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Abstract—Federated learning (FL) is a new crowdsourcing
development paradigm for the DNN models, which is also called
“software 2.0”. In practice, the privacy of FL can be compromised
by many attacks, such as free-rider attacks, adversarial attacks,
gradient leakage attacks, and inference attacks. Conventional
defensive techniques have low efficiency because they deploy
heavy encryption techniques or rely on TEE. To improve the
efficiency of protecting FL from the these attacks, this paper
proposes FedSlice to prevent malicious participants from getting
the whole server-side model while keeping the performance goal
of FL. FedSlice breaks the server-side model into several slices
and delivers one slice to each participant. Thus, a malicious
participant can only get a subset of the server-side model,
preventing them from effectively conducting effective attacks.
We evaluate FedSlice against these attacks and results show that
FedSlice provides effective defense: the server-side model leakage
is reduced from 100% to 43.45%, the success rate of adversarial
attacks is reduced from 100% to 11.66%, the average accuracy
of membership inference is reduced from 71.91% to 51.58%, and
the data leakage from shared gradients is reduced to the level
of random guesses. Besides, FedSlice only introduces less than
2% accuracy loss and about 14% computation overhead. To the
best of our knowledge, this is the first paper to discuss defense
methods against these attacks to the FL framework.

I. INTRODUCTION

Deep learning models, also dubbed as “software 2.0”, are
one of the major focusing points of software engineering
researchers today [57], [44], [24], [26], [16], [36], [68], [62],
[33], [68]. Federated learning (FL), which allows multiple
participants to train a deep learning model collaboratively, is
a new crowdsourcing strategy for deep learning models [50],
[31], [70], [47]. Unlike traditional software crowdsourcing in
which the key security concern is the integrity of the software
under development, FL concerns not only the integrity of
the model but also the privacy of participants. Although FL
protects participant privacy by limiting the participant data to
local devices, recent research showed that FL may still leak
participant privacy [74], [72], [54], [50].

Possible Attacks. This paper focuses on four attacks against
federated learning: free-rider attacks [41], [23], adversarial
attacks [45], gradient leakage attacks [74], [72], and inference
attacks [54], [50]. Free-rider attacks mean a malicious partic-
ipant can steal the aggregated model without contributing to
the training process. The stolen model harms the intellectual
property of the task requester and causes economic loss. For
adversarial attacks, malicious participants may use the shared
model to generate adversarial samples to mislead the server-
side model. In gradient leakage attacks, the private training
data can be reconstructed by other participants. Inference

attacks can recover the sensitive information of other par-
ticipants’ training data. These four attacks compromise the
integrity of the model and the participant’s privacy. It is
important to develop defensive techniques for these attacks.

Status Quo and Limitation. Researchers have noticed the
threat of these four attacks and proposed various solutions.
However, these solutions are hard to deploy in practice due to
low efficiency. One solution is to encrypt model weights so that
participants know nothing of the distributed model [49], [43],
[10]. However, as reported in [60], cryptographic ML algo-
rithms are more than 1, 000× slower than ordinary protocols.
Another solution is to perform model updates inside the trusted
execution environments (TEEs) [20], [60], [48]. However,
TEEs are about 36× slower than the untrusted hardware [60],
[55]. Besides, TEEs require dedicated hardware support, which
is not always available for federated devices [3], [1], [2], [4].

Existing techniques have low efficiency because they aim to
protect the machine learning model from both the malicious
server and participants simultaneously. Heavy encryption tech-
niques or dedicated hardware, such as TEE, are necessary to
defend against the malicious server because it is the dominator
of the FL process and has the highest privilege over the model.
For example, the server can see and manipulate the model
updates from all participants. It is difficult to prevent the
server from hacking the model in this scenario. However, both
encryption and using TEE introduce high overhead and slow
down the speed of FL models [60], [20], [60], [48].

Key Idea. This paper aims to efficiently protect FL models
in a different but more practical scenario, in which the server
is trustworthy but a few participants are malicious [47], [9],
[67], [67], [67]. This scenario is more practical because, in
many realistic FL applications, the server belongs to rep-
utable companies or organizations with financial resources.
Violating the participants’ privacy harms the reputation of
these companies and may result in punishment with a high
penalty. Thus, the server is less motivated to compromise the
participants’ privacy and attack the trained model. On the
contrary, participants are less reliable and are more likely to
conduct attacks on FL. As FL needs many participants, it is
hard to control the identification of participants. An adversary
can pretend to be an honest participant, join the FL training
process, and attack the trained model. In this case, malicious
participants are less privileged than the server and have less
control over the training process.

Specifically, this paper aims to efficiently protect FL models
by achieving two sub-goals. First, we want to defend against
the four types of attacks mentioned before. Second, we aim



to avoid using TEE and encryption because these techniques
can slow down the training speed of an FL model by 36×
to 1000×. To achieve our goal, we build FedSlice, a new FL
framework that defends against malicious participants when
the server is trustworthy. To the best of our knowledge,
FedSlice is the first efficient technique to defend against these
four attacks without TEE and encryption.

Insight. The insight of FedSlice comes from the discrim-
inative model distribution strategy, which does not share the
whole model with all participants unconditionally. Instead, a
participant only has access to the part of the model that is
relevant to her so that she cannot infer privacy information
about other participants nor compromise the integrity of the
whole model. This strategy is fundamentally different from ex-
isting solutions [40], [46], [5], [9], [67], [13], which distribute
a shared model indiscriminately to all participants. Since our
approach avoids distributing a shared model to all participants,
we can avoid using TEE or encryption techniques, allowing
more efficient model protection.

