North American € o
Academic Research ‘F‘Wm

Research

Analysis of Os-Cfar and MI-Cfar for a detection of a

target in a noisy environment

Abdel Hamid Mbouombouo Mboungam'*, Zhi Yongfeng!, Merlin Thibaut

Mouadje Kuate?
1School of Automation, Northwestern Polytechnical University, CHINA
2School of Energy and Electrical Engineering, Chang’an University, CHINA

Abstract: The purpose of this work is to address the problem of detection in an inhomogeneous environment with
clutter distributed in a homogeneous way for two types of detectors the OS and the ML-CFAR. The clutter is assumed
to be a sea clutter represented by a Weibull distribution. In order to determine which detector is the best, a comparison
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Introduction

Nowadays, radar has become an essential instrument for maritime navigation and Aerial safety. Radar signal detection
is a complex task that requires special equipment and considerable signal processing computation. For a given detection
system, not all detectable objects do not have the same importance, and an object worthy of interest for a system
considered without interest and even inconvenient for another (weather radar designed to detect precipitation, which
constitutes a hindrance for the detection of aircraft by an air surveillance radar).

In radar systems, the signal from the target is separated from the unnecessary clutter which comes from the reflection
of unwanted objects such as the ground, trees, the sea, etc. To eliminate these disturbances, conventional detection based
on a fixed threshold causes a considerable increase in the probability of false alarm (deciding that an object is present
when it is absent). Adaptive methods choose to analyze and improve radar detection. Devices using these methods are
called CFAR detectors. The Monte Carlo simulation results justify the advantage they brought.

In this work, we propose to deal with the problem of detection in an environment not homogeneous with clutter

distributed in a homogeneous way for two types of detectors, the OS-CFAR and ML-CFAR. The clutter is assumed to
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be a sea clutter represented by a Weibull distribution, and the shape parameter will be assumed to be either known or
unknown. We also compare the OS-CFAR and the WH-CFAR (Weber-Haykin) estimator. Also, a comparison is made
for the ML-CFAR detector in both cases of known C and estimated C. Finally, a comparison between the OS-CFAR and
ML-CFAR detectors is made.

Our work is organized as follows, in the first part a brief reminder on the generalities of CFAR detection is presented.
In the second part, we analyze the OS and ML-CFAR detectors in a Weibull distribution clutter. We then present in the
third part the results obtained by MATLAB programming using the Monte Carlo method. We interpret the different

graphs obtained according to the variation of the SCR. Finally a conclusion is presented.

1. Generalities on CFAR detection

1.1. Detection theory

Detection is the operation that consists in deciding on the existence or not of targets in the search space. The basic

principle of target detection is to compare the signal received at a decision threshold [1].

A test of binary hypotheses formalizes this problem. The first null hypothesis Ho represents a zero (absence) where the
received signal consists of noise only, and hypothesis H: represents a one (presence) where the received signal comes

from the echoes of the target added to the noise.

The above situation can be described by a source emitting two outputs at various times. The outputs are designated as
hypotheses; the null hypothesis Ho represents a zero (no target) where the received signal is received and is noise only
from noise echoes.

{ Ho:y (t)=n(t)

Hy:y (t)=n(t)+s(t)

Hypotheses are based on observations represented by random variables. Based on the observed values of these ran-
dom variables, the set of values that the random variable X takes constitutes the observation space Z. This space ob-
servation is divided into two regions Zo and Z1, such that if X is in Zo, then the receiver decides in favor of Ho. In con-
trast, if X is in Zi, the receiver decides in favor of Hi, following the indications of the figure below. The Union of Zo

and Z: corresponds to the observation space Z, i.e.,

Source

Z1

Figure 1: Region of decision

Where X represents the observers (scalars, vectors, or samples of a signal taken over a time interval). The probability

density functions corresponding to each hypothesis are:

fX/Hl(X/ H,) fX/H0 (x/Hy)
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Whenever a decision is made based on certain criteria, for this binary hypothesis testing problem, we have four cases

that can occur:
e Decide Hoand Ho true (Ho=1 and Do=1)
e Decide Hoand H1 true (H:=1 and Do=1)
e Decide H:and Ho true (Ho=1 and D:=1)
e Decide Hiand H1 true (H:=1 and D:=1)

These four possibilities are associated with four probabilities which will be used to judge the performance of a decision

criterion.
e P (Do/ Ho) corresponds to a situation with no alarm.
e P (D1/Ho)=1-P (Do/ Ho) corresponds to a false alarm probability.
e P (Do/ Hi) corresponds to a probability of non-detection P
e P(Di/Hi)=1-P (Do/Hi)=1- Pu correspond to the probability of the target detection.

We have:

P(D,/Hy) = [y, (X/H,)dx (1)
7.

