To obtain an overall
view of the groups shared by all nodes, we build a graph starting from their local
groups. Precisely, since the association of two clients is reciprocal (line 14), we can
build an undirected graph from all the resulting groups of candidates for each client. A
link between two nodes means that those two nodes mutually “think” to be in the same
group. Finally, a community detection algorithm is run on this graph to detect which
groups of nodes should be considered part of the same set and thus undergo a standard
FL step.
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Algorithm 1 Client mi local training and association

Input: AD Model Modi, contamination d, association threshold q, set of other clients
M

Output: Group Gi of candidate clients similar to mi

1: procedure LOCALAD(Modi, d, q,M)
2: Gi ← ∅
3: Modi = Modi.f it(xi, d)
4: yi,i = Modi.predict(xi)
5: ini,i = inlierPercCount(yi,i)
6: send(Modi,M)
7: for all mj in M do
8: Modj = receive(mj)
9: yj,i = Modj.predict(xi)

10: inj,i = inlierPercCount(yj,i)
11: bj,i = ini,i − q ≤ inj,i ≤ ini,i + q
12: send(bj,i,mj)
13: bi,j = receive(bi,j,mj)
14: if bj,i AND bi,j then
15: Gi ← mi

16: end if
17: end for
18: return Gi

19: end procedure

Phase 2. The result of Phase 1 is a set of k communities G0, . . . , Gk. For each of them,
we run an FL session where devices train a lightweight autoencoder collaboratively. We
selected autoencoders because: (i) being NN-based, they can be trained iteratively as
it happens in FL; (ii) they proved suitable for AD tasks. Typically, once trained, it is
possible to use the reconstruction error of a given sample to spot potential anomalies.
We run k FL sessions in parallel, one for each identified community. In this work, we
use the vanilla version of the Federated Averaging (FedAvg) [51]. The final output will
be k trained Autoencoders, one for each group highly specialised in the corresponding
majority class. These AE can be further used as an ensemble to identify anomalies as
shown in [46].

6.3 Relevance for MARVEL

This methodology touches on several aspects of the MARVEL ecosystem. Precisely, this
methodology suggests a way for performing anomaly detection using models with lim-
ited capacity. In fact, instead of training one model capable to learn different patterns,
our idea is to train several lightweight models hyper-specialised on a small number of
patterns and exploit their collaboration to perform a complex anomaly detection task
(Task 3.5). This fits very well the edge scenario targeted by MARVEL where resource-
constrained devices have to perform an anomaly detection task. Moreover, the collab-
oration between devices is performed under the Federated Learning Framework (Task
3.2) and targets a problem (i.e., federated unsupervised learning) not yet extensively
explored. This method contributes to the fulfillment of the KPI iKPI-1.1, providing a
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tool for solving anomaly detection tasks on distributed and federated edge devices, as
detailed in Section 1.6.

6.4 Evaluation

In our evaluation, we use two standard benchmark datasets: MNIST and Fashion-
MNIST keeping the original 60000-10000 train-test splits. The data is distributed
among several devices using the following procedure: we define a parameter p as the
number of clients within the same data distribution (i.e., class), meaning that the train
samples of a class Cin of the original dataset (e.g., MNIST) are evenly and randomly
spread to form the inliers of p clients. Accordingly, the portion of outliers for each client
within the same group and characterised by the same Cin, is given by the samples of a
class different from Cin. We ensure that the outlier classes C \ Cin are equally repre-
sented within the group, meaning that for each client of the group, the minority class
is “circular” through the set C \ Cin. See an example in Figure 22.

In our system, we used two types of models, one class support vector machine
(OC-SVM) [52] for phase 1 and a lightweight autoencoder (AE) for phase 2. OC-SVM
requires two parameters to be set: the kernel and the parameter ν ∈ (0, 1], which is
an upper bound on the fraction of training errors and a lower bound on the fraction of
support vectors. The fine-tuning of ν in contaminated data can be challenging without
any assumptions on the distribution of the outliers. However, since in our tests we
assume to know (only) the contamination value d = 10% for every dataset, we can set
ν = 0.1. Moreover, we use the RBF kernel. The AE has a three-layers topology (64-32-
64), ReLU activations on the hidden fully connected layers, and Sigmoid activation on
the output layer.

The local association threshold q used by each client to identify its potential group
members is set to 0.08 (identified empirically). Basically, the local client considers
another client as a partner if the model of the latter produces a fraction of normal data
on the local dataset equal to the percentage produced by the local node, ±q.

For both the MNIST and the fashion-MNIST datasets, we run four tests varying the
value of p : {9, 18, 27, 36}. In all the tests we use the contamination parameter d = 10%
and we take into account all the available classes, i.e., |C| = 10. Let mCi,j be the j-th
client with majority class Ci; we define ICi

as the ideal set of clients having the same
majority class Ci, e.g., I0 = {m0,0, . . .m0,p−1}.

In Table 5, we show the results of the community detection phase for the MNIST
dataset: we find nine communities, and in most cases, they match with the ideal group
of clients. The major exception is given by G4, that in all four cases is given by the
union of I4 and I9, meaning that the clients having 4 and 9 as inlier classes join the same
community. This is a consequence of the OC-SVM model’s inability to distinguish the
two digits, and it represents a typical behaviour when dealing with image classification
using MNIST.

We compare our methodology with two baselines: (i) local, where clients only
train on local data; (ii) ideal, in which a client mCi,j uses the model trained through
federated learning on the set of clients ICi

, i.e., the set of the clients sharing the
same majority class. The test samples for each client are randomly sampled from the
MNIST/fashion-MNIST test set, following the same inlier/outlier classes and the ratio
of the corresponding client.
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Table 5: Community detection for MNIST
(a) p = 9

Community ID Members
G0 I0
G1 I1
G2 I2
G3 I3
G4 I4 ∪ I9
G5 I5
G6 I6
G7 I7
G8 I8

(b) p = 18

Community ID Members
G0 I0
G1 I1
G2 I2
G3 I3
G4 I4 ∪ I9
G5 I5
G6 I6
G7 I7
G8 I8

Table 6: Test AUC on MNIST. For each p, mean ± std are computed on p|C| clients
Local Community (ours) Ideal

p
9 0.773± 0.205 0.836± 0.18 0.839± 0.185
18 0.769± 0.207 0.835± 0.18 0.836± 0.181
27 0.77± 0.208 0.836± 0.18 0.84± 0.181
36 0.766± 0.207 0.819± 0.191 0.838± 0.182

In Table 6, we show the test AUC score on MNIST by varying the value of p, meaning
that for each row we compute the average AUC score of p|C| clients. Our methodology
performs almost as the upper bound baseline, represented by the ideal federations of
clients. Nevertheless, the results are consistent with the partitioning we obtain in the
first step with the community detection that identifies the right groups of clients in most
of the cases. Similar results are available for Fashion-MNIST in [45].

Summarising, in most cases the communities found do match with the ideal groups
of clients, which are used as an upper bound baseline in the experimental part. When
the ideal groups are not found, our methodology merges more ideal groups into one
community. We finally test the resulting AD federated models trained by the detected
communities in terms of AUC score. The results show a clear advantage over the models
locally trained (i.e., the lower baseline), while the performance is comparable with the
federated models of ideal communities’ partition, even for detected communities in

Figure 22: Histograms of training data distribution for the group Cin = 0 (i.e., 0 is the
common inlier class) with p = 9. Example of local data distribution between devices.
The histograms correspond to the training data distribution for the group Cin = 0
(i.e., 0 is the common inlier class) with p = 9, i.e., the majority (inlier) class is evenly
represented among the subset of devices holding it. Conversely, the local outliers are
different for each device.
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which different majority classes are merged. This indicates that, even though we may
not always be able to group clients as in the ideal (supervised) case, still the accuracy of
the resulting model is close to optimal and significantly better than using local models
trained only on local data.

6.5 Conclusions

In this Section, we presented an overview of the results in [45]. Therein, we defined
a new methodology for FL in unsupervised settings, particularly useful for dynamic
mobile environments without central coordination. We showed how a set of devices
holding non-IID data can collaborate to learn (through low-complexity ML algorithms
and models) the existence of new data distributions, going beyond their strictly local
knowledge represented by their local and unlabelled data. In this work, we considered
a rather simplified data landscape, where the normal data (i.e., inliers) belong to a
single data distribution (although different from device to device). In the future, we
plan to relax this assumption on the composition of the local datasets by considering
that each device holds a multitude of inlier distributions, as it might happen in real-
world scenarios.
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7 Federated feature selection for efficient data compres-
sion and communication

In this section, we present an overview of the paper [53], Appendix D.

7.1 Context and State-of-the-art

In many edge scenarios, edge devices cannot fully process all the data they produce in
order to extract knowledge through the training Machine Learning models. To over-
come this issue, a typical approach is to transmit data to the closest Edge Server (ES)
to process it. However, transferring large quantities of data, especially from resource-
limited and power-constrained Edge Devices (ED), might be an issue from the com-
munication standpoint because wireless communications are typically power-hungry
and, with high probability, considering a specific learning task, not all the raw data
collected is equally informative. In such a case, compressing data before transmission
is paramount to save resources and avoid flooding the network with highly redundant
data. Beyond the traditional data compression methods, which are not always benefi-
cial from the ML process point of view, a suitable approach would be locally extracting
a set of potentially interesting features from raw data directly at the source and using
a Feature Selection algorithm (FS) as a tailored compression step before transmission.
However, due to the locality of the collection process performed by each EDs, the locally
selected features might represent a partial subset of those that actually characterising
the informative content. Therefore, in order to keep the information content consistent
among all devices collecting data and transmit, FS should be a collaborative process in
order to exploit and combine the whole information contained in all the local datasets.

In this activity, we proposed a federated feature selection method where the edge
devices collaborate to come up with the minimal set of features selected from their
local datasets before transmitting them to the edge server. Our proposal was, to the
best of our knowledge, the first of its kind. In fact, although there are works proposing
solutions for performing distributed FS, none of them considered federated settings. In
[54], authors present a distributed algorithm for FS based on the Intermediate Repre-
sentation, which aims at preserving the privacy of data, allowing the node to exchange
each other the data they hold. Therefore, in this method, FS is performed under the as-
sumption that all data are available to the FS algorithm. Moreover, the method depends
on the specific learning model that uses the selected features.

In [55], the authors propose an information-theoretic Federated Feature Selection
(FFS) approach called Fed-FiS. Fed-FiS estimates feature-feature mutual information
and feature-class mutual information to generate a local feature subset in each user de-
vice. Then, a central server ranks each feature and generates a global dominant feature
subset using a classification approach. This approach has some commonalities with
ours, such as the adopted metric (MI) and the federated settings. However, differently
from [55] (i) we provide directly the minimum set of relevant features instead of a
ranking, (ii) we propose an aggregation based on Bayes’ theorem that does not rely on
any ML scheme to finalise the selection (i.e., no regression or classification methods
are adopted in our solution), resulting in a computationally more suitable approach for
vehicular scenarios.
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7.2 Description of the method

Our method is made of two components, i) an FS algorithm that processes the local
data on the devices and ii) an aggregation algorithm executed on the edge server that
combines the local estimates transmitted by the devices. Note that the proposed ap-
proach shares only the estimates of the most informative local features. Moreover, it
guarantees that all the devices reach a consensus on the subset of the most informative
features after a finite number of communication rounds between them and the ES.

The FS algorithm is based on the Mutual Information metric [56, 57], and it is de-
signed using the Cross-Entropy method [58]. The formal definition of the FS problems
is the following:

Definition 1 (FS Problem) Given the input data matrix X composed by n samples of m
features (X ∈ Rn×m), and the target attributes’ (or labels) vector y ∈ Rn, the FS problem
is to find a k-dimensional subset U ⊆ X with k ≤ m, by which we can characterise y.

The method we adopt in the paper [53] performs the FS measuring, through the
Mutual Information metric, the amount of information that a subset of features (or
attributes) U expresses regarding a specific target label y. Formally, the MI between
random variables can be defined as [59, 60]:

I(U;y) = H(y)−H(y|U), (3)

where U = {x1 · · ·xk | k ≤ m} ⊆ X, and H(y|U) is the conditional entropy which
measures the amount of information needed to describe y, conditioned by the informa-
tion carried by U.

In MI-based FS the features to be selected are those that maximise Equation (3) by
finding a solution to the following optimisation problem:

argmax
U

I(U;y) (4)

U = {x1 · · ·xk | k ≤ m} ⊆ X

Note that the problem (4) belongs to the class of Integer Programming (IP) opti-
misation problems and finding its optimal solution is NP-hard [61], i.e., the optimal
solution U would be found among all combinations of feature indices of the native set
X. The problem (4) becomes computationally tractable if approached through an itera-
tive algorithm which selects and adds to the subset U one feature at a time. Therefore,
instead of solving 4, we address the problem defined in (5):

arg max
xj∈X\U

I(xj;y|U), (5)

U = {x1 · · ·xk−1 | k ≤ m} ⊆ X.

In practice, we solve it through an algorithm based on the Cross-Entropy concept.
The CE-based algorithm finds, in a finite number of steps, a solution that well approxi-
mates the one found by solving the problem (4), while making negligible the assump-
tion of independence among features introduced in problem (5). In other words, with
CE-based FS, instead of selecting one feature at a time, we select a set of features jointly.
Precisely, we associate each i-th feature with a random variable zi ∼ Bernoulli(pi). The
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CE-based algorithm identifies which variables zi, i = 1, · · · ,m must have pi → 1, so
that the objective function O(U(z)) = H(y|U) gets close to 0. At the end of the local
feature selection, each device obtains a vector of the same size of the feature vector in
which each element contains the probability that a feature has to be selected. All the
mathematical details and algorithms are detailed in the published paper.

The aggregation algorithm is based on a Bayesian approach through which we
merge the information sent by the devices to the ES. In our approach, the devices share
probability vectors where each element is the estimated probability of selecting a cer-
tain feature. The main idea is to merge the local probability vectors through a weighted
average where the weights (computed as in Eq. (7)) serve the twofold purpose of (i)
considering more (or less) those vectors that are computed from larger local datasets
and (ii) defining common support among all the probability vectors. This second aspect
is crucial for the computation’s consistency in Eq. (6).

Formally, we assume that each node acquires several independent identically dis-
tributed (i.i.d.) records nl to perform the FS, and that the nodes share the same set of
features X. The global probability pG used for the FS can be written as follows:

pG =
∑

l

plωl, (6)

where pl is the solution of the local Feature Selection at node l obtained using the Cross-
Entropy algorithm, and ωl weights pl w.r.t. the other nodes, whose formal definition
is:

ωl =
nl∑

l

nl

. (7)

we weigh the probability vector pl of node l proportionally to the size of its local dataset
compared to the whole amount of data present in the system.

The proposed algorithm provably converges to a subset of features that effectively
compresses the data collected by the devices.

7.3 Relevance for MARVEL

This work explores the possibility of training a data compressor in federated settings.
Although developed for vehicular scenarios, such a methodology might also be ben-
eficial in the context targeted by MARVEL when sending data towards the E2F2C in-
frastructure for processing. Edge devices can collaborate to determine the best set of
features to be transmitted to one of the layers mentioned above to avoid generating
redundant traffic during data collection. As such, this method directly contributes to
the fulfillment of the KPI iKPI-1.1, detailed in Section 1.6.

7.4 Evaluation

We consider a system where a set of autonomous vehicles equipped with edge devices
collect data generated by their sensors and collaborate to learn a minimal and most
informative set of features from their local datasets. To this end, they execute an in-
network data filtering process through our Federated Feature Selection approach to
reach a consensus in identifying the most informative feature subset. Finally, the glob-
ally shared feature set is used like a compression scheme before transmitting it to ES.
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Note that, in this system, EDs are only responsible for finding the best compression
scheme applicable to their local data in a collaborative way, based only on the control
information they exchange with the ES.

We tested our solution on two benchmark datasets from the literature corresponding
to two reference scenarios in the vehicular environment. The first one, called MAV18 is
a publicly available dataset containing both 64×64 images and 6 inertial measurements
collected by a drone during a mission in a controlled environment. This dataset refers to
a problem of self-localisation in the environment. MAV dataset has been preprocessed
as follows. We pre-process the raw images to extract more informative features. In our
settings, we extract the HOG features19, and we assume that the feature extraction is
accomplished directly on the drone, which might be possible if equipped with a board
of the kind discussed in [62]. The original dataset is unlabeled. Therefore, we labelled
it in a way compatible with the positioning context. We associated with each record a
label corresponding to the corresponding voxel.20

The second dataset, called WEarable Stress and Affect Detection (WESAD), is a
collection of data sampled from heterogeneous biophysical sensors: ECG, EDA, EMG,
Temperature, Respiration and Inertial Measurements on the three axes. It regards the
physiological-state monitoring of a passenger in the automotive domain. The dataset
contains readings from two devices, i.e., Respiban and Empatica E4, positioned i) on
the chest and ii) on the wrist of human subjects. Each device is equipped with mul-
tiple sensors monitoring several physiological parameters. Since the two devices have
different operating settings, we focused on the Respiban, whose collection rate is ho-
mogeneous for all its sensors. The dataset contains readings collected from 17 human
subjects who perform a predetermined protocol to induce the body in one of the fol-
lowing states: 0-baseline, 1-amusement, 2-stress, 3-meditation, and 4-recovery. The
data collected for each subject amounts to ∼3.6M records, equivalent to ∼220 MB. A
complete description of the dataset is provided in [63].

We evaluate the performance of our solution in terms of (i) compression (i.e., the
ratio of features transmitted over the total number of features present in the local
dataset), (ii) quality of the selected features (i.e., the accuracy obtained by a model
trained on the feature selection obtained by each methodology evaluated) and, (iii)
network overhead (i.e., how much additional traffic our solution generates before trans-
mitting the compressed data).

We focus now on the analysis of our FFS method. We compare its performance to
those obtained by the Cross-Entropy algorithm executed in centralised settings (CE-
CFS).

Table 7 reveals that for MAV dataset, our solution finds a set of features that, al-
though slightly larger than that found by the centralised competitor CE-CFS (24 in-
stead of 18), has the very same informative content, i.e., the accuracy of the NN model
trained on both subsets of features are statistically equivalent. The same results hold in
the WESAD case too.

We tested the performance of our solution, also varying the size of the local datasets.
We aim to understand how it reacts when we decrease the data per device. The results
reported in Table 8 show that decreasing the size of data processed at each round does

18dataset available at: https://tinyurl.com/mavmr01
19HOG is a standard feature extraction methodology used in computer vision and image processing to

create an image descriptor that captures the spatial relations between different portions of it [62].
20A voxel represents a value on a regular grid in three-dimensional space.
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Table 7: Comparison between CE-CFS and FFS on MAV and WESAD.

Dataset Method Size FS C Accuracy
(# obs.) (#) (%) (%±C.I.)

MAV
CE-CFS 2911 18 99 96.7±0.5
FFS 291 24 99 96.7±0.4

WESAD
CE-CFS 15M 4 50 94.6±0.8
FFS 3M 4 50 94.6±0.8

not significantly affect the number of communication rounds needed for convergence.
Interestingly, the same holds also for the WESAD scenario.

Table 8: Performance of FFS varying the data processed during a communication round.
The columns report the size of data used for each update (Size), the number of selected
features (FS), the accuracy, the number of communication rounds upon convergence
(Rc), the compression obtainable with FFS (C), the network overhead generated by
FFS (NOH), and the size of the cache needed to collect the data before starting the data
transmission.

Dataset Size FS Accuracy Rc C NOH Cache
(# obs) (#) (%±C.I.) (#) (%) (MB) (MB)

MAV

291 24 96.7±0.4 44 99 16 217
203 26 96.5±0.3 37 99 13 128
145 34 97.0±0.3 55 98 20 134
87 59 97.2±0.3 43 97 15 63
29 41 97.2±0.4 53 98 19 26

WESAD
3·106 4 93.6±0.8 11 50 0.009 2·103
1·106 5 93.8±0.5 10 38 0.008 1·103

7.5 Conclusions

In this section, we presented an overview of the results in paper [53]. The results
show that our FFS algorithm identifies a minimal subset of informative features without
sharing raw data between the devices. FFS is robust to feature redundancy and all the
devices can reach a consensus on the FS achieving a compression rate of up to 90x
on the selected datasets. Finally, the quality of the feature selection is maintained. The
proposed framework is general and modular, i.e., it can be applied to every incremental
FS algorithm that associates a probability to each feature. We plan to investigate how
to turn it into a framework to include more FS algorithms, enriching the challenges
connected to the data distribution on devices (i.e., non-IID-ness) and the potential lack
of supervision.
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8 Nonlinear stochastic gradient descent

In this section, we briefly describe the results in [64], Appendix E, where MARVEL UNS
researchers are three work’s co-authors.

8.1 Context and State-of-the-art

For training large-scale machine learning models, stochastic gradient descent (SGD)
and its advanced versions have been extensively used, e.g., [65, 66, 67, 68, 69, 70, 71].

More recently, several nonlinear variants of SGD have been introduced and are
shown to exhibit a number of favourable properties. More precisely, clipped gradi-
ent descent, e.g., [72, 73], the sign gradient, e.g., [74, 75], and (component-wise)
quantised gradient, e.g., [76, 77], have been introduced. Introducing a nonlinearity
has been shown to speed up models training [73], and improve communication effi-
ciency [75, 74].

On the other hand, several recent studies demonstrate that, when training deep
learning models, gradient noise exhibits a heavy-tailed behaviour [78, 79]. A recent
reference [80] introduces adaptive clipping nonlinearity into SGD to combat the heavy-
tailed gradient noise.

8.2 Description of the method

In paper [64], we have introduced a general framework of nonlinear SGD to combat
a heavy-tailed gradient noise. An algorithm within the framework, that minimises a
convex function f , works as follows:

xt+1 = xt − αtΨ(∇f(xt) + νt). (8)

Here, xt is the solution estimate at iteration t, t = 0, 1, ...; Ψ : Rd 7→ Rd is a general
nonlinear map; αt > 0 is step size; νt ∈ Rd is a zero-mean gradient noise; and x0 is an
arbitrary deterministic initialisation.

The framework allows for very general nonlinearities that include the following pop-
ular and commonly used choices: Sign gradient; Component-wise clipping; Component-
wise quantisation; Normalised gradient; and Clipped gradient.

The contributions of [64] can be summarised as follows. The paper establishes
for the above-defined general nonlinear SGD strong convergence guarantees, namely
almost sure convergence, asymptotic normality, and mean-squared error (MSE) con-
vergence rate. When compared with state-of-the-art, the paper’s results correspond to
a more general class of nonlinearities; existing studies usually focus on a specific non-
linearity such as clipping. In addition, the paper allows for more general gradient noise
distributions, specifically allowing for infinite variance gradient noises.

8.3 Application and relevance to MARVEL

Several recent works, e.g., [78, 79], have observed existence of fat-tailed distributions
of gradient updates within the training process for some widely used DL models. To
improve the speed and therefore communication efficiency of federated training, non-
linearities of the type studied here can be exploited, together with similar analytical
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tools for convergence/performance analysis, contributing to the KPIs iKPI-1.1 and iKPI-
12.1, Section 1.6.

8.4 Evaluation

We present validation of the results in [64], by demonstrating numerically that the
nonlinear SGD, with the normalised gradient nonlinearity, converges in the presence of
an infinite-variance gradient noise. At the same time, the standard, linear SGD fails to
converge under the same setting.

The simulation setting is as follows. A strongly convex quadratic function is con-
sidered, f : Rd 7→ R, f(x) = x⊤Ax + b⊤x. Here, A ∈ Rd×d is a symmetric positive
definite matrix generated at random, with d = 16. Also, vector b is generated ran-
domly. We consider the method in [64] with the normalised gradient nonlinearity and
the linear SGD. The gradient noise has the distribution with the following probability
density function (pdf) entry-wise:

p(u) =
α− 1

2(1 + |u|)α , (9)

for u ∈ R and α = 2.05. The gradient noise is independent of the current iterate xt.
The above noise distribution can be shown to have an infinite variance. We use with
both methods the zero initialisation and step-size αt = 1

t+1
. Figure 23, left, shows a

Monte Carlo estimate of MSE across iterations t. We can see that the proposed method
(blue) converges in heavy-tailed noise, while the linear SGD (red) fails to converge.
Figure 23, right, repeats the experiment, but now at each iteration t, gradient noise
is dependent on xt; more precisely, we have that each entry of the gradient noise at
iteration t follows the distribution in (9), with α = αt = 2 + ∥xt∥, where ∥ · ∥ denotes
the Euclidean norm. We can observe a similar behaviour as the one shown in Figure 23,
left.

Figure 23: Monte Carlo estimate of MSE versus iterations t for the normalised gradient-
based nonlinear SGD (blue) and linear SGD (red). Left: noise is independent of the
current iterate; Right: noise is dependent on the current iterate.

8.5 Conclusions

The current work focused on investigating the effects of gradient update nonlinearities
for training a model in a centralised fashion. However, the adopted methodology and
accompanying analytical tools are of direct interest to federated training as well. Fu-
ture work in that sense could investigate different nonlinearity points – such as client
nonlinearities, server nonlinearity or a combined approach. A problem of particular
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interest is to identify/optimise the nonlinearity type to be adopted for a given noise
distribution of the client’s gradients.
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9 Analytical benchmarking of stochastic gradient de-
scent based on large deviations rates

In this section, we briefly describe the results in [81], Appendix F, where two co-authors
are MARVEL UNS researchers.

9.1 Context and State-of-the-art

Stochastic gradient descent (SGD) is a well-established method for optimising a given
objective function, such as an empirical loss that arises with ML/DL model training,
or as a subtask of a more complex optimisation or learning method, such as federated
learning. SGD finds numerous practical applications, such as training machine learning
and deep learning models, e.g., [65, 66, 82]. In order to evaluate SGD performance and
compare different alternatives – in terms of the final solution of the “plain” SGD (e.g.,
last iterate versus suffix averaging) or within stochastic training protocols (e.g., sam-
pling strategy for participating training nodes), typically MSE is the metric of choice.
Recent works have shown that high probability metrics with SGD exhibit informative-
ness and in some cases advantage over the commonly adopted MSE-based ones, e.g.,
[83, 84, 85, 86, 87].

9.2 Description of the method

We provide here an overview of the results presented in the paper [81]. Reference [81]
is interested in applying the large deviations theory to analysing the stochastic gradient
descent (SGD) method. More precisely, we consider unconstrained optimisation prob-
lems where the goal is to minimise a smooth, strongly convex function f : Rd → R, via
the SGD method of the form:

Xk+1 = Xk − αk (∇f(Xk)− Zk). (10)

Here, k = 1, 2, ... is the iteration counter, αk = a/k, a > 0 is the step size, and Zk is a
zero-mean gradient noise that may depend on Xk. In this context, reference [81] finds
for SGD the set-valued function I(·), referred to as the inaccuracy rate, such that the
following holds:

P (Xk ∈ C) = e−k I(C)+o(k). (11)

Here, o(k) corresponds to terms growing slower than linearly with k, and C is an ar-
bitrary open subset of Rd. Moreover, the reference expressed the inaccuracy rate I(C)
in the form of the so-called rate function I : Rd 7→ R, according to the following for-
mula [88]:

I(C) = inf
x∈C

I(x). (12)

Solving for (11) is highly relevant to the analysis of SGD, as it provides estimates of the
probabilities of “rare events.” For example, when C = {x : ∥x − x⋆∥ > ϵ}, where x⋆ is
the minimiser of f , (11) quantifies the probability that the solution estimate Xk stays
ϵ-away from the solution x⋆.

Existing literature only provides non-tight lower bounds on the inaccuracy rate I(C),
for the case when set C is a complement of an Euclidean ball. In contrast, reference
[81] provides inaccuracy rate I(C) for arbitrary open sets C. Furthermore, it provides
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exact asymptotic expressions for I(C) which are therefore tight, for the special case
when the objective function f is quadratic.

9.3 Application and relevance to federated learning

As it has been demonstrated in [81], the large deviations metric in (11) can be more
informative in several scenarios than the commonly used MSE criterion. Specifically, as
shown in [81], the performance of SGD depends not only on the noise variance but also
on higher order noise moments. In other words, the SGD subject to a one type of noise
(e.g., Gaussian) can perform very differently than the SGD subject to another type of
noise (e.g., Laplacian), even when in the two cases, the noise variances are mutually
equal. That is, higher-order moments make the difference in the SGD performance, in
this case. This higher-order difference is however not captured via an MSE analysis
that only “sees” the noise variance. In contrast, the large deviations inaccuracy rate
metric in (11) successfully captures this difference in the SGD performance. Therefore,
quantification of the inaccuracy rate metric opens a new avenue for optimisation of
stochastic algorithms like SGD. Similarly, an inaccuracy rate analysis for stochastic FL
methods like, e.g., FedAvg with partial participation, can potentially lead to improved
FL design, such as, e.g., design of client sampling strategies, step sizes, client transmit
power optimisations, etc.. This is not pursued per se here but is subject to future work,
and it may be considered in the context of MARVEL use cases implementation tasks
T5.4 and T6.2. Due to its intrinsic capability to handle various sources of complexity
in distributed and federated systems (non-IID gradient noise, system intermittency and
heterogeneity), the tool directly contributes to the iKPI-1.1, Section 1.6.

9.4 Evaluation

We provide a numerical study highlighting the relevance of the large deviations metric
in (11). A strongly convex quadratic cost function f : Rd → R is considered, with
f(x) = 1

2
x⊤Ax + bx, d = 10. Further, A ∈ Rd×d is a symmetric matrix and b ∈ Rd is a

vector generated at random; further details can be found in [81].
The gradient noise is generated in an independent, identically distributed way. We

consider two different noise distributions (per gradient noise element), the zero-mean
Gaussian and the zero-mean Laplace, while the per-element gradient variance is equal
in the two cases, and it equals σ2. This scenario enables us to assess the effects of higher
order moments on the performance of SGD.

Figure 24 plots a numerical, Monte Carlo estimate, of the rare event probability
P (∥Xk − x⋆∥ > ϵ) along iterations k = 1, 2, ..., for ϵ = 0.3. We can see that, even
though for the two cases the gradient noise variance is the same, the performance of
SGD for the two scenarios is very different. This is captured well by the inaccuracy rate
metric in (11) and is not “visible” via an MSE analysis, as explained above.
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Figure 24: Numerical estimate of the rare event probability P (∥Xk − x⋆∥ > ϵ) along
iterations k = 1, 2, ... for SGD with Gaussian (blue line) and Laplacian (red line) noise.

9.5 Conclusions

We provided an overview of the results presented in the paper [81]. We have estab-
lished in the paper large deviations performance of the stochastic gradient descent
method, and we outlined how the newly established large deviations metrics may be
used in the design and analysis of FL algorithms.
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10 Distributed statistical inference and learning: Per-
formance evaluation

In this section, we briefly describe the results of paper [89], Appendix G, the author of
which is a MARVEL UNS researcher.

10.1 Context and State-of-the-art

Recently, there has been significant progress in distributed inference and learning. Well-
known methods include consensus+innovations, e.g., [90, 91], diffusion, e.g., [92, 93],
and non-Bayesian or social learning, e.g., [94, 95].

Unlike conventional server-client FL, a common setup for these methods assumes a
network of nodes (agents) interconnected over a generic network. Each agent holds a
local inference vector (e.g., decision variable, belief). Each agent updates their infer-
ence vectors at each time by i) assimilating a new observation; and ii) weight-averaging
their own and their neighbours inference vectors. See [89] for more details on the cor-
responding mathematical formulation.

There have been a number of works concerned with performance evaluation of
distributed learning and inference methods. The authors of [95], [96] consider the
problem of distributed M -ary hypothesis testing. Therein, agents perform their local
updates by applying a Bayesian update on the vector of prior beliefs.

There have been a few works that are concerned with inaccuracy rates of distributed
inference and learning methods. We refer to Chapter 9 for the definition and relevance
of the large deviations (inaccuracy rate) metric. Large deviations analysis has been
performed in [95], assuming a static, directed network. The authors show that the large
deviation performance is related to the eigenvector-centralities convex combination of
the nodes’ local rate functions.

To the best of our knowledge, large deviation performance for distributed inference
(inaccuracy rates) for random networks have not been sufficiently studied before. The
corresponding large deviations rates (detection error exponents) have been studied
on random networks [90, 97], but only for a different problem, namely distributed
detection.

10.2 Description of the method

We briefly present here the method and results for large deviations analysis (inaccuracy
rates calculation) for distributed inference and learning developed in paper [89].

Namely, in contrast with the works in [92]-[98], reference [89] addresses computa-
tion of the inaccuracy rate for distributed inference on random networks. For each node
in the network, it provides a lower and a family of upper bounds on the rate function
(inaccuracy rate). This is achieved by carrying out node-specific large deviations anal-
yses. We show that the two bounds match in several cases, such as for pendant nodes
and also for nodes in a regular network, hence providing the exact (tight) inaccuracy
rate evaluation. Interestingly, the rate function is a convex envelope between the rate
function of the full network and the rate function of the respective component, lifted up
by the probability of the event that induces the component. This confirms the intuition
that the distributed inference behaves in its performance “in-between” 1) a centralised
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inference engine that has access to all nodes’ data; and 2) each node working in isola-
tion. However, it in addition quantifies, for each targeted regime, the benefits of nodes’
cooperation (or the loss with respect to the centralised system).

As an application of particular interest to this study, we consider social learning,
specifically the form with the geometric average update [95]. We show that, with ap-
propriate transformation of the belief iterates – namely, considering their log-ratios with
respect to the belief in the true distribution, the algorithm studied in [95] exhibits full
equivalence to the consensus+innovations algorithm that we analyse here. Building
on this equivalence, we characterise the rate function of the beliefs in social learning
and provide the first proof of the large deviations principle for social learning run over
random networks.

In addition, the results of [89] can be applied to distributed detection as well. In
that case, the inference vector becomes a scalar local decision statistic at each node,
that is being compared with a threshold. In that case, finding, for example, the false
alarm probability corresponds to the calculation of the rate function for a specific set,
equal to a one-sided interval in the real line.

10.3 Relevance for MARVEL

Distributed inference and learning, e.g., of consensus+innovations type, represents a
useful alternative to server-client FL settings (see Section 4), for the scenarios of low
nodes-to-server bandwidths and when network capacities between nodes are highly
distributed and smaller than that in a data-center [99]. In these scenarios, a server-
client training algorithm like FedAvg may be replaced with a consensus+innovations
type method. Therein, the inaccuracy rate analysis is a valuable tool for system design,
e.g., uplink communication protocols, node activation schedule, etc., contributing in
particular to the iKPI-1.1, Section 1.6.

10.4 Evaluation

We illustrate the relevance of the rate function metric on a distributed detection prob-
lem, where we consider the distributed detection algorithm in [90]. We consider the
same “baseline” distributed detection algorithm under two different scenarios. In the
first scenario, nodes utilise a randomised communication, such that the communica-
tion probabilities increase over iterations up to a certain limiting value p. In the second
scenario, the communication probabilities at each node are kept constant along iter-
ations, equal to p. By the large deviations theory, the two different scenarios exhibit
the same large deviations (rate function) performance asymptotically, as the number of
iterations grows. Therefore, in terms of the transmit power, intuitively, the scheme with
increasing communications should perform better as far as the overall communication
cost (number of transmissions) is concerned.

Figure 25 plots the Monte Carlo-estimated probability of detection error versus the
total number of transmissions (communication cost). We can see that the scenario
with increasing probabilities of communications leads to an improved detection perfor-
mance, as predicted by the theory.
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Figure 25: Estimated probability of error (in the log scale) with constant activation
probabilities (orange), time-varying activation probabilities (blue), versus the expected
number of communications.

10.5 Conclusions

We provided an overview of [89] that establishes large deviations (inaccuracy rates)
performance of a class of distributed inference and learning algorithms over random
networks. We explained the results achieved, as well as their relevance for MARVEL.
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11 Conclusions and plans for the 2nd release of the
MARVEL integrated framework

In this deliverable, we presented the final research, innovation, and development re-
sults achieved in the context of Task 3.2 of the MARVEL project. These results are along
several important dimensions. First, the task developed a novel open-source tool for
personalised federated learning. Second, it implemented, deployed, and validated the
developed tool on several real-world use cases defined in the MARVEL project, includ-
ing highly relevant deep learning tasks such as crowd counting. Third, it described
several strategies for data privacy preservation and enhancements, as well as for edge-
fog-cloud deployments of personalised federated learning methods. Finally, the work in
the context of this task has resulted in several state-of-the-art advances in the person-
alised federated and distributed learning domain. The deliverable has described each
of those papers, highlighting their positioning and advances beyond state-of-the-art, as
well as their relevance to MARVEL and MARVEL’s application domain. Future work
will include the deployment and integration of the task outputs into the MARVEL R2
period’s framework and use cases, as well as consider exploitation opportunities for the
task’s outputs achieved.
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Abstract—We propose a parametric family of algorithms for
personalized federated learning with locally convex user costs.
The proposed framework is based on a generalization of convex
clustering in which the differences between different users’
models are penalized via a sum-of-norms penalty, weighted
by a penalty parameter λ. The proposed approach enables
“automatic” model clustering, without prior knowledge of the
hidden cluster structure, nor the number of clusters. Analytical
bounds on the weight parameter, that lead to simultaneous
personalization, generalization and automatic model clustering
are provided. The solution to the formulated problem enables
personalization, by providing different models across different
clusters, and generalization, by providing models different than
the per-user models computed in isolation. We then provide an
efficient algorithm based on the Parallel Direction Method of
Multipliers (PDMM) to solve the proposed formulation in a fed-
erated server-users setting. Numerical experiments corroborate
our findings. As an interesting byproduct, our results provide
several generalizations to convex clustering.

I. INTRODUCTION

Federated learning (FL) is a paradigm in which many users
collaborate, with the goal of learning a joint model [1]. Each
user has a local dataset, with private and possibly sensitive
data. The data distribution across users is typically highly
heterogeneous.

A federated learning system can have a huge amount of
users, wherein each user contributes with a proportionally
small local dataset. Therefore, the federation provides users
with the benefit of training on the joint data, effectively offer-
ing broader knowledge and better generalization. However, due
to the highly heterogeneous nature of the data, it is nontrivial
to design a FL system where individual users achieve better
performance though the federation when compared with mod-
els trained on their own local data. In fact, the authors in [2]
show that in many tasks, users may actually not benefit from
participating in federated learning. The globally trained model

The work of D. Bajovic is supported by the European Union’s Horizon
2020 Research and Innovation program under grant agreement No 957337.
The work of A. Armacki and S. Kar was partially supported by the National
Science Foundation under grant CNS-1837607. This paper reflects only the
authors’ views and the European Commission cannot be held responsible for
any use which may be made of the information contained therein.

underperforms on their local data, compared to the model
solely trained on the local data. Moreover, applying privacy
preserving techniques further deteriorates the performance. On
the other hand, users with very small datasets suffer from
overfitting and poor generalization of models trained only on
their local data.

To amend these problems and reap the benefits of both
worlds – the abundance of data and better learning that the
federation offers, as well as adapting the models to perform
well on the local data, personalized federated learning is
introduced. Unlike the standard federated learning, the goal
of personalized federated learning is to learn multiple models.
In particular, let N be the number of participating users, with
f : Rd 7→ R a given cost function. Then, the goal of standard
FL is to solve

argmin
x∈Rd

Fglobal(x) =
1

N

N∑

i=1

fi(x), (1)

where fi(x) is the cost function f evaluated on the local
dataset of the i-th user. Contrary to this approach, the (broad)
goal of personalized FL is to learn N models, by solving

argmin
x1,...,xN∈Rd

Flocal(x1, . . . , xN ) =
1

N

N∑

i=1

fi(xi), (2)

subject to appropriately defined constraints. Depending on the
constraints imposed and the approach taken to solving (2),
the literature on personalized FL adopts different approaches
to personalization, including multi-task learning [3], [4], fine-
tuning [5], [6], knowledge distillation [7], [8], [9], [10] and
clustering-based approaches [11], [12], [13].

In this paper, we propose a novel approach to personalized
federated learning that enables simultaneous personalization,
generalization, and model clustering. The approach is based
on the following novel personalized FL (convex problem)
formulation:

argmin
x1,...,xN∈Rd

F (x1, . . . , xN ) =
1

N

N∑

i=1

fi(xi)+λ
∑

j 6=i
‖xi−xj‖,

(3)
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where λ > 0 is a penalty parameter, and ‖ · ‖ stands for the
Euclidean norm. Compared with (2), the formulation (3) has
a regularization term controlled with λ > 0, that penalizes the
differences between the local nodes’ solutions via a sum-of-
norms penalty.

Formulation (3) may be seen as a generalization of convex
clustering, e.g., [14], where, instead of the (quadratic) distance
functions, which penalize the departure from a local data point,
we use arbitrary convex local losses.

Problem (3) is also related with the personalized FL formu-
lation in [15], which, instead of the sum of norms of pairwise
distances uses the sum of squared norms of distances of local
solutions to their average. As we show in the paper, although
the two formulations are resembling, the solution structures of
the two formulations are qualitatively very different.

Specifically, as we show in the paper, the solution to (3)
has several interesting properties, which, to the best of our
knowledge, are not (jointly) exhibited with any of the previous
personalized FL formulations. Namely, a solution to (3) has a
clustered structure: depending on the penalty parameter λ and
similarity of the local functions, local solutions x?i of (3) are
equal across certain users’ groups (clusters). The number of
groups (clusters) K is automatically determined as part of the
solution. To further illustrate benefits of this feature, suppose
that the users exhibit an (unknown) clustered structure such
that each user’s data within a cluster comes from the same
distribution, while the distributions that correspond to differ-
ent clusters are mutually different. If the different clusters’
distributions are sufficiently far apart, the proposed method (3)
uncovers the unknown cluster structure and hence allocates the
same models to all users within the same cluster. This allows
within-cluster generalization, i.e., users to effectively enlarge
their training data by harnessing data of all users from the
same cluster. In addition, depending on the distance between
the different clusters’ distributions, the method (3) allows for a
controlled across-clusters generalization; intuitively, it allows
a user to harness data from another clusters’ distribution, but
with a different (reduced) ”weight” when compared to within-
cluster data. If, at an extreme, the difference between different
clusters’ distributions is negligible (but this information is
unknown), then users should clearly use the global model (1).
This is again captured by (3), because (as shown in the paper)
it matches (1) for λ above a threshold.

In summary, our contributions are the following: First,
we propose a novel formulation for personalized federated
learning (3), the solution of which has a clustering structure
while at the same time preserving generalization abilities.

Second, we provide a condition on the penalty parameter
λ, with theoretical guarantees, for discovering the “hidden
structure” underlying the models; this condition is expressed
in terms of the well-established diversity of the local functions,
hence making a strong connection and justifying analytically
the use of this quantity.

Third, the proposed solution ”automatically” determines the
number of models K, i.e., K need not be known in advance.

Fourth, we provide an efficient algorithm to solve the novel
personalized learning formulation (3) in a federated server-

client setting that is based upon the Parallel Direction Method
of Multipliers (PDMM) [16].

Finally, we demonstrate by simulation examples, on a
supervized binary classification problem, that the proposed
solution exhibits 1) generalization, i.e., improves testing ac-
curacy with respect to the users models trained in isolation;
2) personalization, i.e., improves testing accuracy with respect
to the global FL model (1); and 3) achieves a comparable (or
better) generalization and personalization (in the sense of 1)
and 2)) than [4], while at the same time uncovering cluster
structure, hence reducing the number of distinct models from
N to K.

With respect to existing personalized FL approaches dis-
cussed above, the works [11], [12], [13], [10] also account
for users’ clustering in a certain way, but very differently
from our approach. Most notably, existing approaches aim
to uncover “cluster identities” first and subsequently provide
loss minimizations across cluster groups in isolation from
other groups. This within-clusters isolation may reduce overall
generalization ability of the models. In contrast, the proposed
approach allows also for across-clusters generalization that
is further controlled by the penalty parameter λ. It is worth
noting that reference [17] introduces formulation similar to (3),
but in a different context of distributed consensus optimization.
Most importantly, they are only concerned with the question
when (3) matches (1), i.e., when (3) leads to a global consensus
across local models; they are not concerned, nor they study
personalization (clustering) abilities of (3).

Our results are also of direct interest to convex clustering,
e.g., [14], as they provide recovery guarantees for generalized
convex clustering, when the squared quadratic loss fi(x) :=
‖xi−ai‖2 per data point ai ∈ Rd is replaced with an arbitrary
differentiable convex loss, e.g., the Huber loss.

Paper organization. The rest of the paper is organized
as follows. Section II describes the problem of interest and
outlines the assumptions used in the analysis. Section III
presents the recovery guarantees of the method. Section IV
outlines an efficient algorithm for solving the proposed prob-
lem in the federated setting. Section V presents numerical
experiments, and Section VI concludes the paper. The next
paragraph introduces the notation used throughout the paper.

Notation. The set of real numbers is denoted by R, while
Rd denotes the corresponding d-dimensional vector space; ‖·‖
represents the standard Euclidean norm. 〈·, ·〉 represents the
standard vector product over the space of real vectors. [N ]
denotes the set of integers up to and including N , i.e., [N ] =
{1, . . . , N}.

II. PROBLEM FORMULATION

Consider a collection of N users, i = 1, . . . , N , that
participate in a federated learning activity. Each user i holds
a function fi : Rd → R. Function fi may correspond, e.g., to
an empirical loss with respect to the local data set available
at user i. We make the following assumptions throughout the
paper.
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Assumption 1. For each i = 1, . . . , N , function fi : Rd → R
is convex and coercive, i.e., fi(x) → +∞ whenever ‖x‖ →
+∞.

Assumption 2. For each i = 1, . . . , N , function fi : Rd → R
has Lipschitz continuous gradients, i.e. the following holds

‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖, for all x, y ∈ Rd.

Note that, under the above assumptions, problems (1)
and (3) are solvable. We denote by y? ∈ Rd a solution to (1)
and by {x?i }, i = 1, . . . , N , x?i ∈ Rd, a solution to (3).

There are many machine learning models that satisfy As-
sumptions 1 and 2, such as supervized binary classification
problems studied in Section V.

The high-level goal in personalized federated learning is that
each user i finds a local model, say x•i ∈ Rd, that performs
well on the local data (i.e., the value fi(x

•
i ) is low), but

that also exhibits a generalization ability with respect to data
available at other users j 6= i. In addition, a desirable feature
of personalized federated learning is that the users are able
to classify other users into two categories. The first category
corresponds to those users j ∈ {1, 2, . . . , N} that have
similar data (similar fj’s) to their own; the second category
corresponds to those users whose local data is “sufficiently
different” from theirs. With this classification in place, each
user i can fully harness the data from “similar users” for
an improved personalization while avoiding overfitting; e.g.,
when user i has a very few data points of its own, it effectively
enlarges its data set while preserving personalization. On the
other hand, the data from “sufficiently different users” should
still be harnessed in a controlled way to further improve
generalization abilities.

To account for the effects above, we provide a novel
personalized learning formulation, where each user i wants
to obtain the local model x?i ∈ Rd such that x? :=
((x?1)

>, . . . , (x?N )>)> ∈ RN d is a minimizer of (3), where
λ > 0 is a tuning parameter. Intuitively, the term

∑N
i=1 fi(xi)

forces the local models xi’s to behave well with respect to
local costs fi’s; the term λ

∑
j 6=i ‖xi − xj‖ makes the local

models be mutually close, hence enabling generalization. The
penalization term

∑
j 6=i ‖xi−xj‖ is known to enforce sparsity

in other contexts, in the sense that it forces many of the xi’s
to be mutually equal at a solution of (3).

It is interesting to compare our novel formulation (3) with
the personalized federated learning formulation in [4]:

argmin
x1,...,xN∈Rd

1

N

N∑

i=1

fi(xi) + γ
∑

j 6=i
‖xi − xj‖2, (4)

where γ > 0 is a penalty parameter.
The difference of (4) with respect to (3) is that, in (4),

the differences of local models xi and xj are penalized via
the squared Euclidean norm, while with our formulation, the
2-norm appears without squares. There are several important
implications of this difference with respect to the resulting
personalized learning models. Most importantly, in contrast
with (3), formulation (4) in general does not lead to model
clustering for any λ > 0. In addition, as a side comment, the

solutions to (1) and (4) are in general mutually different for
any λ > 0 (in the sense that the solution {y?i } to (4) does not
obey y?i = y?j , for all i, j, irrespective of the choice of λ). In
contrast, with (3), we recover global model learning as in (1)
for λ > λ̂.

We also connect (3) with convex clustering. Convex clus-
tering, e.g. [14], is an appealing method to cluster N data
points ai ∈ Rd, i = 1, . . . , N . The method corresponds to
solving problem (3) with fi(x) = 1

2‖x − ai‖2. Intuitively, to
each data point i, we associate a candidate cluster center xi,
and then we enforce a (soft) constraint that many xi’s should
be mutually equal. There are several efficient algorithms
and cluster recovery guarantees results available for convex
clustering, but only when fi(x) = 1

2‖x − ai‖2. Our results
make a direct generalization of convex clustering to other loss
metrics, e.g., the “distance” of a candidate cluster xi from data
point ai may be measured through the Huber loss.

III. THEORETICAL GUARANTEES FOR OPTIMAL CLUSTER
RECOVERY

In this section, we state and prove our main results on
characterization of solutions to (3).

We start by defining the following auxiliary optimization
problem associated to a certain (predefined) partition of users
C1, . . . , CK , ∪Kk=1Ck = [N ] and Ck ∩ Cj = ∅:

argmin
w1,...,wN∈Rd

1

N

K∑

k=1

nkgk(wk) + λ
∑

l 6=k
nknl‖wk − wl‖, (5)

where gk(w) := 1/nk
∑
i∈Ck

fi(w), for w ∈ Rd, and nk =
|Ck| is the number of elements in Ck, for k = 1, . . . ,K. Let
w?k = w?k(λ), k = 1, . . . ,K, denote a solution to (5). Note
that problem (5) is solvable by Assumption 1.

Theorem 1. Consider problem (3). Assume that, for some
node partition C1, C2, . . . , CK , and parameter λ, there holds

λ ≥ max
k=1,...,K

max
i,j∈Ck

‖∇fi(w?k)−∇fj(w?k)‖
nk

. (6)

Next, let {x?i }, i = 1, . . . , N , be defined as follows: for each
i ∈ Ck, we let x?i = w?k, for k = 1, . . . ,K, where {w?k =
w?k(λ)}, k = 1, . . . ,K, is a solution to (5), defined for the
same partition C1, . . . , CK that verifies (6). Then, {x?i }, i =
1, . . . , N , is a solution of (3).

Remark 1. Note that Theorem 1 guarantees that at least one
solution of (3) exhibits the clustered structure with respect to
partition C1, . . . , CK , while it does not preclude a scenario
that there might be another solution of (3) that may not exhibit
this cluster structure. However, when each of the fi’s is in
addition assumed to be strictly convex, then {x?i } is unique,
and it necessarily has the clustered structure.

We next prove Theorem 1.

This can be easily seen based on Theorem 1 in [17].
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Proof. The proof is in spirit similar to Theorem 1 in [18].
From the first order optimality conditions for (5), we obtain
that, for each k = 1, . . . ,K, there must hold:

∇gk(w?k) + λ
∑

l 6=k
nlr

?
kl = 0, (7)

where r?kl is a subgradient of ‖wk − wl‖ with respect to wk,
computed at the solution. For each k, l = 1, . . . ,K, r?kl must
satisfy:

r?kl =

{
w?

k−w?
l

‖w?
k−w?

l ‖
, forw?k 6= w?l

a vector r ∈ Rd s.t. ‖r‖ ≤ 1, otherwise
(8)

We now turn to first order optimality conditions for the
original problem (3):

∇fi(xi) + λ
∑

j 6=i
sij = 0, (9)

where sij is a subgradient of ‖xi−xj‖ computed with respect
to xi. Similarly as in the above, at the solution, sij must
satisfy:

sij =

{
xi−xj

‖xi−xj‖ , forxi 6= xj
a vector s ∈ Rd s.t. ‖s‖ ≤ 1, otherwise

(10)

It can be verified that, when condition (6) is fulfilled, then the
following choice of x?i and s?ij satisfy the first order optimality
conditions in (9) and (10)

x?i = w?k, i ∈ Ck, (11)

s?ij =

{
r?kl, j ∈ Cl, k 6= l

∇fj(w?
k)−∇fi(w?

k)
λnk

, j ∈ Ck
, (12)

hence proving the result.

Theorem 1 guarantees the existence of a solution of (3)
that exhibits the desired clustering structure. However, if the
parameter λ is chosen too large, it can actually coarsen the
clustering structure C1, . . . , CK and provide a solution with
1 ≤M < K groups (clusters). The following theorem ensure
the correct clustering structure is recovered.

Theorem 2. Consider problem (5). If for some node partition
C1, C2, . . . , CK and parameter λ > 0 there holds

λ <
mink,l∈[K],k 6=l ‖∇gk(w?k)−∇gl(w?k)‖

2maxk∈[K]

∑
l 6=k nl

, (13)

then for each k, l ∈ [K], k 6= l, we have w?k 6= w?l , where
w?k = w?k(λ), k = 1, . . . ,K, is a solution to (5), defined for
the same partition C1, . . . , CK , that verifies (13).

We note that in practice, the bounds (6) and (13) might
not be easy to obtain, as w?k’s depend on λ. In Appendix A
we provide several considerations regarding selection of the
penalty parameter λ in (3), in practice.

We next prove Theorem 2.

Proof. Denote by sk = λ
∑
l 6=k r

∗
kl. From (7), we have

‖sl − sk‖ = ‖∇gk(w∗k)−∇gl(w∗l )‖
≤ ‖∇gk(w∗k)− gl(w∗k)‖+ ‖∇gl(w∗k)−∇gl(w∗l )‖
≤ ‖∇gk(w∗k)− gl(w∗k)‖+ L‖w∗k − w∗l ‖,

where we used Assumption 2 in the second inequality. Rear-
ranging, we get

‖w∗k − w∗l ‖ ≥
1

L
‖∇gk(w∗k)− gl(w∗k)‖ −

1

L
(‖sl‖+ ‖sk‖).

Next, note that

‖sk‖ ≤ λ
∑

l 6=k
nl‖r∗kl‖ ≤ λ

∑

l 6=k
nl.

Plugging in the equation above, we get

‖w∗k − w∗l ‖ ≥
1

L
‖∇gk(w∗k)− gl(w∗k)‖ −

2λ

L
max
k∈[K]

∑

l 6=k
nl.

It can be readily checked that the choice of λ satisfying (13)
results in

‖w∗k − w∗l ‖ > 0, k 6= l,

hence showing the claim.

IV. ALGORITHM FOR PERSONALIZED FEDERATED
LEARNING

In this section, we introduce an algorithm to solve (3) in a
federated server-users setting. The algorithm is adapted from
the parallel direction method of multipliers (PDMM) in [16].

We start by reformulating problem (3) as follows:

min

N∑

i=1

fi(xi) + λ
∑

j 6=i
‖zij‖ (14)

s.t. xi − xj = zij , i 6= j.

That is, each of the N(N − 1) terms ‖xi − xj‖ in (3) are
replaced with ‖zij‖, where zij ∈ Rd is an auxiliary (primal)
variable. Then, for equivalence of (3) and (14), we add for each
ordered pair (i, j), i 6= j, the constraint xi − xj = zij . Next,
introduce the augmented Lagrangian L : RN d×RN(N−1)d×
RN(N−1)d → R, defined by:

L({xi}, {zij}, {µij}) =
N∑

i=1

fi(xi) + λ
∑

j 6=i
‖zij‖

+
∑

j 6=i
µ>ij (xi − xj − zij) +

ρ

2

∑

j 6=i
‖xi − xj − zij‖2,

(15)

where {xi}, i = 1, . . . , N , and {zij}, i = 1, . . . , N ,
j = 1, . . . , N , i 6= j, are the primal variables, and {µij},
i = 1, . . . , N , j = 1, . . . , N , i 6= j, are the dual variables, and
ρ > 0 is a penalty parameter. Abstracting details, PDMM pro-
ceeds as follows. First, it updates at each iteration t = 0, 1, . . .,
a randomly selected subset of primal variables {xi, zij} by

It is possible to halve the number of constraints in (14) by imposing the
constraint xi − xj = zij only for i < j. This approach reduces the number
of variables at the cost of additional coordination of users on the server’s side.
We present here the approach with the larger number of variables and less
coordination required.
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minimizing a surrogate of L with the rest of primal and
dual variables fixed. Then, a randomly selected subset of dual
variables {µij} is updated, while also bookkeeping a set of
auxiliary dual variables {µ̂ij}. See equations (29)–(31) in [19]
for a detailed definition of the generic PDMM.

Here, we apply and adapt PDMM to solve (14), and hence,
solve (3), in the federated server-users setting. To facilitate
presentation of the algorithm, we enumerate all primal vari-
ables xi’s and zij’s through a common index set SP with N2

elements, such that the i-th element of SP , i = 1, . . . , N ,
corresponds to xi, and the remaining N(N − 1) subsequent
elements correspond to zij’s, where the ordered pairs ` ∼ (i, j)
are positioned lexicographically in SP . For example, (N+1)-
th element of SP corresponds to variable z12, (N + 2)-
nd element of SP corresponds to z13, etc. Similarly, we
let SD be the N(N − 1)-sized index set, such that its `-
th element corresponds to the dual variable µij , ` ∼ (i, j),
` = 1, . . . , N(N − 1). The PDMM-based personalized FL
method is shown in Algorithm 1.

Functions Bi(·, ·) in (16) and Bij(·, ·) in (17) are instances
of Bregman divergence, e.g., [16]; for example, they can be
taken as B(u, v) = 1

2‖u−v‖2. The choice of functions Bi(·, ·)
and Bij(·, ·) also affect the computational cost of updates (16)
and (17), respectively. For example, for Bij(u, v) = 1

2‖u−v‖2,
update (17) corresponds to evaluating a proximal operator of
the 2-norm that is done via block soft-thresholding. See also
subsection 2.1 in [16] for the choices of Bi(·, ·) that make
update (16) computationally cheap. The positive parameters ηi
in (16) and ηij in (17) weigh the Bregman divergence terms;
the larger ηi is, the closer x(t+1)

i is to x
(t)
i , i.e., the smaller

steps the algorithm makes. A similar effect is achieved with
ηij in (17). Quantity µ̂(t)

ij in (19) is an auxiliary dual variable
associated with the dual variable µ(t)

ij . The update step (19)
is a backward dual step that is introduced for improving the
algorithm’s stability that may otherwise be violated due to
the parallel and randomized nature of primal variable updates;
see [16] for details. Similarly, parameters τ > 0 and ν > 0
in (18) and (19), respectively, are “damping” factors in dual
variable updates, that are again used to stabilize the algorithm
trajectory.

With Algorithm 1’s initialization, we can set the z
(0)
ij ’s,

µ
(0)
ij ’s, and and µ̂

(0)
ij ’s arbitrarily. For example, they can be

all set to zero. For the initialization of the xi’s, we need that
x
(0)
j , j 6= i, is available at each user i. This can be achieved

by, e.g., setting x
(0)
i = 0, for all i, or by letting the server

send a common initial point y(0) ∈ Rd to all users prior to the
algorithm start, so that each user i sets x(0)i = y(0). The initial
point y(0) may also be obtained by (approximately) solving (1)
via a (non-personalized, standard) FL algorithm, e.g., FedAvg.

With Algorithm 1, the server maintains and updates the
N(N − 1) d× 1-sized dual variables µ(t+1)

ij , i, j = 1, . . . , N ,
i 6= j. Each user i maintains and updates the d×1-sized primal
variable x(t)i ; N − 1 d× 1-sized primal variables z(t)ij , j 6= i;
and N − 1 d× 1-sized auxiliary dual variables µ̂(t)

ij , j 6= i.
With Algorithm 1, communication from users to the server

(“uplink”) takes place at steps (S5) and (S6). Note that, at

Algorithm 1 A PDMM-based algorithm for personalized FL
and model clustering

for t = 0, . . . , T − 1 do
(S1) The server randomly selects a subset S(t)P ⊂ SP of
SP , SP < N2, primal variables;
(S2) Each user i ∈ {1, . . . , N}, such that i ∈ S(t)P ,
performs the update of x(t)i as follows:

x
(t+1)
i = argminxi∈Rd fi(xi) +

∑

j 6=i
(µ̂

(t)
ij )
>xi

+
ρ

2

∑

j 6=i
‖xi − x(t)j − z

(t)
ij ‖2 (16)

+ ηiBi(xi, x
(t)
i );

(S3) Each user i ∈ {1, . . . , N}, such that ` ∈ S(t)P , ` ∼
(i, j), performs the update of z(t)ij as follows:

z
(t+1)
ij = argminzij∈Rd λ ‖zij‖ − (µ̂

(t)
ij )
>zij

+
ρ

2
‖x(t)i − x

(t)
j − zij‖2 (17)

+ ηij Bij(zij , z
(t)
ij );

(S4) For each s ∈ {1, . . . , N}, and `, ` ∼ (i, j), such
that s, ` /∈ S(t)P , set x(t+1)

s = x
(t)
s , and z(t+1)

ij = z
(t)
ij ;

(S5) Each user i ∈ {1, . . . , N}, such that i ∈ S(t)P , sends
x
(t+1)
i to the server;

(S6) Each user i ∈ {1, . . . , N}, such that ` ∈ S(t)P , ` ∼
(i, j), sends z(t+1)

ij to the server;
(S7) The server collects {x(t+1)

i }, i ∈ S(t)P , and broad-
casts this (SP d)× 1 vector to all users i /∈ S(t)P ;
(S8) The server picks a random subset S(t)D , S(t)D ⊂ SD,
of SD dual variables, and performs the following update
for ` ∈ SD, ` ∼ (i, j):

µ
(t+1)
ij = µ

(t)
ij (18)

+ τ ρ
(
x
(t+1)
i − x(t+1)

j − z(t+1)
ij

)
;

(S9) The server sets µ(t+1)
ij = µ

(t)
ij , for ` /∈ S(t)D , ` ∼

(i, j);
(S10) For each ` ∈ S(t)D , ` ∼ (i, j), the server
sends µ(t+1)

ij to user i;
(S11) Each user i, such that (i, j) ∼ `, ` ∈ S(t)D , performs
the following update:

µ̂
(t+1)
ij = µ

(t+1)
ij (19)

− ν ρ
(
x
(t+1)
i − x(t+1)

j − z(t+1)
ij

)
;

end for
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each t, during steps (S5) and (S6), the server receives exactly
SP d×1-sized (real vectors) messages. Here, SP is the design
parameter that can be taken to be much smaller than N , hence
the uplink communication does not incur high overhead. Com-
munication from the server to users (“downlink”) takes place
at steps (S7) and (S10). At step (S7), the server brodcasts SD
d×1-sized messages. At step (S10), the server transmits a total
of SD d × 1-sized messages to different users. (Specifically,
variable µ

(t+1)
ij is sent to user i, for ` ∼ (i, j), ` ∈ S(t)D .)

Therefore, the downlink communication involves a total of
(SP +SD) d× 1-sized messages per iteration t. Quantity SD
is also a design parameter that can be set to be much smaller
than N ; hence, the downlink communication does not incur a
significant communication overhead.

By applying Theorem 3 in [16] it can be shown that, under
appropriately chosen tuning parameters, E

[
F (x(t))− F ?

]
=

O(1/t), where we recall that F is the objective func-
tion defined in (3), F ? = infx F (x), and x(t) =

((x
(t)
1 )>, . . . , (x(t)N )>)> is generated by Algorithm 1.

V. NUMERICAL RESULTS

We now present numerical simulations. In the first set of
experiments, we evaluate the cluster recovery abilities, as well
as personalization and generalization abilities of the proposed
formulation (3) and compare it with alternatives.

