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Personal summary 

This article is published as an invited tutorial paper in which we outline key statistical concepts 

to help researchers to design proteomics experiments and showcases of quantitative 

proteomics data analysis with MSqRob, our R software package for improved differential 

protein abundance analysis in label-free MS-based proteomics. MSqRob is freely available on 

GitHub (https://github.com/statOmics/MSqRob) and is implemented in a "Shiny" user-friendly 

graphical interface. For this manuscript, I designed and performed analyses, set up the GitHub 

repository and wrote the paper together with my supervisors.  
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Highlights 

• Complex experiments and lack of convenient software makes MS-based label-free 

proteomics data analysis challenging 

 

• We provide key experimental design concepts and data analysis guidelines 

 

• The MSqRob package combines legitimate statistical modeling for relative protein 

quantification from peptide-level data with an easy-to-use graphical interface 

 

• We show hands-on with two worked examples how to use the MSqRob graphical user 

interface 

 

• Scripts to run MSqRob in bash mode are provided at 

https://github.com/statOmics/MSqRob 

Abstract 

Label-free shotgun proteomics is routinely used to assess proteomes. However, extracting 

relevant information from the massive amounts of generated data remains difficult. This tutorial 

provides a strong foundation on analysis of quantitative proteomics data. We provide key 

statistical concepts that help researchers to design proteomics experiments and we showcase 

how to analyze quantitative proteomics data using our recent free and open-source R package 

MSqRob, which was developed to implement the peptide-level robust ridge regression method 

for relative protein quantification described by Goeminne et al. MSqRob can handle virtually 

any experimental proteomics design and outputs proteins ordered by statistical significance. 

Moreover, its graphical user interface and interactive diagnostic plots provide easy inspection 

and also detection of anomalies in the data and flaws in the data analysis, allowing deeper 

assessment of the validity of results and a critical review of the experimental design. Our 

tutorial discusses interactive preprocessing, data analysis and visualization of label-free MS-

based quantitative proteomics experiments with simple and more complex designs. We 

provide well-documented scripts to run analyses in bash mode on GitHub, enabling the 

integration of MSqRob in automated pipelines on cluster environments 

(https://github.com/statOmics/MSqRob). 

Significance 

The concepts outlined in this tutorial aid in designing better experiments and analyzing the 

resulting data more appropriately. The two case studies using the MSqRob graphical user 

interface will contribute to a wider adaptation of advanced peptide-based models, resulting in 

higher quality data analysis workflows and more reproducible results in the proteomics 

community. We also provide well-documented scripts for experienced users that aim at 

automating MSqRob on cluster environments. 

https://github.com/statOmics/MSqRob
https://github.com/statOmics/MSqRob
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Historical background 

Proteomics was revolutionized with the rise of biological mass spectrometry, genome 

sequencing and bioinformatics [1]. In a typical workflow for comprehensive proteome analysis, 

proteins are digested with specific proteases such as trypsin. The resulting peptide mixtures 

are then separated by high performance liquid chromatography (HPLC). Subsequently, a mass 

spectrometer coupled to the HPLC instrument is used to analyze the eluting peptides and the 

generated (tandem) mass spectra are mapped to theoretical spectra generated based on 

protein sequences stored in databases. 

In early days, MS-based proteomics was used to just identify proteins. As technology matured, 

quantitative information was extracted from proteome samples. Efforts have been made to 

determine absolute protein amounts based on mass spectra. These can be very sensitive in a 

targeted proteomics context [2], [3], [4] but current methods for proteome-wide absolute 

quantification remain rather crude due to massive ionization efficiency differences between 

peptides [5]. 

In this tutorial the focus is on relative quantification; i.e. the abundance of a given protein is 

compared over different samples. One of the first relative quantification technologies was 

based on isotope-coded affinity tags (ICAT) [6]. Later, metabolic labeling with stable isotopes, 

e.g. 15N and SILAC, emerged, where some samples were grown in medium made from the 

most abundant natural isotopes, and other samples in medium containing stable heavy 

isotopes [7], [8], [9]. Note that metabolic labeling can be rather expensive and is mainly 

performed on in vitro cell cultures. In cases where metabolic labeling is not possible, post-

metabolic isobaric multiplex labeling such as iTRAQ [10] and tandem mass tags (TMT) [11] 

can be used. However, post- or non-metabolic labeling may be incomplete, leading to higher 

sample-to-sample variability compared to metabolic labeling. More information on 

quantification with isobaric labeling can be found in Rauniyar and Yates [12]. Labeling has the 

intrinsic advantages that both the analytical time as well as the run-to-run variation are reduced 

as because it enables sample multiplexing in one MS-run as two or more peaks can be 

measured in the same MS- or MS/MS-spectrum. 

https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0005
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0010
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0015
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0020
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0025
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0030
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0035
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0040
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0045
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0050
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0055
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0060
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Nowadays, label-free methods are becoming more and more standard. Such methods scale 

very well, have no real upper limit on the number of samples that can be compared (even in 

retrospect) and bypass the labor-intensive and often expensive sample labeling steps. 

Moreover, up to 60% more proteins can be identified, and this at a higher dynamic range 

because the mass spectrometer does not have to fragment each labeled form of the same 

peptide [13], [14]. A disadvantage of label-free quantification is that a peptide selected for 

fragmentation in one run might not be selected for fragmentation or result in a poorer quality 

MS2 spectrum in another run, leading to missing values. “Match between runs” algorithms, 

where unidentified MS1 peaks are matched to identified peaks using a tight retention time and 

mass/charge window, significantly improve the number of identified peaks [15]. In the 

remainder of the manuscript we will focus on data-dependent label-free MS-based 

quantification. 

In data-dependent acquisition (DDA), a software identifies multiply charged peptide precursor 

ions with the highest intensities from deconvoluted MS (or MS1) spectra. In a next step, such 

peptide ions are individually selected and further fragmented, typically by collision-induced 

dissociation, whereby MS/MS (or MS2) spectra are recorded. The frequency by which peptide 

ions are fragmented depends on both the LC resolution and the scanning speed of the mass 

spectrometer, with increasingly faster instruments now mapping larger fractions of the 

expressed proteome than ever before [16], [17]. Fig. 1 gives an overview of a contemporary 

label-free mass spectrometry-based proteomics workflow. 