To eliminate the Zi regions, it will be necessary to define an optimal detection strategy that will maximize the probability

of detection Ps while guaranteeing a low probability of false alarm Pr.

P(D;/ Hi):_[ fX/Hj(X/Hj)dX 2
Z.

1.1.1. Decision criterion

To determine the partition (Do, D1) of Z it is necessary to have a criterion that will make it possible to compare the
various manners of doing it. Several criteria are used here, which differ according to the information available concern-

ing the cost of the decisions and the probabilities of the hypotheses [2]:
e Bayes criterion (at minimum average cost)
e Neyman-Pearson criterion
1.2. Bayes criterion

This method requires prior knowledge of a set of data:

e The probabilities of appearance of the two hypotheses Ho and Hi. These probabilities of hypotheses Ho and H:
which are denoted P(Ho) and P(H1) or more simply Po and P1 respectively, with the condition:

Po+P1=1

¢ The detection costs Cj are assigned to the couples (D: Hi) with the condition:
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Ci < Cjj Vi# ]

The purpose of the Bayes criterion is to determine the decision rule that leads to a minimum average cost. The Bayes

cost function, also called the risk function, R=E(C), is given by:

11
R=E(C)=)>C,P(D,H)) 3)
j=0 i=0
From Bayes' rule:
P(Di1Hj):P(Di1Hj)*P(Hi) (4)
R=PRC,P(D,/H,)+PC,P(D,/H,)+RPC,P(D,/H,)+PRC,P(D,/H,) 5)

The conditional probabilities P(Di/Hj); 1,j=0,1 depending on the observation regions are:

P(D,/H,)=P{Decide D,/ His true} = [ f,,,, (x/H,)dx ©)
Zi
R=PCyy+PCy+ [{R(Coy=Cyy) fyyp, (X/ H;) = Py(Cp —Coo) f (/ Hg)}elx )
Z0

We observe that the quantity PoCio+P1C11 is constant, regardless of how we assign the points in the observation space.

As a result, the risk is minimized by choosing the decision region Zo to include only the points of Y, for which the

second limit is larger [3].

fX/Hl(X/ Hl) . PO(ClO _Coo)
fx/H0 (x/ Ho) <k Pl(Cm_Cn)

A(X) = 8)

R(Cyp~C)

Where: A(X) is the likelihood ratio and 77 =
Pl(C01 - C11)

decision threshold.

In general, the costs and the probability of radar detection are worth the:

The problem with this criterion is that it requires knowledge of the probabilities of P(H:) and P(Ho) and the costs Cij, in
general, when this is not the case, other criteria are used, such as NEYMAN PEARSON.

1.3. Neyman-Pearson criterion

Unlike the Bayes criterion, the Neyman-Pearson criterion does not require many assumptions; it corresponds to real
situations. This criterion proposes to set the probability of false alarm Pfa at a level a. This value is established by a

specification from which an objective function ] is built [4]:
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J(1) =P, + A(Pfa—«) 9)
Where: A(A>0) is the Lagrange multiplier. We note that for an observation space Z given, there are several decision
regions Z1 for which Pfa=a.
The Lagrange multiplier is defined as maximizing the probability of detection or minimizing the probability of Pm.
J(A) = [ f, (KT HYAX+ 2| [ £y (X Ho)dx—ax (10)
Zl Zl

Since Z = ZoU Z1

So, equation (5) becomes:

J(A) = A=a)+ [ [ g, (X/H)= ATy (X1 H,) Jdx (1)

Zy

] is minimized when the values for which fy IH, (x/H)> f, IH, (X/ Ho)are assigned to the decision region Z: [3].

The solution to the inequality is:

fm (X/H
XIH, ( 1) < (12)
Fxim, (X/ Ho)
Moreover, we can give the decision rule:
f x/H Hy
A(X) = M > (13)

fX,HO(x/HO)<“°

fy IH, (X IH, ) Represent the conditional probability of X under the hypothesis Ho; where A is chosen in such a way as

to satisfy the constraint [4].
Pfa= [ f,, 1, (X/ Ho)dx = (14)
2

The Neyman-Pearson criterion is applied in several fields because it does not require knowledge of the probabilities of
the hypotheses H1 and Ho as well as the cost C, but its drawback is that it can only be used when the process is stationary,

which is not always the case in practice. It caused the birth of adaptive sensing.
1.3.1. CFAR detector

The false alarm probability is very sensitive to changes in the noise power variation; for this reason, the use of a fixed
threshold in conventional detection is not applicable. Figure 2 shows an increase in the false alarm probability by a

factor of 10+ caused by a slight increase in noise power of the order of 3 dB. [2]
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Figure 2: Effect of increasing noise power on false alarm probability

The CFAR is a model placed in the signal processing part of the radar receiver; after reception and demodulation of the

radar echoes, these travel through a series of cells of odd numbers.

