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Abstract. Accurate and reliable predictions of ship operating fuel expenditures can significantly increase the ship's
operation environmental sustainability and profitability. Given there are general aims of shipping economically
and reducing greenhouse gas (GHG) emissions worldwide, fuel consumption needs to be reduced to mitigate
operational costs and GHG emissions. Improvement of operational strategies through accurately attributing ship
fuel consumption rates to relevant ship operating modes is a way of achieving these aims. This, however, is
difficult because the state of the vessel and its machinery systems are not constant (e.g., fouling extent and
engine condition). Moreover, the state of the environment (currents, waves and winds) is also not constant. One
commercial example where this challenge is particularly acute is in the case of distant fleet fishing operations,
where fuel consumption often represents 50% or more of the total operational costs. In this industry there is
a demand to develop a decision support system for optimal routing and planning. In this paper, these fishing
operations are used to demonstrate a comparison of multiple regression algorithms for a fishing ship’s fuel oil
consumption prediction model based on two in-situ vessel monitoring systems and environmental conditions
forecast from public sources. Based on these data, the Correlation-based Feature Selection (CFS) method is
carried out to select the best subset of predictive variables. Multiple regression algorithms are developed and
applied, including Linear Regression, Random Forest, XGBoost and Neural Network with the result of Random
Forest outperforming the rest of the algorithms for the two fishing vessels. The final selected models show
accuracies of over 90% in all the speeds greater than 4 knots when the vessel is not in fishing-related operations
but searching for fishing grounds, which accounts for over 90% of the total fuel consumption. From the sensitivity
tests carried out on the developed models, it was found that ship speed through water is the variable with critical
importance for predicting fuel consumption in both engine operating modes, which contributes to over 94.20%
deviation to the baseline in kilograms per nautical mile, followed by month after last drydock (up to 4.34%) and
environmental variables (up to 3.30%). This paper considers the practicalities of dealing with the complex data
aggregation process from the two distinctly different sources, and demonstrates the relative performance merits
of the different algorithms according to key indicators, such as the custom accuracy and the mean absolute error
(MAE).
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1. Introduction
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Recently, the International Maritime Organization (IMO) introduced long-term strategies reacting to European
directives to reduce the environmental footprint of maritime operations. To that end, the maritime industry will
have to reduce its carbon intensity by at least 40% by 2030 and try to achieve 70% reductions by 2050.
Furthermore, the total annual greenhouse gas (GHG) emissions from international shipping must be reduced by at
least 50% by 2050, compared to the data in 2008 [1]. It has been emphasised in the relevant literature that currently
available mitigation measures to reduce ships’ emissions are critical to achieve the global goals set by the Paris
Agreement [2]. Together with the emission reduction issues related to environmental benefits, saving in operating
costs is another reason for investigating mitigation solutions for ship emissions. Route optimization is one of the
measures to increase the efficiency of operation, which can lead to a reduction of operating costs, thus an increase
in profitability [3]. It has been justified in previous research that weather routing can achieve a 2—4 % reduction in
fuel consumption and associated GHG emissions [4]. Thus, identifying optimal shipping routes taking the weather
conditions into consideration can significantly contribute to the reduction in operational costs and GHG emissions.
For fishery activities, this saving in operational costs could be even more important as fuel consumption amounts
to a large proportion of total costs [5]. Inefficient fishing activities have resulted in large quantities of fuel being
consumed while searching for fish, which definitely increase the emissions and overall costs.

Generally, the framework for a Fishery Route Optimization Decision Support System (FRODSS) can be
defined by five layers [6]: i) Environmental layer; ii) Fisheries layer; iii) Ship modelling layer; iv) Routing and
planning layer; and v) Decision layer. This study will mainly focus on the environmental and ship modelling layers.
The environmental layer provides the ocean information needed to model the ship’s behaviour under different
weather conditions, where the significant weather variables, such as waves, wind and currents, are identified and
taken into consideration. Once this layer is defined, the ship modelling layer identifies and predicts ship
performance under different weather conditions in any possible future routes, which will provide the necessary
inputs for the two final layers: the route and planning layer and the decision layer. The complexity of this prediction
is almost apparent, as it is based on highly stochastic processes which introduce a series of uncertainties in the
results [7]. Moreover, such prediction is crucial for FRODSSs that have an additional layer of searching for fish
[6] since this searching represents over 90% of the fuel consumption in tuna purse seiners [8].

