

INDO AMERICAN JOURNAL OF

PHARMACEUTICAL SCIENCES

SJIF Impact Factor: 7.187

Available online at: http://www.iajps.com

Research Article

FORMULATION AND EVALUATION OF SIMVASTATIN MATRIX TABLETS

H. Padmalatha

Gyana Jyothi College of Pharmacy, Gyana Jyothi Nagar, Uppal Hyderabad, Telangana, India.

Abstract:

Formulation and evaluation of the sustained release tablets of the Simvastatin. The before going to formulate the tablets the preformulation studies are carried out such as FTIR, calibration, organoleptic characters. The formulation is developed by using different types of the super disintegrates such as the hpmc and xanthin gum in different trails. The pre compression parameters such as angle of repose, bulk density, true density, compressability index, these are found to be within the limits. The oral dispersible tablets of Nizatidine tablets are prepared by the direct compression method. The talc used as glidant and lactose used as lubricant mcc used as filler. The after development of oral dispersible tablets are undergo for evaluation parameters. Such as weight variation, thickness, friability, drug content, disintegration, and In vitro dissolution studies. They all are found in within range of limits. The in vitro drug release studies carried out by USP-II apparatus. The buffer medium 6.8. The optimised formulation undergo for stability studies for 3 months. In stability studies the drug content and drug release studies carried out. These no degradation takes place in the drug content and drug release studies.

Key words: Formulation, Evaluation of Simvastatin, matrix tablets

Corresponding author:

H. Padmalatha,

Principal,

Gyana Jyothi College of Pharmacy

Gyana Jyothi Nagar, Uppal, Hyderabad

Telangana, India.

E-mail: Padmalatha.malthar@gmail.com

Please cite this article in press **H. Padmalatha**, **Formulation And Evaluation Of Simvastatin Matrix Tablets.**, Indo Am. J. P. Sci, 2022; 09(12).

INTRODUCTION:

Oral administration is the most suitable, widely used route of administration for both conventional and novel drug delivery systems. This route preferred for the systemic action of drugs. Several drugs have shown limited oral bioavailability due to their unfavorable physicochemical characteristics or absorption in specific sites [1]. In the case of chronic diseases, long term therapy, conventional formulations vital to be administered in numerous doses along these lines have a few burdens. Even. When administered orally, numerous therapeutic agents are subjected to wide pre-systemic elimination by first-pass hepatic metabolism and gastrointestinal degradation because of which low systemic bioavailability, the shorter extent of therapeutic effect and formation of inactive or harmful metabolites [2-3]. Matrix tablets composed of drug and polymer as release delaying material offer the simplest approach in developing a sustained release drug delivery system [4-6] Sustained-release (SR) tablet formulations are mostly preferred because of their better patient compliance, maintain uniform drug levels, moderate dose and side effects, and increase the safety boundary for high-potency drugs [7]. Simvastatin is an anti-hyperlipidaemic drug that widely used to control a high level of cholesterol in blood or hypercholesterolemia [8].

It is on the World Health Organization's List of Essential Medicines, which lists the Simvastatin most effective and safe medicines needed in a health system [9]. Synthetically derived from a fermentation product of the fungus Aspergillus terreus. Simvastatin inhibits hepatic hydroxymethyl-glutaryl coenzyme A (HMG-CoA) reductase, the enzyme which catalyzes the conversion of HMG-CoA to mevalonate, the main step in cholesterol synthesis. This agent lowers plasma cholesterol and lipoprotein levels. Simvastatin modifies immune responses by suppressing MHC II (major histocompatibility complex II) on interferon gamma-stimulated, antigen-presenting cells such as human vascular endothelial cells.[10-13].

MATERIALS AND METHODOLOGY:

MATERIALS

Simvastatin Procured from, Provided by Chandra labs Hyderabad. Ethyl cellulose, Talc, Magnesium Stearate, Hydroxy propyl cellulose are Standard chemical Reagents

METHODOLOGYPREFORMULATION STUDIES:

ORAGANOLEPTIC CHARACTERS:

The pre formulation studies such as the colour, odour, taste can be done by visually.

SOLUBILITY STUDIE:

The solubility studies are done by using various solvents such as the ethanol, methanol, acetone, and other organic solvents.

DRUG AND EXCIPIENT COMPATABILITY STUDIES:

The drug and excipient compatability studies are done by FTIR Studies by using Kbr pellet method. First the 1 gm of the drug powder is taken under kept for the FTIR studies. The 1gm of drug and polymer take and kept under FTIR studies the peaks which are came for drug product the nearer to the drug the polymer peaks will come. If they are not came the drug and excipients are in compatable with each other.