 

Figure 1. A typical DDA shotgun proteomics workflow using a quadrupole Orbitrap instrument. Extracted 
proteins are enzymatically digested to peptides, using a specific protease such as trypsin [18]. Peptides 
are then separated over a reverse-phase column and eluting peptides are transformed to gas-phase 
ions by electrospray ionization (ESI) [19]. At discrete time points, the eluting set of ionized peptides are 

https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0065
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0070
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0075
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0080
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0085
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0090
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0095
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sent through the mass spectrometer and an MS spectrum is taken. Peak intensities in the MS spectrum 
are a proxy for peptide abundance. Upon deconvoluting the spectrum, the software identifies the highest 
peaks. For the next set of ionized peptides, only one peptide family present at the mass-to-charge ratio 
corresponding to one of the highest peaks in the MS spectrum will be separated from the rest in the 
quadrupole. This peptide is further fragmented in a collision-induced dissociation (CID) [20] or higher-
energy collisional dissociation (HCD) [21] cell and an MS2 spectrum of its fragments is taken. MS2 
spectra for other peptides with high MS spectral intensities are also recorded. After recording a pre-
specified number of MS2 spectra, the eluate composition will have changed, and a new MS spectrum is 
taken, followed by new MS2 spectra, and so on. 

Protein identification is a first important step in the data-analysis workflow. As technology 

advanced, manual inspection of the sheer number of MS2 spectra became practically 

impossible (the newest generation of machines identify around 25,000 peptides from their MS2 

spectra in a given run, but do note that this number depends on machine settings and sample 

complexity). Bioinformatics software was introduced that is capable of identifying a peptide 

from its fragmentation spectrum given a database in which protein sequences are stored. The 

first one was PeptideProphet [22], using the SEQUEST algorithm [23]. The Mascot search 

engine introduced probability-based scoring, giving researchers a way to remove unreliable 

identifications at a predefined false discovery rate level [24]. Other search algorithms can be 

easily executed using SearchGUI [25], a graphical user interface that allows for searches with 

X!Tandem [26], MS-GF + [27], MS Amanda [28], MyriMatch [29], Comet [30], Tide (a fast 

implementation of the SEQUEST algorithm) [31], Andromeda [32], OMSSA [33], Novor [34] 

and DirecTag [35]. Further, tools such as PeptideShaker [36] can be used to combine results 

of different search engines to boost identifications. The MaxQuant search engine, which uses 

the Andromeda algorithm, is very popular nowadays thanks to its user-friendly graphical user 

interface [37]. As soon as it became possible to automatically search spectra for peptides in a 

database, the need for data storage, processing and visualization software also emerged [38]. 

Upon identification, a subsequent protein quantification step is required, which remains a 

tedious task for several reasons. First, sample preparation needs to be tightly controlled in 

order to reduce variability in protein extraction and digestion [39]. Second, the actual protein 

sequence surrounding the protease recognition site as well as protein modifications influence 

a protease's cleavage efficiency, thus possibly yielding peptides at varying levels [40]. Third, 

some peptides from a given protein ionize poorly, while others give very strong signals, 

depending on the peptide sequence and its modification status [41]. Fourth, some peptides, 

so-called razor peptides, cannot be uniquely attributed to a single protein and should thus 

either be used with extreme care when quantifying a protein or excluded altogether. Fifth, mass 

spectrometers are stochastic, thus sampling of MS1 spectra is inherently discrete, whereas 

peptides continuously elute from the column; hence, the observed peptide peak intensities 

may vary between samples. Sixth, competition for ionization between co-eluting peptides 

causes extra variability [42], [43], [44]. And, finally, co-eluting peptides with similar mass-to-

charge ratios may be co-fragmented, resulting in chimeric spectra and biased quantifications 

[45], [46], [47]. 

Relative quantification can be done either through spectral counting or through intensity-

based methods (see Blein-Nicolas and Zivy [48] for a complete overview), although a few 

methods, like ProPCA [49], combine both approaches. Spectral counting consists of 

comparing the number of peptide-to-spectrum matches (PSMs; this includes all redundant 

peptide identifications due to modifications, charge states and expiration of dynamic exclusion) 

for a protein across samples as a proxy for protein abundance [50]. While this technique has 

the advantage of its simplicity and is able to quantify proteins for which no peptides are found 

in one condition, it has become rather obsolete for MS-based quantification as precision can 

be an issue, especially when comparing small differences in abundance [51]. Also, dynamic 

https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0100
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0105
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0110
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0115
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0120
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0125
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0130
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0135
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0140
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0145
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0150
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0155
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0160
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0165
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0170
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0175
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0180
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0185
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0190
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0195
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0200
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0205
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0210
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0215
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0220
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0225
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0230
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0235
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0240
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0245
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0250
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0255
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exclusion settings of the mass spectrometer (i.e. the same MS peak is fragmented only once 

in order to boost the number of identifications) might obscure the relationship between the 

number of counts and protein abundance [51], [52], [53]. Further, when machine settings are 

changed, runs become incomparable. 

Intensity-based methods make use of the more accurate information present in spectral 

intensities or areas under the peaks in either MS or MS/MS spectra, which causes intensity-

based methods to be more sensitive [54]. Such methods can be subdivided into MS2 and MS1 

intensity-based methods. MS2 methods are less accurate as peptide fragmentation does not 

always occur at the maximum of the elution peak [55]. Within MS1 intensity-based methods, 

there are broadly two approaches, which we refer to as summarization-based methods and 

peptide-based models. 

Summarization-based methods comprise all methods that summarize observed peptide 

intensities at the protein-level before performing a statistical analysis on protein abundance 

[56], often in an ad hoc manner [57]. Examples include, but are not limited to summing up 

peptide intensities [58], [59], (weighted or trimmed) mean summarization [60], [61], (weighted 

or trimmed) median summarization [62] and summarization based on peptide ratios (e.g. the 

method developed by Dost et al. [63] and maxLFQ [64]). All but the most efficient of these 

(such as the ratio-based approaches and ProPCA) ignore the fact that peptide ionization 

efficiency strongly influences the finally reported protein intensity, which leads to a bias due to 

different peptides that are missing in different samples. Also, none of these methods account 

for the fact that for the same protein, a different number of peptides might be identified in each 

sample, leading to differences in precision of the summarized protein expression value. The 

strong correlation between a peptide's intensity and its identification probability further 

exacerbates these issues. 

Peptide-based models estimate protein fold changes (FC) directly from peptide intensities 

within the framework of a statistical (linear) regression model. Examples include linear mixed 

effect models such as presented in Daly et al. [65] and Clough et al. [57] (implemented in the 

MSStats package [66]), but also non-linear models [67], models handling peptides that are 

shared between protein groups, such as the method developed by Blein-Nicolas et al. [68] and 

SCAMPI [69] (implemented in the protiq R package) as well as censored regression models 

for missing peptides such as SALPS [70] and the method developed by Karpievitch et al. [71] 

(implemented in the DanteR R package [72]). We and others have shown that peptide-based 

models outperform summarization-based methods by reducing bias and increasing sensitivity, 

specificity, accuracy and precision [57], [73]. However, traditional peptide-based models still 

suffer from (1) overfitting, (2) unstable variances and (3) outliers. Our proteomics quantification 

package MSqRob tackles these issues by building upon (1) ridge regression, (2) borrowing 

information across proteins and (3) down-weighing outliers, all of which were discussed in 

Goeminne et al. [74]. In this tutorial paper, we focus on the integration of peptide-based models 

from the MSqRob framework in current quantitative proteomics workflows. 