Test Cell

Guard Cell: Reference Cell
|

1 y

Quadratic
Detector

N2 N2 1 Decision
H) HO
CFAR Process Q0 z TZ |y
<
H1
Ho
Set Pfa Z »
Choice of T >

Figure 3: Diagram of a CFAR [2]

The "cell under test" is the central cell; it contains the signal to be detected. As part of the estimation of the power of
clutter, two windows grouping "reference” cells are placed on either side of the test cell; the window on the right is
denoted by the letter U, and the window on the left by the letter V. To prevent overflow of the signal from the cell under

test, "guard cells" are neighboring cells that are not included in the estimation procedure [2].
2. Analysis of OS-CFAR and ML-CFAR detectors

In automatic radar detection, the fundamental problem is noise and clutter in the environment in which this detection

is made. In addition, the statistical parameters related to noise are generally unknown.
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This work's objective is to study the case of sea clutter, where the samples (cells) are distributed according to a

Weibull distribution.
2.1. Weibull distribution

The Weibull probability density function is the most suitable function to represent the sea and land clutter at a low
shaving angle or in high-resolution situations. The Weibull probability density function is a two-parameter distribution
for which the Rayleigh distribution is a particular case. Our study deals with this situation and assumes that a Weibull

probability density function can describe the environment.

C X Cc-1 X C
p(x):E(E) exp{—(gj },xzo;Czo;Bzo (15)

Where: x (The random variable), B (The scale parameter), C (The form parameter)
2.2. OS-CFAR detector analysis

This detector is based on ordered statistics, classifying the samples in order increasing, and the K" sample is chosen to
estimate the noise level. The rank K is generally chosen to be equal to 3N/4 or 7N/8 (greater than N/2), such that N is the

number of reference cells ordered according to the output level.
X <X, < <Xy (16)

Since the quadratic detector depends on X?, for this, we consider that the parameter Weibull scale B is equal to 1; So:

X2
=] =x? 17
(Bj 17)

And the probability function:

C E—l ¢
P(Z):EXZZ xexp(—ZZJ (18)

The threshold T: is given by:
TZ =aXZ (19)

For samples of amplitude Xi are independent identically distributed (IID) with a Rayleigh probability density function,

Rohling showed that the relationship between a false alarm and the scale factor is given by [5]:

NI(e+N-K)!
(N -K)i(a+N)!

Pfa = (20)
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Assuming amplitude samples for a medium described by (IID), X is the random variable with a Weibull PDF given by
the equation (18). Then choosing the parameter of form C=2, the Weibull probability density function reduces to a prob-
ability density function Rayleigh.

The following figure shows the Pfa represented as a function of C when the scale factor has been set for a Pfa=10-.

log Pfa
o
)
e
1

1 1.2 14 1.6 1.8 2 2.2 24 28 28 3
C shape parameter

Figure 4: Shape parameter as a function of log Pfa. (Minimum value Pfa=10" and C=2)
We can use Rohling's analysis by making an additional substitution and defining the variable random y:
y=2z? (21)

The exponential PDF for which Rohling ran his analysis is:

P(y) = exp(-y) (22)
The threshold for y:

Ty:a( X Yk (23)
Where:

T,=T/° (24)

The probability of false alarm is then defined by:

Pfa:z ) i K)‘[eXp(‘ZC/Z)JdZ P(26)) 926 (25)

After calculating the integral, the probability of false alarm is given by:

Nt (@ +N=K)!

F)fa:(N —K)U (@2 +N))!

(26)



NAAR, January 2023, Volume 6, Issue 1, 1-29 9 of 29

This relationship is obtained in the same way as the probability of detection by setting S=0, where S or SCR is the sig-

nal-to-clutter ratio.

Cl2
" [fS+N—Kj!
Pd = *

x (27)
N _ K | aC/Z
( ) —+N !
1+S
We can write the two previous equations as follows:
The probability of detection:
K-1 N —i
Pd = e (28)
N
1+S
The false alarm probability:
K-1 i
N —I
pra—[]— N1 9)
li:o[ N—i+a"?
It will allow us to study the sensitivity of the original OS-CFAR algorithm to changes in the shape parameter.
2.2.1. The first case (known C)
Here the detection threshold is given by:
T:=T % z) (30)

Where: T =a%C
Moreover, a represents the multiplication factor for a Rayleigh distribution.