Recently, many researchers have been contributing to data-driven methodologies relevant to fuel efficiency
and Fuel Oil Consumption (FOC) modelling. Petersen et al. [9] evaluated the engine performance of a ferry based
on main engine FOC modelling approaches. An Artificial Neural Network model was implemented in their
research to estimate fuel consumption and speed through water based on predictors such as draught, trim, port and
starboard pitch, port and starboard rudder, heel, port and starboard level and wind effects. The output from the
derived models has been used for trim optimization purposes. Besik¢i et al. [10] developed machine learning
models such as shallow Artificial Neural Network (ANN) and Multiple Regression (MR) models for the prediction
of ship FOC in multiple operating conditions of an oil tanker. They found that the ANN model yielded better
performance when compared to the MR model. Similar to the purpose of this work, the model has been applied as
a basis for a decision-making system. However, in the work of Wang et al. [11], it has been justified that the Least
Absolute Shrinkage and Selection Operator (LASSO) regression model for the estimation of a vessel’s FOC had
better performance when compared to ANN, Support Vector Regressor (SVR), and Gaussian Processes (GPs)
models in their case where the datasets were derived from a container ship. Coraddu et al. [12] provided an
investigation on the problems of predicting the fuel consumption and providing the best value for the trim of a
vessel in real operations based on data from onboard automation systems by applying white, grey, and black box
models for FOC prediction. In their research, it was found that a grey box model can be used as an effective tool
for optimizing the trim and forecasting FOC of a tanker in real operational conditions. Gkerekos et al. [3]
conducted a comprehensive examination of data-driven modelling approaches, including various multiple
regression algorithms: Support Vector Machines (SVMs), Random Forest Regressors (RFRs), Extra Trees
Regressors (ETRs), Artificial Neural Networks (ANNs), and ensemble methods to identify the efficacy of different
models in modelling vessel FOC consumption from two different shipboard data sources, noon-reports and
Automated Data Logging & Monitoring (ADLM) systems. They found that ETRs, RFRs, SVRs, and ANNs
yielded the best performance results for both datasets of the target vessel. In the research of Uyanik et al. [13],
various prediction models such as Multiple Linear Regression (MLR), Ridge and LASSO Regression, Support
Vector Regression (SVR), Tree-Based Algorithms and Boosting Algorithms have been established for a container
ship. The predictors in their research were mainly obtained from main engine parameters, such as engine power,
temperature and pressure variables. They have concluded that with the proposed methodology in their work, both
purposes of route optimization and engine fault detection can be achieved. For more recent work, Papandreou and
Ziakopoulos [14] have retrieved data from Very Large Crude Oil Carriers (VLCC). Multivariate Polynomial
Regression (MPR), Artificial Neural Networks (ANNs) and eXtreme Gradient Boosting (XGBoost) regression
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models were developed and compared according to their performance in fuel consumption prediction. They found
that XGBoost had the best performance over other models in terms of model performance and cost of time.

From the published research presented above, it can be concluded that many researchers have been focusing
on the estimation and forecasting of vessels’ FOC in recent years, with multiple different approaches being
implemented. However, most of this research is conducted based on in-situ measured environmental data, few of
it was carried out based on open-source data sources that provide several days’ forecast for DSSs planning, and
none applied to fishing vessels. Previous research has shown that Automated Data Logging & Monitoring (ADLM)
systems and noon-reports can be used for data collection, but these data sources are not always available due to
the high costs of installing in-situ sensors. In addition, using predictable variables is especially significant for route
optimization in fishing vessels. Moreover, none of the reviewed studies model and forecast the operational FOC
of a fishing vessel, where it is important to consider the vessel type and fishing gear since their FOC can vary from
1.94 L/mile to 74.2 L/mile [8]. This is basically because targeted fish schools change their distribution over time,
increasing the fuel consumption when locating and heading for the fishing grounds [8]. Identifying the weather
conditions in advance will significantly contribute to the precise fuel modelling of possible future voyages.

In this work, both in situ data measured by sensors on board two fishery vessels and environmental data from
Copernicus’ Marine Environment Monitoring Service and NOAA’s Global Forecast System are retrieved and
processed for fuel consumption modelling and forecasting. Machine learning methods, namely Multiple Linear
Regression (MLR), Random Forest (RF), XGBoost (Xg) and Deep Neural Networks (DNN), are employed to
forecast fuel consumption considering weather conditions. This forecast is needed to select the best among all the
possible routes available in the routing and planning and decision layers of FRODSS. The developed models are
then compared according to their cross-validation results and statistically tested to select the model with superior
performance. Finally, a future unseen test set is applied to examine the precision of the selected model when new
seasonal data is available.

The remainder of this article is outlined as follows: Section 2 elaborates on the methodology, comprising an
overview of the mathematical background of the implemented methods, as well as data collection and processing
strategies. A cross-validation strategy and statistical tests are then introduced to select the model with the best
performance. Model evaluation metrics are also presented in this section. Section 3 provides the model
performance and selection based on the cross-validation stage with statistical tests. The selected models are then
evaluated against unknown test sets in different ship operating modes. The analysis and discussion with regard to
the results are also elaborated. Finally, in Section 4, overall conclusions and potential future work are provided.
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2. Methodological approach

2.1. Data acquisition

Data in this research have been collected from both onboard sensors and open-source environmental datasets:

1) The in-situ data used in this work have been retrieved from onboard sensors of two twin tropical tuna
purse seine ships (Ship E. and Ship J.) from the same tuna fishing company, under the same technical
specifications. The onboard sensors and data measuring systems were connected to a signal processing
and automatic retrieving and storing system called Ratatosk [15] through Ethernet and Modbus. The data
collected by Ratatosk are stored on board and periodically synchronized to the onshore servers and stored
in NetCDF format. Initial data cleaning and filtering methods have been equipped in the batching
processing stage of NetCDF file processing. With the proposed approach, the NaN samples, missing
features and unrealistic data would be eliminated during the process of converting the NetCDF files to
CSYV for visualization.

