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Abstract

This paper studies probabilistic rates of convergence for consensus+innovations type of algorithms

in random, generic networks. For each node, we find a lower and also a family of upper bounds on

the large deviations rate function, thus enabling the computation of the exponential convergence rates

for the events of interest on the iterates. Relevant applications include error exponents in distributed

hypothesis testing, rates of convergence of beliefs in social learning, and inaccuracy rates in distributed

estimation. The bounds on the rate function have a very particular form at each node: they are constructed

as the convex envelope between the rate function of the hypothetical fusion center and the rate function

corresponding to a certain topological mode of the node’s presence. We further show tightness of the

discovered bounds for several cases, such as pendant nodes and regular networks, thus establishing the

first proof of the large deviations principle for consensus+innovations and social learning in random

networks.
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I. INTRODUCTION

The theory of large deviations is the most prominent tool for studying rare events that occur with

stochastic processes, offering a principled approach for estimating probabilities of such events. A typical

setup concerns a sequence of probability measures induced by the studied process and parameterized by

one of the process parameters (e.g., time, population size, learning rate etc.), with the goal of computing,

or characterizing, the respective decay rate, for any given event (region) of interest. The practical value

of such rates is in estimating the probability of a rare event of interest as an exponentially decaying

function of the concerned process parameter, while neglecting the terms with slower than exponential

dependence. The rates of rare events can additionally provide a ground for comparison of two statistical

procedures, as originally proposed in the seminal work by Chernoff [2], and can therefore serve as a

useful design criterion [3], [4], [5], [6]. This is of special interest in the cases when other performance

metrics are intractable for optimization, such as probabilities of error with hypothesis testing.

In addition to the rate computation, large deviations analysis often reveals the most likely way through

which the event of interest takes place, providing additional important insights that can guide system

design. Most notable applications of large deviations theory are in statistics [7], communications and

queuing theory [8], statistical mechanics [9], and information theory [10].

For example, in statistical estimation, an event of interest is the event that the estimator does not belong

to a predefined close neighborhood of the parameter being estimated [11]. The decay rates of probabilities

of such events are known in the estimation theory as inaccuracy rates and can, e.g., guide the decision on

how many samples are needed for the estimator to reach the desired accuracy, with high probability [12].

To make the exposition concrete, let Xt ∈ Rd, t = 1, 2, ..., be a sequence of estimators of a parameter

θ ∈ Rd. Assuming that Xt converges to θ, an event of interest has the form {∥Xt − θ∥ ≥ ϵ}, where

∥ · ∥ denotes the l2 norm (other vector norms can also be used). An equivalent way to represent this

event is {Xt ∈ Cϵ}, where Cϵ is the complement of the l2 ball of diameter ϵ centered at θ, Cϵ = Bc
θ(ϵ).

Provided that Xt converges to θ, the probabilities of these events typically vanish exponentially fast with

t. Large deviations analysis then aims at discovering the corresponding rate of decay, i.e., the inaccuracy

rate I(Cϵ):

P (Xt ∈ Cϵ) = e−tI(Cϵ)+o(t), (1)

where o(t) denotes a function growing slower than linear with t. The inaccuracy rate I(Cϵ) has a very

particular structure: it is given through the so called rate function I : Rd 7→ R by

I(Cϵ) = inf
x∈Cϵ

I(x). (2)
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The rate function I is itself defined through the statistics of the inference sequence Xt. It should be

noted that, in contrast with the set function I, the rate function I does not depend on the inaccuracy

region, i.e., when Cϵ varies, only the domain of minimization on the right-hand side of (2) varies, while

the rate function remains fixed. Also, this relation holds for an arbitrary set Cϵ (e.g., not necessarily a

ball complement). Hence, once the rate function is identified, the associated inaccuracy rate is readily

computable through (2) for a new given region of interest, without the need to redo the large deviations

analysis each time, i.e., for each new region. Large deviations rate for estimation were first studied by

Bahadur in [12].

Another well-known application of large deviations analysis is hypothesis testing [2], where the

sequence Xt is typically a decision statistics, e.g., obtained by summing up the log-likelihoods of the

collected measurements up to the current time t, Xt = 1/t
∑t

s=1 log
f1(Ys)
f0(Ys)

; f0 and f1 here are the

marginal distributions of the measurements Ys under the two hypotheses H0 and H1, respectively. If the

acceptance threshold for H1 at time t is γt, then rare events of interest are {Xt < γt}, when H1 is true

(i.e., when Ys follow the distribution f1) – resulting in missed detection, and {Xt ≥ γt}, when H0 is

true (when Ys follow the distribution f0) – causing a false alarm. When Cϵ in (1) is replaced by the

preceding two events, the resulting large deviations rates I(Cϵ) are then the well-known error exponents

that provide decay rates of the corresponding error probabilities.

In this paper we are concerned with large deviations rates of distributed statistical inference, where

observations originate at different locations or different entities. Relevant works include algorithms such

as consensus+innovations [13], [14], [15], [16], diffusion [17], [18], [19], and non-Bayesian or social

learning [20], [21], [22], [23]. The common setup of the above works consists of networked nodes, each

holding a local inference vector (parameter estimates, decision variables, beliefs) that is being updated

over time. The updates are based on incorporating local, private signals that each agent observes over

time, and then exchanging with immediate neighbors and averaging the received information through the

well-known DeGroot averaging [24] (also known as consensus).

Asymptotic performance of distributed detection was studied in [13], for Gaussian observations, [14],

for generic observations, and in [15], for networks with noisy communication links. In each of the named

works, a randomly switching network topology is assumed and conditions for asymptotic equivalence of

an arbitrary network node and a fusion center (with access to all observations) are studied. Reference [16]

considers directed networks, both static and randomly varying, and studies the rate function for the vector

of states, deriving the exact rate function for the case of static networks, and providing bounds on the

exponential rates for randomly switching networks. The rate function for static networks is given as the

weighted combination of the local rate functions, with weights being equal to the eigenvector centralities
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(i.e., the left Perron vector of the consensus matrix). Reference [17] studies distributed detection for static

and symmetric networks and constant step size. For the limiting distribution of the local states, it proves

the large deviations principle when the step size parameter decreases and shows that the rate function is

equivalent to the centralized detector. These results are refined and extended in [18] by studying non-

exponential terms and directed (static) networks. Reference [19] further considers distributed detection

with 1-bit messages, while recent reference [6] addresses optimal aggregation strategies for social learning.

References [20], [21], [22], [23] study distributed M -ary hypothesis testing, where local updates are

formed by applying Bayesian update on the vector of prior beliefs, based on the newly acquired local

measurements. Assuming static, directed network, in [20] and [21], beliefs across immediate neighbor-

hoods are merged through arithmetic average [20], while [22] adopts geometric average (or, equivalently,

arithmetic average on the log-beliefs). A different merging rule is proposed and analyzed in [23], where

instead of averaging, beliefs are updated by computing the minimum across the neighbors beliefs and

the nodes’ locally generated beliefs, showing improvement in the learning rate. Large deviations of the

beliefs are addressed in [22], where it was proven that the log-ratios of beliefs with respect to the

belief in the true distribution, satisfy the large deviations principle, with the rate function being equal

to the eigenvector-centralities convex combination of the nodes’ local rate functions, similarly as in [16]

and [18]. Through the contraction principle, [22] also shows that the (log)-beliefs themselves satisfy the

large deviations principle.

Contributions. In contrast with the works in [17]-[23], in this paper, we address computation of the rate

function for distributed inference on random networks. This model shift from static to random networks

has fundamental implications on the large deviations performance. To explain this at an intuitive level:

when the underlying network is random, consensus mixing of local inference vectors might be disabled

for an arbitrary long period of time due to the lack of communications. In general, the topology can then

break down into several connected components of the original network1. When in this regime, neither

of the nodes can “see” the observations beyond the connected component they belong to, and hence the

resulting rate function will be strictly lower than that of the full network2. Figure 1 illustrates this effect

with a toy example of a 3-node chain where each node produces scalar observations of standard Gaussian

distribution.

1Note that this is very different from time-varying networks that are typically modelled by the assumption of the so called

bounded intercommunication interval, which guarantees that the union graph formed of all communication links occurring in

this interval is connected, after a strictly finite time, e.g., [23], [25]
2This is a consequence of the non-negativity of the rate function and the fact that it (roughly) scales linearly with the number

of observation sources, as detailed in the paper.
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Fig. 1: Decay of the log-probabilities in (1) for a fixed set C for static (top) and random (bottom) 3 node

chain network.
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In the top figure, we plot the logarithm of the probability in (1) for a ball complement inaccuracy

set C, when the chain topology is fixed (static). In the bottom figure we plot the same probability, but

when the two links of the chain graph alternate at random over time. We label the middle node as node

2, and we let the communication frequency between nodes 1 and 2 be higher (equal to 0.8) than the

one between higher than the one between nodes 2 and 3 (equal to 0.2). It is clear from the figure that

the static topology achieves much steeper decay, and, moreover, this decay is equal at each of the three

nodes (and also equal to the decay of the hypothetical fusion center, cf. Section IV, as predicted by the

theory). In contrast, in the random case, the difference between the nodes’ decays is evident: node 2

achieves the steepest decay, followed by node 1, while node 3 has the worst performance.

In this work, we are interested in understanding the rate function of each node in the network and

analytically expressing its dependence on the system parameters. For each node, we find a lower and a

family of upper bounds on the rate function. This is achieved by carrying out node-specific large deviations

analyses. We show that the two bounds match in several cases, such as for pendant nodes and also for

nodes in a regular network. The family of upper bounds is indexed by different induced components of

the given node, and each function in this family has the form of the convex envelope between the rate

function of the full network and the rate function of the respective component, lifted up by the probability

of the event that induces the component. The lower bound is given as the convex envelope between the

rate function of the full network and the node’s local rate function lifted up by the large deviations

rate of consensus, whose existence was shown in [26]. With respect to references [13], [14], [15], there

are several important novelties. First, we extend the results of [14] to the case of vector observations

and vector inference state. Second, while [13]-[15] only provide a lower bound on the rate function,

this work, as described in the above, finds also a family of upper bounds. This is achieved by carefully

devising events that impact the rate function, and for which we develop novel large deviations techniques.

The discovered upper bounds enable to establish, to the best of our knowledge, the first proof of the

large deviations principle for nodes performing DeGroot-based distributed inference in randomly varying

networks.

As an application of particular interest to this study, we consider social learning, specifically the form

with the geometric average update [22]. We show that, with appropriate transformation of the belief iterates

– namely, considering their log-ratios with respect to the belief in the true distribution, the algorithm

studied in [22] exhibits full equivalence to the consensus+innovations algorithm that we analyze here.

Building on this equivalence, we characterize the rate function of the beliefs in social learning and provide

the first proof of the large deviations principle for social learning run over random networks.

A closely related work to ours is [27] that studies convergence properties of social learning over
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random networks. This reference shows that, almost surely, each node is able to correctly identify the

true hypothesis. We similarly focus on the case of random networks, but we are additionally concerned

with characterizing the rates of probabilistic convergence of the iterates in the sense of large deviations.

Finally, we show that almost sure convergence of the beliefs follows from the obtained large deviations

rates.

From the technical perspective, this paper contributes with a novel set of techniques and approaches

that could be of interest for further studies of social learning, and more generally, distributed inference

in random networks.

Notation. For arbitrary d ∈ N we denote by 0d the d-dimensional vector of all zeros; by 1d the d-

dimensional vector of all ones; by ei the i-th canonical vector of Rd (that has value one on the i-th entry

and the remaining entries are zero); by Id the d-dimensional identity matrix; by Jd the d×d matrix whose

all entries equal to 1/d. For a matrix A, we let [A]ij and Aij denote its i, j entry and for a vector a ∈ Rd,

we denote its i-th entry by ai, i, j = 1, ..., d. For the set of indices C ⊆ {1, 2, ..., N}, we let [A]C (or

AC) denote the submatrix of A that corresponds to indices in C. For a function f : Rd 7→ R, we denote

its domain by Df =
{
x ∈ Rd : −∞ < f(x) < +∞

}
; for a set D ⊆ R, f−1(D) is defined as f−1(D) =

{x ∈ Rd : f(x) ∈ D}. log denotes the natural logarithm. For N ∈ N, we denote by ∆N−1 the probability

simplex in RN and by α the generic element of this set: ∆N−1 =
{
α ∈ RN : αi ≥ 0,

∑N
i=1 αi = 1

}
. We

let λmax and λ2, respectively, denote the maximal and the second largest (in modulus) eigenvalue of a

square matrix; ∥ · ∥ denotes the spectral norm. For a matrix S ∈ RN×N , we let R(S) denote the range of

S, R(S) =
{
Sx : x ∈ RN

}
. An open Euclidean ball in Rd of radius ρ and centered at x is denoted by

Bx(ρ); the closure, the interior, and the complement of an arbitrary set D ⊆ Rd are respectively denoted

by D, Do, and Dc; B(Rd) denotes the Borel sigma algebra on Rd; P and E denote the probability and

the expectation operator; N (m,S) denotes Gaussian distribution with mean vector m and covariance

matrix S. For a given graph H , E(H) denotes the set of edges of H .

