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Abstract. We introduce a general framework for nonlinear stochastic gradient descent (SGD)
for the scenarios when gradient noise exhibits heavy tails. The proposed framework subsumes several
popular nonlinearity choices, like clipped, normalized, signed or quantized gradient, but we also con-
sider novel nonlinearity choices. We establish for the considered class of methods strong convergence
guarantees assuming a strongly convex cost function with Lipschitz continuous gradients under very
general assumptions on the gradient noise. Most notably, we show that, for a nonlinearity with
bounded outputs and for the gradient noise that may not have finite moments of order greater than
one, the nonlinear SGD’s mean squared error (MSE), or equivalently, the expected cost function’s
optimality gap, converges to zero at rate O(1/tζ), ζ ∈ (0, 1). In contrast, for the same noise setting,
the linear SGD generates a sequence with unbounded variances. Furthermore, for general nonlin-
earities that can be decoupled component wise and a class of joint nonlinearities, we show that the
nonlinear SGD asymptotically (locally) achieves a O(1/t) rate in the weak convergence sense and
explicitly quantify the corresponding asymptotic variance. Experiments show that, while our frame-
work is more general than existing studies of SGD under heavy-tail noise, several easy-to-implement
nonlinearities from our framework are competitive with state-of-the-art alternatives on real data sets
with heavy tail noises.
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1. Introduction. Stochastic gradient descent (SGD) and its variants, e.g., [27,
16, 23, 35, 25, 12, 24, 7], are popular and standard methods for large scale optimization
and training of various machine learning models, e.g., [5, 6, 31, 8]. Recently, there have
been several studies that demonstrate that the gradient noise in SGD is heavy-tailed,
e.g., when training deep learning models [32, 17, 37].

Motivated by these studies, we introduce a general analytical framework for non-
linear SGD when the gradient evaluation is subject to a heavy-tailed noise. We combat
the gradient noise with a generic nonlinearity that is applied on the noisy gradient to
effectively reduce the noise effect. The resulting class of nonlinear methods subsumes
several popular choices in training machine learning models, including normalized
gradient descent and clipped gradient descent, e.g., [28, 36], the sign gradient, e.g.,
[4, 2], and (component-wise) quantized gradient, e.g., [1, 18].1

We establish for the considered class of methods several results that demonstrate a
high degree of robustness to noise under very general assumptions on the nonlinearity
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1Interestingly, some of these nonlinear methods are usually introduced with a different motivation
than robustness, like, e.g., speeding up training, see, e.g., [36], or communication efficiency, [2, 4].
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and on the gradient noise, assuming a strongly convex cost with Lipschitz continuous
gradient. First, for a nonlinearity with bounded outputs (e.g., a sign, normalized,
or clipped gradient) and the gradient noise that may have infinite moments of order
greater than one, assuming that the noise probability density function (pdf) is sym-
metric, we show that the nonlinear SGD converges almost surely to the solution, and,
moreover, achieves a global O(1/tζ) mean squared error (MSE) convergence rate,
where we explicitly quantify the degree ζ ∈ (0, 1). In the same setting, the linear
SGD generates a sequence with unbounded variances at each iteration t. Further-
more, assuming the gradient noise with finite variance, we show – for the unbounded
nonlinearities that are lower bounded by a linear function – almost sure convergence
and the O(1/t) global MSE rate.

Next, for the general nonlinearities with bounded outputs that can be decoupled
component-wise and a restricted class of joint nonlinearities with bounded outputs,
we show under the heavy-tail noise a local (asymptotic) O(1/t) rate in the weak con-
vergence sense. More precisely, we show that the sequence generated by the nonlinear
SGD is asymptotically normal and explicitly quantify the asymptotic variance. Fi-
nally, we illustrate the results on several examples of the nonlinearity and the gradient
noise pdf, highlighting and quantifying the noise regimes and the corresponding gains
of the nonlinear SGD over the linear SGD scheme. In more detail, the asymptotic
variance expression reveals an interesting tradeoff that the nonlinearity makes on the
algorithm performance: on the one hand, the nonlinearity suppresses the noise effect
to a certain degree, but on the other hand it also reduces the “useful information flow”
and hence slows down convergence with respect to the noiseless case. We explicitly
quantify this tradeoff and demonstrate through examples that an appropriately cho-
sen nonlinearity strictly improves performance over the linear scheme in a high noise
setting. Finally, we carry out numerical experiments on several real data sets that
exhibit heavy tail gradient noise effects. The experiments show that, while our ana-
lytical framework is more general than usual studies of SGD under heavy-tail noise,
several easy-to-implement example nonlinearities of our framework – including those
not previously used – are competitive with state-of-the-art alternatives.

Technically, for component-wise nonlinearities and the asymptotic analysis, we
develop proofs based on stochastic approximation arguments, e.g., [26], following the
noise and nonlinearities assumptions framework similar to [30]. The paper [30] is con-
cerned with a related but different problem than ours: it considers linear estimation
of a vector parameter observed through a sequence of scalar observation equations,
and it is not concerned with a global MSE rate analysis that we provide here. For the
MSE analysis and for the nonlinearities that cannot be expressed component-wise,
like the clipped and normalized gradient, we develop novel analysis techniques.

There have been several works that study robustness of stochastic gradient de-
scent under certain variants of heavy-tailed noises. Reference [37] consider an adap-
tive gradient clipping method and establish convergence rates in expectation for the
considered method under a heavy-tailed noise. For this, the authors assume that
the expected value of the norm of the gradient noise raised to power α is finite, for
α ∈ (1, 2]. They also provide lower complexity bounds for SGD methods assuming in
addition that the expected α-power of the norm of the stochastic gradient is finite.
The paper [32] establishes convergence of the linear SGD assuming that the gradient
noise follows a heavy-tailed α-stable distribution.

It is worth noting that, in addition to the MSE (expected optimality gap) results
achieved here, it is also of interest to derive high probability bounds. Specifically,
given a target accuracy ϵ > 0 and a confidence level 1 − β, β ∈ (0, 1), we would like
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to find T (ϵ, β) such that f(xt) − f(x⋆) ≤ ϵ with probability at least 1 − β, for all
iterations t ≥ T (ϵ, β). Application of the Markov inequality to our result E[ f(xt) −
f(x⋆) ] = O(1/tζ) yields, abstracting dependencies on other system parameters, a
bound T (ϵ, β) ∼ 1

(β ϵ)1/ζ
. This involves a strong dependence on β, on the order 1/β1/ζ .

Several works, e.g., [13, 14, 19, 15, 11], establish high probability bounds where T (ϵ, β)
depends logarithmically on β for the settings therein. For example, references [13,
14] establish high probability bounds for the stochastic gradient methods therein
assuming that the gradient noise has light tails (sub-Gaussian noise). The authors
of [19] establish the corresponding bounds for the basic SGD and the mirror descent
that utilize a gradient truncation technique. They relax the noise sub-Gaussianity
assumption and assume a finite noise variance. Very recently, [15] establishes high
probability bounds for accelerated SGD with a clipping nonlinearity, but assuming
a finite variance of the gradient noise. Reference [11] proposes a procedure called
proxBoost and establishes for the procedure high probability bounds, again assuming a
finite noise variance (without the sub-Gaussianity assumption). It is highly relevant to
investigate high probability bounds for the problem setting and the algorithmic class
considered in this paper. Of special interest is to provide high probability bounds for
a broader class of nonlinearities than the usually studied clipping-type nonlinearities;
this is an interesting future work direction.

In summary, with respect to existing work, our framework is more general with
respect to both the adopted nonlinearity in SGD and the “thickness” of the gradi-
ent noise tail, assuming in addition that the noise pdf is a symmetric function. For
example, current works usually assume a single choice for the nonlinearity, e.g., gra-
dient clipping, while we consider a general nonlinearity that subsumes many popular
choices. Also, provided that the nonlinearity’s output is bounded (which is true for
many popular choices like the clipped, signed, and normalized gradient), we establish
a sublinear MSE convergence rate O(1/tζ) assuming only that the expected norm of
the gradient noise is finite, an assumption weaker than those considered in the works
of [15, 37, 11, 32]. On the other hand, we assume a strongly convex smooth cost func-
tion, which is equivalent to or stronger than the assumptions made in these works.
See also Examples 3.2 and 3.3. ahead for further rate comparisons with existing work.

The idea of employing a nonlinearity into a “baseline” linear scheme has also been
used in other contexts. Most notably, several works consider nonlinear versions of the
standard consensus algorithm to evaluate average of scalar values in a distributed
fashion, e.g., [22, 33, 10]. The paper [22] introduces a trigonometric nonlinearity
into a standard linear consensus dynamics and shows an improved dependence of the
method on initial conditions. References [33] and [10] employ a general nonlinearity
in the linear consensus dynamics and show that it improves the method’s resilience
to additive communication noise. The authors of [34] modify the linear consensus by
taking out from the averaging operation the maximal and minimal estimates among
the estimates from all neighbors of a node. The above works are different from
ours as they focus on the specific consensus problem that can be translated into
minimizing a convex quadratic cost function in a distributed way over a generic,
connected network. In contrast, we consider general strongly convex costs, and we
are not directly concerned with distributed systems.

Paper organization. Section 2 describes the problem model and the nonlinear
SGD framework that we assume. Section 3 and Section 4 explain our results on
nonlinear SGD for component-wise and joint nonlinearities, respectively. Section 5
and Section 6 then provide proofs of the corresponding results. Section 7 illustrates
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the performance of several example methods from our nonlinear SGD framework on
real data sets that have heavy-tail gradient noise. Finally, Section 8 concludes the
paper. Some auxiliary results and proofs are delegated to the Appendix.

Notation. We denote by R and R+, respectively, the set of real numbers and real
nonnegative numbers, and by Rm the m-dimensional Euclidean real coordinate space.
We use normal (lower-case or upper-case) letters for scalars, lower-case boldface letters
for vectors, and upper case boldface letters for matrices. Further, we denote by: ai or
[a]i, as appropriate, the i-th element of vector a; Aij or [A]ij , as appropriate, the entry
in the i-th row and j-th column of a matrix A; A⊤ the transpose of a matrix A; and
trace(A) the sum of diagonal elements of A. Further, we use either a⊤b or ⟨a, b⟩ for
the inner product of vectors a and b. Next, we let I and 0 be, respectively, the identity
matrix and the zero matrix; ∥ · ∥ = ∥ · ∥2 the Euclidean (respectively, spectral) norm
of its vector (respectively, matrix) argument; ϕ′(w) the first derivative evaluated at w
of a function ϕ : R → R; ∇h(w) and ∇2h(w) the gradient and Hessian, respectively,
evaluated at w of a function h : Rm → R; P(A) and E[u] the probability of an event A
and expectation of a random variable u, respectively; and by sign(a) the sign function,
i.e., sign(a) = 1, for a > 0, sign(a) = −1, for a < 0, and sign(0) = 0. Finally, for
two positive sequences ηn and χn, we have: ηn = O(χn) if lim supn→∞

ηn
χn

< ∞;

ηn = Ω(χn) if lim infn→∞
ηn
χn

> 0; and ηn = Θ(χn) if ηn = O(χn) and ηn = Ω(χn).

2. Problem Model and the nonlinear SGD Framework. We consider the
following unconstrained problem:

minimize f(x),(2.1)

where f : Rd 7→ R is a convex function.
We make the following standard assumption.

Assumption 1. Function f : Rd 7→ R is strongly convex with strong convexity
parameter µ > 0, and it has Lipschitz continuous gradient with Lipschitz constant L ≥
µ.

For asymptotic results (see ahead Theorems 3.1 and 3.3), we will also require the
following assumption.

Assumption 2. Function f : Rd 7→ R is twice continuously differentiable.

Under Assumption 1, problem (2.1) has a unique solution, which we denote by
x⋆ ∈ Rd.

In machine learning settings, f can correspond to the risk function, i.e.,

(2.2) f(x) = Ed∼P [ ℓ (x;d) ] +R(x).

Here, P is the (unknown) distribution from which the data samples d ∈ Rq are
drawn; ℓ(·; ·) is a loss function that is smooth and convex in its first argument for any
fixed value of the second argument; and R : Rd 7→ R is a smooth strongly convex

regularizer. Similarly, f can be empirical risk, i.e., f(x) = 1
n

(∑n
j=1 ℓ (x;dj)

)
+R(x),

where dj , j = 1, ..., n, is the set of training data points. Several machine learning
models fall within the described framework under Assumptions 1–2, including, e.g.,
ℓ2-regularized quadratic and logistic losses.