2) The most significant external factors affecting the vessel’s performance and fuel consumption are those
related to the weather (waves, wind and currents). Therefore, a model to forecast the vessel’s fuel
consumption needs to consider these variables and their effect on the ship’s speed and fuel consumption.
These data have been collected from Copernicus’ Marine Environment Monitoring Service (CMEMS),
which provides predictions on the physical state of the ocean, variability and dynamics across the globe,
and NOAA’s Global Forecast System (GFS), which provides wind forecasts. Here, the following short-
term forecast products were used: 1) CMEMS Global Ocean 1/12° Physics Analysis and Forecast updated
Daily (PHY) [16], which provides currents related data, 2) CMEMS Global Ocean Waves Analysis and
Forecast (WAV) [17], which offers wave related data, 3) NOAA GFS 0.25 degree resolution [18], which
provides wind data. CMEMS provides user interfaces for extracting data in specific areas and time
periods. For PHY Data, the product has a spatial resolution of 0.083° x 0.083° (1/12 degree or 5 minutes).
For time averaging, it offers hourly mean data of the variables (centred every half-hour). For WAV data,
its spatial resolution is the same as PHY Data, but the temporal resolution is every 3 hours. On the other
hand, wind data derived from GFS are provided every 6 hours, with a spatial resolution of 0.25° x 0.25°.
The wind data from CMEMS is not considered in this research as CMEMS only provides wind data from
observations, not a modelled forecast of Global Surface Winds as NOAA’s GFS does.

2.2. Vessel data pre-processing

Automated sensors and Ratatosk installed onboard ensure data recording and integration. However, various
issues may arise in terms of accuracy, variations, signal noise and calibration necessity. Proper data cleaning and
filtering steps must be taken to ensure that only reliable data remain in the dataset. For the considered datasets,
erroneous data (NaN, unrealistic values, etc.) were initially removed by a batch process method. Additional filters
are required to identify outliers or physical impossibilities. One approach for identifying outliers in the data is
implemented and demonstrated below [19]:

outlier,if |x; — u| > 30
X = { normal, otherwise 1)
where x; represents the i-th observed data point, x is the mean of all observed data, and o is the standard deviation.
Assuming a normal distribution, 99.7% of normal data should be within p + 30. This formulation filters out
erroneous data points from the dataset. An additional step in the pre-processing stage of a high frequency data set
is to smooth the response of signals to capture the important patterns in data while leaving out noise, with the aim
of: 1) Matching the frequency of environmental data; and 2) Smoothing noise from the averaging method. An
example of the averaged versus the original signal based on Ship J.’s dataset is demonstrated in the left panel of
Figure 1, whereas the right panel shows the operating range of speed through water (STW) for the two vessels in
Aug. 2021, where travelling at speeds under 4 knots was identified with starting fishing operations. It highlights
that the continuous operating range for STW is within 12 to 16 knots while searching and reaching fishing grounds.
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Figure 1. FOC samples of one vessel plotted on its original form (blue line) and after being smoothed (red line) in 1-hour
averaging time windows over one month (left panel). Ship E. and J. STW ranges in Aug. 2021(right panel).

In order to match the time averaging strategy of the collected environmental data, the ships’ in-situ data has
been aggregated hourly. The weather data of a specific area provided by CMEMS and GFS are related to each
ship’s position (longitude and latitude) and its date and time. Thus, to extract the data according to the ship’s
location, date and time, the ship’s data must fit the three indexes from the environmental data sources. The Nearest
Neighbours Imputation method proposed by Faisal and Tutz [20] is applied to find the 1st nearest neighbouring
indexes for environmental data selection. Weather data following a space-fixed frame of reference are either
provided in the form of a northward and eastward component or in that of a magnitude and an angle. To take the
ship’s heading into consideration, these measurements are transformed into a body-fixed frame of reference. In
the case where the measurements are described by a magnitude M and an angle «, the variables can be transformed
into the vessel’s body-fixed frame of reference sailing at a heading (Adf), obtaining the longitudinal (/g) and
transverse (fr) components by applying the following formulas [21]:

lg =M - cos(a— hdt) 2)
tr = |M - sin(o — hdt)| 3)

To transform the measurements that are provided in a northward (nw) and eastward (ew) component into the
vessel’s body-fixed frame, the following formulas can be used [21]:

lg = nw - cos(hdt) + ew - sin(hdt) 4)

tr = |ew - cos (hdt)| + nw - sin(hdt) 5)

2.3. Feature selection strategy and standardization

The aim of this work is to develop a model to forecast the vessel’s fuel consumption within a few hours or days
for route optimization purposes. Therefore, only the predictable in-situ and environmental variables were used for
the modelling. For in-situ data, ship speed through water (STW), defined as the speed of the vessel relative to the
water, is selected as one of the predictors as it is more accurate predicting fuel consumption than Speed Over
Ground (SOG), which is the speed of the vessel relative to the surface of the earth, and it is a good proxy of the
engine regime [22]. Furthermore, SOG has a greater currents bias than STW. Another important variable is the so-
called docking time, which represents the number of months since the hull was last cleaned. This variable is
important in the fuel consumption modelling as it potentially represents biological fouling on the hull, which could
result in an increase in the added resistance and a deterioration in the propeller’s performance, thus a loss in energy
efficiency. Apart from the STW, engine speed in terms of revolutions per minute (RPM) mode is also considered
as another factor. Both vessels are equipped with a Controllable Pitch Propeller (CPP) system and use both
constant RPM mode (fixed engine RPM with variable propeller pitch) and variable RPM mode (changing engine
RPM and propeller pitch in a pre-programmed ratio), where the variable RPM mode is applied in most of the
operating time in transit mode (over 90% of operating time), and constant RPM mode is applied mainly in fishing
events (over 90% of operating time).