2.2.2. The second case (unknown C)
All the previous equations are applied when the shape parameter C is known. However, when the shape parameter is

A

unknown, the analysis will be changed entirely. For this, we will fix an estimator of CC  to calculate the probability of
detection. The estimator used is that of "Dubey" [5]. This estimator proposes two ordered samples, Xi and Xj, such as:
In[~In(1-h;)]-In[-In(1-h)]

C-= (31)
InX; -InX,

Where: hi = ; and h. = L
N +i 'UON+L

We replace C C in equation (18) with K=i. Then the detection threshold will be given by:
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z.Y
Z, =1 [Z—‘j =571 (32)

Ing,

/ In [—In(l—hj )]—In [~In(1-h)]

2.3. ML-CFAR detector analysis

Where: (33)

For the CFAR detectors in a Weibull clutter suggested earlier, the adaptive threshold was effectively based on estimating
the scale and shape parameters using either moments or order statistics. Both techniques expose the extent of CFAR
loss. Additionally, it has been shown that the loss is related to the variance of the estimated parameters. To reduce the
variance and the CFAR loss, a CFAR algorithm in which the parameters are estimated using the maximum likelihood

(Maximum Likelihood).

The ML-CFAR algorithm is more computationally expensive than the other approach; However, modern processors
may be able to handle additional processing, even if it is not implemented, except the performance of the ML algorithm

may serve as a comparative benchmark for simpler algorithms.

Subsequently, we will develop the ML-CFAR algorithm and analyze its performance, starting with the simple case in
which the shape parameter is known, and moving on to cases in which the two parameters are unknown. For the general

case, we show that the ML-CFAR threshold can be effective, as shown in the following figure:

Maximum Likelihood Estimator

B c
h
¥ Decision
Figure 5: ML-CFAR Detector
By taking the adaptive threshold according to the formula:
T=B.a" (34)
In the case of ML, B and C are estimated from the N samples:
X=(X1,X2.0000inn xN) (35)

Iteratively, we can estimate C from the equation:
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N A

ijclnxj

) 1 1Y

He Ly 2
c =1

>x; © 7

j=1

A AN

Th C is is then used to obtain B according to the equation:

N e
B :(—ZC?] (37)
N j=1

The coefficient D is a function of the number of reference samples N and the desired false alarm probability. D is inde-
pendent of the parameters B and C. The probability of detection will be developed for the case of a fluctuating target
with a Rayleigh PDF for the two types of targets, Swerlingl and Swerling?2.

In this case, an attempt to calculate Pd directly using the exact PDF of the CUT results in a triple integral, which is

difficult to evaluate numerically; therefore, one seeks an approximation that is easy to calculate.

We note that when the SCR is high, the contribution of the SCR in the CUT is small, and the exact PDF of this contribu-
tion is not very important. We will therefore assume that the CUT contains a Rayleigh target and a Rayleigh clutter with
the same mean energy as the Weibull clutter in the reference cells. This approximation becomes exact when the reference

cells also present a Rayleigh PDEF.

2.3.1. ML-CFAR with a known C shape parameter
We start our analysis with the simplest case in which the shape parameter is known, and we then show that D can be

expressed explicitly relative to N, Pfa, and C known.

The background noise is represented by a set of N samples which are statistically independent and identically distrib-
uted (IID), X1,X2 ,eeevrevrerinienns xn, with a density function of known deformed parameter C and an unknown scale pa-

rameter B.

For the case C=2, the PDF becomes of Rayleigh form, for which it has been shown that the estimator of the Maximum-

likelihood of B is:
1/2
é B 18
(3 ®
With a threshold of the form:

T (X) =a. é (39)

The false alarm probability is then:
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2 -N
Pfa=(1+a—]
N

12 of 29

(40)

We will use the same procedure to determine the threshold, with B estimated, when C is known but is not necessarily

equal to 2. Reference [6] shows that for such a case, the ML-CFAR estimator is given by:

A false alarm occurs when the value in the cell under test (CUT) exceeds the threshold, inputting;:
Pfa = j P[CUT >T (x)]f, (x)dx
0
The first term in the integral is:

P(CUT >T) :T f(x)dx

© Cc-1 C
PCUT >T) =] C;C exp{—(ij }dx
t

P(CUT >T)=exp {—(%jc}

We replace the threshold of equation (42) in equation (46) we obtain, for the first term in the integral:

aC N X. ¢
P(CUT >T)=exp| —— > | =
N <z B

The second term in the integral of equation (43) is the Common PDF for N cells is:

o el ol 5

By inserting equations (47) and (48) into equation (43), we get:

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)
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NeC(x ) (%Y
Pfa:ng(Ei] exp —£1+Wj[§‘j dx (49)

=lo

c
X
By replacing, Yy, = [EJJ we obtain:

N ® aC
Pfa:HJexp _(HWJ y., |dy, (50)

=l o

Which gives:

c\-N
Pfa = £1+ “—j (51)
N

Equation (51) indicates that the algorithm is indeed CFAR since the false alarm probability is independent of B. Substi-

tute equation (51) into equation (42) and obtain the threshold in a simple expression.