We introduce a general framework for nonlinear SGD methods to solve prob-
lem (1); an algorithm within the framework takes the following form:

(2.3) xt+1 = xt − αtΨ(∇f(xt) + νt).
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Here, xt denotes the solution estimate at iteration t, t = 0, 1, ...; Ψ : Rd 7→ Rd is
a general nonlinear map; αt > 0 is the employed step size; νt ∈ Rd is a zero-mean
gradient noise; and x0 is an arbitrary deterministic point in Rd.

We will specify further ahead the assumptions that we make on the step size αt,
the map Ψ and the noise νt. Some examples of commonly used maps Ψ that fall
within our framework are the following:

1. Sign gradient: [Ψ(w)]i = sign(wi), i = 1, ..., d;
2. Component-wise clipping: [Ψ(w)]i = wi, for |wi| ≤ m; [Ψ(w)]i = m, for
wi > m, and [Ψ(w)]i = −m, for wi < −m, for some constant m > 0.

3. Component-wise quantization: for each i = 1, ..., d, we let [Ψ(w)]i = rj , for
wi ∈ (qj−1, qj ], j = 1, ..., J , where −∞ = q0 < q1 < ... < qJ = +∞, J is a
positive integer, and the rj ’s and qj ’s are chosen such that each component
nonlinearity is an odd function, i.e., [Ψ(w)]i = −[Ψ(−w)]i, for each i and for
each w;

4. Normalized gradient: Ψ(w) = w
∥w∥ , for w ̸= 0, and Ψ(0) = 0;

5. Clipped gradient: Ψ(w) = w, for ∥w∥ ≤ M , and Ψ(w) = w
∥w∥ M , for

∥w∥ > M , for some constant M > 0.
Other nonlinearity choices are also introduced ahead (see Section 7).
We next discuss the various possible sources of the gradient noise νt. First, the

noise may arise due to utilizing a search direction with respect to a data sample. That
is, a common search direction in machine learning algorithms is the gradient of the loss
with respect to a single data point di

2: gi(x) = ∇ℓ (x;di)+∇R(x). In case of the risk
function (2.2), di is drawn from distribution P ; in case of the empirical risk, di can
be, e.g., drawn uniformly at random from the set of data points dj , j = 1, ..., n, with
repetition along iterations. In both cases, the corresponding gradient noise equals
ν = gi(x) −∇f(x). Several recent studies indicate that noise ν exhibits heavy tails
on many real data sets, e.g, [32, 17, 37]. (See also Section 7).

We also comment on other possible sources of gradient noise. The noise may
be added on purpose to the gradient ∇f(x) for improving privacy of an SGD-based
learning process, e.g., [29]. Also, the noise νt may model random computational
perturbations or inexact calculations in evaluating a gradient ∇f(x).

3. Main results: Component-wise Nonlinearities. Section 3 provides anal-
ysis of the nonlinear SGD method for component-wise nonlinearities. That is, we
consider here maps Ψ : Rd 7→ Rd of the form Ψ(w1, ..., wd) = (Ψ(w1), ...,Ψ(wd))

⊤,
for any w ∈ Rd, where (somewhat abusing notation) we denote by Ψ : R 7→ R the
component-wise nonlinearity. In this setting, we establish for (2.3) almost sure con-
vergence and evaluate the MSE convergence rate and the asymptotic covariance of
the method. In more detail, we consider a probability space (Ω,F , P ), where ω ∈ Ω is
a canonical element. For each t = 0, 1, ..., νt : Ω 7→ Rd is a random vector defined on
(Ω,F , P ). We also denote by Ft, t = 0, 1, ..., the σ-algebra generated by random vec-
tors {νs}, s = 0, ..., t. Clearly, in view of (2.3), xt+1 is measurable with respect to Ft,
t = 0, 1, ...We make the following assumptions; they follow the noise and nonlinearity
framework similar to [30].

Assumption 3 (Gradient noise). For the gradient noise random vector sequence
{νt} in (2.3), t = 0, 1, ..., νt ∈ Rd, we assume the following.

1. The sequence of random vectors {νt} is independent identically distributed

2Similar considerations hold for a loss with respect to a mini-batch of data points; this discussion
is abstracted for simplicity.
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(i.i.d.) Also, random variables νti are mutually independent across i = 1, ...d;
2. Each component νti , i = 1, ..., d, of vector νt = (νt1, ..., ν

t
d)

⊤ has a probability
density function p(u), p : R 7→ R+.

3. The pdf p is symmetric, i.e., p(u) = p(−u), for any u ∈ R with
∫
|u|p(u)du <

+∞, and p(u) > 0 for |u| ≤ cp, for some constant cp > 0.

Note that Assumption 3 implies that νt is zero-mean, for all t, and that νt and xt

are mutually independent, for all t. For a class of unbounded nonlinearities Ψ that
obey Assumption 6 ahead, we will additionally require the following.

Assumption 4. The gradient noise variance σ2
ν =

∫ +∞
−∞ u2p(u)du < +∞.

Assumption 3 requires that the noise vector is i.i.d. across its components i = 1, ..., d
which may be restrictive in certain scenarios. For the global MSE analysis, these
assumptions can be relaxed; see ahead the remark after Theorem 3.2 and Appendix C.

Regarding noise pdf p(u), except for strictly positivite values in the vicinity of
zero (a very mild assumption), we require that the noise pdf is symmetric. Examples
of the distributions that satisfy Assumption 3 include, e.g., a Gaussian zero-mean pdf
or a Laplace zero-mean pdf with strictly positive variances, and heavy-tail zero-mean
symmetric α-stable distributions [3]. 3 On the other hand, p(u) may not be symmetric
if, e.g., it is a mixture of some standard distributions. For example, consider random
variable ν that is sampled from N(−m1, σ

2) with probability p = m2

m1+m2
and it is

sampled from N(m2, σ
2) with probability 1− p, for some m1 ̸= m2, m1,m2 > 0, and

σ > 0. Then, clearly, ν is zero-mean but does not have a symmetric pdf.

Assumption 5 (Nonlinearity Ψ). Function Ψ : R 7→ R is a continuous (except
possibly on a point set with Lebesgue measure of zero), monotonically non-decreasing
and odd function, i.e., Ψ(−w) = −Ψ(w), for any w ∈ R. Moreover, Ψ is piece-wise
differentiable. Finally, Ψ is either discontinuous at zero, or Ψ(u) is strictly increasing
for u ∈ (−cΨ, cΨ), for some cΨ > 0.

In addition, we impose one of the Assumptions 6 or 7 below.

Assumption 6. |Ψ(w)| ≤ C1 (1+ |w|), for any w ∈ R, for some constant C1 > 0.

Assumption 7. |Ψ(w)| ≤ C2, for some constant C2 > 0.

Assumption 3 and Assumption 5 are imposed throughout the paper. Assumption 4
is imposed when Assumption 6 holds, i.e., for the nonlinearities Ψ that can have un-
bounded outputs. When Assumption 7 is imposed, then Assumption 4 is not required.

Note that, provided that Assumption 7 holds, we require only a finite first moment
of the gradient noise, while the moments of α-order, α > 1, may be infinite, hence
allowing for heavy-tail noise distributions. For example, the gradient noise variance
can be infinite. Assumption 5 holds for several interesting component-wise nonlinear-
ities, like, e.g., the sign gradient, component-wise clipping, and quantization schemes
introduced in Section 2. Note also that Assumption 5 encompasses a broad range of
component-wise nonlinearities, beyond the examples in Section 2. (For example, see
Section 7 for the tanh and a bi-level quantization nonlinearity.)

Let us define function ϕ : R 7→ R, as follows. For a fixed (deterministic) point
w ∈ R, ϕ(w) is defined by:

(3.1) ϕ(w) = E
[
Ψ(w + ν01)

]
=

∫
Ψ(w + u)p(u)du,

3A random variable Z has a symmetric α-stable zero-mean distribution with scale parameter
σ > 0 if its characteristic function takes the form: E [exp(i uZ)] = exp(−σα|u|α), u ∈ R, α ∈ [0, 2].
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where the expectation is taken with respect to the distribution of a single entry of
the gradient noise at any iteration, i.e., with respect to pdf p(u). Intuitively, the
nonlinearity ϕ is a convolution-like transformation of the nonlinearity Ψ, where the
convolution is taken with respect to the gradient noise pdf p(u). As we will see
ahead, the nonlinearity ϕ plays an effective role in determinining the performance
of algorithm (2.3). We now state the main results on (2.3) with component-wise
nonlinearities, including the results on a.s. convergence, MSE rate, and asymptiotic
normality. We start with the following Theorem that establishes a.s. convergence.

Theorem 3.1 (Almost sure convergence: Component-wise nonlinearity). Con-
sider algorithm (2.3) for solving optimization problem (2.1), and let Assumptions
1, 2, 3, 5, and 7 hold. Further, let the positive step-size sequence {αt} be square
summable, non-summable:

∑
αt = +∞;

∑
α2
t < +∞. Then, the sequence of iterates

{xt} generated by algorithm (2.3) converges almost surely to the solution x⋆ of the
optimization problem (2.1). Moreover, the result holds if Assumption 7 is replaced
with Assumption 6, and Assumption 4 is additionally imposed.

Theorem 3.1 establishes a.s. convergence of the nonlinear SGD scheme (2.3)
under a general setting for the component-wise nonlinearities and gradient noise. For
example, provided that the output of the nonlinearity Ψ is bounded, algorithm (2.3)
converges even when the gradient noise may not have a finite α-moment, for any α > 1.
(Hence it may have an infinite variance). In contrast, as shown in Appendix B, the
linear SGD (algorithm (2.3) with Ψ being the identity function) generates a sequence
of solution estimates with infinite variances, provided that the variance of p(u) is
infinite.

Fig. 3.1: Illustration of Theorem 3.1: estimated MSE versus iteration counter for
the nonlinear SGD in (2.3) with component-wise sign nonlinearity (blue line) and the
linear SGD (red line).

Example 3.1. Figure 3.1 illustrates Theorem 3.1 with a simulation example.
We consider a strongly convex quadratic function f : Rd 7→ R, f(x) = x⊤Ax+ b⊤x,
where A ∈ Rd×d is a (symmetric) positive definite matrix, d = 16, and quantities
A,b are generated at random. We consider algorithm (2.3) with the component-wise
sign nonlinearity and the linear SGD. The gradient noise has a heavy-tailed pdf given
by:

(3.2) p(u) =
α− 1

2(1 + |u|)α
,
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for u ∈ R and α > 2. Note that the distribution (3.2) does not have a finite α − 1
moment and has finite moments of r-th order for r < α − 1. We set in simulation
α = 2.05. Note that, in this case, the gradient noise has infinite variance. We initialize
both the linear and nonlinear algorithm with x0 = 0, and we let step size αt =

1
t+1 .

Figure 3.1 shows an estimate of MSE, i.e., of the quantity E[∥xt−x⋆∥2], obtained by
averaging results from 100 sample paths. The red line corresponds to the linear SGD,
while the blue line corresponds to the nonlinear SGD with the component-wise sign
nonlinearity. As predicted by Theorem 3.1, the nonlinear SGD drives the MSE to
zero, while the linear SGD does not seem to provide a meaningful solution estimate
sequence.
We next establish the mean square error (MSE) convergence rate of algorithm (2.3).

Theorem 3.2 (MSE convergence: Component-wise nonlinearity). Consider al-
gorithm (2.3) for solving optimization problem (2.1), and let Assumptions 1, 3, 5,
and 7 hold. Further, let the step-size sequence {αt} be αt = a/(t + 1)δ, a > 0,
δ ∈ (0.5, 1). Then, for the sequence of iterates {xt} generated by algorithm (2.3), it
holds that E

[
∥xt − x⋆∥2

]
= O(1/tζ), or equivalently, E [f(xt)− f⋆] = O(1/tζ). Here,

ζ < 1 is any positive number such that ζ < min
(
2δ − 1, a (1−δ)ξ ϕ′(0)µ

L (aC2

√
d+∥x0−x⋆∥)

)
, and

constant ξ > 0 is such that ϕ(a) ≥ ϕ′(0)
2 a, for any a ∈ [0, ξ). Furthermore, let As-

sumptions 1, 3, 5, and 6, and 4 hold, let αt =
a

(t+1)δ
, δ ∈ (0.5, 1], and assume that

infa ̸=0
|Ψ(a)|
|a| > 0. Then, there holds that E

[
∥xt − x⋆∥2

]
= O(1/tδ), or equivalently,

E [f(xt)− f⋆] = O(1/tδ). In particular, for δ = 1, we obtain the O(1/t) MSE rate.