We now describe the first set of experiments. We consider a
supervized binary classification problem. The generated data
contains K = 3 clusters. For each cluster, for each given
label/class (±1), the data comes from a uniform distribution
over an ellipse in R2. The two ellipses that correspond to
different classes for a given cluster overlap, so that the data
in each cluster is not linearly separable. We generate 200
(training) data points from the distributions from each cluster,
100 points per class. Then, we associate to each cluster 20
FL users. Each FL user samples 10 data points out of the
200 data points available in its cluster. Hence, the data for
all users within a cluster comes from the same distribution.
Figure 1 illustrates the data, where different colors corresponds
to different clusters, while the dashed lines represent optimal
separators for each cluster, computed using the squared Hinge
loss, i.e. the separators that minimize the squared Hinge loss
over the full training data, for each cluster. The squared Hinge
loss is used throughout the simulations, as the local loss
function of each user i, and is given by

fi(x) =
c‖w‖2

2
+

1

m

m∑

j=1

max
{
0, 1− `ij(〈w, aij〉 − b)

}2
,

where m represents the number of (local) data points,
(aij , `ij)

m
j=1, represent the data points and class labels at user

i, c > 0 is a penalty parameter that controls the regularization,
while x =

[
w, b

]
∈ Rd+1, d = 2, represents the vector that

defines the classifier. That is, the classifier based on vector
x =

[
w, b

]
takes a feature vector a ∈ R2 as input and predicts

its label as ` = sign(〈w, a〉− b). Throughout the experiments,
we set the parameter c = 10−3, in order to put more weight
on the classification performance of the method.

Fig. 1: Training data, generated by the process described in
Section V. The dashed lines represent optimal separators of
the ellipses, within a cluster.

We compare the proposed formulation (3) with the alterna-
tives in (1), (2) and (4), referred to here as the global model,
local models, and squared penalty, respectively. Formulation
(1) corresponds to a standard, non-personalized FL solution.
That is, the classifier vectors xi’s with (1) are equal for all
users, i.e., xi = y∗, where we recall that y∗ is the solution
to (1). With formulation (2), each user i’s classifier vector
equals xi = y∗i = argmin fi(x). In addition, we compare
the proposed formulation (3) with an oracle model that knows
beforehand the clustering structure of the users; then, for each
user i within a cluster Ck, the oracle lets user i’s classifier
vector be xi = argminx

∑
j∈Ck

fk(x) We expect that the
oracle model performs best in the considered setup among all
methods, as it has an unfair advantage of knowing the cluster
structure beforehand, and the data distributions of different
clusters are very different, so data from a different cluster
confuses another cluster’s classifier. To evaluate solutions (1)-
(4), we used CVXPY [20], [21].

In order to evaluate generalization and personalization abil-
ities of different methods, we evaluate testing accuracy of the
corresponding classifiers with respect to a newly generated
test data. More precisely, let xi be a classifier vector for user
i obtained through training via any of the methods (1)-(4).
For each user i, we then evaluate the testing accuracy of the
classifier xi with respect to the full testing data set for the
cluster to which user i belongs to. We then average the testing
accuracy across all users i = 1, . . . , N . For each cluster, the
testing data is generated by drawing new samples (new with
respect to training data) from the same distributions according
to which the training data is generated. Methods (3) or (4) then
exhibit generalization if the average testing accuracy is above
the average testing accuracy of local models; they exhibit
personalization if their average testing accuracy is above that
of the global model. The performance of the models, for
different values of λ, is presented in Figure 2. Additionally, we
present the average Euclidean distance between the classifier

DRAFT



7

vectors xi’s belonging to the same cluster. The results are
summarized in Figure 3.

Fig. 2: The average classification accuracy across all users and
all clusters. We can see that the two personalization methods
achieve both personalization, as they outperform the global
model, as well as generalization, as they outperform the strictly
local model, for certain values of λ.

Fig. 3: The average distance between models across all users
and all clusters. We can see that distance between models
increases, as λ decreases, which is to be expected, as the
models fit better to their local data. However, the proposed
method results in more compact solutions within clusters,
compared to the squared penalty one.

Figures 2 and 3 show the following. For λ sufficiently large,
our method enforces consensus, and effectively performs as the
standard FL method (1). For λ sufficiently small, the proposed
method achieves both personalization, as it significantly out-
performs the global model, as well as generalization, as the
performance on the the complete cluster data is better than
the strictly local models. Compared to the squared penalty
model (4), we note that our method recovers the global model
for sufficiently large λ, while the squared penalty method

can recover the global model only asymptotically, as λ tends
to infinity. The highest average accuracy is achieved by our
method, being at 86.8%, compared to the highest average
accuracy of the squared penalty method, being at 86.6%.
Figure 3 shows that our method constantly produces more
compact clusters, i.e. the average distance between solutions
within clusters is constantly smaller than the one produced by
the squared penalty method .

Hence, we can see that the proposed formulation (3)
achieves a comparable or slightly better peak accuracy with
respect to (4), while producing more compact models, i.e., sig-
nificantly reducing the number of distinct models that need to
be kept in the overall FL system. We report that the proposed
model (3) exactly recovers the cluster structure (produces
equal user models within clusters and finds 3 clusters) for
λ ∈ (0.0892, 0.0919).

Finally, we evaluated the performance of PDMM for solving
(3). This result, as well as some additional numerical simula-
tions, can be found in Appendix C.

VI. CONCLUSION

We proposed a novel approach to personalized federated
learning that, in addition to personalization and generalization,
allows for clustering of users’ local models. The approach is
based on a novel formulation of personalized FL wherein we
minimize the sum of local users’ costs with respect to their
local models, subject to a penalization term that penalizes
the local models’ differences via a sum-of-norms penalty. We
prove exact cluster recovery guarantees for a general class of
local users’ costs, assuming that the penalty parameter λ that
weighs the sum-of-norms penalty falls within an appropriately
defined range. We further explicitly characterize this range
in terms of within-clusters and across-clusters heterogeneity
of local users’ costs (models). As an interesting byproduct,
these results represent a direct generalization of convex clus-
tering recovery guarantees for more general per-data point
losses. Next, we propose an efficient algorithm based on the
Parallel Direction Method of Multipliers (PDMM) to solve
the proposed formulation in a federated server-users setting.
Numerical experiments illustrate and corroborate the results.
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APPENDIX A
PRACTICAL CONSIDERATIONS

In this section we discuss some practical aspects regarding
the penalty parameter λ of the formulation (3). Namely, we

present upper and lower bounds alternative to (6)-(13), that
still uncover the clustering structure. We also discuss how to
select λ in practice.

Remark 2. Note that, in (6), the right hand side depends
on λ through the w?k(λ)’s. We can replace condition (6)
with a more conservative condition as follows. Denote by
G : RN K → R, the following function: G(w1, . . . , wK) =
1
N

∑K
k=1 nk gk(wk). By Assumption 1, G is coercive and

hence it has compact sub-level sets. Also, let g? be the optimal
value of (5), i.e.:

g? =
1

N

K∑

k=1

nkgk(w
?
k) + λ

∑

k 6=l
nknl‖w?k − w?l ‖. (20)

Then, clearly, G(w?1 , . . . , w
?
K) ≤ g?. On the other hand, we

have

g? ≤ 1

N

∑

k=1

nkgk(y)+
∑

l 6=k
nknl‖y?−y?‖ =

1

N

N∑

i=1

fi(y
?) = f?,

(21)
where we recall that y? is a solution to (1). Therefore, we
conclude that, for any λ ≥ 0, {w?k(λ)} belongs to the compact
set

W := {w1, . . . , wK : G(w1, . . . , wK) ≤ f?}. (22)

Therefore, Theorem 1 continues to hold if we replace (6) with
the following more stringent requirement:

λ ≥ λ := max
k=1,...,K

max
i,j∈Ck

max
{wk}∈W

‖∇fi(wk)−∇fj(wk)‖
nk

,

(23)
Clearly, set W in (23) can be replaced with a larger compact
set {w1 . . . , wK : G(w1, . . . , wK) ≤ 1

N

∑N
i=1 fi(x

•)}, with
arbitrary x• ∈ Rd, e.g., x• = 0.

Remark 3. Note that, in (13), the right hand side also
depends on λ through the w?k(λ). We can replace (13) with
the following more conservative condition:

λ < λ :=
mink,l∈[K],k 6=lmin{wk}∈W ‖∇gk(wk)−∇gl(wk)‖

2maxk∈[K]

∑
l 6=k nl

,

(24)
where set W ⊂ RdK is defined in (22).

Remark 4. Note that, if λ < λ, then, for any λ ∈ (λ, λ),
both Theorems 1 and 2 hold, i.e., formulation (3) perfectly
recovers the fi’s cluster structure C1, . . . , CK , and moreover
the models w?k’s, k = 1, . . . ,K, that correspond to different
clusters, are mutually distinct. Intuitively, condition λ < λ
requires that the (appropriately scaled) within-clusters func-
tion heterogeneity is smaller than the (appropriately scaled)
between-clusters function heterogeneity.

In practice, we may not know quantities λ and λ. Similarly
to convex clustering approaches, e.g. [22], we can solve (3)
for a set of values of the penalty parameter λ, {λ(r)},
r = 1, . . . , R, i.e., we can generate a solution path. In more
detail, we can set λ(r+1) = c λ(r), r = 1, 2, . . . , for a small
positive λ(1), where c > 1 is a constant, and R is the smallest
index r such that the number of distinct vectors x?i (λ

(R)),
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i = 1, . . . , N , is one. When solving (3) for λ = λ(r+1),
the numerical solver of (3) (e.g., see ahead Algorithm 1) can
use warm start, i.e., it can be initialized with {x?i (λ(r))}. The
resulting solution path {x?i (λ(r))}, r = 1, . . . , R, will typically
have a non-increasing number of mutually distinct models xi’s,
with N distinct models for λ(1) and a sufficiently small λ(1),
and one distinct model for λ(R).

If, for a certain value r (or for a range of values r), we have
that λ(r) ∈ (λ, λ) and there holds λ < λ (a hidden cluster
structure exists), then solution {x?i (λ(r))} satisfies Theorems
1 and 2, i.e., the hidden cluster structure is uncovered. For a
fixed λ(r), we can check whether the hidden cluster structure
is uncovered in an “a posteriori” way as follows. We first fix
the clustering C1 = C1(λ

(r)), . . . , CK = CK(λ(r)) induced
by {x?i (λ(r))}, and then we check whether conditions (23) and
(24) hold.

Even when we are not directly concerned with uncovering
the hidden cluster structure in the sense of Theorems 1 and
2, there are several merits of computing the solution path,
similarly to the convex clustering scenario, e.g., [22]. For
example, depending on the requirements of a given applica-
tion, we can select the index r, i.e., the model {x?i (λ(r))} for
which the number of distinct xi’s (closely) matches the need
of the current application. Furthermore, increasing λ translates
into improving the degree of generalization and reducing the
degree of personalization, so one can select the appropriate
{x?i (λ(r))} according to the current application needs.

APPENDIX B
FURTHER INSIGHTS THROUGH A SPECIAL CASE

In this section, we provide further insight into the method,
by analyzing a special case. We consider an explicit clustering
structure, given by the following assumption.

Assumption 3. There exists a node partition C1, C2, . . . , CK ,
and parameters εk, δkl > 0, k, l = 1, . . . ,K, k 6= l, such that
the following holds:

sup
x∈Rd

‖∇fi(x)−∇fj(x)‖ ≤ εk, ∀i, j ∈ Ck, (25)

inf
x∈Rd

‖∇fi(x)−∇fj(x)‖ ≥ δkl, ∀i ∈ Ck, ∀j ∈ Cl, k 6= l.

(26)

We then have the following result.

Theorem 3. Let Assumptions 1, 2 and 3 hold. Then, for any
λ satisfying

λ ∈
[
max
k∈[K]

εk
nk
,
mink 6=l

[
δkl − (εk + εl)

]

2maxk∈[K]

∑
l 6=k nl

]
, (27)

the conditions of Theorems 1 and 2 are satisfied.

Remark 5. Note that conditions (25) and (26) can be
interpreted as measures of within-cluster homogeneity and
between-cluster heterogeneity, respectively. In particular, let

Note that we know that, for λ ≥ λ̂, for some λ̂ > 0, all the x?i (λ)’s
coincide [17]. Hence, all the x?i (λ)’s are necessarily mutually equal for a
certain λ(R), for some finite R > 0.

x†i ∈ Rd denote a optima of fi(x), i ∈ [N ]. Then, per (25)
and (26), we have

‖∇fj(x†i )‖ ≤ εk,∀i, j ∈ Ck,
‖∇fj(x†i )‖ ≥ δkl,∀i ∈ Ck,∀j ∈ Cl, k 6= l.

From convexity of fi’s (Assumption 1) for any k ∈ [K], i, j ∈
Ck, if εk small, we can expect fj(x

†
i ) to be a good approx-

imation to fj(x
†
j). On the other hand, for any k 6= l and

i ∈ Ck, j ∈ Cl, using Lipschitz continuity of the gradients of
fi’s, we have

fj(x
†
i )− fj(x†j) ≥

1

2L
‖∇fj(x†i )‖2 ≥

δ2kl
2L

.

Hence, for δkl large, fj(x
†
i ) can be an arbitrarily bad approx-

imation to fj(x
†
j). Therefore, εk and δkl can be interpreted as

natural measures of within-cluster homogeneity and between-
cluster heterogeneity, respectively.

Remark 6. Theorem 3 states that the clustering structure of
the solution is maintained, for any choice of λ satisfying (27).
Compared to the results from Theorems 1 and 2, the resulting
interval (if existent) is smaller, but the lower and upper bounds
are independent of λ, and of the optimal solutions of problem
(5).

Remark 7. Compared with (23) and (24), while possibly
smaller, the interval (27) provides a more natural interpreta-
tion: if the between-cluster heterogeneity is sufficiently larger
than the within-cluster homogeneity, so the interval (27) is
non-empty, a (strong) clustering structure among users exists,
and can be recovered by (3).

We now prove Theorem 3.

Proof. From Assumption 3 it directly follows that

max
k∈[K]

max
i,j∈Ck

‖∇fi(w?k)−∇fj(w?k)‖
nk

≤ max
k∈[K]

εk
nk
.

Next, for any k ∈ [K], and i ∈ Ck, we have

‖∇gk(x)−∇fi(x)‖ =
∥∥∥∥
1

nk

∑

j∈Ck

(
∇fj(x)−∇fi(x)

)∥∥∥∥

≤ 1

nk

∑

j∈Ck\{i}
‖∇fj(x)−∇fi(x)‖

≤ nk − 1

nk
εk < εk.

For any k, l ∈ [K], k 6= l, and any i ∈ Ck, j ∈ Cl, we then
get

‖∇gk(x)−∇gl(x)‖ ≥ ‖∇fi(x)−∇fj(x)‖
− ‖∇gk(x)−∇fi(x)‖ − ‖∇fj(x)−∇gl(x)‖
> δkl − εk − εl.

Plugging in w∗k and taking the min with respect to k 6= l gives

min
k 6=l
‖∇gk(w∗k)−∇gl(w∗k)‖ > min

k 6=l
(δkl − εk − εl).

Finally, dividing both sides by 2maxk∈[K]

∑
l 6=k nl gives the

desired result.
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Moreover, assuming strong convexity, Assumption 3 implies
a clustering structure among the local solutions, as shown by
the following result.

Theorem 4. Let each fi(x), i = 1, . . . , N, be µ-strongly
convex, and let Assumptions 2, 3 hold. Denote by x†i the
(global) optima of fi(x), i = 1, . . . , N . Then, the following
holds:

‖x†i − x†j‖ ≤
εk
µ
,∀i, j ∈ Ck, (28)

‖x†i − x†j‖ ≥
δkl
L
,∀i ∈ Ck, ∀j ∈ Cl, k 6= l. (29)

Remark 8. Theorem 4 shows that optimal models of users
belonging to the same clusters are at least ε̃ close, with optimal
models of users belonging to different clusters being at least
δ̃ apart. Here, ε̃ = maxk∈[K]

εk
µ , and δ̃ = mink 6=l

δkl

L . In the
case that ε̃ < δ̃, the clustering structure implied by Theorem
4 is strong, in the sense that the local optima corresponding
to different clusters are well separated.

Remark 9. In the case that ε̃ < δ̃ and the interval given
by (27) is non-empty, Theorems 3 and 4 show that a natural
clustering structure among the user’s costs exists. In addition,
the proposed formulation (3) uncovers the said structure, for
any λ in a range that is independent of the optimal solutions
of problem (5).

We now prove Theorem 4

Proof. From Assumption 3, for i ∈ Ck, j ∈ Cl, k 6= l, and
for all x ∈ Rd, we have

δkl ≤ ‖∇fi(x)−∇fj(x)‖.

In particular, for x = x†i , we have

δkl ≤ ‖∇fj(x†i )‖ = ‖∇fj(x†i )−∇fj(x†j)‖ ≤ L‖x†i − x†j‖,

implying (29). Similarly, for i, j ∈ Ck, and for all x ∈ Rd,
we have

‖∇fi(x)−∇fj(x)‖ ≤ εk.

In particular, for x = x†i , we have

ε2k ≥ ‖∇fj(x†i )‖2 ≥ 2µ(fj(x
†
i )− fj(x†j)), (30)

where we used the Polyak-Lojasiewitz inequality in the second
step. From strong convexity of fj , we have

fj(x
†
i ) ≥ fj(x†j) +

µ

2
‖x†i − x†j‖2.

Rearranging and plugging into (30), we get

ε2k ≥ µ2‖x†i − x†j‖2,
which implies (28).

APPENDIX C
ADDITIONAL EXPERIMENTS

Here, we present some additional experiments. First, we
evaluate the clustering recovery of (3) and compare it with (4).
The data is generated using the same methodology described

in Section V, with each ellipse containing 100 data points,
hence each cluster contains a total of 200 data points. The
dataset is shown in Figure 4. We generate n = 10 users
per cluster, and each user samples 85% of points from the
cluster it belongs to, ensuring the resulting models will be
similar for users within clusters. The performance of (3) and
(4) is evaluated for different values of the penalty parameter λ,
belonging to {1000, 1, 0.12, 0.08, 0.05, 0.03, 0.02, 0.01}. The
dashed lines in the figures correspond to optimal separators for
each cluster, evaluated on the full data. The full lines represent
model estimates corresponding to (3) and (4). The results are
presented in Figure 6.

We can see that Figure 6 corroborates the results from
Theorems 1 and 2. In particular, for λ sufficiently large,
our method produces only one model across all users. For
λ higher than, but close to the theoretical upper bound from
Theorem 2, the method produces two models across all the
users (second row, left image). Finally, for λ within the
theoretical range, our method produces exactly three models,
uncovering the clustering structure. We remark that, while
the produced models are not optimal for the training data,
they can still be used as a guideline: if a clustering solution
is obtained, and the parameter λ falls within the theoretical
bounds suggested by Theorems 1 and 2, an innate clustering
structure is uncovered, and the users that are selected in the
clusters can focus on training their models within the cluster
of similar users. Moreover, the left image in the third row
suggests that the bounds obtained by Theorems 1 and 2 are
somewhat conservative - the proposed method produced 3
models across users, for λ that is lower than the theoretical
lower bound, meaning that in practice, the clustering structure
can be recovered for a wider range of λ than predicted by
theory.

Fig. 4: Data used for evaluating clustering recovery. Each
ellipse contains 100 datapoints.

In the second experiment, we present the convergence
results of PDMM for solving the proposed method in federated
settings. The dataset and the parameters are the same as was
described in the setting above. For PDMM in the federated
settings, in each iteration we randomly select a subset of
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Fig. 5: PDMM convergence for solving (3) in federated
settings.

users, being 40% of the total users. The PDMM tuning
parameters are selected as ρ = 10, η = 10, τ = 4

5 , ν = 1
5 .

The Bregman divergence in PDMM is set to be the squared
Euclidean distance. All variables in PDMM (primal and dual)
are initialized to zero vectors.

We evaluate the cost function in (3) achieved by PDMM
at each iteration t. We also evaluate the optimal value of the
cost in (3) via CVXPY. We then plot the difference (optimality
gap) along iterations. To evaluate the performance of PDMM
for (3), we used the primal variables xi’s. In particular, we
plot F (x(t))−F ∗, where F is the objective defined in (3) and
F ∗ denotes the optimal value of F , computed via CVXPY.
The parameter λ is set to 0.02. The results are presented in
Figure 5.

While this is not pursued here, we remark that it is possible
to reduce Algorithm 1 complexity by dynamically (over iter-
ations) exploiting the clustered structure of a solution to (3).
Namely, note that, for a solution {x?i } of (3), if x?i = x?j
for some i 6= j, then z?ij = 0. This may be exploited in the
algorithm implementation as follows: once user i detects that
z
(t)
ij is close to zero over a range of consecutive iterations,

it can cease updating z
(t)
ij and cease communicating it to

the server, and it can also replace locally x
(t)
j with x

(t)
i in

its subsequent updates. This also translates into reducing the
communication cost at the server side, as x

(t)
j no longer

needs to be communicated to user i. In this way, storage,
computational, and communication costs may be dynamically
reduced as the algorithm evolves.
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Fig. 6: Clustering structure of the models. The plots show how the number of distinct models changes with the penalty
parameter λ. In particular, the values of λ correspond to {1000, 1, 0.12, 0.08, 0.05, 0.03, 0.02, 0.01} from left to right, top to
bottom, respectively. Note that the squared penalty method does not achieve consensus even for very high values of λ.DRAFT
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Abstract

We propose a communication efficient approach for federated learn-
ing in heterogeneous environments. The system heterogeneity is re-
flected in the presence of K different data distributions, with each user
sampling data from only one of K distributions. The proposed ap-
proach requires only one communication round between the users and
server, thus significantly reducing the communication cost. Moreover,
the proposed method provides strong learning guarantees in hetero-
geneous environments, by achieving the optimal mean-squared error
(MSE) rates in terms of the sample size, i.e., matching the MSE guar-
antees achieved by learning on all data points belonging to users with
the same data distribution, provided that the number of data points
per user is above a threshold that we explicitly characterize in terms

∗This work is supported by the European Union’s Horizon 2020 Research and Inno-
vation program under grant agreement No 957337. The paper reflects only the view of
the authors and the Commission is not responsible for any use that may be made of the
information it contains.
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of system parameters. Remarkably, this is achieved without requiring
any knowledge of the underlying distributions, or even the true number
of distributions K. Numerical experiments illustrate our findings and
underline the performance of the proposed method.

1 Introduction

Federated learning (FL) is a paradigm where many users collaborate, with
the aim of jointly training a model [1]. Formally, the goal is to solve the
problem

argmin
θ∈Θ

F (θ) =
1

m

m∑

i=1

Fi(θ), (1)

where Θ ⊂ Rd is the parameter space, m ∈ N represents the number of users,
while Fi : Rd 7→ R, i = 1, . . . ,m is the loss of user i.

Unlike in centralized learning, where a single user has access to all the
data, in FL each user stores its data locally. This is an important feature,
as typically huge amounts of users participate in the process and generate
enormous amounts of data, therefore imposing significant storage cost for
a single user. Additionally, the nature of the data is often sensitive, which
incentivizes the users to keep their data private. The training process is co-
ordinated by a central server, which typically includes updating and sharing
the global model with the users.

While such an approach helps alleviate the storage and computation bur-
den for any single user, it imposes significant communication costs on the
system as a whole [2]. To tackle this issue, different approaches have been
proposed, such as quantization [3], [4], [5], gradient sparsification [6], [7], spe-
cialized user sampling [8], [9], [10], local methods [11], [12], [13] and one-shot
methods [14], [15], [16], [17], [18], to name a few. Another issue associated
with training a global model comes from system heterogeneity. Users that
participate in FL often contain datasets generated by different distributions,
making the system as a whole highly heterogeneous. A global model can
therefore be very bad for an individual user [19], [20].

One way to alleviate the issues stemming from training a global model
is for each user to train their own model. Formally, the goal of such an
approach is to solve the problem

argmin
θ1,...,θm∈Θ

FL(θ1, . . . , θm) =
1

m

m∑

i=1

Fi(θi).

2
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Such an approach leads to models that can be trained locally and elim-
inates the need for any communication. However, it is completely oblivious
to any underlying similarities that might exist between users. Moreover, a
strictly local approach often suffers from data imbalance - while some users
generate abundance of data, the majority of users generate only a few data
samples. This results in the majority of users being unable to learn useful
models on their own [20].

Many different approaches that address the shortcomings of the global
and purely local models have been proposed. One such approach is person-
alized federated learning (PFL). The goal of PFL is to learn models that
fit each individual user, while utilizing the federation to produce models
that generalize better. Many approaches to personalization have been pro-
posed, such as multi-task learning [21], [22], [23], meta-learning [24], [25],
fine-tuning [26], [27].

Another closely related approach is clustered federated learning (CFL).
The underlying assumption in clustered federated learning is the presence of
K different data distributions Dk, k ∈ [K], with each user sampling their
data from only one of K distributions. This leads to a natural clustering of
users, i.e., we can define clusters {Ck}k∈[K], given by

Ck = {i ∈ [m] : user i’s data follows distribution Dk}.

Since each user contains data from exactly one ofK distributions, the clusters
form a disjoint partition of the set of all users, i.e., we have

∪k∈[K]Ck = [m] and Ck ∩ Cj = ∅, ∀k ̸= j.

In such a scenario the goal is to learn K models associated with the under-
lying clusters, so that users belonging to the same clusters have the same
models. This is somewhat different from the classical PFL approaches, where
the goal is to produce m models, one for each user. Allowing for 1 ≤ K ≤ m,
clustered federated learning can again be seen as an intermediary between
the global and local learning, with K = 1 resulting in a global model, while
K = m resulting in purely local models. There are many works assuming a
clustered structure among users, such as [28], [29], [30], [31], [32].

While existing works in CFL focus on dealing with heterogeneity and per-
sonalization aspects, none of them focus on communication efficiency. The
aim of this paper is to provide a method for CFL that maintains the bene-
fits of standard clustering-based approaches, while simultaneously achieving
communication efficiency. This is achieved by developing a one-shot feder-
ated learning method, that requires only one round of communication.
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Literature review. We next review the related literature, in particular,
one-shot methods in FL and methods for CFL.

One-shot methods in the context of FL have been studied in [14], [15], [16],
[17], [18]. [14], study one-shot averaging methods. Each user trains a model
on the local data and the server produces the final model by averaging all
the users’ models. The authors show that, for strongly convex loss fi, the
methods can achieve the same MSE guarantees as centralized learning, i.e.,
order-optimal rates in terms of sample size, provided that the number of
samples available to each user is higher than a threshold. [15] propose to
train K ≤ m ensemble based methods for supervised and semi-supervised
problems. [16] propose a one-shot distillation method, wherein the users send
a distilled version of their local dataset to the server, which then performs
the global model training. [17] study one-shot methods in federated settings
under constraints on the communication budget. The proposed method is,
under certain regimes, order-optimal up to logarithmic factors, while simul-
taneously relaxing the higher-order smoothness assumptions made in [14].
[18] introduce a one-shot FL method in heterogeneous settings, designed for
data clustering. The methods [14] and [17] provide strong theoretical guar-
antees1, however, they assume that the data across all users follows a single
distribution D. Therefore, they focus on training a single global model to
be used for all users. In modern FL systems the data across different users
typically comes from different distributions, hence violating the IID assump-
tions made in prior works. Moreover, the user heterogeneity stemming from
this phenomena is known to hamper the global model [19]. The methods [15]
and [16] consider heterogeneous settings, but provide no theoretical analysis
of their methods. To the best of our knowledge, no theoretical results for
one-shot methods are established under the presence of heterogeneity, i.e.,
multiple data distributions in the system.

CFL has been studied in [28], [29], [30], [31], [32]. [28] and [29] propose
similar methods, that iteratively estimate cluster membership and perform
model updates. [29] show an exponential convergence rate up to an error
floor that is order-optimal up to a logarithmic factor, in the number of sam-
ples and users. [30] propose a robust algorithm for CFL, under the presence
of adversarial users. If there are no adversarial users (the setting that we
consider in this paper), the method is order-optimal up to a logarithmic fac-
tor. [31] propose a method for CFL that can be applied to any standard
FL method, as a fine-tuning step. The method is based on successive bi-

1The method [18] provides a theoretical analysis under heterogeneous settings. How-
ever, the method is not a general learning method, but a method designed for clustering.
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partitioning of the current set of users, based on cosine similarity and does
not require prior knowledge of the number of clusters K. However, when a
bi-partitioning is performed, each partition needs to do a full FL training on
the newly formed partition/federation, potentially requiring multiple rounds
of model re-training and communication. [32] propose a method that aims to
simultaneously infer the clustering of users and train models. The proposed
method does not require knowledge of K and establishes explicit conditions
under which the true clustering can be recovered. All of the methods re-
quire potentially many rounds of communication and model training. The
methods [28], [29] and [30] require multiple communication rounds and prior
knowledge of the number of clusters K. While the methods in [31] and [32]
do not require knowledge of K, they require many rounds of communication.

Contributions. In this paper we propose a one-shot method for CFL,
that is able to deal with system heterogeneity. We study the convergence
guarantees of the method, in terms of the MSE with respect to the number
of samples, as in [14], [29] and [30]. Our contributions can be summarized
as follows:

1. We propose a one-shot method for CFL under the presence of mul-
tiple data distributions (i.e., system heterogeneity). The method is
communication efficient, by only requiring one round of communica-
tion. Moreover, the proposed method does not require knowledge of
the true number of clusters K.

2. We show that, for strongly convex costs, the method achieves the
order-optimal MSE guarantees in terms of sample size, i.e., it matches
the order-optimal MSE guarantees of centralized learning, provided
that users have sufficient number of samples. This establishes regimes
in which communication beyond the first round is not necessary for
achieving order-optimality.

3. We show that, compared to existing methods, our algorithm reduces
communication cost by a factor of O

(
κ
p log

(
2D
ε

))
, while improving

the rates by a factor logarithmic in the number of samples and users.

4. We explicitly derive the expression for the requirements on the number
of data points for the users to achieve the order-optimal MSE rate and
show how it depends on various system parameters, like the size of
clusters, difficulty of the clustering problem, as well as problem related
parameters (e.g., strong convexity constant).
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5. We propose a method for discovering the underlying clustering struc-
ture of the users and establish conditions under which the method
recovers the true cluster membership. The proposed method does not
require prior knowledge of the true number of underlying distributions
K.

6. We verify our theoretical findings via numerical experiments on linear
regression problems, showing the proposed method achieves the order-
optimal MSE rate and matches the performance of oracle methods that
know the true cluster membership beforehand.

Paper organization. The rest of the paper is organized as follows.
Section 2 introduces the relevant background and formally states the prob-
lem. Section 3 describes the proposed method. Section 4 presents the main
results of the paper. Section 5 presents numerical results. Finally, Section 6
concludes the paper. The reminder of the section introduces the notation
used throughout the paper.

Notation. The set of real numbers is denoted by R, while Rd denotes
the corresponding d-dimensional vector space. N denotes the set of positive
integers. ⟨·, ·⟩ denotes the Euclidean inner product and ∥ · ∥ denotes the
induced norm. In a slight abuse of notation, we will also use ∥·∥ to denote the
corresponding matrix norm. [m] denotes the set of positive integers up to and
including m ∈ N, i.e., [m] = {1, 2, . . . ,m}. For a collection of sets {Sk}k∈[K],
we use S(k) to denote the k-th largest set. The notation O(·), Ω(·) refers
to the standard "big O" and "big Omega" notation, respectively, i.e., for
two non-negative sequences {an}n∈N and {bn}n∈N, the relation an = O(bn)
implies the existence of a global constant C1 > 0 and n1 ∈ N, such that
an ≤ C1bn, for all n ≥ n1, while an = Ω(bn) implies the existence of a global
constant C2 > 0 and n2 ∈ N, such that an ≥ C2bn, for all n ≥ n2.

2 Problem formulation and preliminaries

In this section, we begin by formally stating the problem of interest. We in-
troduce some assumptions and discuss their implications. In Subsections 2.1
and 2.2 we introduce the method from [14] and convex clustering, respec-
tively. We begin by introducing the notions of population and empirical
loss.

Consider m users, i = 1, . . . ,m, that participate in a federated learning
system. The goal of standard FL approach is to train a shared model, by

6
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solving (1), where Fi : Θ 7→ R is the population loss of user i, given by

Fi(θ) = EXi∼Di [ℓ(θ;Xi)]. (2)

Here, Θ ⊂ Rd is the parameter space, Di is the data distribution of user i,
Xi ∈ X is the data generating random variable distributed according to Di,
X ⊂ Rd′ is the data space, while ℓ : Θ×X 7→ R is a loss function.

In practice, users only have access to a finite data sample, hence the aim
of federated learning systems is to solve

argmin
θ∈Θ

f(θ) =
1

m

m∑

i=1

fi(θ), (3)

where fi : Θ 7→ R is the empirical loss of user i, given by

fi(θ) =
1

ni

ni∑

j=1

ℓ(θ;xij). (4)

Here, ni ∈ N represents the number of data samples available to user i, while
xij ∈ X , j = 1, . . . , ni, represents independent, identically distributed (IID)
samples available to user i, sampled from the population Xi. However, as
we proceed to argue in the reminder of the section, solving (1)-(3) is not an
optimal approach under the presence of strong user heterogeneity. To that
end, we formally state the main assumption used throughout the paper.

Assumption 1. There exist K different data distributions in the system,
with 1 < K < m, such that each user samples their data from only one
of the distributions, i.e., for each i ∈ [m], we have Di = Dk, for some
k ∈ [K]. Moreover, the population optimal models of each cluster θ⋆k :=
argminθk∈Θ Fk(θk), k ∈ [K], satisfy

min
k ̸=l
∥θ⋆k − θ⋆l ∥ > 0.

Denote byD the minimal distance between population optima of different
distributions, i.e.,

D = min
k,l∈[K], k ̸=l

∥θ⋆k − θ⋆l ∥ > 0.

Assumption 1 provides a natural partitioning of the set of all users [m], given
by

Ck = {i ∈ [m] : user i’s data follows distribution Dk}.
We then have ∪k∈[K]Ck = [m] and Ck ∩Cl = ∅, for all k ̸= l. We will denote
the resulting partition of [m] by C, i.e., C = {Ck}k∈[K].
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Remark 1. Assumption 1 can be interpreted as a measure of distance be-
tween different distributions. Intuitively, it states that the optimal model
corresponding to one of the K different populations will not be a good model
for any other population. In general, Assumption 1 can be relaxed, to allow
for existence of m different distributions, one corresponding to each user,
while requiring that some of them are sufficiently close. We refer the reader
to Lemma 7 in the Appendix, for a formal result of this argument.

Remark 2. Assumption 1 also gives a lower bound on the error caused by
using models coming from different clusters. To see this, let i, j ∈ [m] be
two users such that i ∈ Ck, j ∈ Cl, k ̸= l and ni ≫ nj. If user j, due to a
lack of available samples, decides to use the model trained by user i, given by
θ̂i = argminθi∈Θ fi(θi), then the error stemming from such an approximation
is

∥θ̂i − θ⋆l ∥ ≥ ∥θ⋆k − θ⋆l ∥ − ∥θ⋆k − θ̂i∥. (5)

By Assumption 1, the first term on the right hand side of (5) is lower bounded
by D. For the second term, under certain regularity conditions (to be for-
malized below), we can apply results from learning theory, e.g., [33], to get

∥θ̂i − θ⋆l ∥ ≥ D − Ω

(
1√
ni

)
.

The above equation tells us that the error floor of using a model from a dif-
ferent cluster grows with both D and the number of samples available to user

i. For example, as we will show in Corollary 1 ahead, for D > 2

√
|C(1)|
|C(K)| ≥ 2

that allows our method to achieve order-optimal MSE rates, the error floor
in the ideal case of balanced cluster sizes becomes

∥θ̂i − θ⋆l ∥ > 2− Ω

(
1√
ni

)
= Ω(1) ,

thus showing that the error of using a model coming from a different cluster
has a constant error floor.

Under Assumption 1, the population loss in (1) can be rewritten as

F (θ) =
K∑

k=1

|Ck|
m

Fk(θ). (6)

Similarly, the empirical loss in (3) can be cast as

f(θ) =
K∑

k=1

|Ck|
m

gk(θ), (7)
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where gk : Θ 7→ R is the cluster-wise loss

gk(θ) =
1

|Ck|
∑

i∈Ck

fi(θ).

Note that both (6) and (7) have a clear clustering structure. These formu-
lations suggest a natural approach model training, where the goal is to find
K different models, one corresponding to each cluster. Thereafter, each user
from the cluster is assigned the cluster-wide optimal model. Formally, the
goal is to find K models, by solving

argmin
θ1,...,θK∈Θ

K∑

k=1

|Ck|
m

gk(θk). (8)

To see why such an approach is optimal recall that, for a user i ∈ Ck, the
optimal population model is given by θ⋆k = argminθk∈Θ Fk(θk). If we denote
the empirical risk minimizers (ERMs) as θ̂i = argminθi∈Θ fi(θi), under some
regularity conditions (to be formalized below), we know from, e.g., [33], that
the following MSE guarantee holds

E∥θ⋆k − θ̂i∥2 = O
(

1

ni

)
,

where ni is the number of samples available to user i. Let θ̂k be minimizer of
the empirical cluster-wise cost, i.e., θ̂k = argminθk∈Θ gk(θk). We then have
the following MSE guarantee

E∥θ⋆k − θ̂k∥2 = O
(

1∑
i∈Ck

ni

)
,

which shows the clear benefits of clustered learning, as 1∑
i∈Ck

ni
< 1

ni
, for all

i ∈ Ck. On the other hand, by Assumption 1 and cluster design, the benefits
of further merging (and/or modifying) the clusters, in terms of sample size,
can potentially be significantly outweighted by the distribution skew between
two different clusters (recall Remark 2).

We now state the rest of the assumptions used throughout the paper.

Assumption 2. The parameter space Θ ⊂ Rd is a compact, convex set, with
θ⋆k ∈ int Θ, for all k ∈ [K].

Remark 3. Assumption 2 is a standard assumption on the parameter space
in statistical learning literature, e.g., [14], [33], [34].

9

DRAFT



Remark 4. Assumption 2 implies the existence of a global constant R > 0
such that, for all θ ∈ Θ

∥θ∥ ≤ R.

Assumption 3. For any fixed x ∈ X , the loss function ℓ(·;x) : Θ 7→ R is:

1. Nonnegative, i.e., for any θ ∈ Θ, ℓ(θ;x) ≥ 0.

2. Convex, i.e., for any θ, θ′ ∈ Θ, we have

ℓ(θ′;x) ≥ ℓ(θ;x) + ⟨∇ℓ(θ;x), θ′ − θ⟩.

3. Smooth, i.e., there exists a constant L > 0 such that, for any θ, θ′ ∈ Θ,
we have

ℓ(θ′;x) ≤ ℓ(θ;x) +
〈
∇ℓ(θ;x), θ′ − θ

〉
+
L

2
∥θ′ − θ∥2.

Remark 5. Assumption 3 requires ℓ to be non-negative, convex and smooth.
It is a straightforward exercise to show that this in turns implies non-negativity,
convexity and smoothness of all of F , f , Fk and gk, k ∈ [K] and fi, i ∈ [m].

Remark 6. Note that the constant L for the smoothness condition is in-
dependent of the choice of x, i.e., L is a global constant that holds for any
choice of x ∈ X .

Remark 7. Recall that, under convexity of ℓ, the smoothness condition is
equivalent to Lipschitz continuous gradient of ℓ, i.e., for any fixed x ∈ X and
any θ, θ′ ∈ Θ, we have

∥∇ℓ(θ;x)−∇ℓ(θ′;x)∥ ≤ L∥θ − θ′∥.

From Remark 7, we can see that, for each fixed x ∈ X , the gradients of
ℓ are continuous. Using the compactness of Θ, we can conclude that ℓ has
bounded gradients over Θ, for any fixed x ∈ X . Denote by S the global
gradient bound, i.e., S = supx∈X , θ∈Θ ∥∇ℓ(θ;x)∥.

Next, from Remark 5 and compactness of Θ, we can conclude that each
Fk, k ∈ [K] and each fi, i ∈ [m], have bounded gradients on Θ. Denote the
corresponding gradient bounds by GFk

and Gfi , respectively, i.e., GFk
:=

maxθ∈Θ ∥∇Fk(θ)∥, k ∈ [K] and Gfi := maxθ∈Θ ∥∇fi(θ)∥, i ∈ [m]. Appealing
to the mean value theorem, we can conclude that Fk is Lipschitz continuous,
with constant GFk

, k ∈ [K].
The next assumption considers the behaviour of the cluster population

losses Fk, k ∈ [K].
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Assumption 4. For each k ∈ [K], the population loss Fk(θ) = EXk∼Dk
[ℓ(θ;Xk)]

is strongly convex, i.e., there exists a constant µFk
> 0, such that, for all

θ, θ′ ∈ Θ, we have

Fk(θ
′) ≥ Fk(θ) + ⟨∇Fk(θ), θ

′ − θ⟩+ µFk

2
∥θ − θ′∥2.

Remark 8. In addition to requirements of Assumption 3, that implies con-
vexity of each Fk, we require them to be even "better" behaved, i.e., we require
them to be strongly convex. This will facilitate the rest of the analysis and
allow for stronger bounds to be obtained.

Assumption 5. For each k ∈ [K], there exists a neighborhood Uk = {θ ∈
Θ : ∥θ − θ⋆k∥ ≤ ρk}, where θ⋆k = argminθk∈Θ Fk(θk), ρk > 0, such that, for
any fixed x ∈ X , the loss ℓ has Lipschitz continuous Hessian, i.e., there exists
a constant Pk > 0, such that, for any θ, θ′ ∈ Uk, we have

∥∇2ℓ(θ;x)−∇2ℓ(θ′;x)∥ ≤ Pk∥θ − θ′∥.
Remark 9. Assumption 5 requires each population loss to be well-behaved
in a neighborhood of the optimal model. Akin to Assumption C in [14], this
assumption is required for averaging methods to work. We refer the reader
to [14] and references therein, for an elaborate discussion on this requirement.

Note that, for each k ∈ [K], the set Uk is compact. Using the continuity
of the Hessian on Uk, via Assumption 5, we can conclude that the Hessian of ℓ
is bounded on all Uk, k ∈ [K]. Denote the bounding constants asHk, k ∈ [K],
i.e.,
Hk = supx∈X , θ∈Θ ∥∇2ℓ(θ;x)∥, k ∈ [K].

Assumptions 2-5 are standard in the literature, e.g., the reader is referred
to [14], [34] and the references therein. The authors in [14] require that the
population loss be strongly convex only in a neighborhood of the optimal
model, which is more relaxed than the requirement of Assumption 4. How-
ever, this condition is required in [34], whose results we apply to construct
a high probability bound in the following sections.

Note that the formulation (8) implicitly assumes the knowledge of the
true clustering structure. In reality, the distributions and their associated
clustering structures are not known. Moreover, even the exact number of
different distributions, K, is typically not available. Therefore, the formu-
lation (8) is impossible to obtain and solve in practice. In what follows, we
propose a method that is able to deal with these issues, by correctly identify-
ing the true clusters and producing models that offer the same order-optimal
MSE guarantees, as the models with knowledge of the true clustering struc-
ture, obtained by (8).
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2.1 The method from [14]

The authors in [14] study the problem of finding the optimal model for (1),
under the assumption that all the distributions are the same, i.e., Dk = D,
for all k ∈ [K]. They propose the following two-step method, that requires
only one round of communication:

1. Each user i obtains a local model θ̂i, by solving
θ̂i = argminθ∈Θ fi(θ) and sends it to the server.

2. The sever receives the local models and produces the final model by
averaging, i.e., θ = 1

m

∑m
i=1 θ̂i.

Assuming ni = n, i ∈ [m], for some n ∈ N, the authors show that, when
n ≥ m, the method results in the order-optimal MSE, i.e., we have

E∥θ − θ⋆∥2 = O
(

1

mn

)
.

Here, θ⋆ = argminθ∈Θ F (θ) is the optimal model for the entire population.

2.2 Convex clustering

Convex clustering is a well-studied approach to clustering, e.g.. [35], [36] [37],
wherein the clustering problem is formulated as a strongly convex opti-
mization problem with group lasso regularization. As such, the method
is guaranteed to have a unique solution and, moreover, does not require
knowledge of the true number of clusters K. Formally, for a given dataset
A = {a1, . . . , an} ⊂ Rd, the problem of convex clustering is formulated as

argmin
u1,...,un∈Rd

1

2

n∑

i=1

∥ai − ui∥2 + λ
∑

i<j

∥ui − uj∥, (9)

where λ > 0 is a tunable parameter. Let V = {Vk}k∈[K] be a partition of
A, such that ∪k∈[K]Vk = A and Vk ∩ Vl = ∅, k ̸= l. The authors in [37,
Corollary 7] show that, if λ satisfies

max
k∈[K]

diam(Vk)

|Vk|
≤ λ < min

k ̸=l
k,l∈[K]

∥c(Vk)− c(Vl)∥
2n− |Vk| − |Vl|

, (10)

the partition, i.e., the clustering, is recovered, in the sense that, for a mapping
ψ(xi) = u⋆i , we have u⋆i = u⋆j , for all i, j ∈ Vk and u⋆i ̸= u⋆j , for all i ∈ Vk,
j ∈ Vl, k ̸= l. Here, {u⋆i }ni=1 = {u⋆i (λ)}ni=1 is the (unique) optimal solution
produced by (9), diam(S) = max{∥x − y∥ : x, y ∈ S}, is the diameter of a
set S ⊂ Rd, while c(S) = 1

|S|
∑

x∈S x, is the centroid of S.
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3 Algorithm design

In this section, we outline our one-shot algorithm for FL in heterogeneous
environments. Subsection 3.1 describes the proposed one-shot method. Sub-
section 3.2 outlines some considerations when applying the method in prac-
tice.

3.1 The proposed method

In order to deal with the presence of multiple data distributions, we propose
a method that works as follows:

1. Each user i obtains a local model θ̂i, by solving
θ̂i = argminθi∈Θ fi(θi) and sends it to the server.

2. The server receives the local models {θ̂i}mi=1, chooses a value λ > 0
(check Subsection 3.2 ahead) and runs the convex clustering algo-
rithm (9), with the local models as inputs, resulting in K ′ clusters
C′ = {C ′

k′}k′∈[K′].

3. The server then averages the local models according to the resulting
clusters, i.e., for each obtained cluster C ′

k′ , k
′ ∈ [K ′], the server per-

forms θk′ = 1
|C′

k′ |
∑

i∈C′
k′
θ̂i.

4. The server then sends the models to each user, corresponding to their
cluster assignment, i.e., each user i ∈ C ′

k′ receives the model θk′ .

Note that the main difference between the method in [14] and the pro-
posed method is in step 2, where the server performs clustering of the models.
This step is necessary, as we aim to identify the true clustering structure,
and produce a model that maintains the guarantees of the clustered ap-
proach (8). We chose the convex clustering method, e.g., [37], [35], as it
does not require knowledge of the exact number of clusters K. Note that, if
knowledge of the number of clusters was available, a simpler algorithm, like
K-means, e.g., [38], [39], or gradient clustering, e.g., [40], can be applied.

3.2 Practical considerations

The lower and upper bounds in the recovery condition (10) both depend on
the recovered clustering, which in turns depends on the value of λ, via (9).
This shows that (10) (and (12) ahead) can only be verified in "a posteriori"
manner, after (9) is solved. Therefore, choosing an appropriate value of λ
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can be difficult in practice. In this subsection we provide an algorithm that
includes practical guidelines on choosing an appropriate value of the param-
eter λ, elaborating on step 2) from the previous subsection. The algorithm
works as follows:

1. Each user i obtains a local model θ̂i, by solving
θ̂i = argminθi∈Θ fi(θi) and sends it to the server.

2. The server receives the local models {θ̂i}mi=1 and chooses a range of
strictly increasing values of λ, {λ1, λ2, . . . , λN}, such that solving the
convex clustering problem (9) results in the number of clusters Kλi

sat-
isfying Kλ1 = m and KλN

= 12. The server runs the convex clustering
algorithm for each value of λi and verifies the condition (10).

(a) If the condition (10) is verified for some values of λi, the server
takes a value λi (and the associated clustering) such that the same
number of clusters Kλi

is recovered for the largest number of λi’s
verifying (10).

(b) If the condition (10) is not verified for any value of λi, the server
takes a value λi (and the associated clustering) such that the
violation of the condition (10) is minimal, i.e., take a λi such that
the difference between the associated lower and upper bounds is
the smallest.

3. The server then averages the local models according to the resulting
clusters C′ = {C ′

k′}k′∈[K′], i.e., for each obtained cluster C ′
k′ , k

′ ∈ [K ′],
the server performs θk′ = 1

|C′
k′ |
∑

i∈C′
k′
θ̂i.

4. The server then sends the models to each user, corresponding to their
cluster assignment, i.e., each user i ∈ C ′

k′ receives the model θk′ .

The procedure in step 2 is known as "clusterpath", e.g., [36]. The intu-
ition behind it is to either take a value of λ that results in a clustering that is
the likeliest to be "true", or to take a value of λ for which the resulting clus-
tering is the likeliest to be "close" to a true clustering. Note that in general,
the recovery guarantees of convex clustering hold only when λ satisfies (10).
However, in practice, convex clustering is known to perform well even when

2From the formulation of convex clustering (9), it is obvious that, for λ sufficiently
small, the optimal solution is going to be u⋆

i = ai, i ∈ [m], i.e., Kλ = m. On the other
hand, the authors in [41] show that, for λ sufficiently large, we have Kλ = 1. Hence, the
choices of λ guaranteeing Kλ = m and Kλ = 1 always exist.
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the condition (10) is not met, e.g., [37] show that exact clustering can be
recovered even for values of λ not in (10), with, e.g., [36], [42], validating the
performance on real data, without the knowledge of (10).

4 Theoretical guarantees

In this section, we present the theoretical guarantees of the proposed method.
In this section, for the sake of simplicity, we assume ni = n, for all i ∈ [m].
Subsection 4.1 introduces some technical details and lemmas used in our
work and presents the main result of the paper. Subsection 4.2 offers a
detailed comparison of our method with the method from [29]. Subsection 4.3
presents the MSE guarantees if the exact solutions of the local empirical risks
are replaced by approximate ones.

4.1 Main result

Specializing (10) to our method, we can see that, for the clustering in step
3 of our approach to be correct, i.e., to have K ′ = K and for all k ∈ [K],
a unique k′ ∈ [K ′] to satisfy C ′

k′ = Ck, we need the following condition
satisfied

max
k∈[K]

diam(Wk)

|Wk|
≤ λ < min

k ̸=l
k,l∈[K]

∥c(Wk)− c(Wl)∥
2m− |Wk| − |Wl|

, (11)

where Wk =
{
θ̂i : i ∈ Ck

}
, k ∈ [K] is the cluster containing the ERMs of

all users belonging to cluster Ck. Using the definitions of diam(·), c(·) and
Wk, k ∈ [K], we get that (11) is equivalent to

max
k∈[K], i,j∈Ck

∥∥∥θ̂i − θ̂j
∥∥∥

|Ck|
≤ λ < min

k ̸=l
k,l∈[K]

∥∥θk − θl
∥∥

2m− |Ck| − |Cl|
. (12)

Remark 10. Note that in general, condition (11) (and equivalently (12))
might not hold. However, in what follows, we consider all the possible out-
comes and quantify the probability of (12) being satisfied.

Next, we state some important results used in the rest of the section,
from [14] and [34].

Lemma 1 (Theorem 3 in [34]). Under Assumptions 1-4, for any k ∈ [K],
any i ∈ Ck and any 0 < δ < 1

2 , ϵ > 0, with probability at least 1 − 2δ, we
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have

Fk(θ̂i)− Fk(θ
⋆
k) ≤

16R2LC(ϵ, δ)

n
+

8R∥∇fi(θ⋆k)∥ log 2
δ

n

+
8LFk(θ

⋆
k) log

2
δ

µFk
n

+

(
8RL+GFk

+
4RLC(ϵ, δ)

n

)
ϵ,

where C(ϵ, δ) := 2
(
log 2

δ + d log 6R
ϵ

)
.

Lemma 2 (Theorem 1 in [14]). Under Assumptions 1-5, for each k ∈ [K]
and θk = 1

|Ck|
∑

i∈Ck
θ̂i, we have

E∥θk − θ⋆k∥2 ≤
2Ek

n|Ck|
+

5

µ2Fk
n2
(
H2

k log d+ Ek

)
Ek

+O
(
|Ck|−1 n−2

)
+O(n−3),

where Ek := E∥∇2Fk(θ
⋆
k)

−1∇ℓ(θ⋆k;X)∥2.

Note that the original results in [14] and [34] concern the global pop-
ulation loss (1) and the corresponding empirical loss (3). These directly
translate to each individual cluster in our framework, i.e., to each compo-
nent in (8). Additionally, note that Lemma 2 assumes knowledge of the true
clusters Ck, as the averaging is performed across the true clusters.

We are now ready to state the main result of the paper.

Theorem 1. Let Assumptions 1-5 hold. If the number of samples per user
satisfies n ≥ 3 and moreover

n

log n
>

2M(2m− |C(K−1)| − |C(K)|)2
|C(K)|2(D − 2γ)2

,

where β ≥ 1 and 0 < γ < D
2 are tunable parameters, while M = M(β) =

maxi,j∈Ck,k∈[K]Mik +Mjk, and for all i ∈ Ck, k ∈ [K]

Mik =
64R2L (log 2 + d log 6R+ (d+ 1)β)

µFk

+
16LFk(θ

⋆
k)(log 2 + β)

µ2Fk

+
16R∥∇fi(θ⋆k)∥(log 2 + β)

µFk

+
2GFk

+ 16RL (1 + log 2 + d log 6R+ (d+ 1)β)

µFk

,
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then, for any choice of λ ∈
[√

2M logn
n ,

|C(K)|(D−2γ)

2m−|C(K−1)|−|C(K)|

)
, we have that, for

all k ∈ [K], the models produced by the proposed method achieve the MSE

E∥θk − θ⋆k∥2 ≤
2Ek

n|Ck|
+

4KẼR2

n|C(K)|γ2
+

4KR2|C̃|2
nβ

+O
(
log d

n2

)
+O

(
K log d

n2γ2

)
+O

(
1

n2|Ck|

)

+O
(

K

n2|C(K)|γ2
)
+O

(
1

n3

)
+O

(
K

n3γ2

)
,

where Ek = E∥∇2Fk(θ
⋆
k)

−1∇ℓ(θ⋆k;X)∥2, Ẽ = 1
K

∑
k∈[K]Ek and |C̃|2 =

1
K

∑
k∈[K] |Ck|2.

Theorem 1 provides the MSE rate of the proposed method. If, in addition
to the conditions of Theorem 1, we have n ≥ |C(1)|, then, for the choice of
β ≥ 2, we have that the MSE rate is dominated by the first two terms, i.e.,

2Ek

n|Ck|
+

4KẼR2

n|C(K)|γ2
. (13)

Since 0 < γ < D
2 is a tunable parameter, if D > 2

√
|C(1)|
|C(K)| , we can choose

γ =

√
|C(1)|
|C(K)| , so that (13) becomes

2Ek

n|Ck|
+

4KẼR2

n|C(1)|
.

This observation directly leads to the following corollary.

Corollary 1. Let conditions of Theorem 1 hold. If additionally D > 2

√
|C(1)|
|C(K)|

and n ≥ |C(1)|, then for the choices of β ≥ 2 and γ =

√
|C(1)|
|C(K)

, we have the

following MSE, for all k ∈ [K]

E∥θk − θ⋆k∥2 ≤ O
(

1

n|Ck|

)
.

Corollary 1 shows that, if the populations are sufficiently separated, our
method can achieve the order-optimal MSE rate for each cluster, provided
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that users have sufficient number of samples available. This rate is equivalent
to the rate achieved by training a centralized learner on each cluster and
as we discuss in Subsection 4.2 ahead, it is a stronger result compared to
the current literature, where the convergence rate depends on the size of
the smallest cluster, |C(K)|. Remarkably, this is achieved with significant
communication savings, requiring only a single communication round. Some
remarks are now in order.

Remark 11. The MSE guarantees in Lemma 2 are established without any
requirements on the sample size n. This stems from the fact that the method
from Lemma 2 can be seen as an oracle method that knows the true clustering
structure. On the other hand, the sample size requirement in Theorem 1
stems from the fact that our method does not know the true clustering, hence
a sufficiently large sample size that guarantees the true clustering can be
recovered, is required.

Remark 12. Recall that the parameters β ≥ 1 and 0 < γ < D
2 are tunable.

From Theorem 1, we can see that both parameters offer a trade-off between
convergence speed and sample requirements. In particular, larger values of β
and γ result in faster convergence, at the expense of higher sample require-
ments.

Remark 13. Recall the condition on the number of samples, given by

n

log n
>

2M(2m− |C(K−1)| − |C(K)|)2
|C(K)|2(D − 2γ)2

,

where β ≥ 1 and 0 < γ < D
2 are tunable parameters, while M = maxi,j∈Ck,k∈[K]Mik+

Mjk, and for all i ∈ Ck, k ∈ [K]

Mik =
64R2L (log 2 + d log 6R+ (d+ 1)β)

µFk

+
16LFk(θ

⋆
k)(log 2 + β)

µ2Fk

+
16R∥∇fi(θ⋆k)∥(log 2 + β)

µFk

+
2GFk

+ 16RL (1 + log 2 + d log 6R+ (d+ 1)β)

µFk

.

We can identify three components of the condition that quantify the complex-
ity of different aspects of the system:

• M - quantifies the difficulty of the learning problems, as it depends on
problem parameters, such as the dimension of the parameter space d,
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the smoothness and strong convexity parameters L, GFk
, µFk

, etc. It
also depends on the population minimal value Fk(θ

⋆
k) and the proximity

of the population and local empirical risks in the form of ∥∇fi(θ⋆k)∥.
Hence, an easier learning problem implies smaller M .

• (2m−|C(K)|−|C(K−1)|)2
|C(K)|2 - quantifies how well balanced the clusters are. For

example, when the clusters are well balanced, so that |Ck| = m
K , for

all k ∈ [K], we have (2m−|C(K)|−|C(K−1)|)2
|C(K)|2 = 4(K − 1)2, while in the

extreme case of |C(K)| = |C(K−1)| = 1, we have (2m−|C(K)|−|C(K−1)|)2
|C(K)|2 =

4(m − 1)2. As K ≤ m, this again shows that balanced clusters are
favored over unbalanced ones.

• (D− 2γ)−2 - quantifies the difficulty of the clustering problem. If D is
smaller, population optima corresponding to different populations are
closer to one another and it is more difficult to cluster the local ERMs
correctly, hence requiring more samples. On the other hand, for larger
D, the clustering problem becomes easier and we require fewer samples
per user for correct clustering.

Remark 14. Recall the condition on D in Corollary 1, D > 2

√
|C(1)|
|C(K)| .

When the clusters are well balanced, so that |Ck| = m
K , k ∈ [K], our method

can achieve order-optimal rates if the minimal separation between population
optima of different clusters is D > 2, i.e., independent of any problem pa-
rameters. On the other hand, in the worst case, we can have D > 2

√
m− 1,

if there are only two clusters C1, C2, such that |C1| = 1, |C2| = m− 1.

Proof of Theorem 1. We start by noting that, for any event Ψ, we have

E∥θ̂k − θ⋆k∥2 = E∥θ̂k − θ⋆k∥2IΨ + E∥θ̂k − θ⋆k∥2IΨc , (14)

where IΨ is the indicator random variable. We now proceed to define a
specific event Ψ and establish the resulting bounds.

Applying Lemma 1 for the choice of δ = ϵ = 1
nβ , for some β > 0, we get
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that, for all k ∈ [K] and all i ∈ Ck, we have

∥θ̂i − θ⋆k∥2 ≤
32R2LC(ϵ, δ)

nµFk

+
16LFk(θ

⋆
k)(log 2 + β log n)

nµ2Fk

+
16R∥∇fi(θ⋆k)∥(log 2 + β log n)

nµFk

+

(
16RL+ 2GFk

+ 8RLC(ϵ,δ)
n

)

nβµFk

,

(15)

with probability at least 1− 2
nβ , where C(ϵ, δ) = 2 (log 2 + d log 6R+ (d+ 1)β log n).

Here, we used strong convexity of Fk, which implies

∥θ̂i − θ⋆k∥2 ≤
2

µFk

(
Fk(θ̂i)− Fk(θ

⋆
k)
)
.

Note that, for β ≥ 1 and n ≥ 3, the dominating term in (15), in terms of
the number of samples n, is of the order O

(
logn
n

)
. We can therefore upper-

bound the right-hand side of (15) by Mik logn
n , where Mik, i ∈ Ck, k ∈ [K] is

defined as follows

Mik =
64R2L (log 2 + d log 6R+ (d+ 1)β)

µFk

+
16LFk(θ

⋆
k)(log 2 + β)

µ2Fk

+
16R∥∇fi(θ⋆k)∥(log 2 + β)

µFk

+
2GFk

+ 16RL (1 + log 2 + d log 6R+ (d+ 1)β)

µFk

.

As Mik logn
n is an upper bound on the right-hand side of (15), we can therefore

conclude that, for any i ∈ Ck, k ∈ [K]

P
(
∥θ̂i − θ⋆k∥2 ≤

Mik log n

n

)
≥ 1− 2

nβ
. (16)

Next, define the events

Σij =

{
ω : ∥θ̂i − θ̂j∥2 ≤

2(Mik +Mjk) log n

n

}
,

Υi =

{
ω : ∥θ̂i − θ⋆k∥2 ≤

Mik log n

n

}
.
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for all i, j ∈ Ck, i ̸= j, k ∈ [K]. Noting that

∥θ̂i − θ̂j∥2 ≤ 2∥θ̂i − θ⋆k∥2 + 2∥θ̂j − θ⋆k∥2,

we can conclude that, for all i, j ∈ Ck, k ∈ [K]

P (Υi ∩Υj) ≤ P (Σij) . (17)

For Σ = ∩i,j∈Ck,i̸=j,k∈[K]Σij , we then get the following bound

P(Σ) ≥ 1−
∑

i̸=j
i,j∈Ck
k∈[K]

P(Σc
ij) ≥ 1−

∑

i̸=j
i,j∈Ck
k∈[K]

P ((Υi ∩Υj)
c)

≥ 1−
∑

i̸=j
i,j∈Ck
k∈[K]

4

nβ
≥ 1− 2

nβ

∑

k∈[K]

|Ck| (|Ck| − 1)

≥ 1− 2K|C̃|2
nβ

,

where |C̃|2 = 1
K

∑
k∈[K] |Ck|2, the first inequality follows from the union

bound, the second inequality follows from (17), while the third inequality
follows from the union bound and (16). Next, for any k, l ∈ [K], we have
that

∥θk − θl∥ ≥ ∥θ⋆k − θ⋆l ∥ − ∥θk − θ⋆k∥ − ∥θl − θ⋆l ∥. (18)

For any γ > 0 and any k ∈ [K], applying Chebyshev’s inequality and
Lemma 2, we get the following bound

P
(
∥θk − θ⋆k∥ > γ

)
≤ E∥θk − θ⋆k∥2

γ2
≤ 2Ek

n|Ck|γ2

+
5
(
H2

k log d+ Ek

)
Ek

µ2Fk
n2γ2

+O
(

1

|Ck|n2γ2
)
+O

(
1

n3γ2

)
.