T(X) = [( Pfa N -1) i XT} (52)

=

The previous analysis assumes a linear detector where the random variable x is distributed with a Weibull distribution
for a parameter of form C. On the other hand, for a quadratic detector, the random variable y = x2 is also Weibull, with

a parameter of equal form C/2. The threshold will then become [7]:

N 2/C
T(y)= {(Pfa”” =1 yf’z} (53)
j=1

When the shape parameter C is known, the threshold is based on the estimate of the scale parameter, as in equation (42).

The probability of detection will therefore be:

Pd = [P(CUT >aB)f, (B)dB (54)
B
0

Where f, (B) is the PDF of ML, given by:
B

NY C N N.y®
fB(Y)=(?j (N—_l)!yCN lexp[— BC J (55)

The probability of CUT above a threshold T is given by:
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P(CUT >T) = [ four ()dy (56)
0

We will assume a fluctuating target with a Rayleigh PDF and average power Bt2 . The clutter in the CUT will be ap-

proximated by a Rayleigh PDF with the same average power as that of the Weibull clutter in the reference cells.

The average power of clutter g2 will be linked with the scale parameter B:

2
B.= BZF(1+E] 57)
Since the target and the clutter in the CUT are Rayleigh distributed, the PDF of the CUT will also be Rayleigh distributed.

2

feur (¥) = e — 58)
BZF(1+j+ B? BZF(1+j+ B?
C C
We define the SCR by:
2
SCR = B—tz (59)
BT (1 + j
C
Substituting equation (58) into equation (56), we get:
\2
. - (a B)
P(CUT >aBj:exp 5
B?(L+ SCR)F(H)
(60)
Also, by substituting equations (55) and (60) into equation (54), we will find Pd:
@ _ 2 N C.N-1 _ c
Pd = [exp — 2 (%J 'CNy 1 |exp[ N.Cy jdy )
0 Bz(1+SCR)F(1+Cj (N-1)!
. N.y®

Substitute: Z= (62)

BC
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We obtain the result for the detection probability when SCR>>1:

1 = 2 NG
d=——— [2"exp i > (—j dz (63)
(N-=1)t5 (1—SCR)F[1+C) N

For the case of Rayleigh clutter (C=2), this integral is solved explicitly, reducing it to the known result:

2 -N
Pd=|1+—% (64)
N(1+ SCR)

Equation (63) is an approximate expression because, even though the clutter in the reference cells follows a Weibull
distribution, the CUT is assumed to follow a distribution Rayleigh (with the same average power). To verify the accu-
racy of this approximation, we compare the Pd, which uses equation (63), with the Monte-Carlo simulation in which

the CUT contains a Weibull clutter (and a Rayleigh target). The results are given in Figure 6.

2

Pd

log P/ (1-Pd 3

Y IS A I g IR SO o

Figure 6: The probability of detection as a function of SCR. Pfa=10-5; C=1; N=16.

This curve is a theoretical approximation in which the cell under test is assumed to contain a target plus a Rayleigh
noise. The dots represent Monte Carlo results in which the CUT contains the target plus the correct Weibull distribution

noise.

Each point is obtained from 1000 Monte Carlo iterations. For low SCR, we look for the actual Pd to be somewhat higher
than that predicted by equation (63).

2.3.2. ML-CFAR with an unknown C-shape parameter

When the scale parameter and the shape parameter are unknown, they need to be estimated simultaneously from the

reference cells. The adaptive threshold will be based on the estimated values B and C . In this section, we will derive

the estimated values B and C , which ensure that the threshold described by equation (35) is indeed a CFAR detector;

then, we will discuss the relationship between the coefficient @ and the false alarm probability Pfa.

e The estimator of the C shape parameter and B scale parameter:
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To obtain the ML estimator, we derive the logarithm of the standard PDF f(x) of the N reference cells for the parameters
B and C, and then we set the derivative to zero. The resulting equations can be solved repeatedly to obtain the ML

estimator of B and C. By assuming the independence between reference cells, the standard PDF is given by:

c) N X{
f(x)=(¥J 11 xflexp(—B—’c] (65)

j=1

For which one we obtain:

In f(x)=N InC—N.CInB+(C—1)NZN;In X; —%JZ::XJ (66)
alnf(X):_NCJfgi[ﬁjc o
oB B B4(B
%:%-N In B+glnxj-g[%jc In(%‘) (68)
By letting: % =0
We obtain: 5 %J}N;[%j (©9)

>

0>

T
O>||—\

(70)

Equation (70) can be solved iteratively to obtain C , which will then be used in equation (69) to obtain B .