Remark. The MSE convergence O(1/tζ
′
), for some ζ ′ ∈ (0, 1), continues to hold

under the same set of assumptions as in Theorem 3.2 but with a relaxed version of
Assumption 3, where we no longer require that the gradient noise vector has mutually
independent components. More precisely, we allow for an i.i.d. noise vector sequence
{νt}, νt ∈ Rd, that has a symmetric joint pdf p : Rd 7→ R, p(u) = p(−u), for any
u ∈ Rd, that is strictly positive for ∥u∥ ≤ u0, for some u0 > 0. In that case, effectively,
the role of function ϕ in Theorem 3.2 is replaced by functions w 7→ ϕi(w), w ∈ R,
i = 1, ..., d, where ϕi(w) =

∫
Ψ(w + u)pi(u)du, and pi : R 7→ R is the marginal pdf of

the i-th component associated with the joint pdf p : Rd 7→ R. (See Appendix C.)
For the bounded nonlinearity case (e.g., sign gradient, component-wise clipping,

quantization nonlinearity) and the heavy-tail noise (only the first noise moment
assumed to be finite), the nonlinear SGD (2.3) achieves a global sublinear MSE
rate O(1/tζ), ζ ∈ (0, 1). On the other hand, for the finite variance case and an
unbounded nonlinearity, the nonlinear SGD (2.3) achieves a global MSE rate O(1/t)

provided that infw ̸=0
|Ψ(w)|
|w| > 0. This is the best achievable rate and equal to that of

the linear SGD in the same setting. Furthermore, by Theorem 3.3 ahead, the non-
linear SGD (2.3) with bounded outputs under the heavy-tail noise achieves locally, in
the weak convergence sense, the faster O(1/t) rate. This is again in the setting where
the linear SGD fails.

Example 3.2. We next illustrate the value ζ in Theorem 3.2 on the family
of heavy-tailed pdfs given in (3.2). To be specific, consider the sign nonlinearity
Ψ(w) = sign(w). Then, it is easy to show that: ϕ(w) = 2

∫ w
0
p(u)du, ϕ′(0) = 2 p(0),

ξ ≥ 21/α − 1 ≈ 1
α . Using the above calculations, we can see that, for a large a, ζ can

be approximated as min{2δ − 1, µ
L

1−δ√
d
α−1
α }.

We also compare the rate ζ with the analysis in [37] that is closest to our setting
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with respect to existing work. Modulo the differences in the assumptions of the
assumed settings here and in [37], the rate in [37], when adapted to the noise pdf

in Example 3.1, reads as follows: 2(r−1)
r , where r is any number such that r ≤

min{α− 1, 2}. When compared with ζ, the rate in [37] is clearly better for α above a
threshold. However, as α decreases and approaches the value 2, the rate achieved here

stays bounded away from zero and approaches the quantity: min
{
2δ − 1, 1

2
µ
L

1−δ√
d

}
.

In contrast, the rate in in [37] approaches zero as α approaches 2. 4

Example 3.3. We continue to assume the noise pdf in (3.2), but here we consider
the component-wise clipping nonlinearity Ψ with saturation value m. For simplicity,
we take m > 1, while similar bounds can be obtained for m ≤ 1 as well. It can be
shown that the rate ζ can be estimated as (see Appendix E):

(3.3) min

{
2δ − 1,

µ

L
√
d

(1− δ)(m− 1)(1− (m+ 1)−α)

m

}
.

The above α-dependent estimate can be replaced with a more conservative rate that

holds for any α > 2: min{2δ − 1, µ

L
√
d

(1−δ)(m−1)(1−(m+1)−2)
m }. We again compare

the rate achieved by the proposed method with the rate from [37] that equals: 2(r−1)
r ,

r < min{α − 1, 2}. We can see that the rate in [37] is better than (3.3) for α above
a threshold. On the other hand, when α decreases to 2, the rate of [37] approaches
zero, while (3.3) becomes better and stays bounded away from zero.

We next establish asymptotic normality of (2.3).

Theorem 3.3 (Asymptotic normality: Component-wise nonlinearity). Consider
algorithm (2.3) for solving optimization problem (2.1), and let Assumptions 1, 2,
3, 5, and 7 hold. Further, let the step-size sequence {αt} equal: αt = a/(t + 1),
t = 0, 1, ..., with parameter a > 1

2ϕ′(0)µ . Then, the sequence of iterates {xt} generated

by algorithm (2.3) is asymptotically normal, and there holds:

(3.4)
√
t+ 1(xt − x⋆)

d−→ N(0,S),

where
d−→ designates convergence in distribution. The asymptotic covariance S of the

multivariate normal distribution N(0,S) is given by:

S = a2
∫ ∞

ν=0

eνΣS0e
νΣdν = a2σ2

ψ

[
2aϕ′(0)∇2f(x⋆)− I

]−1
,

where:

S0 = σ2
Ψ I, σ2

Ψ =

∫
|Ψ(v)|2p(v)dv, Σ =

1

2
I− aϕ′(a)∇2f(x⋆).(3.5)

Moreover, the same result holds when Assumption 7 is replaced with Assumption 6,
and Assumption 4 is additionally imposed.

4It is worth noting that reference [37] establishes certain tightness results on the rate achieved
therein, by providing a “hard” problem example where the mean squared error after t iterations is

Ω(1/t
2(r−1)

r ). However, this does not contradict our results due to the different sets of Assumptions
made here and in [37]. Most notably, [37] assumes bounded moments of gradients and allow for
dependence between the current point xt and the gradient noise νt. In fact, the “hard example”
construction in the proof of Theorem 5 in [37] constructs νt as an explicit function of xt.
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Theorem 3.3 establishes asymptotic normality of (2.3) and, moreover, it gives an
exact expression for the asymptotic covariance S in (3.3), that basically corresponds
to the constant in the 1/t variance decay near the solution. The asymptotic covariance
value (3.3) reveals an interesting tradeoff with respect to the effect of the nonlinearity
Ψ. We provide some insights into the tradeoff through examples below.

Example 3.4 Figure 3.2 illustrates Theorem 3.3 for the nonlinear SGD in (2.3)
with component-wise sign nonlinearity and the same simulation setting used for the
numerical illustration of Theorem 3.1 and step-size αt =

10
t+1 . The red line plots quan-

tity t
d∥x

t − x⋆∥2 estimated through 100 sample path runs. This quantity estimates
the constant in the 1/t per-entry asymptotic variance decay, i.e., it is a numerical es-

timate of the per-entry asymptotic variance trace(S)
d , where S is given in Theorem 3.3.

The blue horizontal line marks the value trace(S)
d . We can see that the simulation

matches well the theory.

Fig. 3.2: Illustration of Theorem 3.3: Monte Carlo estimate of per-entry asymptotic
variance (red line) and the theoretical per-entry asymptotic variance in Theorem 3.3
(blue line).

Example 3.5. We compare the linear SGD and the nonlinear SGD with
component-wise clipping. For illustration and simplification of calculations, we con-
sider the special case when ∇2f(x⋆) is a symmetric matrix with all eigenvalues equal
to one. Then, it is straightforward to show that the per-entry asymptotic variance for
the best choice of parameter a over the admissible set of values equals:

(3.6) inf
a> 1

2ϕ′(0)

trace (S) = σ2
Ψ

(ϕ′(0))2
.

Here, for the linear SGD i.e., when Ψ(a) = a, we have that σ2
Ψ =

∫
a2p(a)da equals

the gradient noise (per component) variance σ2
ν , and ϕ

′(0) = 1, and so (3.6) equals σ2
ν .

Now, consider the coordinate-wise clipping, with Ψ(a) = a for |a| ≤ m and Ψ(a) =
sign(a)m, for |a| > m, for some m > 0. Then, we have: σ2

Ψ = m2 − 2
∫m
0
(m2 −

v2)p(v)dv, and ϕ′(0) = 2
∫m
0
p(v)dv. (See Appendix F for the derivation.) Note that

the case m→ ∞ corresponds to the linear SGD case. Consider now the tradeoff with
respect to the choice of m. Clearly, taking a smaller m has a positive effect on the
numerator in (3.6) (it suppresses the noise effect). On the other hand, reducing m
has a negative effect on the denominator in (3.6); that is, it reduces the value ϕ′(0)
– intuitively, it “lowers the quality” of the search direction utilized with (2.3). One
needs to choose the nonlinearity, i.e., the parameter m, optimally, to strike the best
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balance here. Clearly, for larger gradient noise σ2
ν , we should pick a smaller value

of m. Note also that, when σ2
ν is infinite, the linear SGD has an infinite asymptotic

variance in (3.6), while the nonlinear SGD with anym ∈ (0,∞) has a finite asymptotic
variance.

Example 3.6. We continue to assume the simplified setting when the per-entry
asymptotic variance equals (3.6). We consider the sign gradient nonlinearity and
the class of heavy-tail gradient noise distributions in (3.2). It can be shown that
here: σ2

Ψ = 1; σ2
ν = 2

(α−3)(α−2) , for α > 3 and σ2
ν = ∞, else; and ϕ′(0) = α − 1.

(See Appendix G.) Therefore, for the sign gradient, the best achievable per entry
asymptotic variance equals 1

(α−1)2 , while for the linear SGD it equals 2
(α−2)(α−3) for

α > 3, and is infinite for α ∈ (2, 3]. Hence, we can see for the considered example that
the sign gradient outperforms the linear SGD for any α > 2, and the gap becomes
larger as α gets smaller.

Example 3.7. We still consider the simplified setting of (3.6). If the noise pdf
p(u) is known, then, following [30], we can find a globally optimal nonlinarity that
minimizes (3.6) that takes the form: Ψ(a) = − d

da ln(p(a)). The corresponding optimal
asymptotic variance equals the Fisher information associated with the pdf p(u).

4. Main results: Joint Nonlinearities. We now consider algorithm (2.3) for
a nonlinearity Ψ : Rd 7→ Rd that cannot be decoupled into (equal) component wise
nonlinearities Ψ : R 7→ R, as it was possible before. More precisely, we make the
following assumptions on the gradient noise νt and the nonlinear map Ψ : Rd 7→ Rd.
Recall also filtration Ft in Section 3.

Assumption 8. [Gradient noise] For the gradient noise sequence {νt}, we as-
sume the following:

1. The sequence of random vectors {νt} is i.i.d. Moreover, νt has a joint sym-
metric pdf p(u), p : Rd 7→ R, i.e., p(u) = p(−u), for any u ∈ Rd with∫
∥u∥p(u)du <∞;

2. There exists a positive constant B0 such that, for any x ∈ Rd, x ̸= 0, for any
A ∈ (0, 1], there exists λ = λ(A) > 0, such that

∫
JA

p(u)du > λ(A), where

JA = {u ∈ Rd : u⊤x
∥u∥∥x∥ ∈ [0, A], ∥u∥ ≤ B0}.5

Assumption 8 allows for a heavy-tailed noise vector whose components can be
mutually dependent. Condition 2. in Assumption 8 is mild; it says that the joint
pdf p(u) is “non-degenerate” in the sense that, along each “direction” (determined

by arbitrary nonzero vector x), the intersection of the set { u⊤x
∥u∥∥x∥ ∈ [0, A]} and the

ball {∥u∥ ≤ B0} consumes a positive mass of the joint pdf p(u).
We make the following assumption on the joint nonlinearity.

Assumption 9 (Nonlinearity Ψ). The nonlinear map Ψ : Rd 7→ Rd takes the
following form: Ψ(w) = wN (∥w∥), where function N : R+ 7→ R+ satisfies the
following: N is non-increasing and continuous except possibly on a point set with
Lebesgue measure of zero with N (q) > 0, for any q > 0. The function qN (q) is
non-decreasing.

In addition, we assume that either Assumption 10 or Assumption 11 holds.

Assumption 10. ∥Ψ(w)∥ ≤ C ′
2, for any w ∈ Rd, for some C ′

2 > 0.