The multivariate Correlation-based Feature Selection (CFS) method [23], for predictors selection, has been
adopted to select the non-redundant environment variables with higher predictive power. The CFS formulation is
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based upon the assumption that a good subset of predictors (features in the data mining literature) is one that is
highly correlated with the fuel consumption, and at the same time, the predictors have low correlation between
them. This reduces the amount of data to download, storage and process while keeping the highest predictive
performance. Correlation between two variables is calculated by means of Pearson’s Correlation Coefficient
during the CFS.

Before model training, standardization is implemented to the predictors of the datasets, which is a process
involving mathematical adjustments to produce datasets where all variables have normalized ranges. This process
has been executed in ML practices to gain faster computational speeds and convergence [24]. In this study, the z-
score normalization was applied. For each variable, x;, the mean, y;, and standard deviation, g;, were calculated.
Each standardized variable, Xg;ynaaraizea> €an be obtained from the equation below:
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Xi — Ky
0i

(6)

Xstandardized =

This method is also known as scaler, where the above relation is retained from the training dataset and used
for the scaling of validation and testing datasets afterwards. This transfer occurs so that new data do not require
new information to be scaled, to avoid the risk of inferring unseen test data.

2.4. Modelling methodologies

More recently, machine learning regression approaches have been widely used in data-driven fuel modelling.
Regression models can be derived with a level of complexity and consequently accuracy of results. Therefore,
possible methods and algorithms span a wide range of selections, from multiple linear models [3] to neural network
and tree-based methods [14], among which the most promising algorithms are Random Forest, XGBoost and
Neural Networks. These three modelling methodologies will be introduced in the next section. Multiple Linear
Regression will also be implemented as a baseline against the performance of other models.

Multiple Linear Regression (MLR) is a parametric model, which has been considered as the simplest regression
algorithm. Assuming the input variables x; =(x;,..., X ), the predicted target value is then expressed as [25]:

Y, w) = wy + wyx; + o+ Wexg @)
The weight w;, j = (0,..., K) can be calculated through the Least Squares method:
N K 2
w = argmin,, Z(}’i — Wy — Z(ijij)) (8

i=1 Jj=1

Multiple decision trees grow in Random Forest (RF) regression and integrate to achieve a more accurate and
stable prediction. This structure is shown in Figure 2 [13]. It gives results in a discrete manner since the decision
is based on trees. The RF on this regression model is developed based on the bagging method, by which new trees
are created by taking samples in multiple epochs in the sample data set and RF is extracted from these trees.

1415
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Figure 2. Random Forest Regression
XGBoost (Xg) regression is a supervised ML technique that consists of multiple classification and regression

trees. A more detailed overview of the algorithm is introduced in Chen and Guestrin [26]. To summarize their
findings, assuming that there is a mapping function between variables:

YVprediction = f(x), )

where y is the target variable, Y, ,cqiction 1S the predicted value of the variable and x; are the predictors in i samples.
The tree ensemble model applies a number of functions K to predict y:

K
Yprediction = p(x;) = Z f(x) (10)
k=1

Then a loss function is defined according to Yy, eqiction : and true value y; for a set of parameters ¢; as [(¢;).
Together with the penalizing term for model complexity T(f), the objective function can be formulated as:

L(Q”i):Z{:l l(ypredictioni' yi) +Z§=1 T(f) (11)
The XGBoost model is then trained to minimize the objective function.

The basic working principle of an ANN method is: given an ANN regressor with an input layer X, a hidden
layer with M nodes Z,,,, and a single output layer, in each node, the transfer function can be expressed as [27]:

Zm = 0( 0o + al,x) (12)
Y =f(x)=g(wo+w'2), (13)
where Z = (Z1,Z, ... .....Zy), 0() is the activation function and g() is the output function. In regression tasks,

the output function is usually the identity function. The above transfer function can be implemented for the case
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of various layer conditions by passing the output of each layer to the next. The weight parameters a and w are
often tuned to get the optimal hyperparameter set.

15™ INTERNATIONAL SYMPOSIUM ON PRACTICAL DESIGN OF SHIPS AND OTHER FLOATING STRUCTURES - PRADS 2022 < 7\
2

2.5. Model evaluation metrics

The key indicator of model evaluation in this work (cross-validation and test stages) is Mean Absolute Error
(MAE), which can be expressed as [14]:
n
1
MAE(, 90 =~ [y = (14)

i=1
where 1 is the number of samples in y, 9; is the prediction by model, and y; is the true value. |y; — 9;| is then the
absolute error (AE) over n samples. Moreover, for a regression model, a major difficulty of accuracy evaluation is
that it becomes numerically unstable when there exists y;=0. In order to overcome the problem, the custom
accuracy applied in this study is expressed as:

¥|-100%.ifyi>0
i

n
1
of, — —
Custom Accuracy = 100% nZ (15)
=

Sample removed, otherwise

where the accuracy of each sample is Acc = 100% — |y‘y;9‘| -100%.