Paper organization. Section II describes the system model and the algorithm and Section III introduces

the large deviations metric and defines the relevant large deviations quantities. Section IV states the

main result of the paper, important corollaries and provides illustration examples. Section V provides

applications of the results to social learning. Proofs of the main result are given in Section VI. Section VII

concludes the paper.

II. SYSTEM MODEL

This section explains the system model and the consensus+innovations distributed inference algorithm

accompanied by different application examples. Section II-A details the connection to social learning,
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while Section II-B provides certain preliminaries.

Communication model. We consider a network of N identical agents connected by an arbitrary communi-

cation topology. The topology is represented by an undirected graph G = (V,E), where V = {1, 2, ..., N}

is the set of agents, and E ⊆
(
V
2

)
is the set of possible communication links between agents. We assume

that during operation of the network each link {i, j} ∈ E may fail, and that correlations between failures

of different links are possible. Realization (i.e., a snapshot) of the communication topology at time slot t

is denoted by Gt = (V,Et), for t = 1, 2, . . . , where Et is the set of links that are online at time t; note that

Et ⊆ E. For an agent i, we let Oi,t denote the set of neighbors of i at time t, Oi,t = {j ∈ V : {i, j} ∈ Et}.

Consensus based distributed estimation. At each time t, each sensor i acquires a d-dimensional vector

of measurements Zi,t ∈ Rd. We assume that the measurements Zi,t are independent and identically

distributed across sensors and over time. The goal of each sensor is to estimate the state of nature θ,

which is the expected value of sensor observations Zi,t, θ = E [Zi,t]. To achieve this, an agent i holds a

local estimate, called also the state, Xi,t and iteratively updates it over time slots t. At each slot t, agent

i performs two steps: 1) the innovation step; and 2) the consensus step. In the innovation step, i acquires

Zi,t and incorporates it into the current state Xi,t−1, by computing the following convex combination,

forming an intermediate state:

X̂i,t =
t− 1

t
Xi,t−1 +

1

t
Zi,t. (3)

It then subsequently transmits X̂i,t to (possibly, a subset of) its neighbors in G, and, at the same time,

receives the intermediate states X̂j,t, j ∈ Oi,t, from its current neighbors. In the second, consensus,

step, agent i computes the convex combination (DeGroot averaging) between its own and the neighbors

estimates:

Xi,t =
∑

j∈Oi,t∪{i}

Wij,tX̂j,t, (4)

where Wij,t is the weight that agent i at time t assigns to the estimate of agent j. For neat exposition,

the weights of all nodes are collected in an N by N matrix Wt, such that the i, j entry of Wt equals

Wij,t, when j ∈ Oi,t ∪ {i}, and equals zero otherwise. Thus, Wt respects the sparsity pattern of Gt: if

{i, j} /∈ Et, then [Wt]ij = [Wt]ji = 0. Also, since the weights at each node form a convex combination,

matrix Wt is stochastic. In addition, we assume that, at any time t, for any i, j, the weights are symmetric

at each link, i.e., Wij,t = Wji,t, implying that Wt is symmetric.

Denoting by Φ(t, s) = Wt · · ·Ws for 1 ≤ s ≤ t, algorithm (3)-(4) can be written as:

Xi,t =
1

t

t∑
s=1

N∑
j=1

[Φ(t, s)]i,j Zj,s. (5)

We analyse algorithm (3)-(4) under the following assumptions on the matrices Wt and observations Zi,t.
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Assumption 1 (Network and observations random model).

1) Observations Zi,t, i = 1, . . . , N , t = 1, 2, . . . are independent, identically distributed (i.i.d.) across

nodes and over time;

2) The sequence of matrices Wt, t = 1, 2, . . . is i.i.d. and for each t, every realization of Wt is

stochastic, symmetric and has positive diagonals;

3) λ2 (E [Wt]) < 1, or, equivalently, the induced graph G of E [Wt] is connected.

4) Weight matrices Wt are independent from the nodes’ observations Zi,s for all i, s, t.

We now present different application examples of algorithm (3)-(4).

Example 2 (Estimating the distribution of opinions by social sampling). Consider the scenario where a

group of N agents wishes to discover the distribution of opinions (e.g., about an event or phenomenon)

across a certain, large population. To achieve this, agents continuously poll the population and register

responses of individuals. We assume that the respondents’ opinions are quantized to d preset opinion

summaries: {r1, ..., rd}. We let Ri,t denote the opinion (summary) of the person that agent i interviewed

at time t. Also, let pl be the probability that the response of a person chosen uniformly at random is

rl. Consider now algorithm (3)-(4) and define the innovation vector Zi,t to be the vector of opinion

indicators, Zi,t =
(
1{Ri,t=r1}, ..., 1{Ri,t=rd}

)⊤; again, let the Wt’s be arbitrary stochastic matrices.

Then, the states of all agents converge to the true opinion distribution, (p1, . . . , pd), as we show in

Section IV, i.e., algorithm (3)-(4) is able to correctly identify the distribution of opinions across a given

population, while the rates of this convergence will prove to be highly dependent on the frequency of

agents’ interactions and interaction patterns.

Example 3 (Distributed event detection). Suppose that a wireless sensor network is deployed in a certain

area to detect in which of the two possible states the environment is. This problem can be modeled

as a binary hypothesis testing problem, where under the state of nature (hypothesis) H1, the sensors

measurements follow the distribution f1, and similarly for f0, where f1 and f0 are assumed known. We

let Yi,t denote the measurement of sensor i at time t. We assume that Yi,t’s are independent both over

time and across different sensors. This hypothesis testing problem can be solved by algorithm (3)-(4) as

follows. For each i and t, define the innovation Zi,t as the log-likelihood ratio of the node i’s measurement

at time t: Zi,t = log f1(Yi,t)
f0(Yi,t)

. Then, any sensor in the system can, at any given time, make a decision

simply by comparing its state Xi,t against a prescribed threshold γ:

Xi,t

H1

⋛
H0

γ. (6)
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For further details on distributed detection application, see also [14].

A generalization of the preceding example to M -ary hypothesis testing and an application to social

learning is given in the next subsection.

A. Social learning

The idea of social learning is for a group of people to distinguish between M different hypotheses,

potentially indistinguishable by any given individual, through local Bayesian updates and collaborative

information exchange. Each node i over time draws observations Yi,t from (the true) distribution fi,M

(hypothesis HM ); the remaining M−1 candidate distributions that compete at node i in hypothesis testing

are fi,m (hypothesis Hm), m = 1, ...,M − 1. It is assumed that, conditioned on the true hypothesis HM ,

observations at each node are independent over time, and they are also independent from the observations

that are generated at any different node.

We consider here the algorithm for social learning proposed in [22]. Each node i maintains over time

two sets of values (vectors), qi,t ∈ RM and bi,t ∈ RM , called, respectively, private and public belief

vectors, quantifying node i’s beliefs in each of the M hypotheses. The m-th entry of qi,t, denoted by

qmi,t ∈ R, corresponds to the private belief of node i in the m-th hypothesis; similarly, the m-th entry of

bi,t, denoted by bmi,t ∈ R, corresponds to the public belief of node i in the m-th hypothesis. The values

of both public and private belief vectors are between 0 and 1: the closer an entry of a belief vector is to

1 (0), the stronger (weaker) is the confidence of the respective node that the corresponding hypothesis is

true; e.g., if for some m, bmi,t equals 1, this means that node i is fully confident that hypothesis Hm is

true.

The algorithm starts at each node with initial private beliefs qmi,t > 0, m = 1, ...,M−1. Upon receiving

new local observation Yi,t, each node i updates its m-th public belief as follows:

bmi,t =
fi,m(Yi,t)q

m
i,t−1∑M

l=1 fi,l(Yi,t)q
l
i,t−1

, (7)

for each m = 1, ...,M . The node then sends its updated public belief vector bi,t = (b1i,t, ..., b
M
i,t)

⊤ to all

of its neighbors Oi,t. Upon receiving the neighbors’ (public) beliefs, the node updates its private beliefs

as follows:

qmi,t =
e
∑

j∈Oi,t
Wij,t log bmj,t∑M

l=1 e
∑

j∈Oi,t
Wij,tblj,t

, (8)

for each m = 1, ...,M .

It is easy to verify that both qi,t and bi,t represent valid probability vectors, i.e., qi,t, bi,t ∈ ∆M−1.
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Connection with algorithm (3)-(4). Consider the update for the private belief qmi,t in (8). Computing the

log-ratios of qmi,t with qMi,t (belief in the true hypothesis HM ), the recursion in (8) transforms into:

log
qmi,t

qMi,t
=
∑

j∈Oi,t

Wij,t log
bmj,t

bMj,t
. (9)

Similarly, it is easy to see that the log-ratios of the public beliefs bmj,t with bMj,t can be expressed as:

log
bmi,t

bMi,t
= log

qmi,t−1

qMi,t−1

+ log
fi,m(Yi,t)

fi,M (Yi,t)
. (10)

Dividing both sides in (9) and (10) by t, we recognize the form in (3)-(4). Further, denoting, for each

m = 1, ...,M − 1,

Lm
i,t = log

fi,m(Yi,t)

fi,M (Yi,t
(11)

X̂m
i,t =

1

t
log

qmi,t
q1i,t

(12)

Xm
i,t =

1

t
log

bmi,t
b1i,t

(13)

and stacking the per-hypothesis quantities in vector form: Li,t =
(
L1
i,t, ..., L

M−1
i,t

)
∈ RM−1, and X̂i,t =(

X̂1
i,t, ..., X̂

M−1
i,t

)
∈ RM−1, and Xi,t =

(
X1

i,t, ..., X
M−1
i,t

)
∈ RM−1, the exact form in (3)-(4) is obtained,

where the innovation vectors Zi,t that algorithm (3)-(4) is fed with are the log-likelihood ratio vectors

Li,t; note also that, in this application instance, d = M − 1. Thus, the generic algorithmic form (3)-(4)

subsumes also the social learning algorithm from (7)-(8) through the described variable transformation.

Section V shows how results of this paper can be used to characterize convergence of beliefs and large

deviations rates of social learning, specifically for the case when the weights Wij,t (neighborhoods Oi,t)

in (8) are random.

B. Probabilistic rate of consensus J

We next define certain concepts and quantities pertinent to the underlying graph process that are needed

for later analyses.

Components in union graphs. Since the sequence of matrices Wt is i.i.d., the sequence Gt of their

underlying topologies is i.i.d. as well. We let G denote the set of all topologies on V that have non-zero

probability of occurrence at a given time t, i.e., G = {(V,E) : P (Gt = (V,E)) > 0}. For convenience,

for any undirected, simple graph H on the set of vertices V we denote pH = P (Gt = H). Thus, for

any H ∈ G, pH > 0. It will also be of interest to consider different subsets of the set of feasible graphs

G. For a collection of undirected simple graphs H on V we let ΓH = (V,EH) denote the corresponding

union graph, that is, ΓH is the graph with the set of vertices V and whose edge set EH is the union of

January 14, 2023 DRAFT



12

edge sets of all the graphs in H, EH = ∪H∈HE(H). We let pH denote the probability that Gt belongs

to H,

pH =
∑
H∈H

pH .

We also introduce – what we refer to as – the component of a node in H.

Definition 4 (Node component in union graph). Let H be a given collection of undirected simple graphs

on V and let C1, ..., CL be the components of the union graph Γ(H). Then, the component of node i in

H, denoted by Ci,H, is the component of Γ(H) that contains i: i.e., if i ∈ Cl, then Ci,H = Cl.