Technical Challenges. Enabling the discriminative distri-
bution strategy is particularly challenging because it requires
aggregating heterogeneous models across the server and client
sides. To ensure that each participant receives a model only
relevant to his privacy, models distributed to different partici-
pants must be different. The server-side model also needs to
be different from the participant models. However, existing
FL techniques require a unified model between the server
and all participants because they fuse the models by matching
weights on the exact same positions in different models [46],
[5], [40]. Such merging techniques cannot be applied to merge
heterogeneous models because they cannot find matching
weights. To achieve discriminative model distribution, we need
to address two technical challenges: (1) we need to design an
effective way to automatically generate heterogeneous models
for a large number of participants; (2) we need to develop
an efficient technique to effectively aggregate heterogeneous
models.

Unfortunately, none of the existing techniques can address
these two technical challenges to the best of our knowledge.
(1) Neural architecture search [21] can generate heterogeneous
models automatically, but the search process is data-intensive
and time-consuming. Besides, the architectures of searched
models are highly diversified, making the models difficult to
combine later [25]. (2) Knowledge distillation [30] can transfer
the knowledge between heterogeneous models, but the training
time is unacceptable [18]. This technique requires training all
updated models to aggregate the knowledge. When the number
of participants increases to hundreds or thousands, a realistic
scenario for FL applications, the distillation time exposes and
becomes impractical [11].

Our Solution. FedSlice addresses the two challenges men-
tioned above with techniques based on model slicing, which
was inspired by traditional program slicing. The high-level
idea of model-slicing-based techniques is first to have a central
model as the template to produce heterogeneous models and
then aggregate the generated models back into the central

model. The proposed method addresses the first challenge
because heterogeneous models can be generated by permuting
and combining the basic layers of the template model. This
model generation process does not need data and can be
completed within five minutes. For the second challenge, as the
heterogeneous models are generated from the same template
model, existing FL aggregation techniques can combine the
building layers to fuse the models back into the template
model.

FedSlice can be integrated into current FL aggregation
strategies, such as McMahan [46],Li [40], and Asad [5]. There-
fore, FedSlice can be deployed into existing FL applications
without modifying their fundamental models and aggregation
strategy.

Evaluation. We conducted experiments on six represen-
tative tasks. The results show that FedSlice can effectively
defend these four attacks with marginal accuracy loss and
computation overhead. For the free-rider attacks, FedSlice
decreases the model leakage from 100% to 43.45%. For ad-
versarial attacks initiated from participants, FedSlice decreases
the success rate from above 99% to 11.66%. For membership
inference attacks, the attack accuracy is reduced from 71.91%
to 51.58% (a random guess has 50% accuracy). For deep
gradient leakage attacks, the mean squared error between the
recovered data and the original training data is increased
from 0.00013 to 1.52 (a white noise has 2.0 MSE). The
average accuracy loss of FedSlice is smaller than 2%. The
training time of FedSlice is 14% more than the unprotected
model. Compared to model encryption (more than 1, 000×
slower) and TEE-based techniques (36.1× slower), the cost
of FedSlice is low.

To summarize, our paper makes the following contributions:
• We propose a slicing-based method that protects FL

models against four existing attacks, which include free-
rider attacks, adversarial attacks, membership inference
attacks, and deep gradient leakage attacks.

• We implement our method as a prototype, FedSlice,
that achieves 31.6× and 877.2× higher training speed
compared to TEE and encryption-based methods.

• We conduct extensive experiments with six large-scale
datasets against the four attacks and demonstrate the
effectiveness and scalability of FedSlice to protect the
functionality and privacy of the server-side model.

Data Availability: Our tool and data are available on the
Internet 1.

II. BACKGROUND

A. Security Risks of Federated Learning

Although FL ensures that data does not leave the local
device, researchers still found that it suffers from various
security issues.

Free-rider attacks are launched by malicious participants
who want to steal the FL model without contributing to
it [41], [23]. A free-rider can forge the locally-trained model

1https://anonymous.4open.science/r/FedSliceICSEartifact/README.md
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Fig. 1: The comparison between FedSlice and traditional federated learning. Traditional FL distributes the entire server-side
model to all participants but FedSlice only distributes a (different) model slice to each participant.

by adding random noise to model weights. It is difficult for
the server to stop free-riders because it distributes a monolithic
model to the participants at each round. The free-rider can get
the valuable model just by waiting for the server to deliver the
model.

Adversarial attacks aim to fool the target deep learning
system with carefully crafted input samples that look similar to
standard samples in the human’s eyes. The adversarial attack is
considered a severe security threat to DNN models, including
models trained by federated learning [45], [14]. The malicious
samples are usually generated from a surrogate model, and the
attack success rate strongly depends on the similarity between
the surrogate model and the target model. The attack is more
effective if the attacker knows the target model and mimics
its structure.

Inference attacks mainly consist of membership infer-
ence and attribute inference. Membership inference deter-
mines whether a data sample is used by other participants,
and attribute inference outputs sensitive attributes of a given
sample. A malicious participant can utilize the output score,
loss value [54], or internal gradient [50] of the shared model
to infer private information. Although membership inference
and attribute inference goals are different, the techniques are
similar, so we mainly discuss membership inference in this
paper.

Deep gradient leakage means that the shared model up-
dates can expose detailed information about the training data.
Given the shared model, a malicious attacker can recover
the ground truth label and input sample [74], [72]. The
recovered sample is realistic (pixel-level accurate). Thus this
vulnerability poses a significant threat to the private data of
honest participants.