2.6. Cross-validation strategy and statistical tests for optimal model selection

In order to reasonably ensure that selected hyperparameter values are actually close to optimal and not merely
overfitting the model, 10 times repeated 5-folds cross-validation is applied in this work. Moreover, cross-validation
(cv) allows to compare the different models and choose one using a 5x2cv combined F test, which has been
considered as one of the most robust statistical test methods [28]. The P-value of each model can be computed
during the test and then compared with a previously chosen significance level. Generally, the significant level
threshold is set as 0=0.05. If the P-value is smaller than a, null hypothesis can be rejected, and it is accepted that
there is a significant difference in the two algorithms.

By integrating the proposed Repeated K-Folds Cross-validation strategy and the statistical tests, the overall
cross-validation strategy with hyperparameter tuning and statistical test implemented is shown in Figure 3. In total,
50 runs are required for each of the N hyperparameters tested in each of the four model algorithms during the
cross-validation stage. The validation metrics (MAE) of the N hyperparameter sets will be compared to select the
set with minimal loss to retrain the model and get each type of model with its optimal hyperparameters. Finally,
in-total four models with optimal hyperparameters are compared with 5x2 cv F test. For Ship E., data from
February 2021 to January 2022 are used as a training/validation set (6356 hourly-based samples) and for Ship J.
from June 2021 to January 2022 (2947 hourly-based samples) are used for training/validation. The second vessel’s
dataset starts in June instead of February due to delays on the monitoring system installation due to COVID and
the vessel’ availability. A second validation uses February 2022 data in both vessels to assess the model
performance over time with new unseen data.

1417
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Figure 3. Repeated K-Folds (10 times and 5 folds) Cross-validation strategy with hyperparameter tuning and statistical test
implemented.
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3. Results and discussion

The final selected features are determined based on the percentage of times they have been selected during the
application of CFS in a 10 folds data partition (Freq. Selec. %). The potential predictors, average merit of each
selected predictors, and the percentage of times that each predictor has been selected using in 10-fold cross-

validation (Freq. Selec. %) are demonstrated in Table 1. Attributes that have been selected over 50% of the times
are kept for model training stage.

Table 1. Selection of potential predictors using 10-Folds cross-validation. Data Sources: 'In-situ, {CMEMS, iiGFS

. Average Merit Freq. Selec. (%)
Variable Ship E. Ship J. Ship E. Ship J.

1419
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Based on the above discussion and CFS results, the final selected variables are STW, RPM Mode, Month After
Last Dry docking, VSDX, 1 VS and t_tide for Ship E., and STW, RPM Mode, VHM0 SW2,t VS and vtide for
Ship J. Generally, the environmental features selected are variables related to wave-induced velocity and tide
current velocity for the two similar vessels. The discrepancy (Wave height VHMO SW2 selected for Ship J.) might
be associated with the difference in operating routes and strategies. Wind- related variables (speed and direction)
were always considered as important factors for fuel consumption prediction in some published research [3][14].
In this research, it is worth noticing that the wind variables are not selected by the proposed feature selection
method. Instead, variables related to wave-induced velocity are selected. That is probably because the wind
variables are considered as redundant features as it has been proved in previous research that moderately accurate
empirical relations exist between the wind speed and the surface wave induced velocity (Stokes drift) [29].

The considered hyperparameter sets for each model and their range of values are presented in Table 2 along
with the optimal hyperparameter sets and the optimized losses. From the validation results, it can be deduced that
the best performing model was the RF in both datasets. With hyperparameter optimization, it can achieve an
average MAE=Std of 11.7+0.5 kg/h and 12.1+0.8 kg/h in Ship E. and Ship J. data sets, respectively, with
acceptable training time. XGBoost model also yielded a comparable performance with errors of 12.24+0.4 kg/h and
12.340.8 kg/h for the train/validation datasets derived from the two vessels, with a slightly shorter training time
when compared to XGBoost. Neural Networks (14.3£0.9 kg/h and 15.3%1.5 kg/h) and Multiple Linear Regression
(23.9+0.5 kg/h and 23.4+1.0 kg/h) provide relatively worse performance for both vessels’ datasets. In terms of
training time, it was observed that training the Neural Networks model required the longest time when compared
to the other three models. Although the Multiple Linear Regression model offers the shortest training time, while
returns a larger error. The results of the cross-validation for both Ship E. and Ship J., from Table 2 represented as
box plots in Figure 4, show that MLR is clearly the model with the worst performance. DNN seems also to perform
worse than RF and XG. RF and XG show similar performances and error variance. RF often seems to outperform
XG.

Table 2. Model hyperparameters along with their range and validation results. Std: Standard Deviation.