Probabilistic rate of consensus J . We recall here the rate of consensus, associated with a sequence

of random stochastic symmetric matrices, introduced in [13] and subsequently analyzed in [26]. In [13]

and [14] we showed that the quantity J below, termed the rate of consensus3, captures well how the

weight matrices Wt affect performance of the estimates Xi,t when one is concerned with large deviations

metrics:

J := − lim sup
t→+∞

1

t
logP

(
∥Wt · · ·W1 − J∥ >

1

t

)
. (14)

Rate of consensus J is computed exactly in [26].

Theorem 5 ([26]). Let Assumption 1, part 2 hold. Then the lim sup in (14) is in fact a limit and the

rate of consensus J is found by

J = | log pH⋆ |,

where pmax is the probability of the most likely collection of feasible graphs whose union graph is

disconnected,

H⋆ = arg max
H⊆G: ΓH disc.

pH. (15)

In the next example we consider an important special case when links in G fail independently at

random.

3The rate of consensus J (in (14)) is defined slightly differently than the corresponding quantity from [13] and [14]. In [13]

and [14], in the event ∥Wt · · ·W1 − JN∥ > 1/t, the probability of which we wish to compute, there is a constant ε ∈ (0, 1] in

the place of 1/t . However, as we show in [26], the two rate quantities coincide when the weight matrices are i.i.d., which is

the case that we consider here.
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Example 6 (Random topologies with i.i.d. link failures). Consider the random model for Wt defined by

Assumption 1.2 where each link in G fails independently from other links with probability 1−p. Applying

Theorem 5, it can be shown that

J = min cut (G)| log(1− p)|, (16)

where min cut (G) is the minimum edge cut of the graph G; for example, if G is a chain, then min cut (G) =

1. The details of this derivation can be found in [26].

For finite time analyses, of relevance is the following variant of (14): for any ϵ > 0, there exists a

positive constant Kϵ such that for all t,

P
(
∥Wt · · ·Ws − JN∥ >

1

t

)
≤ Kϵe

−(t−s) (J−ϵ). (17)

III. PROBLEM FORMULATION: THE METRIC OF LARGE DEVIATIONS

Section II illustrate uses of algorithm (3)-(4) for several applications: multi-agent polling with coopera-

tion, in Example 2, fully distributed hypothesis testing, in Example 3, and social learning, in Section II-A.

We now introduce the rates of large deviations that we adopt as performance metric for applications of

algorithm (3)-(4).

Rate function I and the large deviations principle.

Definition 7 (Rate function I [28]). Function I : Rd 7→ [0,+∞] is called a rate function if it is lower

semicontinuous, or, equivalently, if its level sets are closed. If, in addition, the level sets of I are compact

(i.e., closed and bounded), then I is called a good rate function.

Definition 8 (The large deviations principle [28]). Suppose that I : Rd 7→ [0,+∞] is lower semicontin-

uous. A sequence of measures µt on
(
Rd,B

(
Rd
))

, t ≥ 1, is said to satisfy the large deviations principle

(LDP) with rate function I if, for any measurable set D ⊆ Rd, the following two conditions hold:

1) lim sup
t→+∞

1

t
logµt(D) ≤ − inf

x∈D
I(x);

2) lim inf
t→+∞

1

t
logµt(D) ≥ − inf

x∈Do
I(x).

Differently than with the case of static topologies, when topologies and/or weight matrices Wt are

random, finding the rate function of an arbitrary node performing distributed inference is a very difficult
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problem [14], [29]. (In fact, even the existence of the LDP is not known a priori.) Our approach is to

find functions Ii and Ii : Rd 7→ R, such that, for any measurable set D:

lim sup
t→+∞

1

t
log P (Xi,t ∈ D) ≤ − inf

x∈D
Ii(x), (18)

lim inf
t→+∞

1

t
log P (Xi,t ∈ D) ≥ − inf

x∈Do
Ii(x). (19)

At a high level, this is analytically achieved by carefully constructing events the probabilities of which

upper and lower bound the probability of the event of interest in (18) and (19). We remark that functions

Ii and Ii that we seek should satisfy (18) and (19) for any given set D, i.e., similarly as with the rate

function Ii, to find bounds on the exponential rates for a given rare event {Xi,t ∈ D}, it suffices to perform

minimizations of Ii and Ii over D. This property is very important, as once Ii and Ii are discovered, any

inaccuracy rate can be easily estimated without the need to do any (further) large deviations analyses.

As we show in Appendix A, if for some node i the LDP holds and (18) and (19) are satisfied for any

D, then

Ii(x) ≤ Ii(x) ≤ Ii(x), x ∈ Rd, (20)

i.e., the graph of the LDP rate function Ii lies between the graphs of Ii and Ii.

Log-moment generating function of observations Zi,t and its conjugate. We proceed standardly by

introducing the log-moment generating function of the observation vectors Zi,t, which we denote by Λ.

The log-moment generating function Λ : Rd → R ∪ {+∞} corresponding to Zi,t is defined by:

Λ(λ) = logE
[
eλ

⊤Zi,t

]
, for λ ∈ Rd. (21)

We make the assumption that Λ is finite at all points.

Assumption 9. DΛ = Rd, i.e., Λ(λ) < +∞ for all λ ∈ Rd.

Besides the log-moment generating function Λ, the second key object in large deviations analysis is

the Fenchel-Legendre transform, or the conjugate, of Λ, defined by

I(x) = sup
λ∈Rd

x⊤λ− Λ(λ), for x ∈ Rd. (22)

Log-moment generating function and its conjugate enjoy many nice properties, such as convexity and

differentiability in the interior of the function’s domain [28], [30]. We list the properties that are relevant

for the current analysis in the next lemma. Recall that θ = E[Zi,t].

Lemma 10 (Properties of Λ and I).

1) Λ is convex and differentiable on Rd;
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2) Λ(0) = 0 and ∇Λ(0) = θ;

3) I is strictly convex;

4) if x = ∇Λ(λ) for some λ ∈ Rd, then I(x) = λ⊤x− Λ(λ);

5) I(x) ≥ 0 with equality if and only if x = θ.

Proofs of 1-5 (with a weaker form of the claim in part 3 – with strict convexity replaced by convexity,

and with non-negativity only in part 5) can be found in [28]. The proof of strict convexity of I

under Assumption 9 can be found in [31]. We briefly comment on properties 2 and 5, to give some

(mathematical) intuition as to why these properties hold, where we note that of particular, practical

relevance is 5. Plugging in λ = 0 in the defining equation of Λ, (21), it is easy to see that Λ(0) = 0.

Similarly, it can be shown that, for any λ, ∇Λ(λ) = E[Zi,te
λ⊤Zi,t ]/E[eλ⊤Zi,t ]. Evaluating at λ = 0, the

property ∇Λ(0) = θ follows. Property 5 has a very intuitive meaning: the rate function is non-negative

and also equals zero at the mean value. To see why the latter holds, it suffices to invoke properties from

part 2 in 4; note also that, since I is non-negative, θ is a minimizer of I . The if and only if part then

follows from strict convexity of I , which implies uniqueness of its minimizer θ. We will show practical

implications of this property when considering large deviations rate of the sequence Xi,t.

The following result, proven in [16], gives fundamental large deviations upper and lower bound for the

inference sequence Xi,t. The result holds for arbitrary stochastic weight matrices Wt and, in particular,

for directed topologies as well. This result will be invoked when proving tightness and optimality of our

rate function bounds for certain classes of networks, in Section IV-B.

Lemma 11 (Fundamental distributed inference bounds). Consider algorithm (3)-(4) under Assumptions 1

and 9. Then (18) and (19) hold with Ii = NI and Ii = I , for all i.

Closed convex hull of a function. We recall the definitions of the epigraph and closed convex hull of

a function.

Definition 12 (Epigraph and closed convex hull of a function, [32]). Let f : Rd 7→ R ∪ {+∞} be a

given function.

1) The epigraph of f , denoted by epif , is defined by

epif =
{
(x, r) : r ≥ f(x), x ∈ Rd

}
. (23)

2) Consider the closed convex hull co epi f 4 of the epigraph of f . The closed convex hull of f , denoted

4The convex hull of a set A, where A is a subset of some Euclidean space, is defined as the set of all convex combinations

of points in A [32].
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by cof , is defined by:

cof(x) := inf{r : (x, r) ∈ co epi f}. (24)

Hence, for a given function f , epigraph of f is the area above the graph of f . Closed convex hull of f

is then constructed from epif by first finding the closed convex hull of the epigraph, co epi f . Then, cof

is defined as the function the epigraph of which matches co epi f . Intuitively, cof is the best convex and

lower semi-continuous (closed) approximation of f , as its epigraph contains (besides epi f ) only those

points that are needed for “convexification” and closure. Figure 2 further ahead gives an illustration of

cof , while construction of cof is explained in Section IV-A.

IV. MAIN RESULT

The main result of this section, Theorem 13, finds functions Ii and Ii from (18) and (19). These

functions enable computation of bounds on the exponential decay rate of an arbitrary rare event and, in

the case of the existence of the LDP, by (20), provide approximations to the rate function Ii. A number of

important corollaries of Theorem 13 is then presented in Subsection IV-B, including the large deviations

principle for regular networks and for pendant nodes. Section V then studies application of the derived

results to distributed hypothesis testing and social learning.

Theorem 13. Consider distributed inference algorithm (3)-(4) under Assumptions 1 and 9. Then, for

each node i, for any measurable set D:

1) lim sup
t→+∞

1

t
logP (Xi,t ∈ D) ≤ − inf

x∈D
I⋆(x), (25)

where I⋆(x) = co inf {I(x) + J , NI(x)};

2) for any collection H of graphs on V :

lim inf
t→+∞

1

t
logP (Xi,t ∈ D) ≥ − inf

x∈Do
Ii,H(x), (26)

where Ii,H(x) = co inf {|Ci,H|I(x) + |log pH| , NI(x)}.

In words, Theorem 13 asserts that, for a fixed set D, for any node i, the probabilities P (Xi,t ∈ D)

decay exponentially fast over iterations t and it also finds bounds on the rate of this decay. We now

make a couple of additional remarks and such that aim at gaining further insights and intuition about

this result and the relevant quantities.

Remark 14. Consider an arbitrary disconnected collection H. By the construction of Ci,H, for any node

i, there holds {i} ⊆ Ci,H and, by non-negativity of I , it follows that I ≤ |Ci,H|I (point-wise). Further,

from Theorem 5 we know that J = | log pH⋆ | ≤ | log pH|. Therefore, we have that for any disconnected
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collection H, I + J ≤ |Ci,H|I + | log pH|. The latter obviously implies I⋆ ≤ Ii,H, serving as a first

feasibility check for (20) (and also (18) and (19)).

Comparing the upper bound from Theorem 13 with (18), we see that (18) is satisfied for

Ii ≡ I⋆, for all i ∈ V. (27)

That is, we have a uniform (lower) bound I⋆ on each of the nodes’ rate functions Ii, i ∈ V .

With respect to the lower bound from Theorem 13, there is in fact a whole family of functions Ii,

one per each collection of graphs H, that validate (19). To find the best bound for a given D, we might

optimize the right hand side of (26) over all collections H. This, however, might be computationally

infeasible. Instead, we can focus only on those collections P ⊆ G that have a certain property, e.g.,

P = {H : |Ci,H| = n}, for some n, 1 ≤ n ≤ N . Then, Ii from (19) can be found by finding H ∈ P that

yields uniformly lowest (i.e., closest to Ii) Ii,H:

Ii = inf
H∈P

Ii,H, for i ∈ V. (28)

The following corollary follows directly from (20) and the definition of LDP.

Corollary 15. 1) If, for a given i, the sequence Xi,t, t = 1, 2, ... satisfies the LDP with rate function

Ii, then, for any collection of graphs H,

I⋆ ≤ Ii ≤ Ii,H. (29)

2) If, for a given i, for some P (possibly, a single element set P = {H}), I⋆ ≡ infH∈P Ii,H, then the

sequence Xi,t, t = 1, 2, ... satisfies the LDP with rate function Ii = I⋆ ≡ infH∈P Ii,H.

In the next remark, through simple convex analyses, we make a connection between Corollary 15

(Theorem 13) and Lemma 11, completing the established bounds in (29) with the general bounds from

Lemma 11, hence establishing a coherent view of the derived results.

Remark 16 (Recovery of fundamental bounds in Lemma 11). From the point-wise non-negativity of I

and non-negativity of J , it is easy to see that I ≤ NI and I ≤ I+J . Thus, epi inf{NI, I+J } ⊆ epiI .