To justify the choice of the threshold as described by equation (35), we first note that when B and C are known precisely
in equation (46), the false alarm probability is described by:

C
Pfa:exp{—(%) } 1)

Where: T = B(~In Pfa)"c (72)
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On the other hand, when B and C are not precisely known and are replaced by their estimated values which are not
without errors, the given threshold exhibits a larger Pfa, predicted by equation (71). To compensate for this, we replace

(-In Pfa) with a parameter o, which can be checked to determine the desired Pfa. The threshold is therefore given by:

T =B.a" (73)

For many references cells N and a relatively high Pfa, « is slightly higher than (-In pfa). A study in reference [6] on the
properties of CFAR detectors, to the heuristic approach which led to equation (73); the simulation technique gives re-

sults between the factor a and Pfa for two values of N (16 cells and 32 cells). These results are plotted in the figure below.

Figure 7: The factor a as a function of Pfa.

We also added the curve of (-In Pfa); for which a converges when N tends to infinity. In Figure 7, each point on the
curve corresponding to N=32 is obtained from 100,000 iterations, and each point on the curve N=16 is obtained from

50,000 iterations. The curves are obtained using linear interpolation between points without smoothing [7].

In this part, we have defined the Weibull distribution which represents the sea clutter from the probability density
function PDF. This PDF has been developed to obtain a function of the false alarm probabilities Pfa, the detection prob-
ability Pd and the detection threshold T for the OS-CFAR and ML-CFAR detectors. The function Pfa generally corre-
sponds to a C form parameter which varies, and this variation makes it possible to carry out the analysis for two cases,
the first concerns the case where the C form parameter is known and the other, the case where the C form parameter is
unknown (estimated). The analysis used in this part has made it possible to find the different formulas of the detection

threshold to allow the simulation of the detection for the different types of detectors presented above.
3. Simulation and interpretation of results
3.1. Simulation and interpretation of results

In the above, we have analyzed the performance of the detectors OS-CFAR and ML-CFAR. We have dealt with detection
problems in an environment where the clutter is a sea clutter with a Weibull distribution and a proposed shape param-
eter C known a priori and unknown. This part presents applications for this kind of system, several tests have been
carried out and the results found are presented here, as well as their interpretation to establish a comparison for each

detector in each situation.
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Here, we assumed that the valuable signal follows a Weibull law, so the background noise is represented by a set of N

samples that are statistically independent and identically distributed (IID) (homogeneous clutter).
3.2. OS-CFAR detector

According to the equation of the probability of false alarm (29), we notice that the latter depends on the number of cells

N, of the multiplication factor a, of the shape parameter C, and the sample K:
3.2.1. C shape parameter is known

This section presents the variation of the detection probability Pd for an OS-CFAR detector as a function of the SCR. The

false alarm probability equation (28) was programmed from which the following tables were obtained:

Parameter Cells Samples T
N K Pfa=10- Pfa=10-+ Pfa=10-
8 6 34.4527 352.5047 2180.6
C=1 12 8 23.6435 173.4714 736.9
16 12 19.5815 122.7708 439.1
24 18 16.2038 87.2507 265.5

Table 1: T values for different values of Pfa. Case of OS-CFAR (C=1)

Parameter Cells Samples T
N K Pfa=102 Pfa=10+ Pfa=10-
8 6 5.8697 18.7752 46.6973
C=2 12 8 4.8625 13.1709 27.1452
16 12 4.4251 11.0802 20.9542
24 18 4.0254 9.3409 16.2933

Table 2: T values for different values of Pfa. Case of OS-CFAR (C=2)

Parameter Cells Samples T
N K Pfa=10- Pfa=10- Pfa=10-
8 6 3.2540 7.0641 12.9677
C=3 12 8 2.8702 5.5772 9.0323
16 12 2.6954 4.9701 7.6006
24 18 2.5305 4.4353 6.4270

Table 3: T values for different values of Pfa. Case of OS-CFAR (C=3)

Figures 8, 9, and 10 represent the variation of the detection probability Pd as a function of the SCR, the number of cells

N, and the shape parameter C for a probability of false alarm equals 104
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Figure 10: The probability of detection as a function of the SCR. Case of the OS-CFAR detector for C=3 and Pfa=10+*
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Figure 11: The probability of detection as a function of the SCR. Case of the OS-CFAR detector for N=16 and Pfa=10"

From this figure we can see that the probability of detection Pd improves with the increase of the shape parameter C.
For a value of C equal to 2, the system is more reliable than in another case; the graph, in this case, starts from the origin

and grows with increasing SCR.