B. Motivation and Challenges

Inspiration. Figure 1 shows the high-level idea of FedSlice
and its difference between conventional FL processes. Tradi-
tional FL unconditionally distributes the server-side model to
all participants (as shown in the right part of Figure 1). The
adversary participant receives the shared server-side model and
can perform various attacks. Unlike conventional FL, FedSlice,

as shown in the left part of Figure 1, partitions the server-
side model into several slices and distributes one slice to
each participant. As the adversary participant only has partial
information about the server-side model, he can not perform
effective attacks.

The design of FedSlice is inspired by access control in
operating system [61], [12]. Access control ensures that au-
thorized users and applications can only do what is inside
the permission and nothing more than that. This technique
protects system resources (such as memory and files) and user
applications to enforce confidentiality and integrity. Similarly,
we want to restrict the accessible information to one partici-
pant by controlling the distributed model so that the malicious
participant doesn’t know enough to perform attacks.

Technical Challenges. Designing FedSlice faces the fol-
lowing two challenges:

(1) How to separate the server-side model into slices that
participants can train on local devices. The way of encoding
knowledge and the explainability of the operating mechanism
between DNNs and traditional software is different. For tra-
ditional software, developers manually specify the knowledge
into code lines, each line having a specific meaning. Thus,
a software program can be decomposed and recomposed
into program slices [65] or slice combinations [27], [7]. On
the contrary, the behavior of DNN is constructed through
enormous annotated data, and each weight does not have a
definite meaning. Although there are advanced neural network
slicing, only small models can apply such techniques. It’s
because they perform fine-grained weight analysis, and the
introduced overhead is exponential to the amount of analyzed
weights [52], [71].

(2) How to effectively combine heterogeneous models from
participants and reduce accuracy loss? To discriminatively
distribute models to different participants, the distributed mod-
els must be heterogeneous, e.g. , various participants receive
different models. However, existing FL aggregation techniques
cannot handle heterogeneous models and achieve high server-
side model accuracy. Although there are techniques, such as
model distillation [30], that may distill the knowledge of
heterogeneous models into homogeneous models, they are



not efficient due to the large amount of data required. For
example, distilling a model on the CIFAR10 dataset requires
about 4, 000 samples per class [6]. With this amount of data,
The task requester can directly train a new model without FL.

C. Threat Model

Assumption. We consider a typical federated learning
framework, which includes one server and multiple partici-
pants. The server wants to utilize participants’ data to train a
central server model and award the participants with money.
According to regulations, participants do not need to upload
data and only share a locally-trained model. We assume that
the server is trustworthy, but participants may be malicious.
We also assume that malicious participants have all privileges
to the model they have received. They can arbitrarily analyze
or modify the received model. We assume that the server can
leverage some public dataset to assist slice aggregation. For
example, the server can train the aggregated model with the
ImageNet dataset. However, the server does not have access
to participants’ private data. This assumption is common in
prior literatures [13], [38], [15], [73], [42]. In other words, the
participant-side models should have inadequate functionalities
compared to the server-side model and contain as little as
possible private information about other participants’ training
data.

III. APPROACH

This section will introduce the overview of FedSlice. After
that, we will illustrate the detailed description of FedSlice.

A. Overview

FedSlice includes three steps: ensemble model construction,
slice distribution, and slice aggregation. The first step is
only performed once during the framework setup. The slice
distribution and aggregation may be iterated multiple times
until a desired performance or time limitation. Figure 2 depicts
a sample demo of the overall pipeline. We briefly summarize
each stage as follows:

Ensemble model construction is the setup phase of our
framework. According to expert knowledge, the task requester
must first select a “template model” (a pre-defined model
architecture). For example, the task requester can choose a
ResNet20 [29] model to perform image classification tasks.
This stage enlarges each template model’s layer by duplicating
one layer to several parallel “branches”. Such branches have
the same operations but have different weights. Then, a fusion
layer is added between layers to aggregate the output of
different branches. The duplicated branches and the added
fusion layer form the “ensemble model”. The task requester
maintains this ensemble model until the end of the training
phase. As shown in the upper left part of Figure 2, the template
model has three layers. Each of the first two layers performs
three operations, and the last layer performs two operations.
FedSlice duplicates each layer into three branches and adds
one fusion layer between layers.

Slice distribution constructs diverse “model slices” from the
ensemble model by a slice-branch mapping rule. A slice of
the ensemble model is a combination of branches and has the
same structure as the template model. For each of the template
model’s layers, a slice includes one of the ensemble model’s
branches. The mapping rule defines which branches are used
to construct the slices and is initialized at the setup phase.
During the training phase, FedSlice distributes different slices
to different participants. Participants use private data to train
the slices and upload the slices to the server. The mapping
rule is displayed in the upper right part of Figure 2, and five
constructed slices are distributed to five participants.

Slice aggregation fuses the uploaded slices into the ensem-
ble model. FedSlice first updates the branches with an inverse
mapping rule. This inverse mapping is derived from the slice-
branch mapping rule and defines which slices are used to
update the branches. How to update the branches is defined by
a given per-weight aggregation function. This function can be
arbitrarily selected from the prior work [46], [40], [5], [39].
The lower part of Figure 2 shows the inverse mapping and how
each branch is updated from the slices. After updating all the
branches, FedSlice trains the ensemble model with the public
dataset. This joint training aims to train the fusion layers and
enhance the collaboration between branches.