5The integration set JA also includes the point u = 0. In other words, for compact notation here

and throughout the paper, we write u⊤x
∥u∥∥x∥ ∈ [0, A] instead of 0 ≤ u⊤x ≤ A ∥u∥∥x∥.
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0 10000 20000 30000 40000 50000
Number of passes through the data

10−5

10−4

10−3

10−2

10−1

100

f(x
k )

−
f(x

* )
f(x

0 )
−
f(x

* )

australian
SGD
clipped-SGD
d-clipped-SGD
clipped-SSTM
SSTM
nonlinear_sign
nonlinear_tanh
nonlinear_quantizer

(a)

0 2000 4000 6000 8000 10000
Number of passes through the data

10−6

10−5

10−4

10−3

10−2

10−1

100

f(x
k )

−
f(x

* )
f(x

0 )
−
f(x

* )

diabetes
SGD
clipped-SGD
d-clipped-SGD
clipped-SSTM
SSTM
nonlinear_sign
nonlinear_tanh
nonlinear_quantizer

(b)

0 2500 5000 7500 10000 12500 15000 17500 20000
Number of passes through the data

10−6

10−5

10−4

10−3

10−2

10−1

100

f(x
k )

−
f(x

* )
f(x

0 )
−
f(x

* )

heart
SGD
clipped-SGD
d-clipped-SGD
clipped-SSTM
SSTM
nonlinear_sign
nonlinear_tanh
nonlinear_quantizer

(c)

Fig. 4.1: Comparison of the optimization algorithms across different datasets

Assumption 11. ∥Ψ(w)∥ ≤ C ′
1(1 + ∥w∥), for any w ∈ Rd, for some C ′

1 > 0

There are many nonlinearities that satisfy the above Assumptions, including the nor-
malized gradient and the clipped gradient discussed in Section 2. If Assumption 11
holds, then we additionally require the following.

Assumption 12. There holds:
∫
∥u∥2p(u)du <∞.

For asymptotic normality in the joint nonlinearity case, we additionally impose
the following.

Assumption 13. Function N : R+ 7→ R is differentiable for any positive argu-
ment, i.e., N ′(a) exists for any a > 0. Furthermore, supa>0 N (a) < +∞.

We first state Theorem 4.1 and Theorem 4.2 on the a.s. convergence and the MSE
rate of algorithm (2.3), respectively; we then illustrate the results with examples.

Theorem 4.1 (A.s. convergence: Joint nonlinearity). Consider algorithm (2.3)
for solving optimization problem (2.1), and let Assumptions 1, 2, 8, 9, and 10 hold.
Further, let the step-size sequence {αt} be square-summable, non-summable. .Then,
for the sequence of iterates {xt} generated by algorithm (2.3), it holds that xt →
x⋆, a.s. Moreover, the result continues to hold if Assumption 10 is replaced with
Assumption 11, and Assumption 12 is additionally imposed.

We now state our MSE rate result for the joint nonlinearity case.

Theorem 4.2 (MSE convergence rate: Joint nonlinearity). Consider algorithm
(2.3) for solving optimization problem (2.1), and let Assumptions 1, 8, 9, and 10 hold.
Further, let the step-size sequence {αt} be αt = a/(t + 1), a > 0, δ ∈ (0.5, 1). Then,
E
[
∥xt − x⋆∥2

]
= O(1/tζ), or equivalently, E [f(xt)− f⋆] = O(1/tζ). Here, ζ ∈ (0, 1)

is any positive number smaller than: min
{
2δ − 1, 4 aµ (1−κ)λ(κ)(1−δ)N (1)

L ( aC′
2+∥x0∥+∥x⋆∥ )+B0

}
, where κ is

an arbitrary constant in (0, 1), and we recall quantities B0 and λ(κ) in Assumption 8;
µ and L in Assumption 1; and C ′

2 in Assumption 9. In alternative, let Assumptions 1,

8, 9, 11, and 12 hold. Let αt =
a

(t+1)δ
, δ ∈ (0.5, 1], and assume that infw ̸=0

∥Ψ(w)∥
∥w∥ >

0. Then, E
[
∥xt − x⋆∥2

]
= O(1/tδ), or equivalently, E [f(xt)− f⋆] = O(1/tδ). In

particular, for δ = 1 and a sufficiently large parameter a, we obtain the O(1/t) MSE
rate.

Example 4.1. We illustrate the rate ζ in Theorem 4.2 for the gradient clipping
nonlinearity with floor level M > 0. We consider an arbitrary joint pdf p : Rd 7→ R+

that has “radial symmetry”, i.e., p(u) = q(∥u∥), where q : R+ 7→ R+ is a given
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function. For example, we let:

(4.1) p(u) = q(∥u∥), q(ρ) = (α− 2)(α− 1)

2π

1

(1 + ρ)α
, ρ ≥ 0, α > 3.

It can be shown that p(u) in (4.1) has finite moments of order r, r < α − 2, and it
has infinite moments for r ≥ α − 2. It holds that (see Appendix H for derivations)
the rate ζ can be estimated as: min

{
2δ − 1, (1− δ) 0.68µL

}
. Hence, up to universal

constants, the rate ζ is approximated as min
{
2δ − 1, (1− δ) µL .

}
. It is easy to see

that the same rate estimate can be obtained for the normalized gradient nonlinearity,
under the same gradient noise setting.

We compare the rate estimate here with the rate for component-wise nonlinearities
(e.g., component-wise clipping in Example 3.3) that is, up to universal constants,

of order min
{
2δ − 1, (1− δ) µ√

dL
.
}
. We can see that, with the joint nonlinearity

examples here, the rate is improved with respect to the component-wise nonlinearities
by a factor

√
d. In other words, the rate estimate for the joint nonlinearities does

not deteriorate with the dimension d increase. This may be intuitively explained
by considering the sign component-wise nonlinearity and the normalized gradient.
These two functions coincide for d = 1 (and this is reflected by the identical rate
estimates we obtain here), but they become different for d > 1 (as also reflected by
our obtained rate estimates). Intuitively, in the noiseless case, the normalized gradient
preserves “more information” about the exact gradient (“true search direction”) than
the component-wise sign function; hence, the difference in the estimated rates.

We now examine asymptotic normality for the joint nonlinearities case. We have
the following theorem.

Theorem 4.3 (Asymptotic normality: Joint nonlinearity). Consider algorithm
(2.3) for solving optimization problem (2.1), and let Assumptions 1, 2, 8, 9, 10,
and 13 hold. Further, let the step-size sequence {αt} equal αt = a/(t + 1), a >

0. Then:
√
t+ 1(xt − x⋆)

d−→ N(0,S). The asymptotic covariance S is given by

S = a2
∫∞
0
evΣS0e

vΣdv, where S0 =
∫
uu⊤ (N (∥u∥))2 p(u)du; Σ = 1 2I+aB; B =

−(
∫
N (∥u∥)p(u)du +

∫
u̸=0

uu⊤

∥u∥ N
′(∥u∥)p(u)du)∇2f(x⋆), and constant a > 0 in the

step-size sequence is taken large enough such that matrix Σ is stable. Moreover, the
result continues to hold if Assumption 10 is replaced with Assumption 11, and As-
sumption 12 is additionally imposed.

Theorem 4.3 shows that asymptotic normality continues to hold for the joint nonlin-
earity case as well, provided that N (a) is differentiable for any a > 0 and that N is
uniformly bounded from above.

5. Intermediate results and proofs: Component-wise nonlinearities.
This section provides proofs of Theorem 3.1, Theorem 3.2, and Theorem 3.3, ac-
companied with the required intermediate results. Subsection 5.1 presents some use-
ful intermediate results on stochastic approximation and deterministic time-varying
sequences; Subsection 5.2 deals with the asymptotic analysis (Theorem 3.1 and The-
orem 3.3); and Subsection 5.3 considers MSE analysis (Theorem 3.2).

5.1. Stochastic approximation and time-varying sequences. We present
a useful result on single time scale stochastic approximation; see [26], Theorems 4.4.4
and 6.6.1.
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Theorem 5.1. Let
{
xt ∈ Rd

}
be a random sequence that satisfies:

(5.1) xt+1 = xt + αt
[
r(xt) + γ

(
t+ 1,xt, ω

)]
,

where, r(·) : Rd 7−→ Rd is Borel measurable and {γ(t,x, ω)}t≥0, x∈Rd is a family

of random vectors in Rd, defined on a probability space (Ω,F ,P), and ω ∈ Ω is a
canonical element. Let the following sets of assumptions hold:
(B1): The function γ(t, ·, ·) : Rd ×Ω −→ Rd is Bd ⊗F measurable for every t; Bd is
the Borel algebra of Rd.
(B2): There exists a filtration {Ft}t≥0 of F , such that, for each t, the family of ran-
dom vectors {γ (t,x, ω)}x∈Rd is Ft measurable, zero-mean and independent of Ft−1.
(B3): There exists a twice continuously differentiable function V (x) with bounded
second order partial derivatives and a point x⋆ ∈ Rd satisfying: V (x⋆) = 0, V (x) > 0,
x ̸= x⋆, lim∥x∥→∞ V (x) = ∞, supϵ<∥x−x⋆∥< 1

ϵ
⟨r (x) ,∇V (x)⟩ < 0, for any ϵ > 0.

(B4): There exist constants k1, k2 > 0, such that,

∥r (x)∥2 + E
[
∥γ (t+ 1,x, ω)∥2

]
≤ k1 (1 + V (x))−

− k2⟨r (x) ,∇V (x)⟩.

(B5): The weight sequence {αt} satisfies αt > 0,
∑
t≥0 αt = ∞,

∑
t≥0 α

2
t <∞.

(C1): The function r (x) admits the representation

(5.2) r (x) = B (x− x⋆) + δ (x) ,

where limx→x⋆
∥δ(x)∥
∥x−x⋆∥ = 0.

(C2): The step-size sequence, {αt} is of the form, αt =
a
t+1 , for any t ≥ 0, where

a > 0 is a constant.
(C3): Let I be the d×d identity matrix and a,B as in C2 and C1, respectively. Then,
the matrix Σ = aB+ 1

2I is stable.
(C4): The entries of the matrices, for any t ≥ 0,x ∈ Rd, A (t,x) = E[γ (t+ 1,x, ω)
γ⊤ (t+ 1,x, ω) ] are finite, and the following limit exists: limt→∞, x→x⋆ A (t,x) = S0.
(C5): There exists ϵ > 0, such that

(5.3) lim
R→∞

sup
∥x−x⋆∥<ϵ

sup
t≥0

∫
∥γ(t+1,x,ω)∥>R

∥γ (t+ 1,x, ω)∥2 dP = 0.

Then we have the following:
Let Assumptions (B1)-(B5) hold for {xt} in (5.1). Then, starting from an

arbitrary initial state, the process {xt} converges a.s. to x⋆.
The normalized process,

{√
t (xt − x⋆)

}
, is asymptotically normal if, besides As-

sumptions (B1)-(B5), Assumptions (C1)-(C5) are also satisfied. In particular, as

t → ∞, we have:
√
t (xt − x⋆)

d−→ N(0,S). Also, the asymptotic covariance S of the

multivariate Gaussian distribution N(0,S) is S = a2
∫∞
0
evΣ S0e

vΣ⊤
dv.

Proof. For a proof see [26] (c.f. Theorems 4.4.4, 6.6.1).

We also make use of the following Theorem, proved in Appendix A; see also
Lemmas 4 and 5 in [21].

Theorem 5.2. Let zt be a nonnegative (deterministic) sequence satisfying:

zt+1 ≤ (1− rt1) z
t + rt2,
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for all t ≥ t′, for some t′ > 0, with some zt
′ ≥ 0. Here, {rt1} and {rt2} are deterministic

sequences with a1
(t+1)δ1

≤ rt1 ≤ 1 and rt2 ≤ a2
(t+1)δ2

, with a1, a2 > 0, and δ2 > δ1 > 0.

Then, the following holds: (1) If δ1 < 1, then zt = O( 1
tδ2−δ1

); (2) If δ1 = 1, then

zt = O( 1
tδ2−1 ) provided that a1 > δ2 − δ1; (3) if δ1 = 1 and a1 ≤ δ2 − 1, then

zt = O( 1
tζ
), for any ζ < a1.

5.2. Asymptotic analysis: Proofs of Theorem 3.1 and Theorem 3.3. The
next Lemma, due to [30], establishes structural properties of function ϕ in (3.1). The
Lemma says that essentially, the convolution-like transofrmation of the nonlinearity
preserves the structural properties of the nonlinearity. For a proof of the Lemma, see
Appendix D.

Lemma 5.3. [30] Consider function ϕ in (3.1), where function Ψ : R 7→ R
satisfies Assumption 5, and noise pdf p : R 7→ R+ satisfies Assumption 3. Then, the
following holds.