In figure 12, we illustrate the variation of the probability of detection according to the SCR by varying the probability

of false alarm Pfa where the shape parameter C is equal to 2, and the number of cells equals 16.
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Figure 12: The probability of detection as a function of the SCR. Case of the OS-CFAR detector for N=16 and C=2
3.2.2. C shape parameter is unknown

In the part of the analysis, we saw that Weber Haykin showed that when the C shape parameter is unknown, the OS-
CFAR algorithm can be obtained using two samples of order Zi and Z;.

In this work, we set i equal to 2, 2, 3, and 4 for j equal N, which are 8, 12, 16, and 24 respectively. We note that this choice
of i and j causes a minimal CFAR loss. The table below represents the values of factor a, which will be replaced in the

estimator of C.

Cells Samples Samples ai
N i j Pfa=10" Pfa=10+ Pfa=10-¢
8 2 8 67.34 740.8 7476
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12 2 12 103.4 1137.4 11478
16 3 16 54.53 307.7 1483
24 4 24 48.58 202.2 688

21 of 29

Table 4: Values of ai for different values of Pfa in the case of OS-CFAR

The curves in Figures 13, 14, and 15 represent the variation in the probability of detection as a function of the SCR and

the number of cells N for a Pfa equal to 10+

0 5 1o 15 20 .} 30 35 40
SCR

Figure 13: The probability of detection as a function of the SCR. Case of the OS-CFAR detector. C estimated for C=1
and Pfa=10+
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Figure 14: The probability of detection as a function of the SCR. Case of the OS-CFAR detector. C estimated for C=2
and Pfa=10+
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Figure 15: The probability of detection as a function of the SCR. Case of the OS-CFAR detector. C estimated for C=3
and Pfa=10+

Figure 16 illustrates the variation of the probability of detection as a function of the SCR by varying the C-shape param-

eter.
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Figure 16: The probability of detection as a function of the SCR. Case of the OS-CFAR detector for N=16 and Pfa=10-

We chose the number of cells N equal to 16 and the two samples i and j of the estimator of “Dubey”, such that i equals
3 and j equals 16 because this estimator presents a minimum loss (CFAR loss) of about 9.4 dB. In this case, the deviation
of the estimate of C is equal to 0.49, which is represented by a significant difference between the curves obtained in the

known and unknown cases.

According to [5], it was concluded that when the uncertainty of the shape parameter is 1.5<C<2, it is better to assume
C=1.5 instead of the estimate, however, if 1<C<2, it will be better to estimate the C. Figure 17 represents as a function of

the SCR for different values of the false alarm probability.
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Figure 18: The probability of detection as a function of the SCR. Case of the OS-CFAR detector in the known and un-

known case C. N=16, Pfa=10-% and C=2

Figure 18 represents a comparison of the detection probability variation as a function of the SCR when the shape pa-

rameter is known and unknown. The figure clearly shows the difference between the two cases. For an SCR equal to

0.5, the loss is equal to approximately 10dB in the case where i=3, j=16, and N=16 for a probability of false alarm equal

to 10~.

We note that the loss of CFAR (CFAR loss) increases when the parameter i increases and the parameter j decrease. We

can conclude that the estimated values of C cause a degradation of the probability of detection.

3.3. ML-CFAR detector

3.3.1. C shape parameter is known

The tables below represent the values of factor a for different values of Pfa, number N, and of the C shape parameter

for the two cases where C is known and unknown:

Parameter Cells a
o1 N Pfa=10-2 Pfa=10+4 Pfa=10-*
8 6.2262 17.2982 36.9873
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12 5.6136 13.8532 25.9473
16 5.3363 12.4525 21.9420
24 5.0767 11.2272 18.6787
Table 5: Values of o for different values of Pfa in the case of ML-CFAR (C=1)
Parameter Cells a
N Pfa=102 Pfa=10+ Pfa=10-
8 2.4952 4.1591 6.0817
C= 12 2.3693 3.7220 5.0939
16 2.3101 3.5288 4.6842
24 2.2531 3.3507 4.3219
Table 6: Values of a for different values of Pfa in the case of ML-CFAR (C=2)
Parameter Cells a
N Pfa=102 Pfa=10+ Pfa=10-
8 1.8397 2.5862 3.3318
C= 12 1.7772 2.4017 2.9605
16 1.7475 2.3178 2.7996
24 1.7187 2.2392 2.6533

In figures 19, 20, and 21, we plot the variations of the detection probability Pd as a function of the SCR for the ML-CFAR

detector. These figures are obtained for a value of Pfa equal to 10

Figure 19: The probability of detection as a function of the SCR. Case of the ML-CFAR detector for C=1 and Pfa=10+*

Table 7: Values of a for different values of Pfa in the case of ML-CFAR (C=3)
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Figure 21: The probability of detection as a function of the SCR. Case of the ML-CFAR detector for C=3 and Pfa=10+*