(19)

21

DRAFT



Define the event Λ = ∩k∈[K]

{
ω : ∥θk − θ⋆k∥ ≤ γ

}
. We then have

P(Λ) ≥ 1−
∑

k∈[K]

P
(
∥θk − θ⋆k∥ > γ

)

≥ 1−
∑

k∈[K]

(
2Ek

n|Ck|γ2
+

5
(
H2

k log d+ Ek

)
Ek

µ2Fk
n2γ2

+O
(

1

|Ck|n2γ2
)
+O

(
1

n3γ2

))

≥ 1− 2KẼ

n|C(K)|γ2
−

5K
(
H̃2 log d+ Ẽ

)
Emax

µ2Fmin
n2γ2

− Ω

(
K

|C(K)|n2γ2
)
− Ω

(
K

n3γ2

)
,

where Ẽ = 1
K

∑
k∈[K]Ek, H̃2 = 1

K

∑
k∈[K]H

2
k , Emax = maxk∈[K]Ek and

µFmin = mink∈[K] µFk
. Recall that D = mink ̸=l ∥θ⋆k − θ⋆l ∥. Applying (18), we

then have that on Λ, for any k, l ∈ [K]

∥θk − θl∥ ≥ D − 2γ, (20)

which is valid for any γ < D
2 . Next, notice that on Σ, for all i, j ∈ Ck,

k ∈ [K], we have

∥θ̂i − θ̂j∥ ≤
√

2(Mik +Mjk) log n

n
. (21)

Plugging (20) and (21) in (12), we get that the true clustering can be recov-
ered if √

2M log n

n
<

|C(K)|(D − 2γ)

2m− |C(K−1)| − |C(K)|
, (22)

where M = maxi,j∈Ck, k∈[K](Mik + Mjk). For (22) to hold we need the
number of samples per user to be such that

n

log n
>

2M(2m− |C(K−1)| − |C(K)|)2
|C(K)|2(D − 2γ)2

. (23)

We then have that on Ψ = Σ ∩ Λ, if the number of samples per user satis-
fies (23), the true clustering can be recovered and Lemma 2 applies to our
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method. On the other hand, we have

P(Ψ) ≥ P(Σ) + P(Λ)− 1

≥ 1− 2KẼ

n|C(K)|γ2
−

5K
(
H̃2 log d+ Ẽ

)
Emax

µ2Fmin
n2γ2

− Ω

(
K

|C(K)|n2γ2
)
− Ω

(
K

n3γ2

)
− 2K|C̃|2

nβ
,

which implies

P(Ψc) ≤ 2KẼ

n|C(K)|γ2
+

2K|C̃|2
nβ

+O
(

K

|C(K)|n2γ2
)

+
5K

(
H̃2 log d+ Ẽ

)
Emax

µ2Fmin
n2γ2

+O
(

K

n3γ2

)

Combining everything in (14), we finally get

E∥θk − θ⋆k∥2 ≤ E∥θ̂k − θ⋆k∥2IΨ +R2P(Ψc)

≤ 2Ek

n|Ck|
+

2KẼR2

n|C(K)|γ2
+

2KR2|C̃|2
nβ

+O
(

1

|Ck|n2
)

+
5Ek

µ2Fk
n2
(
H2

k log d+ Ek

)
+

5R2KEmax

µ2Fmin
n2γ2

(
H̃2 log d+ Ẽ

)

+O
(

K

|C(K)|n2γ2
)
+O

(
1

n3

)
+O

(
K

n3γ2

)
,

for n satisfying (23).

4.2 Comparison with order-optimal CFL methods

In this section we compare the results from Theorem 1 with the guarantees
of other CFL methods. As discussed in the Introduction, many methods for
CFL have been proposed, with various requirements and guarantees. For
example, we can split the methods into the ones requiring knowledge of the
number of clusters K, e.g., [28], [29], [30] and the ones not requiring it,
e.g., [31], [32]. On the other hand, we can split them into the ones that
estimate the true clustering iteratively, e.g., [28], [29], [31], [32] and the ones
that perform clustering only ones during training, [30]. While all the pro-
posed methods offer certain advantages (as illustrated by the previous clas-
sification), we specifically compare our method with two methods, namely
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Iterative Federated Clustering Algorithm (IFCA), from [29], and the method
from [30]. The main reasons for comparing with these specific methods are:
1) both methods analyze their performance in terms of statistical guaran-
tees; 2) both methods are order-optimal, up to logarithmic factors and 3)
both methods derive explicit requirements for the number of communication
rounds. In what follows, due to some similarities of the methods and their
performances, we will provide a detailed outline of IFCA, while highlighting
where [30] differs significantly.

IFCA is an iterative algorithm for CFL that alternates between the fol-
lowing two steps: inferring cluster membership and updating the models. To
that end, IFCA is initialized by first producing K different models {θ0k}k∈[K],
where the superscript denotes the iteration counter. The method then pro-
ceeds as follows, for t = 0, . . . , T − 1:

1. The server broadcasts {θtk}k∈[K] to each user.

2. Each user evaluates the models on their local data and chooses the
model θt(i), where (i) = argmink∈[K] fi(θ

t
k).

3. Each user computes the local stochastic gradient gti = ∇̃fi(θt(i)), eval-
uated at θt(i). Users send the gradients back to the server, along with

a one-hot encoding vector si ∈ RK , such that sij =

{
1, (i) = j

0, (i) ̸= j
,

notifying the server which model was updated by user i.

4. The server forms clusters of users that updated specific models, based
on the received tokens {si}i∈[m] and performs the model update, i.e.,
θt+1
k = θtk − α 1

|Ct
k|
∑

i∈Ct
k
gti , where α > 0 is the step-size, while Ct

k =

{i ∈ [m] : sik = 1} is the cluster of users that updated model k at
iteration t.

On the other hand, the method in [30] can be seen as a modular method,
as it depends on the following three steps:

1. Each user trains the local ERMs and sends them to the server.

2. The server performs a clustering procedure.

3. A FL algorithm is run on the resulting clusters for T iterations to
produce the final models.
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From the algorithm above, we can see that both IFCA and the method [30]
require knowledge of the true number of distributions K (or at least a good
estimate), which is typically unavailable or would require running a separate
learning algorithm in practice (e.g., community detection). Secondly, both
require T rounds of communication, whereas our method requires a single
round of server-user communication. Comparing to our algorithm, IFCA al-
leviates the computational requirements on the server side, by only requiring
the server to average the received models. On the other hand, our algorithm
assumes that the server has enough computation resources to run the con-
vex clustering algorithm and perform inference on the underlying clustering
structure, significantly decreasing the communication cost.

Assumptions. Similarly to our algorithm, IFCA assumes that the pop-
ulation risks Fk, k ∈ [K] are L-smooth and µFk

strongly convex. The
method [30] requires a stronger assumption - namely, that the loss func-
tion ℓ is strongly convex. Additionally, IFCA assumes bounded variance of
ℓ with respect to all Dk, k ∈ [K], i.e.,

EX∼Dk

[
(ℓ(θ;X)− Fk(θ))

2
]
≤ η2,

for some η > 0. Intuitively, this assumption is made to ensure that the
empirical loss fi of user i ∈ Ck stays close to the true population loss Fk,
enabling clustering inference via the local loss. An additional assumption
made by IFCA, that is required for the convergence of the algorithm is
sufficiently close initialization, i.e., for all k ∈ [K], the authors require

∥θ0k − θ⋆k∥ ≤
(
1

2
− α0

)
D

√
µFmin

L
,

where α0 ∈ (0, 12) is a tunable parameter that determines the proximity of the
initialization to the true population optima. Note that such an assumption
is quite strong, as it requires ∥θ0k − θ⋆k∥ < 1

2D, for all k ∈ [K]. In order to
find such an initialization, the knowledge of underlying clusters, as well as
D, would have to be available. The method [30], like our method, does not
require such an assumption. IFCA requires three further assumptions:

1. |C(K)| ≳ log(mn)3, i.e., the size of the smallest cluster has to grow at
least logarithmically in the number of total samples available in the
system;

3Note that the authors in [29] use n′ = n
2T

in their theoretical analysis, i.e., they
require that each user contains n = 2Tn′ samples and all conditions in the original paper
are expressed in terms of n′. However, for the sake of simplicity, we will represent the
conditions in terms of n, effectively reducing the original sample size requirement by a
factor of 2T .
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2. n ≳ Kη2

α2
0µ

2
Fmin

D4 , i.e., each user contains a sufficient number of samples;

3. D ≥ Õ
(
max

{
α
−2/5
0 n−1/5, α

−1/3
0 m−1/6n−1/3

})
, i.e., the population opti-

mal models across different populations are sufficiently well separated.

Here, the operator x ≳ y indicates the existence of global constant C that
does not depend on the problem parameters, such that x ≥ Cy (the operator
x ≲ y is defined similarly), while Õ(·) hides logarithmic factors that do
not depend on m and n. On the other hand, both our method and the
method [30] do not require any assumptions on the separation parameter D
or on the size of the smallest cluster |C(K)|, effectively covering the cases
for which IFCA might fails, i.e., highly unbalanced clusters, e.g., |C(K)| =
O(1) and small separation between optimal models of different populations.
Comparing the requirements on the number of samples of our method, IFCA
and [30], we have, respectively,

n

log n
>

2M(2m− |C(K−1)| − |C(K)|)2
|C(K)|2(D − 2γ)2

,

n ≳ Kη2

α2
0µ

2
Fmin

D4
,

n ≥
G2

Fmax
L logm

µ3Fmin

,

where GFmax = maxk∈[K]GFk
. We can first see that that for our method, the

requirement is expressed in terms of n/logn, which, for n ≥ 3 is always more
relaxed than placing requirements directly on n. Comparing the right-hand
sides of the inequalities, we can see that the dependence of IFCA on K is
much better, as (recall Remark 13) the term (2m−|C(K−1)|−|C(K)|)2

|C(K)|2 evaluates

to 4(K − 1)2 in the best case, while being 4(m− 1)2 in the worst case. The
method [30] depends logarithmically on m. For D > 1, the dependence of
IFCA is again better, while, for D < 1, our method has a much better de-
pendence. Finally, the dependence on the problem parameters, encapsulated
in M , are again better for IFCA, as typically one would expect M > η2

µ2
Fmin

.

However, we stress that IFCA and [30] are iterative algorithms, allowing
for multiple rounds of communication, whereas the method we propose is
a one-shot method. Therefore, the higher requirements on the number of
samples are to be expected, but uncover regimes in which communicating
beyond one round to achieve order-optimality is redundant. Additionally,
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our method does not require knowledge of K, while both IFCA and [30]
assume the knowledge of the true value of K. All of these facts lead to less
strict requirements of IFCA on the number of samples per user, with respect
to different problem parameters (in some cases).

Guarantees. The guarantees of IFCA are given it terms of high prob-
ability bounds, while our guarantees, expressed in terms of the MSE, are
sharper. IFCA provides the following guarantee (Corollary 2 in [29]): after
T = 8mL

|C(K)|µFmin
log
(
2D
ε

)
communication rounds, with probability at least

1− δ
∥θTk − θ⋆k∥ ≤ ε,

where

ε ≲σmaxKL log(mn) (m/|C(K)|)
2

µFminδ
√
n|C(K)|

+ Õ
(

1

n
√
m

)

+
η2L2(m/|C(K)|)2K log(mn)

µ4Fmin
δD4n

.

(24)

We can see that, assuming n ≥ |C(1)|, the dominating term in (24) becomes

∥θTk − θ⋆k∥ = O


 log(mn)√

n|C(K)|


 ,

for all k ∈ [K], which is almost order-optimal, up to a logarithmic factor and
dependence on the smallest cluster size. The guarantees of [30] are similar,
i.e., via Theorem 1 in [30], we have that: after T = O

(
L+µFmax
µFmin

log
(µFmax

2ε

))

communication rounds, with high probability, for all k ∈ [K]

∥θTk − θ⋆k∥ ≤ O
(

logmn√
n|Ck|

)
.

On the other hand, from Theorem 1, for n ≥ |C(1)|, we have

E∥θk − θ⋆k∥ = O


 1√

n|C(K)|


 ,

for all k ∈ [K], which is almost order-optimal, with the dependence on
the smallest cluster size. Therefore, we can see that our method removes
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the logarithmic dependence on the total number of samples, of both IFCA
and [30], while simultaneously reducing the communication cost by a factor
of O

(
κ
p log

(
2D
ε

))
with respect to IFCA (and similar with respect to [30]),

where κ = L
µFmin

≥ 1 is the condition number, while p =
|C(K)|

m < 1 is the
fraction of users belonging to the smallest cluster, reflecting the difficulty of
the clustering problem.

However, we can see that Theorem 1 provides guarantees in terms of
the size of the smallest cluster, |C(K)|, while Theorem 1 in [30] provides the
guarantees in terms of the true cluster size |Ck|, for each k ∈ [K]. Applying

Corollary 1, for D > 2

√
|C(1)|
|C(K)| , our method matches the dependence on

individual cluster sizes of [30], while removing the logarithmic dependence
on the total number of samples, thus achieving the order-optimal rate

E∥θk − θ⋆k∥ = O


 1√

n|C(k)|


 ,

for all k ∈ [K], while still providing a reduction in communication cost by
a factor of O

(
κ
p log

(
2D
ε

))
. Hence, we can see that our method provides

order-optimal convergence guarantees, improving on the guarantees of both
IFCA and [30] by a factor logarithmic in the total number of samples in
the system. Remarkably, this is achieved while simultaneously reducing the
communication cost by a factor of O

(
κ
p log

(
2D
ε

))
and without requiring any

knowledge of the underlying structure, while both IFCA and [30] assume
knowledge of K.

4.3 Inexact ERMs

In this section we consider replacing the ERM model θ̂i = argminθi∈Θ fi(θi),
i ∈ [m], by an inexact estimate, i.e., an estimate θ̃i ∈ Θ, such that

∥θ̃i − θ̂i∥ ≤ ε, (25)

for some ε > 0. To that end, we need an additional assumption on the strong
convexity of the empirical losses fi, i ∈ [m].

Assumption 6. For all i ∈ [m] the empirical loss fi is strongly convex, i.e.,
there exists a constant µfi > 0, such that, for all θ, θ′ ∈ Θ, we have

fi(θ
′) ≥ fi(θ) +

〈
∇fi(θ), θ′ − θ

〉
+
µfi
2
∥θ − θ′∥2.
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Denote by µf = mini∈[m] µfi.

Remark 15. Note that in general, Assumption 6 allows for the loss func-
tion ℓ to be convex, as long as the average across local samples, fi(θ) =
1
n

∑n
j=1 ℓ(θ;xij) is strongly convex.

Assumption 6 allows for each user to apply iterative solvers, to obtain
parameters θ̂i that satisfy (25). A standard choice is the stochastic gradient
descent (SGD) algorithm [43]. SGD follows a simple update rule, given by

θt+1 = θt − ηtgt,

where θt is the estimate of the parameter of interest at iteration t, ηt is the
step-size and gt is a stochastic gradient, evaluated at θt.

SGD can be implemented in both the online setting, where users only
have access to a single stochastic gradient at a time and in the batch setting,
where users have access to the entire local dataset. Additionally, SGD offers
the most general guarantees with respect to the mini-batch size and can be
implemented even with a mini-batch size of 1. We discuss at the end of the
section how different assumptions can allow for the implementation of more
efficient algorithms, in terms of the local iteration complexity per user. Next,
we state an additional assumption on the stochastic gradients of fi.

Assumption 7. For each i ∈ [m] and all θ ∈ Θ, stochastics gradient gi
of fi, evaluated at θ, are unbiased, i.e., E [gi] = ∇fi(θ). Additionally, the
stochastic gradients have bounded variance, i.e., there exists a σi > 0, such
that for all θ ∈ Θ, we have

E∥gi −∇fi(θ)∥2 ≤ σ2i .

Remark 16. Assumption 7 is standard in the analysis of stochastic algo-
rithms, e.g., [44], [45], [46].

Remark 17. Recall the discussion in Section 2 and Remarks 5-7, that imply
bounded gradients of fi, with constant Gfi. Combining with Assumption 7,
it then follows that, for all θ ∈ Θ

E∥gi∥2 ≤ 2E∥gi −∇fi(θ)∥2 + 2∥∇fi(θ)∥2 ≤ 2σ2i + 2G2
fi
.

Define Γ2
i := 2σ2i + 2G2

fi
, i ∈ [m] and denote by Γ2 = maxi∈[m] Γ

2
i . We

now state two well-known result on the convergence of SGD from [44], used
in the rest of the section.
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Lemma 3 (Lemma 1 in [44]). Under Assumptions 2, 3, 6 and 7, for all
i ∈ [m], if we set the step-size rule of SGD as ηt = 1

µfi
t , it holds for any

T ≥ 1 and any i ∈ [m] that

E∥θTi − θ̂i∥2 ≤
4Γ2

i

µ2fiT
.

Lemma 4 (Lemma 2 in [44]). Let Assumptions 2, 3, 6 and 7 hold and let
∥gt∥2 ≤ Γ2, with probability 1. Then, for all i ∈ [m] and any δ ∈ (0, 1/e), T ≥
4, if we set the step-size rule of SGD as ηt = 1

µfi
t , it holds with probability

1− δ, for any t ∈ {8, . . . , T − 1, T} and any i ∈ [m], that

∥θti − θ̂i∥2 ≤
12Γ2

µ2fit
+ 8G(121G+ 1)

log (log(t)/δ)

t
.

We are now ready to state and prove counterparts of Lemmas 1 and 2,
when an inexact ERM estimator is used.

Lemma 5. Let Assumptions 1-4, 6 and 7 hold and ∥gt∥2 ≤ Γ2 with prob-
ability 1. If each user runs SGD locally for T iterations, with the step-size
rule ηt = 1

µf t
, to produce θTi , i ∈ [m] and T is chosen such that T ≥ 15 and

T
log log(T ) ≥

(
12Γ2

µ2
f

+ 8G(121G+ 1)(1 + log 1
δ )

)
1
ε2

, then for any k ∈ [K], any

i ∈ Ck and any ϵ > 0, 0 < δ < 1
3 , with probability at least 1 − 3δ, we have,

for any i ∈ Ck, k ∈ [K]

Fk(θ
T
i )− Fk(θ

⋆
k) ≤

16R2LC(ϵ, δ)

n
+

8R∥∇fi(θ⋆k)∥ log 2
δ

n

+
8LFk(θ

⋆
k) log

2
δ

µFk
n

+

(
8RL+GFk

+
4RLC(ϵ, δ)

n

)
ϵ

+ εGFk
,

where C(ϵ, δ) := 2
(
log 2

δ + d log 6R
ϵ

)
.

Proof. For any θ ∈ Θ, any k ∈ [K] and any i ∈ Ck, we have

Fk(θ)− Fk(θ
⋆
k) ≤

∣∣∣Fk(θ)− Fk(θ̂i)
∣∣∣+ Fk(θ̂i)− Fk(θ

⋆
k). (26)

We can bound the second term on the right hand side of (26) using Lemma 1.
To bound the first term, we use Lipschitz continuity of Fk (recall the discus-
sion in Section 2), to get

∣∣∣Fk(θ)− Fk(θ̂i)
∣∣∣ ≤ GFk

∥θ − θ̂i∥. (27)
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Next, applying Lemma 4, we have that, with probability at least 1− δ

∥θTi − θ̂i∥2 ≤
12Γ2

µ2fT
+ 8G(121G+ 1)

log (log(T )/δ)

T
.

As T ≥ 15, we can use the following upper-bound, with probability at least
1− δ

∥θTi − θ̂i∥2 ≤
12Γ2

µ2f

log log(T )

T

+ 8G(121G+ 1)

(
1 + log

1

δ

)
log log(T )

T
.

From the conditions of the Lemma, we can then conclude that

∥θTi − θ̂i∥ ≤ ε. (28)

Plugging (28) into (27) and combining in (26), we finally get that, with
probability at least 1− δ

Fk(θ
T
i )− Fk(θ

⋆
k) ≤ εGFk

+ Fk(θ̂i)− Fk(θ
⋆
k).

The result is completed by applying Lemma 1 to the second term on the
right hand side of the final inequality.

Lemma 6. Let Assumptions 1-7 hold and each user runs SGD locally for T
iterations, to produce θTi . If T ≥ 4Γ2

µ2
f ε

, then for θ̃k = 1
|Ck|

∑
i∈Ck

θTi , k ∈ [K],
we have

E∥θ̃k − θ⋆k∥2 ≤
4Ek

n|Ck|
+

10

µ2Fk
n2
(
H2

k log d+ Ek

)
Ek

+O
(
|Ck|−1 n−2

)
+O(n−3) + ε,

where Ek := E∥∇2Fk(θ
⋆
k)

−1∇ℓ(θ⋆k;X)∥2.
Proof. From Lemma 3, we know that, for each i ∈ [m], running SGD locally
for T ≥ 4Γ2

µ2
f ε

iterations results in

E∥θTi − θ̂i∥2 ≤ ε. (29)

Define the across-cluster average of ε-inexact approximations as θ̃k = 1
|Ck|

∑
i∈Ck

θTi .
We then have

E∥θ̃k − θ⋆k∥2 ≤ 2E∥θk − θ⋆k∥2 + 2E∥θ̃k − θk∥2, (30)
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where θk = 1
|Ck|

∑
i∈Ck

θ̂i. We can bound the first term on the right-hand
side of (30) using Lemma 2. For the second term, we use (29), to obtain

E∥θ̃k − θk∥2 ≤
1

|Ck|
∑

i∈Ck

E∥θTi − θ̂i∥2 = ε.

Combining the results and plugging in (30), we get

E∥θ̃k − θ⋆k∥2 ≤
4Ek

n|Ck|
+

10

µ2Fk
n2
(
H2

k log d+ Ek

)
Ek

+O
(
|Ck|−1 n−2

)
+O(n−3) + ε,

which completes the proof.

Lemmas 5 and 6 give us the counterparts of Lemmas 1 and 2 in the case
where an approximate solution to the ERM is used instead of the exact one.
We can apply them to prove the following.

Theorem 2. Let Assumptions 1-7 hold and ∥gt∥2 ≤ Γ2 with probability 1.
If each user runs SGD locally for T iterations to produce θTi , i ∈ [m] and the
number of samples per user n and the number of local iterations T are such

that n > 3, T ≥ max

{
15, 4Γ

2

µ2
f ε

}
and moreover

n

log n
> 2M

(
(D − 2γ)2|C(K)|2

(2m− |C(K)| − |C(K−1)|)2
− 4εSF

)−1

T

log log (T )
≥
(
12Γ2

µ2f
+ 8G(121G+ 1)(1 + β log n)

)
1

ε2

,

where β ≥ 1 and 0 < γ < D
2 are tunable parameters, SF = maxk∈[K]

GFk
µFk

,
while M =M(β) = maxi,j∈Ck,k∈[K]Mik +Mjk, and for all i ∈ Ck, k ∈ [K]

Mik =
64R2L (log 2 + d log 6R+ (d+ 1)β)

µFk

+
16LFk(θ

⋆
k)(log 2 + β)

µ2Fk

+
16R∥∇fi(θ⋆k)∥(log 2 + β)

µFk

+
2GFk

+ 16RL (1 + log 2 + d log 6R+ (d+ 1)β)

µFk

,
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then, for any choice of λ ∈
[√

2M logn
n + 4εSF ,

|C(K)|(D−2γ)

2m−|C(K−1)|−|C(K)|

)
, we have

that, for all k ∈ [K], the models produced by the inexact method achieve the
MSE

E∥θ̃k − θ⋆k∥2 ≤
4Ek

n|Ck|
+

4KẼR2

n|C(K)|γ2
+

3KR2|C̃|2
nβ

+
10Ek

µ2Fk
n2
(
H2

k log d+ Ek

)
+

10R2KEmax

µ2Fmin
n2γ2

(
H̃2 log d+ Ẽ

)

+O
(

1

|Ck|n2
)
+O

(
K

|C(K)|n2γ2
)
+O

(
1

n3

)

+O
(

K

n3γ2

)
+ ε

(
1 +

2R2K

γ2

)
,

where Ek = E∥∇2Fk(θ
⋆
k)

−1∇ℓ(θ⋆k;X)∥2, Emax = maxk∈[K]Ek, Ẽ = 1
K

∑
k∈[K]Ek,

H̃ = 1
K

∑
k∈[K]Hk and |C̃|2 = 1

K

∑
k∈[K] |Ck|2.

We can provide an analogue to Corollary 1 in the inexact ERM scenario.

Corollary 2. Let conditions of Theorem 2 hold. If additionally D > 2

√
|C(1)|
|C(K)|

and n ≥ |C(1)|, then for the choices of β ≥ 2 and γ =

√
|C(1)|
|C(K)| , we have the

following MSE, for all k ∈ [K]

E∥θ̃k − θ⋆k∥2 ≤ O
(

1

n|Ck|
+ ε

)
.

The proof of Theorem 2 follows the same idea as the proof of Theorem 1,
replacing the results of Lemmas 1 and 2 with results from Lemmas 5 and 6.
For the sake of brevity, we omit the proof. Some comments are now in order.

Remark 18. Comparing the MSE rates of Theorem 1 and Theorem 2, we
can see that the main difference is the presence of an additional term in
Theorem 2, that being

ε

(
1 +

2R2K

γ2

)
,

with ε > 0 representing the accuracy up to which we solve the local ERM. We
can therefore see that, as long as the local ERMs are solved up to precision
ε = O

(
1

n|C(1)|

)
, the rates of Theorem 1 are recovered, i.e., the final MSE
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is of the order O
(

1
n|C(k)|

)
, for all k ∈ [K]. This in turns leads to a local

iteration requirement of T ≥ max
{
15,

4n|C(1)|Γ2

µ2
ℓ

}
and

T

log log (T )
≥
(
6LΓ2

µ2ℓ
+ 4LG(121G+ 1)(1 + β log n)

)
n2|C(1)|2.

Remark 19. We can see from Corollary 2 that, if we solve the local problems
up to precision ε = 1

n|C(1)| , we again obtain the order-optimal MSE rates

E∥θ̃k − θ⋆k∥2 = O
(

1

n|Ck|

)
,

for all k ∈ [K].

Remark 20. Note that the sample size requirement implicitly places a re-
quirement on the precision up to which we solve the local ERMs, i.e., we
have

ε <
(D − 2γ)2|C(K)|2

4SF (2m− |C(K)| − |C(K−1)|)2
.

This requirement can again be seen in terms of the "problem difficulty", with
respect to different system aspects. For example, if the clusters are well
separated, so that D−2γ is large, we can solve the local ERMs up to moderate,
or even low precision, while for clusters that are not well separated, we need
to solve the local ERMs to high precision in order to achieve the optimal
rates. Similarly, if the clusters are well balanced, i.e., |Ck| = m

K , for all

k ∈ [K], the term |C(K)|2
(2m−|C(K)|−|C(K−1)|)2 evaluates to 1

4(K−1)2
, while in the

extreme case of |C(K)| = |C(K−1)| = 1, the term evaluates to 1
4(m−1)2

. For
K ≪ m, we see that balanced clusters (easier clustering problem) again lead
to a lower precision requirement than the imbalanced clusters case. Finally,
recall that SF = maxk∈[K]

GFk
µFk

, where GFk
is the Lipschitz constant of Fk

(not the gradient!), while µFk
is the strong convexity constant of Fk, hence

showing that, if Fk’s are strongly convex (high µFk
) and don’t have big jumps

(low Lipschitz consant GFk
), the overall precision to which we have to solve

the local ERMs is relaxed.

Remark 21. The choice of SGD as the local solver is based on the flexibility
offered by the algorithm. The results from Lemmas 3 and 4 do not depend on
either the setting being online or locally stored data, nor do they place any
requirement on the mini-batch size used. This however leads to sub-optimal
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dependence on ε in the requirements on the number of local iterations each
user has to run.

Remark 22. If all the n local data samples were available to each user, vari-
ance reduction methods such as SAGA [45] and SVRG [46] could be applied,
making the number of iterations T dependence on ε only logarithmical, i.e.,
T = O

(
log 1

ε

)
.

Remark 23. Finally, we remark that Assumption 6 is the most general
form assumption on the loss function and as such, leads to the requirement
of solving the ERM to precision ε2. As shown in [33], Theorem 2, if the loss
is a generalized linear loss, then it suffices to solve the ERM up to precision
ε. While such an assumption is satisfied by a certain class of strongly convex
loss functions, such as support vector machines, linear and logistic regression,
it is less general than Assumption 6.

5 Numerical experiments

In this section we present numerical experiments on linear regression prob-
lem. All of the experiments are implemented in python. To solve the local
empirical risk problems, we use CVXPY [47]. The results presented in sub-
sections below are averaged across 20 runs.

We consider a linear regression problem, where the data generating pro-
cess for each cluster is given by

y = ⟨x, u⋆k⟩+ ϵ,

where ϵ ∼ N (0, 1), i.e., ϵ follows a standard Gaussian distribution. The
number of clusters is set to K = 10. The vectors u⋆k are d-dimensional,
with d = 20, and each component is drawn from a uniform distribution,
independent of one another. Specifically, we drew u⋆k’s as: u⋆1i ∼ U([1, 2]),
u⋆2i ∼ U([4, 5]), u⋆3i ∼ U([7, 8]), u⋆4i ∼ U([10, 11]) and u⋆5i ∼ U([13, 14]), with
u⋆6 through u⋆10 begin generated from the corresponding negative intervals,
i.e., u⋆6 ∼ U([−2,−1]), through to u⋆10i ∼ U([−14,−13]), respectively, for all
i ∈ [d]. Such a choice of u⋆k’s ensures that D > 0. Each cluster is assigned a
total of Nk = 100000 points, where the datapoints x are generated as follows:
for each x ∈ Rd, we choose 5 random components in [d] that are distributed
according to N (0, 1), while the other components are set to zero. A similar
setup was considered in [14], with K = 1.

To measure the error, we use the quadratic loss, i.e.,

ℓ ((x, y);u) = (y − ⟨x, u⟩)2.
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Under the proposed loss, we have that u⋆k’s are the population optimal mod-
els, i.e., u⋆k = argminu Fk(u), k ∈ [K].

We consider a FL system with m = 100 users and a balanced clustering,
i.e., |Ck| = m

K = 10, for all k ∈ [K]. Each user i ∈ Ck is assigned n
points uniformly at random, from the corresponding sample Nk, such that
no data point is assigned to two different users, effectively simulating an IID
distribution of data within clusters. We benchmark the proposed method
with the following methods:

• Oracle Averaging - an oracle method that knows the true clusters be-
forehand and applies the averaging method from [14] on each individual
cluster, i.e.,

uk =
1

|Ck|
∑

i∈Ck

ûi, (31)

with ûi the local ERM of user i and Ck, k ∈ [K] being the true under-
lying clustering;

• Cluster Oracle - an oracle method that contains all of the data points
assigned to the users from the same clusters, i.e., a total of mn

K data
points per cluster and trains the models on all of the data, i.e.,

uk = argmin
u

K

m

∑

i∈Ck

fi(u),

with fi’s given by (4);

• Local ERMs - ERMs trained on each user’s local data;

• Naive averaging - the method from [14], that averages the local ERMs
across all users, oblivious to system heterogeneity.

Cluster Oracle is the equivalent of centralized learning, i.e., is the method
that trains on all the data available in the cluster, achieving the best order-
optimal MSE rate O

(
1

n|Ck|

)
(e.g., [33]). On the other hand, [14] show that

Oracle Averaging matches the performance of Cluster Oracle if the sam-
ple size is above a threshold. Therefore, using Cluster Oracle and Oracle
Averaging as benchmarks illustrates: 1) how fast our method attains the
order-optimal MSE rate and 2) the additional requirements on the sample
size to reach the order-optimal rate, compared to Oracle Averaging, that
stem from not knowing the true clustering.
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To measure the quality of performance, we present the average normal-
ized MSE, i.e., for each of the above estimators, we compute

1

m

m∑

i=1

∥ũi − u⋆(i)∥2

∥u⋆(i)∥2
, (32)

where u⋆(i) denotes the population optima associated with user i, while ũi
is the estimator associated with user i. For example, if we measure the
performance of Oracle Averaging estimator from (31), (32) evaluates to

1

K

∑

k∈[K]

∥uk − u⋆k∥2
∥u⋆k∥2

.

To select the parameter λ, we first compute the lower and upper bounds
in (12). If the condition is satisfied, so that the lower bound is strictly smaller
than the upper bound, we choose λ uniformly at random from the interval
defined by the lower and upper bounds in (12). Otherwise, for simplicity, we
take lambda to be equal to the upper bound.

Figure 1 presents the performance using the linear regression models. On
y-axis we plot the averaged normalized MSE (32), while on the x-axis, we
present the number of samples n available to each user. We can see that, for
a small number of samples (less than 300), our method clusters each user to
an individual cluster, effectively performing like the local ERMs. This can be
explained by the fact that in the small sample size regime, the condition (10)
is not satisfied (with high probability) and typically the upper bound will
be small, hence resulting in a large number of clusters. The results can po-
tentially be improved by running clusterpath, but for illustrative purposes,
we went with the simple choice of setting lambda to be equal to the upper
bound. On the other hand, as n grows, we see a sharp phase transition in
the quality of our estimator, in the interval between 300 and 400 samples,
after which the performance of our method matches the order-optimal per-
formance of both the oracle methods, as predicted by the theory. Oracle
Averaging performs slightly worse than Cluster Oracle in the small sample
regime, but quickly matches the performance of Cluster Oracle, as expected.
The difference in the number of samples required for reaching order-optimal
rates of our proposed method and the Oracle Averaging (450 and 350 samples
required, respectively), as outlined above, stems from the additional require-
ments of our method to produce an exact clustering. Finally, we see that
the naive averaging method consistently performs badly, as it is completely
oblivious to the clustering structure, hence illustrating that a global model
approach can be bad in the presence of system heterogeneity.
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Figure 1: Performance of different methods for linear regression, versus the number of
samples available per user. We can see that our method matches the order-optimal MSE
rates for a sufficiently large sample size.
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Figure 2: Number of clusters produced by convex clustering for linear regression, versus
the number of samples available per user. We can see that convex clustering is able to
recover the exact clustering for a sufficiently large sample size available to each user.

Figure 2 presents the performance of convex clustering. On y-axis, we
plot the number of clusters produced by the convex clustering algorithm. On
x-axis, we again plot the number of samples n. Figure 2 is consistent with
the results from Figure 1, as it shows that, for small n (less than 300), convex
clustering clusters each user separately, which, due to the low sample regime
and our sub-optimal choice of λ, is to be expected. On the other hand, there
is a sharp phase transition in the number of clusters for n between 300 and
400, after which convex clustering consistently produces K ′ = 10 clusters.
Moreover, we can see that the clustering produced by the convex clustering
method is correct, as our method matches the performance of both oracle
methods that know the true clustering.
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6 Conclusion

We proposed a one-shot approach for CFL, based on a simple inference and
averaging scheme. The proposed approach is communication efficient, as it
requires a single round of communication. Moreover, our theoretical analy-
sis showed that the method provides order-optimal MSE rates, in terms of
the sample size. Compared to the state-of-the-art algorithms that require
multiple rounds of communication, our method improve the existing results
by a factor that is logarithmic in the total number of samples in the sys-
tem, our metod provides significant communication reduction. Remarkably,
unlike other methods that require knowledge of K, e.g., [29], [28],[30], our
method does not require any knowledge of the underlying number of clusters
K. Numerical experiments corroborate our findings.
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A Appendix

In this Appendix we show conditions under which it is suitable for two users
with different distributions to form a cluster by merging their respective
data. As in the main body, we use θ⋆k and θ̂i to denote the population
optimal of cluster k ∈ [K] and local ERM of user i ∈ [m], respectively,
i.e., θ⋆k = argminθ∈Θ Fk(θ) and θ̂i = argminθ∈Θ fi(θ). We then have the
following result.

Lemma 7. Let Assumption 3 hold and assume ℓ is strongly convex. Let
all users sample data from a unique distribution, i.e., each user i samples
data following Di, i ∈ [m]. Denote by Dk the mixture of distributions Di

and Dj, i.e., the distribution such that Fk(θ) = piFi(θ) + pjFj(θ), where
0 < pi, pj < 1, such that pi + pj = 1. If the distributions Di and Di are such
that

∥θ⋆i − θ⋆j∥2 < ϵ,

then, with high probability

∥θ̂k − θ⋆m∥2 = O
(

1

ni + nj
+ ϵ

)
,

with m = i, j, where θ̂k = argminθ∈Θ pifi(θ) + pjfj(θ).

Some remarks are now in order.
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Remark 24. Lemma 7 tells us that, as long as 1
ni+nj

+ϵ < min
{

1
ni
, 1
nj

}
, i.e.,

ϵ <
min{ni,nj}

max{ni,nj}(ni+nj)
, we have that the model trained on the joint datasets of

users i and j is beneficial to both users. For example, when ni = n, ∀i ∈ [m],
the condition on ϵ evaluates to ϵ < 1

2n .

Remark 25. If 1
ni+nj

+ ϵ < min
{

1
ni
, 1
nj

}
, Lemma 7 tells us that it is bene-

ficial to treat the users i and j as belonging to the same cluster. Therefore,
averaging the local ERMs trained by users i and j leads to mutual benefits,
even though the two users come from different, but mutually close distribu-
tions (as measured by the distance of the population optima). Therefore, it
is beneficial to treat users i, j as belonging to the same cluster, justifying the
assumption that 1 < K < m.

Proof of Lemma 7. Applying the results of [33], we have that, with high
probability

∥θ̂i − θ⋆i ∥2 = O
(

1

ni

)
.

Denote by θ⋆k the population optima of the mixture distribution Dk. We
then have

∥θ̂k − θ⋆i ∥2 ≤ 2∥θ̂k − θ⋆k∥2 + 2∥θ⋆k − θ⋆i ∥2

≤ O
(

1

ni + nj

)
+ 2∥θ⋆k − θ⋆i ∥2,

(33)

where the second inequality again follows from [33]. Using strong convexity
of F ’s, we have that

µ

2
∥θ⋆k − θ⋆i ∥2 ≤ Fk(θ

⋆
i )− Fk(θ

⋆
k)

= piFi(θ
⋆
i ) + pjFj(θ

⋆
i )− piFi(θ

⋆
k)− pjFj(θ

⋆
k)

≤ pj (Fj(θ
⋆
i )− Fj(θ

⋆
k))

= pj
(
Fj(θ

⋆
i )− Fj(θ

⋆
j ) + Fj(θ

⋆
j )− Fj(θ

⋆
k)
)

≤ pj
(
Fj(θ

⋆
i )− Fj(θ

⋆
j )
)
,

where we used the fact that θ⋆m = argminθ∈Θ Fm(θ), m ∈ {i, j} in the second
and third inequalities, respectively, with µ the strong convexity parameter
of ℓ. Finally, using L-Lipschitz continuous gradients of F ’s, we get that

Fj(θ
⋆
i )− Fj(θ

⋆
j ) ≤

L

2
∥θ⋆i − θ⋆j∥2 = O(ϵ). (34)
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Combining (33) and (34), we get, with high probability

∥θ̂k − θ⋆i ∥2 = O
(

1

ni + nj
+ ϵ

)
.

Analogous results can be obtained for user j, hence the claim follows.
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Abstract—Federated learning (FL) is proving to be one of the
most promising paradigms for leveraging distributed resources,
enabling a set of clients to collaboratively train a machine learning
model while keeping the data decentralized. The explosive growth
of interest in the topic has led to rapid advancements in several
core aspects like communication efficiency, handling non-IID
data, privacy, and security capabilities. However, the majority of
FL works only deal with supervised tasks, assuming that clients’
training sets are labeled. To leverage the enormous unlabeled data
on distributed edge devices, in this paper, we aim to extend the
FL paradigm to unsupervised tasks by addressing the problem of
anomaly detection (AD) in decentralized settings. In particular, we
propose a novel method in which, through a preprocessing phase,
clients are grouped into communities, each having similar majority
(i.e., inlier) patterns. Subsequently, each community of clients
trains the same anomaly detection model (i.e., autoencoders) in a
federated fashion. The resulting model is then shared and used
to detect anomalies within the clients of the same community
that joined the corresponding federated process. Experiments
show that our method is robust, and it can detect communities
consistent with the ideal partitioning in which groups of clients
having the same inlier patterns are known. Furthermore, the
performance is significantly better than those in which clients train
models exclusively on local data and comparable with federated
models of ideal communities’ partition.

Index Terms—federated learning, unsupervised, anomaly de-
tection

I. INTRODUCTION

Distributed/decentralized ML executed at the edge represents
one of the most promising approaches capable of addressing
the issues that afflict centralized solutions.

In this regard, the Federated Learning (FL) [1] paradigm
has proved to be an effective and promising approach to face
the hard challenges triggered by these distributed settings. It
essentially aims to collaboratively train an ML model while
keeping the data decentralized through the exchange of models’
parameters updates (instead of raw data) that, in its vanilla
version, are iteratively aggregated and shared by a central
coordinating node.

Given its effectiveness, in the last years plenty of subsequent
research works have been released focusing on different core
aspects: improving communication efficiency [2], increasing

This work has been partly funded under the H2020 MARVEL (grant 957337),
HumaneAI-Net (grant 952026), SoBigData++ (grant 871042) and CHIST-ERA
SAI (grant CHIST-ERA-19-XAI-010, by MUR, FWF, EPSRC, NCN, ETAg,
BNSF).

model performance in combination with non-IID data [3],
extending privacy and security capabilities [4] and addressing
client hardware variability [5].

Nevertheless, FL applications and implementations for
mobile edge devices are still largely designed for supervised
learning tasks as a spontaneous consequence of its original
development purpose [6]. Thus, one of the least treated aspects
is the extension of FL to other ML paradigms like unsupervised
learning, reinforcement learning, active learning, and online
learning [7].

This paper specifically aims to apply FL on unsupervised
tasks for mobile edge devices. Unsupervised learning (as well as
semi-supervised and self-supervised learning) has recently been
considered one of the next great frontiers for AI [8]. Unlabeled
data far surpasses labeled data in real-world applications. Hence
its integration with federated contexts is mandatory to fully
unleash the potential of this approach.

In this paper, we consider nodes that have to learn a common
ML model (e.g., a classifier). We assume that sets of these nodes
“see” similar data patterns. However, as we assume that data
are not labeled, nodes need to automatically group themselves
into those sets, to perform FL across members of the same set.
As a specific application case, we consider anomaly detection
(AD) [9], namely, the problem of identifying instances of
rare events (i.e., anomalies or outliers) that are inconsistent
for the majority of data considered as normal (i.e., inliers).
Specifically, our methodology consists of a preprocessing phase
in which each node of the system detects a membership group
(cluster or community) such that each member shares similar
majority/inlier patterns. In fact, to ensure the effectiveness of
an anomaly detection task, a federated model must be trained
on data coming from the same distribution. Once the nodes
are grouped in communities, a federated learning process is
spawned for each of them: nodes of the same group use their
local data to collaboratively train an autoencoder to recognize
their majority pattern (i.e., the inlier class). Autoencoders are
particularly suitable for this purpose since typical FL protocols
involve using a neural network-based model. However, the
methodology is orthogonal to the specific model trained via
FL. Once the federated process is finished, each client gets a
much more accurate global model than it would have obtained
using only its local data, as long as it has joined the proper
community.
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The proposed methodology is particularly suited for mobile
environments for several reasons. First, it allows nodes not
to exchange local data, thus addressing privacy and network
resource limitations. Second, it supports heterogeneous settings
when the federation is not under the control of a single
entity (like in a datacenter), but where nodes join “freely”
the federation. Third, it is tailored to using tiny ML models
on individual nodes, which is mandatory for realistically
implementing decentralized model training on mobile devices.

This work can subsequently be framed in a more general
context of anomaly detection in which normal data belong to
multiple classes (in contrast to the typical AD task involving
only a single inlier class). For instance, the methodology
proposed, whose output is a set of models each specialized in
identifying a single normal pattern, can be further extended with
ensemble-based methods to efficiently tackle the multi-class
anomaly detection problem, as shown in [10].

The remainder of the paper is organised as follows. In
Section II an overview of the problem and the related works are
discussed. In Section IV we list the preliminaries and describe
our method in detail. In Section V we discuss the results of
the experiments, and in Section VI we draw the conclusions.

II. RELATED WORKS

Federated Learning is a distributed learning framework
particularly amenable to optimize the computing power and the
data management on edge devices. It is now widely considered
modern and more effective evolution of the more traditional
distributed paradigms [11]–[15], in which models are trained
on large but ‘flat’ datasets within a fully controlled environment
in terms of resource availability and data management.

FL enables to relax many of the traditional constraints and,
since its introduction [1], several lines of research contribute to
fast advances [7]; additionally, from the application perspective,
many specific use-case solutions have already been deployed
by major service providers [6], [16], [17].

Due to space reasons, in the rest of the section, we provide
an overview of unsupervised approaches to FL, which are the
closest area with respect to the focus of this paper.

Very few works combining federated learning and unsuper-
vised approaches have been released, each of them dealing
with limited scenarios and settings. Reference [18] is the
first to introduce unsupervised representation learning in a
federated setting, but it simply combines the two concepts
without assuming the typical issues of distributed settings,
particularly for mobile environments (e.g., dealing with non-
IID data, scaling the number of devices, different application
domains).

Reference [19] make progress on the same problem by
adding and facing two relevant challenges: (i) inconsistency
of representation spaces, due to non-IID data assumption, i.e.,
clients generate local models focused on different categories;
(ii) misalignment of representations, given by the absence of
unified information among clients.

Reference [20] introduced an unsupervised federated learning
(FL) approach for speech enhancement and separation with

non-IID data across multiple clients. An interesting aspect of
this work is that a small portion of supervised data is exploited
to boost the main unsupervised task through a combination of
updates from clients, with supervised and unsupervised data.

In [21] authors present a first effort for introducing a
collaborative system of autoencoders for distributed anomaly
detection. However, the data collected by the edge devices
are used to train the models in the cloud, which violates an
essential FL feature. Locally, the models are used for inference
only.

A more recent work [22] in a similar direction proposes a
federated learning (FL)-based anomaly detection approach for
identification and classification intrusion in IoT networks using
decentralized on-device data. Here the authors use federated
training rounds on Gated Recurrent Units (GRUs) models and
keep the data intact on local IoT devices by sharing only the
learned weights with the central server of the FL. However,
dealing with a classification task still assumes the availability
of labeled data.

III. PROBLEM FORMULATION AND PRELIMINARIES

We consider a distributed learning system with a set of clients
M and a set of data distributions C, such that |C| ≤ |M |. With
data distribution, we refer to a set of identically distributed data
representing a specific pattern (e.g., observations of phenomena
belonging to the same class of events, in case of a classification
task). We assume that every client receives a portion d ∈
(0%, 50%) of its samples from a single distribution Cout ∈
C, and the remaining (100 − d)% from Cin ∈ C, such that
Cin ̸= Cout. Thereby, the two samples partitions within each
client form the outlier and inlier classes, respectively. This
split represents a basic assumption when dealing with AD
tasks [9]. d ∈ [5%, 15%] is generally a realistic value [23],
thus adopted in the majority of related works. Note that this
scenario corresponds to assuming local skewed data, i.e., that
each node “sees” a prevalence of data of a single class (its
inlier class) and a minority of data from (one of the) other
classes. This is also quite realistic in practice in AD tasks.

The challenge addressed in the paper is the following. In case
of supervised learning, data belonging to each class are labelled,
so each node knows which other nodes “see” the same majority
class, and therefore forming FL groups is straightforward. In
unsupervised cases, each node can detect its majority class from
local data, but has no direct information to know which other
nodes see the same majority class. Therefore, the main objective
of our methodology is to identify an effective algorithm for
nodes to form consistent groups (i.e., groups that see the same
majority class), to then run a standard FL process across nodes
of the same group.

Note that, as will be clear from the detailed description in
Section IV, at the end of the first step of our methodology
clients become partitioned into k disjoint groups S1, . . . , Sk.
In the ideal case, each group corresponds to the (unknown to
the clients) set of nodes seeing the same inlier class Cin, and
therefore in the ideal case k = |C|.
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IV. PROPOSED METHODOLOGY

As anticipated in Section I our methodology consists in two
logical steps. In the first step we group clients that “see” the
same inlier class, via a fully autonomous and unsupervised
process. In the second step, we run a standard FL process
among clients belonging the same group. We present the two
steps in the following sections.

A. Step I: group identification

The aim of this phase is to make the clients join a group
(i.e. cluster) having the same (or similar) majority class Cin.

To achieve this, we firstly train a “classical” AD model (e.g.,
OCSVM) on every client, using only its local data, such that
each of them is able to compute a preliminary split of its data
into inliers and outliers. Thereafter, every couple of clients
perform the following steps: (i) they exchange their respective
models, and (ii) they use the partner’s model to split its local
data into “normal” and “anomalous” data through an inference
step. In other words, for every pair of nodes (mi,mj), node
mi uses node’s mj local model to classify its own local data,
and vice versa. If the classification accuracy is high enough,
it means that node’s mj model has been trained on the same
inlier class of node a, and therefore mi and mj should be in
the same group.

Note that, it is not necessary to use a very complex local
model at this step. Although the local model of a client only
enables an approximate preliminary inliers/outliers split, it
suffices to detect clients sharing the same majority class of
data, as long as those patterns of data in those classes are
sufficiently different (as it is the case in typical AD tasks).

Given a client mi, from its perspective this phase is detailed
in Algorithm 1. Specifically, on the local dataset of the i-th
client, i.e., xi, an inference step is computed using its own
locally trained model (line 4) and all the models of other clients
(line 9). yj,i is the output binary vector given by the AD model
of the j-th client on the data of the i-th client. Thus, inj,i is the
portion of inliers in the vector yj,i. The boolean bj,i indicates
whether the i-th client flags the j-th client as a candidate for the
association. The output the process corresponds to the group
of candidate clients Gi with inlier classes similar to mi.

At the end of algorithm 1, each client has a local view
of which other clients should belong to its group. However,
different clients in the same group may have different local
views (i.e., even if mj is in Gi, Gj may not be identical to
Gi). In order to obtain an overall view of the groups, shared
by all nodes, we adopt the following method.

Since the association of two clients is reciprocal (line 14),
a undirected graph can be built from all the resulting groups
of candidates of each client. A link between two nodes means
that those two nodes mutually “think” to be in the same group.
Finally, a community detection algorithm is run on this graph
to detect which groups of nodes should be considered part of
the same set and thus undergo a standard FL step. In other
words, we assume that communities found at the end of this
step are the groups of clients with the same inlier class.

Algorithm 1 Client mi local training and association

Input: AD Model Modi, contamination d, association thresh-
old q, set of other clients M

Output: Group Gi of candidate clients similar to mi

1: procedure LOCALAD(Modi, d, q,M )
2: Gi ← ∅
3: Modi =Modi.fit(xi, d)
4: yi,i =Modi.predict(xi)
5: ini,i = inlierPercCount(yi,i)
6: send(Modi,M)
7: for all mj in M do
8: Modj = receive(mj)
9: yj,i =Modj .predict(xi)

10: inj,i = inlierPercCount(yj,i)
11: bj,i = ini,i − q ≤ inj,i ≤ ini,i + q
12: send(bj,i,mj)
13: bi,j = receive(bi,j ,mj)
14: if bj,i AND bi,j then
15: Gi ← mi

16: end if
17: end for
18: return Gi
19: end procedure

B. Step II: federated outlier detection

The result of the first phase is a set of k groups (or
communities) G0, . . . , Gk; for each of them a FL instance
is started using autoencoders as models. Autoencoders are
suitable for the purpose for two main reasons: (i) they naturally
fit into the FL framework, being NN-based; (ii) they can be
effectively used in AD task. In fact, they essentially learn
a compressed representation of the unlabeled data used for
the training, performing a nonlinear dimensionality reduction.
Once trained, the reconstruction error of a given sample can
be used to classify it using a threshold.

We use the vanilla version of the Federated Averaging
(FedAvg) [1], a FL protocol based on averaging the local
stochastic gradient descent updates to compute the global model.
At the end of each federation process, the trained autoencoder
is shared among the clients of the same group.

Note that, the community detection step requires either a
central entity that runs the algorithm once and for all nodes,
or that the graph is shared among all nodes and each runs
the same community detection algorithm individually. Even
in the former case, our methodology does not require that
nodes share local data with any central controller, and thus
can address situations where centralized learning is unfeasible
or impractical (e.g., due to data ownership reasons).

V. EXPERIMENTS

In this section, we describe the numerical simulations to
assess the performance of the proposed methodology. The
baseline is given by the local model scheme, in which every
client trains its model using only local data. We show a further
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comparison with an ideal partitioning scheme in which the
groups of clients having the same inlier patterns are known.
This corresponds to a supervised FL algorithm, where all data
are labeled by a central entity. Our code is based on well-
accessed and standard frameworks: Tensorflow, Scikit-Learn,
PyOD and Flower. For the sake of reproducibility, the code is
available at https://github.com/mirqr/FedAD

A. Datasets and setup

We test our methodology on the MNIST [24] and the fashion-
MNIST [25] datasets, using the original 60000-10000 train-test
splits. Since both have ten classes, we have |C| = 10 data
distributions.

Locally, given a portion of outlier d, the train set of every
client has d percent of its samples from a single distribution
Cout ∈ C, and the remaining (100−d) percent from Cin ∈ C,
such that Cin ̸= Cout.

With a view to a collaborative anomaly detection task, we
ensure that all the datasets owned by the clients are numerically
balanced and disjoint. The set of clients M that compose
an experimental setup is configured as follows: we define a
parameter p as the number of clients within the same data
distribution (i.e., class), meaning that the train samples of a
class Cin of the original dataset (e.g., MNIST) are evenly and
randomly spread to form the inliers of p clients. Accordingly,
the portion of outliers for each client within the same group
and characterized by the same Cin, is given by the samples of
a class different from Cin. We ensure that the outlier classes
C \ Cin are equally represented within the group, meaning
that for each client of the group the minority class is “circular”
through the set C \ Cin.

As an example, using all the available data distributions
of the dataset (i.e., 10 classes), and by setting p = 9, then
the training data distribution among the clients of the group
Cin = 0 is shown in Fig. 1. The same applies to every group,
i.e., an experimental system configuration ends up with |M | =
|C|p clients. Consequently, the ideal partitioning we aim to
find through the community detection phase is composed by
k = |C| = 10 groups with p clients each.

Note that, without loss of generality, to obtain an balanced
distribution of the outliers classes among the clients of a group,
it is convenient to set p = (|C| − 1)n, n ∈ N. Additionally,
since for each configuration run, we exploit all the samples of
the dataset involved, as a higher value of p leads to smaller
local datasets for the clients.

B. Models

In the first phase, every client detects the partners having
the same inlier class. As explained in Section IV, a client
tests the others’ trained models on its local data and selects as
partners those whose model produces an inliers/outliers ratio
similar to its own. We select the “association” threshold q in
the interval [0.01, 0.10], i.e., q represents the maximum of the
percentage difference between the data classified as normal
by the local model, and those considered normal by using
the partner’s model. In other words, the local client considers

another client as partner if the model of the latter produces
a fraction of normal data on the local dataset equal to the
percentage produced by the local node, ±q. In particular, we
found that the value q = 0.08 turns out to work well on every
experiment.

We choose the model of the first phase with the following
requirements: (i) it must be easy to set up and fast to train;
(ii) it must be light to store and to be transmitted; (iii) it must
provide a preliminary sufficiently good outlier detection to
allow the clients to correctly group for the next phase.

There is not a model generally suitable for this purpose;
it strongly depends on the type of data used, especially for
AD tasks [26]. Moreover, the abovementioned requirements
force us to discard any NN-based AD model. Thus, we have
identified OC-SVM [27] to be a good choice for our cases.
It requires essentially two parameters to be set: the kernel
and the parameter ν ∈ (0, 1], which is an upper bound on the
fraction of training errors and a lower bound on the fraction of
support vectors. The fine-tuning of ν in contaminated data can
be challenging without any assumptions on the distribution of
the outliers. However, since in our tests we assume to know
(only) the contamination value d = 10% for every dataset, we
can set ν = 0.1. Moreover, we use the RBF kernel.

For the second phase, we use a fully connected autoencoder,
a NN-based model that naturally fits into a federated learning
framework, with a three-layers topology (64-32-64), ReLU
activations on the hidden layers, and Sigmoid activation on
the output layer. Thirty-two neurons for the middle layer is
a reasonable value to avoid an information bottleneck. We
empirically observed that using more layers/neurons does not
significantly improve the effectiveness due to the tendency of
the neural network to overfit on this specific dataset.

C. Group detection and anomaly detection performance

For both the MNIST and the fashion-MNIST datasets, we
run four tests varying the value of p : {9, 18, 27, 36}. In all
the tests we use the contamination parameter d = 10% and we
take into account all the available classes, i.e., |C| = 10. Let
mCi,j be the j-th client with majority class Ci; we define ICi

as the ideal set of clients having the same majority class Ci,
e.g., I0 = {m0,0, . . .m0,p−1}.

In Table I, we show the results of the community detection
phase for the MNIST dataset: we find nine communities, and
in most cases, they match with the ideal group of clients. The
major exception is given by G4, that in all the four cases
is given by the union of I4 and I9, meaning that the clients
having 4 and 9 as inlier class join the same community. This is
a consequence of the OC-SVM model’s inability to distinguish
the two digits, and it represents a typical behaviour when
dealing with image classification using MNIST. A similar
result occurs for G5 when p = 36 (Table Id), in which the
union of I5 and I8 is detected as single community. In this
case, recalling that a higher value of p leads to smaller local
datasets for the clients, it is reasonable that for p = 36 the local
models do not have enough samples and are no longer able
to distinguish the two digits. We can observe the anticipation
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Fig. 1: Histograms of training data distribution for the group Cin = 0 (i.e., 0 is the common inlier class) with p = 9.

TABLE I: Community detection for MNIST

(a) p = 9

Community ID Members
G0 I0
G1 I1
G2 I2
G3 I3
G4 I4 ∪ I9
G5 I5
G6 I6
G7 I7
G8 I8

(b) p = 18

Community ID Members
G0 I0
G1 I1
G2 I2
G3 I3
G4 I4 ∪ I9
G5 I5
G6 I6
G7 I7
G8 I8

(c) p = 27

Community ID Members
G0 I0
G1 I1
G2 I2
G3 I3
G4 I4 ∪ I9
G5 I5 ∪m8,18

G6 I6
G7 I7
G8 I8 \m8,18

(d) p = 36

Community ID Members
G0 I0
G1 I1
G2 I2
G3 I3
G4 I4 ∪ I9
G5 I5 ∪ I8
G6 I6
G7 I7
G8 I8

of this behaviour when p = 27 in Table Ic in which the client
m8,18 mistakenly joins I5.

Similar considerations can be done for the fashion-MNIST
case (Table II). Here the ideal groups of clients I1 and I3 are
detected as a single community in the four testes. The same
applies to the groups I0, I2, I4, I6, excluding the case p = 9
(Table IIa), in which I0 is correctly isolated. This result is
expected as fashion-MNIST is notably harder than MNIST.

D. Experimental result: federated outlier detection

We compare our methodology with two baselines: (i) local,
where clients only train on local data; (ii) ideal, in which a
client mCi,j uses the model trained through federated learning
on the set of clients ICi

, i.e., the set of the clients sharing
the same majority class. The test samples for each client are
randomly sampled from the MNIST/fashion-MNIST test set,
following the same inlier/outlier classes and the ratio of the
corresponding client.

In Tables III and IV we show the test AUC score on MNIST
and fashion-MNIST by varying the value of p, meaning that for
each row we compute the average AUC score of p|C| clients.
Our methodology performs almost as the upper bound baseline,
represented by the ideal federations of clients. Nevertheless,
the results are consistent with the partitioning we obtain in

TABLE II: Community detection for fashion-MNIST

(a) p = 9

Community ID Members
G0 I0
G1 I1 ∪ I3
G2 I2 ∪ I4 ∪ I6
G3 I5
G4 I6
G5 I7
G6 I8

(b) p = 18

Community ID Members
G0 I0 ∪ I2 ∪ I4 ∪ I6
G1 I1 ∪ I3
G2 I5 \m5,6

G3 I6
G4 I7
G5 I8
G6 m5,6

(c) p = 27

Community ID Members
G0 I0 ∪ I2 ∪ I4 ∪ I6
G1 I1 ∪ I3
G2 I5
G3 I6
G4 I7
G5 I8

(d) p = 36

Community ID Members
G0 I0 ∪ I2 ∪ I4 ∪ I6
G1 I1 ∪ I3
G2 I5
G3 I6
G4 I7
G5 I8

the first step with the community detection that, especially for
MNIST, identifies the right groups of clients in most of the
cases. In the fashion-MNIST case, there are more exceptions to
this behaviour. For instance, clients with different inlier classes
all join a common group, as shown in Tabel IV (e.g., G1).
This affects the average AUC scores, which appear slightly
less than the ideal upper bound (as opposed to nearly identical
MNIST scores), but are still satisfactory.

More detailed results are shown in Tables V and VI, in which
we only consider the detected communities that do not match
the ideal cases. In these tables, each row corresponds to the
average test AUC score for a fixed p and all the clients having
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TABLE III: Test AUC on MNIST. For each p, mean ± std are
computed on p|C| clients

Local Community (ours) Ideal
p
9 0.773± 0.205 0.836± 0.18 0.839± 0.185
18 0.769± 0.207 0.835± 0.18 0.836± 0.181
27 0.77± 0.208 0.836± 0.18 0.84± 0.181
36 0.766± 0.207 0.819± 0.191 0.838± 0.182

TABLE IV: Test AUC on fashion-MNIST. For each p, mean
± std are computed on p|C| clients

Local Community (ours) Ideal
p
9 0.714± 0.166 0.761± 0.161 0.772± 0.155
18 0.71± 0.173 0.747± 0.166 0.769± 0.155
27 0.706± 0.165 0.75± 0.162 0.765± 0.154
36 0.707± 0.166 0.749± 0.161 0.765± 0.151

majority class CIN . The difference between the community
(ours) and the ideal case is that in the former the clients of
CIN are trained through the corresponding federation G such
that CIN ∈ G (Tables I and II), while in the latter they are
trained through the perfect federation CIN = IIN .

As regards the MNIST case, we always obtain a community
G4 = I4∪I9 and, for p = 36, we have an additional community
G5 = I5 ∪ I8. We ignore the one client mismatch in the
p = 27 (Table Ic) as we verified that its influence is negligible.
In Table V we observe that the clients with majority class
CIN = 4 still perform well with our methodology, with an
average increase of 6% in the AUC score from the local case
and an average decrease of 2% from the ideal case. CIN = 9
scores end up approximately in the middle of the two bounds,
highlighting, however, that the local case already reaches a
good score of 0.83 for any p. CIN = 5 is the only case that
performs noticeably worse than the ideal case, with a decrease
of 9% in the AUC score. However, also in this case there is
a noticeable improvement over using the local models only.

For the fashion-MNIST case (Table VI), the scores are
predictably lower than in the previous case: the gaps between
the two bounds are generally tighter, but in any test, the scores
of our methodology still fall in the middle. Clients of CIN = 1
almost reach the ideal result, although the difference with the
local one is minimal, while clients with CIN = 3 have on
average a ∼ 4% increase/decrease on both the lower/upper
baseline. Clients of CIN = 2, CIN = 4 have an average AUC
score very close (+1%) to the lower baseline for p > 8; this is
precisely the value beyond which their federation is the union
of four sets, i.e., I0 ∪ I2 ∪ I4 ∪ I6, thus totalling four different
majority classes. On the other hand, the remaining clients of
this big federation, CIN = 0 and CIN = 6, are still able to
reach a ∼ 7% increase on the local case and be very close to
the ideal case.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we propose a new methodology for federated
learning in unsupervised settings, particularly amenable for
dynamic mobile environments without central coordination.