Basic concepts 

The actual design of an experiment strongly impacts the data analysis and its power to discover 

differentially abundant proteins. Therefore, we first cover some basic concepts on experimental 

design. Next, we provide a general step-by-step overview of a typical quantitative proteomics 

data analysis workflow. 

https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0255
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0260
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0265
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0270
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0275
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0280
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0285
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0290
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0295
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0300
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0305
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0310
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0315
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0320
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/protein-expression
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0325
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0285
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0330
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0335
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0340
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0345
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0350
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0355
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0360
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0285
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0365
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0370
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Basic concepts on experimental design 

The monthly column “Points of significance” in Nature Methods is a useful primer on statistical 

design for researchers in life sciences to which we extensively refer in this section 

(http://www.nature.com/collections/qghhqm/pointsofsignificance). 

For proteomics experiments it is important to differentiate between experimental units and 

observational units. Experimental units are the subjects/objects on which one applies a given 

treatment, often also denoted as biological repeats. In a proteomics experiment, the number 

of experimental units is typically rather limited (e.g. three biological repeats of a knockout and 

a wild-type sample). The measurements, however, are applied on the observational units. In a 

shotgun proteomics experiment, these are the individual peptide intensities. For many proteins, 

there are thus multiple observations/peptide intensities for each experimental unit, which can 

be considered as technical replicates or pseudo-replicates [75]. Hence, one can make very 

precise estimates on the technical variability of the intensity measurements; i.e. how strongly 

intensity measurements fluctuate for a particular protein in a particular sample. However, the 

power to generalize the effects observed in the sample to the whole population remains limited 

as most biological experiments typically only have a limited number of biological repeats [76]. 

We thus strongly advise researchers to think upfront about their experimental design and to 

maximize the number of biological repeats as much as feasible (we suggest at least three, and 

preferably more). 

Another important concept is that of blocking [77], which randomizes the different treatments 

to experimental units that are arranged within groups/blocks (e.g. batches, time periods) that 

are similar to each other. Due to practical constraints, it is often impossible to perform all 

experiments on the same day, or even on the same HPLC column or mass spectrometer, 

leading to unwanted sources of technical variation. In other experiments, researchers might 

test the treatment in multiple cultures or in big experiments that involve multiple labs. A good 

experimental design aims to mitigate unwanted sources of variability by including all or as 

many treatments as possible within each block. That way, variability between blocks can be 

factored out from the analysis when assessing treatment effects (Fig. 2). 

 

 

Figure 2. Example of a good (A) and a bad (B) design. In design A, both the green and orange 
treatments are divided equally within each block. That way, the treatment effect can be estimated within 
a block. In design B, each block contains only one treatment, so the treatment effect is entirely 
confounded with the blocking effect and it is thus impossible to draw meaningful conclusions on the 
treatment (unless one would be willing to assume that the blocking effect is negligible, which is a very 
strong assumption that cannot be verified based on the design). 

http://www.nature.com/collections/qghhqm/pointsofsignificance
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0375
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0380
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0385
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Finally, it is important to correctly account for the degree of pseudo-replication within each 

block so as to provide final FC estimates with correct standard errors. Note that pseudo-

replication always occurs in peptide-based linear models because the peptides from the same 

protein in the same sample can be considered as technical replicates for protein expression. 

A general label-free quantitative proteomics data analysis workflow 

A first crucial step is the identification of peptides from mass spectra. Peptide identification has 

already been touched upon in the historical background section. Methods for peptide 

identification are constantly being developed and improved. Providing a complete review on 

the strengths and limitations of popular search engines is outside the scope of this tutorial. 

Once peptides are identified and their spectral intensities are determined, the identified 

peptide-to-spectrum matches need to be assigned to the correct protein to perform 

quantification at the protein level. Often, this is trivial, but some peptides can originate from 

multiple proteins (so-called razor peptides). How to handle razor peptides is a matter of 

debate [78], but as their intensities might represent a combined intensity, it might be safer to 

remove them from the data altogether. When two or more proteins are very similar in their 

amino acid sequence, it can be more convenient to group them together into a “protein 

group”. MaxQuant does this automatically [15]. For the remainder of this text, the term 

“protein” encompasses both “proteins” and “protein groups”, unless explicitly stated otherwise. 

Before proteins can be quantified, the intensities of identified peptides need to be 

preprocessed. Raw (summarized) peptide intensities found in MaxQuant's peptides.txt file 

indeed show a distribution that is strongly skewed to the right. Common preprocessing steps 

therefore include log2-transformation to render the intensities more symmetric, and 

normalization to reduce systematic technical variation while retaining the underlying biological 

signal [79]. Other steps might include removal of common contaminant proteins (such as 

keratin from the operator's skin and hair, or leftover trypsin from digestion) [80] or bad quality 

peptides from the list of identified proteins [71]. 

Below, we illustrate how the robust peptide-based linear model from the MSqRob framework 

can be incorporated in a state-of-the-art label-free proteomics data analysis workflow. In a 

typical shotgun proteomics experiment, one would like to estimate the average log2 intensity 

per treatment for each protein. However, one also wants to correct for effects of the peptide 

sequence (which can be rather large, as explained in the historical background), pseudo-

replication at the level of biological and technical repeats (i.e. MS runs) and other potential 

blocking factors. For each protein, a statistical peptide-based model is constructed in which 

one models all observed log2-transformed peptide intensities as a function of the effects in our 

model. A typical peptide-based model is formulated below: 

𝑦𝑖𝑗𝑘𝑙𝑚𝑛 =  𝛽𝑖𝑗
𝑡𝑟𝑒𝑎𝑡 +  𝛽𝑖𝑘

𝑝𝑒𝑝
+ 𝛽𝑖𝑙

𝑏𝑖𝑜𝑟𝑒𝑝
+ 𝛽𝑖𝑚

𝑡𝑒𝑐ℎ𝑟𝑒𝑝
+ 𝜀𝑖𝑗𝑘𝑙𝑚𝑛 , 

with 𝑦𝑖𝑗𝑘𝑙𝑚𝑛 the nth preprocessed peptide intensity for the ith protein, j is the index for 

treatment (treat), k the index for peptide sequence (pep), l the index for biological repeat 

(biorep) and the m the index for technical repeat (techrep). 𝜀𝑖𝑗𝑘𝑙𝑚𝑛 is a normally distributed 

error term with mean zero and protein-specific variance 𝜎𝑖
2. yijklmn is also referred to as the 

response variable; and treat, pep, biorep and techrep as the predictor variables. The 𝛽's 

are the effects of each predictor on the peptide intensities of the ith protein. More information 

about linear regression models can be found in Altman and Krzywinski [81]. 