Rationality. FedSlice can mitigate the threats in Sec-
tion II-A meanwhile reducing the performance loss. First, the
ensemble model can efficiently achieve high accuracy with
little data because the participants train branches with private
data. The server only needs to fine-tune the weights of the
branches and the fusion layers. Second, in our design, each
participant only receives a slice of the server-side model, and
none of the participants know the ensemble model’s complete
structure. The size of a slice is approximately 1/n of the
whole model (n is the number of branches per layer). Thus,
the confidentiality of the ensemble model is protected, and
only the server owner has full access to the model. Third,
each slice is composed of different branches. Thus slices are
mutually heterogeneous. The probability of two participants
receiving the same slice is 1/nl (l is the number of layers).
In the experimental setting, where l is four and n is ten, this
probability is less than 10−6. The chance for the malicious
participant to receive the same model as another participant
is little or no. Thus he can not perform an effective attack
because the attacks require the integral model from other
participants.

B. Ensemble Model Construction

In the beginning, the task requester first chooses a template
model. The upper left corner of Figure 2 shows an example
in which the template model contains three layers. Each of
the first two layers performs three operations: convolution,
batch normalize, and ReLU. The last layer performs two
operations: pooling and linear. Ensemble model construction
aims to construct an ensemble model from the template model.
The task requester maintains the ensemble model and then
slices it into different model slices. To construct the ensemble
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Fig. 2: The overall pipeline of FedSlice consists of three stages: ensemble model construction, slice distribution, and slice
aggregation. In the demo, the template model contains three layers (denoted in blue, green, and red boxes) and each layer has
three branches (denoted by the number in each box). “Partic.” is the abbreviation of “participant”.

model, the task requester builds different branches for each
layer and adds a fusion layer between layers.

Branches Replication. We first build n parallel branches
for each layer. The branches share the same architecture but
have different weights. The server model uses all branches for
inference, while participants only receive a subset of branches.
Different branches learn knowledge from different partici-
pants. This knowledge is later integrated into the ensemble
model. At the setup stage, branches are initialized by different
weights. In the upper left part of Figure 2, FedSlice constructs
three branches for each layer, and the squares show the branch
IDs (branch 1, branch 2, e.t.c).

Fusion Layer. To fuse the information of branches, we
append a feature fusion layer after each layer of the ensemble
model. The fusion layers take the outputs of prior branches
as input and produce the input for branches of the next layer.
This design is similar to the requirement that different software
components have a unified interface to facilitate the develop-
ment process. Even though the function and implementation
of different components vary, the interface consistency ensures
that the components can be easily replaced and don’t need to
change other modules.

The choice of the fusion layers should consider two aspects:
the ease of training and the protection of model confidentiality.
On the one hand, the server can not collect much data to
support complex models, so the structure of fusion layers
should be concise. On the other hand, a superficial fusion
layer (such as feature average) may leak the server model
because there are fewer server-specific parameters. We choose
to apply batch normalization after the averaged feature maps
of all branches (which we call “FeatBN”) as the fusion
layer. Other choices include only averaging all feature maps

of prior branches (which we call “FeatAvg”) and applying
convolution operation after the averaged feature maps (which
we call “FeatConv”). FeatBN is the best choice among the
three candidates to balance the two factors according to the
experiment in Section IV-D.

C. Slice Distribution

In this stage, the task requester decomposes the ensemble
model into model slices and distributes slices to participants
according to a mapping rule. The input of this stage is
the ensemble model from the pre-mentioned section, and
the output is a set of model slices. This stage is the core
component of FedSlice. In each communication round, slices
are assembled following the mapping rule and are sent to the
participants. The goal of slice distribution is to ensure each
participant only receives a partial server-side model and thus
can not perform effective attacks. Next, we will introduce the
two components of this stage: model slices and slice mapping
rules.

Each slice is a subset of the server-side model. The upper
right corner of Figure 2 shows five model slices for five
participants. For example, participant 1 has slice 1 that consists
of three branches: the first branch of layer 1, the second branch
of layer 2, and the first branch of layer 3. Each slice has the
same structure as the template model (the upper left corner of
Figure 2). Thus the slices can be trained on the local devices
with existing training pipelines (such as cross-entropy loss and
gradient decent optimization).

Slice Mapping Rule. This rule records the mapping rela-
tionship between the branches and slices. Formally, suppose
the i-th branch of the j-th layer composes the slice p, the
mapping rule is denoted as map[p][j] = i. The slice p can be



denoted as:

Slicep = {map[p][j]|j = 1, · · · , n}. (1)

As shown in the upper right part of Figure 2, the slices are
constructed following the mapping rule. For example, the first
row of the mapping rule defines how to construct the slice 1.

The mapping rule map is generated at the startup phase
and fixed during the training process. We utilize a random
strategy to determine the slice-branch mapping relationship,
i.e. one slice randomly selects a branch from each layer.
This random-combination scheme has two advantages. First,
it encourages branches from a different layer to collaborate,
i.e. so that they can be better integrated into the server-side
model. Second, it reduces the privacy leakage of participant
data because different participants get different slices (various
combinations of branches).

D. Slice Aggregation

After participants train the model slices with local data, they
upload the slices to the server. The input of this stage is the
uploaded slices, and the output is the aggregated ensemble
model. Conventional model aggregation techniques can not
aggregate model slices because they require the uploaded and
ensemble models to have the same architecture. However,
in our case, the uploaded slice is a subset of the ensemble
model. This stage aggregates the slice knowledge into the
ensemble model to solve this problem by updating branches
and training the ensemble model. FedSlice first performs per-
branch aggregation to collect slice knowledge into branches.
Then FedSlice trains the ensemble model to update the fusion
layers and improve collaboration between branches.