TABLE V: Test AUC ± std on MNIST

Local Community (ours) Ideal
p CIN

9 4 0.749± 0.245 0.833± 0.197 0.833± 0.232
9 0.823± 0.184 0.86± 0.159 0.881± 0.138

18 4 0.774± 0.2 0.819± 0.204 0.855± 0.19
9 0.828± 0.176 0.872± 0.149 0.881± 0.139

27 4 0.762± 0.214 0.823± 0.208 0.84± 0.205
9 0.836± 0.158 0.862± 0.161 0.882± 0.132

36

4 0.76± 0.215 0.799± 0.213 0.84± 0.201
9 0.838± 0.156 0.862± 0.157 0.881± 0.13

5 0.708± 0.194 0.718± 0.188 0.807± 0.177
8 0.677± 0.196 0.696± 0.195 0.719± 0.219

TABLE VI: Test AUC ± std on MNIST

Local Community (ours) Ideal
p CIN

9

1 0.911± 0.051 0.94± 0.028 0.946± 0.025
3 0.741± 0.127 0.788± 0.139 0.83± 0.094

2 0.663± 0.146 0.686± 0.154 0.719± 0.125
4 0.714± 0.128 0.762± 0.13 0.782± 0.117
6 0.642± 0.142 0.675± 0.144 0.698± 0.137

18

1 0.913± 0.04 0.935± 0.036 0.944± 0.026
3 0.751± 0.107 0.792± 0.14 0.831± 0.082

0 0.683± 0.125 0.742± 0.124 0.775± 0.089
2 0.665± 0.153 0.667± 0.16 0.711± 0.126
4 0.713± 0.142 0.724± 0.134 0.775± 0.115
6 0.626± 0.142 0.68± 0.137 0.704± 0.133

27

1 0.907± 0.04 0.937± 0.033 0.944± 0.024
3 0.74± 0.099 0.77± 0.164 0.813± 0.088

0 0.688± 0.109 0.743± 0.101 0.773± 0.08
2 0.674± 0.136 0.692± 0.145 0.763± 0.109
4 0.71± 0.13 0.725± 0.117 0.777± 0.107
6 0.63± 0.125 0.705± 0.126 0.714± 0.133

36

1 0.907± 0.041 0.936± 0.035 0.943± 0.024
3 0.73± 0.118 0.762± 0.16 0.803± 0.093

0 0.68± 0.113 0.754± 0.095 0.772± 0.078
2 0.675± 0.127 0.694± 0.144 0.733± 0.123
4 0.714± 0.132 0.743± 0.119 0.783± 0.107
6 0.639± 0.131 0.698± 0.125 0.717± 0.127

We specifically focus on Anomaly Detection tasks to define
the details and test the methodology. The methodology is
composed by two sequential steps: in the first step we detect
the communities of clients having similar majority patterns
(i.e., inlier class); this is achieved by having the clients perform
a preliminary inlier/outlier split of their local data through the
training of an AD model. Two clients join the same commu-
nity when both agree in the inliers/outliers proportion after
exchanging their respective models and computing an inference
step on their local data. Then, each of the resulting community
collaboratively trains a NN-based anomaly detection model
through the federated learning framework.

We tested our methodology on the MNIST and fashion-
MNIST datasets; in most cases, the communities found match
with the ideal groups of clients, which are used as an upper
bound baseline in experimental part. When the ideal groups
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are not found, our methodology merges 2-4 ideal groups into
one community; it occurs in two MNIST classes, obtaining 9
groups, and in 6 fashion-MINIST classes, obtaining 6 groups
in the worst case. The aggregation usually occurs for clients
having similar majority classes (e.g., 4 and 9 in the case of
MNIST).

We finally test the resulting AD federated models trained
by the detected communities in term of AUC score, with
local test sets on each client. In both cases, the results show
clear advantage over the models locally trained (i.e., the
lower baseline), while the performance is comparable with
the federated models of ideal communities’ partition, even for
detected communities in which different majority classes are
merged. This indicates that, even though we may not always
be able to group clients as in the ideal (supervised) case, still
the accuracy of the resulting model is close to optimal, and
significantly better than using local models trained only on
local data.

Future directions can involve several aspects of the proposed
solution. Firstly, the optimization of the community detection
phase, i.e., the all-to-all exchange of the local models may
be suboptimal for high numbers of clients. Moreover, another
possible improvement is the selection of the specific algorithms
used to train local and federated models. For example, the “flat”
fully connected autoencoder we use for the federated training
may be too simple; as an example, when dealing with images,
convolutional autoencoders may be introduced.

Finally, we aim to frame this solution in a more general
context of anomaly detection in which normal data belong to
multiple classes, in contrast to the typical AD task that only
involves a single inlier class.
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Abstract—Autonomous vehicles (AVs) generate a massive
amount of multi-modal data that once collected and processed
through Machine Learning algorithms, enable AI-based services at
the Edge. In fact, only a subset of the collected data present infor-
mative attributes to be exploited at the Edge. Therefore, extracting
such a subset is of utmost importance to limit computation and com-
munication workloads. Doing that in a distributed manner imposes
the AVs to cooperate in finding an agreement on which attributes
should be sent to the Edge. In this work, we address such a problem
by proposing a federated feature selection (FFS) algorithm where
the AVs collaborate to filter out, iteratively, the less relevant at-
tributes in a distributed manner, without any exchange of raw data,
thought two different components: a Mutual-Information-based
feature selection algorithm run by the AVs and a novel aggregation
function based on the Bayes theorem executed on the Edge. The
FFS algorithm has been tested on two reference datasets: MAV
with images and inertial measurements of a monitored vehicle,
WESAD with a collection of samples from biophysical sensors to
monitor a relative passenger. The numerical results show that the
AVs converge to a minimum achievable subset of features with both
the datasets, i.e., 24 out of 2166 (99%) in MAV and 4 out of 8
(50%) in WESAD, respectively, preserving the informative content
of data.

Index Terms—Artificial intelligence, autonomous system,
feature selection, federated learning, human state monitoring,
Internet of things, machine learning.

I. INTRODUCTION

AUTOMATION enables a Cyber Physical System of Sys-
tems (CPSoS) to run with a minimum human assistance

and evolves into autonomy when the human is taken out of the
sensing, decision, and actuation loop. Automation can be used
to operate a CPSoS comprising complex, dynamic, virtual and
physical resources, such as telecommunication networks, com-
puting units, software, sensors, and machines [1]. Humans can
interact with an autonomous system either as passive end-users
(such as passengers in autonomous transportation system) or
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rather as active co-operators in a mutual empowerment relation-
ship towards a shared goal. Such cooperative, connected, and
autonomous systems have the potential to be a game-changer in
multiple domains if they will be capable of positively exploiting
such an inescapable human factor. The increasing development
of semi-Autonomous Driving Systems (ADSs) poses the chal-
lenge of taking the end-user, in the middle of the evolution
process toward fully ADSs. Aside from vehicle control, a CPSoS
needs to monitor the comfort/discomfort of the passenger, as
well, to improve its well-being and to acknowledges the degree
of safety and satisfaction perceived about the ADS. Artificial
Intelligence (AI) is a fundamental technology for deploying the
future CPSoS for ADSs [2]. The stringent computational and
memory requirements for Machine Learning (ML) algorithms
will impose a significant rethinking of the underlying computing
and communication system and will have to fit the constraints of
the onboard units. Information extraction should follow as much
as possible optimal criteria, cooperating with the inherently
distributed nature of the automotive scenario.

Moreover, local processing of information can also be an
advantage in specific scenarios with intermittent connectivity
or when data privacy is a key issue [3]. Hence, reducing the
transfer time needed of either raw data or the relative features
is of the utmost importance in determining the performance of
computation offloading. Intuitively, traditional data compression
techniques [4] could reduce such a delay component, but will
also degrade the relative classification performance [5], pro-
longing the training phases as well as degrading the inference
performance.

Conversely, when information extraction algorithms produce
massive streams of features, selecting the most relevant ones to
feed a ML model becomes very convenient, both in terms of
compression and accuracy preservation. Such an operation is
known as Feature Selection (FS) [6] and allows for achieving
simpler and, therefore, more efficient ML-based models [7].

This work focuses on feature selection efficiency within a
fleet of Autonomous Vehicles (AVs), which collect, through
their sensors, multi-modal raw measurements. Collected data
need to be pre-processed and delivered to feed a remote edge
server for inference tasks. Such a procedure can introduce in-
formation redundancy, which leads to a waste of computing and
communication resources. The AV ensemble aims at limiting
the transmission to the top relevant features only. However, just
a subset of the top-features can be extracted from each local
data collection w.r.t. the whole top-set extracted from the union
of all the local datasets but in a centralized manner. In fact,
the former case may lead to an inconsistent model w.r.t. to the
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Fig. 1. Feature selection and aggregation components of the proposed FFS
system.

latter. Therefore, the AVs, shall participate to a collaborative FS
process, in order to exploit the whole information in a federated
manner. We tackle this problem, by proposing, for the first
time, a Federated-Feature Selection (FFS) algorithm, exploiting
a distributed computing paradigm applied to AVs. In FFS all
AVs collaborate to come up with the minimal set of features
selected from their local datasets.

The proposed FFS system is made up of two components
provided in Fig. 1:� a local FS process runs on each AV and aims at generating

a local distribution probability that ranks the information
associated to a given feature, according to the Mutual
Information (MI) metric [8], [9], which is solved by using
the Cross-Entropy (CE) [10].� An aggregation algorithm executed on the Edge Server
(ES) that combines the local estimates received from the
AVs. The aggregation algorithm is based on a Bayesian
approach to merge the local information into a global
one.

The messages delivered by AVs contain probability vectors
where each element is the probability to select that feature. The
ES returns the “federated” probability vector which is derived
by the aggregation of the vectors received by the AVs, as detailed
in the following, to replace each of the local ones. Note that, the
proposed approach does not need to share any local raw data
but only the estimates of the local most informative features.
Moreover, it guarantees that all the AVs reach a consensus on
the subset of the most informative features, after a finite number
of communication rounds, i.e., the messages exchanged between
the AVs and the ES.

As we show in the paper, the proposed algorithm (i) signif-
icantly limits the control messages exchanged during the FFS
process and (ii) provably let the AVs converge to a subset of top
features, which effectively reduce the information stored and
transmitted by the AVs. Specifically, numerical results show that,
on reference benchmarks, our solution limits data processing
and transmission, by removing up the to 99% of redundant
features from the selected datasets, without loss of accuracy on
the learning model.

Summarising, the novel contributions of this paper are:� A novel FFS algorithm based on the MI CE (client-side)
on the AV and a Bayesian aggregation approach on the ES.

� The theoretical proof that such an algorithm converges to
a stable solution in a fixed number of iterations.� An extensive numerical evaluation tested on two real-world
datasets that shows the efficiency of our solution.

The paper is organized as follows: related works are presented
in Section II; the reference scenario and the system assumptions
are presented in Section III; the theoretical background underly-
ing the proposed feature selection approach is presented in Sec-
tion IV; the federated version of the feature selection algorithm
in presented in Section V; Section VI presents the experimental
results of a study case with two real world datasets, belonging
to different application domains; conclusions in Section VII.

II. RELATED WORKS

A. Feature Selection

Many FS procedures have been proposed in the literature.
In [6], [11], [12] authors provide a comprehensive overview
of the existing methods. Additionally, they consider the most
important application domains and review comparative stud-
ies on feature selection therein, in order to investigate, which
methods outperform for specific tasks. Authors highlight that FS
is based on the identification of the relevance and redundancy
provided by the features with respect to a class attribute function.
The main approaches of FS fall into three categories: filtering,
wrapping, and embedded methods. This categorisation is based
on the interaction between the selected features and the learning
model adopted to take a decision. The output of the wrapping
and embedded methods is tightly connected to the learning
model that uses the selection. Therefore, with these methods FS
and model training cannot be uncoupled. Conversely, filtering
methods are suitable for being used regardless the presence of a
learning model to train.

As shown in [6], [11], [12], most of the well-known filtering
algorithms use information-based metrics for FS, and can deal
with samples of variable lengths, as presented in [13], [14]. A
suitable information-based metric for the FS is the MI. MI has
gained increasing popularity in data mining, for its ease to use,
effectiveness, and strong theoretical foundation. mRMR [15]
and HJMI [16] are some of the most used methods that exploit
MI. These approaches rank the features according to the max-
imization of the MI and let the user to select a desired subset
k. Differently, the proposed algorithm automatically select a
minimal subset of relevant features, also capturing the mutual
dependencies. Note that the formulation of the underlying op-
timization problem is NP-Hard [8], [9], i.e., MI-based feature
selection problem involves the integer programming or, in some
cases, the quadratic integer programming. In [17]–[19] authors
show how to adopt the CE approach to address such native
computational complex problems, for different application sce-
narios. Beyond MI, other filtering methods can use different
metrics, such as in [20] where the authors evaluate the variance
of all the features to measure the impact that each of them has on
the learning process. This method relies on the concept that the
features with zero variance add no information, by considering
the relation between the target variable and feature vectors.
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To the best of our knowledge, all these algorithms are designed
for being executed in a centralised setting, i.e., under the assump-
tion that the whole dataset is available to the learning agent.

B. Distributed Learning

Distributed learning is considered from several perspectives
in the literature. A very consistent body of work deals with
distributed learning based on the Federated Learning (FL)
framework. FL is a distributed learning framework initially
proposed by Google, where a large number of mobile or edge
devices participate in a collective and distributed training of a
shared model. [21], [22]. FL is an iterative procedure spanning
over several communication rounds until the convergence is
reached. Based on this paradigm, several modifications have
been proposed concerning (i) new distributed optimisation al-
gorithms [23]–[26], and (ii) privacy-preserving methods for
FL [27], [28]. Alternatively, other approaches do not rely on
a centralised coordinating server. In [29], [30], authors pro-
pose a distributed and decentralised learning approach based on
Hypothesis Transfer Learning. Similarly to the FL framework,
authors assume that several devices hold a portion of a dataset to
be analysed by some distributed machine learning algorithms.
The aim of [29], [30] is to provide a learning procedure able to
train, in a decentralised way, an accurate model while limiting
the network traffic generated by the learning process. The vast
majority of the distributed learning solutions, presented in the
literature, focus on the model’s training, giving the feature
engineering phase for granted. Until now, the idea of performing
FS, directly, on edge devices remains unexplored.

In the literature only few approaches cope with FS in
distributed settings. In [31], authors present a distributed
algorithm for FS based on the Intermediate Representation,
which aims at preserving the privacy of data, allowing the node
to exchange each other the data they hold. Therefore, in this
method FS is performed under the assumption that all data are
available to the FS algorithm. Moreover, the method presented
by the author depends from the specific learning model that
uses the selected features.

In [32], the authors propose an information-theoretic FFS ap-
proach called Fed-FiS. Fed-FiS estimates feature-feature mutual
information and feature-class mutual information to generate a
local feature subset in each user device. Then a central server
ranks each feature and generates a global dominant feature
subset using a classification approach. This approach has some
commonalities with ours, such as the adopted metric (MI) and
the federated settings. However, differently from [32] (i) we
provide directly the minimum set of relevant features instead
of a ranking, (ii) we propose an aggregation based on Bayes’
theorem that does not rely on any Machine Learning scheme to
finalise the selection (i.e., no regression or classification methods
are adopted in our solution), resulting in a computationally more
suitable approach for vehicular scenarios.

In light of this and to the best of our knowledge, this is
the first paper that proposes a federated mechanism of feature
selection explicitly designed to meet the requirements of the
CPSoS context.

Fig. 2. System architecture. Data sources characterize two different Cyber
Physical Systems (CPSs): the former that monitors the user through wearable
sensors, the latter relative to the ADS.

III. SYSTEM ASSUMPTIONS

In this section, we describe the reference scenario and the
system assumptions considered in this paper. As shown in Fig. 2,
we consider a set of AVs, implementing an ADS each, collecting
data generated by the sensors integrated in a CPSoS and that
collaborates with the others ADSs to learn a minimal, and most
informative set of features from their local datasets. To this end,
the AVs execute an in-network data filtering process through
our FFS approach to reach a consensus in identifying the most
informative feature subset. Finally, the globally shared feature
set is used like a compression scheme before transmitting it to
an ES. Note that, in this system the AVs are only responsible
for finding the best compression scheme applicable to the their
local data in a collaborative way, based only on the control
information they exchange with the ES. Moreover, the ES has
a three-fold role: i) it acts as central coordinating entity in the
FFS process whose purpose is to aggregate the partial control
information sent by the AVs; ii) it acts as final collector for
the compressed data, once the FFS is completed and, iii) runs
the AI services to extract knowledge from data but that is used
only for performance evaluation in this paper. We target two
different user cases to validate the performance of the proposed
FFS method. The former refers to the localization of an AV in the
environment based on images and inertial measurements, and the
latter regards the physiological-state monitoring of a passenger
in the automotive domain. We define two different sub-systems
part of the same CPSoS: the ADS of above, and an Human State
Monitoring System (HSMS) to learn the feeling perceived from
a passenger relatively to the ADS driving style. Therefore, we
assume each AV to be equipped with a camera to capture images
from the surrounding environment aside some inertial sensors
for the former learning task, and a set of body sensors, such
as, Electrocardiography (ECG), Electrodermal Activity (EDA),
Electromyography (EMG), and Respiration (RSP) for the latter.

Each AV is able to locally synchronize the multi-sensory data
such that, for each image, it is possible to associate the cor-
responding inertial measurements leading to an enhanced Raw
Input Datum (eRID). Note that for the scope of this paper it is not
important the specific semantic of the labelling, but it is enough
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to assume a labelling process on the collected data. The AVs are
also equipped with a relatively small edge computing unit (e.g.,
a RaspeberryPi or, at most, an Nvidia Jetson Nano) able to cache
data and execute the FS task, before transmitting the features.
Additionally, the AVs are endowed with a radio communication
interface to communicate toward the ES. It must be noted that the
task is not collecting images of the environment, or physiological
parameters of the user but, conversely, retrieving the information
associated to those images or to those physiological sensors,
e,g., the position of the AV with respect to the surrounding or
the user mood. In particular, the latter is labelled according to
the classification scale provided by questionnaires like PANAS,
SSSQ or SAM [33], which associates numerical labels to the
physiological states.

IV. FEATURE SELECTION

In this section, we provide the theoretical background of the
MI-based FS algorithm and the relative implementation based
on the CE method.

A. Background Feature Selection Based on Mutual
Information

To make the paper self-contained, we report in this Section
the necessary theoretical background needed to get an intuition
about the internal details of the CE-based FS method presented
in Section IV-B.

First, let us define the FS problem as follows:
Definition (FS Problem): Given the input data matrix X

composed by n samples of m features (X ∈ Rn×m), and the
target attributes’ (or labels) vector y ∈ Rn, the FS problem is to
find a k-dimensional subset U ⊆ X with k ≤ m, by which we
can characterize y.

The method we adopt in the paper performs the FS measuring,
through the Mutual Information metric, the amount of informa-
tion that a subset of features (or attributes) U expresses with
respect to a specific target label y.

Formally, the MI between random variables can be defined
as [34], [35]:

I(U;y) = H(y)−H(y|U), (1)

where U = {x1 · · ·xk | k ≤ m} ⊆ X, and H(y|U) is the con-
ditional entropy which measures the amount of information
needed to describe y, conditioned by the information carried by
U. Hence, I(U;y) represents the dependence betweenU andy,
i.e., the greater the value of I, the greater the information carried
by U on y. We recall that the MI between two random variables
A andB is strictly related to the entropyH(·), which defines the
amount of information held by the variables, i.e., the entropy of a
random variable A (i.e., H(A)) and its probability are inversely
proportional: the greater the entropy of a random variable A,
the greater its unpredictability and vice-versa. Hence, we can
assert that the entropy measures the diversity of A in terms of
the uncertainty of its outcomes.

In MI-based FS the features to be selected are those that
maximise (1). These features are typically referred as Essential
Attributes (EAs). By solving the following optimization problem

Fig. 3. Example of the relationship between Mutual Information and Entropy.

we would obtain the optimal global solution to the FS problem
defined in IV-A:

argmax
U

I(U;y)

U = {x1 · · ·xk | k ≤ m} ⊆ X (2)

Note that the problem (2) belongs to the class of Integer
Programming (IP) optimization problems and finding its optimal
solution is NP-hard [36], i.e., the optimal solution U would be
found among all combinations of feature indices of the native
set X.

The problem (2) becomes computationally tractable if ap-
proached through an iterative algorithm which selects and adds
to the subset U one feature at a time. Therefore, instead of
solving 2, we address the problem defined in (3):

arg max
xj∈X\U

I(xj ;y|U),

U = {x1 · · ·xk−1 | k ≤ m} ⊆ X. (3)

For the sake of clarity, we provide an intuitive example based on
the relation between MI and the entropy. Considering Fig. 3, the
circles are the entropy of the random variables A,B,U,y, and
the grey regions are the information carried by the variable A
(or B) on y. The dashed area shows the information redundancy
of the variable A (or B) given the already selected variables in
Uj−1. In this example, the variable A should be added to the set
U since it is more informative than B on y, i.e., its grey area is
larger than B’s, and it is less redundant than B w.r.t. to Uj−1.

The main drawback of this approach is that it might end up
with a sub-optimal solution because, by selecting the features
one by one, the algorithm makes the implicit assumption that
they are independent, which might not hold true. Theoretical
foundations for the incremental version of the FS algorithms has
been proven by the authors in [34], [35]. It is worth mentioning
that a connected issue with problem (3) regards the efficient
evaluation of the MI, which might become prohibitive even for
datasets with a small number of samples. We overcome this
problem by adopting the MIToolbox [37], a state-of-the-art tool
for numerical optimization.

B. CE-Based Feature Selection Algorithm

In this section, we describe the CE-based algorithm that finds,
in a finite number of steps, a solution that well approximates
the one found by solving problem (2), while making negligible
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the assumption of independence among features introduced in
problem (3). In other words, with CE-based FS, instead of
selecting one EAs at a time, we select a set of EAss jointly.

The CE-based algorithm is based on the following intuition:
if the set U contains only EAss, then I(U;y)→ H(y), which
implies that H(y|U)→ 0 [34], [35]. Note that with our ap-
proach, we avoid the greedy research of the set U among all the
possible

(
m
k

)
solutions which realizes H(y|U)→ 0. Instead,

we adopt the stochastic approach. Precisely, we associate each
i-th feature with a random variable zi ∼ Bernoulli(pi). The
CE-based algorithm identifies which variables zi, i = 1, . . . ,m
must have pi → 1, so that the objective function O(U(z)) =
H(y|U) gets close to 0. This is called Associated Stochastic
Problem (ASP) [10]. In this way, we get the optimal distribution
of the binary vector z through which we identify the features
to be selected, i.e. the i-th feature is selected if pi → 1. It is
worth noting that searching for the solution of the optimization
problem through the definition of the ASP has the advantage of
addressing the native problem in (2) as a convex problem.1

We formulate the ASP as a minimization problem, as shown
in (5). In the following we present the essential steps that
brings to its formulation. Briefly, we need to find the probability
distribution g(z,p) of the values in z equal to 1 that solves the
equation:

Pr(O(U(z)) ≤ γ) =
∑

{z}
I(O(U(z)) ≤ γ) g(z,p) (4)

where I(·) is the indicator function of the event O(U(z)) ≤ γ,
and γ is the minimum value for our objective function. Precisely,
γ at step t is calculated as the percentile 1− β of the objective
function calculated by using the samples drawn from the distri-
bution g(z,p) at step t. Note that, the authors in [10] recommend
to set β in the range 0.9− 0.95. The indicator function is equal
to 1 for all the possible configurations in z that verify the event
O(U(z)) ≤ γ, and 0 otherwise.

We estimate g(z,p) through the Likelihood Ratio (LR) esti-
mator with reference parameter p. Precisely, we apply the LR
theory of estimation [10] to define the following optimization
problem and to obtain the optimal value p∗ for the distribution.

p∗ = argmin
p

1
S

S∑

j=1

I(O(U(zj)) ≤ γ) ln(g(zj ,p)) (5)

whereZ = {z1, . . . , zS} is a set of possible samples drawn from
the distribution g(z,p).

As stated above zj = [z1j · · · zmj ] is a vector of independent
Bernoulli random variables where zij takes value equal to 1 with
probability pi and 0 with probability 1− pi. Hence, g(zj ,p) can
be written as:

g(zj ,p) =
m∏

i=1

p
zij
i (1− pi)

(1−zij) ; zij ∈ {0, 1} (6)

1More details are in Section 4 of [10].

Given that the objective function of problem (5) is concave,2

we can solve it in closed form by imposing:

∂

∂pi

1
S

S∑

j=1

I(O(U(zj)) ≤ γ) ln(g(zj ,p)) = 0,

leading to:

pi =

∑S
j=1 I(O(U(zj)) ≤ γ)zij∑S
j=1 I(O(U(zj)) ≤ γ)

i = 1 · · ·m; (7)

In the CE-base algorithm the result in the (7) is used for
updating the distribution p as follows:

pi = (1− α)pi + α

∑S
j=1 I(O(U(zj)) ≤ γ)zij∑S
j=1 I(O(U(zj)) ≤ γ)

. (8)

The mathematical analysis about the choice of the parameterα is
provided in the AppendixVII-A of this work. Further indications
on the choice ofα can be found in [10], [38], [39]. The derivation
of equations (5-7), as well as, the optimality of g(zj ,p) are
proven in [10].

The solution of the problem defined in (5) is achieved through
Algorithm 1: it starts with an initial guess of pG; S Bernoulli
random samples of size m each (line 4) are drawn at each step
t. For each sample zs, the values of the conditional entropy
(line 7) are computed on the dataset where the only active
features are those corresponding to the elements equal to one
(line 6) in zs. The subset selection is shown in the procedure
GETSUBSET(X, z) (lines 15-26). Then we compute p(Zt) (lines
9-10) as in (7) and finally we update the current estimate of the
probability vector p (line 11) as in (8).

V. FEDERATED FEATURE SELECTION

In this section we present how we exploit the CE-based FS
algorithm presented in Section IV and summarised in Algorithm
1 to design our FFS algorithm FFS, described in Algorithms 2
and 3. They cover, respectively, the two functional blocks of
FFS, i.e., Algorithm 2 is executed by the ES to coordinate the
distributed FS and Algorithm 3 runs on the clients. The FFS
is an iterative procedure. At the beginning, the ES sends to
the clients involved in the process a vector pG ∈ Rm where
each element represents the probability that each feature has to
be selected according to its importance (lines 8-10 of Alg.2).
Each element of pG is initialized to 0.5, i.e., this is a common
choice when using the CE algorithm. The vector pG represents
a piece of global information that the ES shares with the client
nodes. Each client l uses pG to initialize its local copy of the
probability vector, i.e.,pl ← pG and runs the local FS procedure
based on its local data (lines 2-3 of Algorithm 3). At the end of
the local FS, the l-th client sends to the ES the locally updated
probability vector plnew

and a control information regarding the
cardinality of its local data nl whose purpose will become clear
in the following. The ES computes the new global probability
vector (line 13 of Algorithm 2) by aggregating the ones received

2The logarithm is a concave function, the indicator function is 0 or 1 so the
weighted sum of concave functions gives still a concave function.
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Algorithm 1: CE-based Algorithm for FS.
1: procedureCEX,y,p, T,S
2: for all t = 1, . . . , T do
3: Zt ← GENRNDSAMPLE (S,p) � Z ∈ {0, 1}S×m
4: u← {}
5: for all zs ∈ Zt do �zs ∈ {0, 1}1×m

6: U← GETSUBSET(X, zs)
7: u← u ∪H(y|U)
8: end for
9: γ ← COMPUTEPERCENTILE(u, 1− β)

10: p(Zt)← COMPUTENEWPROB(u, γ, α) �(7)
11: p← (1− α)p+ αp(Zt) �(8)
12: end for
13: return p
14: end procedure
15: proceduregetSubsetX, z
16: U← {}
17: for all x ∈ X do
18: u← {}
19: for all j = 1, . . . ,m do
20: if zj == 1 then
21: u← u ∪ xj

22: end if
23: end for
24: U← U ∪ u
25: end for
26: end procedure

from the clients as expressed in (9) and discussed later on.
The updated vector pG is transmitted to the nodes that run
Algorithm 3 by updating the local probability vector with the
new global one. This procedure iterates until the distribution
global probability vector converges to a stable one. In FFS we
check convergence by comparing the distribution of the current
global probability vector pG to the previous one pGold

using
the Kolmogov-Smirnov statistical test for two one-dimensional
samples (KS-test). The procedure stops when (i) the p-value of
the KS-test is greater than a fixed threshold3 τ1 = 0.995 and, (ii)
its variation from the previous one is less than τ2 = 10−6 (line
7 of Algorithm 2).

The core point of Algorithm 2 regards the aggregation step
(line 13 of Algorithm 2) where the ES merges the local prob-
ability vectors into the global one which, in our solution, is
defined as a weighted average. The main idea is to merge
the local probability vectors by a weighted average where the
weights (computed as in (10)) serve the twofold purpose of (i)
considering more (or less) those vectors that are computed from
larger local datasets and (ii) defining a common support among
all the probability vectors. This second aspect is quite crucial
for the consistency of the computation in (9).

Formally, we assume that each node acquires a number of
i.i.d. records nl to perform the FS, and that the nodes share the

3We empirically observed that the closer τ1 to one, the more accurate the
solution.

same set of features X. The global probability pG used for the
FS can be written as follows:

pG =
∑

l

plωl, (9)

where pl is the solution of problem (5) at node l obtained by
using Algorithm 1, and ωl weights pl w.r.t. the other nodes,
whose formal definition is:

ωl =
nl∑
l
nl

. (10)

As anticipated, according to (10), we weight the probability
vector pl of node l proportionally to the size of its local dataset
compared to the whole amount of data present in the system.
In this way, we can contrast situations where local datasets are
heterogeneous w.r.t. the size.

In FFS, the updating scheme can be, at least in principle, both
synchronous and asynchronous, provided that the set of nodes
involved in the process does not change over time.4 Precisely,
we assume a system where the ES after having sent the updated
global probability vector, expects the nodes to receive their
local updates within a fixed time slot, after which, it begins the
aggregation step using only the information received. Therefore,
the number of updates used to compute the new global prob-
ability vector might change because a subset of nodes could
not communicate their updates within the deadline set by the
ES. Regardless of the number of nodes that contributed to the
aggregation step during one round of communication, the ES
broadcasts the new global probability vector pG to all nodes in
the system. In this way, all nodes start the new round of local
computation from the same starting point, and, consequently,
we dramatically limit the potentially detrimental effects deriv-
ing from the aggregation of outdated local probability vectors.
Moreover, as proved by the convergence analysis provided in
AppendixVII-A and AppendixVII-B, independently from the
updating scheme, FFS converges in a finite number of steps to
the very same solution as running the CE in centralised settings
i.e., with complete access to the entire dataset.

It’s worth noting that our solution is able to cope with feature
redundancy in federated settings. Precisely, this represents an
issue that might prevent the possibility of performing the FS in
federated settings. In fact, running a standalone FS algorithm
on different local datasets where there is redundancy between
features, different FSs might occur but with an equivalent in-
formation content across all the AVs. This aspect makes all the
local selections completely useless regarding the communica-
tion efficiency, due to the consequent lack of agreement on the
FS between the AVs. Conversely, since in FFS the AVs share
at each communication round their local information, they may
come up with a final agreement on the FS. Summarising, even
if there is redundancy between features, the final selection is
consistent among all the AVs and, according to results presented
in Section VI, it is also accurate if compared to the centralized
FS (i.e., when all the local raw data are transferred onto the ES).

4Note that this condition does not imply that all nodes must be active during
the entire process. In fact, as we will show in Section VI our system is robust to
the presence of churning nodes.
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Algorithm 2: Server Side FFS Algorithm.
1: procedureServer-Node
2: v ← 0 �p-value of Kolmogorov-Smirnov test
3: τ1 ← .995
4: τ2 ← 10−6 �Thresholds to check convergence
5: pG ← {1/2 | ∀ pi i = 1, . . . ,m}
6: do
7: for all l ∈ L do
8: SENDTOCLIENT(l,pG)
9: end for

10: RECEIVEFROMCLIENTS(plnew
, nl)

11: pGold
← pG

12: pG ←
UPDATEGLOBALPROBABILITY() �(9)

13: vold ← v
14: v ← KOLMOGOROVSMIRNOVTEST (pG,pGold

)
15: while v ≥ τ1 ∧ |v − vold| ≤ τ2 �repeat until

convergence is met
16: end procedure

Algorithm 3: Client side Federated Feature Selection algo-
rithm.

1: procedureClient-Node
2: pl ← RECEIVEFROMSERVER(pG)
3: plnew

← CE(Xl,yl,pl,T,S) �Algorithm 1
4: SENDTOSERVER(plnew

, nl)
5: end procedure

VI. NUMERICAL EVALUATION

In this section, we present the numerical results of our
compression method based on the FFS algorithm presented
in Section V. Before going through the results, we introduce
the datasets, the simulation settings, the methodology, and the
metrics used to evaluate our solution’s performance.

A. Dataset Description and Simulation Settings

We based the performance evaluation of FFS on two datasets,
each one mapping one of the two use cases described in Sec-
tion III. The first one called MAV5 is a publicly available dataset
containing both 64×64 images and 6 Inertial Measurement Units
(IMUs) collected by a AV during a mission in a controlled
environment. The second dataset called WEarable Stress and
Affect Detection (WESAD) is a collection of data sampled from
heterogeneous biophysical sensors: ECG, EDA, EMG, Temper-
ature, Respiration and Inertial Measurements on the three axes.

a) MAV dataset: both images and inertial measurements are
synchronised to obtain a set of eRIDs. We pre-process the raw
images to extract more informative features as it is customary in
the computer vision domain. Feature extraction eases the train-
ing of a machine learning model and, performs a preliminary
step of data compression. In fact, a raw image is made of 4102
floats (64×64 pixels + 6 IMU readings) while, after the feature

5dataset. [Online]. Available: https://tinyurl.com/mavmr01

TABLE I
STRUCTURE OF A MAV ERID

TABLE II
STRUCTURE OF A WESAD ERID

extraction, it shrinks down to a vector of size 2166 floats. In
our settings, we extract the Histogram of Oriented Gradient
(HOG) features,6 and we assume that the feature extraction is
accomplished directly on the AV, which might be possible if
equipped with a board of the kind discussed in [40]. Note that
the original dataset is unlabeled. Therefore we labelled it in a
way compatible with the original context of positioning. To this
end, we associated with each eRID a label corresponding to the
corresponding voxel.7 Table I shows the structure of an eRID
for the MAV; the first 2160 feature are HOG while the last 6 are
IMUs, i.e., acceleration (ACC) and angular velocity (AV). The
whole dataset contains 2911 labelled records. To simulate the
federated data collection, we split it into 10 disjoint partitions
of size 291 records such that each partition is i.i.d. w.r.t. the
entire dataset. Each subset represents a AV. The data collection is
slotted; hence, the AVs draw with replacement a random sample
from their local dataset for each time slot. This sample is used
to perform the local computation of the distributed algorithm
followed by a communication round for synchronising the AVs
on the local FS. Each random draw’s size is accumulated to trace
the cache necessary for storing data until the completion of the
distributed FS.

b) WESAD dataset it provides data in terms of features and
labels already useful to perform the detection of stress and
affection state of human subjects. The dataset contains readings
from two devices, i.e., Respiban and Empatica E4, positioned
i) on the chest and ii) on the wrist of human subjects. Each
device is equipped with multiple sensors monitoring several
physiological parameters. Since the two devices have different
operating settings, we focused on the Respiban, whose collection
rate is homogeneous for all its sensors. The dataset contains
readings collected from 17 human subjects, which perform a
predetermined protocol to induce the body in one of the follow-
ing states: 0-baseline, 1-amusement, 2-stress, 3-meditation, 4-
recovery. The data collected for each subject amounts to∼3.6 M
records, equivalent to ∼220 MB. A complete description of the
dataset is provided in [33]. Table II shows the structure of an
eRID for the WESAD.Due to the huge size of the dataset we used
the data from 5 out of 17 subjects, corresponding to ∼1.1 GB.

6HOG is a standard feature extraction methodology used in computer vision
and image processing to create an image descriptor that captures the spatial
relations between different portions of it [40].

7A voxel represents a value on a regular grid in three-dimensional space.
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The data is already partitioned according the subject ID, thus
we keep the original partitions. In our simulated scenario, each
partition corresponds to an edge device holding the data of only
one subject, i.e., no artificial data re-distribution is performed.
As for the previous scenario, each device executes FFS using
only its own data.

We evaluate the performance of our methodology according
to two metrics:� accuracy: to assess the quality of the distributed FS� network overhead (NOH ): to evaluate the impact in terms

of network traffic generated by our methodology
Our target is to compress the data to be transmitted, without

significantly degrading its informative content.
Accuracy metric: The quality assessment is a two-stage pro-

cedure. First, we set the baseline validating the quality of the
features selected by CE executed in a centralised setting, i.e.,
we train a classifier using the set of selected features (CE-CFS)
on the entire dataset, and we compare its prediction performance
with that of a second classifier trained on the whole set of features
(NO-FS). If the CE-CFS performance on a smaller group of
features is comparable or equivalent with the one identified
by NO-FS, we consider the FS valid. To strengthen this initial
evaluation, we compare the centralised results of CE-CFS with
other three reference FS algorithms: mRMR [15], HJMI [16]
and ANOVA [20]. As we will show in the following, for all
these benchmarks we have to specify the size k of the features
selection. Since we are interested in assessing the quality of the
FS and for the sake of fairness, we set k equal to the size of
the FS obtained by CE-CFS (which finds such a number in a
completely autonomous way).

Then, we repeat the same procedure training another classifier
on the subset of features obtained from our FFS and we compare
its performance with all the centralised methods. We split the
dataset in train (80%) and test set (20%). The train set is used
for both FS and model training, while the test is used for
performance evaluation only. The accuracy is defined as the
average of correctly classified records

A =
1
N

N∑

i=1

I(ŷi = yi), (11)

where N is the size of the test set, I is the indicator function, ŷi
and yi are the i-th predicted and true label, respectively. For the
sake of statistical significance, the training is repeated ten times,
changing the initialisation of the classifier and the composition
of training and test set. The reported results are average values
accompanied by confidence intervals at 95%.

Network Overhead: we measure the network traffic gener-
ated by our solution as follows. On the one hand, we compute
the network overhead generated by the FFS network defined as:

NOH = R ∗ L ∗ 2 ∗ (z + 1 + b) (12)

whereR is the number of communication rounds before all theL
AVs involved in the distributed FS converge to a solution, z + 1
is the number of nonzero floating point numbers belonging to the
probability vector pl in (9) exchanged between the AVs during
each round plus the weight ωl in (10). The symbol b is the size

TABLE III
COMPARISON BETWEEN NO-FS AND CE-CFS ON MAV AND WESAD

DATASET

of the bit map used to reconstruct the position of the non-zero
elements exchanged between the AVs and the edge server. On
the other hand, we compute the compression obtained through
the FS as:

C = |F |/|D| (13)

where F ⊆ D is the selected set, and D is the entire set of
features.

B. Settings the Baseline: FS in Centralised Settings

The following results regard the first stage of the validation,
i.e., the accuracy of a classier trained using only the subset of
features identified by the CE algorithm w.r.t the performance
obtained by a classifier trained on the entire dataset. For this stage
of validation, we train a Neural Network (NN). For MAV the NN
is a multi-layer perceptron with two hidden layers of 300 and
100 neurons each. For WESAD, we used a deep NN with four
hidden layers of 300,100,64,32 neurons each. The input layer’s
size depends on the number of features selected, while the size
output layer is 37 and 5 for MAV and WESAD, respectively. The
activation function is “ReLU”8 and the optimizer is “Adam”9

for both the models. These are very common settings which
typically provides good performance [41].

Results in Table III show that CE algorithm executed on
both datasets in centralised settings can autonomously identify a
minimal set of features (i.e., 18 for MAV and 4 for WESAD) with
the very same informative content of the whole feature set. The
accuracy obtained by both the NN models trained on the CE’s
FS is statistically equivalent to the one obtained on the whole set
of features, inducing a quite impressive compression rate (C):
up to 99% and 50% of network traffic for MAV and WESAD,
respectively. As a further confirmation of the CE results, we
perform the FS using other three reference benchmarks, i.e.,
MRMR, ANOVA, HJMI. Note that all these approaches select a
subset of features with the very same informative content of

8REctified Linear Unit
9Stochastic Gradient Descent with ADAptive Momentum
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Fig. 4. Centralised FS probability for HOG and IMU. The selected features are those with probability greater than 0.99 (above threshold). (a) C-HOG. (b) C-IMU.

TABLE IV
COMPARISON BETWEEN CE-CFS AND FFS ON MAV AND WESAD

CE. However, we point out that for all of them we have to
decide beforehand the number of features to be selected. This
represent a major shortcoming that, instead, CE-based methods
overcome by design, since the number of features to be selected
is a byproduct of the CE algorithm. Finally, these results assess
the suitability of the CE algorithm on both datasets, thus we can
use them as a benchmark for the evaluation of our distributed
FFS method.

C. Evaluation of Federated Feature Selection

We focus now on the analysis of our FFS method. We compare
its performance to those obtained by CE executed in centralised
settings (CE-CFS). We recall that, in federated (distributed)
settings, each AV can process only the data it locally collects.

First we assess the performance of FFS in a static distributed
scenario where the AVs have collected all the data and, before
sending them to the ES, they perform the distributed FS in order
to transmit only the very necessary information.

Table IV reveals that for MAV dataset, FFS finds a set of
features that, although slightly larger than that found by CE-CFS
(24 instead of 18), it has the very same informative content,
i.e., the accuracy of the NN model trained on both subsets of
features are statistically equivalent. As we can see, the results
also hold for the WESAD dataset. Precisely, FFS selects the
same number of features identified by CE-CFS. Specifically,
FFS and CE-CFS select the same set, i.e., the features with
indexes [1,2,5,6], explaining why the NN achieves the same
prediction accuracy. We motivate such an exact correspondence
between FFS and CE-CFS selection considering that the small

size of the complete feature set of WESAD might prevent a high
number of feature subset with equivalent informative content.
Such an assumption also holds for the MAV dataset. In fact,
as we can see in Figs. 4(b), Fig. 5(a) FFS and CE-CFS select
the same subset of IMU features. Conversely, when the set of
features is more redundant, as it is for the HOGs, there might
exist several subsets holding the same informative content. The
comparison in Figs. 5(a) and 4(a) confirms such a claim because
the two feature sets are overlapping but not equal, yet the overall
accuracy is comparable.

This result provides a preliminary insight regarding the ef-
fectiveness of the Bayesian aggregation used to merge the
information extracted by the AVs from their local datasets.
Precisely, Fig. 6 shows the number of selected features at each
communication round for the MAV case. As we can see, in the
beginning, the cardinality of FS remains almost constant. In this
phase, due to the partitioning of data in separated datasets, the
CE algorithm has not yet enough knowledge to identify the most
informative features. However, the number of features added to
the selection starts increasing following an almost-linear trend
in a few communication rounds (16). The process ends after 44
rounds, i.e. when the distribution of probabilities indicating the
most informative features becomes stable.

Our method’s capability to converge quickly to the final and
most informative set of features directly affects the amount of
network traffic generated upon the completion of the FFS. To
confirm such a claim, we performed a set of simulation in which
we run FFS varying the size of the local dataset available at
the edge device. In this way, we want to analyse our method’s
robustness when each edge device can access only a limited
amount of data. In Table V we report the size of data used for each
update (Size), the number of selected features (FS), the accuracy,
the number of communication rounds upon convergence (Rc),
the compression obtainable with FFS (C), the network overhead
generated by FFS (NOH ), and the size of the cache needed to
collect the data before starting the data transmission. Overall,
we observe that, for both datasets, decreasing the size of data
processed at each round does not affect significantly the number
of communication rounds needed by FFS to converge to a
solution, which results in limiting the network overhead
generated during the process. Specifically, considering a
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Fig. 5. FFS probability for HOG and IMU. The selected features are those with probability greater than 0.99 (above threshold). (a) F-HOG. (b) F-IMU.

Fig. 6. FFS process on MAV dataset.

TABLE V
PERFORMANCE OF FFS VARYING THE DATA PROCESSED DURING A

COMMUNICATION ROUND

dynamic data collection process as in the MAV-related use case,
we see that the network overhead is always i) less than the
storage needed to cache the data before starting the transmission
and ii) negligible considering the compression achieved (i.e.,
up to 99%). Interestingly, the same holds also for the WESAD
scenario. In this case, the network overhead can be considered
negligible w.r.t. the size of the data processed (< 1MB) if
compared with the compression rate achieved by FFS (up to
50%).

In Table VII we show how the benchmark methods MRMR,
ANOVA and HJMI behave when run in isolation on local dataset.

TABLE VI
PERFORMANCE OF FFS VARYING THE PERCENTAGE NON-FAULTY AVS PER

COMMUNICATION ROUND

TABLE VII
LOCAL FS FROM COMPETITORS APPROACHES

Each method has been configured to select the optimal number
of features found in a centralised setting. This is clearly an
unrealistic situation that we use to demonstrate the limitations
coming from running a non-FFS algorithm in federated settings
(i.e., on partial datasets). Precisely, taking into account the MAV
dataset, all the algorithms run in isolation on each AV, find
a different subset of features (i.e., null pairwise intersection).
No agreement between AVs on the subset of features means
that all the local data must be transmitted to the ES, causing
a non negligible waste of network resources. We motivate this
behaviour with the fact that the original subset of features is
redundant, as in MAV, running the FS in isolation on portions
of data is not a winning strategy. Conversely, when the original
subset of features is less noisy, as in WESAD, it is more likely
that all the AVs find, completely by chance, the same subset of
features, i.e., without a way to coordinate the features selection
in a consistent and provable way, there are no guarantees for the
AVs to identify a consistent and shared subset of features.
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Finally we analyse the FFS performance in presence of faulty
nodes, i.e., a node experiencing issues in transmitting success-
fully its updates to the ES. Note that, the causes preventing
the updates’ transmission might relate to either communication-
related (i.e, a noisy channel) or the presence of a power-saving
policy regulating the duty cycle of AVs switching off the network
interface for a time corresponding to a communication round.
The aim is assessing the robustness of FFS when few nodes
cannot contribute to the distributed learning at each commu-
nication round. To this end, we simulate a scenario where, at
each communication round, a random number of AVs fail to
communicate their updates to the ES. We model the fault of a AV
performing a random draw from a Bernoulli distributed random
variable, with parameter ρ. At the beginning of the simulation
we set ρ and, for each communication round and for each node,
we perform a random draw, where 0 means faulty and 1 means
non-faulty. This means that the updates of a faulty AV are not
considered for the execution of Algorithm 2. We consider a fault
rate ρ equal to 0.2 and 0.3, meaning that at each round there are,
on average, 2 and 3 faulty AVs out of 10, respectively. Such
values can be reasonably assumed as upper bounds to evaluate
the performance of the system. Higher rates would reveal that
the scenario is not reasonably set up to run with any sort of
reliability.

In Table VI we report the performance of FFS, for both
datasets. For the MAV dataset, although FFS selects 2× and
3.3×more features than the case when all the AVs contribute to
the process (see Table IV), the compression rate deteriorates
by 1% and 3%, respectively. The quality of the selection is
confirmed by the accuracy that is statistically equivalent to the
case without faulty AVs. Regarding WESAD, we notice that
for ρ = 0.2 FFS performance is equivalent to the case with all
non-faulty AVs. Conversely, for ρ = 0.3 FFS selects a smaller
(i.e., 3 instead of 4) and less informative subset of features, as
confirmed by the accuracy degradation. The reason is that the
information collected by ES at each round is not enough to select,
globally, the most informative features. A final comment is about
the network overhead, which can be further reduced, limiting
the number of contributing AVs during a communication round.
In fact, Table VI suggests that there is a trade-off between
accuracy, compression rate, and number of contributing AVs
through which we might optimise both the compression and the
resources spent to find it. Moreover, there is a limit below which
saving resources becomes detrimental to the learning process.
However, understanding the nature of such a trade-off is left to
future works.

VII. CONCLUSION AND FUTURE DIRECTIONS

The increasing development of ADSs can leverage AI to
abstract both services and applications from the details of
fast-flowing low-level data, such as sensor feeds. According to
the Edge computing paradigm, a cyber physical system, namely
AV, is deputed in collecting data from sensors and perform a
lightweight round of computation, by extracting features from
raw data and selecting those that maximise the knowledge on

the learning task. Since the data gathering process is performed
locally by each AV, the selected features might represent a partial
subset of those that characterize the phenomenon and might be
inconsistent to learn the model of the underlying process. We
tackle this problem, by proposing a novel Federated Feature
Selection (FFS) algorithm, exploiting a distributed computing
paradigm applied to AVs. In FFS, AVs collaborate to iteratively
come up with the minimal set of features selected from their local
datasets, to be used as a compression schema for transmitting
their data to the Edge Server. Feature selection is done by
leveraging on the Mutual Information metric and the solution
of the optimization problem is achieved through Cross-entropy
method. The aggregation algorithm of the FFS solution is based
on a Bayesian approach through which we merge the control
information sent by the AVs to the ES. To test the proposed
FFS algorithm we presented two different learning tasks, by
using real-world datasets: MAV and WESAD. The former was
suitable to test FFS with images and inertial measurements,
which characterize the position of an AV in the environment.
The latter was suitable to characterize time series produced by
human state monitoring systems, like ECG, EDA, EMG, etc. The
results show that our FFS algorithm identifies a minimal subset
of informative features without sharing any raw data between
AVs in the process. FFS is robust to feature redundancy, i.e.,
in presence of high rates of redundant features, all the AVs
can reach a consensus on the FS achieving a compression rate
up to 90x on the selected datasets. Finally, the quality of the
feature selection is maintained, i.e., a learning model trained
on the selected features is as accurate as a model trained on
the whole feature set. Concluding, the proposed framework is
general and modular, i.e., it can be applied to every incremental
FS algorithm that associates a probability to each feature. We
plan to investigate how to turn it into a framework to include
more FS algorithms. Moreover, our solution is built on few
simplifying assumptions: local datasets are iid and data are
labelled. Therefore, for the future we plan to extend it to in-
clude non-iid data in possibly unsupervised or semi-supervised
scenarios.

APPENDIX

A. Proof of Convergence of the Federated Method

In this section, we analyze the probability that the distribution
p converges toward the optimal solutionp∗, when the Algorithm
1 is applied in a centralized way. Then, we extend this result for
the proposed federated algorithm.

The convergence analysis is based on the results in [38],
[39]: following that notation, we introduce some pre-
liminary definitions. In the CE, the candidate solutions
Zt = {z1 · · · zS} generated at iteration t are iid with
distribution g(z,pt−1).

We define Zt := {zj,τ 
= z∗ j = 1 · · ·S, τ = 1 · · · t} ⊆ Zt

as the subset of Zt of the samples generated up to t that do
not provide the optimal solution z∗. The probability Pr(Zt) that
the optimal solution is not available until t can be found as in
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the following:

Pr(Zt) = Pr(Z1)

t∏

τ=2

Pr(Zτ |Zτ−1)

= Pr(Z1)

t∏

τ=2

(Pr(zτ 
= z∗|Zτ−1))
S (14)

The (14) comes from the statistical independence of S identi-
cally distributed samples generated by the algorithm at iteration
t. The upper bound for the probability Pr(zτ 
= z∗|Zτ−1) that
the optimal solution was unavailable until τ is derived in [38],
[39] as:

Pr(zτ 
= z∗|Zτ−1) ≤ 1− Pr(z1 = z∗)
τ−1∏

i=1

(1− αi)
m (15)

where

Pr(z1 = z∗) =
m∏

i=1

(pi(zi = 0)I(z∗i = 1)

+ (1− pi(zi = 0)) I(z∗i = 0)) (16)

Note that due to the definition of Z1 its probability is Pr(Z1) =
1− Pr(z1 = z∗).

Combining equations (15) and (16), (14) becomes:

Pr(zt 
= z∗) ≤
(

1−
m∏

i=1

(pi(zi = 0)I(z∗i = 1)

+ (1− pi(zi = 0)) I(z∗i = 0))) ·
t∏

τ=2

×
(

1−
m∏

i=1

(pi(zi = 0)I(z∗i = 1)(1− pi

+ (zi = 0))I(z∗i = 0))
τ−1∏

j=1

(1− αj)
m

⎞
⎠

S

(17)

The right side of the (17) is close to 0 for t→∞, if∑∞

τ=1

∏τ−1

j=1
(1− αj)

m →∞, i.e., the sequence of the param-

eters αj are generated by the function 1
j·m , as proven by authors

in [42] (section 3.7). Note that, (17) can be used to determine
numerically a combination of parameter values that yields a
desired minimum probability of generating the optimal solution
within a time t.

Therefore, Algorithm (1) definitely provides the optimal so-
lution when applied in a centralized way. We extend this result
for the federated approach as follows. The AVs draw distinct
samples z1 · · · zS independently from an identical distribution,
as stated in the section V. This means that the node l finds an
optimal solution for its z1 · · · zS that differs for that obtained
by the centralized algorithm. Hence, combining the local distri-
butions into the global one as in (9), we need to prove that the
local node can receive from the server a federated solution that

is close to the solution provided by the centralized scenario, for
t→∞.

Defining the Hamming’s distance L(z∗, zτ ) between the
sample zτ at the time τ and the optimal solution z∗, the set
Z̃t := {zi,τ | L(z∗, zi,τ ) = ml} contains the samples gener-
ated up to time t that differs for ml entries from the optimal
solution z∗.

As in (14), we can calculate the probability Pr(Z̃t) as
follows:

Pr(Z̃t) = Pr(Z̃1)

t∏

τ=2

Pr(Z̃τ |Z̃τ−1) (18)

Exploiting again the results in [38], [39], and the statis-
tical independence of the S identically distributed samples
generated by the algorithm at a given iteration, the following
equation holds for the conditional probability for the given
node l:

Pr(Z̃τ |Z̃τ−1) =

[(
m

ml

)
Pr(z1 = z∗1) ·

τ−1∏

i=1

(1− αi,l)
m−ml ·

×
(

1− Pr(z1 = z∗1)
τ−1∏

i=1

(1− αi,l)
ml

)]S

(19)

Note that, the result provided in (18) refers to the l-th node.
Hence, the global solution is obtained as the weighted average
over all the local probabilities Pr(Z̃l,t) as:

PrG(Z̃t) =

L∑

l=1

Pr(Z̃l,t)ωl (20)

where ωl are computed as in (10).
The probability in (20) is close to 0, for t→∞, if∑∞

τ=1

∏τ−1

i=1
(1− αi,l)

ml →∞ ∀ l = 1, . . . , L. Note that, if

the sum of products of (1− αi,l)
ml is close to∞ also the sum

of products of (1− αi,l)
m−ml is close to∞. The sequences of

the αi,l parameters guarantee the convergence also in this case.
Indeed, the parameters are generated locally by the node, using
the function 1

m·t .

B. Analysis of the Global Probability Computational Effort

In this section, we analyze the probability distribution of the
number of iterations tneeded to evaluate the global probability in
(9). We address this issue by exploiting the result in (20), which
describes the probability that the global solution obtained at the
iteration t differs by ml entries from the optimal one. Hence,
the probability that the global solution is reached within t can
be written as follows:

PrG(zt = z∗) = 1−
m∑

ml=1

PrG(Z̃t) (21)

We can exploit the following inequality (1− α)m ≤
e−αm | 0 ≤ α ≤ 1, m ≥ 0 to find the upper bound shown in
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the following:

PrG(zt = z∗) ≤ 1

−
m∑

ml=1

L∑

l=1

Pr(Z̃1)

t∏

τ=2

[(
m

ml

)
Pr(z1 = z∗1)

×
(
exp

(
−

τ−1∑

i=1

αi,l(m−ml)

)
− Pr

× (z1 = z∗1) exp

(
−

τ−1∑

i=1

αi,l m

))]S
ω(l)

(22)

The difference between exponentials in (22) goes to zero
faster than the binomial coefficient goes to infinity, as m in-
creases, if the coefficientα satisfies the conditions verified in the
previous appendix. Thus (22) can be used to evaluate the prob-
ability distribution of the number of iterations t = 1, 2 . . . ,∞
required to converge to the optimal global solution. The numer-
ical analysis shows an average value of 13 iterations to converge
by using the parameters presented in the section VI, which is
affordable for many edge devices like Nvidia Jetson Nano or
RaspberryPi.
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[21] J. Konečý, B. McMahan, and D. Ramage, “Federated optimiza-
tion: Distributed optimization beyond the datacenter,” 2015, pp. 1–5,
arXiv1511.03575.

[22] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. Int. Conf. AISTATS, 2017, pp. 248–257.

[23] S. Wang et al., “When edge meets learning: Adaptive control for resource-
constrained distributed machine learning,” in Proc. Int. Conf. IEEE INFO-
COM, 2018, pp. 63–71.

[24] M. M. Amiri and D. Gunduz, “Machine learning at the wireless edge:
Distributed stochastic gradient descent over-the-air,” in Proc. Int. Conf.
IEEE ISIT, 2019, pp. 1–12.

[25] S. P. Karimireddy, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich, and A.
T. Suresh, “SCAFFOLD: Stochastic controlled averaging for on-device
federated learning,” 2019, pp. 1–30, arXiv:1910.06378.

[26] M. Mohri, G. Sivek, and A. T. Suresh, “Agnostic federated learning,” in
Proc. Int. Conf. Mach. Learn., 2019, pp. 1–11.

[27] Y. Mao, “Learning from differentially private neural activations with edge
computing,” in Proc. Int. Conf. IEEE/ACM SEC, 2018, pp. 90–102.

[28] V. Mothukuri, R. M. Parizi, S. Pouriyeh, Y. Huang, A. Dehghantanha, and
G Srivastava, “A survey on security and privacy of federated learning,”
Elsevier J. Future Gener. Comput. Syst., vol. 115, pp. 619–640, 2021.

[29] L. Valerio, A. Passarella, and M. Conti, “Hypothesis transfer learning for
efficient data computing in smart cities environments,” in Proc. Int. Conf.
SMARTCOMP, 2016, pp. 1–8.

[30] L. Valerio, A. Passarella, and M. Conti, “A communication efficient dis-
tributed learning framework for smart environments,” Elsevier J. Pervasive
Mobile Comput., vol. 41, pp. 46–68, 2017.

[31] X. Ye, H. Li, A. Imakura, and T. Sakurai, “Distributed collaborative feature
selection based on intermediate representation,” in Proc. Int. Conf. IJCAI,
2019, pp. 4242–4149.

[32] S. Banerjee, E. Elmroth, and M. Bhuyan, “Fed-FiS: A novel information-
theoretic federated feature selection for learning stability,” in Neu-
ral Information Processing, T. Mantoro, M. Lee, M. A. Ayu, K. W.
Wong, and A. N. Hidayanto, Eds., Berlin, Germany: Springer, 2021,
pp. 480–487.

[33] P. Schmidt, A. Reiss, R. Duerichen, C. Marberger, and K. Van Laerhoven,
“Introducing WESAD, a multimodal dataset for wearable stress and affect
detection,” in Proc. Int. Conf. ACM ICMI, 2019, pp. 1–9.

[34] R. McEliece, The Theory of Information and Coding: A. Mathematical
Framework for Communication (Encyclopedia of Mathematics and Its
Applications 3). Reading, MA, USA: Addison-Wesley, 1977.

[35] J. Cover and T. M. Thomas, Elements of Information Theory. New York,
NY, USA: Wiley, 1991.

[36] A. Chaovalitwongse, I. Androulakis, and P. Pardalos, “Quadratic integer
programming: Complexity and equivalent form,” in Encyclopedia of Op-
timization. Berlin, Germany: Springer, 2009, pp. 3153–3159.

[37] G. Brown, A. Pocock, M. Zhao, and M. Zheng, “Conditional likelihood
maximisation: A unifying framework for information theoretic feature
selection,” Springer J. Mach. Learn. Res., vol. 13, pp. 27–66, 2012.

[38] A. Costa, O. D. Jones, and D. Kroese, “Convergence properties of the
cross-entropy method for discrete optimization,” Elsevier Oper. Res. Lett.,
vol. 35, no. 7, pp. 573–580, Sep. 2007.

[39] Z. Wu and M. Kolonko, “Asymptotic properties of a generalized cross-
entropy optimization algorithm,” IEEE Trans. Evol. Comput., vol. 18, no. 5,
pp. 658–673, Oct. 2014.

[40] P. Chen, C. Huang, C. Lien, and Y. Tsai, “An efficient hardware imple-
mentation of HOG feature extraction for human detection,” IEEE Trans.
Intell. Transp. Syst., vol. 15, no. 2, pp. 656–662, Apr. 2014.

DRAFT



9950 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 71, NO. 9, SEPTEMBER 2022

[41] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[42] K. Knopp, Infinite Sequences and Series. New York, NY, USA: Dover,
1956.

Pietro Cassará received the M.Sc. degrees in
telecommunication and electronic engineering from
University of Palermo, in 2005, and the Ph.D. degree
from the State University of New York, in 2010. He is
currently a Staff Member with the Institute of Science
and Information Technologies (ISTI), National Re-
search Council (CNR), Pisa, Italy, and since 2017, he
has been a Temporary Staff Member with the CMRE
lab, NATO of La Spezia. He has been participating
in European, ESA, and National funded projects. His
research interests include wireless sensor network and

machine learning for communication and networking.
He is currently a member of the IEEE COMSOC and VTS, vice-chair of the

Italian Council of IPV6, and member of IETF for the ISG IPE. He serves in
the TPCs of flagship ComSoc and VTS conferences, he also contribute as a
Reviewer and into the editorial board of IEEE and MDPI journals.

Alberto Gotta (Member, IEEE) received the M.Sc.
and Ph.D. degrees, in 2002 and 2007, respectively.
He is currently a Researcher with the Institute of In-
formation Science and Technologies (ISTI), National
Research Council (CNR), Italy. He has been Principal
investigator of several EU, national, regional, and
ESA funded R&D projects. He coauthored more than
100 papers among which the most cited article in
2012 and 2013 on Elsevier Computer Communica-
tions and the second most cited article from 2019 on
Elsevier Array. His research interests include traffic

engineering, satellite and nonterrestrial networks, aerial networks, IoT, sensor
networks, and machine learning for communications. He serves the TPCs
of flagship ComSoc conferences and symposia and also the editorial boards
of MDPI Sensors, MDPI Network, the International Journal of Informatics
and Communication Technology (IJ-ICT), the International Journal of Power
Electronics and Drive Systems (IJPEDS), and the Journal of Computer Networks
and Communications (CNC).

Lorenzo Valerio is currently a Researcher with
IIT-CNR. His research activity focuses on the de-
sign of communication efficient distributed learning
solutions, machine learning solutions for resource-
constrained devices and machine learning based cel-
lular traffic offloading solutions for the Future Inter-
net. He has authored or coauthored in journals and
conference proceedings more than 40+ papers. He has
served as Workshop co-chair for IEEE AOC’15 and
IEEE PerConAI’22. He has also been Guest Editor for
the Elsevier Computer Communications and Elsevier

Pervasive and Mobile Computing. He has been recipient for one Best Paper
Award at IEEE WoWMoM 2013 and one Best Paper Nomination at IEEE
SMARTCOMP 2016. He is currently in the editorial board of Elsevier Computer
Communications.

Open Access provided by ‘Consiglio Nazionale delle Ricerche’ within the CRUI CARE AgreementDRAFT



MARVEL D3.4 H2020-ICT-2018-20/No 957337

E Nonlinear Gradient Mappings and Stochastic Optimiza-
tion: A General Framework with Applications to Heavy-
Tail Noise

The appended paper follows.