When working with the MSqRob package, one needs to discriminate between fixed and 

random effects [82], as MSqRob handles them differently. Fixed effects are those effects for 

https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0390
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0075
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0395
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0400
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0355
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0405
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0410
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which all levels of interest are included in the experiment. They are generally controlled for by 

the experimenter and are typically the effects of interest. Examples include genotype (when 

comparing specific genetic constitutions), treatment, gender (only two levels), … Random 

effects are those effects for which not all levels are included in the experiment and the levels 

that are included can be considered to be drawn at random from a broader, near-infinite 

population. Experimenters are generally not interested in the observed random effect sizes, 

but they can be used to address issues with pseudo-replication, i.e. we merely incorporate 

them so that the covariance is correctly accounted for as to enable valid inference on the fixed 

effects of interest. Random effects are never under the control of the experimenter. Examples 

of random effects are MS run, biological replicate, technical replicate, animal effect, patient 

effect, etc. Note that the effect of the biological repeat (subjects/animals) only has to be 

incorporated if multiple observations are available per repeat. Sometimes, the number of 

observed levels also determines whether an effect is incorporated as fixed or random. E.g. if 

one performs an experiment with two different cell types, there are not enough levels to 

estimate the random effect variance, so it should be included as a fixed effect and the 

experimenter can only draw conclusions on the two specific cell types studied. In many cases 

blocking factors, such as effects of HPLC column or instrument, are also considered as fixed. 

They often have a limited number of levels and the variability between blocks can be factored 

out of the analysis in good experimental designs, i.e. when all effects of interest are included 

within each block. MSqRob also exploits the link between mixed models and ridge regression, 

which puts a penalty on the size of the fixed effects, preventing overfitting. The peptide effects 

often overwhelm the remaining effects in the experiment and specifying the sequence effect 

as a separate random effect allows the remaining fixed effects of interested to be penalized 

independently of the peptide effect. 

Upon fitting a linear regression model, contrasts of the model parameters are assessed in 

statistical tests to answer the research question; e.g. one could test whether there is on 

average a difference between the effects of two treatments. Since the effects are modeled on 

a log-scale, differences can be interpreted in terms of log2 fold changes. Another option is to 

perform an ANOVA test to assess multiple contrasts simultaneously or the omnibus null 

hypothesis that none of the treatments have an effect. 

Since we infer on the research question for each protein, it is necessary to correct for multiple 

testing [83], [84]. In high-throughput experiments we generally use the false discovery rate 

(FDR) for this purpose. Researchers often tolerate a few false positives in their top hits, as 

long as there are not too many. Controlling the FDR at 5% means that one expects on average 

5% false positive proteins amongst all proteins that are returned as differentially abundant. In 

MSqRob, we correct for multiple testing using the Benjamini-Hochberg FDR procedure [85]. 

How is MSqRob used in research? 

MSqRob can be used in two ways: either as an R package or with the “Shiny” graphical user 

interface. Info on how to use the latest version of MSqRob in R can be found in the MSqRob 

vignette or in the installation instructions on the MSqRob github repository. MSqRob offers 

custom functions for importing data, preprocessing data, fitting models and testing research 

hypotheses (“statistical contrasts”). As long as peptide-level data can be provided in either long 

or wide tabular format, MSqRob can be used after searching the data with any search engine. 

As MaxQuant is one of the most popular free quantitative proteomics software packages, we 

developed a graphical user interface for statistical analysis of differential protein abundance 

based on MaxQuant output. It allows to (1) directly import MaxQuant search results, (2) 

preprocess and visualize the data, and (3) save the output to Excel without any programming 

https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0415
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0420
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0425
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knowledge required. Moreover, MSqRob is capable of handling virtually any experimental 

design. 

Our MSqRob Shiny App has three different tabs: an input, a preprocessing and a results tab. 

In the input tab, the user provides the name of the project, the location where the output needs 

to be saved, MaxQuant's peptides.txt file and an experimental annotation file. In the 

preprocessing tab, options are provided to log2-transform peptide intensities, normalize 

intensities, remove overlapping protein groups, remove contaminants and reverse sequences, 

remove all proteins that are only identified by modified peptides and remove all peptides that 

are identified by less than a specified number in the dataset. Its right panel shows diagnostic 

plots that can be used to evaluate the preprocessing step. Ultimately, the quantification tab 

allows the user to select the grouping factor, remove superfluous columns, select fixed and 

random effects and specify contrasts. When pressing the “Go” button, MSqRob will execute 

the analysis. After the analysis, the right panel of the quantification tab will show a volcano plot 

in which proteins can be selected for further inspection with a detail plot. This panel will also 

show the results table. The results table can be saved automatically to allow further inspection 

and visualization. 

Case studies 

Prerequisites 

R [86] and RStudio [87] have to be installed on a computer. MSqRob can be freely downloaded 

from https://github.com/statOmics/MSqRob. Installation instructions and up-to-date guidelines 

are provided in the README.md file on the website. 

MSqRob is an R package with a Shiny App that provides a graphical user interface to MSqRob 

for MaxQuant data. In the tutorial we focus on hands-on examples in the MSqRob Shiny App. 

The examples can also be coded in plain R, which can be useful for incorporating MSqRob in 

data analysis pipelines. R-markdown files with R Code and instructions are also provided for 

the examples at https://github.com/statOmics/MSqRob/blob/master/vignettes/MSqRob.Rmd. 

Upon installation, the Shiny App can be launched by copy-pasting the following command in 

the command window of RStudio: 

shiny::runApp(system.file('App-MSqRob', package = 'MSqRob')) 

Here, we provide step-by-step tutorials for two case studies with the MSqRob Shiny 

application. Our first example is a case study based on the experiment of Ramond et al. [88]. 

We use a subset of the experiment with a simple wild-type vs. knock-out design. It is a design 

with pseudo-replication at different levels. Our second example consists of a spike-in study of 

the Clinical Proteomic Technology Assessment for Cancer Network (CPTAC) in which 48 

human proteins were spiked in five different concentrations in a yeast background proteome. 

Here, the ground truth is known [89] and the experiment is set up as a randomized complete 

block design. We have already used this particular study to evaluate the performance of our 

method [74]. 

The Francisella example 

Experimental set-up 

The study on the facultative pathogen Francisella tularensis was conceived by Ramond et al. 