Since I is closed and convex, co epiI = epiI , thus implying co epi inf{NI, I + J } ⊆ epiI . The latter

directly implies I ≤ I⋆. Similarly, we have NI ≥ inf{NI, |Ci,H|I + | log pH|}, where the latter holds

for any disconnected collection H. Thus epiNI ⊆ epi inf{NI, |Ci,H|I+ | log pH|}, which in turn implies

co epiNI ⊆ co epi inf{NI, |Ci,H|I + | log pH|}. Since NI is convex and closed (the properties inherited
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from I), co epiNI = epiNI , and therefore epiNI = co epiNI ⊆ co epi inf{NI, |Ci,H|I + | log pH|}.

The latter implies NI ≥ Ii,H. Combining with (29) establishes:

I ≤ I⋆ ≤ Ii ≤ Ii,H ≤ NI. (30)

The above chain of inequalities is a capture of the so far established bounds in the literature on the large

deviations rate function for consensus+innovations distributed inference iterates on random networks.

As a byproduct, we note in passing that (30) verifies Lemma 11 for the special case of stochastic

symmetric weight matrices.

Remark 17 (Zero rate at θ). Since I is non-negative, both NI and |Ci,H|I(θ) + | log pH | are also

non-negative, implying Ii,H ≥ 0. Further, from Lemma 10, we have I(θ) = 0, and noting now that

NI(θ) = 0 < |Ci,H|I(θ)+ | log pH |, it follows that Ii,H(θ) = 0. It can be similarly shown that I⋆(θ) = 0.

From the preceding properties it follows that for any set C containing the mean value θ

inf
x∈C

I⋆(x) = inf
x∈C

Ii,H(x) = 0. (31)

It follows that Ii(C) = 0, i.e., the inaccuracy rate for any C containing θ equals zero. This means that

probabilities of events that Xi,t belong to C do not exhibit an exponential decay – specifically, for any

norm ball centered at θ, and of an arbitrary radius ρ > 0, Bθ(ρ) > 0, there holds

lim
t→+∞

1

t
logP (Xi,t ∈ Bθ(ρ)) = 0. (32)

Observing the form of the algorithm, eq. (3)-(4), where innovations Zi,t – the mean vector of which is

θ, are incorporated and mixed via weighted averaging (both over time and across nodes), it is intuitive

to expect that Xi,t will converge to θ (consider the ideal averaging case – Wt = Jd, for which Xi,t =

1
t

∑t
s=1

∑N
j=1

1
NZj,s, which converges to θ by the law of large numbers). Hence, the zero decay in (32)

is intuitive, i.e., the probabilities that Xi,t belongs to a neighborhood of θ should not vanish with t.

We use the result of Theorem 13, together with the uniqueness of the minimizer of I , property 5 from

Lemma 10, to establish a sort of a converse to (32) - i.e., whenever we seek the inaccuracy rate Ii(C) for

a set C not containing θ, this rate will be strictly positive. Practical relevance of this (technical) property

is given in Theorem 19 below, where almost sure convergence of Xi,t to θ is formally established.

Remark 18 (Strictly non-zero rate at x ̸= θ). Consider an arbitrary point x ̸= θ. From Lemma 10, part 5

we know that I(x) > 0 for any x ̸= θ.

Consider now an arbitrary set C such that θ /∈ C. By strict convexity of I and uniqueness of the

minimizer of I , it follows that I is coercive [33]. Pick an arbitrary point x0 ∈ C and let α = I(x0).
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Define Sα = {x ∈ Rd : I(x) ≤ α}, i.e., Sα is the α-level set of I . By coercivity of I , it follows that Sα

is compact. We now note

inf
x∈C

I(x) = inf
x∈C∩Sα

I(x) =: a. (33)

Compactness of Sα implies compactness of C ∩ Sα and since I is continuous and strictly greater than

0, it follows by the Weierstrass theorem that the infimum of I over C is strictly greater than zero,

a = infx∈C∩Sα
I(x) > 0. Finally, By the fact that I⋆ ≥ I (the left-hand side inequality in (30)), we in

turn obtain:

inf
x∈C

I⋆(x) ≥ inf
x∈C

I(x) = a > 0. (34)

Therefore, for any set C such that θ /∈ C, we have

lim sup
t→+∞

1

t
logP (Xi,t ∈ C) ≤ −a < 0, (35)

where the constant a bounding the exponential decay rate depends on the chosen set C.

With preceding considerations at hand, almost sure convergence of nodes’ iterates Xi,t follows by

standard arguments.

Theorem 19 (Almost sure convergence of Xi,t). Consider distributed inference algorithm (3)-(4) under

Assumptions 1 and 9. Then, for each node i, the state vectors Xi,t converge almost surely to θ = E[Zi,t].

Proof. Fix node i ∈ V . Pick an arbitrary ϵ > 0 and consider C = Bc
θ(ϵ). We start by noting that inequality

in (35) implies existence of a finite t0 = t0(C) such that, for all t ≥ t0, P(Xi,t ∈ C) ≤ e−t a

2 . Then, for

all t ≥ t0, we have

P (∥Xi,t − θ∥ ≥ ϵ) ≤ e−t a

2 . (36)

Thus,

P (∥Xi,t − θ∥ > ϵ, i.o.) ≤
∞∑
t=1

e−t a

2 < ∞, (37)

where the last inequality follows from strict positivity of a. Applying the Borel-Cantelli lemma [34], the

claim of the theorem follows.

A. A closer look at functions I⋆ and Ii,H

This subsection finds closed form expressions for the functions I⋆ and Ii,H for the case when Zi,t is

a Gaussian vector, and provides a graphical interpretation of the obtained result.
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Lemma 20. Let Zi,t be Gaussian with mean vector m and covariance matrix S. Then

I⋆(x) =


NI(x), x ∈ R⋆

1

N
√
2c1H(x)−Nc1, x ∈ R⋆

2

I(x) + J , x ∈ R⋆
3

, (38)

where R⋆
1 = {x : NI(x) ≤ c1}, R⋆

2 = {x : c1 < I(x) ≤ Nc1}, and R⋆
3 = {x : I(x) > Nc1}, I(x) =

1
2(x − m)⊤S−1(x − m), H(x) =

√
(x−m)⊤S−1(x−m), and c1 = J

N(N−1) . Also, for any fixed

collection of graphs H

Ii,H(x) =


NI(x), x ∈ Ri,H

1

N
√
2c2H(x)−Nc2, x ∈ Ri,H

2

|Ci,H| I(x) + | log pH|, x ∈ Ri,H
3

, (39)

where Ri,H
1 =

{
x : N

|Ci,H|I(x) ≤ c2

}
, Ri,H

2 =
{
x : c2 < I(x) ≤ N

|Ci,H|c2

}
, Ri,H

3 =
{
x : I(x) > N

|Ci,H|c2

}
,

and c2 =
|Ci,H|| log pH|
N(N−|Ci,H|) .

Proof of Lemma 20 is given in Appendix B.

Three regions of I⋆. We provide a graphical illustration for I⋆ in Figure 2. We consider an instance

of algorithm (3)-(4) running on a N = 3-node chain, with i.i.d. link failures of probability (1 − p) =

e−5, and where the observations Zi,t are standard Gaussian (zero mean and variance equal to one).

For standard Gaussian, I(x) = 1
2x

2, and we obtain from Example 6 that the rate of consensus equals

J = | log(1 − p)| = 5. The more curved blue dotted line plots the function NI(x) = 1
2Nx2, the

less curved blue dotted line plots the function I(x) + J = 1
2x

2 + 5, and the solid red line plots I⋆.

Observing the figure and the corresponding formula (38), we see that I⋆ is defined by three regions. In

the region around the zero mean, R⋆
1, I⋆ matches the optimal rate function NI . On the other hand, in

the outer region, R⋆
3, where values of x are sufficiently large, I⋆ follows the slower growing function,

I +J . Finally, in the middle region, R⋆
2, I⋆ is linear (more generally, when d > 1, I⋆ will exhibit linear

intervals over any direction that crosses the mean value). This linear part is the tangent line that touches

both the epigraph of NI(·) and the epigraph of I + J and is responsible for the convexification of the

point-wise infimum inf {I + J , NI}. Function Ii,H has similar properties.

B. Illustrations and LDP for special cases

In this subsection, we use Theorem 13 to establish the LDP for certain classes of random models. As

explained in the remarks after Theorem 13, to prove the LDP at some node i, it is sufficient to show

that I⋆ and Ii,H coincide for some collection H.
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Fig. 2: Illustration of I⋆ for a chain network of size N = 3, with J = 5, and Zi,t ∼ N (0, 1). The more

curved blue dotted line plots NI(x) = 1
2Nx2, the less curved blue dotted line plots I(x)+J = 1

2x
2+J .

The solid red line plots I⋆ = co (NI, I + J ).

The first corollary of Theorem 13 asserts that if every realization of the network topology is connected,

then, for any node i, the sequence of states Xi,t satisfies the LDP with rate function NI . In our recent

work [16], we prove that NI is the best (highest) possible rate function for any distributed inference

algorithms of the form (3)-(4) with N nodes. It is also the rate function of a hypothetical fusion node

that has access to all the observations. Thus, when every instance of the network topology is connected,

then each node in the network is, in the asymptotic sense, effectively acts as a fusion center. Corollary 21

was, for the special case of Gaussian observations, previously proved in [35].

Corollary 21. Let, for each t, Gt be connected. Then, for any i ∈ V , Xi,t satisfies the large deviations

principle with rate function NI .

Proof. By Theorem 2 from [16], we know that, for any node i and for any set D

lim inf
t→+∞

1

t
logP (Xi,t ∈ D) ≥ − inf

x∈Do
NI(x). (40)

Comparing with the conditions for LDP in Definition 8, we see that we only need to prove that I⋆ ≡ NI .

For the latter identity it suffices to show that J = +∞, because then inf{NI, I + J } ≡ NI , and since

NI is closed and convex, we obtain I⋆ = co(NI) = NI . Suppose for the sake of contradiction that

there exists a disconnected collection of graphs H such that pH > 0. Then, there must be a graph H ∈ H

such that both H is disconnected and pH > 0. But this contradicts the assumption that every possible
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(i.e., non-zero probability) topology is connected. Thus, it must be that for every disconnected collection

pH = 0 implying J = +∞, and proving the claim.

In particular, Corollary 21 implies that if the nodes’ interactions are deterministic, i.e., Wt ≡ A, for

some stochastic symmetric A, and A is such that |λ2(A)| < 1, then, for each i, Xi,t satisfy the LDP with

the optimal rate function NI . This recovers the large deviations principle for deterministic networks,

established in [16], for the special case of symmetric networks (cf. Theorem 1 in [16]).

LDP for critical nodes. Consider now a situation when there exists a node i such that J = |log pi,isol|,

where pi,isol denotes the probability that i operates in isolation due to network randomness, pi,isol =

P (Oi,t = ∅). Comparing with Theorem 5, this means that the most likely way to disconnect G is to

isolate i, i.e.,

pmax =
∑

H∈Hi,isol

pH , (41)

where Hi,isol = {H : pH > 0, Ci,H = {i}}. Since Ci,Hi,isol
= {i}, we have

∣∣Ci,Hi,isol

∣∣ = 1. Consider

now the lower bound in (26) for H = Hi,isol. Noting that
∣∣pHi,isol

∣∣ = J , we see that the two functions

I⋆ and Ii,Hi,isol
coincide, thus implying the LDP for node i. This is formally stated in the next corollary.

Corollary 22 (LDP for critical nodes). Suppose that for some i, J = |log pi,isol|. Then, the sequence of

states Xi,t satisfies the LDP with the rate function co {NI(x), I(x) + |log pi,isol|}.

In the next two corollaries we assume the random model from Assumption 1.2 where each link in the

graph G fails independently with the same probability 1− p, p ∈ [0, 1].

Corollary 23 (LDP for pendant nodes). Suppose that the random model for Wt is such that all links in E

fail independently from each other with probability 1−p. Then, for any node i whose degree in G is equal

to one, its sequence of states Xi,t satisfies the LDP with the rate function co {NI(x), I(x) + |log(1− p)|}.

Proof. Suppose that i is a degree one node. By Corollary 22, it suffices to show that J = | log(1− p)|.