Per-Branch Aggregation. The input of this stage is the
uploaded slices, and the output is the aggregated branches.
First, per-branch aggregation requires a pre-defined per-weight
aggregation function. Researchers have proposed various per-
weight aggregation functions (such as per-weight aggrega-
tion [46]). This function can be arbitrarily selected from the
prior work [46], [40], [5], [39].

Then FedSlice builds an inverse mapping rule from the
slice mapping rule. This rule defines which slices are used
to update each branch. Contrary to the mapping rule (which
records which branch is distributed from a layer to a slice), the
inverse mapping rule records the slices each branch composes.
Formally, FedSlice constructs the inverse map by

i map[i][j] = {p|map[p][j] = i}. (2)

The inverse map defines which slices are used to update one
branch, and the per-weight aggregation function defines how
the branches are updated. Each branch is updated by the per-
weight aggregation function using the slices in the inverse
map.

The lower left part of Figure 2 displays the inverse mapping
of the demo case. Taking the first branch of layer 1 as an
example, the inverse mapping records (1, 3) (the array’s first
column of the first row ). It means this branch is updated by
slice 1 and slice 3. It is because, in the mapping rule, slice

1 and 3 are composed of branch 1 (the blue squares of the
upper right part of Figure 2). As shown in the lower part of
Figure 2, branches are updated by the inverse mapping rule.

Joint Training. FedSlice jointly trains the whole server
model with a public dataset to converge the ensemble model.
Without this step, the ensemble model cannot converge when
participants’ data is highly diverse. In this scenario, the up-
dated slices have a large deviation from each other, causing
the aggregated branches difficult to produce valid outputs. This
step also trains the weights of the fusion layers to aggregate
the output features of the prior layer’s branches. Because we
choose FeatBN as fusion layers (as stated in Section III-B),
this step does not need a large amount of data.

IV. EVALUATION

Research Questions. In this section, we want to answer the
following research questions:

• RQ 1: Can FedSlice reduce the successful rate of the four
attackers in Section II-A?

• RQ 2: How is the training efficiency of FedSlice com-
pared with unprotected baselines?

• RQ 3: What is the accuracy loss of FedSlice?
• RQ 4: How do hyper-parameters influence the perfor-

mance of FedSlice?
Implementation Details. In our experiment, we set the

number of branches in each layer n as ten and select FeatBN
as the fusion layer. We conduct the experiments of FedSlice
on a server with two GeForce GTX 1080Ti GPUs, two Intel
Xeon CPUs with 16 cores, and 64GB of memory.

A. Defense Effectiveness

The goal of FedSlice is to protect FL models from the four
attacks mentioned in Section II-A. Therefore, we evaluate how
effectively can FedSlice counter the four attacks in this section.

1) Setup: Dataset. We evaluate FedSlice on six representa-
tive datasets. The dataset selection follows prior FL benchmark
FedML [28] and Leaf [11]. We choose three computer vision
datasets (EMNIST, CIFAR10, and CIFAR100) as they are
commonly used by prior FL literatures [39], [28]. We choose
one natural language process dataset (Shakespear [11]) to
study the effectiveness of FedSlice on different tasks. We also
choose two large-scale datasets designed for FL evaluation:
FEMNIST and Celeba [11]. FEMNIST contains handwriting
digits and alphabets from more than 3,000 participants, and
Celeba contains human faces of more than 4600 different
people.

Data Partition. We use the default partition of the original
setting for the already partitioned datasets (Celeba, FEMNIST,
and Shakespeare). For other datasets, we partition the data into
100 participants and follow the prior α-degree of non-IID to
simulate both IID and non-IID distribution [22].

We simulate the public dataset by randomly selecting 5%
of data from each dataset. This selection follows prior set-
ting [13], [38], [15], [73], [42]. The model trained with this
amount of data has low accuracy. Thus the task requester



TABLE I: The performance of server-side model protection of FedSlice in terms of the accuracy. The metrics of FedSlice
include the performance of the server-side model (the higher the better) and the average performance of participant models
(the lower the better). We list the average relative values of FedSlice w.r.t the unconditional sharing baseline at the bottom
row.

McMahan [46] Asad [5] Li [40]

Baseline
FedSlice

Baseline
FedSlice

Baseline
FedSlice

Server ↑ Partic. ↓ Server↑ Partic.↓ Server↑ Partic.↓

EMNIST
IID 79.82 81.74 69.19 79.40 80.65 67.48 83.09 80.19 69.62

Non-IID 79.04 80.04 61.04 79.44 80.52 59.10 83.04 80.20 69.59

CIFAR10
IID 51.07 50.52 12.87 55.58 51.39 10.36 54.53 51.07 14.48

Non-IID 48.54 47.20 11.73 50.29 49.05 13.76 52.76 50.04 13.66

CIFAR100
IID 26.50 26.50 1.32 28.54 27.10 1.17 24.21 22.92 7.78

Non-IID 25.52 26.59 3.7 24.56 25.30 1.13 22.51 23.73 3.93
FEMNIST 73.82 75.02 3.72 72.94 68.66 5.10 76.51 76.34 23.77
Shakespear 41.28 39.52 27.85 42.15 39.95 33.07 39.53 36.72 21.90

Celeba 88.89 86.03 53.73 82.26 84.51 64.75 91.45 89.34 66.98
Average of Relative Value - -0.20% 40.63% - -1.94% 42.02% - -3.11% 47.70%

Fig. 3: The effectiveness of adversarial attack mitigation. Attack success rate (ASR) is reported to measure how much adversarial
examples generated by participant models can confuse the server-side model.

needs the private data from the participants to help improve
the accuracy [38].