MARVEL - 162- December 31, 2022

DRAFT



NONLINEAR GRADIENT MAPPINGS AND STOCHASTIC
OPTIMIZATION: A GENERAL FRAMEWORK WITH

APPLICATIONS TO HEAVY-TAIL NOISE

DUS̆AN JAKOVETIĆ∗, DRAGANA BAJOVIĆ† , ANIT KUMAR SAHU‡ , SOUMMYA KAR§ ,

NEMANJA MILOS̆EVIĆ∗, AND DUS̆AN STAMENKOVIĆ∗

Abstract. We introduce a general framework for nonlinear stochastic gradient descent (SGD)
for the scenarios when gradient noise exhibits heavy tails. The proposed framework subsumes several
popular nonlinearity choices, like clipped, normalized, signed or quantized gradient, but we also con-
sider novel nonlinearity choices. We establish for the considered class of methods strong convergence
guarantees assuming a strongly convex cost function with Lipschitz continuous gradients under very
general assumptions on the gradient noise. Most notably, we show that, for a nonlinearity with
bounded outputs and for the gradient noise that may not have finite moments of order greater than
one, the nonlinear SGD’s mean squared error (MSE), or equivalently, the expected cost function’s
optimality gap, converges to zero at rate O(1/tζ), ζ ∈ (0, 1). In contrast, for the same noise setting,
the linear SGD generates a sequence with unbounded variances. Furthermore, for general nonlin-
earities that can be decoupled component wise and a class of joint nonlinearities, we show that the
nonlinear SGD asymptotically (locally) achieves a O(1/t) rate in the weak convergence sense and
explicitly quantify the corresponding asymptotic variance. Experiments show that, while our frame-
work is more general than existing studies of SGD under heavy-tail noise, several easy-to-implement
nonlinearities from our framework are competitive with state-of-the-art alternatives on real data sets
with heavy tail noises.

Key words. Stochastic optimization; stochastic gradient descent; nonlinear mapping; heavy-tail
noise; convergence rate; mean square analysis; asymptotic normality; stochastic approximation.

AMS subject classifications. 90C15, 90C25, 65K05, 62L20, 68T05

1. Introduction. Stochastic gradient descent (SGD) and its variants, e.g., [27,
16, 23, 35, 25, 12, 24, 7], are popular and standard methods for large scale optimization
and training of various machine learning models, e.g., [5, 6, 31, 8]. Recently, there have
been several studies that demonstrate that the gradient noise in SGD is heavy-tailed,
e.g., when training deep learning models [32, 17, 37].

Motivated by these studies, we introduce a general analytical framework for non-
linear SGD when the gradient evaluation is subject to a heavy-tailed noise. We combat
the gradient noise with a generic nonlinearity that is applied on the noisy gradient to
effectively reduce the noise effect. The resulting class of nonlinear methods subsumes
several popular choices in training machine learning models, including normalized
gradient descent and clipped gradient descent, e.g., [28, 36], the sign gradient, e.g.,
[4, 2], and (component-wise) quantized gradient, e.g., [1, 18].1

We establish for the considered class of methods several results that demonstrate a
high degree of robustness to noise under very general assumptions on the nonlinearity
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1Interestingly, some of these nonlinear methods are usually introduced with a different motivation
than robustness, like, e.g., speeding up training, see, e.g., [36], or communication efficiency, [2, 4].

1

DRAFT



2 D. JAKOVETIĆ ET AL.

and on the gradient noise, assuming a strongly convex cost with Lipschitz continuous
gradient. First, for a nonlinearity with bounded outputs (e.g., a sign, normalized,
or clipped gradient) and the gradient noise that may have infinite moments of order
greater than one, assuming that the noise probability density function (pdf) is sym-
metric, we show that the nonlinear SGD converges almost surely to the solution, and,
moreover, achieves a global O(1/tζ) mean squared error (MSE) convergence rate,
where we explicitly quantify the degree ζ ∈ (0, 1). In the same setting, the linear
SGD generates a sequence with unbounded variances at each iteration t. Further-
more, assuming the gradient noise with finite variance, we show – for the unbounded
nonlinearities that are lower bounded by a linear function – almost sure convergence
and the O(1/t) global MSE rate.

Next, for the general nonlinearities with bounded outputs that can be decoupled
component-wise and a restricted class of joint nonlinearities with bounded outputs,
we show under the heavy-tail noise a local (asymptotic) O(1/t) rate in the weak con-
vergence sense. More precisely, we show that the sequence generated by the nonlinear
SGD is asymptotically normal and explicitly quantify the asymptotic variance. Fi-
nally, we illustrate the results on several examples of the nonlinearity and the gradient
noise pdf, highlighting and quantifying the noise regimes and the corresponding gains
of the nonlinear SGD over the linear SGD scheme. In more detail, the asymptotic
variance expression reveals an interesting tradeoff that the nonlinearity makes on the
algorithm performance: on the one hand, the nonlinearity suppresses the noise effect
to a certain degree, but on the other hand it also reduces the “useful information flow”
and hence slows down convergence with respect to the noiseless case. We explicitly
quantify this tradeoff and demonstrate through examples that an appropriately cho-
sen nonlinearity strictly improves performance over the linear scheme in a high noise
setting. Finally, we carry out numerical experiments on several real data sets that
exhibit heavy tail gradient noise effects. The experiments show that, while our ana-
lytical framework is more general than usual studies of SGD under heavy-tail noise,
several easy-to-implement example nonlinearities of our framework – including those
not previously used – are competitive with state-of-the-art alternatives.

Technically, for component-wise nonlinearities and the asymptotic analysis, we
develop proofs based on stochastic approximation arguments, e.g., [26], following the
noise and nonlinearities assumptions framework similar to [30]. The paper [30] is con-
cerned with a related but different problem than ours: it considers linear estimation
of a vector parameter observed through a sequence of scalar observation equations,
and it is not concerned with a global MSE rate analysis that we provide here. For the
MSE analysis and for the nonlinearities that cannot be expressed component-wise,
like the clipped and normalized gradient, we develop novel analysis techniques.

There have been several works that study robustness of stochastic gradient de-
scent under certain variants of heavy-tailed noises. Reference [37] consider an adap-
tive gradient clipping method and establish convergence rates in expectation for the
considered method under a heavy-tailed noise. For this, the authors assume that
the expected value of the norm of the gradient noise raised to power α is finite, for
α ∈ (1, 2]. They also provide lower complexity bounds for SGD methods assuming in
addition that the expected α-power of the norm of the stochastic gradient is finite.
The paper [32] establishes convergence of the linear SGD assuming that the gradient
noise follows a heavy-tailed α-stable distribution.

It is worth noting that, in addition to the MSE (expected optimality gap) results
achieved here, it is also of interest to derive high probability bounds. Specifically,
given a target accuracy ϵ > 0 and a confidence level 1 − β, β ∈ (0, 1), we would like
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to find T (ϵ, β) such that f(xt) − f(x⋆) ≤ ϵ with probability at least 1 − β, for all
iterations t ≥ T (ϵ, β). Application of the Markov inequality to our result E[ f(xt) −
f(x⋆) ] = O(1/tζ) yields, abstracting dependencies on other system parameters, a
bound T (ϵ, β) ∼ 1

(β ϵ)1/ζ
. This involves a strong dependence on β, on the order 1/β1/ζ .

Several works, e.g., [13, 14, 19, 15, 11], establish high probability bounds where T (ϵ, β)
depends logarithmically on β for the settings therein. For example, references [13,
14] establish high probability bounds for the stochastic gradient methods therein
assuming that the gradient noise has light tails (sub-Gaussian noise). The authors
of [19] establish the corresponding bounds for the basic SGD and the mirror descent
that utilize a gradient truncation technique. They relax the noise sub-Gaussianity
assumption and assume a finite noise variance. Very recently, [15] establishes high
probability bounds for accelerated SGD with a clipping nonlinearity, but assuming
a finite variance of the gradient noise. Reference [11] proposes a procedure called
proxBoost and establishes for the procedure high probability bounds, again assuming a
finite noise variance (without the sub-Gaussianity assumption). It is highly relevant to
investigate high probability bounds for the problem setting and the algorithmic class
considered in this paper. Of special interest is to provide high probability bounds for
a broader class of nonlinearities than the usually studied clipping-type nonlinearities;
this is an interesting future work direction.

In summary, with respect to existing work, our framework is more general with
respect to both the adopted nonlinearity in SGD and the “thickness” of the gradi-
ent noise tail, assuming in addition that the noise pdf is a symmetric function. For
example, current works usually assume a single choice for the nonlinearity, e.g., gra-
dient clipping, while we consider a general nonlinearity that subsumes many popular
choices. Also, provided that the nonlinearity’s output is bounded (which is true for
many popular choices like the clipped, signed, and normalized gradient), we establish
a sublinear MSE convergence rate O(1/tζ) assuming only that the expected norm of
the gradient noise is finite, an assumption weaker than those considered in the works
of [15, 37, 11, 32]. On the other hand, we assume a strongly convex smooth cost func-
tion, which is equivalent to or stronger than the assumptions made in these works.
See also Examples 3.2 and 3.3. ahead for further rate comparisons with existing work.

The idea of employing a nonlinearity into a “baseline” linear scheme has also been
used in other contexts. Most notably, several works consider nonlinear versions of the
standard consensus algorithm to evaluate average of scalar values in a distributed
fashion, e.g., [22, 33, 10]. The paper [22] introduces a trigonometric nonlinearity
into a standard linear consensus dynamics and shows an improved dependence of the
method on initial conditions. References [33] and [10] employ a general nonlinearity
in the linear consensus dynamics and show that it improves the method’s resilience
to additive communication noise. The authors of [34] modify the linear consensus by
taking out from the averaging operation the maximal and minimal estimates among
the estimates from all neighbors of a node. The above works are different from
ours as they focus on the specific consensus problem that can be translated into
minimizing a convex quadratic cost function in a distributed way over a generic,
connected network. In contrast, we consider general strongly convex costs, and we
are not directly concerned with distributed systems.

Paper organization. Section 2 describes the problem model and the nonlinear
SGD framework that we assume. Section 3 and Section 4 explain our results on
nonlinear SGD for component-wise and joint nonlinearities, respectively. Section 5
and Section 6 then provide proofs of the corresponding results. Section 7 illustrates
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the performance of several example methods from our nonlinear SGD framework on
real data sets that have heavy-tail gradient noise. Finally, Section 8 concludes the
paper. Some auxiliary results and proofs are delegated to the Appendix.

Notation. We denote by R and R+, respectively, the set of real numbers and real
nonnegative numbers, and by Rm the m-dimensional Euclidean real coordinate space.
We use normal (lower-case or upper-case) letters for scalars, lower-case boldface letters
for vectors, and upper case boldface letters for matrices. Further, we denote by: ai or
[a]i, as appropriate, the i-th element of vector a; Aij or [A]ij , as appropriate, the entry
in the i-th row and j-th column of a matrix A; A⊤ the transpose of a matrix A; and
trace(A) the sum of diagonal elements of A. Further, we use either a⊤b or ⟨a, b⟩ for
the inner product of vectors a and b. Next, we let I and 0 be, respectively, the identity
matrix and the zero matrix; ∥ · ∥ = ∥ · ∥2 the Euclidean (respectively, spectral) norm
of its vector (respectively, matrix) argument; ϕ′(w) the first derivative evaluated at w
of a function ϕ : R→ R; ∇h(w) and ∇2h(w) the gradient and Hessian, respectively,
evaluated at w of a function h : Rm → R; P(A) and E[u] the probability of an event A
and expectation of a random variable u, respectively; and by sign(a) the sign function,
i.e., sign(a) = 1, for a > 0, sign(a) = −1, for a < 0, and sign(0) = 0. Finally, for
two positive sequences ηn and χn, we have: ηn = O(χn) if lim supn→∞

ηn
χn

< ∞;

ηn = Ω(χn) if lim infn→∞
ηn
χn

> 0; and ηn = Θ(χn) if ηn = O(χn) and ηn = Ω(χn).

2. Problem Model and the nonlinear SGD Framework. We consider the
following unconstrained problem:

minimize f(x),(2.1)

where f : Rd 7→ R is a convex function.
We make the following standard assumption.

Assumption 1. Function f : Rd 7→ R is strongly convex with strong convexity
parameter µ > 0, and it has Lipschitz continuous gradient with Lipschitz constant L ≥
µ.

For asymptotic results (see ahead Theorems 3.1 and 3.3), we will also require the
following assumption.

Assumption 2. Function f : Rd 7→ R is twice continuously differentiable.

Under Assumption 1, problem (2.1) has a unique solution, which we denote by
x⋆ ∈ Rd.

In machine learning settings, f can correspond to the risk function, i.e.,

(2.2) f(x) = Ed∼P [ ℓ (x;d) ] +R(x).

Here, P is the (unknown) distribution from which the data samples d ∈ Rq are
drawn; ℓ(·; ·) is a loss function that is smooth and convex in its first argument for any
fixed value of the second argument; and R : Rd 7→ R is a smooth strongly convex

regularizer. Similarly, f can be empirical risk, i.e., f(x) = 1
n

(∑n
j=1 ℓ (x;dj)

)
+R(x),

where dj , j = 1, ..., n, is the set of training data points. Several machine learning
models fall within the described framework under Assumptions 1–2, including, e.g.,
ℓ2-regularized quadratic and logistic losses.

We introduce a general framework for nonlinear SGD methods to solve prob-
lem (1); an algorithm within the framework takes the following form:

(2.3) xt+1 = xt − αtΨ(∇f(xt) + νt).
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Here, xt denotes the solution estimate at iteration t, t = 0, 1, ...; Ψ : Rd 7→ Rd is
a general nonlinear map; αt > 0 is the employed step size; νt ∈ Rd is a zero-mean
gradient noise; and x0 is an arbitrary deterministic point in Rd.

We will specify further ahead the assumptions that we make on the step size αt,
the map Ψ and the noise νt. Some examples of commonly used maps Ψ that fall
within our framework are the following:

1. Sign gradient: [Ψ(w)]i = sign(wi), i = 1, ..., d;
2. Component-wise clipping: [Ψ(w)]i = wi, for |wi| ≤ m; [Ψ(w)]i = m, for
wi > m, and [Ψ(w)]i = −m, for wi < −m, for some constant m > 0.

3. Component-wise quantization: for each i = 1, ..., d, we let [Ψ(w)]i = rj , for
wi ∈ (qj−1, qj ], j = 1, ..., J , where −∞ = q0 < q1 < ... < qJ = +∞, J is a
positive integer, and the rj ’s and qj ’s are chosen such that each component
nonlinearity is an odd function, i.e., [Ψ(w)]i = −[Ψ(−w)]i, for each i and for
each w;

4. Normalized gradient: Ψ(w) = w
∥w∥ , for w ̸= 0, and Ψ(0) = 0;

5. Clipped gradient: Ψ(w) = w, for ∥w∥ ≤ M , and Ψ(w) = w
∥w∥ M , for

∥w∥ > M , for some constant M > 0.
Other nonlinearity choices are also introduced ahead (see Section 7).
We next discuss the various possible sources of the gradient noise νt. First, the

noise may arise due to utilizing a search direction with respect to a data sample. That
is, a common search direction in machine learning algorithms is the gradient of the loss
with respect to a single data point di

2: gi(x) = ∇ℓ (x;di)+∇R(x). In case of the risk
function (2.2), di is drawn from distribution P ; in case of the empirical risk, di can
be, e.g., drawn uniformly at random from the set of data points dj , j = 1, ..., n, with
repetition along iterations. In both cases, the corresponding gradient noise equals
ν = gi(x) −∇f(x). Several recent studies indicate that noise ν exhibits heavy tails
on many real data sets, e.g, [32, 17, 37]. (See also Section 7).

We also comment on other possible sources of gradient noise. The noise may
be added on purpose to the gradient ∇f(x) for improving privacy of an SGD-based
learning process, e.g., [29]. Also, the noise νt may model random computational
perturbations or inexact calculations in evaluating a gradient ∇f(x).

3. Main results: Component-wise Nonlinearities. Section 3 provides anal-
ysis of the nonlinear SGD method for component-wise nonlinearities. That is, we
consider here maps Ψ : Rd 7→ Rd of the form Ψ(w1, ..., wd) = (Ψ(w1), ...,Ψ(wd))

⊤,
for any w ∈ Rd, where (somewhat abusing notation) we denote by Ψ : R 7→ R the
component-wise nonlinearity. In this setting, we establish for (2.3) almost sure con-
vergence and evaluate the MSE convergence rate and the asymptotic covariance of
the method. In more detail, we consider a probability space (Ω,F , P ), where ω ∈ Ω is
a canonical element. For each t = 0, 1, ..., νt : Ω 7→ Rd is a random vector defined on
(Ω,F , P ). We also denote by Ft, t = 0, 1, ..., the σ-algebra generated by random vec-
tors {νs}, s = 0, ..., t. Clearly, in view of (2.3), xt+1 is measurable with respect to Ft,
t = 0, 1, ...We make the following assumptions; they follow the noise and nonlinearity
framework similar to [30].

Assumption 3 (Gradient noise). For the gradient noise random vector sequence
{νt} in (2.3), t = 0, 1, ..., νt ∈ Rd, we assume the following.

1. The sequence of random vectors {νt} is independent identically distributed

2Similar considerations hold for a loss with respect to a mini-batch of data points; this discussion
is abstracted for simplicity.
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(i.i.d.) Also, random variables νti are mutually independent across i = 1, ...d;
2. Each component νti , i = 1, ..., d, of vector νt = (νt1, ..., ν

t
d)

⊤ has a probability
density function p(u), p : R 7→ R+.

3. The pdf p is symmetric, i.e., p(u) = p(−u), for any u ∈ R with
∫
|u|p(u)du <

+∞, and p(u) > 0 for |u| ≤ cp, for some constant cp > 0.

Note that Assumption 3 implies that νt is zero-mean, for all t, and that νt and xt

are mutually independent, for all t. For a class of unbounded nonlinearities Ψ that
obey Assumption 6 ahead, we will additionally require the following.

Assumption 4. The gradient noise variance σ2
ν =

∫ +∞
−∞ u2p(u)du < +∞.

Assumption 3 requires that the noise vector is i.i.d. across its components i = 1, ..., d
which may be restrictive in certain scenarios. For the global MSE analysis, these
assumptions can be relaxed; see ahead the remark after Theorem 3.2 and Appendix C.

Regarding noise pdf p(u), except for strictly positivite values in the vicinity of
zero (a very mild assumption), we require that the noise pdf is symmetric. Examples
of the distributions that satisfy Assumption 3 include, e.g., a Gaussian zero-mean pdf
or a Laplace zero-mean pdf with strictly positive variances, and heavy-tail zero-mean
symmetric α-stable distributions [3]. 3 On the other hand, p(u) may not be symmetric
if, e.g., it is a mixture of some standard distributions. For example, consider random
variable ν that is sampled from N(−m1, σ

2) with probability p = m2

m1+m2
and it is

sampled from N(m2, σ
2) with probability 1− p, for some m1 ̸= m2, m1,m2 > 0, and

σ > 0. Then, clearly, ν is zero-mean but does not have a symmetric pdf.

Assumption 5 (Nonlinearity Ψ). Function Ψ : R 7→ R is a continuous (except
possibly on a point set with Lebesgue measure of zero), monotonically non-decreasing
and odd function, i.e., Ψ(−w) = −Ψ(w), for any w ∈ R. Moreover, Ψ is piece-wise
differentiable. Finally, Ψ is either discontinuous at zero, or Ψ(u) is strictly increasing
for u ∈ (−cΨ, cΨ), for some cΨ > 0.

In addition, we impose one of the Assumptions 6 or 7 below.

Assumption 6. |Ψ(w)| ≤ C1 (1+ |w|), for any w ∈ R, for some constant C1 > 0.

Assumption 7. |Ψ(w)| ≤ C2, for some constant C2 > 0.

Assumption 3 and Assumption 5 are imposed throughout the paper. Assumption 4
is imposed when Assumption 6 holds, i.e., for the nonlinearities Ψ that can have un-
bounded outputs. When Assumption 7 is imposed, then Assumption 4 is not required.

Note that, provided that Assumption 7 holds, we require only a finite first moment
of the gradient noise, while the moments of α-order, α > 1, may be infinite, hence
allowing for heavy-tail noise distributions. For example, the gradient noise variance
can be infinite. Assumption 5 holds for several interesting component-wise nonlinear-
ities, like, e.g., the sign gradient, component-wise clipping, and quantization schemes
introduced in Section 2. Note also that Assumption 5 encompasses a broad range of
component-wise nonlinearities, beyond the examples in Section 2. (For example, see
Section 7 for the tanh and a bi-level quantization nonlinearity.)

Let us define function ϕ : R 7→ R, as follows. For a fixed (deterministic) point
w ∈ R, ϕ(w) is defined by:

(3.1) ϕ(w) = E
[
Ψ(w + ν01)

]
=

∫
Ψ(w + u)p(u)du,

3A random variable Z has a symmetric α-stable zero-mean distribution with scale parameter
σ > 0 if its characteristic function takes the form: E [exp(i uZ)] = exp(−σα|u|α), u ∈ R, α ∈ [0, 2].
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where the expectation is taken with respect to the distribution of a single entry of
the gradient noise at any iteration, i.e., with respect to pdf p(u). Intuitively, the
nonlinearity ϕ is a convolution-like transformation of the nonlinearity Ψ, where the
convolution is taken with respect to the gradient noise pdf p(u). As we will see
ahead, the nonlinearity ϕ plays an effective role in determinining the performance
of algorithm (2.3). We now state the main results on (2.3) with component-wise
nonlinearities, including the results on a.s. convergence, MSE rate, and asymptiotic
normality. We start with the following Theorem that establishes a.s. convergence.

Theorem 3.1 (Almost sure convergence: Component-wise nonlinearity). Con-
sider algorithm (2.3) for solving optimization problem (2.1), and let Assumptions
1, 2, 3, 5, and 7 hold. Further, let the positive step-size sequence {αt} be square
summable, non-summable:

∑
αt = +∞;

∑
α2
t < +∞. Then, the sequence of iterates

{xt} generated by algorithm (2.3) converges almost surely to the solution x⋆ of the
optimization problem (2.1). Moreover, the result holds if Assumption 7 is replaced
with Assumption 6, and Assumption 4 is additionally imposed.

Theorem 3.1 establishes a.s. convergence of the nonlinear SGD scheme (2.3)
under a general setting for the component-wise nonlinearities and gradient noise. For
example, provided that the output of the nonlinearity Ψ is bounded, algorithm (2.3)
converges even when the gradient noise may not have a finite α-moment, for any α > 1.
(Hence it may have an infinite variance). In contrast, as shown in Appendix B, the
linear SGD (algorithm (2.3) with Ψ being the identity function) generates a sequence
of solution estimates with infinite variances, provided that the variance of p(u) is
infinite.

Fig. 3.1: Illustration of Theorem 3.1: estimated MSE versus iteration counter for
the nonlinear SGD in (2.3) with component-wise sign nonlinearity (blue line) and the
linear SGD (red line).

Example 3.1. Figure 3.1 illustrates Theorem 3.1 with a simulation example.
We consider a strongly convex quadratic function f : Rd 7→ R, f(x) = x⊤Ax+ b⊤x,
where A ∈ Rd×d is a (symmetric) positive definite matrix, d = 16, and quantities
A,b are generated at random. We consider algorithm (2.3) with the component-wise
sign nonlinearity and the linear SGD. The gradient noise has a heavy-tailed pdf given
by:

(3.2) p(u) =
α− 1

2(1 + |u|)α ,
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for u ∈ R and α > 2. Note that the distribution (3.2) does not have a finite α − 1
moment and has finite moments of r-th order for r < α − 1. We set in simulation
α = 2.05. Note that, in this case, the gradient noise has infinite variance. We initialize
both the linear and nonlinear algorithm with x0 = 0, and we let step size αt =

1
t+1 .

Figure 3.1 shows an estimate of MSE, i.e., of the quantity E[∥xt−x⋆∥2], obtained by
averaging results from 100 sample paths. The red line corresponds to the linear SGD,
while the blue line corresponds to the nonlinear SGD with the component-wise sign
nonlinearity. As predicted by Theorem 3.1, the nonlinear SGD drives the MSE to
zero, while the linear SGD does not seem to provide a meaningful solution estimate
sequence.
We next establish the mean square error (MSE) convergence rate of algorithm (2.3).

Theorem 3.2 (MSE convergence: Component-wise nonlinearity). Consider al-
gorithm (2.3) for solving optimization problem (2.1), and let Assumptions 1, 3, 5,
and 7 hold. Further, let the step-size sequence {αt} be αt = a/(t + 1)δ, a > 0,
δ ∈ (0.5, 1). Then, for the sequence of iterates {xt} generated by algorithm (2.3), it
holds that E

[
∥xt − x⋆∥2

]
= O(1/tζ), or equivalently, E [f(xt)− f⋆] = O(1/tζ). Here,

ζ < 1 is any positive number such that ζ < min
(
2δ − 1, a (1−δ)ξ ϕ′(0)µ

L (aC2

√
d+∥x0−x⋆∥)

)
, and

constant ξ > 0 is such that ϕ(a) ≥ ϕ′(0)
2 a, for any a ∈ [0, ξ). Furthermore, let As-

sumptions 1, 3, 5, and 6, and 4 hold, let αt =
a

(t+1)δ
, δ ∈ (0.5, 1], and assume that

infa̸=0
|Ψ(a)|
|a| > 0. Then, there holds that E

[
∥xt − x⋆∥2

]
= O(1/tδ), or equivalently,

E [f(xt)− f⋆] = O(1/tδ). In particular, for δ = 1, we obtain the O(1/t) MSE rate.

Remark. The MSE convergence O(1/tζ
′
), for some ζ ′ ∈ (0, 1), continues to hold

under the same set of assumptions as in Theorem 3.2 but with a relaxed version of
Assumption 3, where we no longer require that the gradient noise vector has mutually
independent components. More precisely, we allow for an i.i.d. noise vector sequence
{νt}, νt ∈ Rd, that has a symmetric joint pdf p : Rd 7→ R, p(u) = p(−u), for any
u ∈ Rd, that is strictly positive for ∥u∥ ≤ u0, for some u0 > 0. In that case, effectively,
the role of function ϕ in Theorem 3.2 is replaced by functions w 7→ ϕi(w), w ∈ R,
i = 1, ..., d, where ϕi(w) =

∫
Ψ(w + u)pi(u)du, and pi : R 7→ R is the marginal pdf of

the i-th component associated with the joint pdf p : Rd 7→ R. (See Appendix C.)
For the bounded nonlinearity case (e.g., sign gradient, component-wise clipping,

quantization nonlinearity) and the heavy-tail noise (only the first noise moment
assumed to be finite), the nonlinear SGD (2.3) achieves a global sublinear MSE
rate O(1/tζ), ζ ∈ (0, 1). On the other hand, for the finite variance case and an
unbounded nonlinearity, the nonlinear SGD (2.3) achieves a global MSE rate O(1/t)

provided that infw ̸=0
|Ψ(w)|
|w| > 0. This is the best achievable rate and equal to that of

the linear SGD in the same setting. Furthermore, by Theorem 3.3 ahead, the non-
linear SGD (2.3) with bounded outputs under the heavy-tail noise achieves locally, in
the weak convergence sense, the faster O(1/t) rate. This is again in the setting where
the linear SGD fails.

Example 3.2. We next illustrate the value ζ in Theorem 3.2 on the family
of heavy-tailed pdfs given in (3.2). To be specific, consider the sign nonlinearity
Ψ(w) = sign(w). Then, it is easy to show that: ϕ(w) = 2

∫ w
0
p(u)du, ϕ′(0) = 2 p(0),

ξ ≥ 21/α − 1 ≈ 1
α . Using the above calculations, we can see that, for a large a, ζ can

be approximated as min{2δ − 1, µ
L

1−δ√
d
α−1
α }.

We also compare the rate ζ with the analysis in [37] that is closest to our setting
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with respect to existing work. Modulo the differences in the assumptions of the
assumed settings here and in [37], the rate in [37], when adapted to the noise pdf

in Example 3.1, reads as follows: 2(r−1)
r , where r is any number such that r ≤

min{α− 1, 2}. When compared with ζ, the rate in [37] is clearly better for α above a
threshold. However, as α decreases and approaches the value 2, the rate achieved here

stays bounded away from zero and approaches the quantity: min
{
2δ − 1, 1

2
µ
L

1−δ√
d

}
.

In contrast, the rate in in [37] approaches zero as α approaches 2. 4

Example 3.3. We continue to assume the noise pdf in (3.2), but here we consider
the component-wise clipping nonlinearity Ψ with saturation value m. For simplicity,
we take m > 1, while similar bounds can be obtained for m ≤ 1 as well. It can be
shown that the rate ζ can be estimated as (see Appendix E):

(3.3) min

{
2δ − 1,

µ

L
√
d

(1− δ)(m− 1)(1− (m+ 1)−α)
m

}
.

The above α-dependent estimate can be replaced with a more conservative rate that

holds for any α > 2: min{2δ − 1, µ

L
√
d

(1−δ)(m−1)(1−(m+1)−2)
m }. We again compare

the rate achieved by the proposed method with the rate from [37] that equals: 2(r−1)
r ,

r < min{α − 1, 2}. We can see that the rate in [37] is better than (3.3) for α above
a threshold. On the other hand, when α decreases to 2, the rate of [37] approaches
zero, while (3.3) becomes better and stays bounded away from zero.

We next establish asymptotic normality of (2.3).

Theorem 3.3 (Asymptotic normality: Component-wise nonlinearity). Consider
algorithm (2.3) for solving optimization problem (2.1), and let Assumptions 1, 2,
3, 5, and 7 hold. Further, let the step-size sequence {αt} equal: αt = a/(t + 1),
t = 0, 1, ..., with parameter a > 1

2ϕ′(0)µ . Then, the sequence of iterates {xt} generated
by algorithm (2.3) is asymptotically normal, and there holds:

(3.4)
√
t+ 1(xt − x⋆)

d−→ N(0,S),

where
d−→ designates convergence in distribution. The asymptotic covariance S of the

multivariate normal distribution N(0,S) is given by:

S = a2
∫ ∞

ν=0

eνΣS0eνΣdν = a2σ2
ψ

[
2aϕ′(0)∇2f(x⋆)− I

]−1
,

where:

S0 = σ2
Ψ I, σ2

Ψ =

∫
|Ψ(v)|2p(v)dv, Σ =

1

2
I− aϕ′(a)∇2f(x⋆).(3.5)

Moreover, the same result holds when Assumption 7 is replaced with Assumption 6,
and Assumption 4 is additionally imposed.

4It is worth noting that reference [37] establishes certain tightness results on the rate achieved
therein, by providing a “hard” problem example where the mean squared error after t iterations is

Ω(1/t
2(r−1)

r ). However, this does not contradict our results due to the different sets of Assumptions
made here and in [37]. Most notably, [37] assumes bounded moments of gradients and allow for
dependence between the current point xt and the gradient noise νt. In fact, the “hard example”
construction in the proof of Theorem 5 in [37] constructs νt as an explicit function of xt.
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Theorem 3.3 establishes asymptotic normality of (2.3) and, moreover, it gives an
exact expression for the asymptotic covariance S in (3.3), that basically corresponds
to the constant in the 1/t variance decay near the solution. The asymptotic covariance
value (3.3) reveals an interesting tradeoff with respect to the effect of the nonlinearity
Ψ. We provide some insights into the tradeoff through examples below.

Example 3.4 Figure 3.2 illustrates Theorem 3.3 for the nonlinear SGD in (2.3)
with component-wise sign nonlinearity and the same simulation setting used for the
numerical illustration of Theorem 3.1 and step-size αt =

10
t+1 . The red line plots quan-

tity t
d∥xt − x⋆∥2 estimated through 100 sample path runs. This quantity estimates

the constant in the 1/t per-entry asymptotic variance decay, i.e., it is a numerical es-

timate of the per-entry asymptotic variance trace(S)
d , where S is given in Theorem 3.3.

The blue horizontal line marks the value trace(S)
d . We can see that the simulation

matches well the theory.

Fig. 3.2: Illustration of Theorem 3.3: Monte Carlo estimate of per-entry asymptotic
variance (red line) and the theoretical per-entry asymptotic variance in Theorem 3.3
(blue line).

Example 3.5. We compare the linear SGD and the nonlinear SGD with
component-wise clipping. For illustration and simplification of calculations, we con-
sider the special case when ∇2f(x⋆) is a symmetric matrix with all eigenvalues equal
to one. Then, it is straightforward to show that the per-entry asymptotic variance for
the best choice of parameter a over the admissible set of values equals:

(3.6) inf
a> 1

2ϕ′(0)

trace (S) = σ2
Ψ

(ϕ′(0))2
.

Here, for the linear SGD i.e., when Ψ(a) = a, we have that σ2
Ψ =

∫
a2p(a)da equals

the gradient noise (per component) variance σ2
ν , and ϕ

′(0) = 1, and so (3.6) equals σ2
ν .

Now, consider the coordinate-wise clipping, with Ψ(a) = a for |a| ≤ m and Ψ(a) =
sign(a)m, for |a| > m, for some m > 0. Then, we have: σ2

Ψ = m2 − 2
∫m
0
(m2 −

v2)p(v)dv, and ϕ′(0) = 2
∫m
0
p(v)dv. (See Appendix F for the derivation.) Note that

the case m→∞ corresponds to the linear SGD case. Consider now the tradeoff with
respect to the choice of m. Clearly, taking a smaller m has a positive effect on the
numerator in (3.6) (it suppresses the noise effect). On the other hand, reducing m
has a negative effect on the denominator in (3.6); that is, it reduces the value ϕ′(0)
– intuitively, it “lowers the quality” of the search direction utilized with (2.3). One
needs to choose the nonlinearity, i.e., the parameter m, optimally, to strike the best
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balance here. Clearly, for larger gradient noise σ2
ν , we should pick a smaller value

of m. Note also that, when σ2
ν is infinite, the linear SGD has an infinite asymptotic

variance in (3.6), while the nonlinear SGD with anym ∈ (0,∞) has a finite asymptotic
variance.

Example 3.6. We continue to assume the simplified setting when the per-entry
asymptotic variance equals (3.6). We consider the sign gradient nonlinearity and
the class of heavy-tail gradient noise distributions in (3.2). It can be shown that
here: σ2

Ψ = 1; σ2
ν = 2

(α−3)(α−2) , for α > 3 and σ2
ν = ∞, else; and ϕ′(0) = α − 1.

(See Appendix G.) Therefore, for the sign gradient, the best achievable per entry
asymptotic variance equals 1

(α−1)2 , while for the linear SGD it equals 2
(α−2)(α−3) for

α > 3, and is infinite for α ∈ (2, 3]. Hence, we can see for the considered example that
the sign gradient outperforms the linear SGD for any α > 2, and the gap becomes
larger as α gets smaller.

Example 3.7. We still consider the simplified setting of (3.6). If the noise pdf
p(u) is known, then, following [30], we can find a globally optimal nonlinarity that
minimizes (3.6) that takes the form: Ψ(a) = − d

da ln(p(a)). The corresponding optimal
asymptotic variance equals the Fisher information associated with the pdf p(u).

4. Main results: Joint Nonlinearities. We now consider algorithm (2.3) for
a nonlinearity Ψ : Rd 7→ Rd that cannot be decoupled into (equal) component wise
nonlinearities Ψ : R 7→ R, as it was possible before. More precisely, we make the
following assumptions on the gradient noise νt and the nonlinear map Ψ : Rd 7→ Rd.
Recall also filtration Ft in Section 3.

Assumption 8. [Gradient noise] For the gradient noise sequence {νt}, we as-
sume the following:

1. The sequence of random vectors {νt} is i.i.d. Moreover, νt has a joint sym-
metric pdf p(u), p : Rd 7→ R, i.e., p(u) = p(−u), for any u ∈ Rd with∫
∥u∥p(u)du <∞;

2. There exists a positive constant B0 such that, for any x ∈ Rd, x ̸= 0, for any
A ∈ (0, 1], there exists λ = λ(A) > 0, such that

∫
JA

p(u)du > λ(A), where

JA = {u ∈ Rd : u⊤x
∥u∥∥x∥ ∈ [0, A], ∥u∥ ≤ B0}.5

Assumption 8 allows for a heavy-tailed noise vector whose components can be
mutually dependent. Condition 2. in Assumption 8 is mild; it says that the joint
pdf p(u) is “non-degenerate” in the sense that, along each “direction” (determined

by arbitrary nonzero vector x), the intersection of the set { u⊤x
∥u∥∥x∥ ∈ [0, A]} and the

ball {∥u∥ ≤ B0} consumes a positive mass of the joint pdf p(u).
We make the following assumption on the joint nonlinearity.

Assumption 9 (Nonlinearity Ψ). The nonlinear map Ψ : Rd 7→ Rd takes the
following form: Ψ(w) = wN (∥w∥), where function N : R+ 7→ R+ satisfies the
following: N is non-increasing and continuous except possibly on a point set with
Lebesgue measure of zero with N (q) > 0, for any q > 0. The function qN (q) is
non-decreasing.

In addition, we assume that either Assumption 10 or Assumption 11 holds.

Assumption 10. ∥Ψ(w)∥ ≤ C ′
2, for any w ∈ Rd, for some C ′

2 > 0.

5The integration set JA also includes the point u = 0. In other words, for compact notation here

and throughout the paper, we write u⊤x
∥u∥∥x∥ ∈ [0, A] instead of 0 ≤ u⊤x ≤ A ∥u∥∥x∥.
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Fig. 4.1: Comparison of the optimization algorithms across different datasets

Assumption 11. ∥Ψ(w)∥ ≤ C ′
1(1 + ∥w∥), for any w ∈ Rd, for some C ′

1 > 0

There are many nonlinearities that satisfy the above Assumptions, including the nor-
malized gradient and the clipped gradient discussed in Section 2. If Assumption 11
holds, then we additionally require the following.

Assumption 12. There holds:
∫
∥u∥2p(u)du <∞.

For asymptotic normality in the joint nonlinearity case, we additionally impose
the following.

Assumption 13. Function N : R+ 7→ R is differentiable for any positive argu-
ment, i.e., N ′(a) exists for any a > 0. Furthermore, supa>0N (a) < +∞.

We first state Theorem 4.1 and Theorem 4.2 on the a.s. convergence and the MSE
rate of algorithm (2.3), respectively; we then illustrate the results with examples.

Theorem 4.1 (A.s. convergence: Joint nonlinearity). Consider algorithm (2.3)
for solving optimization problem (2.1), and let Assumptions 1, 2, 8, 9, and 10 hold.
Further, let the step-size sequence {αt} be square-summable, non-summable. .Then,
for the sequence of iterates {xt} generated by algorithm (2.3), it holds that xt →
x⋆, a.s. Moreover, the result continues to hold if Assumption 10 is replaced with
Assumption 11, and Assumption 12 is additionally imposed.

We now state our MSE rate result for the joint nonlinearity case.

Theorem 4.2 (MSE convergence rate: Joint nonlinearity). Consider algorithm
(2.3) for solving optimization problem (2.1), and let Assumptions 1, 8, 9, and 10 hold.
Further, let the step-size sequence {αt} be αt = a/(t + 1), a > 0, δ ∈ (0.5, 1). Then,
E
[
∥xt − x⋆∥2

]
= O(1/tζ), or equivalently, E [f(xt)− f⋆] = O(1/tζ). Here, ζ ∈ (0, 1)

is any positive number smaller than: min
{
2δ − 1, 4 aµ (1−κ)λ(κ)(1−δ)N (1)

L ( aC′
2+∥x0∥+∥x⋆∥ )+B0

}
, where κ is

an arbitrary constant in (0, 1), and we recall quantities B0 and λ(κ) in Assumption 8;
µ and L in Assumption 1; and C ′

2 in Assumption 9. In alternative, let Assumptions 1,

8, 9, 11, and 12 hold. Let αt =
a

(t+1)δ
, δ ∈ (0.5, 1], and assume that infw ̸=0

∥Ψ(w)∥
∥w∥ >

0. Then, E
[
∥xt − x⋆∥2

]
= O(1/tδ), or equivalently, E [f(xt)− f⋆] = O(1/tδ). In

particular, for δ = 1 and a sufficiently large parameter a, we obtain the O(1/t) MSE
rate.

Example 4.1. We illustrate the rate ζ in Theorem 4.2 for the gradient clipping
nonlinearity with floor level M > 0. We consider an arbitrary joint pdf p : Rd 7→ R+

that has “radial symmetry”, i.e., p(u) = q(∥u∥), where q : R+ 7→ R+ is a given
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function. For example, we let:

(4.1) p(u) = q(∥u∥), q(ρ) = (α− 2)(α− 1)

2π

1

(1 + ρ)α
, ρ ≥ 0, α > 3.

It can be shown that p(u) in (4.1) has finite moments of order r, r < α − 2, and it
has infinite moments for r ≥ α − 2. It holds that (see Appendix H for derivations)
the rate ζ can be estimated as: min

{
2δ − 1, (1− δ) 0.68µL

}
. Hence, up to universal

constants, the rate ζ is approximated as min
{
2δ − 1, (1− δ) µL .

}
. It is easy to see

that the same rate estimate can be obtained for the normalized gradient nonlinearity,
under the same gradient noise setting.

We compare the rate estimate here with the rate for component-wise nonlinearities
(e.g., component-wise clipping in Example 3.3) that is, up to universal constants,

of order min
{
2δ − 1, (1− δ) µ√

dL
.
}
. We can see that, with the joint nonlinearity

examples here, the rate is improved with respect to the component-wise nonlinearities
by a factor

√
d. In other words, the rate estimate for the joint nonlinearities does

not deteriorate with the dimension d increase. This may be intuitively explained
by considering the sign component-wise nonlinearity and the normalized gradient.
These two functions coincide for d = 1 (and this is reflected by the identical rate
estimates we obtain here), but they become different for d > 1 (as also reflected by
our obtained rate estimates). Intuitively, in the noiseless case, the normalized gradient
preserves “more information” about the exact gradient (“true search direction”) than
the component-wise sign function; hence, the difference in the estimated rates.

We now examine asymptotic normality for the joint nonlinearities case. We have
the following theorem.

Theorem 4.3 (Asymptotic normality: Joint nonlinearity). Consider algorithm
(2.3) for solving optimization problem (2.1), and let Assumptions 1, 2, 8, 9, 10,
and 13 hold. Further, let the step-size sequence {αt} equal αt = a/(t + 1), a >

0. Then:
√
t+ 1(xt − x⋆)

d−→ N(0,S). The asymptotic covariance S is given by

S = a2
∫∞
0
evΣS0evΣdv, where S0 =

∫
uu⊤ (N (∥u∥))2 p(u)du; Σ = 1 2I+aB; B =

−(
∫
N (∥u∥)p(u)du +

∫
u̸=0

uu⊤

∥u∥ N ′(∥u∥)p(u)du)∇2f(x⋆), and constant a > 0 in the

step-size sequence is taken large enough such that matrix Σ is stable. Moreover, the
result continues to hold if Assumption 10 is replaced with Assumption 11, and As-
sumption 12 is additionally imposed.

Theorem 4.3 shows that asymptotic normality continues to hold for the joint nonlin-
earity case as well, provided that N (a) is differentiable for any a > 0 and that N is
uniformly bounded from above.

5. Intermediate results and proofs: Component-wise nonlinearities.
This section provides proofs of Theorem 3.1, Theorem 3.2, and Theorem 3.3, ac-
companied with the required intermediate results. Subsection 5.1 presents some use-
ful intermediate results on stochastic approximation and deterministic time-varying
sequences; Subsection 5.2 deals with the asymptotic analysis (Theorem 3.1 and The-
orem 3.3); and Subsection 5.3 considers MSE analysis (Theorem 3.2).

5.1. Stochastic approximation and time-varying sequences. We present
a useful result on single time scale stochastic approximation; see [26], Theorems 4.4.4
and 6.6.1.
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Theorem 5.1. Let
{
xt ∈ Rd

}
be a random sequence that satisfies:

(5.1) xt+1 = xt + αt
[
r(xt) + γ

(
t+ 1,xt, ω

)]
,

where, r(·) : Rd 7−→ Rd is Borel measurable and {γ(t,x, ω)}t≥0, x∈Rd is a family

of random vectors in Rd, defined on a probability space (Ω,F ,P), and ω ∈ Ω is a
canonical element. Let the following sets of assumptions hold:
(B1): The function γ(t, ·, ·) : Rd ×Ω −→ Rd is Bd ⊗F measurable for every t; Bd is
the Borel algebra of Rd.
(B2): There exists a filtration {Ft}t≥0 of F , such that, for each t, the family of ran-
dom vectors {γ (t,x, ω)}x∈Rd is Ft measurable, zero-mean and independent of Ft−1.
(B3): There exists a twice continuously differentiable function V (x) with bounded
second order partial derivatives and a point x⋆ ∈ Rd satisfying: V (x⋆) = 0, V (x) > 0,
x ̸= x⋆, lim∥x∥→∞ V (x) =∞, supϵ<∥x−x⋆∥< 1

ϵ
⟨r (x) ,∇V (x)⟩ < 0, for any ϵ > 0.

(B4): There exist constants k1, k2 > 0, such that,

∥r (x)∥2 + E
[
∥γ (t+ 1,x, ω)∥2

]
≤ k1 (1 + V (x))−

− k2⟨r (x) ,∇V (x)⟩.

(B5): The weight sequence {αt} satisfies αt > 0,
∑
t≥0 αt =∞,

∑
t≥0 α

2
t <∞.

(C1): The function r (x) admits the representation

(5.2) r (x) = B (x− x⋆) + δ (x) ,

where limx→x⋆
∥δ(x)∥
∥x−x⋆∥ = 0.

(C2): The step-size sequence, {αt} is of the form, αt =
a
t+1 , for any t ≥ 0, where

a > 0 is a constant.
(C3): Let I be the d×d identity matrix and a,B as in C2 and C1, respectively. Then,
the matrix Σ = aB+ 1

2I is stable.
(C4): The entries of the matrices, for any t ≥ 0,x ∈ Rd, A (t,x) = E[γ (t+ 1,x, ω)
γ⊤ (t+ 1,x, ω) ] are finite, and the following limit exists: limt→∞, x→x⋆ A (t,x) = S0.
(C5): There exists ϵ > 0, such that

(5.3) lim
R→∞

sup
∥x−x⋆∥<ϵ

sup
t≥0

∫

∥γ(t+1,x,ω)∥>R
∥γ (t+ 1,x, ω)∥2 dP = 0.

Then we have the following:
Let Assumptions (B1)-(B5) hold for {xt} in (5.1). Then, starting from an

arbitrary initial state, the process {xt} converges a.s. to x⋆.
The normalized process,

{√
t (xt − x⋆)

}
, is asymptotically normal if, besides As-

sumptions (B1)-(B5), Assumptions (C1)-(C5) are also satisfied. In particular, as

t → ∞, we have:
√
t (xt − x⋆)

d−→ N(0,S). Also, the asymptotic covariance S of the

multivariate Gaussian distribution N(0,S) is S = a2
∫∞
0
evΣ S0evΣ

⊤
dv.

Proof. For a proof see [26] (c.f. Theorems 4.4.4, 6.6.1).

We also make use of the following Theorem, proved in Appendix A; see also
Lemmas 4 and 5 in [21].

Theorem 5.2. Let zt be a nonnegative (deterministic) sequence satisfying:

zt+1 ≤ (1− rt1) zt + rt2,
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for all t ≥ t′, for some t′ > 0, with some zt
′ ≥ 0. Here, {rt1} and {rt2} are deterministic

sequences with a1
(t+1)δ1

≤ rt1 ≤ 1 and rt2 ≤ a2
(t+1)δ2

, with a1, a2 > 0, and δ2 > δ1 > 0.

Then, the following holds: (1) If δ1 < 1, then zt = O( 1
tδ2−δ1

); (2) If δ1 = 1, then

zt = O( 1
tδ2−1 ) provided that a1 > δ2 − δ1; (3) if δ1 = 1 and a1 ≤ δ2 − 1, then

zt = O( 1
tζ
), for any ζ < a1.

5.2. Asymptotic analysis: Proofs of Theorem 3.1 and Theorem 3.3. The
next Lemma, due to [30], establishes structural properties of function ϕ in (3.1). The
Lemma says that essentially, the convolution-like transofrmation of the nonlinearity
preserves the structural properties of the nonlinearity. For a proof of the Lemma, see
Appendix D.

Lemma 5.3. [30] Consider function ϕ in (3.1), where function Ψ : R 7→ R
satisfies Assumption 5, and noise pdf p : R 7→ R+ satisfies Assumption 3. Then, the
following holds.

1. ϕ is odd;
2. If in addition Assumption 7 holds, then |ϕ(a)| ≤ K2, for any a ∈ R, for some

constant K2 > 0;
3. If in addition Assumption 6 holds, then |ϕ(a)| ≤ K1(1 + |a|), for any a ∈ R,

for some constant K1 > 0;
4. ϕ(a) is monotonically nondecreasing;
5. If in addition either Assumption 6 or Assumption 7 holds, then ϕ is differ-

entiable at zero, with a strictly positive derivative at zero, equal to:

(5.4) ϕ′(0) =
s∑

i=1

(Ψ(νi + 0)−Ψ(νi − 0)) p(νi) +

s∑

i=0

∫ νi+1

νi

Ψ′(ν)p(ν)dν,

where νi, i = 1, ..., s are points of discontinuity of Ψ such that ν0 = −∞ and
νs+1 = +∞.

Remark. In view of (5.4), we highlight the need that p(u) is strictly positive in
the vicinity of zero and that Ψ is either discontinuous at zero or strictly increasing
in the vicinity of zero, in order for ϕ′(0) to be strictly positive. (see Assumptions 3
and 5.) Consider the following counterexample: Ψ(u) = sign(u), where p corresponds
to the uniform distribution on the set (−u2,−u1) ∪ (u1, u2), for 0 < u1 < u2. Note
that p is zero in the vicinity of zero. Then, by (5.4), ϕ′(0) = 0.

We proceed by setting up the proof of Theorem 3.1. The proof relies on conver-
gence analysis of single-time scale stochastic approximation methods from [26]; more
precisely, we utilize Theorem 5.1 in the Appendix; see also [20].

We first put algorithm (2.3) in the format that complies with Theorem 5.1.
Namely, algorithm (2.3) can be written as:

(5.5) xt+1 = xt + αt
[
r(xt) + γ(t+ 1,xt, ω)

]
.

Here, ω denotes an element of the underlying probability space, and

(5.6) r(x) = −ϕ(∇f(x)),

where, abusing notation, ϕ : Rd 7→ Rd equals (ϕ(a1, ..., ad)) = (ϕ(a1), ..., ϕ(ad))
⊤
.

That is, we have that:
(5.7)

r(x) = − (ϕ([∇f(x)]1), ..., ϕ([∇f(x)]d))⊤ , γ(t+1,x, ω) = ϕ(∇f(x))−Ψ(∇f(x)+νt).
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16 D. JAKOVETIĆ ET AL.

We provide an intuition behind the algorithmic format (5.5). Quantity r(x) is a
deterministic, “useful”, progress direction with respect to the evolution of xt; quantity
γ(t+ 1, x, ω) is the stochastic component that plays a role of a noise in the system.

We adopt the following Lyapunov function: V (x) = f(x) − f⋆, V : Rd 7→ R,
where f⋆ = infx∈Rd f(x) = f(x⋆). By Assumptions 1 and 2, V is twice continuously
differentiable and has uniformly bounded second order partial derivatives, as required
by Theorem 5.1. We are ready to prove Theorem 3.1.

Proof (Proof of Theorem 3.1). We now verify conditions B1-B5 from Theorem 5.1.
Recall from Section 3 Ft, the σ-algebra generated with random vectors νs, s = 0, ..., t.
Then, the family of random vectors {γ (t+ 1,x, ω)}x∈Rd is Ft-measurable, zero-mean
and independent of Ft−1. Also, clearly, function γ(t+ 1, ·, ·) is measurable, for all t.
Thus, conditions Bi and B2 hold.

For B3, we need to prove that supx:∥x−x⋆∥∈(ϵ, 1ϵ )
⟨r(x),∇V (x)⟩ < 0, for any ϵ > 0,

where ∇V (x) = ∇f(x). Let us fix an ϵ > 0. Then, we have, for any x ∈ Rd:

⟨r(x),∇V (x)⟩ = −ϕ(∇f(x))⊤(∇f(x))

= −
d∑

j=1

ϕ([∇f(x)]j)[∇f(x)]j = −
d∑

j=1

|ϕ([∇f(x)]j)| |[∇f(x)]j |,

where the last equality holds because ϕ is an odd function. Consider arbitrary x such
that ∥x − x⋆∥ ≥ ϵ. As ∥∇f(x)∥2 ≥ µ2∥x − x⋆∥2 (due to strong convexity of f), we
have ∥∇f(x)∥ ≥ µϵ, where we recall that µ is the strong convexity constant of f .
Therefore, there exists an index i ∈ {1, ..., d} such that |[∇f(x)]i| ≥ 1

dµϵ =: ϵ′. Next,
because ϕ′(0) > 0, and ϕ is continuous at 0 and is non-decreasing (by Lemma 5.3),
we have that |ϕ(b)| ≥ δ for some δ = δ(ϵ) > 0, for all b ∈ [ϵ, 1/ϵ]. Finally, we
have that: ⟨r(x),∇V (x)⟩ ≤ −ϵ′δ(ϵ), for any x such that ∥x − x⋆∥ ∈ [ϵ, 1ϵ ], and
therefore supx:∥x−x⋆∥∈(ϵ, 1ϵ )

⟨r(x),∇V (x)⟩ ≤ supx:∥x−x⋆∥∈[ϵ, 1ϵ ]
⟨r(x),∇V (x)⟩ ≤ −δ(ϵ) ϵ′

< 0, hence verifying condition B3.
We next verify condition B4. Consider quantity r(x) in (5.6). By Lemma 5.3

and the fact that f has Lipschitz gradient and is strongly convex (Assumption 1), it
follows that: ∥r(x)∥2≤ Cr,1 + Cr,2V (x), for some positive constants Cr,1 and Cr,2.
Also, since ∥γ(x, t+ 1, ω)∥2≤ 2∥ϕ(∇f(x))∥2 + 2∥Ψ(∇f(x) + νt)∥2, and it holds that
either 1) Ψ is bounded or 2) |Ψ(a)| ≤ C2 (1 + |a|) and νti has a finite variance, we
have: E

[
∥γ(x, t+ 1, ω)∥2

]
≤ C3 +C4 V (x), for some positive constants C3, C4. Now,

we finally have:

∥r(x)∥2 + E
[
∥γ(x, t+ 1, ω)∥2

]
≤ C5 + C6 V (x),

for some positive constants C5, C6, and hence condition B4 holds for a constant k1 > 0
and k2 = 0.6 Condition B5 holds by the choice of the step size sequence {αt} in
the Theorem statement. Summarizing, all conditions B1-B5 hold true, and hence
xt → x⋆, almost surely. □

We continue by proving Theorem 3.3.
Proof (Proof of Theorem 3.3). We prove the Theorem by verifying conditions

C1-C5 in Theorem 5.1. To verify condition C1, consider r(x) in (5.6) and note that,

6Note that the term −⟨r(x),∇V (x)⟩ in condition B4 of Theorem 5.1 equals ⟨ϕ(x),∇f(x)⟩. This
quantity is nonnegative, for any x ∈ Rd, and so k2 can be taken to be any positive number. In other
words, setting k2 = 0 in B4 corresponds to a tighter inequality than the corresponding inequality for
any k2 > 0.
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using the mean value theorem, it can be expressed as follows:

r(x) = −ϕ(∇f(x)−∇f(x⋆))

= −ϕ



[∫ 1

0

∇2f(x⋆ + t(x− x⋆)dt

]

︸ ︷︷ ︸
H

(x− x⋆)




= −ϕ (H(x− x⋆)) = −ϕ′(0)∇2f(x⋆)(x− x⋆) + δ(x),

(5.8)

where limx→x⋆
∥δ(x)∥
∥x−x∗∥ = 0. Hence, in the notation of Theorem 5.1, we have that B =

−ϕ′(0)∇2f(x⋆). Therefore, C1 holds. Also, C2 holds, by assumptions of Theorem 3.3.
Now, we consider C3, which requires that the matrix Σ = aB + 1

2I is stable (all
its eigenvalues have negative real parts), where B = −ϕ′(0)∇2f(x⋆). Note that
Σ = 1

2I− aϕ′(0)∇2f(x⋆). Clearly, Σ is stable for large enough a, because the matrix
ϕ′(0)∇2f(x⋆) is positive definite. More precisely, Σ is stable for a > 1/(2µϕ′(0)).
Therefore, condition C3 holds, provided that a > 1/(2µϕ′(0)). We next consider
condition C4. In the notation of Theorem 5.1, consider the following quantity:

A(t,x) = E
[
γ(t+ 1,x, ω)γ(t+ 1,x, ω)⊤

]

= E
[(
ϕ(∇f(x))−Ψ(∇f(x) + νt)

) (
(ϕ(∇f(x))−Ψ(∇f(x) + νt)

)⊤]

= E
[(
ϕ(∇f(x))−Ψ(∇f(x) + ν0)

) (
(ϕ(∇f(x))−Ψ(∇f(x) + ν0)

)⊤]
(5.9)

= E
[
γ(1,x, ω)γ(1,x, ω)⊤

]
.(5.10)

Consider the set Ω⋆ of all outcomes ω ∈ Ω such that Ψ is continuous at ν0(ω). Clearly,
the set Ω⋆ has the probability one. For every ω ∈ Ω⋆, we have Υ(ω) := limt→∞,x→x⋆

γ(1,x, ω)γ(1,x, ω)⊤ = Ψ(ν0)Ψ(ν0)⊤. Note that, for any ϵ > 0, the random family
∥γ(1,x, ω)γ(1,x, ω)⊤∥, ∥x− x⋆∥ < ϵ is dominated by an integrable random variable.
(See ahead (5.12)–(5.13).) Therefore, by the dominated convergence theorem, and
the fact that the entries of ν0 are mutually independent with pdf p(u), we have that:

lim
t→∞,x→x⋆

A(t,x) =: S0 = E
[
Ψ(ν0) ·Ψ(ν0)⊤

]
= σ2

Ψ · I,(5.11)

where σ2
Ψ =

∫
|Ψ(a)|2p(a)da. Therefore, condition C4 holds. We finally verify condi-

tion C5. We follow the arguments analogous to those in Theorem 10 in [20]. Condi-
tion C5 means uniform integrability of the family {∥γ(t+1,x, ω)∥2}t=0,1,..., ∥x−x⋆∥<ϵ.
We have: ∥γ(t+ 1,x, ω)∥2 ≤ 2∥ϕ(∇f(x))∥2+ 2∥ψ(∇f(x)+ νt)∥2. First, consider the
case when Assumptions 6 and 4 hold. Then:

∥γ(t+ 1,x, ω)∥2 ≤ C7 + C8∥x− x⋆∥2 + C9∥νt∥2
≤ C7 + C8 ϵ

2 + C9∥νt∥2,(5.12)

for some positive constants C7, C8, C9. Consider next the family
{γ̃(t+1,x, ω)}t=0,1,...,∥x−x⋆∥<ϵ, with γ̃(t+1,x, ω) = C7+C8 ϵ

2+ C9∥νt∥2. The family
{γ̃(t + 1,x, ω)}t=0,1,...,∥x−x⋆∥<ϵ is i.i.d. and hence it is uniformly integrable. The
family {∥γ(t+ 1,x, ω)∥2}t=0,1,...,∥x−x⋆∥<ϵ is dominated by
{γ̃(t+ 1,x, ω)}t=0,1,...,∥x−x⋆∥<ϵ that is uniformly integrable, and hence
{∥γ(t+ 1,x, ω)∥2}t=0,1,...,∥x−x⋆∥<ϵ is also uniformly integrable. Hence, C5 holds.
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18 D. JAKOVETIĆ ET AL.

Now, let Assumption 7 hold. Then:

∥γ(t+ 1,x, ω)∥2 ≤ C10 + C11∥x− x⋆∥2 ≤ C10 + C11 ϵ
2.(5.13)

Consider the family {γ̂(t+1,x, ω)}t=0,1,...,∥x−x⋆∥<ϵ, with γ̂(t+1,x, ω) = C10+ C11 ϵ
2.

The family {γ̂(t+ 1,x, ω)}t=0,1,...,∥x−x⋆∥<ϵ is uniformly integrable, and condition C5
is verified analogously to the previous case. Summarizing, we have established that
all conditions C1-C5 of Theorem 5.1 hold true, thus the proof of Theorem 3.3 □.

5.3. MSE analysis: Proof of Theorem 3.2. We start with the following
Lemma that upper boounds ∥∇f(xt)∥.

Lemma 5.4. Let Assumptions 1, 3, 5, and 7 hold. Further, let the step-size se-
quence {αt} be αt = a/(t + 1)δ, a > 0, δ ∈ (0.5, 1). Then, for each t = 1, 2, ..., we
have, a.s.:

(5.14) ∥∇f(xt)∥ ≤ Gt := L

(
aC2

√
d
t1−δ

1− δ + ∥x0 − x⋆∥
)
.

Proof. Consider (2.3). Because the output of each component nonlinearity Ψ is
bounded in the absolute value by C2 (Assumption 7), we have, for each t ≥ 1:

∥xt − x⋆∥ ≤ ∥x0 − x⋆∥+ a
√
dC2

t−1∑

s=0

1

(s+ 1)δ

≤ ∥x0 − x⋆∥+ aC2

√
d

(
t1−δ

1− δ

)
.(5.15)

Next, because ∇f is L-Lipschitz, we have: ∥∇f(xt)∥ ≤ L ∥xt − x⋆∥. Applying this
inequality to (5.15), the result follows. □

We will also make use of the following Lemma.

Lemma 5.5. There exists a positive constant ξ such that, for any t = 1, 2, ..., there

holds, almost surely, for each j = 1, ..., d, that: |ϕ([∇f(xt)]j)| ≥ |[∇f(xt)]j | ϕ′(0) ξ
2Gt

,
where Gt is defined in (5.14).

Proof. Consider function ϕ in (3.1). By Lemma 5.3, we have that ϕ′(0) > 0
and ϕ is continuous at zero.7 Because ϕ is differentiable at zero, using first order
Taylor series, there holds: ϕ(u) = ϕ(0) + ϕ′(0)u +h(u)u = ϕ′(0)u +h(u)u, u ∈ R,
where h : R 7→ R is a function such that limu→0 h(u) = 0. Due to the latter property

of h, there exists a positive number ξ such that |h(u)| ≤ ϕ′(0)
2 , for all u ∈ [0, ξ).

Using the latter bound, we obtain that ϕ(u) ≥ 1
2ϕ

′(0)u, u ∈ [0, ξ). Now, because ϕ is

non-decreasing (by Lemma 5.3), it holds for any a′ > ξ that ϕ(a) ≥ ϕ′(0) ξ a
2 a′ , for any

a ∈ [0, a′). Consider now ∇f(xt). By Lemma 5.4, we have that ∥∇f(xt)∥ ≤ Gt, a.s.,
and so, for any j = 1, ..., d, |[∇f(xt)]j | ≤ Gt. Therefore, setting a

′ = Gt, the Lemma
follows. □

We are now ready to prove Theorem 3.2.
Proof (Proof of Theorem 3.2). Consider algorithm (2.3) under Assumptions 1, 3,

5, and 7. By the Lipschitz property of ∇f , we have, for any x,y ∈ Rd, that:

f(y) ≤ f(x) +∇f(x)⊤(y − x) +
L

2
∥x− y∥2,

7As ϕ is an odd function, for simplicity, in the proof we consider only nonnegative arguments of
ϕ, while analogous analysis applies for negative arguments of ϕ.
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and so, almost surely:

f(xt+1) ≤ f(xt) +
(
∇f(xt)

)⊤
(−αtΨ(∇f(xt) + νt))

+
L

2
α2
t ∥Ψ(∇f(xt) + νt)∥2.

