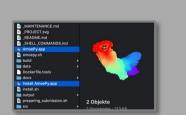


A Python-based toolbox for analyzing and simulating amoeboid cell motility

1. Installation

Requirements: Anaconda/Miniconda (Link)

- Installation via conda command lines^{1,2,3}
 - # Initiatilize conda environment/installing packages \$ cd B02/src
 - \$ conda update conda # Updates conda packages
 - \$ conda env create -n AmoePy -f environment.yml
 - # After installation use following command:
 - \$ cd B02/src
 - \$ conda activate AmoePy
 - \$ python -m run.run amoepy # Alternatively: python3


Alternative 1: Shell script^{1,2}

\$ cd B02

\$ sh install.sh # Also updates conda environmet # After installation use following command: **#** Opens AmoePy \$ sh amoepy.sh

Alternative 2: Amoepy.app¹

Click on "Install Amoepy.app"

After installation click on "Amoepy.app"

² Linux

¹ MacOs

³ Windows

2. Documentation

Help		
GU	I Cheat Sheet	ΣжC
Seg Sim	oePy Documentation gmentation Documentation nulation Documentation I Documentation	て業A て業S て業M て業G

Documentation for the entire AmoePy Code base (Link) is generated by Sphinx

3. Import Contour Data

- Contour data must be imported as *.txt file
- 1st line starts with # and is reserved for comments
- Each line stands for **one contour**, starting with a **time** coordinate followed by alternating X and Y coordinates, representing neighboring segmentation points

	(#	Com	nents	s in	firs	st li	ine	
1	0	0.0	0.0	1.0	0.0	1.0	1.0	
	1	0.0	0.1	1.0	0.1	1.0	1.1	
2	2	0.0	0.2	1.0	0.2	1.0	1.2	
	3	0.1	0.2	1.1	0.2	1.1	1.2	
↓	4	0.2	0.2	1.2	0.2	1.2	1.2	

Creating file from NumPy array:

Paths of example contour data:

b02-data/keratocyte data/original data

B02/data/testing data

Alternating X and Y (μm)

b02-data/dictyostelium data 2016/original data

'' (spaces) and line breaks File format: *.txt

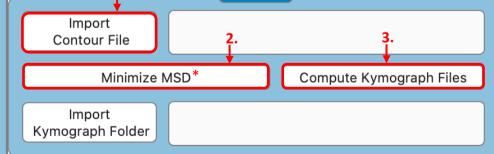
Delimiters:

Prerequisites: Equal number of points for all contours

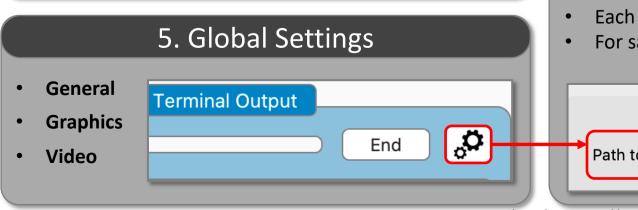
D. discoideum

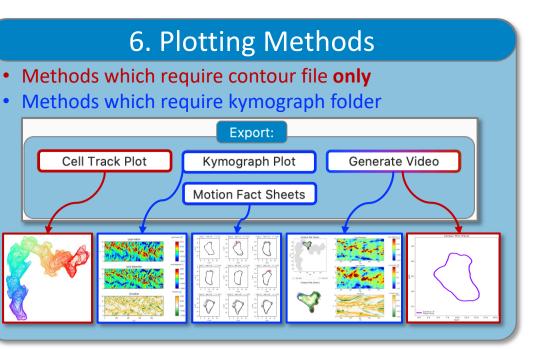
D. discoideum

Hypsophrys nicaraguensis


Conventional (Smoothed) Varying arc length (double-sided) Varying arc length (one-sided)

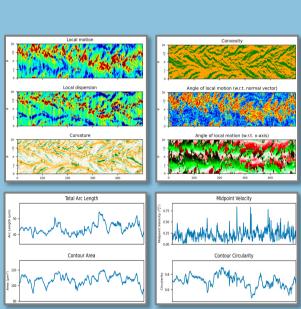
Local Motion Local Dispersion Curvature Convexity Shape Angle (x-axis) Angle (norm. vector) Fluorescence Intensity **Protrusion Component** Perimeter Area Circularity Midpoint velocity MSD (centroid) RMSD (centroid) 8. Video Settings Each frame will be saved as **png** For saving a video file, FFmpeg (Link) is required




b02-data/embryonic killifish data/original data Fundulus heteroclitus

np.savetxt('contour.txt', data, delimiter=' ', header='comments ...')

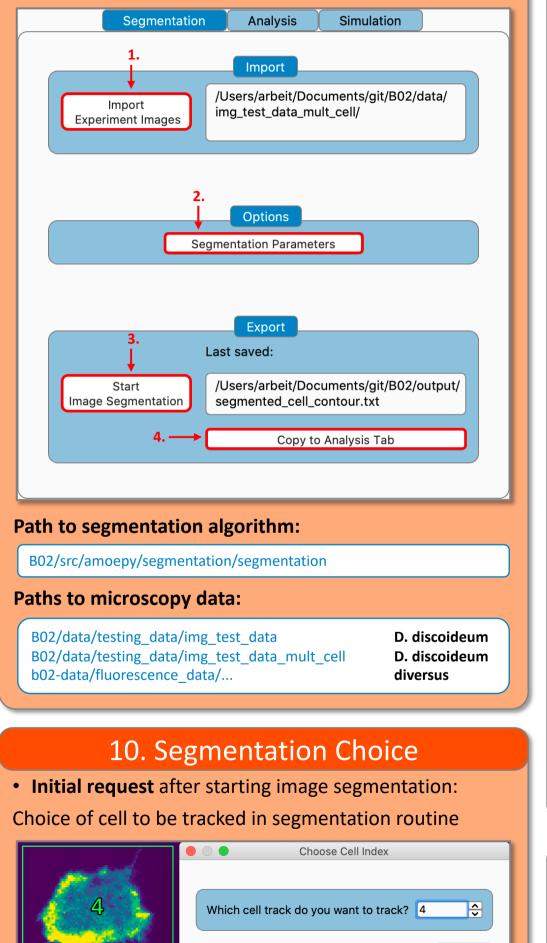
* Pre-sorting virtual markers based on Mean Square Displacement (recommended)