From Example 6, we know that J equals | log(1− p)| times the minimum edge cut of G. In this case,

minimum edge cut equals one (and is achieved, for instance, when the edge adjacent to i is removed

from the network), which proves the result.

Corollary 24 (LDP for regular networks). Suppose that G is a circulant network in which each node is

connected to d/2 nodes on the left and d/2 nodes on the right, where d ≤ N −1 is even. We assume that

each link, independently of all other links, fails with probability 1− p. Then, for any node i its sequence

of states Xi,t satisfies the LDP with the rate function co {NI, I + d log |1− p|}.
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Proof. Note that pi,isol = (1 − p)d for any i. Hence, by Corollary 22, it suffices to show that J =

d| log(1− p)|. Observing that the minimum cut in this case equals d, the result follows.

V. APPLICATION TO DISTRIBUTED HYPOTHESIS TESTING AND SOCIAL LEARNING

In this subsection we show how results from Section IV can be used to characterize large deviations

rates of distributed hypothesis testing and social learning that are run over random networks. We recall the

algorithm and relevant quantities defined in Section II-A. We assume that the measurement distributions

corresponding to the same hypothesis are equal across all nodes, i.e., when hypothesis Hm is true, the

measurements at all nodes are drawn from the same distribution fm: Yi,t ∼ fi,m ≡ fm, for all i.

Following the identified role of the vector of log-likelihood ratios Li,t as the innovation vector Zi,t

in (3)-(4), we introduce the log-moment generating function ΛM of Li,t at node i, when the measurements

are drawn from fM (hypothesis HM is true):

ΛM (λ) = E
[
eλ

⊤Li,t

∣∣∣H = HM

]
(42)

= E
[
e
∑M−1

m=1 λm log
fm(Yi,t)

fM (Yi,t)

∣∣∣∣H = HM

]
, (43)

for λ = (λ1, ..., λM−1)
⊤ ∈ RM−1; we note that index M in ΛM indicates the dependence on the assumed

true distribution fM . Similarly as in Section III, the conjugate of ΛM is denoted by IM . We assume that

ΛM satisfies Assumption 9.

A. Large deviations rates of the belief log-ratios

The following result follows as a direct application of Theorem 13 to the log-ratios Xi,t of public

beliefs, defined in Section II-A, eq. (13), Xm
i,t =

1
t log

bmi,t
bMi,t

, m = 1, ...,M − 1.

Theorem 25. Consider the social learning algorithm (7)-(8) under Assumptions 1 and 9, for Λ = ΛM .

Then, when H = HM , for each node i, for any measurable set D,

1) lim sup
t→+∞

1

t
logP (Xi,t ∈ D) ≤ − inf

x∈D
I⋆M (x), (44)

where I⋆M (x) = co inf {IM (x) + J , NIM (x)};

2) for any collection H of graphs on V :

lim inf
t→+∞

1

t
logP (Xi,t ∈ D) ≥ − inf

x∈Do
Ii,H;M (x), (45)

where Ii,H;M (x) = co inf {|Ci,H|IM (x) + | log pH|, NIM (x)}.

Consequently, all considerations, corollaries and results from Section IV also carry over without any

changes for the log-ratios Xi,t of beliefs in social learning. In particular, the LDP results for regular

networks and pendant nodes also carry over to the social learning setup.
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Theorem 26 (Almost sure convergence of Xi,t in social learning). Consider the social learning algo-

rithm (7)-(8) under Assumptions 1 and 9, for Λ = ΛM . Then, for each node i, for each m = 1, ...,M−1,
1
t log

bmi,t
bMi,t

converges almost surely to −DKL(fM ||fm) = −E
[
log fm(Yi,t)

fM (Yi,t

∣∣∣H = HM

]
.

The result follows as a direct application of Theorem 19 for the case when the innovations Zi,t in (3)-(4)

are instantiated by the log-likelihood ratios Li,t defined in (11), Lm
i,t = log fm(Yi,t)

fM (Yi,t
, for m = 1, ...,M −1,

and by recognizing that the expected value of log fm(Yi,t)
fM (Yi,t

under distribution fM is the negative of the

KL divergence between fm and fM .

To illustrate the setup and the relevant quantities, we consider the example of M scalar Gaussian

distributions of different mean values and equal variances.

Example 27 (Gaussian case: different mean values and equal variances). Let Yi,t be Gaussian scalars,

with mean value µm under hypothesis m, and (equal) variance σ2. It is easy to show that, for this case,

Li,t is computed as:

Li,t =
1

σ2
(Yi,t − µM ) d−DKL, (46)

where d = (d1, ..., dM−1)
⊤, and each dm = µm − µM is the difference between the mean value for the

m-th hypothesis and the mean value for the true hypothesis, and DKL = (DKL,1, ..., DKL,M−1)
⊤, where

DKL,m = (µm−µM )2

2σ2 is the KL divergence between the distribution fm and the true distribution fM ,

m = 1, ...,M − 1. It is easy to see that, for each i = 1, ..., N and each t, Li,t is Gaussian with mean

vector −DKL and covariance matrix 1
σ2dd⊤. Using the standard formula for the log-moment generating

function of multivariate Gaussian distribution, we get:

ΛM (λ) = −λ⊤DKL +
(λ⊤d)

2σ2
. (47)

Simple calculus shows that the conjugate function IM is given by:

IM (x) =


ζ2

2σ2 , if x = ζ
2σ2d−DKL, for some ζ ∈ R

+∞, if x+DKL /∈ span(d)
. (48)

Thus, IM is essentially a one-dimensional quadratic function that changes only along the direction

−DKL + αd, α ∈ R, while being equal to +∞ in the rest of the Rd space. This is intuitive as the

log-likelihood ratios for different m are coupled through a common (scalar) variable Yi,t, and hence the

events that vector Li,t lies outside of the line −DKL + αd must have zero probability (and thus rate

function equal to +∞). The convex conjugates of IM from Theorem 13, I⋆M and Ii,H;M , can be found

similarly as in Section IV-A.

January 14, 2023 DRAFT



25

B. Large deviations rates for beliefs in social learning

For each m = 1, ..,M − 1, define gm : RM−1 7→ R as gm(x) = xm − max{0, x1, ..., xM−1}, for

x ∈ Rd.

Theorem 28. Consider the social learning algorithm (7)-(8) under Assumptions 1 and 9, for Λ = ΛM .

Then, for each node i ∈ V and hypothesis m = 1, ...,M − 1, for any given interval F ⊆ R:

1)

lim sup
t→+∞

1

t
logP

(
1

t
log bmi,t ∈ F

)
≤ − inf

x:gm(x)∈F
I⋆M (x); (49)

2) for any disconnected collection H,

lim inf
t→+∞

1

t
logP

(
1

t
log bmi,t ∈ F

)
≥ − inf

x:gm(x)∈F
Ii,H;M (x). (50)

The proof is very similar to the proof of Lemma 4 from [22]. The key distinction is that here full LDP

for the log-ratios of the beliefs, Xi,t, is not available due to the complexity of the network model, and

we have to work instead with the upper and the lower rate function bounds. However, the key arguments

remain unaltered. For completeness, we provide the main steps of the proof in Appendix C.

The result in Theorem 28 is very general, as it holds for arbitrary distributions fm, m = 1, ...,M ,

such that the log-moment generating function ΛM satisfies Assumption 9; this is for example the case

for Gaussian distributions from Example 27.

Remark 29. It can be shown by carrying out the same analyses as in the proof of Theorem 28, that, if

for some node i the sequence Xi,t satisfies the LDP with rate function Ii, then, for each m = 1, ...,M

the sequence of log beliefs 1
t log b

m
i,t also satisfies the LDP with rate function

Ri,m(z) = inf
x: gm(x)=z

Ii(x), (51)

for x ∈ R.

We can see that, to find the large deviations rates of the beliefs, first the rate function Ii (or bounds

on this function) for the log-belief ratios Xi,t are found, and then the contraction principle is applied

with functions gm acting as the bridge between the two domains. This relation is established in [22] for

static networks, but the same behaviour carries over to the general case, with the difference that the rate

function of log-beliefs can differ across different nodes as a result of network randomness. To shed some

light on function gm, we revisit Example 27 for which we derive a closed form expression for gm.
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Example 30 (Computation of gm for the Gaussian case). Consider the setup from Example 27. Recall

that gm(x) = xm −max{0, x1, ..., xM−1} and also that IM (x) = +∞ outside of the line −DKL + αd,

α ∈ R. Define also

f(ζ) = max{0, ζ d1
σ2

−DKL,1, ..., ζ
dM−1

σ2
−DKL,M−1}. (52)

and note that

gm(x) = ζ
dm
σ2

−DKL,m − f(ζ), (53)

for any ζ ∈ R and x ∈ RM−1 such that x = (ζ d1

σ2 −DKL,1, ..., ζ
dM−1

σ2 −DKL,M−1), for m = 1, ...,M−1.

Without loss of generality, assume that µ1 < µ2 < ... < µM−1, implying also d1 < d2 < ... < dM−1.

Let m⋆ be the largest m such that µm < µM , m⋆ = max{m ∈ {0, 1, ...,M − 1} : µm < µM}, wherein

we additionally define µ0 ≡ −∞ to account for the case that µM < µ1. Then d1 < ... < d⋆m < 0 <

dm⋆+1 < ... < dM−1. By the preceding ordering, and exploiting also that DKL,m = d2
m

2σ2 , it can be easily

verified that for any pair l < m, the intersection between the lines ζ dl

σ2 − DKL,l and ζ dm

σ2 − DKL,m

occurs at dl+dm

2 , with the l-indexed line dominating to the left of this point, for ζ < dl+dm

2 , while the

m-indexed line dominates to the right. It also clearly follows that the first intersection point occurs for

the first neighboring index, thus, as ζ increases, the lines must dominate in the same order as their dm

values. Summarizing, f is given in the following form:

f(ζ) =



ζ d1

σ2 −DKL,1, ζ < d1+d2

2

ζ d2

σ2 −DKL,2,
d1+d2

2 ≤ ζ < d2+d3

2

...

0 dm⋆

2 ≤ ζ < dm⋆+1

2

...

ζ dm

σ2 −DKL,m, dm−1+dm

2 ≤ ζ < dm+dm+1

2

...

ζ dM−1

σ2 −DKL,M−1, ζ ≥ dM−2+dM−1

2

. (54)
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From (53) and (54), we can obtain for x = ζ
σ2d−DKL:

gm(x) =



(dm−d1)
σ2

(
ζ − dm+d1

2

)
ζ < d1+d2

2

ζ d2

σ2 −DKL,2
d1+d2

2 ≤ ζ < d2+d3

2

...

ζ dm

σ2 −DKL,m
dm⋆

2 ≤ ζ < dm⋆+1

2

...

0 dm−1+dm

2 ≤ ζ < dm+dm+1

2

...

(dm−dM−1)
σ2

(
ζ − dm+dM−1

2

)
ζ ≥ dM−2+dM−1

2

. (55)

The derived closed form expression for gm is a step towards deriving the closed form expression for the

rate function Ri,m, and, in particular, it suggests an analytical validation for the piece-wise behaviour of

the rate function of beliefs discovered numerically in [22], Figure 9. This is out of scope of the current

paper and is left for future work. To provide an illustration towards characterizing Ri,m, we consider the

value of the rate function at −DKL,m. From (55), we see that gm(x) = −DKL,m} for x = ζ
σ2 −DKL

and ζ = 0 (note that, by construction, dm⋆ < 0 and dm⋆+1 > 0, and hence ζ = 0 ∈ [dm⋆

2 , dm⋆+1

2 )). Thus,

we have

Ri,m(−DKL,m) = inf
x:gm(x)=−DKL,m

Ii(x) ≤ Ii(−DKL). (56)

the preceding inequality holds trivially by the fact that −DKL ∈ {x : gm(x) = −DKL,m}. On the other

hand, we have proved that I⋆M (−DKL) = Ii,H;M (−DKL) = 0 (see Remark 17). By (29), we thus have

Ii(−DKL) = 0. It follows that Ri,m(−DKL,m) = 0, i.e., the derived expression for gm reveals that the

value of the rate function Ri,m at −DKL,m is zero. This is in accordance with almost sure convergence

of 1
t log b

m
i,t to −DKL,m which follows by combining Theorems 26 and 32.

When the two functions from (44) and (45), namely, I⋆M and Ii,H;M match, this implies that the

corresponding lim sup and the lim inf are equal. Hence, whenever for a given node i its sequence Xi,t

exhibits LDP, this implies LDP for the sequence of beliefs 1
t log b

m
i,t, for each m = 1, ...,M − 1. Here

we give an example for regular networks.

