
                                                                                                          e-ISSN: 2582-5208  
International  Research  Journal  of  Modernization in Engineering Technology  and Science 

( Peer-Reviewed, Open Access, Fully Refereed International Journal ) 
Volume:04/Issue:11/November-2022          Impact Factor- 6.752                                      www.irjmets.com 

www.irjmets.com                              @International Research Journal of Modernization in Engineering, Technology and Science 

 [1918] 

A QUATERNION-DRIVEN DEEP LEARNING-BASED NOVEL APPROACH FOR 

MOBILE AND LOCOMOTIVE ROBOT PATH PLANNING AND  

MOTION PREDICTION 

Jamie Pote*1 
*1Department Of Computer Engineering, University Of Zimbabwe, Harare, Zimbabwe. 

DOI : https://www.doi.org/10.56726/IRJMETS31774 

 ABSTRACT 

In this study, I address the locomotive-robot dilemma in movement task sequences. Our method combines 

geometric motion planning and locomotion prediction using quaternions and deep learning architecture. This is 

comparable to human motion prediction. I begin by developing a collision-avoidance-based motion planning 

method. Then, using transformer deep learning, I anticipate robot locomotion. I used simulation to demonstrate 

my findings.  
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I. INTRODUCTION 

In robotics, motion planning refers to the act of breaking down the desired movement job into discrete motions 

that satisfy movement limitations and may maximize some component of the movement. Consider a mobile 

robot moving within a building to a distant waypoint. It must complete this mission while avoiding walls and 

avoiding falling downstairs. A motion planning algorithm would take these tasks as input and generate the 

speed and turning commands that would be issued to the robot's wheels. Motion planning methods could be 

used for robots with more joints (e.g., industrial robots), more sophisticated jobs (e.g., object manipulation), 

various limitations (e.g., a car that can only go forward), and uncertainty. Understanding and forecasting robot 

motion are critical for assisting people and robots in interacting with their surroundings. Future robot 

locomotion prediction is an innate ability for locomotive robots to engage with other people, such as navigating 

crowds, defending against offensive opponents in a game, or shaking hands with others. Furthermore, 

intelligent machines must respond to robot behaviors, coordinate their positions, and project pathways during 

human encounters. In the field of robotics, motion planning and motion prediction are considered two separate 

problems. In this paper, I propose a unified approach that considers these two problems and simultaneously 

performs motion prediction and planning. 

II. LITERATURE REVIEW 

Due to the growth and acceptance of deep learning and inverse reinforcement learning, which perform better 

when dealing with non-linear and complex situations, research into motion planning is currently booming. As a 

result, many universities, businesses, and research organizations throughout the globe place a high priority on 

creating novel motion planning techniques by implementing DL algorithms or combining conventional motion 

planning algorithms with cutting-edge machine learning (ML) algorithms [1-16]. Autonomous vehicles are one 

example. Alphabet, one of the major tech firms, unveiled its self-driving vehicle called Waymo. Tesla promises 

to produce a completely autonomous vehicle. Baidu's self-driving cars have been tested successfully on 

highways close to Beijing, while Huawei's manually operated buses have already been replaced by automated 

buses in a few select Shenzhen neighborhoods. Other traditional automakers like Toyota and Audi also have 

their own autonomous vehicle testing fleets. Among research universities and institutions, MIT, Oxford 

University, and Carnegie Mellon's Navlab are the top three. Russia, France, Belgium, and the United Kingdom 

are among the Euro giants that plan to run autonomous car transportation systems by the year 2022. There is 

autonomous car legislation in place in many American states. Because of this, it is anticipated that autonomous 

vehicles will become more prevalent over time. Recently, Boston Dynamics created humanoid robots and 

locomotive robots like Spot. 
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III. METHOD AND EXPERIMENT 

Our method has two main steps. First, I perform motion prediction based on neural network-based motion 

planning. I compared three deep learning models LSTS, GRU, and Transformer. I trained the networks with 

simulated data where inputs are position (3x1 vector) and orientation (1x4 quaternions). The network predicts 

the next step's position and orientation based on the environment's geometric information. If this is done for 

manipulators, robot geometry needs to take into account. In Figure 1, I presented the motion prediction 

scheme. The location of the robot is obtained from GPS. The orientation data is obtained from the in-body IMU 

sensors. This data is then fed into the deep neural network to predict the position and orientation of the next 

step. 

 

Figure 1: Next Step Prediction Based on Deep Learning Models. 

Second, I perform path planning / local collision avoidance. Once I predict the position and orientation of the 

robot for the immediate step, I check if there is a collision present or not. I compare A-star, Dijkstra, and Trace 

path planning algorithms [30]. 

 

Figure 2: Path Planning of Locomotive/Mobile Robots 

In Figure 2, I demonstrated the path-planning scheme. The blue circle indicates the starting location, and the 

green circle indicates the end location. The gray rectangle represents the obstacle. The red dotted line indicates 

the robot’s path. In an obstacle falls into the robot’s path, it uses path planning algorithms to find the collision-

free path.  

IV. RESULTS AND DISCUSSION 

Next Step Prediction:  

I compared the performance of 3 Networks LSTM, GRU, and Transformer. In table 1, I presented the 

hyperparameters. 
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Table 1. Hyperparameters of Deep Learning Models 

SN. Hyperparameters Value 

1 Epochs 20 

2 Learning Rate 0.01 

3 Step Size 0.01 

4 Total Nodes 3200 

The results show that the Transformer model performs best, then LSTM and then GRU.  In Figure 3, I presented 

the mean error vs. epoch graph for all three models. Which indicates the performance. 

 

Figure 3: Performance of the Deep Learning Models 

I then evaluated three path-planning algorithms. I used a java-script-based simulation platform as presented in 

reference [30]. I used the same obstacle for all three algorithms. My result shows that the trace algorithm 

performs better among all three. In Figure 4, the simulation result is presented.  

 

Figure 4: Performance of Path Planning Algorithms. a) A-Star Algorithm, b) Dijkstra Algorithm  

c) Trace Algorithm 

In Figure 4, the yellow line is the path, and the green and red squares are the start and end locations. The grey 

squares are the obstacle. Noticeably all environment has the same obstacle. I used Euclidean distance to 

compute the final path. From the simulation result, the Dijkstra algorithm search around more space; hence it 

takes more time to compute the final path. Where Trace has lesser green and blue squares, which means it 

searches only a few nodes. Thus, it has the lowest computation time. 

V. CONCLUSION 

In this paper, I demonstrated how a mobile or locomotive robot can simultaneously use deep learning and path 

planning algorithms to predict its next step and avoid a collision. For training, the deep learning model, Intel 
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Core I 7, 550 SSD, and NVIDIA GeForce 2GB graphics card were used. I used algorithm simulation for path 

planning. In the future, I intend to use this algorithm in real robots. 
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