Models. We select four representative models as baselines.
For EMNIST and FEMNIST, we use a simple CNN model
(LeNet) according to the benchmark suggestion [11], [28]. For
CIFAR10, CIFAR100, and Celeba we use a more complex
CNN model with residual connections (ResNet20 [29] and
ResNet18 [29]) following previous work [35]. We choose
an RNN model suggested by the Leaf [11] benchmark for
Shakespeare dataset.

Baseline Approaches We select three representatives “un-
conditional sharing” baselines to compare with FedSlice. The
three baselines are McMahan [46], Asad [5], and Li [40],
which are among the most used FL aggregation methods [39],
[28], [64]. These three methods have been used in industry
and academia [63], [32], [38], [58].

2) Free-Rider Attacks: Metrics. Similar to previous work,
we use the average accuracy of all the participant’s models to
measure the model leakage [41], [23]. A higher participants’
accuracy represents more model leakage, and a lower value
means better protection of the server-side model’s function-
ality. Since the absolute accuracy of different datasets and
baseline techniques are distinct, we also utilize relative values

for better comparison across different datasets. Let ACCS

be the accuracy of the server-side model and ACCp be the
accuracy of participant p, the relative leakage is defined as
rLKG = 1

|P|
∑
p∈P

ACCp/ACCS .

Results. The model leakage can be observed by comparing
the “Server” column and the “Partic.” column of Table I.
The “Server” column shows the accuracy of the server-side
model, and the “Partic.” column shows the averaged accuracy
of the participants’ models. A more significant gap between
the “Server” column and the “Partic.” column represents a
lower functionality that the server-side model leaks.

For the three baselines, FedSlice’s average leakage of server
functionality is 40.63%, 42.02%, and 47.70%. It means that
FedSlice can reduce the leaked functionality of the server-
side model to an average of 43.45%. The leaked functionality
of baselines is 100% because they send the shared model to
participants.

3) Adversarial Attacks: Metrics. We follow prior work [19]
to report the attack success rate (ASR), which computes how
many adversarial examples generated from the local model can
mislead the output of the server-side model. We implement a
strong adversarial attack (PGD attack [45]) to evaluate ASR



in the worst case. The hyper-parameters of the PGD attack
follow the default setting of the original paper [45].

Results. Figure 3 shows the defense result of computer
vision datasets against strong PGD attacks. We list the un-
conditional sharing baselines (the first three histograms for
each dataset) and FedSlice (the subsequent three histograms)
together. McMahan [46], Asad [5], and Li [40] are represented
in red, blue, and green, respectively.

For all three baselines, the attack success rate (ASR) reaches
more than 99% (not labeled explicitly for simplicity), meaning
that the security risk of adversarial attacks is high. On the
contrary, the ASR of FedSlice is reduced substantially. For
EMNIST and FEMNIST, the ASR is below 30% in six out
of nine cases. For other datasets, the ASR is below 10%,
and there are 60% cases (nine out of fifteen) with an ASR
of zero. Averagely, FedSlice achieves an ASR of 11.66%.
The comparison between baselines and FedSlice demonstrates
that distributing model slices can effectively defend against
adversarial attacks from the participant and protect the server-
side model’s security.

Although the malicious participant can perform a black-box
adversarial attack, the cost is higher, and the effectiveness is
lower than the PGD attack. According to literatures [8], [17],
the attacker has to query the target model thousands of times
to test the decision boundary of the server-side model, which
is slow and expensive.

4) Membership Information Attacks: Metrics. We evaluate
FedSlice with four state-of-the-art membership inference at-
tacks: the neural network (NN) attack [56], the Top3 attack,
the Loss attack [54], and the Gradient attack [50]. All four
attacks use the adversary participant’s local model and infer
other honest participants’ membership information. We report
four metrics for each attack (precision, recall, F1 score, and
accuracy) to comprehensively evaluate the attack performance.
The selected metrics follow prior literatures [34], [50]. For
each metric, a higher value represents more privacy leakage.
Note that membership attack is a binary classification task.
The lower limit is a random guess, with the lowest value of
all the aforementioned metrics as 0.5.

Results. Table III displays the performance of four attacks
against baselines and FedSlice. For baseline techniques, all
four attacks can effectively infer the membership information.
The attack performances of the Loss attack and the Gradient
attack are generally higher because these two attacks use more
information (data label and gradient information). Averagely,
the precisions of all attacks are above 0.74, meaning that about
three-fourths of the predicted positive samples are truly the
training members. This high precision threatens the privacy of
the participants’ training data.

On the contrary, according to Table III, the success rate
of FedSlice is substantially reduced. The performance of all
four attack techniques resembles that of a random guess. The
highest F1 is 0.54, and the highest accuracy is 0.55, which are
all lower than the baselines. The average accuracy is reduced
from 71.91% to 51.58%. The average F1 score is reduced from
0.71 to 0.48. It means the adversary participant extracts nearly

TABLE II: The effectiveness to reduce deep gradient leakage.

Ground Baseline FedSlice
Truth DLG iDLG DLG iDLG

MSE - 0.00012 0.00014 1.75 1.49

Sample

no private information.
We also studied why our approach could reduce the success

rate of membership inference. Take the loss attack as an exam-
ple. Prior literature concluded that membership information is
mainly embedded into the loss magnitude [50]. Member data
samples usually have low loss magnitudes, and non-member
data samples have high magnitudes. It is because, during the
training phase, the DNN weights are optimized to minimize
the loss of the member samples. For FedSlice, both member
and non-member samples have high loss magnitude because
the adversary’s slice is never trained on honest participants’
data. The adversary participant can not extract usable private
information from similar magnitudes.