Corollary 31 (LDP for social learning in regular networks). Suppose that G is a circulant network as

in Corollary 24, i.e., each node is connected to d/2 nodes on the left and d/2 nodes on the right, where

d ≤ N − 1 is even. We assume that each link, independently of all other links, fails with probability

1− p. Then, for any node i, for each m, 1
t log b

m
i,t satisfies the LDP with the rate function

Rm(z) = inf
x∈RM−1:gm(x)=z

co {NIM , IM + d log |1− p|} (x). (57)
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A similar result holds also for pendant nodes with i.i.d. link failures.

Convergence to the correct hypothesis. The next result establishes, through the use of large deviations

analysis, that the social learning algorithm (7)-(8) correctly identifies the true hypothesis. We remark that

this recovers the result of [27] for the special case of identical distributions across nodes.

Theorem 32. Consider the social learning algorithm (7)-(8) under Assumption 1 and 9, for Λ = ΛM .

Then, when H = HM , for each node i, the sequence of beliefs bMi,t converges to one almost surely.

Proof. From the construction of the beliefs bmi,t, for each i, t, bMi,t = 1− b1i,t− ...− bM−1
i,t . Combining this

with the relations Xm
i,t =

1
t log

bmi,t
bMi,t

, yields

bMi,t =
1

1 +
∑M−1

m=1 etX
m
i,t

. (58)

By Theorem 26, for each m = 1, ...,M − 1, Xm
i,t converges almost surely to −DKL(fM ||fm) < 0.

Hence, each of the terms etX
m
i,t in the sum above vanishes with probability one. Since M is finite, there

exists a set of probability one such that
∑M

m=1 e
tXm

i,t vanishes, proving that bMi,t converges to one almost

surely.

The next two sections prove Theorem 13; Section VI-A proves the upper bound (25) and Section VI-B

proves the lower bound (26).

VI. PROOF OF THEOREM 13

This section proves Theorem 13 by proving separately the upper and the lower bound. Before giving

the respective proofs, we first give some important lemmas that are used in both the upper and the lower

bound proof.

Lemma 33 will be used to find the log-moment generating function of the estimate Xi,t from the

log-moment generating functions of each of the terms in the sum (5). This result follows from convexity

and zero value at the origin property of Λ.

Lemma 33. For any set of convex multipliers α ∈ ∆N−1, for each j = 1, ..., N , the log-moment

generating function Λ satisfies,

NΛ (1/Nλ) ≤
N∑
i=1

Λ(αiλ) ≤ Λ(λ), (59)

for any λ ∈ Rd.

The proof of Lemma 33 can be found in [16].
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The claims in Lemma 34 are standard results from convex analysis, the proofs of which can be found,

e.g., in [32]. Let the superscript ⋆ denote the conjugacy operation, i.e., for a given function f : Rd 7→ R,

f⋆(x) = sup
s∈Rd

s⊤x− f(s), x ∈ Rd. (60)

The following relations hold between a function f and its conjugate f⋆.

Lemma 34. 1) Let f : Rd 7→ R be a given a function. Then:

a) [f(·) + r]⋆ = f⋆(·)− r;

b) for α > 0 and β ̸= 0, [αf(β(·))]⋆ = αf⋆ (1/(αβ)(·)).

2) Let f1 and f2 be two given functions. Then, the conjugate of the pointwise supremum of f1 and f2

is the convex hull of the pointwise infimum of f⋆
1 and f⋆

2 :

[sup{f1, f2}]⋆ = co inf {f⋆
1 , f

⋆
2 } . (61)

A. Proof of the upper bound (25)

In our previous work [16], we have proved that, at any node i, the sequence Xi,t is exponentially tight.

This intuitively means that the probabilities of the tail events of Xi,t vanish sufficiently fast (i.e., the

exponential rates of the tail probabilities grow unbounded when the tails move to infinity). Lemma 35

uses this result to derive an elegant sufficient condition for a certain function to satisfy the large deviations

upper bound from Definition 8. In our case, this function will be the conjugate of a certain modification

of Λ that accounts for the effects of intermittent communications. We remark that at the core of the proof

of Lemma 35 is a modification of the finite cover argument from the proof of Cramér’s theorem in Rd

(see, e.g., [28]); the detailed proof of Lemma 35 is provided in Appendix D.

Lemma 35. Let Xt be an arbitrary sequence of random variables where each Xt takes values in Rd.

Suppose that for some function f , for any measurable set D there holds

lim sup
t→+∞

1

t
logP (Xt ∈ D) ≤ f(λ)− inf

x∈D
λ⊤x, (62)

for any λ ∈ Rd. Then, if f is finite for all λ ∈ Rd, for any compact set F

lim sup
t→+∞

1

t
logP (Xt ∈ F ) ≤ − inf

x∈F
f⋆(x), (63)

where f⋆ is the conjugate of f . If in addition Xt is exponentially tight, then (63) holds for any closed

set F .
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Fix an arbitrary node i ∈ V . Replicating the steps of the proof of Theorem 5 from [14], we obtain

that, for any measurable set D, and any fixed λ ∈ Rd,

lim sup
t→+∞

1

t
logP (Xi,t ∈ D)

≤ max

{
NΛ

(
1

N
λ

)
,Λ(λ)− J

}
− inf

x∈D
λ⊤x. (64)

By Lemma 17 from [16], the sequence of estimates Xi,t is exponentially tight. (We remark that this

result is proven under more general assumptions on the weight matrices than assumed here.) Hence,

to prove the upper bound (25), it only remains to show that I⋆ from Theorem 13 is the conjugate of

f(λ) := max {NΛ (1/Nλ) ,Λ(λ)− J }, λ ∈ Rd. From part 2 of Lemma 34, we have that the conjugate

of f is the closed convex hull of the infimum of the conjugates of f1(λ) := λ 7→ NΛ (1/Nλ) and

f2(λ) := λ 7→ Λ(λ)−J . Using the conjugacy rules from parts 1b and 1a of Lemma 34, we obtain that

the respective conjugates of f1 and f2 are NI(x), x ∈ Rd, and I(x) + J , x ∈ Rd. The upper bound 25

follows by part 2 of Lemma 34.

B. Proof of the lower bound (26)

Fix an arbitrary node i ∈ V . Fix a collection of feasible graphs H. To simplify the notation, we denote

the component of i in H, Ci,H, by C. We also let M denote the number of nodes in C, M = |C|. For

each fixed t, we define the family of events
{
E t
θ : θ ∈ [0, 1]

}
, such that for any θ ∈ [0, 1],

E t
θ =

{
Gs ∈ H, ⌈θt⌉ ≤ s ≤ t, ∥[Φ(t, t− ot)]C − JM∥ ≤ 1

t
,

∥Φ(⌈θt⌉, ⌈θt⌉ − ot)− JN∥ ≤ 1

t

}
, (65)

where ot = ⌈log t⌉; we recall that, for a square matrix A, AC denotes the block of A corresponding

to the intersection of columns and rows of A the indices of which belong to C. For convenience, we

introduce Tθ = {⌈θt⌉, ..., t}.

Lemma 36. Let θ be an arbitrary number in [0, 1]. For any ω ∈ E t
θ,

1) for any s ∈ Tθ,

[Φ(t, s)]ij = 0, for j /∈ C;

2) for t− ot ≥ s ≥ ⌈θt⌉, ∣∣∣∣[Φ(t, s)]ij − 1

M

∣∣∣∣ ≤ 1

t
, for all j ∈ C;

3) for ⌈θt⌉ − ot ≥ s ≥ 1, ∣∣∣∣[Φ(t, s)]ij − 1

N

∣∣∣∣ ≤ 1

t
, for all j ∈ V.
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Proof. Fix ω ∈ E t
θ and, for s = 1, ..., t, denote As = Ws(ω). Consider first part 1, and suppose, without

loss of generality, that C = {1, ...,M}. By construction of E t
θ, none of the graphs that appear during

Tθ have links that connect C with the remaining part of the network Cc = V \ C. Hence, each of the

matrices As, s ∈ Tθ has the following block diagonal form

As =

 [As]C 0M×(N−M)

0M×(N−M) [As]V \C

 , (66)

and the same structure is therefore preserved in their products Φ(t, s) = At · · ·As, s ∈ Tθ, i.e.,

Φ(t, s) =

 [At]C · . . . · [As]C 0M×(N−M)

0M×(N−M) [At]Cc · . . . · [As]Cc

 .

We next consider part 2. Since for an arbitrary matrix A, for any i, j there holds |Aij | ≤ ∥A∥, it is

sufficient to show that ∥[Φ(t, s)]C − JM∥ ≤ 1/t, for any fixed s ∈ Tθ such that s ≤ t − ot. By part 1,

we know that for any s1, s2 ∈ Tθ, the C block of Φ(s1, s2) is computed as the product of blocks [As1 ]C

through [As2 ]C . Since each of these blocks is a symmetric, stochastic, M by M matrix, we have that

[Φ(s1, s2)]C is a doubly stochastic (M by M ) matrix. Consider now a fixed s ∈ Tθ such that s ≤ t− ot.

Factoring out [Φ(t, s)]C as the product [Φ(t, t−ot)]CΦ(t−ot−1, s)]C , and using the double-stochasticity

of the latter two matrices, we obtain [Φ(t, s)]C −JM = ([Φ(t, t− ot)]C −JM )(Φ(t− ot− 1, s)]C −JM ).

By construction of E t
θ, the spectral norm of the first factor is not greater than 1/t, while the double-

stochasticity of Φ(t − ot − 1, s)]C yields that the spectral norm of the second factor is not greater than

1. Using submultiplicativity of the spectral norm, the claim in part 2 follows:

∥[Φ(t, s)]C − JM∥

≤ ∥[Φ(t, t− ot)]C − JM∥ ∥[Φ(t− ot − 1, s)]C − JM∥

≤ 1/t. (67)

Part 3 can be proven by factoring out Φ(t, s) as the product Φ(t, ⌈θt⌉)Φ(⌈θt⌉− 1, ⌈θt⌉− ot)Φ(⌈θt⌉−

ot − 1, s) and applying similar arguments as in the proof of part 2.

Fix θ ∈ [0, 1] and consider the probability distribution νθt : B
(
Rd
)
→ [0, 1] defined by

νθt (D) =
P
(
{Xi,t ∈ D} ∩ E t

θ

)
P
(
E t
θ

) , (68)

that is, νθt is the probability distribution of Xi,t conditioned on the event E t
θ (we note that P

(
E t
θ

)
> 0

for t sufficiently large, as we show later in the proof, see Lemma 38 further ahead).

Let Υt be the (normalized) logarithmic moment generating function associated with νθt ,

Υt(λ) =
1

t
logE

[
etλ

⊤Xi,t
∣∣E t

θ

]
, for λ ∈ Rd. (69)
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Using the properties of entries of Φ(t, s) for different intervals on s listed in Lemma 36, we establish

in Lemma 37 that the sequence of functions Υt has a point-wise limit for every λ ∈ Rd. This will allow

to apply the Gärtner-Ellis theorem [28] to compute the large deviations rate function for the sequence of

measures νθt . We first state and prove Lemma 37.

Lemma 37. For any λ ∈ Rd and any θ ∈ [0, 1]:

lim
t→+∞

Υt(λ) = (1− θ)MΛ

(
1

M
λ

)
+ θNΛ

(
1

N
λ

)
, (70)

where, we recall, M = |C|.