Model Hyperparameters Optimal Hyperparameters and Metrics
tuned Ship E. Ship J.
n_estimators€[200, 2000] , boot;trat%:. e , bO"éS“‘t‘}Fl’,f e,
max_features€ ['auto', 'sqrt'] , ma)f(_ tep o ,t , . maxf_ tep o t, ,
Random max_depthé [10, 110] 'm_ax_ eatures': 'au .o R 'm.ax_ eatures': 'au .0 X
. 1 liter2. s. 10 min_samples_leaf": 1, min_samples_leaf": 1,
Forest fmin_samp TS—Sf ! fe [ 1’ 2’ 4 ] 'min_samples_split': 2, 'min_samples_split': 2,
m:)n_samp s ;a }[: ’l 4] 'n_estimators': 1500, 'n_estimators": 1500,
ootstrap € [True, False] MAEStd=11.740.5 kg/h MAEStd=12.1£0.8 kg/h
'learning_rate": 0.01, 'learning_rate": 0.01,
max_dep the [2, 10] 'max_depth": 9, 'max_depth": 9,
XGBoost p_estlmatorsE[lOO, 1000] 'n_estimators'": 850 'n_estimators': 850
learning_rate € [0.005, 0.01,0.001] MAE=£Std=12.240.4 kg/h MAE=£Std=12.3+0.8 kg/h
activation: RELU activation: RELU
Deep ' ) hi(%den_lay'er_sizes: hid‘den_layflzr_sizes:
Neural hidden_layer_sizes€e {'neurons': 1024, {'neurons': 192,
[128, 1024; 128, 1024;128, 1024] 'neurons1': 1024, 'neurons1': 512,
Networks 'neurons2": 256} 'neurons2': 128}
MAE=£Std=14.3+0.9 kg/h MAE=+Std=15.3+1.5 kg/h
Multiple fit_intercept€[True, False] ﬁt_intc'arcept': True ﬁt_intt?rcept': True
. — ? 'normalize": Ture 'normalize": Ture
Linear normalize€[Ture, False] A o
. iveelT Fal positive': False positive': False
Regression positive€[True, False] MAE=Std=23.9+0.5 kg/h MAE+Std=23.4+1.0 kg/h
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Figure 4. Box plot of the negative MAE obtained from four models’ performance with optimal hyperparameters tuned in
cross-validation stage

Then the Combined 5%2 cv F test clarifies that RF beats the rest of the algorithms with statistical significance
in both vessels’ datasets. The results are shown in Table 3, where it can be seen that, for Ship E. and Ship J.
datasets, the P-value of each pair model comparison is below 0.05, which means that the null-hypothesis that the
four models perform equally well. Thus, it can be concluded that RF yields better performance than XG, DNN and
MLR in both ships’ datasets according to the results of the cross-validation stage. For most of similar research
focusing on the fuel consumption prediction [3][14], the statistical test was not implemented. Since the selection
of the models cannot be concluded only from mean performance, this method is required to be implemented to
ensure that the difference of mean performance between models is not caused by statistical fluke.

Table 3. Combined 5x 2 cv F test results. * P-value<0.05: Significant, **P-value<0.01 Very Significant

Ship Model P-value f-Statistic
RF vs Xg 0.008** 11.119
Ship E. RF vs DNN 0.007** 11.437
RF vs MLR 6.32¢-08%* 1338.079
RF vs Xg 0.038* 5.423
Ship J. RF vs DNN 0.029* 6.155
RF vs MLR 1.29¢-06** 399.365

Having identified that RF yields less error in terms of MAE at the cross-validation stage, the developed RF
models are now evaluated by test datasets (Feb. 2022). As it shown in Figure 5, the models perform well when given the
unseen test datasets. The MAESs of the developed RF models on Ship E. and J. test dataset are 14.5 kg/h and 14.3
kg/h, respectively, which are close to the RF model performance derived from cross-validation stage (11.7+0.5
kg/h for Ship E. and 12.1+£0.8 for Ship J.). Moreover, it can be roughly deduced that the vessels were mostly
working with a main engine fuel consumption rate in the range of 500-700kg/h. This assumption will be clarified
and expanded in a further discussion. It is noticed that a limited number of outliers were present in the overall
results. These values can be attributed to discrepancies between the actual weather conditions observed in the
vessel’s ambient space and the environmental data offered by the weather providers [21]. To extend this work,
having models based on real vessel sailing data with higher accuracy will be a practical validation of the model’s
fitness for this purpose.
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Figure 5. Random Forest model true value by prediction over Ship E. (MAE=14.5kg/h) and J. (MAE=14.3kg/h) test datasets.
(True ME FOC: Fuel consumption measurements by flow meters)