[88]. F. tularensis enters the cells of its host by phagocytosis. The authors showed that F. 

tularensis must import arginine from the host cell via a novel arginine transporter, ArgP, in 

https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0430
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0435
https://github.com/statOmics/MSqRob
https://github.com/statOmics/MSqRob/blob/master/vignettes/MSqRob.Rmd
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0440
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0445
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0370
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0440
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order to efficiently escape from the phagosome and reach the cytosolic compartment, where 

it can actively multiply. In their study, they compared the proteome of wild type F. tularensis 

(WT) to ArgP-gene deleted F. tularensis (knock-out, KO). For this experiment, bacterial 

cultures were grown in biological triplicate and each sample was run three times on a 

nanoRSLC-Q Exactive PLUS instrument. Hence, pseudo-replication occurs on different levels 

of the experiment, i.e. multiple peptides for the same protein in each MS-run (technical repeat) 

and 3 technical repeats for each biological repeat. The data were searched with MaxQuant 

version 1.4.1.2. Below, we give an overview on how to process the data with the MSqRob 

Shiny App. 

The input tab (Fig. 3) 

First, we choose an appropriate name for the project. This name, appended with a timestamp, 

will be used to generate an output folder for the MSqRob model and results. Here, we use the 

name “project_Francisella”. Select an appropriate file location where the MSqRob output 

should be saved by clicking on “Browse…”. Next, upload the peptides.txt file, which contains 

the MaxQuant peptide-level intensities that are found by default in the 

“path_to_raw_files/combined/txt/” folder from the MaxQuant output, with “path_to_raw_files” 

the folder where raw files were saved. 

 

Figure 3. Overview of MSqRob's input tab. 

Similarly, upload the experimental annotation file. This file should be a tab-delimited file or 

an Office Open XML spreadsheet file (“.xlsx” file). If needed, this file can be made based on 

Fig. 4. If the file location was already specified and the peptides.txt file was uploaded, one can 

generate the “run” column of this file automatically by clicking the “Create annotation file” 

button. The other columns need to be filled in manually based on the experimental design. 
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Alternatively, one can download the file from 

https://github.com/statOmics/MSqRobData/blob/master/inst/extdata/Francisella/label-

free_Francisella_annotation.xlsx. One column (the “run” column in Fig. 4) of the experimental 

annotation file should contain the names of the MS runs; i.e. the names given in the 

“experiment names” column when searching the data with MaxQuant. These names should 

be unique. Other columns indicate other variables of interest related to the design that can 

affect protein expression; e.g. genotype: WT vs. KO and biological repeats (“biorep”). 

 

Figure 4. Experimental annotation file for the Francisella dataset. 

At this stage, everything is set for preprocessing and data exploration, which are implemented 

in the preprocessing tab. 

The preprocessing tab (Fig. 5) 

Left panel 

The preprocessing tab features different preprocessing options, many of which can be safely 

left at their default state. 

https://github.com/statOmics/MSqRobData/blob/master/inst/extdata/Francisella/label-free_Francisella_annotation.xlsx
https://github.com/statOmics/MSqRobData/blob/master/inst/extdata/Francisella/label-free_Francisella_annotation.xlsx
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#f0020
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Figure 5. Overview of MSqRob's preprocessing tab. 

MS-based proteomic intensity distributions are nearly always strongly skewed to the right. 

Therefore, a log-transformation is highly recommended. We suggest to log-transform the 
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data with base 2. This has the added advantage that the model estimates will be interpreted 

as log2 FC. For the remainder of this work, we assume that intensities have been log2-

transformed. 

We provide different normalization approaches. As a default, we suggest quantile 

normalization [79], [90]. Quantile normalization imposes the same empirical intensity 

distribution on all runs. More information on other normalization methods that are implemented 

can be found in the documentation of the ‘normalise’ function in the R package MSnbase [91]. 

The effect of quantile normalization on the distribution of the log2-transformed peptide 

intensities is shown in Fig. 6. 

 

Figure 6. Overview of the log2-transformed peptide intensities for the Francisella dataset before and 
after preprocessing. Left: log2-transformed peptide intensities before preprocessing, center: log2-
transformed peptide intensities after preprocessing. Note that the densities are forced onto the same 
distribution. Right: MDS plot that clusters similar MS runs together. 

The option “Remove proteins that are only identified by modified peptides” allows for 

removing proteins that are only identified by peptides that carry one or more modified amino 

acids. Identification of such peptides in the background of non-modified peptides is often less 

reliable, and proteins only identified by such peptides are therefore removed in a typical 

MaxQuant-Perseus workflow. We offer the option to do a similar filtering in MSqRob. The 

MaxQuant's proteinGroups.txt file is needed for this purpose and can be found in the 

“combined/txt/” folder. 

Razor peptides are peptides that cannot be uniquely attributed to a single protein or protein 

group. As we are uncertain from which protein group these peptides originate and their 

intensities might even be a combined value from multiple protein groups, we opt to remove 

these peptides by default. The option “Remove protein groups for which any of its member 

proteins is present in a smaller protein group” deals with peptides that are shared between 

protein groups. This option removes all peptides in protein groups for which any of its peptides 

map to a protein that is also present in another smaller protein group. 

“Minimal number of times a peptide sequence should be identified” indicates a threshold T for 

how many times a certain peptide sequence should be present in the data before being 

retained in the final analysis. Peptides that are identified at least T times are retained; other 

peptides are removed from the data. This value defaults to 2 and there is a very practical 

reason for this. Indeed, we need a parameter in the model for each peptide sequence. Adding 

a parameter for a single observation leads to perfect confounding in the model as there is no 

way to discern between the peptide-specific effect and the other effects for this observation. 

Note that this is not the same as applying the so-called “two-peptide rule” [92]. A protein 

https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0395
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0450
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0455
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0460
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identified by only one peptide can contribute to the estimation provided that the peptide is 

identified in multiple samples, say t with t ≥ T. 

One can further filter out reverse sequences and potential contaminants, made possible by 

providing the column names of the peptides.txt file that indicate these sequences in the “Also 

filter based on these columns” field. 

Right panel 

In the right panel, the number of peptides before any kind of preprocessing is done, and a plot 

of the densities of the (log-transformed) peptide intensities in each MS run are displayed. For 

the Francisella dataset, there were 10,693 identified peptides before preprocessing. 

The effect of preprocessing can be assessed by ticking the “Evaluate preprocessing” box. 

A plot will be generated that shows the densities of the (log-transformed) peptide intensities 

after full preprocessing (i.e. after normalization and filtering) (Fig. 6). A multidimensional 

scaling (MDS) plot will also be produced, which shows a dot for each MS run such that the 

distance between two dots is equal to the root-mean-square deviation for the top 500 peptides 

that distinguish the two corresponding runs. Options are provided to show only dots, only labels 

or both. It is also possible to zoom in on a particular part of the plot by dragging the mouse to 

select a particular area on the plot and then double-click to zoom in. 

One can color the density lines and MDS points by any factor provided in the experimental 

annotation file. Upon filtering, log2-transformation and normalization, 7772 peptides remained 

in the dataset. 

The quantification tab (Fig. 7) 

Left panel 

“Select the grouping factor (mostly the “Proteins” column)” allows selecting on which 

level the statistical inference is performed. Here, we were interested in proteins of which the 

abundance differed between the two genotypes. We thus selected the “Proteins” column. 