1. ϕ is odd;
2. If in addition Assumption 7 holds, then |ϕ(a)| ≤ K2, for any a ∈ R, for some

constant K2 > 0;
3. If in addition Assumption 6 holds, then |ϕ(a)| ≤ K1(1 + |a|), for any a ∈ R,

for some constant K1 > 0;
4. ϕ(a) is monotonically nondecreasing;
5. If in addition either Assumption 6 or Assumption 7 holds, then ϕ is differ-

entiable at zero, with a strictly positive derivative at zero, equal to:

(5.4) ϕ′(0) =

s∑
i=1

(Ψ(νi + 0)−Ψ(νi − 0)) p(νi) +

s∑
i=0

∫ νi+1

νi

Ψ′(ν)p(ν)dν,

where νi, i = 1, ..., s are points of discontinuity of Ψ such that ν0 = −∞ and
νs+1 = +∞.

Remark. In view of (5.4), we highlight the need that p(u) is strictly positive in
the vicinity of zero and that Ψ is either discontinuous at zero or strictly increasing
in the vicinity of zero, in order for ϕ′(0) to be strictly positive. (see Assumptions 3
and 5.) Consider the following counterexample: Ψ(u) = sign(u), where p corresponds
to the uniform distribution on the set (−u2,−u1) ∪ (u1, u2), for 0 < u1 < u2. Note
that p is zero in the vicinity of zero. Then, by (5.4), ϕ′(0) = 0.

We proceed by setting up the proof of Theorem 3.1. The proof relies on conver-
gence analysis of single-time scale stochastic approximation methods from [26]; more
precisely, we utilize Theorem 5.1 in the Appendix; see also [20].

We first put algorithm (2.3) in the format that complies with Theorem 5.1.
Namely, algorithm (2.3) can be written as:

(5.5) xt+1 = xt + αt
[
r(xt) + γ(t+ 1,xt, ω)

]
.

Here, ω denotes an element of the underlying probability space, and

(5.6) r(x) = −ϕ(∇f(x)),

where, abusing notation, ϕ : Rd 7→ Rd equals (ϕ(a1, ..., ad)) = (ϕ(a1), ..., ϕ(ad))
⊤
.

That is, we have that:
(5.7)

r(x) = − (ϕ([∇f(x)]1), ..., ϕ([∇f(x)]d))⊤ , γ(t+1,x, ω) = ϕ(∇f(x))−Ψ(∇f(x)+νt).
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We provide an intuition behind the algorithmic format (5.5). Quantity r(x) is a
deterministic, “useful”, progress direction with respect to the evolution of xt; quantity
γ(t+ 1, x, ω) is the stochastic component that plays a role of a noise in the system.

We adopt the following Lyapunov function: V (x) = f(x) − f⋆, V : Rd 7→ R,
where f⋆ = infx∈Rd f(x) = f(x⋆). By Assumptions 1 and 2, V is twice continuously
differentiable and has uniformly bounded second order partial derivatives, as required
by Theorem 5.1. We are ready to prove Theorem 3.1.

Proof (Proof of Theorem 3.1). We now verify conditions B1-B5 from Theorem 5.1.
Recall from Section 3 Ft, the σ-algebra generated with random vectors νs, s = 0, ..., t.
Then, the family of random vectors {γ (t+ 1,x, ω)}x∈Rd is Ft-measurable, zero-mean
and independent of Ft−1. Also, clearly, function γ(t+ 1, ·, ·) is measurable, for all t.
Thus, conditions Bi and B2 hold.

For B3, we need to prove that supx:∥x−x⋆∥∈(ϵ, 1ϵ )
⟨r(x),∇V (x)⟩ < 0, for any ϵ > 0,

where ∇V (x) = ∇f(x). Let us fix an ϵ > 0. Then, we have, for any x ∈ Rd:

⟨r(x),∇V (x)⟩ = −ϕ(∇f(x))⊤(∇f(x))

= −
d∑
j=1

ϕ([∇f(x)]j)[∇f(x)]j = −
d∑
j=1

|ϕ([∇f(x)]j)| |[∇f(x)]j |,

where the last equality holds because ϕ is an odd function. Consider arbitrary x such
that ∥x − x⋆∥ ≥ ϵ. As ∥∇f(x)∥2 ≥ µ2∥x − x⋆∥2 (due to strong convexity of f), we
have ∥∇f(x)∥ ≥ µϵ, where we recall that µ is the strong convexity constant of f .
Therefore, there exists an index i ∈ {1, ..., d} such that |[∇f(x)]i| ≥ 1

dµϵ =: ϵ′. Next,
because ϕ′(0) > 0, and ϕ is continuous at 0 and is non-decreasing (by Lemma 5.3),
we have that |ϕ(b)| ≥ δ for some δ = δ(ϵ) > 0, for all b ∈ [ϵ, 1/ϵ]. Finally, we
have that: ⟨r(x),∇V (x)⟩ ≤ −ϵ′δ(ϵ), for any x such that ∥x − x⋆∥ ∈ [ϵ, 1ϵ ], and
therefore supx:∥x−x⋆∥∈(ϵ, 1ϵ )

⟨r(x),∇V (x)⟩ ≤ supx:∥x−x⋆∥∈[ϵ, 1ϵ ]
⟨r(x),∇V (x)⟩ ≤ −δ(ϵ) ϵ′

< 0, hence verifying condition B3.
We next verify condition B4. Consider quantity r(x) in (5.6). By Lemma 5.3

and the fact that f has Lipschitz gradient and is strongly convex (Assumption 1), it
follows that: ∥r(x)∥2≤ Cr,1 + Cr,2V (x), for some positive constants Cr,1 and Cr,2.
Also, since ∥γ(x, t+ 1, ω)∥2≤ 2∥ϕ(∇f(x))∥2 + 2∥Ψ(∇f(x) + νt)∥2, and it holds that
either 1) Ψ is bounded or 2) |Ψ(a)| ≤ C2 (1 + |a|) and νti has a finite variance, we
have: E

[
∥γ(x, t+ 1, ω)∥2

]
≤ C3 +C4 V (x), for some positive constants C3, C4. Now,

we finally have:

∥r(x)∥2 + E
[
∥γ(x, t+ 1, ω)∥2

]
≤ C5 + C6 V (x),

for some positive constants C5, C6, and hence condition B4 holds for a constant k1 > 0
and k2 = 0.6 Condition B5 holds by the choice of the step size sequence {αt} in
the Theorem statement. Summarizing, all conditions B1-B5 hold true, and hence
xt → x⋆, almost surely. □

We continue by proving Theorem 3.3.
Proof (Proof of Theorem 3.3). We prove the Theorem by verifying conditions

C1-C5 in Theorem 5.1. To verify condition C1, consider r(x) in (5.6) and note that,

6Note that the term −⟨r(x),∇V (x)⟩ in condition B4 of Theorem 5.1 equals ⟨ϕ(x),∇f(x)⟩. This
quantity is nonnegative, for any x ∈ Rd, and so k2 can be taken to be any positive number. In other
words, setting k2 = 0 in B4 corresponds to a tighter inequality than the corresponding inequality for
any k2 > 0.
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using the mean value theorem, it can be expressed as follows:

r(x) = −ϕ(∇f(x)−∇f(x⋆))

= −ϕ

[∫ 1

0

∇2f(x⋆ + t(x− x⋆)dt

]
︸ ︷︷ ︸

H

(x− x⋆)


= −ϕ (H(x− x⋆)) = −ϕ′(0)∇2f(x⋆)(x− x⋆) + δ(x),

(5.8)

where limx→x⋆
∥δ(x)∥
∥x−x∗∥ = 0. Hence, in the notation of Theorem 5.1, we have that B =

−ϕ′(0)∇2f(x⋆). Therefore, C1 holds. Also, C2 holds, by assumptions of Theorem 3.3.
Now, we consider C3, which requires that the matrix Σ = aB + 1

2I is stable (all
its eigenvalues have negative real parts), where B = −ϕ′(0)∇2f(x⋆). Note that
Σ = 1

2I− aϕ′(0)∇2f(x⋆). Clearly, Σ is stable for large enough a, because the matrix
ϕ′(0)∇2f(x⋆) is positive definite. More precisely, Σ is stable for a > 1/(2µϕ′(0)).
Therefore, condition C3 holds, provided that a > 1/(2µϕ′(0)). We next consider
condition C4. In the notation of Theorem 5.1, consider the following quantity:

A(t,x) = E
[
γ(t+ 1,x, ω)γ(t+ 1,x, ω)⊤

]
= E

[(
ϕ(∇f(x))−Ψ(∇f(x) + νt)

) (
(ϕ(∇f(x))−Ψ(∇f(x) + νt)

)⊤]
= E

[(
ϕ(∇f(x))−Ψ(∇f(x) + ν0)

) (
(ϕ(∇f(x))−Ψ(∇f(x) + ν0)

)⊤]
(5.9)

= E
[
γ(1,x, ω)γ(1,x, ω)⊤

]
.(5.10)

Consider the set Ω⋆ of all outcomes ω ∈ Ω such that Ψ is continuous at ν0(ω). Clearly,
the set Ω⋆ has the probability one. For every ω ∈ Ω⋆, we have Υ(ω) := limt→∞,x→x⋆

γ(1,x, ω)γ(1,x, ω)⊤ = Ψ(ν0)Ψ(ν0)⊤. Note that, for any ϵ > 0, the random family
∥γ(1,x, ω)γ(1,x, ω)⊤∥, ∥x− x⋆∥ < ϵ is dominated by an integrable random variable.
(See ahead (5.12)–(5.13).) Therefore, by the dominated convergence theorem, and
the fact that the entries of ν0 are mutually independent with pdf p(u), we have that:

lim
t→∞,x→x⋆

A(t,x) =: S0 = E
[
Ψ(ν0) ·Ψ(ν0)⊤

]
= σ2

Ψ · I,(5.11)

where σ2
Ψ =

∫
|Ψ(a)|2p(a)da. Therefore, condition C4 holds. We finally verify condi-

tion C5. We follow the arguments analogous to those in Theorem 10 in [20]. Condi-
tion C5 means uniform integrability of the family {∥γ(t+1,x, ω)∥2}t=0,1,..., ∥x−x⋆∥<ϵ.
We have: ∥γ(t+ 1,x, ω)∥2 ≤ 2∥ϕ(∇f(x))∥2+ 2∥ψ(∇f(x)+ νt)∥2. First, consider the
case when Assumptions 6 and 4 hold. Then:

∥γ(t+ 1,x, ω)∥2 ≤ C7 + C8∥x− x⋆∥2 + C9∥νt∥2

≤ C7 + C8 ϵ
2 + C9∥νt∥2,(5.12)

for some positive constants C7, C8, C9. Consider next the family
{γ̃(t+1,x, ω)}t=0,1,...,∥x−x⋆∥<ϵ, with γ̃(t+1,x, ω) = C7+C8 ϵ

2+ C9∥νt∥2. The family
{γ̃(t + 1,x, ω)}t=0,1,...,∥x−x⋆∥<ϵ is i.i.d. and hence it is uniformly integrable. The
family {∥γ(t+ 1,x, ω)∥2}t=0,1,...,∥x−x⋆∥<ϵ is dominated by
{γ̃(t+ 1,x, ω)}t=0,1,...,∥x−x⋆∥<ϵ that is uniformly integrable, and hence
{∥γ(t+ 1,x, ω)∥2}t=0,1,...,∥x−x⋆∥<ϵ is also uniformly integrable. Hence, C5 holds.
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Now, let Assumption 7 hold. Then:

∥γ(t+ 1,x, ω)∥2 ≤ C10 + C11∥x− x⋆∥2 ≤ C10 + C11 ϵ
2.(5.13)

Consider the family {γ̂(t+1,x, ω)}t=0,1,...,∥x−x⋆∥<ϵ, with γ̂(t+1,x, ω) = C10+ C11 ϵ
2.

The family {γ̂(t+ 1,x, ω)}t=0,1,...,∥x−x⋆∥<ϵ is uniformly integrable, and condition C5
is verified analogously to the previous case. Summarizing, we have established that
all conditions C1-C5 of Theorem 5.1 hold true, thus the proof of Theorem 3.3 □.

5.3. MSE analysis: Proof of Theorem 3.2. We start with the following
Lemma that upper boounds ∥∇f(xt)∥.

Lemma 5.4. Let Assumptions 1, 3, 5, and 7 hold. Further, let the step-size se-
quence {αt} be αt = a/(t + 1)δ, a > 0, δ ∈ (0.5, 1). Then, for each t = 1, 2, ..., we
have, a.s.:

(5.14) ∥∇f(xt)∥ ≤ Gt := L

(
aC2

√
d
t1−δ

1− δ
+ ∥x0 − x⋆∥

)
.