7. Kymograph Options

Kymograph Styles:

Kymograph Kinds:

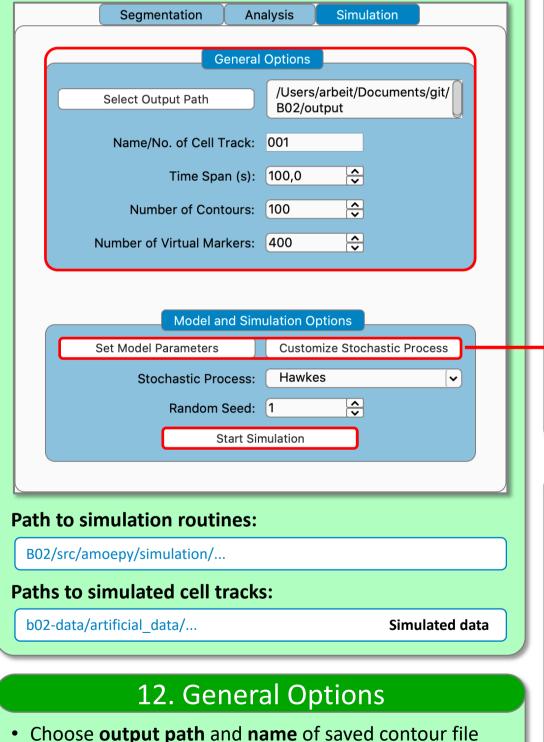


_	General	Grap	hics	Video		_
to FFmp	eg:		/usr/le	ocal/bin/f	fmpeg	ā

Cheat sheet created by Daniel Schindler (dschindler@uni-potsdam.de), Lena Lindenmeier, Ted Moldenhawe

9. Image Segmentation

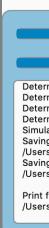
- Extract cell contours from microscopy images
- Required file format: .png, .tif, .tiff



OK

11. Simulating Cell Tracks

- Simulate cell tracks based contour morphing model
- Choice between two stochastic processes:
 - 1. Hawkes process
 - 2. Ornstein-Uhlenbeck process
- Animation of contour dynamics during simulation
- Final step: Cotour data of simulated cell track is saved


as *.txt file and is loaded to the analysis tab

• Select time span of cell track (in seconds), number of contours and number of virtual markers per contour

 σ_{n}

WAPCS

13. Advanced Options

Model Parameters:

 Select parameters regarding the contour smoothing and the regularization of the virtual marker flow Define contour size by choosing a reference area Select individual weights for each model component

Customize stochastic process:

• Select stochastic process to be used for simulations • Customize the stochastic process by changing parameters and modifications

Random seeds: Change outcome of cell tracks by choosing different random seeds

Simu	lation Preferences			_	nulation Preferences		
Co	ntour Parameters		λ_0	$\left(\frac{1}{5}\right)$	Hawkes Process Background Intensity:	1,00	÷
	GPR Smoothing:	0,60	α	$\binom{1}{5}$	Arrival Intensity:	0,40	÷
	GPR Noise:	0,01	β	$\left(\frac{1}{s}\right)$	Exponential Decay Rate:	0,50	÷
$\left(\frac{\mu m^2}{s^2}\right)$	Regularization:	10,00	κ _M		Spatial von Mises concentra	100,00	÷
(s ²)			r _{pol}		Polarization:	0,00	÷
(µm²)	Reference Area:	80,00 🗘		Ornst	ein-Uhlenbeck Process		
_			a	$\left(\frac{1}{s}\right)$	Mean Reversion Rate:	0,05	÷
	Model Weights		Ь	$\left(\frac{1}{s^2}\right)$	Diffusion Rate:	1,00	÷
$\frac{\mu m}{s}$	Protrusion weight:	10,00 🗘	rinn		Corr. Length of Innovations:	0,50	÷
$\left(\frac{\mu m}{s}\right)$	APCSF weight:	0,10	r _{pol}		Polarization:	0,00	÷
5)	A COL Weight.		Modification:		Exponential 🗸		
$\left(\frac{\mu m}{s}\right)$	AAF weight:	1,00 🗘	Clin		Linear Shift:		÷
			β_{\log}		Logistic Growth Rate:		÷
	Cano	el Save	Reset)	Cance	el S	ave

14. Progress Bar/Terminal Output

Please, look carefully at the terminal output!

F	Progress Bar and Terminal Output	End	Ç
mining Contour: 6 / 10 mining Contour: 7 / 10 mining Contour: 8 / 11 mining Contour: 9 / 10 ation done! g final contour data to s/arbeit/Documents/gi g list of parameters to s/arbeit/Documents/gi inal simulation fact sh s/arbeit/Documents/gi	0 0 0 it/B02/output/001 :: it/B02/output/001/_parameters_001.txt neets in:		

Cheat sheet created by Daniel Schindler (dschindler@uni-potsdam.de), Lena Lindenmeier, Ted Moldenhawer