“Select additional annotation columns you want to keep” allows retaining extra annotation 

columns that one might have added to the peptides.txt file. Here, we selected “Protein names” 

and “GI number”. 
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Figure 7. Overview of MSqRob's quantification tab. 

Next, the fixed effects need to be specified. Fixed effects are effects that remain constant 

when repeating the experiment. For factor variables (e.g. genotype), the number of levels are 
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typically small. “genotype” should be entered as a fixed effect, as there are only 2 genotypes 

in our study. Effects of interest are nearly always fixed effects. On the contrary, “Sequence”, 

“biorep” and “run” are added as random effects. The effect of a single biological repeat will 

differ each time one would re-perform an experiment. The biological repeat also has to be 

included in the model because peptide intensities from a protein from the same biological 

repeat are more similar than those from the same protein across biological repeats. Similarly, 

each MS run will be different and peptides from the same protein in the same run are correlated 

because they originate from the same protein pool. Hence, the pseudo-replication of peptides 

within technical repeats as well as the technical repeats within each biological repeat will be 

properly addressed. Assigning “Sequence” as a random effect is debatable, but we noticed 

that the sequence effect overwhelms other effects in typical proteomics experiments. MSqRob 

also exploits the link between ridge regression and mixed models [74]. Ridge regression is 

implemented to prevent overfitting. Therefore, we strongly suggest specifying the “Sequence” 

effect as a random effect, which will allow penalizing this effect separately from the remaining 

fixed effects. 

With “Save/load options”, there are three options: 

1. “Save the models” will generate a file with an “.rDatas” extension that contains R objects 

with the data and the fitted models. It is useful to store these objects as they enable the 

user to upload and redo the statistical inference without having to perform the time-

consuming preprocessing and model fitting steps. 

 

2. “Load existing models” allows the user to upload an rDatas object from a previous analysis. 

Note that all input except the type of analysis and the contrast options will become disabled 

as the model is already fitted to the data. A new rDatas object will also be created with the 

output. This option is also useful for evaluating the output of MSqRob upon running it in 

bash mode. 

 

3. “Don't save the models”: no rDatas object will be stored. 

“Number of contrasts you want to test” indicates how many contrasts (research 

hypotheses) one would like to test. For the Francisella dataset, we were only interested in the 

difference between wild-type and knock-out strains, therefore we performed statistical 

inference on the average difference in log2 protein intensity between both genotypes. This 

difference corresponds to a log2 FC. We specify this contrast as by typing “− 1” under genoWT 

and “1” under genoKO. 

Check all settings and press the “Go” button in the left panel of the output tab. 

Right panel 

When the analysis is finished, MSqRob prints “DONE!” at the top of the right panel. In this case 

study we only evaluated one contrast (KO vs. WT). If multiple contrasts are specified, one can 

select the contrast one would like to explore further. The “Volcano plot” shows − log10(p-

values) as a function of the “estimate” (i.e., here the log2 FC between KO and WT for the 

Francisella example). One can select an area on this plot using the computer mouse and 

double clicking zooms in on this area. Upon selecting such an area, one can add all points in 

the area to a selection or remove all points in this area from a selection using their respective 

buttons. By clicking on a dot, one selects/deselects it. When only one protein is selected, a 

“Detail plot” is made for this protein, which shows the preprocessed peptide intensities as a 

function of a predictor variable from the model. Boxplots show the median preprocessed 

peptide intensity as a thick black line, the box itself comprises the interquartile range (IQR) and 

https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0370


18 

 

whiskers extend to the most extreme data point that lies within 1.5 times the IQR on each side 

[93]. Each peptide intensity in the Detail plot can be given a color and a shape value according 

to any model parameter. Fig. 8 shows a detail plot for the most significant protein in the study, 

WP_003040894 or 3-isopropylmalate dehydratase large subunit, an enzyme required for the 

biosynthesis of leucine. Note that all identified enzymes required for the synthesis of branched 

chain amino acids were found either unchanged or downregulated in the ArgP mutant. Here, 

we specified “genotype” as independent variable, “run” as color variable and “Sequence” as 

shape variable. 

 

Figure 8. Example of a detail plot for the most significant protein in the study performed: 3-
isopropylmalate dehydratase large subunit. 

One may also specify the “Significance level (alpha)”. Its default value is at 5%, but it can 

be changed on the fly. Proteins with a false discovery rate (FDR) below α will be colored red 

in the Volcano plot if unselected, and purple if selected. Proteins with an FDR above α will be 

colored black if unselected, and grey if selected. In the Francisella case study, we found 162 

significant proteins at a 5% FDR threshold. 154 of those overlap with the proteins reported in 

Goeminne et al. [74]. This difference is due to subtle changes in our algorithm (e.g. all fixed 

effects except peptide sequence now all get the same shrinkage penalty). The 8 new significant 

proteins are proteins for which our old implementation could not estimate a fold change, while 

the 5 proteins that are not flagged anymore in our new implementation have an FDR value that 

is close to the 5% cut-off. 

The “Results table” shows all proteins, by default sorted from smallest to largest p value. 

When selecting/deselecting a row in the table, the corresponding dot in the Volcano plot is also 

(de)selected and vice versa. When zoomed in on the Volcano plot, the Results table only 

shows the proteins corresponding to the dots in the plot window. The Search box allows 

searching for particular proteins in the table. When only one protein is selected, the detail plot 

is also displayed. 

Note that in the file location one provided in the input tab, a folder is created, which is named 

“project_Francisella_[date and time of analysis]”. In this folder, one finds the 

https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0465
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0370
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project_Francisella_models.rDatas file, which contains the data and the fitted model object as 

discussed above. The “project_Francisella_results.xlsx” contains the same information as the 

“Results” table. The first column is the protein accession. “Protein.names” and “GI.number” 

are the columns, which were indicated as “additional columns we want to keep”. “estimate” 

is the estimate of the contrast, which here is the log2 FC between the proteomes of wild-type 

and knock-out Francisella tularensis. “se” is the standard error on the contrast, “df” indicates 

the degrees of freedom, “Tval” is the T value, “pval” is the p value, “qval” is the q value, i.e. 

the minimal FDR level at which this protein will be called significant. “signif” indicates whether 

the protein is significant at the default 5% FDR threshold. 

The same analysis can also be performed in bash mode. Details are given at 

https://github.com/statOmics/MSqRob. 