Proof. Consider (2.3). Because the output of each component nonlinearity Ψ is
bounded in the absolute value by C2 (Assumption 7), we have, for each t ≥ 1:

∥xt − x⋆∥ ≤ ∥x0 − x⋆∥+ a
√
dC2

t−1∑
s=0

1

(s+ 1)δ

≤ ∥x0 − x⋆∥+ aC2

√
d

(
t1−δ

1− δ

)
.(5.15)

Next, because ∇f is L-Lipschitz, we have: ∥∇f(xt)∥ ≤ L ∥xt − x⋆∥. Applying this
inequality to (5.15), the result follows. □

We will also make use of the following Lemma.

Lemma 5.5. There exists a positive constant ξ such that, for any t = 1, 2, ..., there

holds, almost surely, for each j = 1, ..., d, that: |ϕ([∇f(xt)]j)| ≥ |[∇f(xt)]j | ϕ′(0) ξ
2Gt

,
where Gt is defined in (5.14).

Proof. Consider function ϕ in (3.1). By Lemma 5.3, we have that ϕ′(0) > 0
and ϕ is continuous at zero.7 Because ϕ is differentiable at zero, using first order
Taylor series, there holds: ϕ(u) = ϕ(0) + ϕ′(0)u +h(u)u = ϕ′(0)u +h(u)u, u ∈ R,
where h : R 7→ R is a function such that limu→0 h(u) = 0. Due to the latter property

of h, there exists a positive number ξ such that |h(u)| ≤ ϕ′(0)
2 , for all u ∈ [0, ξ).

Using the latter bound, we obtain that ϕ(u) ≥ 1
2ϕ

′(0)u, u ∈ [0, ξ). Now, because ϕ is

non-decreasing (by Lemma 5.3), it holds for any a′ > ξ that ϕ(a) ≥ ϕ′(0) ξ a
2 a′ , for any

a ∈ [0, a′). Consider now ∇f(xt). By Lemma 5.4, we have that ∥∇f(xt)∥ ≤ Gt, a.s.,
and so, for any j = 1, ..., d, |[∇f(xt)]j | ≤ Gt. Therefore, setting a

′ = Gt, the Lemma
follows. □

We are now ready to prove Theorem 3.2.
Proof (Proof of Theorem 3.2). Consider algorithm (2.3) under Assumptions 1, 3,

5, and 7. By the Lipschitz property of ∇f , we have, for any x,y ∈ Rd, that:

f(y) ≤ f(x) +∇f(x)⊤(y − x) +
L

2
∥x− y∥2,

7As ϕ is an odd function, for simplicity, in the proof we consider only nonnegative arguments of
ϕ, while analogous analysis applies for negative arguments of ϕ.
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and so, almost surely:

f(xt+1) ≤ f(xt) +
(
∇f(xt)

)⊤
(−αtΨ(∇f(xt) + νt))

+
L

2
α2
t ∥Ψ(∇f(xt) + νt)∥2.

(5.16)

Next, letting ηt = Ψ(∇f(xt)+νt)−ϕ(∇f(xt)), and using the fact that Ψ has bounded
outputs, we obtain:

f(xt+1) ≤ f(xt) +
(
∇f(xt)

)⊤
(−αtϕ(∇f(xt)))

+
L

2
α2
t d

2C2
2 − αt (∇f(xt))⊤ηt, a.s.

(5.17)

Recall filtration Ft. Taking conditional expectation, and using that E[ηt | Ft] = 0, we
get that, almost surely:

(5.18) E[f(xt+1) | Ft] ≤ f(xt)− αt
(
∇f(xt)

)⊤
ϕ(∇f(xt)) + L

2
α2
t d

2 C2
2 .

Next, using Lemma 5.5, and the fact that αt = a/(t+ 1)δ, we obtain that. a.s.:

(5.19) E[f(xt+1) | Ft] ≤ f(xt)− c′

(t+ 1)
∥∇f(xt)∥2 + L

2

a2 d2 C2
2

(t+ 1)2δ
,

where c′ = a (1−δ)ξ ϕ′(0)

2L (aC2

√
d+∥x0−x⋆∥) . Next, by strong convexity of f , we have that

∥∇f(xt) − ∇f(x⋆)∥2 ≥ 2µ (f(xt) − f⋆). Using the latter inequality, subtracting
f⋆ from both sides of the inequality, taking expectation, and applying Theorem 5.2,
claims (2) and (3), we obtain the desired MSE rate result.

We next consider the case when Assumption 7 is replaced with Assumption 6 and
Assumption 4 is additionally imposed. Following analogous arguments as in the first
part of the proof, it can be shown that, a.s.:

E[f(xt+1) | Ft] ≤ f(xt)− αt ϕ(∇f(xt))⊤∇f(xt)

+
L

2
α2
t

(
C13 + C14E[ ∥νt∥2 | Ft ]

)
,

(5.20)

for some positive constants C13, C14. Next, because infa ̸=0
|ϕ(a)|
|a| > 0, we have that

ϕ(∇f(xt))⊤∇f(xt) ≥ C15 ∥∇f(xt)∥2, for some constant C15 > 0. Using the latter
bound in (5.20), subtracting f⋆ from both sides of the inequality, taking expectation,
and applying Theorem 5.2, claim (1) and (2), the result follows. □

6. Intermediate results and proofs: Joint nonlinearities. Subsection 6.1
provides the required intermediate results, while Subsection 6.2 proves Theorem 4.1.

6.1. Intermediate results: Joint nonlinearities. Recall function N : R+ 7→
R+ in Assumption 9. We first state and prove the following Lemma on the properties
of function N .

Lemma 6.1. Under Assumption 9, for any x,u ∈ Rd, such that ∥u∥ > ∥x∥, there
holds:

|N (∥x+ u∥)−N (∥x− u∥)| ≤
∥x∥
∥u∥

[N (∥x+ u∥) +N (∥x− u∥)] .
(6.1)
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Proof. Fix a pair x,u ∈ Rd, such that ∥u∥ > ∥x∥, and assume without loss of
generality that N (∥x+ u∥) ≥ N (∥x− u∥). Then, (6.1) is equivalent to:

(6.2) (∥u∥ − ∥x∥)N (∥x+ u∥) ≤ (∥u∥+ ∥x∥)N (∥x− u∥).

Denote by ρ = ∥u∥. Notice that: ρ − ∥x∥ ≤ ∥x + u∥ ≤ ∥x∥ + ∥u∥ = ∥x∥ + ρ, and
similarly, ρ + ∥x∥ ≥ ∥x − u∥ ≥ ρ − ∥x∥. As N is non-increasing, it follows that:
N (∥x+ u∥) ≤ N (ρ− ∥x∥), and N (∥x− u∥) ≥ N (ρ+ ∥x∥). Now, we have:

(6.3) (∥u∥ − ∥x∥)N (∥x+ u∥) ≤ (ρ− ∥x∥)N (ρ− ∥x∥),

and similarly:

(6.4) (∥u∥+ ∥x∥)N (∥x− u∥) ≥ (ρ+ ∥x∥)N (ρ+ ∥x∥).

By assumption, function a 7→ aN (a), a > 0, is non-decreasing, and so (ρ−∥x∥)N (ρ−
∥x∥) ≤ (ρ + ∥x∥)N (∥x∥ + ρ). Thus, combining (6.3) and (6.4), we have that (6.2)
holds, which is in turn equivalent to the claim of the Lemma.

We now define map ϕ : Rd 7→ Rd, as follows. For a fixed (deterministic) point
w ∈ Rd, we let:

(6.5) ϕ(w) =

∫
Ψ(w + u)p(u)du = E[Ψ(w + ν0)],

where the expectation is taken with respect to the joint pdf of the gradient noise at
any iteration t, e.g., t = 0. The map ϕ : Rd 7→ Rd is, abusing notation, a counterpart
of the component-wise map ϕ : R 7→ R in (3.1). We have the following Lemma.

Lemma 6.2. Under Assumptions 8 and 9, the following holds:

(6.6) ϕ(x)⊤x ≥ 2(1− κ)∥x∥2
∫

J (x)

N (∥x∥+ ∥u∥)p(u)du,

where J (x) = {u : u⊤x
∥u∥∥x∥ ∈ [0, κ]}, and κ is any constant in the interval (0, 1).

Proof. Let us fix arbitrary x ∈ Rd,x ̸= 0. As Ψ(a) = aN (∥a∥), we have:

ϕ(x)⊤x =

∫
u∈Rd

(x+ u)⊤xN (∥x+ u∥)︸ ︷︷ ︸
:=M(x,u)

p(u)du

(6.7)

=

∫
J1(x)={u:u⊤x≥0}

M(x,u)p(u)du+

∫
J2(x)={u:u⊤x<0}

M(x,u)p(u)du.(6.8)

Note also that there holds: M(x,u) = (∥x∥2 +u⊤x)N (∥x +u∥); and M(x,−u) =
(∥x∥2 −u⊤ x)N (∥x − u∥). Therefore, using the fact that p(u) = p(−u), for all
u ∈ Rd, we obtain: ϕ(x)⊤x =

∫
J1(x)

M2(x,u) p(u)du, where M2(x,u) = [(∥x∥2 +
u⊤x)N (∥x+ u∥) + (∥x∥2 − u⊤x)N (∥x− u∥)]. There holds:

M2(x,u) ≥ ∥x∥2[N (∥x+ u∥) +N (∥x− u∥)]−
− ∥u∥∥x∥|N (∥x+ u∥)−N (∥x− u∥)|.

(6.9)
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Since u ∈ J1(x), there holds ∥x+ u∥ ≥ ∥x− u∥. Now, using Lemma 6.1, we have:

M2(x,u) ≥ ∥x∥2[N (∥x+ u∥) +N (∥x− u∥)]−

∥u∥∥x∥∥x∥
∥u∥

|N (∥x+ u∥) +N (∥x− u∥)| = 0.
(6.10)

Therefore, we have: M2(x,u) ≥ 0, for any u ∈ J1(x), ∥u∥ > ∥x∥. Now, consider

J (x) = {u ∈ Rd : u⊤x ≥ 0, u⊤x
∥u∥∥x∥ ∈ [0, κ]}, where κ ∈ (0, 1). Let us consider

u ∈ J (x) such that ∥u∥ > ∥x∥. Then, using Lemma 6.1, we get:

M2(x,u) ≥ ∥x∥2[N (∥x+ u∥) +N (∥x− u∥)]
− ∥u∥∥x∥κ |N (∥x+ u∥)−N (∥x− u∥)|︸ ︷︷ ︸
≥ (1− κ)∥x∥2(N (∥x+ u∥) +N (∥x− u∥)).

(6.11)

Now, consider u ∈ J (x) such that ∥u∥ ≤ ∥x∥. Then, there holds:

M2(x,u) ≥ ∥x∥2[N (∥x+ u∥) +N (∥x− u∥)]−
∥u∥︸︷︷︸
≤∥x∥

∥x∥κ| N (∥x+ u∥)︸ ︷︷ ︸
≥0

+N (∥x− u∥)|︸ ︷︷ ︸
≥0

≥ (1− κ)∥x∥2(N (∥x+ u∥) +N (∥x− u∥)).

(6.12)

where the last inequality holds due to the fact that |a− b| ≤ |a|+ |b|, for any a, b ∈ R.
Now, we have:

M2(x,u) ≥ (1− κ)∥x∥2(N (∥x+ u∥)︸ ︷︷ ︸
≥N (∥x∥+∥u∥)

+N (∥x− u∥)︸ ︷︷ ︸
≥N (∥x∥+∥u∥)

)

≥ 2(1− κ)∥x∥2N (∥x∥+ ∥u∥), for anyu ∈ J (x).

(6.13)

From (6.13), we finally get:

ϕ(x)⊤x ≥
∫

J (x)

2(1− κ)∥x∥2N (∥x∥+ ∥u∥)p(u)du

= 2(1− κ)∥x∥2
∫

J (x)

N (∥x∥+ ∥u∥)p(u)du.
(6.14)

Lemma 6.3. Let Assumptions 1, 8, and Assumption 9 with condition 3. hold (the
nonlinearity with bounded outputs case). Then, for each t = 1, 2, ..., we have:

(6.15) ∥∇f(xt)∥ ≤ G′
t := L ( aC ′

2

t1−δ

1− δ
+ ∥x0 − x⋆∥ ).

Proof. The proof is analogous to the proof of Lemma 5.4.

6.2. Proofs of Theorems 4.1, 4.2, and 4.3: Joint nonlinearities. We are
now ready to prove the results for the joint nonlinearities case.