Proof. Fix θ ∈ [0, 1], λ ∈ Rd. We have:

E
[
etλ

⊤Xi,t
∣∣E t

θ

]
=

1

P
(
E t
θ

)E [1Et
θ
etλ

⊤Xi,t

]
=

1

P
(
E t
θ

)E [E [1Et
θ
etλ

⊤Xi,t |W1, ...,Wt

]]
=

1

P
(
E t
θ

)E [1Et
θ
E
[
etλ

⊤Xi,t |W1, ...,Wt

]]
, (71)

where in the last equality we used that the indicator 1Et
θ

is a function of W1, ...,Wt. Further, as the

summands in (5) are independent given W1, ...,Wt, we obtain

E
[
etλ

⊤Xi,t |W1, ...,Wt

]
= e

∑t
s=1

∑N
j=1 Λ([Φ(t,s)]ijλ). (72)

Consider now a fixed ω ∈ E t
θ. We split the sum in the exponent of (72) according to the intervals used

in the construction of E t
θ. With this in mind, we define also

χt := max
α∈[1/M−1/t,1/M+1/t]

Λ (αλ) , (73)

χ
t
:= min

α∈[1/M−1/t,1/M+1/t]
Λ (αλ) , (74)

and

ζt := max
α∈[1/N−1/t,1/N+1/t]

Λ (αλ) , (75)

ζ
t
:= min

α∈[1/N−1/t,1/N+1/t]
Λ (αλ) , (76)

for λ ∈ Rd. We remark that, by the continuity of Λ and compactness of the intervals, in each of

the preceding optimization problems there exists a maximizer. Further, as t → +∞, the corresponding

intervals shrink to a single point, and by using again continuity of Λ, we obtain that χt, χt
→ Λ (1/Mλ),

and ζt, ζt → Λ (1/Nλ), as t → +∞. Then, by part 1 of Lemma 36 and the fact that Λ(0) = 0, we have∑
j /∈C

Λ ([Φ(t, s)]ijλ) = 0, for each s ∈ Tθ.

January 14, 2023 DRAFT



33

Further, by part 2 of Lemma 36

Mχ
t
≤
∑
j∈C

Λ ([Φ(t, s)]ijλ) ≤ Mχt, for t− ot ≥ s ≥ ⌈θt⌉,

and, similarly, by part 3 of Lemma 36

Nζ
t
≤

N∑
j=1

Λ ([Φ(t, s)]ijλ) ≤ Nζt, for ⌈θt⌉ − ot ≥ s ≥ 1.

As for the summands in the intervals {t, ..., t− ot} and {⌈θt⌉, ..., ⌈θt⌉ − ot}, we apply Lemma 33 to get

MΛ

(
1

M
λ

)
≤
∑
j∈C

Λ ([Φ(t, s)]ijλ) ≤ Λ(λ),

for t ≥ s ≥ t− ot,

and

NΛ (1/Nλ) ≤
N∑
j=1

Λ ([Φ(t, s)]ijλ) ≤ Λ(λ),

for ⌈θt⌉ ≥ s ≥ ⌈θt⌉ − ot.

Summing out the upper and lower bounds over all s in the preceding five inequalities yields:

tΥt (λ) ≤
t∑

s=1

N∑
i=1

Λ ([Φ(t, s)]i,j) ≤ tΥt (λ) , (77)

where

Υt (λ) =
⌈θt⌉ − ot

t
Nζ

t
+

ot
t

(
NΛ

(
1

N
λ

)
+MΛ

(
1

M
λ

))
+

t− ⌈θt⌉ − ot
t

Mχ
t
,

and

Υt(λ) =
⌈θt⌉ − ot

t
Nζt +

ot
t

(
NΛ

(
1

N
λ

)
+MΛ

(
1

M
λ

))
+

t− ⌈θt⌉ − ot
t

Mχt.

The inequalities in (77) hold for any fixed ω ∈ E t
θ. Thus,

1Et
θ
etΥt(λ) ≤ 1Et

θ
E
[
etλ

⊤Xi,t |W1, ...,Wt

]
≤ 1Et

θ
etΥt(λ). (78)

Finally, by monotonicity of the expectation:

P
(
E t
θ

)
etΥt(λ) ≤ E

[
1Et

θ
E
[
etλ

⊤Xi,t |W1, ...,Wt

]]
≤ P

(
E t
θ

)
etΥt(λ),
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which combined with (71) implies

etΥt(λ) ≤ E
[
etλ

⊤Xi,t |E t
θ

]
≤ etΥt(λ). (79)

Now, taking the logarithm and dividing by t,

Υt(λ) ≤ Υt (λ) ≤ Υt(λ),

and noting that

lim
t→+∞

Υt(λ) = lim
t→+∞

Υt(λ)

= (1− θ)MΛ

(
1

M
λ

)
+ θNΛ

(
1

N
λ

)
,

the claim of Lemma 37 follows.

By the Gärtner-Ellis theorem it follows then that the sequence of measures νθt satisfies the large

deviations principle5, with the rate function equal to the conjugate of

fθ(λ) := (1− θ)MΛ

(
1

M
λ

)
+ θNΛ

(
1

N
λ

)
, (80)

for λ ∈ Rd. Therefore, for every open set E ⊆ Rd, there holds

lim inf
t→+∞

1

t
logP

(
Xi,t ∈ E|E t

θ

)
≥ − inf

x∈E

{
sup
λ∈Rd

λ⊤x− fθ(λ)

}
. (81)

We next turn to computing the probability of the event E t
θ.

Lemma 38. For any θ ∈ [0, 1], for all t sufficiently large:

1

4
p
t−⌈θt⌉
H ≤ P

(
E t
θ

)
≤ p

t−⌈θt⌉
H . (82)

Proof. By the disjoint blocks theorem [34] applied to the matrices in Tθ and its complement {1, ..., t}\Tθ,

we obtain

P
(
E t
θ

)
= P

(
∥Φ(⌈θt⌉, ⌈θt⌉ − ot)− JN∥ ≤ 1

t

)
×

P
(
Gs ∈ H, for s ∈ Tθ, ∥[Φ(t, t− ot)]C − JM∥ ≤ 1

t

)
. (83)

5We use here the variant of the Gärtner-Ellis theorem which claims the (full) LDP for the case when the domain of the

limiting function is the whole space Rd, as given in [28]; see also Exercise 2.3.20 in [28] for the statement and the sketch of

the proof of this result.

January 14, 2023 DRAFT



35

We show using (17) that the first term in the right-hand side of the preceding equality goes to 1 as

t → +∞. Fix an arbitrary ϵ ∈ (0, 1). Then, for all t sufficiently large,

P
(
∥Φ(⌈θt⌉, ⌈θt⌉ − ot)− JN∥ ≤ 1

t

)
≥ 1−Kϵe

−t(J−ϵ) ≥ 1/2. (84)

Clearly, being a probability, this term is also smaller than 1 (for all t). Consider now the second factor in

the right-hand side of (83). Conditioning on the event {Gs ∈ H, for s ∈ Tθ}, and using the fact that the

probability of this event equals pt−⌈θt⌉
H (note that the latter holds by the independence of weight matrices,

Assumption 1.2), we obtain

P
(
Gs ∈ H, for s ∈ Tθ, ∥[Φ(t, t− ot)]C − JM∥ ≤ 1

t

)
=

P
(
∥[Φ(t, t− ct)]C − JM∥ ≤ 1

t
|Gs ∈ H, for s ∈ Tθ

)
p
t−⌈θt⌉
H .

Similarly as in (84), it can be shown that the conditional probability term in (85), for all t sufficiently

large, greater than 1/2. On the other hand, it is obviously smaller than 1 for all t. Summarizing the

preceding findings, the claim of the lemma follows.

To bring the two key arguments together – Lemma 38 and the lower bound (81), we start from the

following simple bound

P (Xi,t ∈ E) ≥ P
(
{Xi,t ∈ E} ∩ E t

θ

)
= νθt (E)P

(
E t
θ

)
. (85)

From superadditivity of the lim inf , followed by an application of (81) and (82), we obtain

lim inf
t→+∞

1

t
logP (Xi,t ∈ E)

≥ lim inf
t→+∞

1

t
log νθt (E) + lim

t→+∞

1

t
logP

(
E t
θ

)
≥ − inf

x∈E

{
sup
λ∈Rd

λ⊤x− fθ(λ)

}
− (1− θ)| log pH|.

The preceding inequality holds for each θ in [0, 1]. Optimizing over all such values yields:

lim inf
t→+∞

1

t
logP (Xi,t ∈ E) ≥

− inf
θ∈[0,1]

{
inf
x∈E

sup
λ∈Rd

{
λ⊤x− fθ(λ)

}
+ (1− θ)| log pH|

}
= − inf

x∈E
inf

θ∈[0,1]

{
sup
λ∈Rd

{
λ⊤x− fθ(λ)

}
+ (1− θ)| log pH|

}
.
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Now, fix x ∈ E and consider the function

g(θ, λ) := λ⊤x− (1− θ)

(
MΛ

(
1

M
λ

)
− | log pH|

)
− θNΛ

(
1

N
λ

)
. (86)

As an affine function of θ, g is convex in θ. Further, by convexity of Λ, g is concave in λ, for any

θ ∈ [0, 1]. Finally, sets [0, 1] and Rd are convex and set [0, 1] is compact. Thus, conditions for applying

the Minimax theorem [36] are fulfilled and we obtain:

inf
θ∈[0,1]

sup
λ∈Rd

λ⊤x− (1− θ) (MΛ (1/Mλ)− | log pH|)

− θNΛ (1/Nλ) =

sup
λ∈Rd

inf
θ∈[0,1]

λ⊤x− (1− θ) (MΛ (1/Mλ)− | log pH|)

− θNΛ (1/Nλ)

= sup
λ∈Rd

λ⊤x−max {MΛ (1/Mλ)− | log pH|,Λ (1/Nλ)} .

Similarly as in the proof of the upper bound, using the conjugacy rules from Lemma 34,

sup
λ∈Rd

λ⊤x−min

{
MΛ

(
1

M
λ

)
− | log pH|,Λ

(
1

N
λ

)}
= co inf (NI,MI + | log pH|) (x),

which finally yields,

lim inf
t→+∞

1

t
logP (Xi,t ∈ E)

≥ − inf
x∈E

co inf {NI,MI + | log pH|} (x).

This completes the proof of the lower bound and the proof of Theorem 13.

VII. CONCLUSION

We studied large deviations inaccuracy rates for consensus+innovations based distributed inference for

generic random networks. We assume vector measurements with possibly non-i.i.d. entries. Our goal was

to find bounds or exact rate function for each node in the network, accounting for the specificities of

the node’s interactions. For each node, we found a node-specific family of lower bounds, induced by the

family of network subgraphs in which the node participates. Specifically, each bound in the family is

given as the convex envelope of the centralized rate function and the effective rate function corresponding

to a given subgraph, and lifted by the probability that this subgraph remains isolated from the remainder
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of the network. The upper bound is defined as the convex envelope of the centralized rate function and

the rate function corresponding to an isolated node, lifted by the rate of consensus. We show that, for

certain cases such as pendant nodes and d-cyclic graphs, the two bounds match, hence proving the large

deviations principle for these classes of random networks. We illustrate the results with an application to

social learning, providing also the first proof of the large deviations principle for social learning beliefs

with random network models.

APPENDIX A

PROOF OF (20)

Fix i ∈ V and suppose that the inequalities in (18) and (19) hold for any set D. Suppose also that the

sequence of node i’s states, Xi,t, satisfies the LDP with rate function Ii.

We prove (20) by contradiction. Consider first the right hand side of (20) and suppose, for the sake

of contradiction, that there exists a point x0 such that Ii(x0) > Ii(x0). Let ϵ = Ii(x0) − Ii(x0) and

introduce S =
{
x ∈ Rd : Ii(x) > Ii(x0) + ϵ/2

}
. By the lower semi-continuity of Ii, S is open. Also,

x0 ∈ S. Thus, for δ > 0 sufficiently small, the closed ball Bx0
(δ) entirely belongs to S. Combining the

LDP upper bound (1) for D = Bx0
(δ), with the bound (18) for D = Bx0

(δ), we obtain:

− inf
x∈Bx0

(δ)
Ii(x) ≤ lim inf

t→+∞

1

t
logP (Xi,t ∈ Bx0

(δ)) (87)

≤ lim sup
t→+∞

1

t
logP

(
Xi,t ∈ Bx0

(δ)
)
≤ − inf

x∈Bx0
(δ)

Ii(x). (88)

Since infx∈Bx0
(δ) Ii(x) ≤ Ii(x0), we have that the left hand side in (87) is greater than −Ii(x0). On the

other hand, for any x ∈ Bx0
(δ), Ii(x) > Ii(x0) + ϵ/2, implying infx∈Bx0 (δ)

Ii(x) ≥ Ii(x0) + ϵ/2. This

finally yields contradiction since the right hand side in (87) cannot be smaller than −Ii(x0).