5) Deep Gradient Leakage Reduction: Metrics. We choose
two state-of-the-art attacks that use leaked gradient to recover
participants’ training samples [53]: deep gradient leakage
(DGL) [74] and improved deep gradient leakage (iDGL) [72].
We display both quantitative results and qualitative results of
each attack. We show the Mean Squared Error (MSE) for
quantitative results, which is consistent with the original attack
evaluation [74], [72]. MSE computes the pixel-value difference
between the original image and the recovered image. The
range of MSE is [0, 2], where 0 means the recovered image
is identical to the original one, and 2 means the recovered
image is completely random noise. We display two randomly
selected images for qualitative results to compare the attack
effect between different techniques.

Results. Table II displays both quantitative and qualitative
results. For baselines, the MSE of both attacks is smaller than
0.0002, which is similar to the lower limit. For FedSlice, the
MSE is around 1.50, which is four magnitudes larger than the
MSE of baselines and is close to the upper limit. The bottom
of Table II shows the qualitative results. The left column is the
ground truth sample, and the others are recovered samples. The
samples recovered from baselines resemble the ground truth.
There are only several countable pixels for the flower image
that are different from the ground truth image (the central
part of the flower and the right side of the image). On the
contrary, the samples of FedSlice are random noise, meaning
that the attacker can not infer adequate input information from
the distributed model slices.

Answer to RQ 1: FedSlice can reduce the model
leakage, F1 score, ASR, and MSE for the four attacks
mentioned in Section II-A.



B. Model Efficiency

FedSlice is designed to avoid heavy encryption and TEE.
In this section, we evaluate how much training time could be
saved by avoiding TEE and encryption.

We recorded the training time on all datasets to compare the
training efficiency between FedSlice and baselines.Figure 4
shows the training time on CIFAR10 in minutes. It can be
observed that FedSlice marginally increases the training over-
head. Averagely, FedSlice takes 14.3% longer time than the
unconditional sharing baseline. Compared to the TEE-based
solution (up to 36.1× slower [55] than baseline), FedSlice is
31.6× faster. Compared to cryptographic solution (more than
1,000× slower than baseline [60]), FedSlice is 877.2× faster.
The FedSlice is 3.7% to 33.2% slower on other datasets. We
skip the detailed figures due to the space limit.

Fig. 4: The comparison of FL training time on CIFAR10.

Answer to RQ 2: FedSlice improves the training speed
by avoiding TEE and encryption.

C. Accuracy Loss

In this section, we want to evaluate whether FedSlice
protects FL models by harming the model’s accuracy. To do
this, we measure the accuracy of the server-side model of
FedSlice and unconditional sharing.

Results. We can observe the accuracy loss of FedSlice by
comparing the “Baseline” column and the “Server” column of
Table I. The “Baseline” column is the accuracy of baseline
models, and the “Server” column is the accuracy of the Fed-
Slice models. To rigorously compare baselines with FedSlice,
we compute the statistical significance with Wilcoxon signed-
rank test [66]. For each baseline, the null hypothesis is that
there is no accuracy difference between the baseline and
FedSlice. The computed p-values for the three baselines are
0.78, 0.31, and 0.02. It means at a confidence level of 5%, we
receive the null hypothesis for McMahan [46] and Asad [5]
and reject the hypothesis for Li [40]. For Li [40], the averaged
accuracy loss is 3.11%. These observations mean that FedSlice
does not remarkably harm the accuracy of the server-side
model.

Answer to RQ 3: For two of the three baselines, Fed-
Slice does not reduce the server-side model accuracy
with statistical significance.
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Fig. 5: Ablation study on the fusion module and the number
of branches on the EMNINST dataset.

D. Effect of Hyper-Parameters.

We then study hyper-parameters’ effect on the two charac-
teristics of FedSlice: the accuracy of the server-side model and
the model leakage defense. The hyper-parameters include the
choice of fusion layers and the number of branches. For the
choice fusion layers, we evaluate “FeatAvg”, “FeatConv”, and
“FeatBN”, as discussed in Section III-B. For the number of
branches, we set the range from 2 to 50. We select EMNIST
and all three baselines to perform the experiments due to
the page limit. We also did exploratory experiments on other
datasets, and the results are similar.

The left figure in Figure 5 shows the results of the choice of
fusion layers. For each baseline, we plot the accuracy of the
server-side model and participant model together. In the figure,
FeatBN achieves the highest server accuracy in all cases,
demonstrating that it can effectively fuse knowledge from
different participants. The participants’ accuracy of FeatBN
is lower than FeatAvg, but higher than FeatConv. This result
means FeatBN can protect model functionality better than
FeatAvg but worse than FeatConv. However, we still choose
FeatBN as the fusion layer because it has higher server-side
accuracy.

The right figure in Figure 5 displays the model sensitivity
concerning the number of branches. The solid lines with
circles represent the server-side model, and the dotted lines
with stars represent the participants’ model. Figure 5 shows
that as the number of branches increases, the accuracy of the
server-side model and the participant-side models decreases.
We select the number of branches as ten because it achieves
high server-side accuracy while maintaining a significant gap
between the server-side and participant-side models.

Answer to RQ 4: FedSlice chooses the hyper-
parameters that can better balance the server- side
model’s accuracy and model leakage protection.

E. Threats to Validity.

Internal Validity. The training hyper-parameters may be
one internal validity in the experiment. Such hyper-parameters
include learning rates, training rounds, and epochs for each lo-
cal device. We mitigate this threat by using the recommended



TABLE III: Protection against membership inference attacks on CIFAR100. For each case, we use precision, recall, F1 score,
and accuracy as metrics. The last two rows show the average value over all baselines.