(5.16)

Next, letting ηt = Ψ(∇f(xt)+νt)−ϕ(∇f(xt)), and using the fact that Ψ has bounded
outputs, we obtain:

f(xt+1) ≤ f(xt) +
(
∇f(xt)

)⊤
(−αtϕ(∇f(xt)))

+
L

2
α2
t d

2C2
2 − αt (∇f(xt))⊤ηt, a.s.

(5.17)

Recall filtration Ft. Taking conditional expectation, and using that E[ηt | Ft] = 0, we
get that, almost surely:

(5.18) E[f(xt+1) | Ft] ≤ f(xt)− αt
(
∇f(xt)

)⊤
ϕ(∇f(xt)) + L

2
α2
t d

2 C2
2 .

Next, using Lemma 5.5, and the fact that αt = a/(t+ 1)δ, we obtain that. a.s.:

(5.19) E[f(xt+1) | Ft] ≤ f(xt)−
c′

(t+ 1)
∥∇f(xt)∥2 + L

2

a2 d2 C2
2

(t+ 1)2δ
,

where c′ = a (1−δ)ξ ϕ′(0)
2L (aC2

√
d+∥x0−x⋆∥) . Next, by strong convexity of f , we have that

∥∇f(xt) − ∇f(x⋆)∥2 ≥ 2µ (f(xt) − f⋆). Using the latter inequality, subtracting
f⋆ from both sides of the inequality, taking expectation, and applying Theorem 5.2,
claims (2) and (3), we obtain the desired MSE rate result.

We next consider the case when Assumption 7 is replaced with Assumption 6 and
Assumption 4 is additionally imposed. Following analogous arguments as in the first
part of the proof, it can be shown that, a.s.:

E[f(xt+1) | Ft] ≤ f(xt)− αt ϕ(∇f(xt))⊤∇f(xt)

+
L

2
α2
t

(
C13 + C14E[ ∥νt∥2 | Ft ]

)
,

(5.20)

for some positive constants C13, C14. Next, because infa̸=0
|ϕ(a)|
|a| > 0, we have that

ϕ(∇f(xt))⊤∇f(xt) ≥ C15 ∥∇f(xt)∥2, for some constant C15 > 0. Using the latter
bound in (5.20), subtracting f⋆ from both sides of the inequality, taking expectation,
and applying Theorem 5.2, claim (1) and (2), the result follows. □

6. Intermediate results and proofs: Joint nonlinearities. Subsection 6.1
provides the required intermediate results, while Subsection 6.2 proves Theorem 4.1.

6.1. Intermediate results: Joint nonlinearities. Recall function N : R+ 7→
R+ in Assumption 9. We first state and prove the following Lemma on the properties
of function N .

Lemma 6.1. Under Assumption 9, for any x,u ∈ Rd, such that ∥u∥ > ∥x∥, there
holds:

|N (∥x+ u∥)−N (∥x− u∥)| ≤
∥x∥
∥u∥ [N (∥x+ u∥) +N (∥x− u∥)] .

(6.1)
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Proof. Fix a pair x,u ∈ Rd, such that ∥u∥ > ∥x∥, and assume without loss of
generality that N (∥x+ u∥) ≥ N (∥x− u∥). Then, (6.1) is equivalent to:

(6.2) (∥u∥ − ∥x∥)N (∥x+ u∥) ≤ (∥u∥+ ∥x∥)N (∥x− u∥).

Denote by ρ = ∥u∥. Notice that: ρ − ∥x∥ ≤ ∥x + u∥ ≤ ∥x∥ + ∥u∥ = ∥x∥ + ρ, and
similarly, ρ + ∥x∥ ≥ ∥x − u∥ ≥ ρ − ∥x∥. As N is non-increasing, it follows that:
N (∥x+ u∥) ≤ N (ρ− ∥x∥), and N (∥x− u∥) ≥ N (ρ+ ∥x∥). Now, we have:

(6.3) (∥u∥ − ∥x∥)N (∥x+ u∥) ≤ (ρ− ∥x∥)N (ρ− ∥x∥),

and similarly:

(6.4) (∥u∥+ ∥x∥)N (∥x− u∥) ≥ (ρ+ ∥x∥)N (ρ+ ∥x∥).

By assumption, function a 7→ aN (a), a > 0, is non-decreasing, and so (ρ−∥x∥)N (ρ−
∥x∥) ≤ (ρ + ∥x∥)N (∥x∥ + ρ). Thus, combining (6.3) and (6.4), we have that (6.2)
holds, which is in turn equivalent to the claim of the Lemma.

We now define map ϕ : Rd 7→ Rd, as follows. For a fixed (deterministic) point
w ∈ Rd, we let:

(6.5) ϕ(w) =

∫
Ψ(w + u)p(u)du = E[Ψ(w + ν0)],

where the expectation is taken with respect to the joint pdf of the gradient noise at
any iteration t, e.g., t = 0. The map ϕ : Rd 7→ Rd is, abusing notation, a counterpart
of the component-wise map ϕ : R 7→ R in (3.1). We have the following Lemma.

Lemma 6.2. Under Assumptions 8 and 9, the following holds:

(6.6) ϕ(x)⊤x ≥ 2(1− κ)∥x∥2
∫

J (x)

N (∥x∥+ ∥u∥)p(u)du,

where J (x) = {u : u⊤x
∥u∥∥x∥ ∈ [0, κ]}, and κ is any constant in the interval (0, 1).

Proof. Let us fix arbitrary x ∈ Rd,x ̸= 0. As Ψ(a) = aN (∥a∥), we have:

ϕ(x)⊤x =

∫

u∈Rd

(x+ u)⊤xN (∥x+ u∥)︸ ︷︷ ︸
:=M(x,u)

p(u)du

(6.7)

=

∫

J1(x)={u:u⊤x≥0}
M(x,u)p(u)du+

∫

J2(x)={u:u⊤x<0}
M(x,u)p(u)du.(6.8)

Note also that there holds: M(x,u) = (∥x∥2 +u⊤x)N (∥x +u∥); and M(x,−u) =
(∥x∥2 −u⊤ x)N (∥x − u∥). Therefore, using the fact that p(u) = p(−u), for all
u ∈ Rd, we obtain: ϕ(x)⊤x =

∫
J1(x)

M2(x,u) p(u)du, where M2(x,u) = [(∥x∥2 +
u⊤x)N (∥x+ u∥) + (∥x∥2 − u⊤x)N (∥x− u∥)]. There holds:

M2(x,u) ≥ ∥x∥2[N (∥x+ u∥) +N (∥x− u∥)]−
− ∥u∥∥x∥|N (∥x+ u∥)−N (∥x− u∥)|.(6.9)
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Since u ∈ J1(x), there holds ∥x+ u∥ ≥ ∥x− u∥. Now, using Lemma 6.1, we have:

M2(x,u) ≥ ∥x∥2[N (∥x+ u∥) +N (∥x− u∥)]−

∥u∥∥x∥∥x∥∥u∥ |N (∥x+ u∥) +N (∥x− u∥)| = 0.
(6.10)

Therefore, we have: M2(x,u) ≥ 0, for any u ∈ J1(x), ∥u∥ > ∥x∥. Now, consider

J (x) = {u ∈ Rd : u⊤x ≥ 0, u⊤x
∥u∥∥x∥ ∈ [0, κ]}, where κ ∈ (0, 1). Let us consider

u ∈ J (x) such that ∥u∥ > ∥x∥. Then, using Lemma 6.1, we get:

M2(x,u) ≥ ∥x∥2[N (∥x+ u∥) +N (∥x− u∥)]
− ∥u∥∥x∥κ |N (∥x+ u∥)−N (∥x− u∥)|︸ ︷︷ ︸
≥ (1− κ)∥x∥2(N (∥x+ u∥) +N (∥x− u∥)).

(6.11)

Now, consider u ∈ J (x) such that ∥u∥ ≤ ∥x∥. Then, there holds:

M2(x,u) ≥ ∥x∥2[N (∥x+ u∥) +N (∥x− u∥)]−
∥u∥︸︷︷︸
≤∥x∥

∥x∥κ| N (∥x+ u∥)︸ ︷︷ ︸
≥0

+N (∥x− u∥)|︸ ︷︷ ︸
≥0

≥ (1− κ)∥x∥2(N (∥x+ u∥) +N (∥x− u∥)).

(6.12)

where the last inequality holds due to the fact that |a− b| ≤ |a|+ |b|, for any a, b ∈ R.
Now, we have:

M2(x,u) ≥ (1− κ)∥x∥2(N (∥x+ u∥)︸ ︷︷ ︸
≥N (∥x∥+∥u∥)

+N (∥x− u∥)︸ ︷︷ ︸
≥N (∥x∥+∥u∥)

)

≥ 2(1− κ)∥x∥2N (∥x∥+ ∥u∥), for anyu ∈ J (x).
(6.13)

From (6.13), we finally get:

ϕ(x)⊤x ≥
∫

J (x)

2(1− κ)∥x∥2N (∥x∥+ ∥u∥)p(u)du

= 2(1− κ)∥x∥2
∫

J (x)

N (∥x∥+ ∥u∥)p(u)du.
(6.14)

Lemma 6.3. Let Assumptions 1, 8, and Assumption 9 with condition 3. hold (the
nonlinearity with bounded outputs case). Then, for each t = 1, 2, ..., we have:

(6.15) ∥∇f(xt)∥ ≤ G′
t := L ( aC ′

2

t1−δ

1− δ + ∥x0 − x⋆∥ ).

Proof. The proof is analogous to the proof of Lemma 5.4.

6.2. Proofs of Theorems 4.1, 4.2, and 4.3: Joint nonlinearities. We are
now ready to prove the results for the joint nonlinearities case.

Proof (Proof of Theorem 4.1) We carry out the proof again by verifying con-
ditions B1-B5 in Theorem 5.1. Algorithm (2.3) admits again the representation in
Theorem 5.1 with

r(x) = −ϕ(∇f(x)), γ(t+ 1,x, ω) = ϕ(∇f(x))−Ψ(∇f(x) + νt).(6.16)
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Conditions B1 and B2 hold analogously to the proof of Theorem 3.1. Condition
B3 follows from Lemma 6.2. Condition B4 holds analogously to the proof of Theo-
rem 3.1. Finally, condition B5 follows from the definition of the step-size sequence in
Theorem 4.1. Thus, the result. □ We next prove Theorem 4.3. Proof (Proof of Theo-
rem 4.3) We carry out the proof again by verifying conditions C1–C5 in Equation (8.2).
The conditions C2–C5 are verified analogously as in the proof of Theorem 3.3. For
condition C1, first fix an arbitrary u ̸= 0, and consider points x in the vicinity of x⋆.
Then, using the differentiability of N (a) for a ̸= 0 and the differentiability of ∇f , it
can be shown that:

Ψ(u+∇f(x)) = uN (∥u∥) +N (∥u∥)∇2f(x⋆)(x− x⋆)

+N ′(∥u∥)uu
⊤

∥u∥ ∇
2f(x⋆)(x− x⋆) + o(∥x− x⋆∥).

We next integrate the above equality with respect to the joint pdf p(u). For the first
term above, note that

∫
N (∥u∥)up(u)du = 0, because p(u) = p(−u), for all u. The

second term is integrable as supa>0N (a) < ∞ (Assumption 13). The third term is
integrable as function a 7→ aN (a) is by assumptions non-decreasing; then, by taking
its derivative, it follows that |N ′(a)| ≤ N (a)/a, a > 0, and so ∥uu⊤N ′(∥u∥)∥/∥u∥
≤ N (∥u∥). Now, using the definition of r(x), it follows that r(x) admits the repre-
sentation (5.2), with:

B = −
(∫
N (∥u∥)p(u)du+

∫

u̸=0

uu⊤

∥u∥ N
′(∥u∥)p(u)du

)
∇2f(x⋆).

The conditions C1–C5 hold; thus, the result. □
We are now ready to prove Theorem 4.2.
Proof (Proof of Theorem 4.2) We first consider the case when Assumptions 1, 8,

9, and 10 hold. Analogously to the proof of 3.2, it can be shown that, a.s.:

E[f(xt+1) | Ft] ≤ f(xt)− αt ϕ(∇f(xt))⊤∇f(xt) + α2
t C17,(6.17)

for some positive constant C17. By Lemma 6.2, there holds, for a := ∇f(xt), a.s.:

(6.18)
(
ϕ(a)

)⊤
a ≥ 2(1− κ)∥a∥2

∫

J
N (∥a∥+ ∥u∥)p(u)du,

where we recall J = {u : u⊤a
∥u∥∥a∥ ∈ [0, κ]}, and κ ∈ (0, 1) is a constant. Note that, as

a 7→ aN (a) is non-decreasing, N satisfies: N (b) ≥ min
(

N (1)
b ,N (1)

)
for any b > 0.

Consider constant B0 in condition 2. of Assumption 8. Then, for all u such that

∥u∥ ≤ B0, there holds N (∥a∥+ ∥u∥) ≥ min
{

N (1)
∥a∥+B0

,N (1)
}
. We now have, a.s.:

∥∇f(xt)∥2
∫

J
N
(
∥∇f(xt)∥+ ∥u∥

)
p(u)du(6.19)

≥ ∥∇f(xt)∥2
∫

J4

min

{ N (1)

B0 + ∥∇f(xt)∥
, N (1)

}
p(u)du(6.20)

≥ ∥∇f(xt)∥2 N (1)

B0 +G′
t

∫

J4

p(u)du.(6.21)
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Here, J4 = {u ∈ Rd : u⊤∇f(xt)
∥u∥∥∇f(xt)∥ ∈ [0, κ], ∥u∥ ≤ B0}. In (6.20), we used the fact that

N (a) is non-negative for any a ≥ 0, and in (6.21), we used Lemma 6.3.
Therefore, we have that, almost surely, for sufficiently large t:

∥∇f(xt)∥2
∫

J

N (∥∇f(xt)∥+ ∥u∥)p(u)du ≥ C18
∥∇f(xt)∥2
G′
t +B0

,

for some positive constant C18.
Combining the last bound with Lemmas 6.2 and 6.3, in view of condition 2. in

Assumption 8, we obtain that, for sufficiently large t, a.s.:

(6.22) (ϕ(∇f(xt)))⊤∇f(xt) ≥ C19
∥∇f(xt)∥2
B0 +G′

t

,

where the positive constant C19 can be taken as C19 = 2(1− κ)λ(κ)N (1). Applying
the bound (6.22) to (6.17) we obtain an equivalent to (5.19). Therein, c′ in (5.19) is

replaced with a positive constant c′′ that can be taken as c′′ = 4 a (1−κ)λ(κ)(1−δ)N (1)
L ( aC′

2+∥x0−x⋆∥ )+B0)
.

We now proceed analogously to the proof of Theorem 3.2, by applying claims (2) and
(3) of Theorem 5.2. The desired MSE result now follows, with the rate ζ being any
positive number less than

(6.23) min

{
2δ − 1,

4 aµ (1− κ)λ(κ)(1− δ)N (1)

L ( aC ′
2 + ∥x0∥+ ∥x⋆∥ ) +B0

}
.

We now consider the case when Assumptions 1, 8, 9, 11, and 12 hold. We have,

by assumption, that infx̸=0
∥Ψ(x)∥
∥x∥ > 0. This is equivalent to saying that N is lower-

bounded by a positive constant, i.e., N (a) ≥ C20, for each a, for some constant
C20 > 0. Then, it follows that, a.s.:

(6.24) (ϕ(∇f(xt)))⊤∇f(xt) ≥ C21 ∥∇f(xt)∥2,

for some positive constant C21. The proof then proceeds analogously to the proof of
Theorem 3.2 by applying the appropriate variant of Theorem 5.2. □

7. Experiments. In order to benchmark the proposed nonlinear SGD frame-
work, we consider Heart, Diabetes and Australian datasets from the LibSVM li-
brary [9]. We consider the logistic regression loss function for binary classification,
see, e.g., [15], where function f in (2.1) is the empirical loss, i.e., the sum of the logistic
losses across all data points in a given dataset.

As it has been studied in [15] (see Figure 2 in [15]), we have, near the solution x⋆,
the following behavior with respect to gradient noise. (See also [15] for details how
the gradient noise is evaluated in Figure 2 therein.) With the heart dataset, tails of
stochastic gradients are not heavy. On the other hand, for diabetes and australian
datasets, the gradient noise has outliers and exhibits a heavy-tail behavior.

We consider three different nonlinearities to demonstrate the effectiveness of our
nonlinear framework, namely, tanh (hyperbolic tangent), sign and a bi-level cus-
tomization of sign with Ψ(x) = −1, −0.5, 0.5, 1, for x ∈ (−∞,−0.5], (−0.5, 0],
(0, 0.5], (0.5,∞], respectively (nonlinear-quantizer in figures). Note that the tanh
function may be considered a smooth approximation of sign. We benchmark the
above methods against the linear SGD, clipped-SGD and SSTM along with a clipped
version of SSTM from [15]. For each of the methods, we use batch sizes of 50, 100
and 20 for the Australian, Diabetes and Heart datasets, respectively. We also
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consider clipped-SGD with periodically decreasing clipping level (d-clipped-SGD in
Figures) as a baseline as introduced in [15]. This method starts with some initial clip-
ping level and after every l epochs the clipping level is multiplied by some constant
c ∈ (0, 1). The step sizes αt (learning rates) for each method from our framework
were tuned after an experimentation. The learning rates for the baselines, i.e., SGD,
clipped-SGD, SSTM and clipped-SSTM are also tuned and are selected to be as in
[15]. In more detail, the learning rates for the proposed methods are of the form
a/(b (t+ 1) + L), where we recall that t is the iteration counter, L is the smoothness
constant of ∇f , and parameters a, b are tuned via grid search. The value of a is
chosen to be 1.0, 1.5 and 5.0, respectively, for Heart, Diabetes and Australian and
for all the three non-linearities. The value of b is chosen to be 0.001, 7.0 and 7.0
respectively for Australian, Heart and Diabetes datasets for the sign nonlinearity.
The value of b is chosen to be 0.0001, 2.0 and 3.0×10−6 respectively for Australian,
Heart and Diabetes datasets for the tanh nonlinearity. The value of b is chosen to
be 0.001, 5.0 and 5.0 respectively for Australian, Heart and Diabetes datasets for
the nonlinear-quantizer nonlinearity.

We first note that (see Figure 4.1) d-clipped-SGD stabilizes the trajectory as
compared to the linear SGD, even if the initial clipping level was high. At the same
time, clipped-SGD with large clipping levels performs similarly as SGD. It is note-
worthy, that SGD has the least oscillations for Australian and Diabetes datasets,
despite the fact that these datasets have heavier or similar tails. This can be at-
tributed to the fact that SGD does not get close to the solution in terms of functional
value. SSTM in particular shows large oscillations, which can be attributed to it being
a version of accelerated/momentum-based methods and its usage of small batch sizes.
Clipped-SSTM on the other hand suffers less from oscillations and has a comparable
convergence rate as SSTM. In comparison, all the three nonlinear schemes that have
been proposed in this paper, have very little oscillations. While the tanh algorithm is
outperformed by the algorithms with other nonlinearities from our framework, its per-
formance is at par with the other baselines from [15]. In particular, the sign algorithm
compares favorably to other baselines in terms of convergence for Australian and
Heart datasets. The nonlinear-quantizer algorithm outperforms other baselines for
the Diabetes dataset. The good behavior of tanh and sign on the heavy-tail data
sets, specially relative to the linear SGD, also viewing tanh as a smooth approxima-
tion of sign, might also be related with the insights from Example 3.4. In summary,
the three simple example nonlinearities from the proposed framework are comparable
or favorable over the considered state-of-the-art benchmarks on the studied datasets.

8. Conclusion. We proposed a general framework for nonlinear stochastic gra-
dient descent (SGD) under heavy-tail gradient noise. Unlike existing studies of SGD
under heavy-tail noise that focus on specific nonlinear functions (e.g., adaptive clip-
ping), our framework includes a broad class of component-wise (e.g., sign gradient)
and joint (e.g., gradient clipping) nonlinearities. We establish for the considered meth-
ods almost sure convergence, MSE convergence rate, and also asymptotic covariance
for component-wise nonlinearities. We carry out numerical experiments on several real
datasets that exhibit heavy tail gradient noise effects. The experiments show that,
while our framework is more general than existing studies of SGD under heavy-tail
noise, several easy-to-implement nonlinearities from our framework are competitive
with state-of-the-art alternatives.
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[35] F. Yousefian, A. Nedić, and U. V. Shanbhag, On stochastic gradient and subgradient meth-
ods with adaptive steplength sequences, Automatica, 48 (2012), pp. 56–67.

[36] J. Zhang, T. He, S. Sra, and A. Jadbabaie, Why gradient clipping accelerates training: A
theoretical justification for adaptivity, arXiv preprint arXiv:1905.11881, (2019).

[37] J. Zhang, S. P. Karimireddy, A. Veit, S. Kim, S. J. Reddi, S. Kumar, and S. Sra, Why
are adaptive methods good for attention models?, arXiv preprint arXiv:1912.03194, (2019).

Appendix.

A. Proof of Theorem 5.2. We first state and prove the following Lemma.

Lemma 8.1. Consider (deterministic) sequence

vt+1 =

(
1− a3

(t+ 1)δ

)
vt +

a4
(t+ 1)δ

, t ≥ t0,

with a3, a4 > 0 and 0 < δ ≤ 1, t0 > 0, and vt0 ≥ 0. Further, assume that t0 is such
that a3

(t+1)δ
≤ 1, for all t ≥ t0. Then, limt→∞ vt = a4

a3
.

Proof. Let et = vt − a4
a3
. It is easy to verify that:

et+1 =

(
1− a3

(t+ 1)δ

)
et, t ≥ t0.

Then, for all t ≥ t0, there holds:

|et+1| =
(
1− a3

(t+ 1)δ

)
|et| ≤ exp

(
−a3

t∑

s=t0

1

(s+ 1)δ

)
|et0 |(8.1)

where in (8.1) we used the inequality 1 + a ≤ exp(a), a > 0. Letting t→∞ and the
fact that δ ≤ 1 so that the sequence 1

(s+1)δ
, s ≥ t0, is non-summable, we obtain that

et → 0, which in turn implies the claim of the Lemma.
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We now continue with proving Theorem 5.2. First, let us prove claim (1). Note
that:

(8.2) zt+1 ≤
(
1− a1

(t+ 1)δ1

)
zt +

a2
(t+ 1)δ2

, t ≥ t′.

Multiplying the above inequality with (t+ 1)δ2−δ1 , defining ẑt = tδ2−δ1 zt, we get:

ẑt+1 ≤
(
1− a1

(t+ 1)δ1

)
(1 + 1/t)δ2−δ1 ẑt +

a2
(t+ 1)δ1

.

Next, using, e.g., a Taylor expansion of function a 7→ (1 + a)δ2−δ1 , it can be shown

that (1 + 1/t)δ2−δ1 ≤ 1 + 2(δ2−δ1)
t , for any t ≥ tδ, for appropriately chosen tδ > 0.

Therefore,

(
1− a1

(t+ 1)δ1

)
(1 + 1/t)δ2−δ1

≤ 1− a1
(t+ 1)δ1

+
2(δ2 − δ1)

t
− 2a1(δ2 − δ1)

t(t+ 1)δ1
≤ 1− a1

2(t+ 1)δ1
,

for any t ≥ t1, for appropriately taken t1 > 0. Using the latter bound, we obtain:

ẑt+1 ≤
(
1− a1

2(t+1)δ1

)
ẑt+ a2

(t+1)δ1
, t ≥ t1. Now, applying Lemma 8.1, we obtain that

ẑt = O(1), and therefore zt = O(1/tδ2−δ1). This proves claim (1) in Theorem 5.2.
We now prove claim (2). Multiplying (8.2) by (t + 1)δ2−1, and defining ẑt =

tδ2−1 zt, we obtain:

ẑt+1 ≤
(
1− a1

(t+ 1)

)
(1 + 1/t)δ2−1ẑt +

a2
t+ 1

≤
(
1− a1 − (δ2 − 1)

t
+
C22

t2

)
ẑt +

a2
t+ 1

(8.3)

≤
(
1− a1 − (δ2 − 1)

2 (t+ 1)

)
ẑt +

a2
t+ 1

, t ≥ t2,(8.4)

for appropriately chosen t2 > 0 and C22 > 0. In (8.3), we used the fact that (1 +
1/t)δ2−1 ≤ 1 + δ2−1

t +C23

t2 , for all t ≥ 1 and some C23 > 0 (the inequality can
be obtained, e.g., via a Taylor approximation). The claim (2) of Theorem 5.2 now
follows by applying Lemma 8.1 to (8.4).

We now prove claim (3). Let a1 < δ2− 1, and fix an arbitrary positive number ζ,
ζ < a1. Then, we have, for ẑt = tζzt:

ẑt+1 ≤
(
1− a1

(t+ 1)

)
(1 + 1/t)ζ ẑt +

a2
(t+ 1)δ2−ζ

≤
(
1− a1 − ζ

t
+
C24

t2

)
ẑt +

a2
(t+ 1)δ2−ζ

≤
(
1− a1 − ζ

2 (t+ 1)

)
ẑt +

a2
t+ 1

, t ≥ t3,

for appropriately chosen t3 > 0 and C24 > 0. In the last inequality, we used the fact
that ζ < a1 ≤ δ2 − 1, and so δ2 − ζ > 1. Finally, applying Lemma 8.1, claim (3)
follows. □
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B. A demonstration that the linear SGD’s iterate sequence has infinite
variance. We provide here a simple demonstration that the linear SGD’s iterate
sequence has infinite variance under the setting of Assumption 1, Assumption 3, and
Assumption 5, condition 3., holds.

More precisely, assume that the gradient noise νt has infinite variance. Consider

algorithm (2.3) for solving problem (1) with f : R 7→ R, f(x) = x2

2 , with Ψ being
the identity function. Further, consider arbitrary sequence of positive step-sizes {αt}.
Then, we have:

(8.5) xt+1 = (1− αt)xt − αt νt, t = 0, 1, ...,

with arbitrary deterministic initialization x0 ∈ R. Then, squaring (8.5), using the
independence of xt and νt, and the fact that νt has zero mean, we get: E

[
(xt+1)2

]

= (1− αt)2 E
[
(xt)2

]
+α2

t E[(νt)2] ≥ α2
t E[(νt)2], t = 0, 1, ... Taking expectation and

using the fact that E[(νt)2] = +∞, we see that E
[
(xt)2

]
= +∞, for any t ≥ 1.

C. Extension of Theorem 3.2 for gradient noise vector with mutually
dependent entries. We show that Theorem 3.2 continues to hold when we have an
i.i.d. zero mean noise vector sequence {νt} with a joint pdf p : Rd 7→ R. In more
detail, we provide an extension of Lemma 6.2 but for component-wise nonlinearities.

Namely, as in Lemma 6.2, consider, for a fixed y ̸= 0:

(8.6)

∫
ψ(y + u)⊤y p(u) du.

As, for a ∈ Rd, we have Ψ(a) = (Ψ(a1), ...,Ψ(ad))
⊤ (component-wise nonlinearity),

we have:
∫
ψ(y + u)⊤y p(u) du =

∫ ( d∑

i=1

ψ(yi + ui)yi

)
p(u) du

=
d∑

i=1

∫
(ψ(yi + ui)yi) p(u) du =

d∑

i=1

∫
(ψ(yi + ui)yi) pi(ui) dui,

where pi(ui) is the marginal pdf of the i-th component of νt. It is easy to show,
as p(u) = p(−u), u ∈ Rd, that, for any i = 1, ..., d, we have pi(u) = pi(−u), u ∈
R. Define ϕi(a) =

∫
Ψ(a + u)pi(u)du. Note that ϕi(a) now obeys Lemma 5.3. In

particular, ϕi is also odd, and hence:

∫
ψ(y + u)⊤y p(u) du =

d∑

i=1

∫
(ψ(yi + ui)yi) pi(ui) dui

=
d∑

i=1

ϕi(yi)yi =
d∑

i=1

|ϕi(yi)| |yi|.

The last inequality holds because, for any i = 1, ..., d, quantities ϕi(yi) and yi have
equal sign. The proof now proceeds analogously to that of Theorem 3.2.

D. Proof of Lemma 5.3. The proof can be found in [30]; we include similar
arguments for completeness. For claim 1., note that

ϕ(a) =

∫ +∞

−∞
Ψ(a+ u)p(u)du = −

∫ +∞

−∞
Ψ(−a− u)p(u)du

= −
∫ +∞

−∞
Ψ(−a+ w)p(w)dw = −ϕ(−a),
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for any a ∈ R, where we use the fact that Ψ is odd. For claim 2., note that |ϕ(a)| ≤∫ +∞
−∞ |Ψ(a + u)|p(u)du ≤ C1

∫ +∞
−∞ p(u)du = C1, where we used Assumption 7. Proof

of claim 3. is similar to that of claim 2. For claim 4., note that ϕ(a) =
∫ +∞
0

(Ψ(u+ a)−Ψ(u− a)) p(u)du, and so, for a′ > a, we have

ϕ(a′)− ϕ(a) =
∫ +∞

0

[(Ψ(u+ a′)−Ψ(u+ a)) +

+ (Ψ(u− a)−Ψ(u− a′))] p(u)du ≥ 0,

because Ψ is non-decreasing. Finally, for claim 5., to show that ϕ′(0) is given by (5.4),
see the proof of Lemma 6 in [30]. To verify that ϕ′(0) is strictly positive, consider first
the case that Ψ has a discontinuity at zero. Then, because p(0) > 0 by Assumption 3,
it follows from (5.4) that ϕ′(0) ≥ (Ψ(0+) − Ψ(0−))p(0) > 0. Otherwise, if Ψ is
continuous at zero, we have: ϕ′(0) ≥

∫ c
−cΨ

′(u)p(u)du > 0, where c > 0 is taken
such that Ψ(u) is continuous and strictly increasing and p(u) is strictly positive for
|u| < c.8 Such c exists in view of Assumptions 3 and 5.

E. Derivations for Example 3.3. We calculate the rate ζ in Theorem 3.2 for
the component-wise clipping nonlinearity with saturation value m, m > 1. Here, it
can be shown, by doing direct calculations, that

(8.7) ϕ(w) = 2w

∫ m−w

0

p(u)du+

∫ m+w

m−w
(m+ w − u)p(u)du, w ∈ [0,m].

Furthermore, it can be shown that (see Appendix F): ϕ′(0) = 2
∫m
0
p(u)du. Noting

that the second integral in (8.7) is nonnegative, and using the form p(u) in (3.2), we
obtain:

ϕ(w) ≥ 2w

∫ m−w

0

p(u)du = w

(
1− 1

(m− w + 1)α−1

)
, w ∈ [0,m].(8.8)

Also, we have: ϕ′(0) = 1 − 1
(m+1)α . From the latter equation and (8.8), we estimate

that ξ can be taken as: ξ = m+1 −
(

2
1+(m+1)−α

)1/(α−1)

≥ m− 1, for any α > 2, for

any m > 1. Hence, we can also take ξ = m− 1. Substituting the obtained estimates
for ϕ′(0) and ξ into the rate ζ, we obtain the rate estimate in (3.3).

F. Derivation of ϕ′(0) for Example 3.5. Consider the coordinate-wise clipping
nonlinearity Ψ with floor levelm > 0. The function Ψ here is piece-wise differentiable,
with the derivative Ψ′(a) = 1, for a ∈ (−m,m), and Ψ′(a) = 0, for |a| > m. We now
apply claim 5. in Lemma 5.3 and use formula (5.4) for evaluating ϕ′(0). As the
coordinate-wise clipping function does not have discontinuity points, (5.4) simplifies
to the following:

ϕ′(0) =
∫

u∈R, u ̸=−m,u̸=m
Ψ′(u)p(u) du =

∫ +m

−m
p(u)du = 2

∫ m

0

p(u)du,

where the last equality uses symmetry of function p(u).

8If there are some (at most countably many) points inside interval (−c, c) where Ψ is continuous
but not differentiable, these points are excluded from the integration set in

∫ c
−c Ψ

′(u)p(u)du without
change in the integration result.
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G. Derivations for Example 3.6. We provide here details for the derivations
in Example 3.6. We first calculate σ2

Ψ; we have:

σ2
Ψ =

∫ ∞

−∞
|Ψ(u)|2p(u)du =

∫ ∞

−∞
p(u)du = 1.

Next, by direct integration, we have for α > 3:

σ2
ν = 2

∫ ∞

0

p(u)u2du

= −(α− 1)
[ (α− 1)u((α− 2)u+ 2) ] + 2

(α− 3)(α− 2)(α− 1)(1 + u)α−2
|∞0 =

2

(α− 3)(α− 2)
.

On the other hand, for α ∈ (2, 3], we clearly have σ2
ν = +∞. Finally, using claim 5.

in Lemma 5.3, and using the fact that Ψ′(u) = 0, for all u ̸= 0, we obtain:

ϕ′(0) = p(0) (Ψ(0+)−Ψ(0−)) = 2 p(0) = α− 1.

H. Derivations for Example 4.1. We consider the (joint) gradient clipping
nonlinearity Ψ with the clipping level M > 0, and we consider p(u) in (4.1).

Consider rate ζ in Theorem 4.2 that, for a sufficiently large a, can be approximated
as:

(8.9) min

{
2δ − 1, (1− δ)4µ (1− κ)λ(κ)N (1)

LC ′
2

}
.

Here, κ is an arbitrary scalar in (0, 1), and, for the gradient clipping, we have that
N (1) = C ′

2 =M . Note that, regarding Assumption 8, quantity B0 can be taken here
to be an arbitrary positive number. Moreover, for p(u) in (4.1), due to the radial
symmetry, we have that

λ(κ) = λ(κ,B0) =
1

π
arc cos(1− κ)P(B0), κ ∈ (0, 1),

where P(B0) =
∫
u: ∥u∥≤B0

p(u)du = 1− 1+(α−1)B0

(1−B0)α−1 . We next maximize (8.10), i.e., we

maximize (1− κ)λ(κ,B0) with respect to κ ∈ (0, 1), to get the largest (tightest) esti-
mate of ζ. It is easy to see that maxκ∈(0,1)(1−κ)λ(κ,B0) > 0.17P(B0). Substituting
all the above developments into (8.10), we obtain:

ζ ≈ min

{
2δ − 1, (1− δ)0.68µP(B0)

L

}
(8.10)

= min

{
2δ − 1, (1− δ)0.68µ

L

(
1− 1 + (α− 1)B0

(1 +B0)α−1

)}

As B0 can be arbitrary positive number, letting B0 → +∞, we obtain the following
rate estimate: min

{
2δ − 1, (1− δ) 0.68µL .

}
. It is easy to see that the same rate esti-

mate can be obtained for the normalized gradient nonlinearity. The only difference
in the rate derivation is that therein N (1) = C ′

2 = 1.
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Abstract
Recent works have shown that high probability metrics with stochas-

tic gradient descent (SGD) exhibit informativeness and in some cases
advantage over the commonly adopted mean-square error-based ones.
In this work we provide a formal framework for the study of general
high probability bounds with SGD, based on the theory of large devi-
ations. The framework allows for a generic (not-necessarily bounded)
gradient noise satisfying mild technical assumptions, allowing for the
dependence of the noise distribution on the current iterate. Under
the preceding assumptions, we find an upper large deviations bound
for SGD with strongly convex functions. The corresponding rate func-
tion captures analytical dependence on the noise distribution and other
problem parameters. This is in contrast with conventional mean-square
error analysis that captures only the noise dependence through the
variance and does not capture the effect of higher order moments nor
interplay between the noise geometry and the shape of the cost func-
tion. We also derive exact large deviation rates for the case when
the objective function is quadratic and show that the obtained func-
tion matches the one from the general upper bound hence showing the
tightness of the general upper bound. Numerical examples illustrate
and corroborate theoretical findings.

∗This work is supported by the European Union’s Horizon 2020 Research and Inno-
vation program under grant agreement No 957337. The paper reflects only the view of
the authors and the Commission is not responsible for any use that may be made of the
information it contains.
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1 Introduction

The large deviations theory represents a well-established principled approach
for studying rare events that occur with stochastic processes, e.g., (Dembo
et al. 1993). Typically, we are concerned with a sequence of rare events Ek

related with the stochastic process of interest, indexed by, e.g., time k. In
this setting, the probability of event Ek, k = 1, 2, ... typically decays ex-
ponentially in k; the large deviations theory then enables to quantify this
exponential rate. Such an approach has found many applications in statis-
tics (Bucklew 1990), mechanics (Touchette 2009), communications (Shwartz
et al. 1995), and information theory (T. M. Cover et al. 1991).

To be more concrete, consider an example of a sequence of random vectors
Xk taking values in Rd that converge, e.g., almost surely, to a (deterministic)
limit point x⋆ ∈ Rd. The rare event of interest Ek can then be, for example,
Ek = {∥Xk − x⋆∥ ≥ δ}, for some positive quantity δ, with ∥ · ∥ denoting
the Euclidean norm. Equivalently, Ek can be represented as {Xk ∈ Cδ},
where Cδ is the complement of the l2 ball of radius δ centered at x⋆. Large
deviations analysis then aims at discovering the corresponding rate of decay,
i.e., the inaccuracy rate I(Cδ):

P (Xk ∈ Cδ) = e−k I(Cδ)+o(k), (1)

where o(k) denotes terms growing slower than linearly with k. The inac-
curacy rate I(Cδ) can usually be expressed via the so called rate function
I : Rd 7→ R, according to the following formula (Bahadur 1960):

I(Cδ) = inf
x∈Cδ

I(x). (2)

Differently from the set function I, the rate function I does not depend on the
region Cδ; that is, when Cδ changes, only the region over which we minimize
in (2) changes, while the function remains unchanged. Furthermore, this
is true for arbitrary set Cδ. This means that, once the rate function is
computed, the corresponding inaccuracy rate can be obtained via (2) for a
new given region of interest.

In this paper, we are interested in applying the large deviations theory to
analyzing the stochastic gradient descent (SGD) method. SGD is a simple
but widely used optimization method that finds numerous practical appli-
cations, such as training machine learning and deep learning models, e.g.,
(Niu et al. 2011; Gorbunov, Hanzely, et al. 2020; Lei et al. 2020). More
precisely, we consider unconstrained optimization problems where the goal

2
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is to minimize a smooth, strongly convex function f : Rd → R, via the SGD
method of the form:

Xk+1 = Xk − αk (∇f(Xk)− Zk). (3)

Here, k = 1, 2, ... is the iteration counter, αk = a/k, a > 0 is the step-size,
and Zk is a zero-mean gradient noise that may depend onXk. In this context,
we are interested in solving for (1) and (2) for the SGD method (3), where
now x⋆ is interpreted as the (deterministic) global minimizer of f . In other
words, we are interested in finding (or approximating) the rate function I(x)
that quantifies the “tails” or “rare events” of how the SGD sequence iterates
Xk deviate from the solution x⋆.

Clearly, evaluating (2) for SGD is of significant interest. It readily pro-
vides insights into the high-probability bounds for SGD that have been sub-
ject of much research effort recently, (Ghadimi et al. 2012; Ghadimi et al.
2013; Juditsky et al. 2019; Gorbunov, Danilova, et al. 2020; Davis et al.
2021). However, unlike the typical high probability bound studies, the large
deviations approach here is fully flexible with respect to the choice of set
Cδ; e.g., the l2-ball complement may be replaced with an arbitrary open set,
such as lp norm complement of an arbitrary lp-norm. While large deviations
theory is a well-established field, there has been a limited body of work that
applies large deviations to the analysis of SGD. Reference (Woodroofe 1972)
is concerned with large deviations analysis for a scalar stochastic process
equivalent to SGD in one dimension. The authors of (W. Hu et al. 2019)
study large deviations of SGD when the step-size converges to zero; however,
they are not concerned with large deviations when the iteration counter k
increases – the case of our interest here.

Contributions. In this paper, we are interested in evaluating the large
deviations rates in (1) and (2) for the SGD method, when the objective func-
tion f is smooth and strongly convex. Our main contributions are as follows.
When f is a (strongly convex) quadratic function, we establish the so-called
full large deviations principle for the sequence Xk. This means that we eval-
uate rate function I(x) exactly, i.e., the corresponding rare event probability
is computed exactly, with upper and lower bounds matched, up to exponen-
tially decaying factors. We further explicitly quantify the rate function I(x)
as a function of the distribution of the gradient noise. This reveals a signifi-
cant influence of higher order moments on the performance (in the sense of
rare event probabilities) of SGD. This is in contrast with conventional SGD
analyses, that typically capture only the dependence on the gradient noise
variance. The large deviations principle for quadratic functions is established

3
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under a very general class of gradient noise distributions that are essentially
only required to have a finite moment generating function. Next, for generic
smooth and strongly convex costs f , we establish a large deviations upper
bound (a lower bound on function I(x)) that certifies an exponential de-
cay of the rare event probabilities in (1) with SGD. This is achieved when
the distribution of the gradient noise is sub-Gaussian. We further show that
the obtained large deviations upper bound is tight, as the corresponding rate
function actually matches, up to higher order factors, the exact rate function
that we formerly establish for the quadratic costs.

Our results are related with high probability bounds-type studies of SGD
and related stochastic methods (Harvey et al. 2019; Ghadimi et al. 2012;
Ghadimi et al. 2013; Juditsky et al. 2019; Gorbunov, Danilova, et al. 2020).
Therein, for a given δ > 0 and a confidence level 1−β, β ∈ (0, 1), the goal is
to find K(δ, β) such that f(Xk)− f(x⋆) ≤ δ with probability at least 1− β,
for all k ≥ K(δ, β). The works (Ghadimi et al. 2012; Ghadimi et al. 2013;
Juditsky et al. 2019; Gorbunov, Danilova, et al. 2020) provide estimates
of K(δ, β) that depend logarithmically on β. In more detail, (Ghadimi et
al. 2012; Ghadimi et al. 2013) establish high probability bounds for the
stochastic gradient methods therein assuming sub-Gaussian gradient noises.
The work (Juditsky et al. 2019) calculates the corresponding bounds for
the basic SGD and the mirror descent that utilize a gradient truncation
technique, while relaxing the noise sub-Gaussianity. The work (Gorbunov,
Danilova, et al. 2020) establishes high probability bounds for an accelerated
SGD that also utilizes a clipping nonlinearity. The large deviations rates in
(1) and (2) - give estimates of K(δ, β) that also depend logarithmically on
β, when β is small (goes to zero).1

Compared with existing high probability bound works, our results give
the exact (tight) exponential decay rate in (2), and for an arbitrary set that
does not contain x⋆, not only the Euclidean ball complements. To be con-
crete, the closest results to ours are obtained in (Harvey et al. 2019). While
they are not directly concerned with obtaining large deviations rates, their
results (with some additional work) lead to an exponential decay rates for
Euclidean ball complements. In contrast, our results work for arbitrary open
sets. Furthermore, focusing only on Euclidean ball complements, our results
provide much tighter exponential rate bounds. Specifically, as we show in
the paper, the exponential rate that we provide captures the interplay be-

1It is easy to see this by noting that, for µ-strongly convex costs, we have f(x)−f(x⋆) ≥
µ
2
∥x − x⋆∥2, for all x ∈ Rd, requiring that the the right hand side of (1) be less than β,

and reverse-engineering the smallest iterate k for which the latter holds.
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tween the noise geometry and the cost function curvature, see Section 4.2 for
details. From the technical perspective, this is achieved by working directly
with the SGD iterates, as opposed to working with the distance of the iterates
from the solution. To do so, we derive a novel set of techniques that build
upon the large deviations theory rather than on martingale concentration
inequalities.

The current paper is also related with large deviations analyses of stochas-
tic processes that arise with distributed inference, such as estimation and
detection. Distributed detection has been studied in (D. Bajović et al.
2011), for Gaussian observations, and in (Bajović et al. 2012), for generic
observations. The work (Matta et al. 2016a) evaluates large deviations of
the local states with a distributed detection method, when the step size
parameter decreases. Reference (Matta et al. 2016b) further analyzes the
non-exponential terms and consider directed networks for a similar prob-
lem. The paper (Marano et al. 2019) considers distributed detection with
1-bit messages. (P. Hu et al. 2022) consider social learning problems. Ref-
erence (Bajovic 2022) analyzes large deviations for distributed estimation
and social learning. Unlike these works on distributed inference, we are not
directly concerned with distributed systems; also, the cost functions that we
consider are more general and, unlike the works above, do not result in lin-
ear (distributed averaging) dynamics; hence, novel tools for large deviations
analysis are required here.

The rest of the paper is organized as follows. Section 2 explains the
problem that we consider and gives the required preliminaries. Section 3
provides the main results of the paper – a large deviations upper bound for
generic costs, and the full (exact) large deviations rates for quadratic costs.
Specializing to the Gaussian noise, Section 4 provides analytical, closed-form
expressions for the large deviations rate function. Section 5 gives the proof
of the main lemma underlying the upper bound for the general functions.
Finally, we conclude in Section 6. Appendix contains additional insights and
examples, numerical results, and missing proofs.

2 Setup and preliminaries

We consider unconstrained optimization problems of the form

min
x∈Rd

f(x). (4)

We assume that f is L-smooth and µ-strongly convex, and that the stepsize
in algorithm (3) is of the form αk = a/(k + b), where a, b > 0.

5
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Assumption 1. We assume that f is twice differentiable, L-smooth and
µ-strongly convex, where 0 < µ ≤ L.

Strong convexity implies uniqueness of the solution of (4), which is de-
noted by x⋆. We make the following assumption regarding the stepsize pa-
rameter a.

Assumption 2. The stepsize parameter a satisfies aµ > 1.

Assumption 1 is standard in the analysis of optimization methods, i.e.,
it corresponds to a standard class of functions over which an optimization
method analysis is carried out. Assumption 2 is required for some asymptotic
arguments ahead, as k → ∞. In practice, it may be restrictive that the
constant a is too large in the step-size choice a/k, as at the initial iterations
(small k’s), we would have very large step-sizes. This is alleviated by having
an appropriately chosen constant b > 1.

We denote by g̃(Xk) the stochastic gradient of f returned by the gradient
oracle at the current iterate Xk, and by g(Xk) the (exact) gradient of f
at the current iterate Xk. The difference between g̃(Xk) and g(Xk) (the
gradient “noise”) is denoted by Zk = g(Xk)− g̃(Xk). We make the following
assumptions on Zk.

Assumption 3. 1. For each k, Zk depends on the past iterates only
through Xk.

2. For each k, the distribution of Zk given Xk depends on Xk only through
its realization and does not depend on the current iterate index, k.

3. For any given x, E[Zk|Xk = x] = 0, i.e., conditioned on the current
iterate, the noise is zero-mean.

Assumption 3 allows for a general gradient noise that may actually de-
pend on the current iterate Xk. This is a more general setting than the
frequently studied case when Zk is i.i.d. and independent of Xk. Item 3.
of Assumption 3 says that, conditioned on the current iterate, the noise is
zero-mean on average. This is also a standard bias-free noise assumption.
Finally, note that items 1. and 2. in Assumption 3 typically hold in machine
learning settings. Therein, the goal is typically to minimize a population loss
f(x) = E[ϕ(x, v)] where the expectation is taken over the distribution of the
data v, and ϕ is an instantaneous loss function. Given that, at some iteration
k, Xk takes a value x, the gradient noise equals ∇xϕ(x, vk) − E[∇xϕ(x, v)],
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where vk is the data point sampled at iteration k. Then, items 1. and 2. are
clearly satisfied, provided that the data sampling process is independent of
the evolution of Xk.

For x ∈ Rd, we denote by H(x) the Hessian matrix of f computed at x.
For compactness, we denote H⋆ = H(x⋆), i.e., H⋆ is the Hessian matrix of
f computed at x⋆. For any x ∈ Rd, define h : Rd 7→ Rd as the residual of the
first order Taylor’s approximation of the gradient g at x⋆,

h(x) = g(x)−H⋆(x− x⋆), (5)

for x ∈ Rd. For each δ > 0, define also

h(δ) = sup
x∈Bx⋆ (δ)

∥h(x)∥, (6)

where Bx(δ) denotes the closed Euclidean ball in Rd of radius δ ≥ 0, cen-
tered at x. The following result holds by a well-known corollary of Taylor’s
remainder theorem.

Lemma 1. There holds h(δ) = o(δ), i.e., limδ→0
h(δ)
δ = 0.

Remark 1. Clearly, when f is quadratic, H(x) is constant for all x ∈ Rd

and equal to H⋆, implying h(x) ≡ 0 and also h(δ) ≡ 0.

Remark 2. Lemma 1 holds by the twice continuous differentiability of f .
The quantity h(x) can be explicitly characterized if, in addition, it is assumed
that the Hessian of function f is Lipschitz continuous, i.e., if ∥H(x)−H(y)∥ ≤
LH ∥x− y∥, for all x, y ∈ Rd, for some nonnegative constant LH . It is easy
to show that, in this case, we have ∥h(x)∥ ≤ LH ∥x− x⋆∥2, for any x ∈ Rd.
The latter implies a quadratic upper bound in δ on h(δ), i.e., h(δ) ≤ LHδ

2,
for each δ ≥ 0.

2.1 Distance to solution recursion

For analytical purposes, it is of interest to study the squared distance to
solution of the current iterates ∥Xk − x⋆∥2. To characterize the evolution of
this quantity, we use standard arguments that follow from strong convexity
and Lipschitz smoothness:

∥Xk+1 − x⋆∥2 ≤
(
1− 2αkµ+ 2α2

kL
2
)
∥Xk − x⋆∥2 + 2αk(Xk − x⋆)⊤Zk

+ 2α2
k∥Zk∥2; (7)

details of the derivations can be found in Appendix A.
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We introduce the function βk : R2 7→ R, defined by βk(u, v) = 1 −
αku + α2

kv. Similarly, for any two iteration indices l ≤ k, we define βk,l :
R2 7→ R by βk,l(u, v) = βk(u, v) · · ·βl(u, v). The following technical lemma
providing bounds on the product functions βk,l will be useful for the study
of recursion (7) as well as other similar recursions that will emerge from the
analysis.

Lemma 2. Let l and k be two iteration indices such that l < k. For any
nonnegative u, v ∈ R, and αk = a/(k + b), where b ≥ 1, there holds:

1. βk,l(u, v) ≤
(

l+b
k+b+1

)au
e

a2v
l+b−1 ;

2. for each l such that l+b ≥ 5au
2 , there holds βk,l(u, v) ≥

(
l+b−1
k+b

)au
e−

a2u2

l+b−1 ;

The proof of Lemma 2 is given in Appendix A.
Finally, for each iteration index k, we denote by µk the Borel measure

on Rd induced by Xk. Similarly, we denote by νk the Borel measure induced
by ∥Xk − x⋆∥.

2.2 Large deviations preliminaries

We next give a definition of the rate function and the large deviations prin-
ciple.

Rate function I and the large deviations principle.

Definition 1 (Rate function I (Dembo et al. 1993)). Function I : Rd 7→
[0,+∞] is called a rate function if it is lower semicontinuous, or, equiv-
alently, if its level sets are closed. If, in addition, the level sets of I are
compact (i.e., closed and bounded), then I is called a good rate function.

Definition 2 (The large deviations principle (Dembo et al. 1993)). Suppose
that I : Rd 7→ [0,+∞] is lower semicontinuous. A sequence of measures
µk on

(
Rd,B

(
Rd
))

, k ≥ 1, is said to satisfy the large deviations principle
(LDP) with rate function I if, for any measurable set D ⊆ Rd, the following
two conditions hold:

1. lim sup
k→+∞

1

k
logµk(D) ≤ − inf

x∈D
I(x);

2. lim inf
k→+∞

1

k
logµk(D) ≥ − inf

x∈Do
I(x).
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Log-moment generating functions of the noise Zk and the iter-
ates Xk. Following Assumption 3, we define the conditional LMGF of Zk

given the last iterate Xk.

Definition 3 (Conditional LMGF of Zk). We denote by Λ(·;x) the log-
moment generating function (LMGF) of Zk given Xk = x,

Λ(λ;x) := logE
[
eλ

⊤Zk

∣∣∣Xk = x
]
, for λ, x ∈ Rd. (8)

It will also be useful to define the conditional moment-generating function
of ∥Zk∥2, which we denote by M(·;x):

M(ν;x) := E
[
eν∥Zk∥2

∣∣∣Xk = x
]
, (9)

for ν ∈ R, x ∈ Rd. By the inequality ex ≤ x + ex
2
, which holds for

all x ∈ R, we have E
[
eλ

⊤Zk

∣∣∣Xk

]
≤ E[λ⊤Zk|Xk] + E

[
e(λ

⊤Zk)2|Xk

]
≤

E
[
e∥λ

2∥∥Zk∥2
∣∣∣Xk

]
, where we used the Cauchy-Schwartz inequality, for the

second term, and the fact that Zk is zero-mean, for the first term. Thus,

Λ(λ;x) ≤ logM(∥λ2∥;x) (10)

for any realization x of Xk.
Lemma 3 lists properties of Λ that will be used in the paper.

Lemma 3 (Properties of Λ). For any given x ∈ Rd the following properties
hold:

1. Λ(·;x) is convex and differentiable in the interior of its domain;

2. Λ(0;x) = 0 and ∇Λ(0;x) = E[Zk|Xk = x] = 0;

3. Λ(λ;x) ≥ 0, for each λ.

Proof. Convexity and differentiability are general properties of log-moment
generating functions (Dembo et al. 1993), as well as the zero value at the
origin property and also that the gradient at the origin equals the mean
vector; ∇Λ(0;x) = 0 follows by the assumption that the noise is zero-mean,
Assumption 3. The non-negativity from Part 3 follows by invoking convexity
and exploiting the two properties from part 2, i.e., for any x ∈ Rd: Λ(λ;x) ≥
Λ(0;x) +∇Λ(0;x)⊤λ = 0.
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Example 1. To illustrate the LMGF function Λ, we consider the case when,
conditioned on an arbitrary realization Xk = x, the gradient noise Zk is
Gaussian, with mean vector equal to zero vector and covariance matrix Σ(x).
Using standard formula for the LMGF of a Gaussian multivariate, we have

Λ(λ;x) =
1

2
λ⊤S(x)λ, (11)

for λ ∈ Rd. We note that when the gradient noise Zk is independent of the
current iterate Xk, the indices Xk in the preceding formula can be omitted,
i.e., the expression for Λ simplifies to Λ(λ;Xk) =

1
2λ

⊤Sλ, for all realizations
Xk.

It will also be of interest to define the (unconditional) log-moment gen-
erating function of the iterates Xk.

Definition 4 (LMGF of Xk − x⋆). We let Γk denote the (unconditional)
moment generating function of Xk,

Γk(λ) := E
[
eλ

⊤(Xk−x⋆)
]
, (12)

for λ ∈ Rd. The (unconditional) log-moment generating function of Xk is
then given by log Γk.

We assume that the initial iterate X1 is deterministic2. Hence, Γ1 is
finite for all λ ∈ Rd.

We assume that the family of functions Λ(·;x) satisfy the following reg-
ularity conditions.

Assumption 4 (Lipschitz continuity in x). There exists a constant LΛ such
that for every λ, x, y ∈ Rd, there holds:

|Λ(λ;x)− Λ(λ; y)| ≤ LΛ∥λ∥2∥x− y∥. (13)

Remark 3. We note that Assumption 4 is trivially satisfied when the noise
distribution does not depend on the current iterate. For another illustration,
consider Gaussian random noise distribution from Example 1, for which we
have:

Λ(λ;x)− Λ(λ; y) =
1

2
λ⊤(S(x)− S(y))λ (14)

≤ 1

2
∥λ∥2∥S(x)− S(y)∥. (15)

2We note that this assumption can be relaxed to allow for random initial iterate; see
Appendix D for details.
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Comparing with the condition in (13), we see that (13) is satisfied when en-
tries of the covariance matrix S, as functions of x, are Lipschitz continuous.

The assumption below will be used for the proof of the main result of
the paper, when the case of general convex functions is considered.

Assumption 5 (Sub-Gaussian noise). There exists a constant C1 > 0 such
that, for each λ, x ∈ Rd

Λ(λ;x) ≤ C1
∥λ∥2
2

. (16)

Remark 4. Assumption 5 means that the gradient noise has “light tails,”
i.e., there exist positive constants c1, c2, such that the probability that the
magnitude of the norm of the noise vector is above ϵ is upper bounded by
c1 e

−c2ϵ2, for any ϵ > 0. Clearly, a Gaussian zero-mean multivariate distri-
bution satisfies this property, and also any noise distribution with compact
support.

This assumption also ensures that, for each given λ, the value of the
variance “proxy” C1 cannot grow without bound as the domain of iterates x
enlarges. For a Gaussian distribution, this means that the variance, as a
function of the current iterate should be uniformly bounded over the domain
of the iterates, which is a typical assumption in related works.

We also use the following implications of Assumption 5.

Proposition 1. 1. There exists C2 > 0 such that

E
[
exp

(∥Z2
k∥

C2

)∣∣∣∣Xk

]
≤ e. (17)

2. For any ν ∈ [0, 1/C2] there holds

M(ν;Xk) ≤ exp(νC2). (18)

Proof. The proof of part 1 can be derived by applying properties of sub-
Gaussian random variables to ∥Zk∥; see, e.g., Proposition 2.5.2 in Vershynin
2018 and also Jin et al. 2019 for a treatment of sub-Gaussian random vectors.

To show part 2, fix ν ∈ [0, 1/C2]. By Hölder’s inequality (applied for
“p” = 1/(νC2) ≥ 1)

M(ν;Xk) ≤
(
E
[
exp

(
1/C2∥Zk∥2

)∣∣Xk

])νC2 (19)
≤ exp(νC2) (20)

where in the second inequality we used part 1.
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Remark 5. When the distribution of Zk is Gaussian, zero mean and with
covariance matrix Σ, and independent of the current iterate, we have

Λ(λ) =
1

2
λ⊤Σλ ≤ 1

2
σ2max∥λ∥2, (21)

where σ2max is the maximal eigenvalue of Σ. Comparing with Assumption 5,
we see that condition (16) holds with C1 = σ2max. It can also be shown that
part 1. of Proposition 1 holds for C2 ≥ 2σ2max.

2.3 Key technical lemma

Definition 5. The Fenchel-Legendre transform, or the conjugate, of a given
function Ψ : Rd 7→ R is defined by

I(x) = sup
λ∈Rd

x⊤λ−Ψ(λ), for x ∈ Rd. (22)

Lemma 4. Let Ψk be a sequence of log-moment generating functions asso-
ciated to a given sequence of measures µk : B(Rd) 7→ [0, 1]. Suppose that, for
each λ ∈ Rd, the following limit exists:

lim sup
k→+∞

1

k
Ψk(kλ) ≤ Ψ(λ). (23)

If Ψ(λ) <∞ for each λ ∈ Rd, then the sequence µk satisfies the LDP upper
bound with the rate function I equal to the Fenchel-Legendre transform of Ψ.
If, in addition, (23) holds as a limit and with equality, then the sequence of
measures satisfies the LDP with rate function I.

The second part of the lemma follows by the Gärtner-Ellis theorem. The
first part can be proven by similar arguments as in the proof of the up-
per bound of the Gärtner-Ellis theorem; for details, see also the proof of
Lemma 35 in (Bajovic 2022).

3 Large deviations rates for SGD iterates Xk

3.1 Large deviations rates for ∥Xk − x⋆∥
To derive the main result – the large deviations rate function for the SGD
sequence Xk, we first study large deviations properties of the sequence ∥Xk−
x⋆∥, k = 1, 2, ... For the latter, we first exploit the idea from Harvey et al.
2019 to obtain a high probability bound for the (scaled) quantity ∥Xk−x⋆∥2,
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via its moment generating function. We then use this bound to derive a rate
function (bound) for ∥Xk − x⋆∥. Since our assumptions are distinct than
those in Harvey et al. 2019 (e.g., the recursive form that we work with here
contains factors that require special treatment than the one in Harvey et al.
2019, also we do not assume bounded noisy gradient, as is the case with
the proof available in Harvey et al. 2019), we provide full proof details, see
appendix.

Lemma 5. For any k, there holds

P (∥Xk − x⋆∥ ≥ δ) ≤ ee−(k+k0)Bδ2 , (24)

where B = min{ 1
k0∥X1−x⋆∥ ,

2aµ−1
4max{C1,2C2}a2 } and k0 = 4a2L2/(2aµ− 1).

Remark 6. The preceding theorem establishes a large deviations upper bound
for the sequence of squared distance to solution iterates ξk, by exploiting noise
sub-Gaussianity. By its nature, this result is a rough characterization of the
large deviations rate function for the sequence Xk. In addition to being a
result of independent interest, the utility consists in bounding the tails of
distribution µk, as an enabling step towards deriving a fine, close to exact
rate function for the SGD iterates Xk, as the main contribution of this paper.
The latter is the subject of the next section.

3.2 Main result: Large deviations rates for Xk

We now present our result for general convex functions satisfying assump-
tions from Section 2. The pillar of the analysis is the limit of the sequence
of log-moment generating functions log Γk of the SGD iterates.

Lemma 6. Suppose that Assumptions 1-5 hold and that the stepsize is given
by αk = a/(k + k0). For any λ ∈ Rd,

lim sup
k→+∞

1

k
log Γk(kλ) ≤ Ψ(λ) := Ψ⋆(λ) + r(λ), (25)

where Ψ⋆ is defined by

Ψ⋆(λ) =

∫ 1

0
Λ(aQD(θ)Q⊤λ;x⋆)dθ, (26)

where H⋆ = QDQ⊤, QQ⊤ = I, D = diag{ρ1, ..., dn}, D(θ) = diag{θaρ1−1, ..., θadn−1},
r(λ) = 4a2γ2LΛ

B2 ∥λ∥4+a∥λ∥h
(
2γ∥λ∥
B

)
, and γ = max{1,

√
(1− aµ)2 + a2(L2 − µ2)}.
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The proof of Lemma 6 is given in section 5. Having the limit in (25),
LDP upper bound follows by Lemma 4.

Theorem 1. Suppose that Assumptions 1-5 hold and that the stepsize is
given by αk = a/(k+k0). Then, the sequence of iterates Xk satisfies the LDP
upper bound with rate function I given as the Fenchel-Legendre transform of
Ψ from Lemma 6, i.e., for any closed set F :

lim sup
k→+∞

1

k
logP (Xk ∈ F ) ≤ − inf

x+x⋆∈F
I(x). (27)

Remark 7. The rate function I depends on the Hessian matrix at the so-
lution, H(x⋆). However, coarser exponential rate bounds can be obtained by
uniformly bounding the eigenvalues of H(x⋆), as by our assumptions they are
all confined in the interval [µ,L]. See Appendix D for details.

3.3 Discussions and interpretations

3.3.1 Positivity of I and exponential decay

From the fact that Ψ⋆, r ≥ 0, and that both Ψ⋆ and r are finite on Rd, it
can be shown that I ≥ 0 and that I is a good rate function. Specifically,
I(0) = 0 and I(x) > 0 for any x ̸= 0. Therefore, for any closed set F such
that x⋆ /∈ F, we have

inf
x+x⋆∈F

I(x) > 0, (28)

that is, the exponent in (27) is strictly positive ensuring the exponential
decay of the probabilities P (Xk ∈ F ). To illustrate this in intuitive terms,
we take as a special case the set F = Bc

x⋆(δ), for some δ > 0. Then, the
event of interest becomes {Xk ∈ F} = {∥Xk − x⋆∥ ≥ δ}. Thus, for any
δ > 0, Theorem 1 implies that

lim sup
k→+∞

1

k
logP (∥Xk − x⋆∥ ≥ δ) ≤ −R(δ), (29)

where R(δ) = inf∥x∥≥δ I(x) > 0.