Proof (Proof of Theorem 4.1) We carry out the proof again by verifying con-
ditions B1-B5 in Theorem 5.1. Algorithm (2.3) admits again the representation in
Theorem 5.1 with

r(x) = −ϕ(∇f(x)), γ(t+ 1,x, ω) = ϕ(∇f(x))−Ψ(∇f(x) + νt).(6.16)
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Conditions B1 and B2 hold analogously to the proof of Theorem 3.1. Condition
B3 follows from Lemma 6.2. Condition B4 holds analogously to the proof of Theo-
rem 3.1. Finally, condition B5 follows from the definition of the step-size sequence in
Theorem 4.1. Thus, the result. □ We next prove Theorem 4.3. Proof (Proof of Theo-
rem 4.3) We carry out the proof again by verifying conditions C1–C5 in Equation (8.2).
The conditions C2–C5 are verified analogously as in the proof of Theorem 3.3. For
condition C1, first fix an arbitrary u ̸= 0, and consider points x in the vicinity of x⋆.
Then, using the differentiability of N (a) for a ̸= 0 and the differentiability of ∇f , it
can be shown that:

Ψ(u+∇f(x)) = uN (∥u∥) +N (∥u∥)∇2f(x⋆)(x− x⋆)

+N ′(∥u∥)uu
⊤

∥u∥
∇2f(x⋆)(x− x⋆) + o(∥x− x⋆∥).

We next integrate the above equality with respect to the joint pdf p(u). For the first
term above, note that

∫
N (∥u∥)up(u)du = 0, because p(u) = p(−u), for all u. The

second term is integrable as supa>0 N (a) < ∞ (Assumption 13). The third term is
integrable as function a 7→ aN (a) is by assumptions non-decreasing; then, by taking
its derivative, it follows that |N ′(a)| ≤ N (a)/a, a > 0, and so ∥uu⊤N ′(∥u∥)∥/∥u∥
≤ N (∥u∥). Now, using the definition of r(x), it follows that r(x) admits the repre-
sentation (5.2), with:

B = −
(∫

N (∥u∥)p(u)du+

∫
u̸=0

uu⊤

∥u∥
N ′(∥u∥)p(u)du

)
∇2f(x⋆).

The conditions C1–C5 hold; thus, the result. □
We are now ready to prove Theorem 4.2.
Proof (Proof of Theorem 4.2) We first consider the case when Assumptions 1, 8,

9, and 10 hold. Analogously to the proof of 3.2, it can be shown that, a.s.:

E[f(xt+1) | Ft] ≤ f(xt)− αt ϕ(∇f(xt))⊤∇f(xt) + α2
t C17,(6.17)

for some positive constant C17. By Lemma 6.2, there holds, for a := ∇f(xt), a.s.:

(6.18)
(
ϕ(a)

)⊤
a ≥ 2(1− κ)∥a∥2

∫
J
N (∥a∥+ ∥u∥)p(u)du,

where we recall J = {u : u⊤a
∥u∥∥a∥ ∈ [0, κ]}, and κ ∈ (0, 1) is a constant. Note that, as

a 7→ aN (a) is non-decreasing, N satisfies: N (b) ≥ min
(

N (1)
b ,N (1)

)
for any b > 0.

Consider constant B0 in condition 2. of Assumption 8. Then, for all u such that

∥u∥ ≤ B0, there holds N (∥a∥+ ∥u∥) ≥ min
{

N (1)
∥a∥+B0

,N (1)
}
. We now have, a.s.:

∥∇f(xt)∥2
∫
J
N
(
∥∇f(xt)∥+ ∥u∥

)
p(u)du(6.19)

≥ ∥∇f(xt)∥2
∫
J4

min

{
N (1)

B0 + ∥∇f(xt)∥
, N (1)

}
p(u)du(6.20)

≥ ∥∇f(xt)∥2 N (1)

B0 +G′
t

∫
J4

p(u)du.(6.21)
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Here, J4 = {u ∈ Rd : u⊤∇f(xt)
∥u∥∥∇f(xt)∥ ∈ [0, κ], ∥u∥ ≤ B0}. In (6.20), we used the fact that

N (a) is non-negative for any a ≥ 0, and in (6.21), we used Lemma 6.3.
Therefore, we have that, almost surely, for sufficiently large t:

∥∇f(xt)∥2
∫
J

N (∥∇f(xt)∥+ ∥u∥)p(u)du ≥ C18
∥∇f(xt)∥2

G′
t +B0

,

for some positive constant C18.
Combining the last bound with Lemmas 6.2 and 6.3, in view of condition 2. in

Assumption 8, we obtain that, for sufficiently large t, a.s.:

(6.22) (ϕ(∇f(xt)))⊤∇f(xt) ≥ C19
∥∇f(xt)∥2

B0 +G′
t

,

where the positive constant C19 can be taken as C19 = 2(1 − κ)λ(κ)N (1). Applying
the bound (6.22) to (6.17) we obtain an equivalent to (5.19). Therein, c′ in (5.19) is

replaced with a positive constant c′′ that can be taken as c′′ = 4 a (1−κ)λ(κ)(1−δ)N (1)
L ( aC′

2+∥x0−x⋆∥ )+B0)
.

We now proceed analogously to the proof of Theorem 3.2, by applying claims (2) and
(3) of Theorem 5.2. The desired MSE result now follows, with the rate ζ being any
positive number less than

(6.23) min

{
2δ − 1,

4 aµ (1− κ)λ(κ)(1− δ)N (1)

L ( aC ′
2 + ∥x0∥+ ∥x⋆∥ ) +B0

}
.

We now consider the case when Assumptions 1, 8, 9, 11, and 12 hold. We have,

by assumption, that inf x̸=0
∥Ψ(x)∥
∥x∥ > 0. This is equivalent to saying that N is lower-

bounded by a positive constant, i.e., N (a) ≥ C20, for each a, for some constant
C20 > 0. Then, it follows that, a.s.:

(6.24) (ϕ(∇f(xt)))⊤∇f(xt) ≥ C21 ∥∇f(xt)∥2,

for some positive constant C21. The proof then proceeds analogously to the proof of
Theorem 3.2 by applying the appropriate variant of Theorem 5.2. □

7. Experiments. In order to benchmark the proposed nonlinear SGD frame-
work, we consider Heart, Diabetes and Australian datasets from the LibSVM li-
brary [9]. We consider the logistic regression loss function for binary classification,
see, e.g., [15], where function f in (2.1) is the empirical loss, i.e., the sum of the logistic
losses across all data points in a given dataset.

As it has been studied in [15] (see Figure 2 in [15]), we have, near the solution x⋆,
the following behavior with respect to gradient noise. (See also [15] for details how
the gradient noise is evaluated in Figure 2 therein.) With the heart dataset, tails of
stochastic gradients are not heavy. On the other hand, for diabetes and australian
datasets, the gradient noise has outliers and exhibits a heavy-tail behavior.

We consider three different nonlinearities to demonstrate the effectiveness of our
nonlinear framework, namely, tanh (hyperbolic tangent), sign and a bi-level cus-
tomization of sign with Ψ(x) = −1, −0.5, 0.5, 1, for x ∈ (−∞,−0.5], (−0.5, 0],
(0, 0.5], (0.5,∞], respectively (nonlinear-quantizer in figures). Note that the tanh
function may be considered a smooth approximation of sign. We benchmark the
above methods against the linear SGD, clipped-SGD and SSTM along with a clipped
version of SSTM from [15]. For each of the methods, we use batch sizes of 50, 100
and 20 for the Australian, Diabetes and Heart datasets, respectively. We also
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consider clipped-SGD with periodically decreasing clipping level (d-clipped-SGD in
Figures) as a baseline as introduced in [15]. This method starts with some initial clip-
ping level and after every l epochs the clipping level is multiplied by some constant
c ∈ (0, 1). The step sizes αt (learning rates) for each method from our framework
were tuned after an experimentation. The learning rates for the baselines, i.e., SGD,
clipped-SGD, SSTM and clipped-SSTM are also tuned and are selected to be as in
[15]. In more detail, the learning rates for the proposed methods are of the form
a/(b (t+ 1) + L), where we recall that t is the iteration counter, L is the smoothness
constant of ∇f , and parameters a, b are tuned via grid search. The value of a is
chosen to be 1.0, 1.5 and 5.0, respectively, for Heart, Diabetes and Australian and
for all the three non-linearities. The value of b is chosen to be 0.001, 7.0 and 7.0
respectively for Australian, Heart and Diabetes datasets for the sign nonlinearity.
The value of b is chosen to be 0.0001, 2.0 and 3.0×10−6 respectively for Australian,
Heart and Diabetes datasets for the tanh nonlinearity. The value of b is chosen to
be 0.001, 5.0 and 5.0 respectively for Australian, Heart and Diabetes datasets for
the nonlinear-quantizer nonlinearity.

We first note that (see Figure 4.1) d-clipped-SGD stabilizes the trajectory as
compared to the linear SGD, even if the initial clipping level was high. At the same
time, clipped-SGD with large clipping levels performs similarly as SGD. It is note-
worthy, that SGD has the least oscillations for Australian and Diabetes datasets,
despite the fact that these datasets have heavier or similar tails. This can be at-
tributed to the fact that SGD does not get close to the solution in terms of functional
value. SSTM in particular shows large oscillations, which can be attributed to it being
a version of accelerated/momentum-based methods and its usage of small batch sizes.
Clipped-SSTM on the other hand suffers less from oscillations and has a comparable
convergence rate as SSTM. In comparison, all the three nonlinear schemes that have
been proposed in this paper, have very little oscillations. While the tanh algorithm is
outperformed by the algorithms with other nonlinearities from our framework, its per-
formance is at par with the other baselines from [15]. In particular, the sign algorithm
compares favorably to other baselines in terms of convergence for Australian and
Heart datasets. The nonlinear-quantizer algorithm outperforms other baselines for
the Diabetes dataset. The good behavior of tanh and sign on the heavy-tail data
sets, specially relative to the linear SGD, also viewing tanh as a smooth approxima-
tion of sign, might also be related with the insights from Example 3.4. In summary,
the three simple example nonlinearities from the proposed framework are comparable
or favorable over the considered state-of-the-art benchmarks on the studied datasets.

8. Conclusion. We proposed a general framework for nonlinear stochastic gra-
dient descent (SGD) under heavy-tail gradient noise. Unlike existing studies of SGD
under heavy-tail noise that focus on specific nonlinear functions (e.g., adaptive clip-
ping), our framework includes a broad class of component-wise (e.g., sign gradient)
and joint (e.g., gradient clipping) nonlinearities. We establish for the considered meth-
ods almost sure convergence, MSE convergence rate, and also asymptotic covariance
for component-wise nonlinearities. We carry out numerical experiments on several real
datasets that exhibit heavy tail gradient noise effects. The experiments show that,
while our framework is more general than existing studies of SGD under heavy-tail
noise, several easy-to-implement nonlinearities from our framework are competitive
with state-of-the-art alternatives.
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Appendix.

A. Proof of Theorem 5.2. We first state and prove the following Lemma.

Lemma 8.1. Consider (deterministic) sequence

vt+1 =

(
1− a3

(t+ 1)δ

)
vt +

a4
(t+ 1)δ

, t ≥ t0,

with a3, a4 > 0 and 0 < δ ≤ 1, t0 > 0, and vt0 ≥ 0. Further, assume that t0 is such
that a3

(t+1)δ
≤ 1, for all t ≥ t0. Then, limt→∞ vt = a4

a3
.

Proof. Let et = vt − a4
a3
. It is easy to verify that:

et+1 =

(
1− a3

(t+ 1)δ

)
et, t ≥ t0.

Then, for all t ≥ t0, there holds:

|et+1| =
(
1− a3

(t+ 1)δ

)
|et| ≤ exp

(
−a3

t∑
s=t0

1

(s+ 1)δ

)
|et0 |(8.1)

where in (8.1) we used the inequality 1 + a ≤ exp(a), a > 0. Letting t → ∞ and the
fact that δ ≤ 1 so that the sequence 1

(s+1)δ
, s ≥ t0, is non-summable, we obtain that

et → 0, which in turn implies the claim of the Lemma.
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We now continue with proving Theorem 5.2. First, let us prove claim (1). Note
that:

(8.2) zt+1 ≤
(
1− a1

(t+ 1)δ1

)
zt +

a2
(t+ 1)δ2

, t ≥ t′.