The CPTAC example 

The 6th study of the Clinical Proteomic Technology Assessment for Cancer (CPTAC) is an 

experiment in which the authors spiked the Sigma Universal Protein Standard mixture 1 

(UPS1) containing 48 different human proteins in a protein background of 60 ng/μL 

Saccharomyces cerevisiae strain BY4741 (MATa, leu2Δ0, met15Δ0, ura3Δ0, his3Δ1). Five 

different spike-in concentrations were used: 6A (0.25 fmol UPS1 proteins/μL), 6B 

(0.74 fmol UPS1 proteins/μL), 6C (2.22 fmol UPS1 proteins/μL), 6D 

(6.67 fmol UPS1 proteins/μL) and 6E (20 fmol UPS1 proteins/μL) [89]. The raw data files can 

be downloaded from https://cptac-data-portal.georgetown.edu/cptac/public?scope=Phase+I 

(Study 6). We limited ourselves to the data of LTQ-Orbitrap at site 86, LTQ-Orbitrap O at site 

65 and LTQ-Orbitrap W at site 56. The data were searched with MaxQuant version 1.5.2.8, 

and detailed search settings were described in Goeminne et al. [74]. The experiment is 

conceived as a randomized complete block design with lab as a blocking factor. For every lab, 

3 replicates are available for each concentration. 

At high spike-in concentrations of human proteins, especially in conditions 6D and 6E, 

ionization suppression of yeast proteins has been reported [54], [73], [74]. Therefore, we focus 

on differences between condition 6B–6A, 6C–6A, and 6C–6B. 

The input tab 

Again, an appropriate name is chosen for the project. Here, use “project_CPTAC”, select the 

file location where the output has to be saved. Next, the location of the experimental 

annotation file and the peptides.txt file is specified, and MaxQuant's peptides.txt file is 

imported. An example of the experimental annotation for the CPTAC dataset is given in Fig. 9. 

This file can be downloaded from 

https://github.com/statOmics/MSqRobData/blob/master/inst/extdata/CPTAC/label-

free_CPTAC_annotation.xlsx. 

https://github.com/statOmics/MSqRob
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0445
https://cptac-data-portal.georgetown.edu/cptac/public?scope=Phase+I
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0370
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0270
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0365
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0370
https://github.com/statOmics/MSqRobData/blob/master/inst/extdata/CPTAC/label-free_CPTAC_annotation.xlsx
https://github.com/statOmics/MSqRobData/blob/master/inst/extdata/CPTAC/label-free_CPTAC_annotation.xlsx
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Figure 9. Top 30 rows of the annotation file for the CPTAC dataset. 

The preprocessing part is analogous as for the Francisella example. 

The quantification tab 

We again grouped by “Proteins”, but now there is no interest in additional columns. We 

selected “condition” as a fixed effect, because it is the main effect of interest and it has a fixed 

number of levels, being one for each spike-in concentration. The “lab” effect can be considered 

fixed, as it is a typical example of a so-called block effect. If one would redo the experiment, it 

will probably be in the same three labs, although it is also possible to argue for “lab” as a 

random effect (when one considers “lab” as a random draw from a huge number of possible 

labs). However, for the analysis of the treatment effect this should not matter as all treatment 

effects are observed within a lab and one can thus factor out the lab-to-lab variability from the 

analysis [77]. “Sequence” and “run” are again specified as random effects. 

In this example, we assessed three contrasts of interest; thus, set “Number of contrasts you 

want to test” to 3. For the first contrast, set condition 6A to − 1 and condition 6B to 1, for the 

second contrast, set condition 6A to − 1 and condition 6C to 1 and for the third contrast, set 

condition 6B to − 1 and condition 6C to 1 for comparisons 6B–6A, 6C–6B and 6C–6A, 

respectively. Then press the “Go” button and wait for the analysis to complete. 

https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0385
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Upon comparing condition 6B to condition 6A on the Volcano plot, we noticed that most hits 

have positive FC estimates. These red circles on the right of “0” are indeed the UPS1 spike-in 

proteins and their levels in condition 6B are higher than in condition 6A. There appear to be 

two false positive hits (red circle left of “0” and the selected purple circle in Fig. 10). The 

selected yeast protein sp | P53115 | INO80_YEAST exhibits a strong negative log2 FC 

estimate of − 2.09 on the Volcano plot (Fig. 10). Upon inspecting this protein in the Detail plot, 

we found that this protein was only identified by two different peptides with very different 

intensity patterns (NAPSEGVMASLLNVEK: square and VSTTPLLK: circle). The intensities of 

the former peptide remain basically unchanged over the different spike-in concentrations, while 

those of the latter show a clear upwards trend with increasing spike-in concentration. Based 

on its intensity pattern, this latter peptide is very likely an incorrectly annotated UPS1 peptide. 

Indeed, our model assumes that all peptides behave in a similar way when comparing over 

samples. Here, the effect of the VSTTPLLK peptide is on average lower in condition 6B 

compared to the rest of the dataset, pulling the estimated average log2-intensity in this 

condition down. This effect is not at play for condition 6A, as this peptide was not identified, 

and therefore, the difference between 6B and 6A will be strongly negative (− 2.09). This 

example clearly demonstrates the added value of using Detail plots, as these enable detecting 

aberrations in the data that would otherwise go unnoticed, preventing researchers from 

drawing wrong conclusions. 

 

Figure 10. Use of the MSqRob output plots to find peculiar proteins. Protein 
sp | P53115 | INO80_YEAST has a log2 FC of − 2.09 and is identified by two different peptides, one of 
which is likely mis-annotated. In the Detail plot, points are colored by lab, while a different shape denotes 
a different peptide sequence. 
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Current limitations and useful working limits 

A major limitation of current proteomics workflows is the sequencing depth. The workflow we 

described here concerns so-called data-dependent acquisition (DDA). This means that 

identification is data-driven: only the most abundant peptide precursor ions are identified 

following MS2. As a consequence, not all peptides in a sample are identified, which gives rise 

to missing values. Missingness in proteomics datasets is a combination of missingness 

completely at random (MCAR) (e.g. a misidentified peptide can either be identified by aligning 

its elution profile with an already identified peptide or this alignment can be missed) or not at 

random (MNAR) (e.g. more abundant peptides simply have a higher chance of getting 

fragmented and thus being identified) [94]. This is even exacerbated as the probability is also 

context-dependent: when co-eluting with many other highly intense peptides, a certain peptide 

will have a smaller chance of getting identified than if these other peptides would be absent or 

lower in numbers and/or abundance. Imputing missing peptide values was suggested in the 

proteomics literature, but imputation should always be used with caution. When nothing is 

known about the nature of the missing values, recent reviews suggest the use of MCAR 

imputation approaches based on local similarity, as these perform well on average [94]. It has 

to be noted, however, that the performance of an imputation approach is highly dataset-

dependent [73], [94], [95]. Due to these peculiarities, we have chosen to omit imputation in the 

standard MSqRob workflow. Of course, when using non-imputed datasets, differential 

abundance cannot be estimated when all peptides are absent in all replicates of a particular 

condition. However, researchers have the option to impute peptide intensities before feeding 

these into MSqRob. Another solution to the presence-absence problem would be to perform 

an easy-to-implement spectral count approach to detect these proteins before continuing with 

a more sensitive intensity-based method [48]. So-called data-independent acquisition (DIA) 

workflows fragment all peptides, typically within a given m/z-window. With DIA, challenges lie 

in de-convoluting the highly complicated mixed spectra [96]. In this context missingness is due 

to the inability to resolve a spectrum but is expected to be less intensity-dependent. 