APPENDIX B

PROOF OF LEMMA 20

We start by noting that epi inf {NI, I + J } = S1 ∪ S2, where S1 and S2 are the epigraphs of NI

and I + J , S1 = epi(NI) and S2 = epi(I + J ). To prove Lemma 20, we need to show that epiF =

co {S1 ∪ S2}, where F is the function defined in the right hand side of eq. (38). To do this it suffices to

show that: 1) epiF is a convex set, and 2) epiF ⊆ co (S1 ∪ S2). We first prove 1). It suffices to show

that F is convex, which we do using generalized second order characterizations of convex functions,

e.g. [37]. Note that F is continuous and that DF = Rd. For each x and d, let F ′
+(x, d) and F ′′

+(x, d)
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denote, respectively, the upper directional derivatives of the first and the second order at the point x and

in the direction d,

F ′
+(x; d) = lim sup

ϵ↓0

F (x+ ϵd)− F (x)

ϵ
(89)

F ′′
+(x; d) = lim sup

ϵ↓0

F (x+ ϵd)− F (x)− F ′
+(x; d)

2 ϵ2
. (90)

We will show that F is in fact differentiable. Then, by Theorem 2.1. part (i) from [37], proving

convexity of F would reduce to proving that F ′′
+(x; d) ≥ 0 for any x and d. Note that I and H

are differentiable, with their respective gradients given by ∇I(x) = S−1(x − m) and ∇H(x) =

S−1(x−m)/
√

(x−m)⊤S−1x−m. Thus, F is differentiable in each of the three open sets (note that

I is continuous and differentiable): {x : I(x) < c1}, {x : c1 < I(x) < Nc1}, and {x : NI(x) > c1}. It

remains to show that F is differentiable for those x such that I(x) = c1 and I(x) = Nc1. Fix first x

such that I(x) = c1. It is easy to see that, for any d such that d⊤S−1(x −m) ≥ 0, I(x + ϵd) > I(x)

for all ϵ > 0. Also, for any d such that d⊤S−1(x − m) < 0, I(x + ϵd) < I(x) for all sufficiently

small ϵ > 0. Thus, if d⊤S−1(x−m) ≥ 0, F (x+ ϵd) = N
√
2c1H(x+ ϵd)−Nc1, for all ϵ sufficiently

small, and hence F ′
+(x; d) = N

√
2c1d

⊤∇H(x). Using now the fact that I(x) = c1, we obtain that

F ′
+(x; d) = Nd⊤S−1(x−m). Consider now the case when d is such that d⊤S−1(x−m) ≤ 0. Then, by

the discussion above we have that for all ϵ, F (x+ ϵd) = NI(x+ ϵd). Hence, F ′
+(x; d) = Nd⊤∇I(x) =

Nd⊤S−1(x −m). Since for any x s.t. I(x) = c1 and for any d we have that F ′
+(x; d) = Nd⊤∇I(x),

we conclude that F is differentiable at any such x. We can in analogous manner prove differentiability

of F at any x s.t. I(x) = Nc1. Hence, we conclude that F is differentiable.

We now turn to proving that F ′′
+(x; d) ≥ 0 for any x and d. Note that ∇2I(x) = S−1 ⪰ 0 and

∇2H(x) =

N

√
2c1√
2I(x)

(
S−1 − 1

2I(x)
S−1(x−m)(x−m)⊤S−1

)
,

for any x. To see that ∇2H(x) ⪰ 0, it suffices to observe that it can be rewritten as ∇2H(x) =

N
√
2c1/

√
2I(x)S−1/2(I−qq⊤/(∥q∥2))S−1/2, for q = S−1/2(x−m). Since the matrix inside the brackets

is positive semidefinite, positive semidefiniteness of ∇2H(x) follows. Therefore, for any x in the interior

of the three sets in (38), we have that F ′′
+(x; d) ≥ 0. Consider now the case when x satisfies I(x) = c1.

Following the same steps as in the preceding paragraph, we obtain that for any d s.t. d⊤S−1(x−m) ≥ 0,

F ′′
+(x; d) = N22c1d

⊤∇2H(x)d ≥ 0 and for d s.t. d⊤S−1(x −m) ≤ 0, F ′′
+(x; d) = Nd⊤∇2I(x)d ≥ 0.

To complete the proof of 1), it only remains to consider those x that satisfy I(x) = Nc1. Analogously

to the preceding case, we get that for d s.t. d⊤S−1(x − m) ≥ 0, F ′′
+(x; d) = d⊤∇2I(x)d ≥ 0 and for
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d s.t. d⊤S−1(x − m) ≤ 0, F ′′
+(x; d) = n22c1d

⊤∇2H(x)d ≥ 0. Hence, since F is differentiable and

F ′′
+(x; d) ≥ 0 for any x and d, we conclude that F is convex.

To prove Lemma 20, it remains to prove part 2). For each unit norm v ∈ Rd, ∥v∥ = 1, let ϕv : Rd 7→ Rd

denote the projection of F along the direction v, started at point m: ϕv(ρ) := F (m+ ρv), ρ ∈ R. Then,

epiF = ∪v∈Rd,∥v∥=1epiϕv. For each fixed v, let [Sl]v denote the projection of Sl along the line m+ ρv,

[Sl]v = Sl ∩ {m+ ρv : ρ ∈ R}, l = 1, 2. Note that [S1]v =
{
(t,m+ ρv) : t ≥ Nρ2v⊤S−1v/2, ρ ∈ R

}
,

[S2]v =
{
(t,m+ ρv) : t ≥ ρ2v⊤S−1v/2 + J , ρ ∈ R

}
. Then, it is easy to see that, for each unit norm

v, epiϕv = co ([S1]v ∪ [S2]v). Finally, since co ([S1]v ∪ [S2]v) ⊆ co (S1 ∪ S2), the claim in 2) follows.

This completes the proof of Lemma 20.

APPENDIX C

PROOF OF LEMMA 28

Fix an arbitrary node i ∈ V . For each m = 1, ...,M − 1, Xm
i,t =

1
t log

bmi,t
bMi,t

, hence

1

t
log bmi,t = Xm

i,t +
1

t
log bMi,t . (91)

Further, the (private) beliefs by construction sum up to one:
∑M

m=1 b
m
i,t = 1. Dividing both sides by bMi,t

and exploiting the functional relation between bmi,t and Xm
i,t, we obtain

M−1∑
m=1

etX
m
i,t + 1 =

1

bMi,t
. (92)

It follows that:
1

M
e−tmaxm=1,...,M Xm

i,t ≤ bMi,t ≤ e−tmaxm=1,...,M Xm
i,t , (93)

where XM
i,t ≡ 0. From (91) and (93) we obtain

gm(Xi,t)−
1

t
logM ≤ 1

t
log bmi,t ≤ gm(Xi,t). (94)

Consider now an arbitrary one-sided closed interval F on R. Suppose that F = [a,+∞) (other intervals

in R can be treated analogously). Fix ϵ > 0. From (94), for all t ≥ t0 = logM/ϵ there holds:

gm(Xi,t)− ϵ ≤ 1

t
log bmi,t ≤ gm(Xi,t), (95)

and thus, for all t ≥ t0

P(
1

t
log bmi,t ≥ a+ ϵ) ≤ P(gm(Xi,t) ≥ a) = P (Xi,t ∈ g−1

m ([a,+∞)). (96)

Taking the lim sup over t → +∞,

lim sup
t→+∞

1

t
logP(

1

t
log bmi,t ≥ a+ ϵ) ≤ lim sup

t→+∞

1

t
logP (Xi,t ∈ g−1

m ([a,+∞)). (97)
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The above inequality holds for all ϵ > 0. Taking the supremum over ϵ > 0 on the left hand side yields:

lim sup
t→+∞

1

t
logP(

1

t
log bmi,t ≥ a) ≤ lim sup

t→+∞

1

t
logP (Xi,t ∈ g−1

m ([a,+∞)). (98)

Applying now the upper bound in 44, the upper bound in (49) follows. The proof of the lower bound (49)

is analogous.

APPENDIX D

PROOF OF LEMMA 35

Suppose that Xt ∈ Rd is a sequence of random variables for which (62) holds for some function f .

Fix a compact set F ⊆ Rd. For each δ > 0, introduce the function f⋆,δ : Rd 7→ R obtained by truncating

f⋆ to 1/δ:

f⋆,δ(x) = inf

{
1

δ
, f⋆(x)− δ

}
, for x ∈ Rd. (99)

The family of functions f⋆,δ, δ > 0, satisfies that, for any set D,

lim
δ→0

inf
x∈D

f⋆,δ(x) = inf
x∈D

f⋆(x). (100)

To show this, let ξ := infx∈D f⋆(x) and suppose first that ξ = +∞, i.e., f⋆ at all points x ∈ D

takes the value +∞. Then, for any δ > 0, f⋆,δ = 1/δ for all x ∈ D, and therefore, for any δ > 0,

infx∈D f⋆,δ(x) = 1/δ. Computing the limit limδ→0 1/δ = +∞, identity (100) follows. We next consider

the case ξ ∈ R. For arbitrary fixed δ > 0, the quantity under the limit in the left hand side of (100)

equals:

inf
x∈D

f⋆,δ(x) = inf
x∈D

inf

{
f⋆(x)− δ,

1

δ

}
= inf

{
inf
x∈D

(f⋆(x)− δ) ,
1

δ

}
. (101)

The first argument of the infimum (101) equals ξ− δ and it is finite by our assumption. Hence, for all δ

sufficiently small, the infimum (101) equals ξ − δ, which after taking the limit δ → 0 yields the claim.

The case ξ = −∞ can be proven equivalently.

Having (100), it easy to see that (63) follows if we show that the following inequality holds for any

given δ:

lim sup
t→+∞

1

t
logP (Xt ∈ F ) ≤ 2δ − inf

x∈F
f⋆,δ(x). (102)

Thus, in what follows we focus on proving (102). To this end, fix δ > 0. For any point y ∈ F there

exists a point λy (which depends on δ) such that

λ⊤
y y − Λ⋆(λy) ≥ f⋆,δ(y). (103)
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Existence of such a point follows directly from the definitions of f⋆ and f⋆,δ. First, since for any fixed

point y f⋆(y) is computed as the supremum of functions λ 7→ hy(λ) := λ⊤y − f(λ), it follows that

the value f⋆(y) can be approached arbitrarily close with hy(λ). Second, since f⋆,δ(y) is the infimum

of f⋆(y) − δ and 1/δ, it must satisfy f⋆(y) − δ, 1/δ ≥ f⋆,δ(y). For example, if, for some y, f⋆(y) is

finite, then there must exist a point λ such that hy(λ) ≥ f⋆(y) − δ, and since the latter is greater than

f⋆,δ(y), (103) follows.

Note now that (62) implies that, for any measurable set D, there exists t0 = t0(δ,D) such that

1

t
logP (Xt ∈ D) ≤ δ + f(λ)− inf

x∈D
λ⊤x, (104)

for all t ≥ t0. For any y ∈ F , let ry := δ/∥λy∥. Taking D = By(ry) and λ = λy in (104) yields for any

t ≥ t0(δ, y)

1

t
logP

(
Xt ∈ By(ry)

)
≤ δ + f(λy)− inf

∥x−y∥≤ry
λ⊤
y x (105)

≤ δ + Λ⋆(λy)− λ⊤
y y − inf

∥x∥≤ry
λ⊤
y x (106)

≤ 2δ − f⋆,δ(y), (107)

where the last inequality follows from (103) and the definition of ry. Next, from the family of closed

balls
{
By(ry) : y ∈ F

}
, a finite cover of F ,

{
Byk

(ryk
) : k = 1, ...,K

}
, is extracted, where, we note,

K = K(F, δ). Then, by the union bound,

1

t
log P (Xt ∈ F ) ≤ 1

t
log

(
K∑
k=1

P
(
Xt ∈ Byk

(ryk
)
))

≤ 1

t
logK +

1

t
log max

k=1,...,K
P
(
Xt ∈ Byk

(ryk
)
)

≤ 1

t
logK + max

k=1,...,K

1

t
logP

(
Xt ∈ Byk

(ryk
)
)
.

Combining the preceding inequality with (105) applied for every k = 1, ...,K, we have that for every

t ≥ maxk=1,...K t0(δ, yk)

1

t
log P (Xt ∈ F ) ≤ 1

t
logK + max

k=1,...,K
2δ − f⋆,δ(y)

≤ 1

t
logK + 2δ − inf

y∈F
f⋆,δ(y). (108)

Taking the limit t → +∞, and noting that K is finite, (102) follows. The last part of the claim, i.e., (102)

for closed sets follows from (102) for compact sets, that we have just proved, and Lemma 1.2.18 in [28].
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