3.3.2 Remainder term r

Recalling Lemma 1, it is easy to see that r(λ) = o(∥λ∥2), i.e., lim∥λ∥→0
r(λ)
∥λ∥2 =

0. Also, for a function f that has Lipschitz Hessian, see Remark 2, the
residual function r behaves roughly as ∼ ∥λ∥3.
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Further, for the special case when f is quadratic, h(δ) = 0, and hence r
contains only the first term, and thus r(λ) ∼ ∥λ∥4. Similarly, when the noise
distribution does not depend on the current iterate, we have that LΛ = 0,
and hence r(λ) = o(∥λ∥2). Finally, for the case when both of the preceding
conditions hold, the residual term is zero at all points: r ≡ 0, and hence the
rate function I = I⋆, where I⋆ is the Fenchel-Legendre transform of Ψ⋆.

3.3.3 Small deviations regime

When high precision estimates are sought, or equivalently, for small δ in (29),
the candidate values of I in the minimization are very close to 0. By the fact
that the remainder term r(λ) = o(∥λ2∥), it can be shown that, in the small
deviations regime, I is determined by Ψ⋆ only, i.e., I ≈ I⋆, and, also, its
behaviour is dominantly characterized by the noise variance.

3.4 LDP for quadratic functions

In this section we provide the full LDP for the case when f is a quadratic
function. The proof of Theorem 2 is given in Appendix E.

Theorem 2. Suppose that the objective function f is quadratic, that As-
sumptions 2-3 hold, with the step size given by αk = a/k. Suppose also that
the noise distribution does not depend on the current iterate and that it has
a finite log-moment generating function Λ. Then, the sequence Xk satisfies
the large deviations principle with the rate function I⋆ given as the conjugate
of Ψ⋆ defined in (26), with Λ(·;x⋆) replaced by Λ.

The rate function I⋆ depends on the distribution of Zk and fully captures
all moments of this distribution. In particular, for non-Gaussian distribu-
tions, it captures exactly the dependence not only on the variance, but also
on higher order moments.

Remark 8. We note that, in contrast with Theorem 1, for Theorem 2 the
conditional distribution of Zk can be arbitrary, as long as Λ is finite. In par-
ticular, it allows for distributions that are not light-tailed, such as Laplacian.

Remark 9. Recalling the discussion from subsection 3.3.2, we see that the
upper bound rate function from Theorem 1 and the rate function from The-
orem 2 match, hence showing that the bound in Theorem 1 is tight.
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4 Gaussian noise: analytical characterization of the
rate function

If the noise Zk has a Gaussian distribution with mean value zero and covari-
ance matrix Σ, then Ψ⋆ is computed by

Ψ⋆(λ) =
a2

2

∫ 1

0
λ⊤QD(θ)Q⊤ΣQD(θ)Q⊤λdθ. (30)

To simplify the notation, let S = Q⊤ΣQ, and M(θ) = D(θ)SD(θ). It
is easy to verify that Mij(θ) = Sijθ

a(ρi+ρj)−2, for any i, j = 1, ..., d, and
thus

∫ 1
0 Mij(θ)dθ = Sij/(a(ρi + ρj) − 1). Hence, we obtain the following

closed-form expression for Ψ⋆ :

Ψ⋆(λ) =
a2

2
λ⊤QS⋆Qλ, (31)

where S⋆
ij = Sij/(a(ρi + ρj)− 1), for i, j = 1, ..., d.

Recalling the Definition 5, it can be shown that the Fenchel-Legendre
transform I⋆ of Ψ⋆ is given by

I⋆(z) =
1

2a2
z⊤Q⊤S⋆−1Qz. (32)

To obtain further intuition about the rate function I⋆, we consider the
special case when the Hessian matrix H⋆ and the covariance matrix Σ share
the same eigenspace (given by the columns of the matrix Q). Intuitively,
the latter means that the orientation of the quadratic approximation of f at
the origin is aligned with the gradient noise distribution in each of the axes.
In this case, it follows that S = Q⊤ΣQ is diagonal with Sii = σ2ii, where
σ2ii is the i-th eigenvalue of Σ (i.e., the eigenvalue of Σ corresponding to its
eigenvector given by the i-th column of matrix Q). It follows that S⋆ is also
diagonal with S⋆

ii = σ2ii/(2aρi − 1). Thus, the following neat expression for
the rate function I⋆ emerges:

I(z) =
1

2a2
z⊤Q⊤diag

(
2aρ1 − 1

σ211
, ...,

2aρd − 1

σ2dd

)
Qz. (33)

4.1 Decay rates with l2 balls

We consider the case when in the large deviations event of interest {Xk ∈ F}
the set F is given as the complement of an l2 ball around the solution x⋆ :
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F = Bc
x⋆(δ), i.e., {Xk ∈ F} = {∥Xk − x⋆∥ ≥ δ∥. Assuming that the residual

is zero (see the result for quadratic functions in Section 3.4), by Theorem 1,
we have

lim sup
k→+∞

1

k
logP (∥Xk − x⋆∥ ≥ δ) ≤ inf

∥z∥≥δ
I(z) =: I(Bc

x⋆(δ)). (34)

For the Gaussian noise assumed in this section, we have:

I(Bc
x⋆(δ)) = inf

∥z∥≥δ

1

2a2
z⊤Q⊤S⋆−1Qz

=
δ2

2a2
inf

∥w∥≥1
w⊤Q⊤S⋆−1Qw

=
δ2

2a2
1

λmax(S⋆)
, (35)

where λmax(S
⋆) is the largest eigenvalue of the matrix S⋆. Hence, to find

the value of the exponent I for any given ball-shaped set, it suffices to find
(once) the maximal eigenvalue of S⋆, and the exponent I would be easily
computed by the quadratic function (35).

We close the analysis with a particularly elegant solution for the special
case when H⋆ and Σ are axes-aligned. As detailed at the beginning of the
section, in the latter case, S⋆ is diagonal, with S⋆

ii = σ2ii/(2aρi − 1), and the
rate function is given by (33). Thus, to find the maximal eigenvalue of S⋆

reduces to finding the index i for which σ2
ii

2aρi−1 is highest, or, equivalently,
2aρi−1

σ2
ii

the lowest, which then yields:

I(Bc
x⋆(δ)) =

δ2

2a2
min{2aρi − 1

σ2ii
: i = 1, ...d}, (36)

where, we recall, ρi is the i-th eigenvalue of H⋆. What the expression above
is saying is that, in order to find the exponential decay rate for an l2 ball,
we should search for the direction i in which the value σ2

ii
2ρi−1 is highest. In

a sense, the latter quantity can be thought of as the effective noise variance,
capturing the interplay between the noise distribution and the shape of the
function at the solution. Specifically, if along the direction where the noise
variance is highest, say i⋆, the function has a high curvature (i.e., large ρi⋆),
this will effectively alleviate the effects of noise and increase the rate function,
in comparison to the case when the curvature along i is lower, and therefore
result in faster convergence.
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Finally, when the noise is isotropic, i.e., such that σ2ii = σ2, for all i,
exploiting the fact that the spectrum of H⋆ lies inside the interval [µ,L], the
rate function is found by:

I(Bc
x⋆(δ)) =

δ2

2a2
2aµ− 1

σ2
. (37)

4.2 Comparison with the rate from Lemma 5

We now compare the rate function bounds obtained from Lemma 5 and The-
orem 1. To gain deeper insights, we will assume that the residual term r
equals zero (compare with Section 3.4). We also assume that the noise is
Gaussian and axes-aligned with the matrix H⋆ (see the preceding subsec-
tion). The exponent B from 5 can be upper bounded by3

B ≤ 2aµ− 1

4σmax
2a2

,

where we exploited the fact that, for Gaussian noise, C1 = σ2max, see Re-
mark 5. Hence, for an l2 ball of radius δ, the exponent that Lemma 5
provides is bounded by

Bδ2 ≤ δ2

4a2
2aµ− 1

σ2max

. (38)

The counterpart obtained from Theorem 1 is given by expression (36). To
show direct comparison with (38), we further upper bound this value by
decoupling the minimization over i :

I(Bc
x⋆(δ)) =

δ2

2a2
min{2aρi − 1

σ2ii
: i = 1, ...d}

≥ δ2

2a2
min{2aρi − 1 : i = 1, .., d}

max{σ2ii : i = 1, .., d}

=
δ2

2a2
2aµ− 1

σ2max

. (39)

Comparing with (38) (and ignoring the scaling constant 2), the following
important point can be noted: on intuitive level, the derivation of the rate
B is equivalent to that of decoupling the effects of the noise distribution and

3The dependence in B on X1 in Lemma 5 seems to be an artifact of the conducted
proof method, rather than an essential property of the exponential rate that Lemma 5
pursues. Hence, for unbiased comparison, we omit this factor in the analysis of the rate
B.
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the shape of the function f at the origin with the rate I⋆. Hence, in contrast
with I⋆, the rate B is oblivious to the interplay between these two quantities
– from a purely technical perspective, this distinction is a consequence of
relying on recursions on the iterates’ distance to solution, ∥Xk − x⋆∥, as
opposed to working directly with the iterates Xk, as is the case in the proof
of Theorem 1.

5 Proof of Lemma 6

This section provides the main elements of the proof of the limit in (25);
the proofs of omitted results can be found in Appendix C. Fix λ ∈ Rd. Fix
k ≥ 1. Define ηl = Bk,lηk, Bk,l = (I − αlH

⋆) · · · (I − αkH
⋆), ηk = kλ. By

Lemma 2,

∥ηl∥ ≤ k
(

l + k0
k + k0 + 1

)aµ

∥λ∥ ≤ (l + k0)∥λ∥. (40)

For an arbitrary l ≤ k, there holds

Γl+1(ηl) = E
[
exp

(
η⊤l (Xl+1 − x⋆)

)]

= E
[
E
[
exp

(
η⊤l (Xl − αlg(Xl) + αlZl − x⋆)

)
|Xl

]]

= E
[
exp

(
Λ(αlηl;Xl) + η⊤l (Xl − αlg(Xl)− x⋆)

)]

=

∫

x∈Rd

Γl+1|l(ηl;x)µl(dx), (41)

where Γl+1|l(·;x) denotes the conditional moment generating function of
Xl+1, given Xl = x. We now fix δ > 0 (the exact value to be chosen
later) and split the analysis in two cases: 1) Al,δ = {Xl ∈ Bx⋆(δ)} ; and
2) Ac

l,δ = {Xl ∈ Bc
x⋆(δ)} .

Introduce

Γl+1|Al,δ
(ηl) := E

[
1∥Xl−x⋆∥≤δΓl+1|l(ηl;Xl)

]

=

∫

∥x−x⋆∥≤δ
Γl+1|l(ηl;x)µl(dx) (42)

Γl+1|Ac
l,δ
(ηl) := E

[
1∥Xl−x⋆∥>δΓl+1|l(ηl;Xl)

]

=

∫

∥x−x⋆∥>δ
Γl+1|l(ηl;x)µl(dx); (43)

note that
Γl+1(ηl) = Γl+1|Al,δ

(ηl) + Γl+1|Ac
l,δ
(ηl). (44)
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Case 1: x ∈ Al,δ. Fix x ∈ Rd such that ∥x∥ ≤ δ. We have:

Γl+1|l(ηl;x) = exp
(
Λ(αlηl;x) + η⊤l (x− αlg(x)− x⋆)

)

= exp
(
Λ(αlηl;x) + η⊤l ((I − αlH

⋆)(x− x⋆)− αlh(x)
)

≤ exp
(
Λ(αlηl;x

⋆) + LΛ∥η2l ∥∥x− x⋆∥+ αl∥ηl∥∥h(x)∥
)

× exp
(
η⊤l ((I − αlH

⋆)(x− x⋆)
)

(45)

≤ exp
(
Λ(αlηl;x

⋆) + LΛα
2
l ∥η2l ∥δ2 + αl∥ηl∥h(δ) + η⊤l−1(x− x⋆)

)
,

(46)

where in (45) we used Lipschitz continuity of Λ in x, Assumption 4, and
in (46) we used the fact that ∥x− x⋆∥ ≤ δ. It follows that

Γl+1|Aδ
(ηl) ≤ exp (Λ(αlηl;x

⋆) + r0(λ, δ)) Γl(ηl−1), (47)

where r0(λ, δ) = LΛa
2∥λ∥2δ2 + a∥λ∥h(δ).

Case 2: x ∈ Ac
l,δ. By strong convexity and Lipschitz smoothness of f in

Assumption 1, for each l ≥ 1, the following holds:

∥Xl − g(Xl)− x⋆∥ ≤ γl∥Xl − x⋆∥, (48)
≤ γ∥Xl − x⋆∥ (49)

where γl = (1 − 2αlµ + α2
l L

2)1/2, see Appendix A for the proof, and γ =

sup{γl : l = 1, 2, ...}; it is easy to verify that γ = max{1,
√
(1− aµ)2 + a2(L2 − a2)}.

For an arbitrary x ∈ Rd, we have:

Γl+1|l(ηl;x) = exp
(
Λ(αlηl;x) + η⊤l (x− αlg(x)− x⋆)

)

≤ exp

(
C1α

2
l ∥ηl∥2
2

)
exp (γ∥ηl∥∥x− x⋆∥) , (50)

≤ exp

(
C1a

2∥λ∥2
2

)
exp (γ(l + k0)∥λ∥∥x− x⋆∥) , (51)

where in (50) we used the assumption that Zk is sub-Gaussian, Assumption 5,
for the first term, together with (48) and Cauchy-Schwartz, for the second
term, while in (51) we exploited (40). Recalling the induced measure νl, we
now have

Γl+1|Ac
l,δ
(ηl) ≤ exp

(
C1a

2∥λ∥2
2

)∫

z≥δ
e(l+k0)γ∥λ∥zνl(dz). (52)
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The idea of analysing the “tail” term Γl+1|Ac
l,δ
(ηl) is the following: by

Theorem 5, we know that the probability density νl at a given point z behaves
roughly as e−(l+k0)Bz2 . If δ is sufficiently large, then, for all z ≥ δ, the
negative exponential rate of the measure νl(z) is in absolute terms higher
than the exponent (l + k0)γ∥λ∥z. Integrating by parts, we obtain that for
δ = 2γ∥λ∥

B , the integral on the right hand-side of (52) is upper bounded by a
constant K. Thus:

Γl+1|Ac
l,δ
(ηl) ≤ K exp

(
C1a

2∥λ∥2
2

)
. (53)

Combining with (47) and recalling (44),

Γl+1(ηl) ≤ exp (Λ(αlηl;x
⋆) + r(λ)) Γl(ηl−1) +K exp

(
C1a

2∥λ∥2
2

)
,

where r(λ) = r0

(
λ, 2γ∥λ∥B

)
. Iterating the preceding recursion, where we

exploit the nonnegativity of Λ, property 3. from Lemma 3, we obtain:

Γk+1(kλ) ≤ exp

(
k∑

l=1

(Λ(αlηl;x
⋆) + r(λ))

)
Γ1(α1η1)

+K exp

(
C1a

2∥λ∥2
2

) k∑

l=1

e
∑k

j=l(Λ(αjηj ;x
⋆)+r(λ))

≤ (k + 1)K exp

(
C1a

2∥λ∥2
2

+ a∥λ∥∥X1 − x⋆∥
)

× e
∑k

l=1(Λ(αlηl;x
⋆)+r(λ)). (54)

Taking the limit, dividing by k, and taking the lim sup

lim sup
k→+∞

1

k
log Γk+1(kλ) ≤

r(λ) + lim sup
k→+∞

1

k

k∑

l=1

Λ(αlηl;x
⋆). (55)

Finally, it can be shown that

lim
k→+∞

1

k

k∑

l=1

Λ(αlηl;x
⋆) =

∫ 1

0
Λ(aQD(θ)Q⊤λ;x⋆)dθ. (56)

The proof of (56) is provided in Appendix C. This completes the proof of
Lemma 6.
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6 Conclusions

We developed large deviations analysis for the stochastic gradient descent
(SGD) method, when the objective function is smooth and strongly convex.
For (strongly convex) quadratic costs, we establish the full large deviations
principle. That is, we derive the exact exponential rate of decay of the prob-
ability that the iterate sequence generated by SGD stays within an arbitrary
set that is away from the problem solution. This is achieved for a very general
class of gradient noises, that may be iteration-dependent and are required to
have a finite log-moment generating function. For generic costs, we derive a
tight large deviations upper bound that, up to higher order terms, matches
the exact rate derived for the quadratics.
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Appendix A.

Proof of recursion 7. For any k ≥ 1, we have:

∥Xk+1 − x⋆∥ = ∥Xk − αkg(Xk) + αkZk − x⋆∥
= ∥Xk − x⋆∥2 − 2αk(Xk − x⋆)⊤(g(Xk)− Zk)

+ α2
k∥g(Xk)− Zk∥2

≤ (1− 2αkµ)ξk + 2αk(Xk − x⋆)⊤Zk

+ 2α2
k∥g(Xk)∥+ 2α2

k∥Zk∥2

≤
(
1− 2αkµ+ 2α2

kL
2
)
ξk + 2αk(Xk − x⋆)⊤Zk

+ 2α2
k∥Zk∥2, (57)

where the first inequality follows from the strong convexity of f, Assump-
tion 1, and the fact that, for a, b ∈ Rd, ∥a − b∥2 ≤ 2∥a∥2 + 2∥b∥2, and
the second inequality follows from the Lipschitz smoothness of f , Assump-
tion 1.

Proof of Lemma 2. Fix l and k where 1 ≤ l ≤ k. Fix u, v ≥ 0. From the
upper and the lower Darboux sum for the logarithmic function applied to
the interval [l, k], we obtain:

log
k + 1

l
≤ 1

l
+ . . .+

1

k
≤ log

k

l − 1
. (58)

For the 2-sum we use the following simple bound 1/l2 ≤ 1/(l(l − 1)) =
1/(l − 1)− 1/l to obtain:

1

l2
+ . . .+

1

k2
≤ 1

l − 1
− 1

l
+ . . .+

1

k − 1
− 1

k
≤ 1

l − 1
. (59)

To prove part 1, we use that 1 + x ≤ ex applied to each of the terms in
the product βk,l, together with the left hand-side inequality of (58) and the
right hand-side inequality of (59):

βk,l(u, v) ≤ e
−au

∑k
j=l

1
j+b

+a2v
∑k

j=l
1

(j+b)2

≤ e−au log( k+b+1
l+b )+ a2v

l+b−1

=

(
l + b

k + b+ 1

)au

e
a2v

l+b−1 . (60)
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To prove part 2, we first note that, since v ≥ 0, there holds βk,l(u, v) ≥
βk,l(u, 0), i.e., βk,l(u, v) ≥ (1−αku) · · · (1−αlu). We now use that, for x ≤ 2

5 ,

1− x ≥ e−x−x2
:

βk,l(u, v) ≥ e
−au

∑k
j=l

1
j+b

−a2u2
∑k

j=l
1

(j+b)2

≥
(
l + b− 1

k + b

)au

e−
a2u2

l+b−1 . (61)

This completes the proof of the lemma.

Proof of (48). Here we prove an alternative recursion on ∥Xk − x⋆∥, used
within the proof of Lemma 6. Specifically, we show that, for any k,

∥Xk+1 − x⋆∥ ≤ γk∥Xk − x⋆∥+ αk∥Zk∥, (62)

where, we recall, γk =
(
1− 2αkµ+ α2

kL
2
)1/2

.
From the triangle inequality applied to the Euclidean norm,

∥Xk+1 − x⋆∥ = ∥Xk − αkg(Xk) + αkZk − x⋆∥
≤ ∥Xk − αkg(Xk)− x⋆∥+ αk∥Zk∥ (63)

Exploiting L-smoothness and µ- convexity of f for the second term:

∥Xk − αkg(Xk)− x⋆∥2 ≤
∥Xk − x⋆∥2 − 2αk(Xk − x⋆)⊤g(Xk) + α2

k∥g(Xk)∥
≤ ∥Xk − x⋆∥2 − 2αkµ∥Xk − x⋆∥2 + α2

kL
2∥Xk − x⋆∥2

= γ2k∥Xk − x⋆∥2. (64)

Taking the square root and replacing in (63) yields (62).

Appendix B.

Proof of Lemma 5. First, we transform the recursion in (7) by defining Yk+1 =
(k + k0)∥Xk+1 − x⋆∥2, to obtain:

Yk+1 ≤ akYk − bk
√
k + k0 − 1(Xk − x⋆)⊤Zk + ck∥Zk∥2, (65)

where

ak =
k + k0

k + k0 − 1
(1− 2αkµ+ 2α2

kL
2) (66)

bk =
a√

k + k0 − 1
(67)

ck =
a2

k + k0
. (68)
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The key technical result behind Lemma 5 is the following upper bound
on the tail probability of the Yk iterates:

P (Yk ≥ ϵ) ≤ ee−Bϵ, (69)

which holds for each k ≥ 1, and ϵ ≥ 0. The result of Lemma 5 directly follows
from (69) by taking ϵk = kδ2, for each k.

Thus, in the remainder of the proof we focus on proving (24). It can be
easily verified that, for each k,

ak = 1− 2aµ− 1

k + k0 − 1

(
1− 2a2L2

(2aµ− 1)(k + k0 − 1)

)
. (70)

Recalling Assumption 2 and the value of k0, we see that the above quantity
is smaller than 1 for each k.

Denote by Φk the moment generating function of Yk, and by Φk+1|k(·;Xk)
the moment generating function of Yk conditioned on Xk :

Φk(ν) := E [exp(νYk)] (71)
Φk+1|k(ν;Xk) := E [ exp(νYk)|Xk] , (72)

for ν ∈ R; note that Φk+1(ν) = E
[
Φk+1|k(ν;Xk)

]
, for each ν ∈ R. From the

recursion (7), we have:

Φk+1|k(ν;Xk) =

exp(akνYk)E
[
exp(−bk

√
k + k0 − 1(Xk − x⋆)⊤Zk + ck∥Zk∥2)

∣∣∣Xk

]

≤ exp(akνYk)
(
E
[
exp(−2bkν

√
k + k0 − 1(Xk − x⋆)⊤Zk)

∣∣∣Xk

])1/2
×

(
E
[
exp(2ckν∥Zk∥2)

∣∣Xk

])1/2

≤ exp(akνYk) exp(2b
2
kν

2Yk)
(
E
[
exp(2ckν∥Zk∥2)

∣∣Xk

])1/2 (73)

Recalling (2), the last term is finite for ν ≤ 1/(2a2C2) =: B0, and for such
ν, the corresponding value is equal to exp(C2ckν). Thus, for each ν ≤ B0,

Φk+1|k(ν;Xk) ≤ exp(ν(ak + 2b2kν)Yk + C2ckν). (74)

It is easy to see that B ≤ B0. Consider ν ≤ B. Taking the expectation
on both sides of (74), the following recursive inequality on Φk is obtained
for any ν ≤ B and any k ≥ 1 :

Φk+1(ν) ≤ Φ((ak + 2b2kB)ν) exp(C2ckν). (75)
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From this point, the proof proceeds similarly as in Harvey et al. 2019,
i.e., by induction, and using k = 1 as the base, it can be shown that, for
each ν ≤ B,

Φk(ν) ≤ e
ν
B . (76)

By exponential Markov, from (76), for each ν ≤ B,

P (Yk ≥ ϵ) ≤ E
[
exp νYke

−νϵ
]
. (77)

Taking ν = B yields the desired result.

Appendix C.

Proof of (56) . Introduce step-wise constant function sk : [0, 1] 7→ R, defined
by

sk(θ) =

{
Λ(αlηl;x

⋆), for l−1
k < θ ≤ l

k
0, for θ = 0

. (78)

It is easy to verify that the integral of sk over [0, 1] equals the desired
sum in the right hand-side of (55), i.e.,

∫ 1

0
sk(θ) =

1

k

k∑

l=1

Λ(αlηl;x
⋆). (79)

We next show that

lim
k→+∞

sk(θ) = Λ(aQD(θ)Q⊤λ;x⋆), (80)

where D(θ) is as defined in the claim of the theorem. To show the preceding
limit, note that, for each θ ∈ (0, 1],

sk(θ) = Λ(kαlkQDk,lkQ
⊤λ;x⋆) (81)

where [Dk,lk ]ii = βk,lk(ρi, 0), lk is the index of the interval in the definition
of sk to which θ belongs, lk = min{l = 1, .., k : θ ≤ l

k}, and ρi is, we recall,
the i-th eigenvalue of H⋆.

Using the bounds from Lemma 2, it is easy to establish the by sandwich-
ing argument that

lim
k→∞

kαlkβk,lk(ρi, 0) = aθaρi−1. (82)

The limit in (80) now follows by the continuity of Λ(·;x⋆), which follows by
convexity of Λ(·;x⋆), Lemma 3.

28

DRAFT



Using the fact that sk can be uniformly bounded for all k and θ ∈ [0, 1],
we can exchange the order of the limit and the integral, to obtain:

lim
k→+∞

∫ 1

0
sk(θ)dθ =

∫ 1

0
lim

k→+∞
sk(θ)dθ =

∫ 1

0
Λ(aQD(θ)Q⊤λ;x⋆), (83)

establishing the claim of the lemma.

Appendix D.

Derivations with Remark 6. Consider function Ψ(λ) = Ψ⋆(λ)+r(λ) in Lemma 6.
We derive here a lower bound on rate function I in Theorem 1 that does not
explicitly depend onH(x⋆). In view of the fact that I is the Fenchel-Legendre
transform of Ψ, a lower bound on I is readily obtained by deriving an up-
per bound on Ψ(λ). Note that r(λ) does not explicitly depend on H(x⋆),
hence we only need to derive an upper bound on Ψ⋆. By Assumption 5,
we have, for any θ ∈ [0, 1], that Λ(aQD(θ)Q⊤λ;x⋆) ≤ C1 a2

2 λ⊤(QDQ⊤)2λ

≤ C1 a2

2 ∥λ∥2 ∥D(θ)∥2, where we recall that ∥ ·∥ denotes the 2-norm of its vec-
tor or matrix argument. Next, note that ∥D(θ)∥ ≤ θaµ−1, for all θ ∈ [0, 1],
because all eigenvalues ρi’s of H(x⋆) belong to the interval [µ,L]. Therefore,
we obtain:

Ψ⋆(λ) ≤ C1 a
2

2
∥λ∥2

∫ 1

0
θ2aµ−2dθ =

C1 a
2

2(2 aµ− 1)
∥λ∥2.

The case of random initial iterate X1. Recall that, by definition, Γ1(λ) =

E
[
eλ

⊤(X1−x⋆)
]
. When X1 is random, Γ1, as a function of λ, is therefore

the log-moment generating function of X1 − x⋆. Provided its domain is Rd,
all arguments in the proof of Theorem 1 remain the same. In particular,
in eq. (54), the factor e∥λ∥∥X1−x⋆∥ would be replaced by a (finite-valued)
function (of λ), and the subsequent results would be unaltered; a similar
comment applies for the statement and the proof of Lemma 5.

Appendix E.

Proof of Theorem 2. It is easy to show that for the assumed quadratic form,
the iterates Xk have the following representation:

Xk+1 = Ak0X1 +
k∑

l=1

αlAk,l+1Zl, (84)
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where Ak,l =
∏k

j=l(I − αjH). By the assumption that the noise realiza-
tions at different times are independent and with a constant distribution, we
obtain:

Γk+1(λ) = eλ
⊤X1e

∑k
l=1 Λ(αlAk,l+1λ). (85)

The proof now follows from Lemma 4 and the limit established in 56.

Appendix F. Numerical results

We now illustrate the achieved results through a numerical simulation. We
consider a strongly convex quadratic cost function f : Rd → R, defined by
f(x) = 1

2x
⊤Ax+bx, d = 10, where the symmetric d×dmatrix A and the d×1

vector b are generated randomly. Specifically, we generate the entries of b
mutually independently, according to the standard normal distribution. The
matrix A is generated as follows. We let A = QΛQ⊤, where Q is the matrix
whose columns are the orthonormal eigenvectors of matrix (B+B⊤)/2, and
the entries of B are drawn mutually independently from the standard normal
distribution; the matrix Λ is the diagonal matrix whose diagonal entries
are drawn from the uniform distribution on the interval [1, 2]. Clearly, the
optimal solution for the problem equals x⋆ = A−1b.

We consider the gradient noise that is generated in an i.i.d. manner
over iterations and over the gradient noise vector elements, independently
from the solution iterate sequence. Two different noise distributions per
gradient noise entry are considered, such that the per-entry noise variance
is kept equal for the two distributions, equal to σ2. In this way, we evaluate
the effects of higher order moments on the performance of SGD. The first
distribution is zero-mean Gaussian with variance σ2. The second distribution
is the zero-mean Laplacian with the same variance. We set σ2 = 0.04.

We numerically estimate, via Monte Carlo simulations, the probability
P (∥Xk − x⋆∥ > δ) along iterations k = 1, 2, ... We denote the corresponding
numerical estimate by pk. Two different values of δ are considered, δ = 0.3,
and δ = 0.03. For each Monte Carlo run, X1 is set to the zero vector. For
the numerical example here, ∥x⋆∥ = 2.342, and hence δ = 0.3 corresponds
to the relative error level δ/∥x⋆∥ ≈ 0.13, while δ = 0.03 corresponds to
δ/∥x⋆∥ ≈ 0.013. Figure 1 plots pk versus iteration counter k (in linear scale
for the horizontal axis, and log10-scale for the vertical axis) for the Gaussian
noise case (blue line) and the Laplacian noise case (red line). The top Figure
is for δ = 0.3, and the bottom Figure is for δ = 0.03. We can see that, for
a large value of δ, the two curves are very different: the Laplacian gradient
noise case leads to a worse performance. This is because, for large δ, the
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argument λ of the LMGF Λ that corresponds to the minimizer in the rate
function value I⋆ is large (see Theorem 4), and hence higher order polynomial
coefficients (∼ λ3 and higher) play a significant role. As the higher order
moments of the Gaussian and Laplace distributions are very different (equal
to zero for the Gaussian and strictly positive for the Laplacian), the result
is the different large deviations performance (worse for the Laplacian case)
as seen in Figure 1, top. On the other hand, for a small value of δ (bottom
Figure), the argument λ of the LMGF that corresponds to the minimizer in
the rate function expression I⋆ is small, and hence only the first two order
polynomial coefficients of Λ play a significant role. As the two distributions
here are both zero mean and have equal variance (hence having equal first
and second order moments), the large deviation performance for the two
noises matches, as seen in Figure 1, bottom. This behavior is in accordance
with the theory derived.
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Figure 1: Monte Carlo estimate of P (∥Xk − x⋆∥ > δ) along iterations k = 1, 2, ... for SGD
with Gaussian (blue line) and Laplacian (red line) gradient noise with equal per-entry
variance σ2 = 0.04. Top Figure: δ = 0.3; Bottom Figure: δ = 0.03.
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Abstract

This paper studies probabilistic rates of convergence for consensus+innovations type of algorithms

in random, generic networks. For each node, we find a lower and also a family of upper bounds on

the large deviations rate function, thus enabling the computation of the exponential convergence rates

for the events of interest on the iterates. Relevant applications include error exponents in distributed

hypothesis testing, rates of convergence of beliefs in social learning, and inaccuracy rates in distributed

estimation. The bounds on the rate function have a very particular form at each node: they are constructed

as the convex envelope between the rate function of the hypothetical fusion center and the rate function

corresponding to a certain topological mode of the node’s presence. We further show tightness of the

discovered bounds for several cases, such as pendant nodes and regular networks, thus establishing the

first proof of the large deviations principle for consensus+innovations and social learning in random

networks.

Index Terms

Large deviations, distributed inference, social learning, convex analysis, inaccuracy rates.
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I. INTRODUCTION

The theory of large deviations is the most prominent tool for studying rare events that occur with

stochastic processes, offering a principled approach for estimating probabilities of such events. A typical

setup concerns a sequence of probability measures induced by the studied process and parameterized by

one of the process parameters (e.g., time, population size, learning rate etc.), with the goal of computing,

or characterizing, the respective decay rate, for any given event (region) of interest. The practical value

of such rates is in estimating the probability of a rare event of interest as an exponentially decaying

function of the concerned process parameter, while neglecting the terms with slower than exponential

dependence. The rates of rare events can additionally provide a ground for comparison of two statistical

procedures, as originally proposed in the seminal work by Chernoff [2], and can therefore serve as a

useful design criterion [3], [4], [5], [6]. This is of special interest in the cases when other performance

metrics are intractable for optimization, such as probabilities of error with hypothesis testing.

In addition to the rate computation, large deviations analysis often reveals the most likely way through

which the event of interest takes place, providing additional important insights that can guide system

design. Most notable applications of large deviations theory are in statistics [7], communications and

queuing theory [8], statistical mechanics [9], and information theory [10].

For example, in statistical estimation, an event of interest is the event that the estimator does not belong

to a predefined close neighborhood of the parameter being estimated [11]. The decay rates of probabilities

of such events are known in the estimation theory as inaccuracy rates and can, e.g., guide the decision on

how many samples are needed for the estimator to reach the desired accuracy, with high probability [12].

To make the exposition concrete, let Xt ∈ Rd, t = 1, 2, ..., be a sequence of estimators of a parameter

θ ∈ Rd. Assuming that Xt converges to θ, an event of interest has the form {∥Xt − θ∥ ≥ ϵ}, where

∥ · ∥ denotes the l2 norm (other vector norms can also be used). An equivalent way to represent this

event is {Xt ∈ Cϵ}, where Cϵ is the complement of the l2 ball of diameter ϵ centered at θ, Cϵ = Bc
θ(ϵ).

Provided that Xt converges to θ, the probabilities of these events typically vanish exponentially fast with

t. Large deviations analysis then aims at discovering the corresponding rate of decay, i.e., the inaccuracy

rate I(Cϵ):

P (Xt ∈ Cϵ) = e−tI(Cϵ)+o(t), (1)

where o(t) denotes a function growing slower than linear with t. The inaccuracy rate I(Cϵ) has a very

particular structure: it is given through the so called rate function I : Rd 7→ R by

I(Cϵ) = inf
x∈Cϵ

I(x). (2)
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The rate function I is itself defined through the statistics of the inference sequence Xt. It should be

noted that, in contrast with the set function I, the rate function I does not depend on the inaccuracy

region, i.e., when Cϵ varies, only the domain of minimization on the right-hand side of (2) varies, while

the rate function remains fixed. Also, this relation holds for an arbitrary set Cϵ (e.g., not necessarily a

ball complement). Hence, once the rate function is identified, the associated inaccuracy rate is readily

computable through (2) for a new given region of interest, without the need to redo the large deviations

analysis each time, i.e., for each new region. Large deviations rate for estimation were first studied by

Bahadur in [12].

Another well-known application of large deviations analysis is hypothesis testing [2], where the

sequence Xt is typically a decision statistics, e.g., obtained by summing up the log-likelihoods of the

collected measurements up to the current time t, Xt = 1/t
∑t

s=1 log
f1(Ys)
f0(Ys)

; f0 and f1 here are the

marginal distributions of the measurements Ys under the two hypotheses H0 and H1, respectively. If the

acceptance threshold for H1 at time t is γt, then rare events of interest are {Xt < γt}, when H1 is true

(i.e., when Ys follow the distribution f1) – resulting in missed detection, and {Xt ≥ γt}, when H0 is

true (when Ys follow the distribution f0) – causing a false alarm. When Cϵ in (1) is replaced by the

preceding two events, the resulting large deviations rates I(Cϵ) are then the well-known error exponents

that provide decay rates of the corresponding error probabilities.

In this paper we are concerned with large deviations rates of distributed statistical inference, where

observations originate at different locations or different entities. Relevant works include algorithms such

as consensus+innovations [13], [14], [15], [16], diffusion [17], [18], [19], and non-Bayesian or social

learning [20], [21], [22], [23]. The common setup of the above works consists of networked nodes, each

holding a local inference vector (parameter estimates, decision variables, beliefs) that is being updated

over time. The updates are based on incorporating local, private signals that each agent observes over

time, and then exchanging with immediate neighbors and averaging the received information through the

well-known DeGroot averaging [24] (also known as consensus).

Asymptotic performance of distributed detection was studied in [13], for Gaussian observations, [14],

for generic observations, and in [15], for networks with noisy communication links. In each of the named

works, a randomly switching network topology is assumed and conditions for asymptotic equivalence of

an arbitrary network node and a fusion center (with access to all observations) are studied. Reference [16]

considers directed networks, both static and randomly varying, and studies the rate function for the vector

of states, deriving the exact rate function for the case of static networks, and providing bounds on the

exponential rates for randomly switching networks. The rate function for static networks is given as the

weighted combination of the local rate functions, with weights being equal to the eigenvector centralities
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(i.e., the left Perron vector of the consensus matrix). Reference [17] studies distributed detection for static

and symmetric networks and constant step size. For the limiting distribution of the local states, it proves

the large deviations principle when the step size parameter decreases and shows that the rate function is

equivalent to the centralized detector. These results are refined and extended in [18] by studying non-

exponential terms and directed (static) networks. Reference [19] further considers distributed detection

with 1-bit messages, while recent reference [6] addresses optimal aggregation strategies for social learning.

References [20], [21], [22], [23] study distributed M -ary hypothesis testing, where local updates are

formed by applying Bayesian update on the vector of prior beliefs, based on the newly acquired local

measurements. Assuming static, directed network, in [20] and [21], beliefs across immediate neighbor-

hoods are merged through arithmetic average [20], while [22] adopts geometric average (or, equivalently,

arithmetic average on the log-beliefs). A different merging rule is proposed and analyzed in [23], where

instead of averaging, beliefs are updated by computing the minimum across the neighbors beliefs and

the nodes’ locally generated beliefs, showing improvement in the learning rate. Large deviations of the

beliefs are addressed in [22], where it was proven that the log-ratios of beliefs with respect to the

belief in the true distribution, satisfy the large deviations principle, with the rate function being equal

to the eigenvector-centralities convex combination of the nodes’ local rate functions, similarly as in [16]

and [18]. Through the contraction principle, [22] also shows that the (log)-beliefs themselves satisfy the

large deviations principle.

Contributions. In contrast with the works in [17]-[23], in this paper, we address computation of the rate

function for distributed inference on random networks. This model shift from static to random networks

has fundamental implications on the large deviations performance. To explain this at an intuitive level:

when the underlying network is random, consensus mixing of local inference vectors might be disabled

for an arbitrary long period of time due to the lack of communications. In general, the topology can then

break down into several connected components of the original network1. When in this regime, neither

of the nodes can “see” the observations beyond the connected component they belong to, and hence the

resulting rate function will be strictly lower than that of the full network2. Figure 1 illustrates this effect

with a toy example of a 3-node chain where each node produces scalar observations of standard Gaussian

distribution.

1Note that this is very different from time-varying networks that are typically modelled by the assumption of the so called

bounded intercommunication interval, which guarantees that the union graph formed of all communication links occurring in

this interval is connected, after a strictly finite time, e.g., [23], [25]
2This is a consequence of the non-negativity of the rate function and the fact that it (roughly) scales linearly with the number

of observation sources, as detailed in the paper.
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Fig. 1: Decay of the log-probabilities in (1) for a fixed set C for static (top) and random (bottom) 3 node

chain network.
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In the top figure, we plot the logarithm of the probability in (1) for a ball complement inaccuracy

set C, when the chain topology is fixed (static). In the bottom figure we plot the same probability, but

when the two links of the chain graph alternate at random over time. We label the middle node as node

2, and we let the communication frequency between nodes 1 and 2 be higher (equal to 0.8) than the

one between higher than the one between nodes 2 and 3 (equal to 0.2). It is clear from the figure that

the static topology achieves much steeper decay, and, moreover, this decay is equal at each of the three

nodes (and also equal to the decay of the hypothetical fusion center, cf. Section IV, as predicted by the

theory). In contrast, in the random case, the difference between the nodes’ decays is evident: node 2

achieves the steepest decay, followed by node 1, while node 3 has the worst performance.

In this work, we are interested in understanding the rate function of each node in the network and

analytically expressing its dependence on the system parameters. For each node, we find a lower and a

family of upper bounds on the rate function. This is achieved by carrying out node-specific large deviations

analyses. We show that the two bounds match in several cases, such as for pendant nodes and also for

nodes in a regular network. The family of upper bounds is indexed by different induced components of

the given node, and each function in this family has the form of the convex envelope between the rate

function of the full network and the rate function of the respective component, lifted up by the probability

of the event that induces the component. The lower bound is given as the convex envelope between the

rate function of the full network and the node’s local rate function lifted up by the large deviations

rate of consensus, whose existence was shown in [26]. With respect to references [13], [14], [15], there

are several important novelties. First, we extend the results of [14] to the case of vector observations

and vector inference state. Second, while [13]-[15] only provide a lower bound on the rate function,

this work, as described in the above, finds also a family of upper bounds. This is achieved by carefully

devising events that impact the rate function, and for which we develop novel large deviations techniques.

The discovered upper bounds enable to establish, to the best of our knowledge, the first proof of the

large deviations principle for nodes performing DeGroot-based distributed inference in randomly varying

networks.

As an application of particular interest to this study, we consider social learning, specifically the form

with the geometric average update [22]. We show that, with appropriate transformation of the belief iterates

– namely, considering their log-ratios with respect to the belief in the true distribution, the algorithm

studied in [22] exhibits full equivalence to the consensus+innovations algorithm that we analyze here.

Building on this equivalence, we characterize the rate function of the beliefs in social learning and provide

the first proof of the large deviations principle for social learning run over random networks.

A closely related work to ours is [27] that studies convergence properties of social learning over
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random networks. This reference shows that, almost surely, each node is able to correctly identify the

true hypothesis. We similarly focus on the case of random networks, but we are additionally concerned

with characterizing the rates of probabilistic convergence of the iterates in the sense of large deviations.

Finally, we show that almost sure convergence of the beliefs follows from the obtained large deviations

rates.

From the technical perspective, this paper contributes with a novel set of techniques and approaches

that could be of interest for further studies of social learning, and more generally, distributed inference

in random networks.

Notation. For arbitrary d ∈ N we denote by 0d the d-dimensional vector of all zeros; by 1d the d-

dimensional vector of all ones; by ei the i-th canonical vector of Rd (that has value one on the i-th entry

and the remaining entries are zero); by Id the d-dimensional identity matrix; by Jd the d×d matrix whose

all entries equal to 1/d. For a matrix A, we let [A]ij and Aij denote its i, j entry and for a vector a ∈ Rd,

we denote its i-th entry by ai, i, j = 1, ..., d. For the set of indices C ⊆ {1, 2, ..., N}, we let [A]C (or

AC) denote the submatrix of A that corresponds to indices in C. For a function f : Rd 7→ R, we denote

its domain by Df =
{
x ∈ Rd : −∞ < f(x) < +∞

}
; for a set D ⊆ R, f−1(D) is defined as f−1(D) =

{x ∈ Rd : f(x) ∈ D}. log denotes the natural logarithm. For N ∈ N, we denote by ∆N−1 the probability

simplex in RN and by α the generic element of this set: ∆N−1 =
{
α ∈ RN : αi ≥ 0,

∑N
i=1 αi = 1

}
. We

let λmax and λ2, respectively, denote the maximal and the second largest (in modulus) eigenvalue of a

square matrix; ∥ · ∥ denotes the spectral norm. For a matrix S ∈ RN×N , we let R(S) denote the range of

S, R(S) =
{
Sx : x ∈ RN

}
. An open Euclidean ball in Rd of radius ρ and centered at x is denoted by

Bx(ρ); the closure, the interior, and the complement of an arbitrary set D ⊆ Rd are respectively denoted

by D, Do, and Dc; B(Rd) denotes the Borel sigma algebra on Rd; P and E denote the probability and

the expectation operator; N (m,S) denotes Gaussian distribution with mean vector m and covariance

matrix S. For a given graph H , E(H) denotes the set of edges of H .

Paper organization. Section II describes the system model and the algorithm and Section III introduces

the large deviations metric and defines the relevant large deviations quantities. Section IV states the

main result of the paper, important corollaries and provides illustration examples. Section V provides

applications of the results to social learning. Proofs of the main result are given in Section VI. Section VII

concludes the paper.

II. SYSTEM MODEL

This section explains the system model and the consensus+innovations distributed inference algorithm

accompanied by different application examples. Section II-A details the connection to social learning,
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while Section II-B provides certain preliminaries.

Communication model. We consider a network of N identical agents connected by an arbitrary communi-

cation topology. The topology is represented by an undirected graph G = (V,E), where V = {1, 2, ..., N}
is the set of agents, and E ⊆

(
V
2

)
is the set of possible communication links between agents. We assume

that during operation of the network each link {i, j} ∈ E may fail, and that correlations between failures

of different links are possible. Realization (i.e., a snapshot) of the communication topology at time slot t

is denoted by Gt = (V,Et), for t = 1, 2, . . . , where Et is the set of links that are online at time t; note that

Et ⊆ E. For an agent i, we let Oi,t denote the set of neighbors of i at time t, Oi,t = {j ∈ V : {i, j} ∈ Et}.

Consensus based distributed estimation. At each time t, each sensor i acquires a d-dimensional vector

of measurements Zi,t ∈ Rd. We assume that the measurements Zi,t are independent and identically

distributed across sensors and over time. The goal of each sensor is to estimate the state of nature θ,

which is the expected value of sensor observations Zi,t, θ = E [Zi,t]. To achieve this, an agent i holds a

local estimate, called also the state, Xi,t and iteratively updates it over time slots t. At each slot t, agent

i performs two steps: 1) the innovation step; and 2) the consensus step. In the innovation step, i acquires

Zi,t and incorporates it into the current state Xi,t−1, by computing the following convex combination,

forming an intermediate state:

X̂i,t =
t− 1

t
Xi,t−1 +

1

t
Zi,t. (3)

It then subsequently transmits X̂i,t to (possibly, a subset of) its neighbors in G, and, at the same time,

receives the intermediate states X̂j,t, j ∈ Oi,t, from its current neighbors. In the second, consensus,

step, agent i computes the convex combination (DeGroot averaging) between its own and the neighbors

estimates:

Xi,t =
∑

j∈Oi,t∪{i}
Wij,tX̂j,t, (4)

where Wij,t is the weight that agent i at time t assigns to the estimate of agent j. For neat exposition,

the weights of all nodes are collected in an N by N matrix Wt, such that the i, j entry of Wt equals

Wij,t, when j ∈ Oi,t ∪ {i}, and equals zero otherwise. Thus, Wt respects the sparsity pattern of Gt: if

{i, j} /∈ Et, then [Wt]ij = [Wt]ji = 0. Also, since the weights at each node form a convex combination,

matrix Wt is stochastic. In addition, we assume that, at any time t, for any i, j, the weights are symmetric

at each link, i.e., Wij,t =Wji,t, implying that Wt is symmetric.

Denoting by Φ(t, s) =Wt · · ·Ws for 1 ≤ s ≤ t, algorithm (3)-(4) can be written as:

Xi,t =
1

t

t∑

s=1

N∑

j=1

[Φ(t, s)]i,j Zj,s. (5)

We analyse algorithm (3)-(4) under the following assumptions on the matrices Wt and observations Zi,t.
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Assumption 1 (Network and observations random model).

1) Observations Zi,t, i = 1, . . . , N , t = 1, 2, . . . are independent, identically distributed (i.i.d.) across

nodes and over time;

2) The sequence of matrices Wt, t = 1, 2, . . . is i.i.d. and for each t, every realization of Wt is

stochastic, symmetric and has positive diagonals;

3) λ2 (E [Wt]) < 1, or, equivalently, the induced graph G of E [Wt] is connected.

4) Weight matrices Wt are independent from the nodes’ observations Zi,s for all i, s, t.

We now present different application examples of algorithm (3)-(4).

Example 2 (Estimating the distribution of opinions by social sampling). Consider the scenario where a

group of N agents wishes to discover the distribution of opinions (e.g., about an event or phenomenon)

across a certain, large population. To achieve this, agents continuously poll the population and register

responses of individuals. We assume that the respondents’ opinions are quantized to d preset opinion

summaries: {r1, ..., rd}. We let Ri,t denote the opinion (summary) of the person that agent i interviewed

at time t. Also, let pl be the probability that the response of a person chosen uniformly at random is

rl. Consider now algorithm (3)-(4) and define the innovation vector Zi,t to be the vector of opinion

indicators, Zi,t =
(
1{Ri,t=r1}, ..., 1{Ri,t=rd}

)⊤; again, let the Wt’s be arbitrary stochastic matrices.

Then, the states of all agents converge to the true opinion distribution, (p1, . . . , pd), as we show in

Section IV, i.e., algorithm (3)-(4) is able to correctly identify the distribution of opinions across a given

population, while the rates of this convergence will prove to be highly dependent on the frequency of

agents’ interactions and interaction patterns.

Example 3 (Distributed event detection). Suppose that a wireless sensor network is deployed in a certain

area to detect in which of the two possible states the environment is. This problem can be modeled

as a binary hypothesis testing problem, where under the state of nature (hypothesis) H1, the sensors

measurements follow the distribution f1, and similarly for f0, where f1 and f0 are assumed known. We

let Yi,t denote the measurement of sensor i at time t. We assume that Yi,t’s are independent both over

time and across different sensors. This hypothesis testing problem can be solved by algorithm (3)-(4) as

follows. For each i and t, define the innovation Zi,t as the log-likelihood ratio of the node i’s measurement

at time t: Zi,t = log f1(Yi,t)
f0(Yi,t)

. Then, any sensor in the system can, at any given time, make a decision

simply by comparing its state Xi,t against a prescribed threshold γ:

Xi,t

H1

⋛
H0

γ. (6)
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For further details on distributed detection application, see also [14].

A generalization of the preceding example to M -ary hypothesis testing and an application to social

learning is given in the next subsection.

A. Social learning

The idea of social learning is for a group of people to distinguish between M different hypotheses,

potentially indistinguishable by any given individual, through local Bayesian updates and collaborative

information exchange. Each node i over time draws observations Yi,t from (the true) distribution fi,M

(hypothesis HM ); the remaining M−1 candidate distributions that compete at node i in hypothesis testing

are fi,m (hypothesis Hm), m = 1, ...,M − 1. It is assumed that, conditioned on the true hypothesis HM ,

observations at each node are independent over time, and they are also independent from the observations

that are generated at any different node.

We consider here the algorithm for social learning proposed in [22]. Each node i maintains over time

two sets of values (vectors), qi,t ∈ RM and bi,t ∈ RM , called, respectively, private and public belief

vectors, quantifying node i’s beliefs in each of the M hypotheses. The m-th entry of qi,t, denoted by

qmi,t ∈ R, corresponds to the private belief of node i in the m-th hypothesis; similarly, the m-th entry of

bi,t, denoted by bmi,t ∈ R, corresponds to the public belief of node i in the m-th hypothesis. The values

of both public and private belief vectors are between 0 and 1: the closer an entry of a belief vector is to

1 (0), the stronger (weaker) is the confidence of the respective node that the corresponding hypothesis is

true; e.g., if for some m, bmi,t equals 1, this means that node i is fully confident that hypothesis Hm is

true.

The algorithm starts at each node with initial private beliefs qmi,t > 0, m = 1, ...,M−1. Upon receiving

new local observation Yi,t, each node i updates its m-th public belief as follows:

bmi,t =
fi,m(Yi,t)q

m
i,t−1∑M

l=1 fi,l(Yi,t)q
l
i,t−1

, (7)

for each m = 1, ...,M . The node then sends its updated public belief vector bi,t = (b1i,t, ..., b
M
i,t)

⊤ to all

of its neighbors Oi,t. Upon receiving the neighbors’ (public) beliefs, the node updates its private beliefs

as follows:

qmi,t =
e
∑

j∈Oi,t
Wij,t log bmj,t

∑M
l=1 e

∑
j∈Oi,t

Wij,tblj,t
, (8)

for each m = 1, ...,M .

It is easy to verify that both qi,t and bi,t represent valid probability vectors, i.e., qi,t, bi,t ∈ ∆M−1.
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Connection with algorithm (3)-(4). Consider the update for the private belief qmi,t in (8). Computing the

log-ratios of qmi,t with qMi,t (belief in the true hypothesis HM ), the recursion in (8) transforms into:

log
qmi,t

qMi,t
=
∑

j∈Oi,t

Wij,t log
bmj,t

bMj,t
. (9)

Similarly, it is easy to see that the log-ratios of the public beliefs bmj,t with bMj,t can be expressed as:

log
bmi,t

bMi,t
= log

qmi,t−1

qMi,t−1

+ log
fi,m(Yi,t)

fi,M (Yi,t)
. (10)

Dividing both sides in (9) and (10) by t, we recognize the form in (3)-(4). Further, denoting, for each

m = 1, ...,M − 1,

Lm
i,t = log

fi,m(Yi,t)

fi,M (Yi,t
(11)

X̂m
i,t =

1

t
log

qmi,t
q1i,t

(12)

Xm
i,t =

1

t
log

bmi,t
b1i,t

(13)

and stacking the per-hypothesis quantities in vector form: Li,t =
(
L1
i,t, ..., L

M−1
i,t

)
∈ RM−1, and X̂i,t =(

X̂1
i,t, ..., X̂

M−1
i,t

)
∈ RM−1, and Xi,t =

(
X1

i,t, ..., X
M−1
i,t

)
∈ RM−1, the exact form in (3)-(4) is obtained,

where the innovation vectors Zi,t that algorithm (3)-(4) is fed with are the log-likelihood ratio vectors

Li,t; note also that, in this application instance, d = M − 1. Thus, the generic algorithmic form (3)-(4)

subsumes also the social learning algorithm from (7)-(8) through the described variable transformation.

Section V shows how results of this paper can be used to characterize convergence of beliefs and large

deviations rates of social learning, specifically for the case when the weights Wij,t (neighborhoods Oi,t)

in (8) are random.

B. Probabilistic rate of consensus J

We next define certain concepts and quantities pertinent to the underlying graph process that are needed

for later analyses.

Components in union graphs. Since the sequence of matrices Wt is i.i.d., the sequence Gt of their

underlying topologies is i.i.d. as well. We let G denote the set of all topologies on V that have non-zero

probability of occurrence at a given time t, i.e., G = {(V,E) : P (Gt = (V,E)) > 0}. For convenience,

for any undirected, simple graph H on the set of vertices V we denote pH = P (Gt = H). Thus, for

any H ∈ G, pH > 0. It will also be of interest to consider different subsets of the set of feasible graphs

G. For a collection of undirected simple graphs H on V we let ΓH = (V,EH) denote the corresponding

union graph, that is, ΓH is the graph with the set of vertices V and whose edge set EH is the union of
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edge sets of all the graphs in H, EH = ∪H∈HE(H). We let pH denote the probability that Gt belongs

to H,

pH =
∑

H∈H
pH .

We also introduce – what we refer to as – the component of a node in H.

Definition 4 (Node component in union graph). Let H be a given collection of undirected simple graphs

on V and let C1, ..., CL be the components of the union graph Γ(H). Then, the component of node i in

H, denoted by Ci,H, is the component of Γ(H) that contains i: i.e., if i ∈ Cl, then Ci,H = Cl.

Probabilistic rate of consensus J . We recall here the rate of consensus, associated with a sequence

of random stochastic symmetric matrices, introduced in [13] and subsequently analyzed in [26]. In [13]

and [14] we showed that the quantity J below, termed the rate of consensus3, captures well how the

weight matrices Wt affect performance of the estimates Xi,t when one is concerned with large deviations

metrics:

J := − lim sup
t→+∞

1

t
logP

(
∥Wt · · ·W1 − J∥ >

1

t

)
. (14)

Rate of consensus J is computed exactly in [26].

Theorem 5 ([26]). Let Assumption 1, part 2 hold. Then the lim sup in (14) is in fact a limit and the

rate of consensus J is found by

J = | log pH⋆ |,

where pmax is the probability of the most likely collection of feasible graphs whose union graph is

disconnected,

H⋆ = arg max
H⊆G: ΓH disc.

pH. (15)

In the next example we consider an important special case when links in G fail independently at

random.

3The rate of consensus J (in (14)) is defined slightly differently than the corresponding quantity from [13] and [14]. In [13]

and [14], in the event ∥Wt · · ·W1 − JN∥ > 1/t, the probability of which we wish to compute, there is a constant ε ∈ (0, 1] in

the place of 1/t . However, as we show in [26], the two rate quantities coincide when the weight matrices are i.i.d., which is

the case that we consider here.

January 14, 2023 DRAFT

DRAFT



13

Example 6 (Random topologies with i.i.d. link failures). Consider the random model for Wt defined by

Assumption 1.2 where each link in G fails independently from other links with probability 1−p. Applying

Theorem 5, it can be shown that

J = min cut (G)| log(1− p)|, (16)

where min cut (G) is the minimum edge cut of the graph G; for example, if G is a chain, then min cut (G) =

1. The details of this derivation can be found in [26].

For finite time analyses, of relevance is the following variant of (14): for any ϵ > 0, there exists a

positive constant Kϵ such that for all t,

P
(
∥Wt · · ·Ws − JN∥ >

1

t

)
≤ Kϵe

−(t−s) (J−ϵ). (17)

III. PROBLEM FORMULATION: THE METRIC OF LARGE DEVIATIONS

Section II illustrate uses of algorithm (3)-(4) for several applications: multi-agent polling with coopera-

tion, in Example 2, fully distributed hypothesis testing, in Example 3, and social learning, in Section II-A.

We now introduce the rates of large deviations that we adopt as performance metric for applications of

algorithm (3)-(4).

Rate function I and the large deviations principle.

Definition 7 (Rate function I [28]). Function I : Rd 7→ [0,+∞] is called a rate function if it is lower

semicontinuous, or, equivalently, if its level sets are closed. If, in addition, the level sets of I are compact

(i.e., closed and bounded), then I is called a good rate function.

Definition 8 (The large deviations principle [28]). Suppose that I : Rd 7→ [0,+∞] is lower semicontin-

uous. A sequence of measures µt on
(
Rd,B

(
Rd
))

, t ≥ 1, is said to satisfy the large deviations principle

(LDP) with rate function I if, for any measurable set D ⊆ Rd, the following two conditions hold:

1) lim sup
t→+∞

1

t
logµt(D) ≤ − inf

x∈D
I(x);

2) lim inf
t→+∞

1

t
logµt(D) ≥ − inf

x∈Do
I(x).

Differently than with the case of static topologies, when topologies and/or weight matrices Wt are

random, finding the rate function of an arbitrary node performing distributed inference is a very difficult
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problem [14], [29]. (In fact, even the existence of the LDP is not known a priori.) Our approach is to

find functions Ii and Ii : Rd 7→ R, such that, for any measurable set D:

lim sup
t→+∞

1

t
log P (Xi,t ∈ D) ≤ − inf

x∈D
Ii(x), (18)

lim inf
t→+∞

1

t
log P (Xi,t ∈ D) ≥ − inf

x∈Do
Ii(x). (19)

At a high level, this is analytically achieved by carefully constructing events the probabilities of which

upper and lower bound the probability of the event of interest in (18) and (19). We remark that functions

Ii and Ii that we seek should satisfy (18) and (19) for any given set D, i.e., similarly as with the rate

function Ii, to find bounds on the exponential rates for a given rare event {Xi,t ∈ D}, it suffices to perform

minimizations of Ii and Ii over D. This property is very important, as once Ii and Ii are discovered, any

inaccuracy rate can be easily estimated without the need to do any (further) large deviations analyses.

As we show in Appendix A, if for some node i the LDP holds and (18) and (19) are satisfied for any

D, then

Ii(x) ≤ Ii(x) ≤ Ii(x), x ∈ Rd, (20)

i.e., the graph of the LDP rate function Ii lies between the graphs of Ii and Ii.

Log-moment generating function of observations Zi,t and its conjugate. We proceed standardly by

introducing the log-moment generating function of the observation vectors Zi,t, which we denote by Λ.

The log-moment generating function Λ : Rd → R ∪ {+∞} corresponding to Zi,t is defined by:

Λ(λ) = logE
[
eλ

⊤Zi,t

]
, for λ ∈ Rd. (21)

We make the assumption that Λ is finite at all points.

Assumption 9. DΛ = Rd, i.e., Λ(λ) < +∞ for all λ ∈ Rd.

Besides the log-moment generating function Λ, the second key object in large deviations analysis is

the Fenchel-Legendre transform, or the conjugate, of Λ, defined by

I(x) = sup
λ∈Rd

x⊤λ− Λ(λ), for x ∈ Rd. (22)

Log-moment generating function and its conjugate enjoy many nice properties, such as convexity and

differentiability in the interior of the function’s domain [28], [30]. We list the properties that are relevant

for the current analysis in the next lemma. Recall that θ = E[Zi,t].

Lemma 10 (Properties of Λ and I).

1) Λ is convex and differentiable on Rd;
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2) Λ(0) = 0 and ∇Λ(0) = θ;

3) I is strictly convex;

4) if x = ∇Λ(λ) for some λ ∈ Rd, then I(x) = λ⊤x− Λ(λ);

5) I(x) ≥ 0 with equality if and only if x = θ.

Proofs of 1-5 (with a weaker form of the claim in part 3 – with strict convexity replaced by convexity,

and with non-negativity only in part 5) can be found in [28]. The proof of strict convexity of I

under Assumption 9 can be found in [31]. We briefly comment on properties 2 and 5, to give some

(mathematical) intuition as to why these properties hold, where we note that of particular, practical

relevance is 5. Plugging in λ = 0 in the defining equation of Λ, (21), it is easy to see that Λ(0) = 0.

Similarly, it can be shown that, for any λ, ∇Λ(λ) = E[Zi,te
λ⊤Zi,t ]/E[eλ⊤Zi,t ]. Evaluating at λ = 0, the

property ∇Λ(0) = θ follows. Property 5 has a very intuitive meaning: the rate function is non-negative

and also equals zero at the mean value. To see why the latter holds, it suffices to invoke properties from

part 2 in 4; note also that, since I is non-negative, θ is a minimizer of I . The if and only if part then

follows from strict convexity of I , which implies uniqueness of its minimizer θ. We will show practical

implications of this property when considering large deviations rate of the sequence Xi,t.

The following result, proven in [16], gives fundamental large deviations upper and lower bound for the

inference sequence Xi,t. The result holds for arbitrary stochastic weight matrices Wt and, in particular,

for directed topologies as well. This result will be invoked when proving tightness and optimality of our

rate function bounds for certain classes of networks, in Section IV-B.

Lemma 11 (Fundamental distributed inference bounds). Consider algorithm (3)-(4) under Assumptions 1

and 9. Then (18) and (19) hold with Ii = NI and Ii = I , for all i.

Closed convex hull of a function. We recall the definitions of the epigraph and closed convex hull of

a function.

Definition 12 (Epigraph and closed convex hull of a function, [32]). Let f : Rd 7→ R ∪ {+∞} be a

given function.

1) The epigraph of f , denoted by epif , is defined by

epif =
{
(x, r) : r ≥ f(x), x ∈ Rd

}
. (23)

2) Consider the closed convex hull co epi f 4 of the epigraph of f . The closed convex hull of f , denoted

4The convex hull of a set A, where A is a subset of some Euclidean space, is defined as the set of all convex combinations

of points in A [32].
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by cof , is defined by:

cof(x) := inf{r : (x, r) ∈ co epi f}. (24)

Hence, for a given function f , epigraph of f is the area above the graph of f . Closed convex hull of f

is then constructed from epif by first finding the closed convex hull of the epigraph, co epi f . Then, cof

is defined as the function the epigraph of which matches co epi f . Intuitively, cof is the best convex and

lower semi-continuous (closed) approximation of f , as its epigraph contains (besides epi f ) only those

points that are needed for “convexification” and closure. Figure 2 further ahead gives an illustration of

cof , while construction of cof is explained in Section IV-A.

IV. MAIN RESULT

The main result of this section, Theorem 13, finds functions Ii and Ii from (18) and (19). These

functions enable computation of bounds on the exponential decay rate of an arbitrary rare event and, in

the case of the existence of the LDP, by (20), provide approximations to the rate function Ii. A number of

important corollaries of Theorem 13 is then presented in Subsection IV-B, including the large deviations

principle for regular networks and for pendant nodes. Section V then studies application of the derived

results to distributed hypothesis testing and social learning.