NN Top3 Loss Gradient
Prec Recall F1 Acc Prec Recall F1 Acc Prec Recall F1 Acc Prec Recall F1 Acc

McMahan [46]
US 0.81 0.71 0.69 0.71 0.83 0.76 0.75 0.76 0.81 0.81 0.81 0.81 0.84 0.78 0.77 0.78

FedSlice 0.52 0.52 0.51 0.52 0.51 0.51 0.51 0.51 0.54 0.53 0.48 0.53 0.53 0.53 0.53 0.53

Asad [5]
US 0.84 0.78 0.77 0.78 0.82 0.73 0.71 0.73 0.85 0.82 0.81 0.82 0.85 0.80 0.79 0.80

FedSlice 0.50 0.50 0.50 0.50 0.51 0.51 0.50 0.51 0.56 0.55 0.51 0.55 0.55 0.55 0.54 0.55

Li [40]
US 0.59 0.58 0.57 0.58 0.60 0.59 0.58 0.59 0.65 0.64 0.63 0.64 0.63 0.63 0.63 0.63

FedSlice 0.50 0.50 0.46 0.50 0.50 0.50 0.47 0.50 0.49 0.49 0.38 0.49 0.50 0.50 0.42 0.50

Average
US 0.74 0.69 0.68 0.69 0.75 0.69 0.68 0.69 0.77 0.76 0.75 0.76 0.77 0.74 0.73 0.74

FedSlice 0.51 0.51 0.49 0.51 0.51 0.51 0.49 0.51 0.53 0.52 0.46 0.52 0.53 0.53 0.50 0.53

settings of the public benchmark [28], [11] and keeping the
parameters assistant across all experiments.

External Validity. The choice of evaluated datasets and
models may be one threat to external validity. We mitigate
this threat using the diverse and recommended choices of
public benchmark [28], [11]. The evaluated datasets include
both computer vision tasks and natural language processing
tasks. Another threat is the number of simulated participants
and data distribution. To mitigate this threat, we simulate
a large number of participants (100 to more than 4K) and
evaluate both IID and non-IID distribution to demonstrate the
effectiveness of FedSlice under real-world settings.

Construct Validity. The choice of evaluation metrics may
be one threat to construct validity. We mitigate this threat by
selecting the same metrics from prior work [28], [11], [19],
[37], [54], [50], [74], [72].

V. DISCUSSION

Collusion of Malicious Clients. One possible threat against
FedSlice is that several participants collude to attack the server
model. The expected number of colluded participants relates
to the ensemble model structure, which is a high-dimension
variant of the coupon collector problem [51]. For a simple
situation in which the shared model is split into three layers
and ten branches, the expectation of the number of colluding
participants is 38.75. Therefore, although multiple participants
may conspire to compromise the FedSlice, the number of
colluding participants is not trivial.

Limitations. One limitation is that the FedSlice requires
a small portion of public data to train the ensemble model.
However, the server may not have the computation ability to
train the model on the server-side. Another limitation is the
size of the ensemble model is larger than the meta-model.
Although it is not difficult to store such a model on the server
side, deploying it on edge devices may be difficult. We will
address the limitations in future work.

VI. RELATED WORK

Security Issues of FL. A few recent papers point out
that some ill-intended participants may pretend to contribute
data and steal the server-side model for free (free-rider at-
tacks) [23], [41]. Existing defense techniques mainly focus
on detecting such dishonest participants [41]. FedSlice uses
an orthogonal technique that protects the server-side model

by avoiding sharing the model with all participants. FedSlice
and dishonest participant detection can be applied together to
protect the trained model better.

Privacy Risk of FL. Researchers have proposed several
attacks, i.e. gradient leakage [74], [72], membership leak-
age [47], [50] and attribute leakage [47]. Zhu et al. restored the
training data from the shared gradient, and the restored data is
pixel-wise accurate for images [74]. Nasr et al. found that the
shared gradients and the history of model updates expose even
more membership information [50]. Melis et al. also displayed
that FL can leak attributes unrelated to the target task, such
as whether a person wears glasses in the computer vision task
and the doctor’s specialty in the health-related reviews [47].
Convetional solutions to these attacks are TEE or encrytion
based, while FedSlice leverages a novel technique that is more
efficient.

Other Attacks to FL. Besides attacks mentioned in Sec-
tion II-A, FL may also suffer label flipping [69] and poisoning
attacks [59]. Recently researchers proposed several byzantine-
robust aggregation algorithms to defend against label flipping
and poisoning attacks from malicious participants [9], [67],
[13]. These byzantine-robust solutions can not defend against
the four attacks discussed in this paper because they deliver
the server-side model to all participants and can not avoid
information leakage. On the contrary, FedSlice focuses on
the model distribution stage and avoid sending the server-side
model to the participants.

Besides, byzantine-robust solutions are orthogonal with
FedSlice, and the two solutions can be integrated to provide
a higher security level. These solutions can be regarded as
a per-weight aggregation function and be used to aggregate
uploaded branches.

VII. CONCLUSION

This paper aims to protect FL from the four attacks
mentioned in Section II-A without using heavy encryption
and TEE-based techniques. To achieve this goal, we propose
FedSlice, a federated learning framework that ensures each
participant only receives a slice of the server-side model,
which prevents them from performing effective attacks. We
evaluate FedSlice on six datasets and five models. The ex-
periment results show that FedSlice effectively defends the
four attacks with less than 2% accuracy loss and about 14%
computation overhead.
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