For the fisheries route optimization system, the derived FOC model aims to provide a prediction of the vessel’s
FOC at discretized segments that often span several hours while searching and reaching fishing grounds.
Researchers have been focusing on model development under ship transit mode with the vessel speed mostly
varying within a small range. Moreover, Table 4 demonstrates that over 60% of total fuel consumption is used in
this speed range. Thus, the analysis needs to mainly focus on the samples in this STW range (highlighted in bold
in Table 4). Although the MAEs (20.2kg/h for Ship E. and 20.4kg/h for Ship J.) in this speed range are larger when
compared with the overall MAEs (14.5kg/h for Ship E. and 14.3kg/h for Ship J.), the errors are calculated in high
fuel consumption conditions (average fuel consumption higher than 580kg/h). In this speed range of high
consumption, the developed RF models can achieve an accuracy of 96.6% and 96.5%, respectively, with a small
standard deviation of 3.6% and 3.0% in sample accuracy to mean accuracy. In terms of the performance of the
model in other speed ranges, it was found that the performance of the models is not as accurate as in continuous
operating mode. However, the accuracy for the developed RF model can still reach 86.8%, 91.8% and 96.0% in
the three speed ranges below 12 knots for Ship E’s test dataset, with relatively higher deviation to mean accuracy.
In the case of the model performance in Ship J. under various speed ranges shown in Table 4, it is worth noting
that the accuracy in the case that STW<4 is quite low. The reason for this is due to the samples with FOC close to
0 (visible in Figure 5, Ship J’s case), where minor deviation from true value will lead to a quite large sample
percentage error, thus results in a negative accuracy. MAE (5.3kg/h) could be a more reasonable criterion for
model performance in this speed range. Nevertheless, it can be inferred from Figure 1 (right panel) that this speed
range is not the reference speed during transit. Apart from the case when STW<4, the accuracy for the model goes
up to 92.2% and 93.6%, respectively, which indicates that the developed RF models can also provide excellent
fuel consumption forecasts during most of the ships’ loading conditions.

Besides different loading conditions with ship speed, RPM mode also has an impact on fuel consumption. An
indicator that identifies whether the engine system drives propulsion at fixed rpm (constant mode=1) or at variable
rpm (variable/combinator mode = -1) has been defined. The choice is made on the basis of the sailing
circumstances. In both of the ships, the main operating mode is variable RPM mode with propeller pitch in a pre-
programmed ratio, which accounts for a large proportion of total operating time. Overall, the developed RF models
yielded a good performance for the voyage in both RPM modes over the two vessels. The model provides high
custom accuracy in variable RPM mode (91.5%) and constant RPM mode (96.9%) of Ship E., with standard
deviation of 13.7% and 2.3% to mean performance, respectively. In case of Ship J., the CA+Std(Acc) for the model
reaches 90.9417.8% and 89.5+8.4%, in variable RPM mode and constant RPM mode, respectively.
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Table 4. Random Forest model performance over different operating modes

Percentage Actual
Accumulated
(%) of Time in Average Fuel
Ship E. Speed Ranges and Each Speed F“el. MAE Consumption CA=£Std(Acc)
RPM Modes Consumption (t) (kg/h)
Range and and Percentage (ke/h)
RPM Mode (%)
<4 44.6% 8.5(5.3%) 5.4 38.7 86.8+18.3%
STW Ranges 4t08 9.3% 17.2(10.8%) 28.2 374 91.8+8.0%
(knots) 8to 12 14.0% 36.7(23.1%) 21.1 5323 96.0+3.6%
12 to 16 32.1% 96.5(60.8%) 20.2 611 96.6+3.6%
Variable 95.5% 149.7(94.2%) 14.6 318.6 91.5+13.7%
RPM Modes
Constant 4.5% 9.2(5.8%) 12.8 418.5 96.9+2.3%
Percentage Actual
%) of Ti g Accumulated Average
. Speed Ranges (%) 0 "glme n Fuel MAE Fuel CAZS
Ship J. and RPM Modes ];a::gel;ie; Consumption (t) (kg/h) Consumption AxStd(Acc)
RPM Mode and Pe:centage (kg/h)
(%)
<4 46.2% 2.5(2.7%) 53 17.1 62.8+33.1%
STW Ranges 4t08 5.0% 5.0 (5.4%) 22.0 310.8 92.2+7.5%
(knots) 8to 12 9.2% 13.3(14.2% 28.4 458.7 93.6+7.0%
( )
12 to 16 39.6% 72.6(77.7%) 20.4 580.9 96.5+3.0%
Variable 98.1% 90.9(97.3%) 13.8 293.2 90.9+17.8%
RPM Modes
Constant 1.9% 2.5((2.7%) 39.1 414.7 89.5+8.4%