In figure 22, we present the variation of the detection probability Pd as a function of the SCR for a Pfa equal to 10~ and

several cells equal to 16 for different values of the C shape parameter.
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Figure 22: The probability of detection as a function of the SCR. Case of the ML-CFAR detector for N=16 and Pfa=10-

We notice that in the case C=0.8, 1.2, and 1.6, the Pd remains zero for positive values of the SCR up to a value of the SCR

equal to 20, 8.5, and 4 dB, respectively, which means that the system is not reliable, because it ignores the information
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for great values of the SCR. In the case where C=2, the graph starts at the origin and increases with the increase of the

SCR, which means that the system is more reliable than the other cases.

Figure 23 illustrates the variation of the probability of detection as a function of the SCR with a variation of the Pfa in

the case where the C shape parameter equals 2, and the number of cells equals 16.
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Figure 23: The probability of detection as a function of the SCR. Case of the ML-CFAR detector for N=16 and C=2

For a Pfa equal to 10, the probability remains zero for positive values of the SCR up to a precise value. On the other
hand, for a Pfa equal to 102 and 10, the Pd has a positive value of around 0.1 and 3.10*, respectively, for a zero SCR. It
means that the system is not reliable since it ignores the information for great values of the SCR. In the case where
Pfa=10-, the graph starts at the origin and increases with the increase of the SCR, which means that the system is more

reliable compared to the other cases.
3.3.2. C shape parameter is unknown
When the scale parameter B and the shape parameter C are unknown, it is necessary to estimate them simultaneously.

In Figure 24, we present the variations of the probability of detection based on the SCR for an ML-CFAR detector; for

different values of C, the parameters B and C are estimated using a maximum likelihood estimator.

Figure 24: The probability of detection as a function of the SCR. Case of the ML-CFAR detector for N=16 and Pfa=10+*
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Figure 25 illustrates the variation of the probability of detection as a function of the SCR and the probability of false

alarm Pfa.
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Figure 25: The probability of detection as a function of the SCR. Case of the ML-CFAR detector for N=16 and C=2

Figure 26 presents a comparison between the case of known C and the case of unknown C. It is remarkable from this
figure and figure 18 that the loss between the two curves is less than the loss obtained in the case of the OS-CFAR

detector.

The simulation results indicate that the Maximum Likelihood estimator performs better than the Weber-Haykin esti-

mator.

o 5 10 15 20 2 30 34 40

Figure 26: The probability of detection as a function of the SCR. Case of the ML-CFAR detector for N=16, C=2, and
Pfa=10+

In this last part, we have presented all the results obtained using the Monte Carlo simulation. We have studied the OS-
CFAR and ML-CFAR detectors in an environment which presents a homogeneous clutter by using the approach which

considers the radar echoes which come from independent and identical reflections.

The model used is the Weibull model, this model is suitable for modeling sea clutter in which the shape parameter C

proposes to be known or sometimes unknown.
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Several methods can be used to estimate the value of C. For ML-CFAR, the Maximum-likelihood estimator showed a
performance improvement compared to the Weber-Haykin estimator. The main characteristic of the maximum likeli-
hood estimator is that it uses all these cells; for that, the algorithm presents a lower CFAR loss, and the deviation be-
tween the actual values and the estimated values are smaller. On the other hand, all the detectors show a better perfor-

mance for a Pfa equal to 10-° and a C shape parameter equal to 2, representing the Rayleigh distribution.
Conclusion

This work proposes to study and deal with the problem of CFAR detection in a sea clutter represented by a Weibull
distribution. For this, we have chosen to use two types of detectors, the OS and the ML-CFAR, to determine their per-
formance in different situations. These situations are presented according to the variation in the number of cells, the
variation of the Pfa, and the variation of the shape parameter C. A comparison was carried out for several parameters

by simulation according to the Monte Carlo method to determine the best between different types of detectors.

This study allowed us, in the first place, to note that the Weibull distribution model, which is the most suitable for the
representation of sea clutter, is generally compared to other models because each change made in the shape parameter
C represents another model. Also, the shape parameter C can present two different situations depending on whether C
is known or unknown. In the second case, this parameter can be estimated using several methods. For ML-CFAR, the
Maximume-likelihood estimator showed improved performance compared to the Weber-Haykin estimator. The main
characteristic of the Maximume-likelihood estimator is that it uses all these cells; for that, the algorithm presents a lower

CFAR loss, and the deviation between the real values and the estimated values are smaller.

In general, although it has been found that the best detector is the ML-CFAR, all the detectors present a better perfor-

mance for a Pfa equal to 10~ and a shape parameter C equal to 2, representing the Rayleigh distribution.
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