Another major issue in proteomics bioinformatics is data standardization [97]. As MS-based 

proteomics becomes more and more affordable to a wider community of researchers, the 

number of customized and multidimensional experiments (i.e. experiments in which more than 

one protein property, such as abundance, modifications, turnover, localization, etc. is analyzed 

simultaneously) is expected to rise [98], [99]. Such experiments require customized workflows, 

however, many proteomics tools work with software-specific or even proprietary data formats. 

This makes it difficult to connect different tools in a customized workflow. Therefore, open data 

formats for storing proteomics data have been developed by HUPO. Examples of these are 

mzML for raw mass spectrometer output [100] and mzQuantML [101] for quantified peptides 

and proteins. Future adaptation of these formats will allow for more interconnectivity between 

applications and massively improve the feasibility of setting up custom workflows. 

Future developments 

On a short term, we intend to adapt MSqRob to be able to handle DIA and isobaric labeling, 

and to enable the input of other search engines and open data formats. 

A constant theme in improvements of mass spectrometry instruments has been their increase 

in analysis speed and proteome coverage. We expect this trend to continue, which could, in 

the long run, reduce or even eliminate intensity-dependent missingness. Faster machines will 

also allow biologists to analyze an increasing number of biological repeats, which will boost 

the power of their experiments and allow them to detect small, but sometimes very relevant 

perturbations with greater confidence. Thanks to such increasing coverage, each generation 

https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0470
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0470
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0365
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0470
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0475
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0240
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0480
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0485
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0490
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0495
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0500
https://www.sciencedirect.com/science/article/pii/S1874391917301239?via%3Dihub#bb0505


23 

 

of machines allows us to dive deeper into the proteome than ever before. As machine duty 

cycles continue to increase, DIA and DDA are expected to come closer together as DIA 

windows will become smaller and smaller [102], while the analysis depth in DDA will continue 

to increase, so that one day, they might merge into a single technique that is capable of 

identifying all peptides in a sample. When that happens, the need to handle missing data in 

DDA will become obsolete. 
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Appendix (not a part of the original article, but part of my PhD thesis) 

We propose the same peptide-based regression model as in Goeminne et al. (2016) [1]: 

𝑦𝑝𝑟 =  𝒙𝑝𝑟𝜷 + 𝛽𝑝
peptide

+ 𝑢𝑟
run + 𝜀𝑝𝑟 

Herein, 𝒙𝑝𝑟 is a row matrix with the covariate pattern related to peptide 𝑝 in run 𝑟, 𝜷 =

[𝛽0, 𝛽1
1 … , 𝛽𝑚1

1 … , 𝛽𝑀1

1 , … , 𝛽𝑚𝑔

𝑔
, … , 𝛽𝑀𝑔

𝑔
, … , 𝛽𝑀𝐺

𝐺 ]
T
 is a vector with 1 + 𝑀 = 1 + ∑ 𝑀𝑔

𝐺
𝑔=1  

parameters denoting the effects of 𝑀 predictors corresponding to 𝐺 covariates. 𝛽𝑝
peptide

 is a 

peptide-specific effect for peptide 𝑝, 𝑢𝑟
run a random run effect to account for within-run 

correlation, with 𝑢𝑟
run~N(0, 𝜎𝑢

2). 𝜀𝑝𝑟~N(0, 𝜎2) is a random error term. 

The new version of MSqRob allows the user to put the same ridge penalty on multiple 

covariates because traditional ridge regression has a single ridge penalty 𝜆 that is equal for all 

fixed effects instead of separate ridge penalties for each covariate. We thus assume all ridge 

parameters to originate from the same distribution: 𝛽𝑚𝑔

𝑔
~N(0, 𝜎2 𝜆⁄ ) for 𝑚 = 1, … , 𝑀𝑔 and 𝑔 =

1, … , 𝐺. Note that we still require a separate ridge penalty for the peptide effects 

𝛽𝑝
peptide

~N(0, 𝜎2 𝜆peptide⁄ ) because of their large effect sizes. 

When naively imposing a single ridge penalty on multiple covariates, the amount of shrinkage 

is influenced by the scale of the predictors and the model’s parameterization (e.g. the choice 

of the reference class can impact on the ridge penalty). To ensure that the size of the ridge 

penalty is independent of the model’s parameterization, we perform a QR-decomposition on 

the part of the design matrix that corresponds to the fixed effect covariates, 𝑿fixed. 

𝑿fixed = 𝑸𝑹 

Herein, the 𝑸-matrix is an orthogonal matrix and can be used as a rescaled version of the 

original design matrix 𝑿fixed. The 𝑹-matrix is an upper triangular matrix. 

Subsequently, 𝑿fixed is replaced by the 𝑸-matrix prior to the lme4 mixed model fitting. During 

statistical inference, the part of the design matrix corresponding to the fixed effects is post-

multiplied with the 𝑹-matrix to return to the original scale. 
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Implementation 

The lme4 R package does not allow to impose a single ridge penalty over a group of multiple 

covariates. Therefore, we set up an lme4 model with a mock random effect that has the same 

number of levels as there are levels for the fixed effects that are shrunken together: 

parsedFormula <- lFormula(y~1+(1|ridgeGroup)+…) 

Then, we construct the part of the design matrix that corresponds to the shrunken fixed effects 

and perform QR-decomposition 

XridgeGroup <- model.matrix(…) 

QridgeGroup <- qr.Q(qr(XridgeGroup)) 

RridgeGroup <- qr.R(qr(XridgeGroup)) 

Next, we change the part of the design matrix in the parsedFormula that corresponds to the 

shrunken fixed effects: 

parsedFormula$reTrms <- within(parsedFormula$reTrms, 

{Zt[ridgeGroupindices,] <- t(QridgeGroup)}) 

And finally fit the model: 

devianceFunction <- do.call(mkLmerDevfun, parsedFormula) 

optimizerOutput <- optimizeLmer(devianceFunction) 

mRidge <- mkMerMod( 

                   rho = environment(devianceFunction), 

                   opt = optimizerOutput, 

                   reTrms = parsedFormula$reTrms, 

                   fr = parsedFormula$fr) 

When doing inference, the part of the design matrix that was replaced with QridgeGroup, is post-

multiplied with RridgeGroup. A similar procedure to create a single ridge penalty for multiple 

covariates in lm4 models has also exploited by the gamm4 R package [2]. 
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