To further investigate the impacts of the input in-situ and environmental variables on the fuel consumption
rate, a sensitivity analysis similar to [30] has been conducted. Typically, the analysis is conducted by fixing all
variables to a constant value and changing a single input variable at a time. As shown in Figure 6, STW is found
to be of the most significant variable for predicting fuel consumption in kilogram/nautical mile (kg/nm), which
contributes to 94.20% (Ship E.) and 111.61% (Ship J.) deviation over baseline in fuel consumption in kg/nm in
variable RPM mode, 231.50% (Ship E.) and 149.80% (Ship J.) deviation to baseline in constant RPM mode,
respectively. In both of constant and variable RPM modes, the tendency of fuel consumption variation with
increasing STW could be roughly represented by quadratic curves. In terms of the number of months after a dry
dock, generally the fuel rate increases the longer the time after the dry dock takes place, which was found to have
maximal impact of 2.90% (Ship E.) and 4.34% (Ship J.) on fuel consumption over the baseline. In Ship E., data
collection started earlier than Ship J and before going to a second dry dock. In Ship J., data collection started after
the dry dock. Thus months 34 to 36 after the first dry dock are included in Ship E’s dataset. Taking month 36 after
the first dry dock as the model input, the model output fuel consumption rate is 47.25 kg/nm, compared to 45.34
kg/nm when taking month 8 after this dry dock as an input. In terms of the environmental variables, from the
groups of diagrams it is suggested that the RF models capture the relationships between the input variables and
FOC in an appropriate manner. Moreover, it is found that the impact of these variables on the fuel consumption
rate is not as significant as STW in the limited operating area of the two vessels, with the maximal impact from
0.3-3.3% on fuel consumption rate. The cause of the low impacts could be that the skippers of the vessels are
always attempting to avoid extreme weather during voyage for fishing, which is also observed from the histograms
demonstrating the distribution of variables’ deviation. This impact can be justified in the research [4] mentioned
in the Introduction, which claimed within 4% FOC reduction could be achieved by weather routing. Although the
fuel rate change along with the alteration in the environmental variables is relatively small, a slight decrease in the
fuel consumption rate could result in a saving in accumulated fuel consumption. Together with weather routing, a
greater than 50 % improvement in ship performance in terms of FOC reduction could be achieved through technical
and operational measures such as speed management and fleet planning [31].
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Figure 6. Model Sensitivity Analysis with Histogram Plot of the Attributes. VSDX Eastward Stokes drift. 1-VS longitudinal
component of Stokes drift in vessel body-fixed frame of reference. t-tide transverse component of tide current in vessel body-
fixed frame of reference. VHMO-SW2 Spectral significant secondary swell wave height. t-VS transverse component of
Stokes drift in vessel body-fixed frame of reference. v-tide Northward sea water velocity for tide currents.

In summary, there are few studies in the literature that try to optimize the fishing vessels’ routes [32][33] and
even less considering their FOC according to the weather conditions [6][34][35]. Among the latter, [34][35] only
optimize the routes from two known points considering the weather effect on the FOC, but not the search for fish
as in [6]. In shipping, there are a lot of studies that optimize the vessels’ FOC [36][37][38]; however, it is
noteworthy that the fishing vessels’ consumption varies according to their characteristics and used fishing gear
[5]. Hence, the proposed data-based models, which are vessel specific, give more precise results when modelling
the FOC depending on the weather conditions faced by the studied vessels. That is why these models can be
integrated in FRODSSs or other weather routing systems to provide a FOC forecast within a few hours or days
depending on the weather conditions the vessels are likely to face. These systems can be useful for the fishing
industry in order to reduce their footprint and enhance their sustainability.

4. Conclusion and future work

This work aims to provide accurate models that utilize exclusively data from in-situ sensors and weather data
from Copernicus’ CMEMS service and NOAA’s GFS model to model and predict the fuel consumption of fishery
ships, which could contribute to the design of a ship route optimization system onboard. Available sensor data and
environmental data from two fishing vessels were used in this work. Multiple Linear Regression, Random Forest,
XGBoost and Deep Neural Networks models were developed and evaluated based on their loss for predicting fuel
consumption in repeated K-folds cross-validation. Moreover, combined 5 x 2 ¢v F test is applied to check whether
the difference of mean performance between models is statistically significant. Finally, the selected models are
evaluated against unseen future datasets. The main findings of the research conducted are as follows:
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i. Based on the training/validation datasets of the two fishing vessels, a less than 12.1 kg/h MAE was obtained
by the optimally performing modelling approach Random Forest through a cross-validation method and
hyperparameter optimization.

ii. Combined 5 x 2 cv F test results showed that Random Forest models yield better performance as its lower
error at cross-validation stage has been justified to be statistically significant over other algorithms.

iii. The selected Random Forest models can achieve an overall accuracy of over 90% in most operating
conditions (STW>4) over the test datasets of the two vessels, which has demonstrated its ability in accurately
predicting the FOC of vessels under different weather conditions, ship speed, RPM modes, and biofouling levels.
Thus, its superior performance in modelling and predicting fuel consumption for the fishery ships can be justified.

iv. The sensitivity tests have been conducted to test the independent impact on FOC of each selected predictor.
It was found that ship speed through water is the variable with most significant impact on fuel consumption,
followed by month after dry dock and the selected environmental variables.

This work contributes to the fuel consumption prediction for fishery vessels, while most of similar research
focusing on ship fuel consumption prediction is carried out for other types of ships, such as container ships, ferries
and oil carriers. In addition, while previously most of the research focusing on ship fuel consumption is conducted
based on sensor data measured onboard, in this research the model development was carried out based on
predictable in-situ data and open-source data sources that provide several days forecasts, which is more appropriate
and reasonable for DSSs planning.

In terms of future work, a lower accuracy of the developed model was detected when STW<4, even if this is
not the reference speed range for ship transit. Further investigations are required to address this issue if found
relevant for FRODSS. Moreover, for FRODSS development in actual operation conditions, SOG seems to be a
more reasonable input as the required system is based on GPS. The relationship between the two speed variables
and the impact of weather conditions on this relationship will need to be identified.
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