Multiplying the above inequality with (t+ 1)δ2−δ1 , defining ẑt = tδ2−δ1 zt, we get:

ẑt+1 ≤
(
1− a1

(t+ 1)δ1

)
(1 + 1/t)δ2−δ1 ẑt +

a2
(t+ 1)δ1

.

Next, using, e.g., a Taylor expansion of function a 7→ (1 + a)δ2−δ1 , it can be shown

that (1 + 1/t)δ2−δ1 ≤ 1 + 2(δ2−δ1)
t , for any t ≥ tδ, for appropriately chosen tδ > 0.

Therefore, (
1− a1

(t+ 1)δ1

)
(1 + 1/t)δ2−δ1

≤ 1− a1
(t+ 1)δ1

+
2(δ2 − δ1)

t
− 2a1(δ2 − δ1)

t(t+ 1)δ1
≤ 1− a1

2(t+ 1)δ1
,

for any t ≥ t1, for appropriately taken t1 > 0. Using the latter bound, we obtain:

ẑt+1 ≤
(
1− a1

2(t+1)δ1

)
ẑt+ a2

(t+1)δ1
, t ≥ t1. Now, applying Lemma 8.1, we obtain that

ẑt = O(1), and therefore zt = O(1/tδ2−δ1). This proves claim (1) in Theorem 5.2.
We now prove claim (2). Multiplying (8.2) by (t + 1)δ2−1, and defining ẑt =

tδ2−1 zt, we obtain:

ẑt+1 ≤
(
1− a1

(t+ 1)

)
(1 + 1/t)δ2−1ẑt +

a2
t+ 1

≤
(
1− a1 − (δ2 − 1)

t
+
C22

t2

)
ẑt +

a2
t+ 1

(8.3)

≤
(
1− a1 − (δ2 − 1)

2 (t+ 1)

)
ẑt +

a2
t+ 1

, t ≥ t2,(8.4)

for appropriately chosen t2 > 0 and C22 > 0. In (8.3), we used the fact that (1 +
1/t)δ2−1 ≤ 1 + δ2−1

t +C23

t2 , for all t ≥ 1 and some C23 > 0 (the inequality can
be obtained, e.g., via a Taylor approximation). The claim (2) of Theorem 5.2 now
follows by applying Lemma 8.1 to (8.4).

We now prove claim (3). Let a1 < δ2 − 1, and fix an arbitrary positive number ζ,
ζ < a1. Then, we have, for ẑt = tζzt:

ẑt+1 ≤
(
1− a1

(t+ 1)

)
(1 + 1/t)ζ ẑt +

a2
(t+ 1)δ2−ζ

≤
(
1− a1 − ζ

t
+
C24

t2

)
ẑt +

a2
(t+ 1)δ2−ζ

≤
(
1− a1 − ζ

2 (t+ 1)

)
ẑt +

a2
t+ 1

, t ≥ t3,

for appropriately chosen t3 > 0 and C24 > 0. In the last inequality, we used the fact
that ζ < a1 ≤ δ2 − 1, and so δ2 − ζ > 1. Finally, applying Lemma 8.1, claim (3)
follows. □
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B. A demonstration that the linear SGD’s iterate sequence has infinite
variance. We provide here a simple demonstration that the linear SGD’s iterate
sequence has infinite variance under the setting of Assumption 1, Assumption 3, and
Assumption 5, condition 3., holds.

More precisely, assume that the gradient noise νt has infinite variance. Consider

algorithm (2.3) for solving problem (1) with f : R 7→ R, f(x) = x2

2 , with Ψ being
the identity function. Further, consider arbitrary sequence of positive step-sizes {αt}.
Then, we have:

(8.5) xt+1 = (1− αt)x
t − αt ν

t, t = 0, 1, ...,

with arbitrary deterministic initialization x0 ∈ R. Then, squaring (8.5), using the
independence of xt and νt, and the fact that νt has zero mean, we get: E

[
(xt+1)2

]
= (1− αt)

2 E
[
(xt)2

]
+α2

t E[(νt)2] ≥ α2
t E[(νt)2], t = 0, 1, ... Taking expectation and

using the fact that E[(νt)2] = +∞, we see that E
[
(xt)2

]
= +∞, for any t ≥ 1.

C. Extension of Theorem 3.2 for gradient noise vector with mutually
dependent entries. We show that Theorem 3.2 continues to hold when we have an
i.i.d. zero mean noise vector sequence {νt} with a joint pdf p : Rd 7→ R. In more
detail, we provide an extension of Lemma 6.2 but for component-wise nonlinearities.

Namely, as in Lemma 6.2, consider, for a fixed y ̸= 0:

(8.6)

∫
ψ(y + u)⊤y p(u) du.

As, for a ∈ Rd, we have Ψ(a) = (Ψ(a1), ...,Ψ(ad))
⊤ (component-wise nonlinearity),

we have: ∫
ψ(y + u)⊤y p(u) du =

∫ ( d∑
i=1

ψ(yi + ui)yi

)
p(u) du

=

d∑
i=1

∫
(ψ(yi + ui)yi) p(u) du =

d∑
i=1

∫
(ψ(yi + ui)yi) pi(ui) dui,

where pi(ui) is the marginal pdf of the i-th component of νt. It is easy to show,
as p(u) = p(−u), u ∈ Rd, that, for any i = 1, ..., d, we have pi(u) = pi(−u), u ∈
R. Define ϕi(a) =

∫
Ψ(a + u)pi(u)du. Note that ϕi(a) now obeys Lemma 5.3. In

particular, ϕi is also odd, and hence:∫
ψ(y + u)⊤y p(u) du =

d∑
i=1

∫
(ψ(yi + ui)yi) pi(ui) dui

=

d∑
i=1

ϕi(yi)yi =

d∑
i=1

|ϕi(yi)| |yi|.

The last inequality holds because, for any i = 1, ..., d, quantities ϕi(yi) and yi have
equal sign. The proof now proceeds analogously to that of Theorem 3.2.

D. Proof of Lemma 5.3. The proof can be found in [30]; we include similar
arguments for completeness. For claim 1., note that

ϕ(a) =

∫ +∞

−∞
Ψ(a+ u)p(u)du = −

∫ +∞

−∞
Ψ(−a− u)p(u)du

= −
∫ +∞

−∞
Ψ(−a+ w)p(w)dw = −ϕ(−a),
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for any a ∈ R, where we use the fact that Ψ is odd. For claim 2., note that |ϕ(a)| ≤∫ +∞
−∞ |Ψ(a + u)|p(u)du ≤ C1

∫ +∞
−∞ p(u)du = C1, where we used Assumption 7. Proof

of claim 3. is similar to that of claim 2. For claim 4., note that ϕ(a) =
∫ +∞
0

(Ψ(u+ a)−Ψ(u− a)) p(u)du, and so, for a′ > a, we have

ϕ(a′)− ϕ(a) =

∫ +∞

0

[(Ψ(u+ a′)−Ψ(u+ a)) +

+ (Ψ(u− a)−Ψ(u− a′))] p(u)du ≥ 0,

because Ψ is non-decreasing. Finally, for claim 5., to show that ϕ′(0) is given by (5.4),
see the proof of Lemma 6 in [30]. To verify that ϕ′(0) is strictly positive, consider first
the case that Ψ has a discontinuity at zero. Then, because p(0) > 0 by Assumption 3,
it follows from (5.4) that ϕ′(0) ≥ (Ψ(0+) − Ψ(0−))p(0) > 0. Otherwise, if Ψ is
continuous at zero, we have: ϕ′(0) ≥

∫ c
−cΨ

′(u)p(u)du > 0, where c > 0 is taken
such that Ψ(u) is continuous and strictly increasing and p(u) is strictly positive for
|u| < c.8 Such c exists in view of Assumptions 3 and 5.

E. Derivations for Example 3.3. We calculate the rate ζ in Theorem 3.2 for
the component-wise clipping nonlinearity with saturation value m, m > 1. Here, it
can be shown, by doing direct calculations, that

(8.7) ϕ(w) = 2w

∫ m−w

0

p(u)du+

∫ m+w

m−w
(m+ w − u)p(u)du, w ∈ [0,m].

Furthermore, it can be shown that (see Appendix F): ϕ′(0) = 2
∫m
0
p(u)du. Noting

that the second integral in (8.7) is nonnegative, and using the form p(u) in (3.2), we
obtain:

ϕ(w) ≥ 2w

∫ m−w

0

p(u)du = w

(
1− 1

(m− w + 1)α−1

)
, w ∈ [0,m].(8.8)

Also, we have: ϕ′(0) = 1 − 1
(m+1)α . From the latter equation and (8.8), we estimate

that ξ can be taken as: ξ = m+1 −
(

2
1+(m+1)−α

)1/(α−1)

≥ m− 1, for any α > 2, for

any m > 1. Hence, we can also take ξ = m− 1. Substituting the obtained estimates
for ϕ′(0) and ξ into the rate ζ, we obtain the rate estimate in (3.3).

F. Derivation of ϕ′(0) for Example 3.5. Consider the coordinate-wise clipping
nonlinearity Ψ with floor levelm > 0. The function Ψ here is piece-wise differentiable,
with the derivative Ψ′(a) = 1, for a ∈ (−m,m), and Ψ′(a) = 0, for |a| > m. We now
apply claim 5. in Lemma 5.3 and use formula (5.4) for evaluating ϕ′(0). As the
coordinate-wise clipping function does not have discontinuity points, (5.4) simplifies
to the following:

ϕ′(0) =

∫
u∈R, u ̸=−m,u ̸=m

Ψ′(u)p(u) du =

∫ +m

−m
p(u)du = 2

∫ m

0

p(u)du,

where the last equality uses symmetry of function p(u).

8If there are some (at most countably many) points inside interval (−c, c) where Ψ is continuous
but not differentiable, these points are excluded from the integration set in

∫ c
−c Ψ

′(u)p(u)du without
change in the integration result.
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G. Derivations for Example 3.6. We provide here details for the derivations
in Example 3.6. We first calculate σ2

Ψ; we have:

σ2
Ψ =

∫ ∞

−∞
|Ψ(u)|2p(u)du =

∫ ∞

−∞
p(u)du = 1.

Next, by direct integration, we have for α > 3:

σ2
ν = 2

∫ ∞

0

p(u)u2du

= −(α− 1)
[ (α− 1)u((α− 2)u+ 2) ] + 2

(α− 3)(α− 2)(α− 1)(1 + u)α−2
|∞0 =

2

(α− 3)(α− 2)
.

On the other hand, for α ∈ (2, 3], we clearly have σ2
ν = +∞. Finally, using claim 5.

in Lemma 5.3, and using the fact that Ψ′(u) = 0, for all u ̸= 0, we obtain:

ϕ′(0) = p(0) (Ψ(0+)−Ψ(0−)) = 2 p(0) = α− 1.

H. Derivations for Example 4.1. We consider the (joint) gradient clipping
nonlinearity Ψ with the clipping level M > 0, and we consider p(u) in (4.1).

Consider rate ζ in Theorem 4.2 that, for a sufficiently large a, can be approximated
as:

(8.9) min

{
2δ − 1, (1− δ)

4µ (1− κ)λ(κ)N (1)

LC ′
2

}
.

Here, κ is an arbitrary scalar in (0, 1), and, for the gradient clipping, we have that
N (1) = C ′

2 =M . Note that, regarding Assumption 8, quantity B0 can be taken here
to be an arbitrary positive number. Moreover, for p(u) in (4.1), due to the radial
symmetry, we have that

λ(κ) = λ(κ,B0) =
1

π
arc cos(1− κ)P(B0), κ ∈ (0, 1),

where P(B0) =
∫
u: ∥u∥≤B0

p(u)du = 1− 1+(α−1)B0

(1−B0)α−1 . We next maximize (8.10), i.e., we

maximize (1− κ)λ(κ,B0) with respect to κ ∈ (0, 1), to get the largest (tightest) esti-
mate of ζ. It is easy to see that maxκ∈(0,1)(1−κ)λ(κ,B0) > 0.17P(B0). Substituting
all the above developments into (8.10), we obtain:

ζ ≈ min

{
2δ − 1, (1− δ)

0.68µP(B0)

L

}
(8.10)

= min

{
2δ − 1, (1− δ)

0.68µ

L

(
1− 1 + (α− 1)B0

(1 +B0)α−1

)}
As B0 can be arbitrary positive number, letting B0 → +∞, we obtain the following
rate estimate: min

{
2δ − 1, (1− δ) 0.68µL .

}
. It is easy to see that the same rate esti-

mate can be obtained for the normalized gradient nonlinearity. The only difference
in the rate derivation is that therein N (1) = C ′

2 = 1.
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