Theorem 13. Consider distributed inference algorithm (3)-(4) under Assumptions 1 and 9. Then, for

each node i, for any measurable set D:

1) lim sup
t→+∞

1

t
logP (Xi,t ∈ D) ≤ − inf

x∈D
I⋆(x), (25)

where I⋆(x) = co inf {I(x) + J , NI(x)};
2) for any collection H of graphs on V :

lim inf
t→+∞

1

t
logP (Xi,t ∈ D) ≥ − inf

x∈Do
Ii,H(x), (26)

where Ii,H(x) = co inf {|Ci,H|I(x) + |log pH| , NI(x)}.

In words, Theorem 13 asserts that, for a fixed set D, for any node i, the probabilities P (Xi,t ∈ D)

decay exponentially fast over iterations t and it also finds bounds on the rate of this decay. We now

make a couple of additional remarks and such that aim at gaining further insights and intuition about

this result and the relevant quantities.

Remark 14. Consider an arbitrary disconnected collection H. By the construction of Ci,H, for any node

i, there holds {i} ⊆ Ci,H and, by non-negativity of I , it follows that I ≤ |Ci,H|I (point-wise). Further,

from Theorem 5 we know that J = | log pH⋆ | ≤ | log pH|. Therefore, we have that for any disconnected
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collection H, I + J ≤ |Ci,H|I + | log pH|. The latter obviously implies I⋆ ≤ Ii,H, serving as a first

feasibility check for (20) (and also (18) and (19)).

Comparing the upper bound from Theorem 13 with (18), we see that (18) is satisfied for

Ii ≡ I⋆, for all i ∈ V. (27)

That is, we have a uniform (lower) bound I⋆ on each of the nodes’ rate functions Ii, i ∈ V .

With respect to the lower bound from Theorem 13, there is in fact a whole family of functions Ii,

one per each collection of graphs H, that validate (19). To find the best bound for a given D, we might

optimize the right hand side of (26) over all collections H. This, however, might be computationally

infeasible. Instead, we can focus only on those collections P ⊆ G that have a certain property, e.g.,

P = {H : |Ci,H| = n}, for some n, 1 ≤ n ≤ N . Then, Ii from (19) can be found by finding H ∈ P that

yields uniformly lowest (i.e., closest to Ii) Ii,H:

Ii = inf
H∈P

Ii,H, for i ∈ V. (28)

The following corollary follows directly from (20) and the definition of LDP.

Corollary 15. 1) If, for a given i, the sequence Xi,t, t = 1, 2, ... satisfies the LDP with rate function

Ii, then, for any collection of graphs H,

I⋆ ≤ Ii ≤ Ii,H. (29)

2) If, for a given i, for some P (possibly, a single element set P = {H}), I⋆ ≡ infH∈P Ii,H, then the

sequence Xi,t, t = 1, 2, ... satisfies the LDP with rate function Ii = I⋆ ≡ infH∈P Ii,H.

In the next remark, through simple convex analyses, we make a connection between Corollary 15

(Theorem 13) and Lemma 11, completing the established bounds in (29) with the general bounds from

Lemma 11, hence establishing a coherent view of the derived results.

Remark 16 (Recovery of fundamental bounds in Lemma 11). From the point-wise non-negativity of I

and non-negativity of J , it is easy to see that I ≤ NI and I ≤ I+J . Thus, epi inf{NI, I+J } ⊆ epiI .

Since I is closed and convex, co epiI = epiI , thus implying co epi inf{NI, I + J } ⊆ epiI . The latter

directly implies I ≤ I⋆. Similarly, we have NI ≥ inf{NI, |Ci,H|I + | log pH|}, where the latter holds

for any disconnected collection H. Thus epiNI ⊆ epi inf{NI, |Ci,H|I+ | log pH|}, which in turn implies

co epiNI ⊆ co epi inf{NI, |Ci,H|I + | log pH|}. Since NI is convex and closed (the properties inherited
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from I), co epiNI = epiNI , and therefore epiNI = co epiNI ⊆ co epi inf{NI, |Ci,H|I + | log pH|}.
The latter implies NI ≥ Ii,H. Combining with (29) establishes:

I ≤ I⋆ ≤ Ii ≤ Ii,H ≤ NI. (30)

The above chain of inequalities is a capture of the so far established bounds in the literature on the large

deviations rate function for consensus+innovations distributed inference iterates on random networks.

As a byproduct, we note in passing that (30) verifies Lemma 11 for the special case of stochastic

symmetric weight matrices.

Remark 17 (Zero rate at θ). Since I is non-negative, both NI and |Ci,H|I(θ) + | log pH | are also

non-negative, implying Ii,H ≥ 0. Further, from Lemma 10, we have I(θ) = 0, and noting now that

NI(θ) = 0 < |Ci,H|I(θ)+ | log pH |, it follows that Ii,H(θ) = 0. It can be similarly shown that I⋆(θ) = 0.

From the preceding properties it follows that for any set C containing the mean value θ

inf
x∈C

I⋆(x) = inf
x∈C

Ii,H(x) = 0. (31)

It follows that Ii(C) = 0, i.e., the inaccuracy rate for any C containing θ equals zero. This means that

probabilities of events that Xi,t belong to C do not exhibit an exponential decay – specifically, for any

norm ball centered at θ, and of an arbitrary radius ρ > 0, Bθ(ρ) > 0, there holds

lim
t→+∞

1

t
logP (Xi,t ∈ Bθ(ρ)) = 0. (32)

Observing the form of the algorithm, eq. (3)-(4), where innovations Zi,t – the mean vector of which is

θ, are incorporated and mixed via weighted averaging (both over time and across nodes), it is intuitive

to expect that Xi,t will converge to θ (consider the ideal averaging case – Wt = Jd, for which Xi,t =

1
t

∑t
s=1

∑N
j=1

1
NZj,s, which converges to θ by the law of large numbers). Hence, the zero decay in (32)

is intuitive, i.e., the probabilities that Xi,t belongs to a neighborhood of θ should not vanish with t.

We use the result of Theorem 13, together with the uniqueness of the minimizer of I , property 5 from

Lemma 10, to establish a sort of a converse to (32) - i.e., whenever we seek the inaccuracy rate Ii(C) for

a set C not containing θ, this rate will be strictly positive. Practical relevance of this (technical) property

is given in Theorem 19 below, where almost sure convergence of Xi,t to θ is formally established.

Remark 18 (Strictly non-zero rate at x ̸= θ). Consider an arbitrary point x ̸= θ. From Lemma 10, part 5

we know that I(x) > 0 for any x ̸= θ.

Consider now an arbitrary set C such that θ /∈ C. By strict convexity of I and uniqueness of the

minimizer of I , it follows that I is coercive [33]. Pick an arbitrary point x0 ∈ C and let α = I(x0).
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Define Sα = {x ∈ Rd : I(x) ≤ α}, i.e., Sα is the α-level set of I . By coercivity of I , it follows that Sα

is compact. We now note

inf
x∈C

I(x) = inf
x∈C∩Sα

I(x) =: a. (33)

Compactness of Sα implies compactness of C ∩ Sα and since I is continuous and strictly greater than

0, it follows by the Weierstrass theorem that the infimum of I over C is strictly greater than zero,

a = infx∈C∩Sα
I(x) > 0. Finally, By the fact that I⋆ ≥ I (the left-hand side inequality in (30)), we in

turn obtain:

inf
x∈C

I⋆(x) ≥ inf
x∈C

I(x) = a > 0. (34)

Therefore, for any set C such that θ /∈ C, we have

lim sup
t→+∞

1

t
logP (Xi,t ∈ C) ≤ −a < 0, (35)

where the constant a bounding the exponential decay rate depends on the chosen set C.

With preceding considerations at hand, almost sure convergence of nodes’ iterates Xi,t follows by

standard arguments.

Theorem 19 (Almost sure convergence of Xi,t). Consider distributed inference algorithm (3)-(4) under

Assumptions 1 and 9. Then, for each node i, the state vectors Xi,t converge almost surely to θ = E[Zi,t].

Proof. Fix node i ∈ V . Pick an arbitrary ϵ > 0 and consider C = Bc
θ(ϵ). We start by noting that inequality

in (35) implies existence of a finite t0 = t0(C) such that, for all t ≥ t0, P(Xi,t ∈ C) ≤ e−t a

2 . Then, for

all t ≥ t0, we have

P (∥Xi,t − θ∥ ≥ ϵ) ≤ e−t a

2 . (36)

Thus,

P (∥Xi,t − θ∥ > ϵ, i.o.) ≤
∞∑

t=1

e−t a

2 <∞, (37)

where the last inequality follows from strict positivity of a. Applying the Borel-Cantelli lemma [34], the

claim of the theorem follows.

A. A closer look at functions I⋆ and Ii,H

This subsection finds closed form expressions for the functions I⋆ and Ii,H for the case when Zi,t is

a Gaussian vector, and provides a graphical interpretation of the obtained result.
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Lemma 20. Let Zi,t be Gaussian with mean vector m and covariance matrix S. Then

I⋆(x) =





NI(x), x ∈ R⋆
1

N
√
2c1H(x)−Nc1, x ∈ R⋆

2

I(x) + J , x ∈ R⋆
3

, (38)

where R⋆
1 = {x : NI(x) ≤ c1}, R⋆

2 = {x : c1 < I(x) ≤ Nc1}, and R⋆
3 = {x : I(x) > Nc1}, I(x) =

1
2(x − m)⊤S−1(x − m), H(x) =

√
(x−m)⊤S−1(x−m), and c1 = J

N(N−1) . Also, for any fixed

collection of graphs H

Ii,H(x) =





NI(x), x ∈ Ri,H
1

N
√
2c2H(x)−Nc2, x ∈ Ri,H

2

|Ci,H| I(x) + | log pH|, x ∈ Ri,H
3

, (39)

whereRi,H
1 =

{
x : N

|Ci,H|I(x) ≤ c2
}

,Ri,H
2 =

{
x : c2 < I(x) ≤ N

|Ci,H|c2
}

,Ri,H
3 =

{
x : I(x) > N

|Ci,H|c2
}

,

and c2 =
|Ci,H|| log pH|
N(N−|Ci,H|) .

Proof of Lemma 20 is given in Appendix B.

Three regions of I⋆. We provide a graphical illustration for I⋆ in Figure 2. We consider an instance

of algorithm (3)-(4) running on a N = 3-node chain, with i.i.d. link failures of probability (1 − p) =

e−5, and where the observations Zi,t are standard Gaussian (zero mean and variance equal to one).

For standard Gaussian, I(x) = 1
2x

2, and we obtain from Example 6 that the rate of consensus equals

J = | log(1 − p)| = 5. The more curved blue dotted line plots the function NI(x) = 1
2Nx

2, the

less curved blue dotted line plots the function I(x) + J = 1
2x

2 + 5, and the solid red line plots I⋆.

Observing the figure and the corresponding formula (38), we see that I⋆ is defined by three regions. In

the region around the zero mean, R⋆
1, I⋆ matches the optimal rate function NI . On the other hand, in

the outer region, R⋆
3, where values of x are sufficiently large, I⋆ follows the slower growing function,

I +J . Finally, in the middle region, R⋆
2, I⋆ is linear (more generally, when d > 1, I⋆ will exhibit linear

intervals over any direction that crosses the mean value). This linear part is the tangent line that touches

both the epigraph of NI(·) and the epigraph of I + J and is responsible for the convexification of the

point-wise infimum inf {I + J , NI}. Function Ii,H has similar properties.

B. Illustrations and LDP for special cases

In this subsection, we use Theorem 13 to establish the LDP for certain classes of random models. As

explained in the remarks after Theorem 13, to prove the LDP at some node i, it is sufficient to show

that I⋆ and Ii,H coincide for some collection H.
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Fig. 2: Illustration of I⋆ for a chain network of size N = 3, with J = 5, and Zi,t ∼ N (0, 1). The more

curved blue dotted line plots NI(x) = 1
2Nx

2, the less curved blue dotted line plots I(x)+J = 1
2x

2+J .

The solid red line plots I⋆ = co (NI, I + J ).

The first corollary of Theorem 13 asserts that if every realization of the network topology is connected,

then, for any node i, the sequence of states Xi,t satisfies the LDP with rate function NI . In our recent

work [16], we prove that NI is the best (highest) possible rate function for any distributed inference

algorithms of the form (3)-(4) with N nodes. It is also the rate function of a hypothetical fusion node

that has access to all the observations. Thus, when every instance of the network topology is connected,

then each node in the network is, in the asymptotic sense, effectively acts as a fusion center. Corollary 21

was, for the special case of Gaussian observations, previously proved in [35].

Corollary 21. Let, for each t, Gt be connected. Then, for any i ∈ V , Xi,t satisfies the large deviations

principle with rate function NI .

Proof. By Theorem 2 from [16], we know that, for any node i and for any set D

lim inf
t→+∞

1

t
logP (Xi,t ∈ D) ≥ − inf

x∈Do
NI(x). (40)

Comparing with the conditions for LDP in Definition 8, we see that we only need to prove that I⋆ ≡ NI .

For the latter identity it suffices to show that J = +∞, because then inf{NI, I + J } ≡ NI , and since

NI is closed and convex, we obtain I⋆ = co(NI) = NI . Suppose for the sake of contradiction that

there exists a disconnected collection of graphs H such that pH > 0. Then, there must be a graph H ∈ H
such that both H is disconnected and pH > 0. But this contradicts the assumption that every possible
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(i.e., non-zero probability) topology is connected. Thus, it must be that for every disconnected collection

pH = 0 implying J = +∞, and proving the claim.

In particular, Corollary 21 implies that if the nodes’ interactions are deterministic, i.e., Wt ≡ A, for

some stochastic symmetric A, and A is such that |λ2(A)| < 1, then, for each i, Xi,t satisfy the LDP with

the optimal rate function NI . This recovers the large deviations principle for deterministic networks,

established in [16], for the special case of symmetric networks (cf. Theorem 1 in [16]).

LDP for critical nodes. Consider now a situation when there exists a node i such that J = |log pi,isol|,
where pi,isol denotes the probability that i operates in isolation due to network randomness, pi,isol =

P (Oi,t = ∅). Comparing with Theorem 5, this means that the most likely way to disconnect G is to

isolate i, i.e.,

pmax =
∑

H∈Hi,isol

pH , (41)

where Hi,isol = {H : pH > 0, Ci,H = {i}}. Since Ci,Hi,isol
= {i}, we have

∣∣Ci,Hi,isol

∣∣ = 1. Consider

now the lower bound in (26) for H = Hi,isol. Noting that
∣∣pHi,isol

∣∣ = J , we see that the two functions

I⋆ and Ii,Hi,isol
coincide, thus implying the LDP for node i. This is formally stated in the next corollary.

Corollary 22 (LDP for critical nodes). Suppose that for some i, J = |log pi,isol|. Then, the sequence of

states Xi,t satisfies the LDP with the rate function co {NI(x), I(x) + |log pi,isol|}.

In the next two corollaries we assume the random model from Assumption 1.2 where each link in the

graph G fails independently with the same probability 1− p, p ∈ [0, 1].

Corollary 23 (LDP for pendant nodes). Suppose that the random model for Wt is such that all links in E

fail independently from each other with probability 1−p. Then, for any node i whose degree in G is equal

to one, its sequence of states Xi,t satisfies the LDP with the rate function co {NI(x), I(x) + |log(1− p)|}.

Proof. Suppose that i is a degree one node. By Corollary 22, it suffices to show that J = | log(1− p)|.
From Example 6, we know that J equals | log(1− p)| times the minimum edge cut of G. In this case,

minimum edge cut equals one (and is achieved, for instance, when the edge adjacent to i is removed

from the network), which proves the result.

Corollary 24 (LDP for regular networks). Suppose that G is a circulant network in which each node is

connected to d/2 nodes on the left and d/2 nodes on the right, where d ≤ N −1 is even. We assume that

each link, independently of all other links, fails with probability 1− p. Then, for any node i its sequence

of states Xi,t satisfies the LDP with the rate function co {NI, I + d log |1− p|}.
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Proof. Note that pi,isol = (1 − p)d for any i. Hence, by Corollary 22, it suffices to show that J =

d| log(1− p)|. Observing that the minimum cut in this case equals d, the result follows.

V. APPLICATION TO DISTRIBUTED HYPOTHESIS TESTING AND SOCIAL LEARNING

In this subsection we show how results from Section IV can be used to characterize large deviations

rates of distributed hypothesis testing and social learning that are run over random networks. We recall the

algorithm and relevant quantities defined in Section II-A. We assume that the measurement distributions

corresponding to the same hypothesis are equal across all nodes, i.e., when hypothesis Hm is true, the

measurements at all nodes are drawn from the same distribution fm: Yi,t ∼ fi,m ≡ fm, for all i.

Following the identified role of the vector of log-likelihood ratios Li,t as the innovation vector Zi,t

in (3)-(4), we introduce the log-moment generating function ΛM of Li,t at node i, when the measurements

are drawn from fM (hypothesis HM is true):

ΛM (λ) = E
[
eλ

⊤Li,t

∣∣∣H = HM

]
(42)

= E
[
e
∑M−1

m=1 λm log
fm(Yi,t)

fM (Yi,t)

∣∣∣∣H = HM

]
, (43)

for λ = (λ1, ..., λM−1)
⊤ ∈ RM−1; we note that index M in ΛM indicates the dependence on the assumed

true distribution fM . Similarly as in Section III, the conjugate of ΛM is denoted by IM . We assume that

ΛM satisfies Assumption 9.

A. Large deviations rates of the belief log-ratios

The following result follows as a direct application of Theorem 13 to the log-ratios Xi,t of public

beliefs, defined in Section II-A, eq. (13), Xm
i,t =

1
t log

bmi,t
bMi,t

, m = 1, ...,M − 1.

Theorem 25. Consider the social learning algorithm (7)-(8) under Assumptions 1 and 9, for Λ = ΛM .

Then, when H = HM , for each node i, for any measurable set D,

1) lim sup
t→+∞

1

t
logP (Xi,t ∈ D) ≤ − inf

x∈D
I⋆M (x), (44)

where I⋆M (x) = co inf {IM (x) + J , NIM (x)};
2) for any collection H of graphs on V :

lim inf
t→+∞

1

t
logP (Xi,t ∈ D) ≥ − inf

x∈Do
Ii,H;M (x), (45)

where Ii,H;M (x) = co inf {|Ci,H|IM (x) + | log pH|, NIM (x)}.

Consequently, all considerations, corollaries and results from Section IV also carry over without any

changes for the log-ratios Xi,t of beliefs in social learning. In particular, the LDP results for regular

networks and pendant nodes also carry over to the social learning setup.
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Theorem 26 (Almost sure convergence of Xi,t in social learning). Consider the social learning algo-

rithm (7)-(8) under Assumptions 1 and 9, for Λ = ΛM . Then, for each node i, for each m = 1, ...,M−1,
1
t log

bmi,t
bMi,t

converges almost surely to −DKL(fM ||fm) = −E
[
log fm(Yi,t)

fM (Yi,t

∣∣∣H = HM

]
.

The result follows as a direct application of Theorem 19 for the case when the innovations Zi,t in (3)-(4)

are instantiated by the log-likelihood ratios Li,t defined in (11), Lm
i,t = log fm(Yi,t)

fM (Yi,t
, for m = 1, ...,M −1,

and by recognizing that the expected value of log fm(Yi,t)
fM (Yi,t

under distribution fM is the negative of the

KL divergence between fm and fM .

To illustrate the setup and the relevant quantities, we consider the example of M scalar Gaussian

distributions of different mean values and equal variances.

Example 27 (Gaussian case: different mean values and equal variances). Let Yi,t be Gaussian scalars,

with mean value µm under hypothesis m, and (equal) variance σ2. It is easy to show that, for this case,

Li,t is computed as:

Li,t =
1

σ2
(Yi,t − µM ) d−DKL, (46)

where d = (d1, ..., dM−1)
⊤, and each dm = µm − µM is the difference between the mean value for the

m-th hypothesis and the mean value for the true hypothesis, and DKL = (DKL,1, ..., DKL,M−1)
⊤, where

DKL,m = (µm−µM )2

2σ2 is the KL divergence between the distribution fm and the true distribution fM ,

m = 1, ...,M − 1. It is easy to see that, for each i = 1, ..., N and each t, Li,t is Gaussian with mean

vector −DKL and covariance matrix 1
σ2dd⊤. Using the standard formula for the log-moment generating

function of multivariate Gaussian distribution, we get:

ΛM (λ) = −λ⊤DKL +
(λ⊤d)
2σ2

. (47)

Simple calculus shows that the conjugate function IM is given by:

IM (x) =





ζ2

2σ2 , if x = ζ
2σ2d−DKL, for some ζ ∈ R

+∞, if x+DKL /∈ span(d)
. (48)

Thus, IM is essentially a one-dimensional quadratic function that changes only along the direction

−DKL + αd, α ∈ R, while being equal to +∞ in the rest of the Rd space. This is intuitive as the

log-likelihood ratios for different m are coupled through a common (scalar) variable Yi,t, and hence the

events that vector Li,t lies outside of the line −DKL + αd must have zero probability (and thus rate

function equal to +∞). The convex conjugates of IM from Theorem 13, I⋆M and Ii,H;M , can be found

similarly as in Section IV-A.
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B. Large deviations rates for beliefs in social learning

For each m = 1, ..,M − 1, define gm : RM−1 7→ R as gm(x) = xm − max{0, x1, ..., xM−1}, for

x ∈ Rd.

Theorem 28. Consider the social learning algorithm (7)-(8) under Assumptions 1 and 9, for Λ = ΛM .

Then, for each node i ∈ V and hypothesis m = 1, ...,M − 1, for any given interval F ⊆ R:

1)

lim sup
t→+∞

1

t
logP

(
1

t
log bmi,t ∈ F

)
≤ − inf

x:gm(x)∈F
I⋆M (x); (49)

2) for any disconnected collection H,

lim inf
t→+∞

1

t
logP

(
1

t
log bmi,t ∈ F

)
≥ − inf

x:gm(x)∈F
Ii,H;M (x). (50)

The proof is very similar to the proof of Lemma 4 from [22]. The key distinction is that here full LDP

for the log-ratios of the beliefs, Xi,t, is not available due to the complexity of the network model, and

we have to work instead with the upper and the lower rate function bounds. However, the key arguments

remain unaltered. For completeness, we provide the main steps of the proof in Appendix C.

The result in Theorem 28 is very general, as it holds for arbitrary distributions fm, m = 1, ...,M ,

such that the log-moment generating function ΛM satisfies Assumption 9; this is for example the case

for Gaussian distributions from Example 27.

Remark 29. It can be shown by carrying out the same analyses as in the proof of Theorem 28, that, if

for some node i the sequence Xi,t satisfies the LDP with rate function Ii, then, for each m = 1, ...,M

the sequence of log beliefs 1
t log b

m
i,t also satisfies the LDP with rate function

Ri,m(z) = inf
x: gm(x)=z

Ii(x), (51)

for x ∈ R.

We can see that, to find the large deviations rates of the beliefs, first the rate function Ii (or bounds

on this function) for the log-belief ratios Xi,t are found, and then the contraction principle is applied

with functions gm acting as the bridge between the two domains. This relation is established in [22] for

static networks, but the same behaviour carries over to the general case, with the difference that the rate

function of log-beliefs can differ across different nodes as a result of network randomness. To shed some

light on function gm, we revisit Example 27 for which we derive a closed form expression for gm.
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Example 30 (Computation of gm for the Gaussian case). Consider the setup from Example 27. Recall

that gm(x) = xm −max{0, x1, ..., xM−1} and also that IM (x) = +∞ outside of the line −DKL + αd,

α ∈ R. Define also

f(ζ) = max{0, ζ d1
σ2
−DKL,1, ..., ζ

dM−1

σ2
−DKL,M−1}. (52)

and note that

gm(x) = ζ
dm
σ2
−DKL,m − f(ζ), (53)

for any ζ ∈ R and x ∈ RM−1 such that x = (ζ d1

σ2 −DKL,1, ..., ζ
dM−1

σ2 −DKL,M−1), for m = 1, ...,M−1.

Without loss of generality, assume that µ1 < µ2 < ... < µM−1, implying also d1 < d2 < ... < dM−1.

Let m⋆ be the largest m such that µm < µM , m⋆ = max{m ∈ {0, 1, ...,M − 1} : µm < µM}, wherein

we additionally define µ0 ≡ −∞ to account for the case that µM < µ1. Then d1 < ... < d⋆m < 0 <

dm⋆+1 < ... < dM−1. By the preceding ordering, and exploiting also that DKL,m = d2
m

2σ2 , it can be easily

verified that for any pair l < m, the intersection between the lines ζ dl

σ2 − DKL,l and ζ dm

σ2 − DKL,m

occurs at dl+dm

2 , with the l-indexed line dominating to the left of this point, for ζ < dl+dm

2 , while the

m-indexed line dominates to the right. It also clearly follows that the first intersection point occurs for

the first neighboring index, thus, as ζ increases, the lines must dominate in the same order as their dm

values. Summarizing, f is given in the following form:

f(ζ) =





ζ d1

σ2 −DKL,1, ζ < d1+d2

2

ζ d2

σ2 −DKL,2,
d1+d2

2 ≤ ζ < d2+d3

2

...

0 dm⋆

2 ≤ ζ <
dm⋆+1

2

...

ζ dm

σ2 −DKL,m,
dm−1+dm

2 ≤ ζ < dm+dm+1

2

...

ζ dM−1

σ2 −DKL,M−1, ζ ≥ dM−2+dM−1

2

. (54)
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From (53) and (54), we can obtain for x = ζ
σ2d−DKL:

gm(x) =





(dm−d1)
σ2

(
ζ − dm+d1

2

)
ζ < d1+d2

2

ζ d2

σ2 −DKL,2
d1+d2

2 ≤ ζ < d2+d3

2

...

ζ dm

σ2 −DKL,m
dm⋆

2 ≤ ζ <
dm⋆+1

2

...

0 dm−1+dm

2 ≤ ζ < dm+dm+1

2

...

(dm−dM−1)
σ2

(
ζ − dm+dM−1

2

)
ζ ≥ dM−2+dM−1

2

. (55)

The derived closed form expression for gm is a step towards deriving the closed form expression for the

rate function Ri,m, and, in particular, it suggests an analytical validation for the piece-wise behaviour of

the rate function of beliefs discovered numerically in [22], Figure 9. This is out of scope of the current

paper and is left for future work. To provide an illustration towards characterizing Ri,m, we consider the

value of the rate function at −DKL,m. From (55), we see that gm(x) = −DKL,m} for x = ζ
σ2 −DKL

and ζ = 0 (note that, by construction, dm⋆ < 0 and dm⋆+1 > 0, and hence ζ = 0 ∈ [dm⋆

2 , dm⋆+1

2 )). Thus,

we have

Ri,m(−DKL,m) = inf
x:gm(x)=−DKL,m

Ii(x) ≤ Ii(−DKL). (56)

the preceding inequality holds trivially by the fact that −DKL ∈ {x : gm(x) = −DKL,m}. On the other

hand, we have proved that I⋆M (−DKL) = Ii,H;M (−DKL) = 0 (see Remark 17). By (29), we thus have

Ii(−DKL) = 0. It follows that Ri,m(−DKL,m) = 0, i.e., the derived expression for gm reveals that the

value of the rate function Ri,m at −DKL,m is zero. This is in accordance with almost sure convergence

of 1
t log b

m
i,t to −DKL,m which follows by combining Theorems 26 and 32.

When the two functions from (44) and (45), namely, I⋆M and Ii,H;M match, this implies that the

corresponding lim sup and the lim inf are equal. Hence, whenever for a given node i its sequence Xi,t

exhibits LDP, this implies LDP for the sequence of beliefs 1
t log b

m
i,t, for each m = 1, ...,M − 1. Here

we give an example for regular networks.

Corollary 31 (LDP for social learning in regular networks). Suppose that G is a circulant network as

in Corollary 24, i.e., each node is connected to d/2 nodes on the left and d/2 nodes on the right, where

d ≤ N − 1 is even. We assume that each link, independently of all other links, fails with probability

1− p. Then, for any node i, for each m, 1
t log b

m
i,t satisfies the LDP with the rate function

Rm(z) = inf
x∈RM−1:gm(x)=z

co {NIM , IM + d log |1− p|} (x). (57)
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A similar result holds also for pendant nodes with i.i.d. link failures.

Convergence to the correct hypothesis. The next result establishes, through the use of large deviations

analysis, that the social learning algorithm (7)-(8) correctly identifies the true hypothesis. We remark that

this recovers the result of [27] for the special case of identical distributions across nodes.

Theorem 32. Consider the social learning algorithm (7)-(8) under Assumption 1 and 9, for Λ = ΛM .

Then, when H = HM , for each node i, the sequence of beliefs bMi,t converges to one almost surely.

Proof. From the construction of the beliefs bmi,t, for each i, t, bMi,t = 1− b1i,t− ...− bM−1
i,t . Combining this

with the relations Xm
i,t =

1
t log

bmi,t
bMi,t

, yields

bMi,t =
1

1 +
∑M−1

m=1 e
tXm

i,t

. (58)

By Theorem 26, for each m = 1, ...,M − 1, Xm
i,t converges almost surely to −DKL(fM ||fm) < 0.

Hence, each of the terms etX
m
i,t in the sum above vanishes with probability one. Since M is finite, there

exists a set of probability one such that
∑M

m=1 e
tXm

i,t vanishes, proving that bMi,t converges to one almost

surely.

The next two sections prove Theorem 13; Section VI-A proves the upper bound (25) and Section VI-B

proves the lower bound (26).

VI. PROOF OF THEOREM 13

This section proves Theorem 13 by proving separately the upper and the lower bound. Before giving

the respective proofs, we first give some important lemmas that are used in both the upper and the lower

bound proof.

Lemma 33 will be used to find the log-moment generating function of the estimate Xi,t from the

log-moment generating functions of each of the terms in the sum (5). This result follows from convexity

and zero value at the origin property of Λ.

Lemma 33. For any set of convex multipliers α ∈ ∆N−1, for each j = 1, ..., N , the log-moment

generating function Λ satisfies,

NΛ (1/Nλ) ≤
N∑

i=1

Λ(αiλ) ≤ Λ(λ), (59)

for any λ ∈ Rd.

The proof of Lemma 33 can be found in [16].
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The claims in Lemma 34 are standard results from convex analysis, the proofs of which can be found,

e.g., in [32]. Let the superscript ⋆ denote the conjugacy operation, i.e., for a given function f : Rd 7→ R,

f⋆(x) = sup
s∈Rd

s⊤x− f(s), x ∈ Rd. (60)

The following relations hold between a function f and its conjugate f⋆.

Lemma 34. 1) Let f : Rd 7→ R be a given a function. Then:

a) [f(·) + r]⋆ = f⋆(·)− r;

b) for α > 0 and β ̸= 0, [αf(β(·))]⋆ = αf⋆ (1/(αβ)(·)).

2) Let f1 and f2 be two given functions. Then, the conjugate of the pointwise supremum of f1 and f2

is the convex hull of the pointwise infimum of f⋆1 and f⋆2 :

[sup{f1, f2}]⋆ = co inf {f⋆1 , f⋆2 } . (61)

A. Proof of the upper bound (25)

In our previous work [16], we have proved that, at any node i, the sequence Xi,t is exponentially tight.

This intuitively means that the probabilities of the tail events of Xi,t vanish sufficiently fast (i.e., the

exponential rates of the tail probabilities grow unbounded when the tails move to infinity). Lemma 35

uses this result to derive an elegant sufficient condition for a certain function to satisfy the large deviations

upper bound from Definition 8. In our case, this function will be the conjugate of a certain modification

of Λ that accounts for the effects of intermittent communications. We remark that at the core of the proof

of Lemma 35 is a modification of the finite cover argument from the proof of Cramér’s theorem in Rd

(see, e.g., [28]); the detailed proof of Lemma 35 is provided in Appendix D.

Lemma 35. Let Xt be an arbitrary sequence of random variables where each Xt takes values in Rd.

Suppose that for some function f , for any measurable set D there holds

lim sup
t→+∞

1

t
logP (Xt ∈ D) ≤ f(λ)− inf

x∈D
λ⊤x, (62)

for any λ ∈ Rd. Then, if f is finite for all λ ∈ Rd, for any compact set F

lim sup
t→+∞

1

t
logP (Xt ∈ F ) ≤ − inf

x∈F
f⋆(x), (63)

where f⋆ is the conjugate of f . If in addition Xt is exponentially tight, then (63) holds for any closed

set F .
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Fix an arbitrary node i ∈ V . Replicating the steps of the proof of Theorem 5 from [14], we obtain

that, for any measurable set D, and any fixed λ ∈ Rd,

lim sup
t→+∞

1

t
logP (Xi,t ∈ D)

≤ max

{
NΛ

(
1

N
λ

)
,Λ(λ)− J

}
− inf

x∈D
λ⊤x. (64)

By Lemma 17 from [16], the sequence of estimates Xi,t is exponentially tight. (We remark that this

result is proven under more general assumptions on the weight matrices than assumed here.) Hence,

to prove the upper bound (25), it only remains to show that I⋆ from Theorem 13 is the conjugate of

f(λ) := max {NΛ (1/Nλ) ,Λ(λ)− J }, λ ∈ Rd. From part 2 of Lemma 34, we have that the conjugate

of f is the closed convex hull of the infimum of the conjugates of f1(λ) := λ 7→ NΛ (1/Nλ) and

f2(λ) := λ 7→ Λ(λ)−J . Using the conjugacy rules from parts 1b and 1a of Lemma 34, we obtain that

the respective conjugates of f1 and f2 are NI(x), x ∈ Rd, and I(x) + J , x ∈ Rd. The upper bound 25

follows by part 2 of Lemma 34.

B. Proof of the lower bound (26)

Fix an arbitrary node i ∈ V . Fix a collection of feasible graphs H. To simplify the notation, we denote

the component of i in H, Ci,H, by C. We also let M denote the number of nodes in C, M = |C|. For

each fixed t, we define the family of events
{
E tθ : θ ∈ [0, 1]

}
, such that for any θ ∈ [0, 1],

E tθ =
{
Gs ∈ H, ⌈θt⌉ ≤ s ≤ t, ∥[Φ(t, t− ot)]C − JM∥ ≤

1

t
,

∥Φ(⌈θt⌉, ⌈θt⌉ − ot)− JN∥ ≤
1

t

}
, (65)

where ot = ⌈log t⌉; we recall that, for a square matrix A, AC denotes the block of A corresponding

to the intersection of columns and rows of A the indices of which belong to C. For convenience, we

introduce Tθ = {⌈θt⌉, ..., t}.

Lemma 36. Let θ be an arbitrary number in [0, 1]. For any ω ∈ E tθ,

1) for any s ∈ Tθ,

[Φ(t, s)]ij = 0, for j /∈ C;

2) for t− ot ≥ s ≥ ⌈θt⌉, ∣∣∣∣[Φ(t, s)]ij −
1

M

∣∣∣∣ ≤
1

t
, for all j ∈ C;

3) for ⌈θt⌉ − ot ≥ s ≥ 1, ∣∣∣∣[Φ(t, s)]ij −
1

N

∣∣∣∣ ≤
1

t
, for all j ∈ V.
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Proof. Fix ω ∈ E tθ and, for s = 1, ..., t, denote As =Ws(ω). Consider first part 1, and suppose, without

loss of generality, that C = {1, ...,M}. By construction of E tθ, none of the graphs that appear during

Tθ have links that connect C with the remaining part of the network Cc = V \ C. Hence, each of the

matrices As, s ∈ Tθ has the following block diagonal form

As =


 [As]C 0M×(N−M)

0M×(N−M) [As]V \C


 , (66)

and the same structure is therefore preserved in their products Φ(t, s) = At · · ·As, s ∈ Tθ, i.e.,

Φ(t, s) =


 [At]C · . . . · [As]C 0M×(N−M)

0M×(N−M) [At]Cc · . . . · [As]Cc


 .

We next consider part 2. Since for an arbitrary matrix A, for any i, j there holds |Aij | ≤ ∥A∥, it is

sufficient to show that ∥[Φ(t, s)]C − JM∥ ≤ 1/t, for any fixed s ∈ Tθ such that s ≤ t − ot. By part 1,

we know that for any s1, s2 ∈ Tθ, the C block of Φ(s1, s2) is computed as the product of blocks [As1 ]C

through [As2 ]C . Since each of these blocks is a symmetric, stochastic, M by M matrix, we have that

[Φ(s1, s2)]C is a doubly stochastic (M by M ) matrix. Consider now a fixed s ∈ Tθ such that s ≤ t− ot.
Factoring out [Φ(t, s)]C as the product [Φ(t, t−ot)]CΦ(t−ot−1, s)]C , and using the double-stochasticity

of the latter two matrices, we obtain [Φ(t, s)]C −JM = ([Φ(t, t− ot)]C −JM )(Φ(t− ot− 1, s)]C −JM ).

By construction of E tθ, the spectral norm of the first factor is not greater than 1/t, while the double-

stochasticity of Φ(t − ot − 1, s)]C yields that the spectral norm of the second factor is not greater than

1. Using submultiplicativity of the spectral norm, the claim in part 2 follows:

∥[Φ(t, s)]C − JM∥

≤ ∥[Φ(t, t− ot)]C − JM∥ ∥[Φ(t− ot − 1, s)]C − JM∥

≤ 1/t. (67)

Part 3 can be proven by factoring out Φ(t, s) as the product Φ(t, ⌈θt⌉)Φ(⌈θt⌉− 1, ⌈θt⌉− ot)Φ(⌈θt⌉−
ot − 1, s) and applying similar arguments as in the proof of part 2.

Fix θ ∈ [0, 1] and consider the probability distribution νθt : B
(
Rd
)
→ [0, 1] defined by

νθt (D) =
P
(
{Xi,t ∈ D} ∩ E tθ

)

P
(
E tθ
) , (68)

that is, νθt is the probability distribution of Xi,t conditioned on the event E tθ (we note that P
(
E tθ
)
> 0

for t sufficiently large, as we show later in the proof, see Lemma 38 further ahead).

Let Υt be the (normalized) logarithmic moment generating function associated with νθt ,

Υt(λ) =
1

t
logE

[
etλ

⊤Xi,t
∣∣E tθ
]
, for λ ∈ Rd. (69)
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Using the properties of entries of Φ(t, s) for different intervals on s listed in Lemma 36, we establish

in Lemma 37 that the sequence of functions Υt has a point-wise limit for every λ ∈ Rd. This will allow

to apply the Gärtner-Ellis theorem [28] to compute the large deviations rate function for the sequence of

measures νθt . We first state and prove Lemma 37.

Lemma 37. For any λ ∈ Rd and any θ ∈ [0, 1]:

lim
t→+∞

Υt(λ) = (1− θ)MΛ

(
1

M
λ

)
+ θNΛ

(
1

N
λ

)
, (70)

where, we recall, M = |C|.

Proof. Fix θ ∈ [0, 1], λ ∈ Rd. We have:

E
[
etλ

⊤Xi,t
∣∣E tθ
]
=

1

P
(
E tθ
)E
[
1Et

θ
etλ

⊤Xi,t

]

=
1

P
(
E tθ
)E
[
E
[
1Et

θ
etλ

⊤Xi,t |W1, ...,Wt

]]

=
1

P
(
E tθ
)E
[
1Et

θ
E
[
etλ

⊤Xi,t |W1, ...,Wt

]]
, (71)

where in the last equality we used that the indicator 1Et
θ

is a function of W1, ...,Wt. Further, as the

summands in (5) are independent given W1, ...,Wt, we obtain

E
[
etλ

⊤Xi,t |W1, ...,Wt

]
= e

∑t
s=1

∑N
j=1 Λ([Φ(t,s)]ijλ). (72)

Consider now a fixed ω ∈ E tθ. We split the sum in the exponent of (72) according to the intervals used

in the construction of E tθ. With this in mind, we define also

χt := max
α∈[1/M−1/t,1/M+1/t]

Λ (αλ) , (73)

χ
t
:= min

α∈[1/M−1/t,1/M+1/t]
Λ (αλ) , (74)

and

ζt := max
α∈[1/N−1/t,1/N+1/t]

Λ (αλ) , (75)

ζ
t
:= min

α∈[1/N−1/t,1/N+1/t]
Λ (αλ) , (76)

for λ ∈ Rd. We remark that, by the continuity of Λ and compactness of the intervals, in each of

the preceding optimization problems there exists a maximizer. Further, as t → +∞, the corresponding

intervals shrink to a single point, and by using again continuity of Λ, we obtain that χt, χt
→ Λ (1/Mλ),

and ζt, ζt → Λ (1/Nλ), as t→ +∞. Then, by part 1 of Lemma 36 and the fact that Λ(0) = 0, we have
∑

j /∈C
Λ ([Φ(t, s)]ijλ) = 0, for each s ∈ Tθ.
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Further, by part 2 of Lemma 36

Mχ
t
≤
∑

j∈C
Λ ([Φ(t, s)]ijλ) ≤Mχt, for t− ot ≥ s ≥ ⌈θt⌉,

and, similarly, by part 3 of Lemma 36

Nζ
t
≤

N∑

j=1

Λ ([Φ(t, s)]ijλ) ≤ Nζt, for ⌈θt⌉ − ot ≥ s ≥ 1.

As for the summands in the intervals {t, ..., t− ot} and {⌈θt⌉, ..., ⌈θt⌉ − ot}, we apply Lemma 33 to get

MΛ

(
1

M
λ

)
≤
∑

j∈C
Λ ([Φ(t, s)]ijλ) ≤ Λ(λ),

for t ≥ s ≥ t− ot,

and

NΛ (1/Nλ) ≤
N∑

j=1

Λ ([Φ(t, s)]ijλ) ≤ Λ(λ),

for ⌈θt⌉ ≥ s ≥ ⌈θt⌉ − ot.

Summing out the upper and lower bounds over all s in the preceding five inequalities yields:

tΥt (λ) ≤
t∑

s=1

N∑

i=1

Λ ([Φ(t, s)]i,j) ≤ tΥt (λ) , (77)

where

Υt (λ) =
⌈θt⌉ − ot

t
Nζ

t
+
ot
t

(
NΛ

(
1

N
λ

)
+MΛ

(
1

M
λ

))

+
t− ⌈θt⌉ − ot

t
Mχ

t
,

and

Υt(λ) =
⌈θt⌉ − ot

t
Nζt +

ot
t

(
NΛ

(
1

N
λ

)
+MΛ

(
1

M
λ

))

+
t− ⌈θt⌉ − ot

t
Mχt.

The inequalities in (77) hold for any fixed ω ∈ E tθ. Thus,

1Et
θ
etΥt(λ) ≤ 1Et

θ
E
[
etλ

⊤Xi,t |W1, ...,Wt

]
≤ 1Et

θ
etΥt(λ). (78)

Finally, by monotonicity of the expectation:

P
(
E tθ
)
etΥt(λ) ≤ E

[
1Et

θ
E
[
etλ

⊤Xi,t |W1, ...,Wt

]]

≤ P
(
E tθ
)
etΥt(λ),
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which combined with (71) implies

etΥt(λ) ≤ E
[
etλ

⊤Xi,t |E tθ
]
≤ etΥt(λ). (79)

Now, taking the logarithm and dividing by t,

Υt(λ) ≤ Υt (λ) ≤ Υt(λ),

and noting that

lim
t→+∞

Υt(λ) = lim
t→+∞

Υt(λ)

= (1− θ)MΛ

(
1

M
λ

)
+ θNΛ

(
1

N
λ

)
,

the claim of Lemma 37 follows.

By the Gärtner-Ellis theorem it follows then that the sequence of measures νθt satisfies the large

deviations principle5, with the rate function equal to the conjugate of

fθ(λ) := (1− θ)MΛ

(
1

M
λ

)
+ θNΛ

(
1

N
λ

)
, (80)

for λ ∈ Rd. Therefore, for every open set E ⊆ Rd, there holds

lim inf
t→+∞

1

t
logP

(
Xi,t ∈ E|E tθ

)
≥ − inf

x∈E

{
sup
λ∈Rd

λ⊤x− fθ(λ)
}
. (81)

We next turn to computing the probability of the event E tθ.

Lemma 38. For any θ ∈ [0, 1], for all t sufficiently large:

1

4
p
t−⌈θt⌉
H ≤ P

(
E tθ
)
≤ pt−⌈θt⌉

H . (82)

Proof. By the disjoint blocks theorem [34] applied to the matrices in Tθ and its complement {1, ..., t}\Tθ,

we obtain

P
(
E tθ
)
= P

(
∥Φ(⌈θt⌉, ⌈θt⌉ − ot)− JN∥ ≤

1

t

)
×

P
(
Gs ∈ H, for s ∈ Tθ, ∥[Φ(t, t− ot)]C − JM∥ ≤

1

t

)
. (83)

5We use here the variant of the Gärtner-Ellis theorem which claims the (full) LDP for the case when the domain of the

limiting function is the whole space Rd, as given in [28]; see also Exercise 2.3.20 in [28] for the statement and the sketch of

the proof of this result.
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We show using (17) that the first term in the right-hand side of the preceding equality goes to 1 as

t→ +∞. Fix an arbitrary ϵ ∈ (0, 1). Then, for all t sufficiently large,

P
(
∥Φ(⌈θt⌉, ⌈θt⌉ − ot)− JN∥ ≤

1

t

)

≥ 1−Kϵe
−t(J−ϵ) ≥ 1/2. (84)

Clearly, being a probability, this term is also smaller than 1 (for all t). Consider now the second factor in

the right-hand side of (83). Conditioning on the event {Gs ∈ H, for s ∈ Tθ}, and using the fact that the

probability of this event equals pt−⌈θt⌉
H (note that the latter holds by the independence of weight matrices,

Assumption 1.2), we obtain

P
(
Gs ∈ H, for s ∈ Tθ, ∥[Φ(t, t− ot)]C − JM∥ ≤

1

t

)
=

P
(
∥[Φ(t, t− ct)]C − JM∥ ≤

1

t
|Gs ∈ H, for s ∈ Tθ

)
p
t−⌈θt⌉
H .

Similarly as in (84), it can be shown that the conditional probability term in (85), for all t sufficiently

large, greater than 1/2. On the other hand, it is obviously smaller than 1 for all t. Summarizing the

preceding findings, the claim of the lemma follows.

To bring the two key arguments together – Lemma 38 and the lower bound (81), we start from the

following simple bound

P (Xi,t ∈ E) ≥ P
(
{Xi,t ∈ E} ∩ E tθ

)

= νθt (E)P
(
E tθ
)
. (85)

From superadditivity of the lim inf , followed by an application of (81) and (82), we obtain

lim inf
t→+∞

1

t
logP (Xi,t ∈ E)

≥ lim inf
t→+∞

1

t
log νθt (E) + lim

t→+∞
1

t
logP

(
E tθ
)

≥ − inf
x∈E

{
sup
λ∈Rd

λ⊤x− fθ(λ)
}
− (1− θ)| log pH|.

The preceding inequality holds for each θ in [0, 1]. Optimizing over all such values yields:

lim inf
t→+∞

1

t
logP (Xi,t ∈ E) ≥

− inf
θ∈[0,1]

{
inf
x∈E

sup
λ∈Rd

{
λ⊤x− fθ(λ)

}
+ (1− θ)| log pH|

}

= − inf
x∈E

inf
θ∈[0,1]

{
sup
λ∈Rd

{
λ⊤x− fθ(λ)

}
+ (1− θ)| log pH|

}
.
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Now, fix x ∈ E and consider the function

g(θ, λ) := λ⊤x− (1− θ)
(
MΛ

(
1

M
λ

)
− | log pH|

)

− θNΛ

(
1

N
λ

)
. (86)

As an affine function of θ, g is convex in θ. Further, by convexity of Λ, g is concave in λ, for any

θ ∈ [0, 1]. Finally, sets [0, 1] and Rd are convex and set [0, 1] is compact. Thus, conditions for applying

the Minimax theorem [36] are fulfilled and we obtain:

inf
θ∈[0,1]

sup
λ∈Rd

λ⊤x− (1− θ) (MΛ (1/Mλ)− | log pH|)

− θNΛ (1/Nλ) =

sup
λ∈Rd

inf
θ∈[0,1]

λ⊤x− (1− θ) (MΛ (1/Mλ)− | log pH|)

− θNΛ (1/Nλ)

= sup
λ∈Rd

λ⊤x−max {MΛ (1/Mλ)− | log pH|,Λ (1/Nλ)} .

Similarly as in the proof of the upper bound, using the conjugacy rules from Lemma 34,

sup
λ∈Rd

λ⊤x−min

{
MΛ

(
1

M
λ

)
− | log pH|,Λ

(
1

N
λ

)}

= co inf (NI,MI + | log pH|) (x),

which finally yields,

lim inf
t→+∞

1

t
logP (Xi,t ∈ E)

≥ − inf
x∈E

co inf {NI,MI + | log pH|} (x).

This completes the proof of the lower bound and the proof of Theorem 13.

VII. CONCLUSION

We studied large deviations inaccuracy rates for consensus+innovations based distributed inference for

generic random networks. We assume vector measurements with possibly non-i.i.d. entries. Our goal was

to find bounds or exact rate function for each node in the network, accounting for the specificities of

the node’s interactions. For each node, we found a node-specific family of lower bounds, induced by the

family of network subgraphs in which the node participates. Specifically, each bound in the family is

given as the convex envelope of the centralized rate function and the effective rate function corresponding

to a given subgraph, and lifted by the probability that this subgraph remains isolated from the remainder
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of the network. The upper bound is defined as the convex envelope of the centralized rate function and

the rate function corresponding to an isolated node, lifted by the rate of consensus. We show that, for

certain cases such as pendant nodes and d-cyclic graphs, the two bounds match, hence proving the large

deviations principle for these classes of random networks. We illustrate the results with an application to

social learning, providing also the first proof of the large deviations principle for social learning beliefs

with random network models.

APPENDIX A

PROOF OF (20)

Fix i ∈ V and suppose that the inequalities in (18) and (19) hold for any set D. Suppose also that the

sequence of node i’s states, Xi,t, satisfies the LDP with rate function Ii.

We prove (20) by contradiction. Consider first the right hand side of (20) and suppose, for the sake

of contradiction, that there exists a point x0 such that Ii(x0) > Ii(x0). Let ϵ = Ii(x0) − Ii(x0) and

introduce S =
{
x ∈ Rd : Ii(x) > Ii(x0) + ϵ/2

}
. By the lower semi-continuity of Ii, S is open. Also,

x0 ∈ S. Thus, for δ > 0 sufficiently small, the closed ball Bx0
(δ) entirely belongs to S. Combining the

LDP upper bound (1) for D = Bx0
(δ), with the bound (18) for D = Bx0

(δ), we obtain:

− inf
x∈Bx0

(δ)
Ii(x) ≤ lim inf

t→+∞
1

t
logP (Xi,t ∈ Bx0

(δ)) (87)

≤ lim sup
t→+∞

1

t
logP

(
Xi,t ∈ Bx0

(δ)
)
≤ − inf

x∈Bx0
(δ)
Ii(x). (88)

Since infx∈Bx0
(δ) Ii(x) ≤ Ii(x0), we have that the left hand side in (87) is greater than −Ii(x0). On the

other hand, for any x ∈ Bx0
(δ), Ii(x) > Ii(x0) + ϵ/2, implying infx∈Bx0 (δ)

Ii(x) ≥ Ii(x0) + ϵ/2. This

finally yields contradiction since the right hand side in (87) cannot be smaller than −Ii(x0).

APPENDIX B

PROOF OF LEMMA 20

We start by noting that epi inf {NI, I + J } = S1 ∪ S2, where S1 and S2 are the epigraphs of NI

and I + J , S1 = epi(NI) and S2 = epi(I + J ). To prove Lemma 20, we need to show that epiF =

co {S1 ∪ S2}, where F is the function defined in the right hand side of eq. (38). To do this it suffices to

show that: 1) epiF is a convex set, and 2) epiF ⊆ co (S1 ∪ S2). We first prove 1). It suffices to show

that F is convex, which we do using generalized second order characterizations of convex functions,

e.g. [37]. Note that F is continuous and that DF = Rd. For each x and d, let F ′
+(x, d) and F ′′

+(x, d)
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denote, respectively, the upper directional derivatives of the first and the second order at the point x and

in the direction d,

F ′
+(x; d) = lim sup

ϵ↓0

F (x+ ϵd)− F (x)
ϵ

(89)

F ′′
+(x; d) = lim sup

ϵ↓0

F (x+ ϵd)− F (x)− F ′
+(x; d)

2 ϵ2
. (90)

We will show that F is in fact differentiable. Then, by Theorem 2.1. part (i) from [37], proving

convexity of F would reduce to proving that F ′′
+(x; d) ≥ 0 for any x and d. Note that I and H

are differentiable, with their respective gradients given by ∇I(x) = S−1(x − m) and ∇H(x) =

S−1(x−m)/
√

(x−m)⊤S−1x−m. Thus, F is differentiable in each of the three open sets (note that

I is continuous and differentiable): {x : I(x) < c1}, {x : c1 < I(x) < Nc1}, and {x : NI(x) > c1}. It

remains to show that F is differentiable for those x such that I(x) = c1 and I(x) = Nc1. Fix first x

such that I(x) = c1. It is easy to see that, for any d such that d⊤S−1(x −m) ≥ 0, I(x + ϵd) > I(x)

for all ϵ > 0. Also, for any d such that d⊤S−1(x − m) < 0, I(x + ϵd) < I(x) for all sufficiently

small ϵ > 0. Thus, if d⊤S−1(x−m) ≥ 0, F (x+ ϵd) = N
√
2c1H(x+ ϵd)−Nc1, for all ϵ sufficiently

small, and hence F ′
+(x; d) = N

√
2c1d

⊤∇H(x). Using now the fact that I(x) = c1, we obtain that

F ′
+(x; d) = Nd⊤S−1(x−m). Consider now the case when d is such that d⊤S−1(x−m) ≤ 0. Then, by

the discussion above we have that for all ϵ, F (x+ ϵd) = NI(x+ ϵd). Hence, F ′
+(x; d) = Nd⊤∇I(x) =

Nd⊤S−1(x −m). Since for any x s.t. I(x) = c1 and for any d we have that F ′
+(x; d) = Nd⊤∇I(x),

we conclude that F is differentiable at any such x. We can in analogous manner prove differentiability

of F at any x s.t. I(x) = Nc1. Hence, we conclude that F is differentiable.

We now turn to proving that F ′′
+(x; d) ≥ 0 for any x and d. Note that ∇2I(x) = S−1 ⪰ 0 and

∇2H(x) =

N

√
2c1√
2I(x)

(
S−1 − 1

2I(x)
S−1(x−m)(x−m)⊤S−1

)
,

for any x. To see that ∇2H(x) ⪰ 0, it suffices to observe that it can be rewritten as ∇2H(x) =

N
√
2c1/

√
2I(x)S−1/2(I−qq⊤/(∥q∥2))S−1/2, for q = S−1/2(x−m). Since the matrix inside the brackets

is positive semidefinite, positive semidefiniteness of ∇2H(x) follows. Therefore, for any x in the interior

of the three sets in (38), we have that F ′′
+(x; d) ≥ 0. Consider now the case when x satisfies I(x) = c1.

Following the same steps as in the preceding paragraph, we obtain that for any d s.t. d⊤S−1(x−m) ≥ 0,

F ′′
+(x; d) = N22c1d

⊤∇2H(x)d ≥ 0 and for d s.t. d⊤S−1(x −m) ≤ 0, F ′′
+(x; d) = Nd⊤∇2I(x)d ≥ 0.

To complete the proof of 1), it only remains to consider those x that satisfy I(x) = Nc1. Analogously

to the preceding case, we get that for d s.t. d⊤S−1(x −m) ≥ 0, F ′′
+(x; d) = d⊤∇2I(x)d ≥ 0 and for
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d s.t. d⊤S−1(x − m) ≤ 0, F ′′
+(x; d) = n22c1d

⊤∇2H(x)d ≥ 0. Hence, since F is differentiable and

F ′′
+(x; d) ≥ 0 for any x and d, we conclude that F is convex.

To prove Lemma 20, it remains to prove part 2). For each unit norm v ∈ Rd, ∥v∥ = 1, let ϕv : Rd 7→ Rd

denote the projection of F along the direction v, started at point m: ϕv(ρ) := F (m+ ρv), ρ ∈ R. Then,

epiF = ∪v∈Rd,∥v∥=1epiϕv. For each fixed v, let [Sl]v denote the projection of Sl along the line m+ ρv,

[Sl]v = Sl ∩ {m+ ρv : ρ ∈ R}, l = 1, 2. Note that [S1]v =
{
(t,m+ ρv) : t ≥ Nρ2v⊤S−1v/2, ρ ∈ R

}
,

[S2]v =
{
(t,m+ ρv) : t ≥ ρ2v⊤S−1v/2 + J , ρ ∈ R

}
. Then, it is easy to see that, for each unit norm

v, epiϕv = co ([S1]v ∪ [S2]v). Finally, since co ([S1]v ∪ [S2]v) ⊆ co (S1 ∪ S2), the claim in 2) follows.

This completes the proof of Lemma 20.

APPENDIX C

PROOF OF LEMMA 28

Fix an arbitrary node i ∈ V . For each m = 1, ...,M − 1, Xm
i,t =

1
t log

bmi,t
bMi,t

, hence

1

t
log bmi,t = Xm

i,t +
1

t
log bMi,t . (91)

Further, the (private) beliefs by construction sum up to one:
∑M

m=1 b
m
i,t = 1. Dividing both sides by bMi,t

and exploiting the functional relation between bmi,t and Xm
i,t, we obtain

M−1∑

m=1

etX
m
i,t + 1 =

1

bMi,t
. (92)

It follows that:
1

M
e−tmaxm=1,...,M Xm

i,t ≤ bMi,t ≤ e−tmaxm=1,...,M Xm
i,t , (93)

where XM
i,t ≡ 0. From (91) and (93) we obtain

gm(Xi,t)−
1

t
logM ≤ 1

t
log bmi,t ≤ gm(Xi,t). (94)

Consider now an arbitrary one-sided closed interval F on R. Suppose that F = [a,+∞) (other intervals

in R can be treated analogously). Fix ϵ > 0. From (94), for all t ≥ t0 = logM/ϵ there holds:

gm(Xi,t)− ϵ ≤
1

t
log bmi,t ≤ gm(Xi,t), (95)

and thus, for all t ≥ t0

P(
1

t
log bmi,t ≥ a+ ϵ) ≤ P(gm(Xi,t) ≥ a) = P (Xi,t ∈ g−1

m ([a,+∞)). (96)

Taking the lim sup over t→ +∞,

lim sup
t→+∞

1

t
logP(

1

t
log bmi,t ≥ a+ ϵ) ≤ lim sup

t→+∞

1

t
logP (Xi,t ∈ g−1

m ([a,+∞)). (97)
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The above inequality holds for all ϵ > 0. Taking the supremum over ϵ > 0 on the left hand side yields:

lim sup
t→+∞

1

t
logP(

1

t
log bmi,t ≥ a) ≤ lim sup

t→+∞

1

t
logP (Xi,t ∈ g−1

m ([a,+∞)). (98)

Applying now the upper bound in 44, the upper bound in (49) follows. The proof of the lower bound (49)

is analogous.

APPENDIX D

PROOF OF LEMMA 35

Suppose that Xt ∈ Rd is a sequence of random variables for which (62) holds for some function f .

Fix a compact set F ⊆ Rd. For each δ > 0, introduce the function f⋆,δ : Rd 7→ R obtained by truncating

f⋆ to 1/δ:

f⋆,δ(x) = inf

{
1

δ
, f⋆(x)− δ

}
, for x ∈ Rd. (99)

The family of functions f⋆,δ, δ > 0, satisfies that, for any set D,

lim
δ→0

inf
x∈D

f⋆,δ(x) = inf
x∈D

f⋆(x). (100)

To show this, let ξ := infx∈D f⋆(x) and suppose first that ξ = +∞, i.e., f⋆ at all points x ∈ D

takes the value +∞. Then, for any δ > 0, f⋆,δ = 1/δ for all x ∈ D, and therefore, for any δ > 0,

infx∈D f⋆,δ(x) = 1/δ. Computing the limit limδ→0 1/δ = +∞, identity (100) follows. We next consider

the case ξ ∈ R. For arbitrary fixed δ > 0, the quantity under the limit in the left hand side of (100)

equals:

inf
x∈D

f⋆,δ(x) = inf
x∈D

inf

{
f⋆(x)− δ, 1

δ

}

= inf

{
inf
x∈D

(f⋆(x)− δ) , 1
δ

}
. (101)

The first argument of the infimum (101) equals ξ− δ and it is finite by our assumption. Hence, for all δ

sufficiently small, the infimum (101) equals ξ − δ, which after taking the limit δ → 0 yields the claim.

The case ξ = −∞ can be proven equivalently.

Having (100), it easy to see that (63) follows if we show that the following inequality holds for any

given δ:

lim sup
t→+∞

1

t
logP (Xt ∈ F ) ≤ 2δ − inf

x∈F
f⋆,δ(x). (102)

Thus, in what follows we focus on proving (102). To this end, fix δ > 0. For any point y ∈ F there

exists a point λy (which depends on δ) such that

λ⊤y y − Λ⋆(λy) ≥ f⋆,δ(y). (103)
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Existence of such a point follows directly from the definitions of f⋆ and f⋆,δ. First, since for any fixed

point y f⋆(y) is computed as the supremum of functions λ 7→ hy(λ) := λ⊤y − f(λ), it follows that

the value f⋆(y) can be approached arbitrarily close with hy(λ). Second, since f⋆,δ(y) is the infimum

of f⋆(y) − δ and 1/δ, it must satisfy f⋆(y) − δ, 1/δ ≥ f⋆,δ(y). For example, if, for some y, f⋆(y) is

finite, then there must exist a point λ such that hy(λ) ≥ f⋆(y) − δ, and since the latter is greater than

f⋆,δ(y), (103) follows.

Note now that (62) implies that, for any measurable set D, there exists t0 = t0(δ,D) such that

1

t
logP (Xt ∈ D) ≤ δ + f(λ)− inf

x∈D
λ⊤x, (104)

for all t ≥ t0. For any y ∈ F , let ry := δ/∥λy∥. Taking D = By(ry) and λ = λy in (104) yields for any

t ≥ t0(δ, y)
1

t
logP

(
Xt ∈ By(ry)

)
≤ δ + f(λy)− inf

∥x−y∥≤ry
λ⊤y x (105)

≤ δ + Λ⋆(λy)− λ⊤y y − inf
∥x∥≤ry

λ⊤y x (106)

≤ 2δ − f⋆,δ(y), (107)

where the last inequality follows from (103) and the definition of ry. Next, from the family of closed

balls
{
By(ry) : y ∈ F

}
, a finite cover of F ,

{
Byk

(ryk
) : k = 1, ...,K

}
, is extracted, where, we note,

K = K(F, δ). Then, by the union bound,

1

t
log P (Xt ∈ F ) ≤

1

t
log

(
K∑

k=1

P
(
Xt ∈ Byk

(ryk
)
)
)

≤ 1

t
logK +

1

t
log max

k=1,...,K
P
(
Xt ∈ Byk

(ryk
)
)

≤ 1

t
logK + max

k=1,...,K

1

t
logP

(
Xt ∈ Byk

(ryk
)
)
.

Combining the preceding inequality with (105) applied for every k = 1, ...,K, we have that for every

t ≥ maxk=1,...K t0(δ, yk)

1

t
log P (Xt ∈ F ) ≤

1

t
logK + max

k=1,...,K
2δ − f⋆,δ(y)

≤ 1

t
logK + 2δ − inf

y∈F
f⋆,δ(y). (108)

Taking the limit t→ +∞, and noting that K is finite, (102) follows. The last part of the claim, i.e., (102)

for closed sets follows from (102) for compact sets, that we have just proved, and Lemma 1.2.18 in [28].
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