CONSTRUCTION OF CALIBRATION CURVE IN 6.8 BUFFER:

To take 10mg of Simvastatin active substance it is going to disperse in 10ml of water in volumetric it is 1000ppm. From 1000ppm to take 1 ml and it is disperse in 10ml of volumetric flask it is 100ppm. From that take 1 ml and make up to 10 ml in volumetric flask it is 10ppm. To check absorbance at 10ppm if the absorbance is high undergo for serial diluations like 1,2,3,4,5, ml and check the absorbance at 280 nm by using U.V visible spectroscopy.

CONSTRUCTION OF CALIBRATION CURVE IN ETHANOL:

To take 10mg of Simvastatin active substance it is going to disperse in 10ml of ethanol in volumetric it is 1000ppm.From 1000ppm to take 1 ml and it is dispersing in 10ml of volumetric flask it is 100ppm.From that take 1 ml and make up to 10 ml in volumetric flask it is 10ppm.To check absorbance at 10ppm if the absorbance is high undergoing for serial dilutions like 1,2,3,4,5, ml and check the absorbance at 315nm by using U.V visible spectroscopy.

FORMULATION TABLE OF SIMVASTATIN SUSTAINED RELEASE TABLETS

Table No 1: showing formulation table of Simvastatin

Ingridients	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10
Simvastatin	50	50	50	50	50	50	50	50	50	50
HPMCK4M	5	-	5	10	-	10	20	-	20	20
Stearic acid	-	5	5	-	10	10	-	20	20	-
Cross povidone	5	5	5	10	10	10	10	10	10	10
Mcc	236	236	231	226	226	216	216	216	196	206
Talc	2	2	2	2	2	2	2	2	2	2
Magnesium stearate	2	2	2	2	2	2	2	2	2	2
Total wt	300	300	300	300	300	300	300	300	300	300

SIMVASTATIN TABLETS PREPARED BY USING DIRECT COMPRESSION METHOD:

Dispensing: The drug and all ingredients are dispensed above mentioned in table.

Mixing: All ingredients are mixing except adding Mg.Strate and talc

Seiving: The drug and all ingredients undergo for sieving in sieve no:40

Mixing: After sieving the drug and expect Mg. Stearte and talc all ingredients are mixed together.

Compression: After mixing the all along with mg.stearte and talc they undergo for punching in a multi compression mission

POST COMPRESSION PARAMETERS: WEIGHT VARIATION TEST:

The post compression parameters in that weight variation study is done. The weight variation is done by the taking 20 tablets. First to take the individual weight for 20 tablets. Finally to take final weight of the group of 20 tablets by using the Essae electronic balance. None of the individual Tablet weight should be less than 90% and more than 110% of the average weight.

Calculated by using the following formula;

HARDNESS:

The after formulation of the tablets the post compression parameter such as the hardness was done by using the Monsanto hardness tester. Hardness defined as the it indicates the capability of a tablet to withstand mechanical shocks while handling. It is expressed in kg/cm2. Three tablets were randomly picked and hardness of the tablets was determined.

THICKNESS:

The thickness of the tablets is done by using Digital venire calipers. By using this the diameter of the tablets are done. Five tablets were used, and average values were calculated.

FRIABILITY TEST:

The formulated tablets are under kept for the friability test. The friability can be done by the using friability apparatus that is Roche Friabilator (USP EF-2 Electrolab.). It is expressed in percentage (%). The friability is done by the taking 10 tablets and they first weight that is initial weight of the tablets. After that the tablets are kept in the fribilator. The friability operator started the rpm set for 4mins at 50 rpm about to 100 revaluations.

%F = 100 (1-W0/W) %

Friability of tablets less than 1% are considered acceptable.

N-VITRO DRUG RELEASE STUDIES:

The In-vitro drug release studies are performed by the using USP type II apparatus paddle method. For Invitro drug release studies 6.8 buffer is used the dissolution volume is 900ml. The room temperature is 37±5°C. The time interval is 10mins. The drug will release up to the 10 hrs The 1ml of sample is taken into the bowl it is replaced by the fresh sample for maintain

of the sink conditions. The sample is analysed in U.V visible spectroscopy at 315nm.

STABILITY STUDIES

Stability studies protect the maintenance of product quality, safety and efficacy throughout the shelf life are contemplated as pre-requisite for the acceptance and approval of any pharmaceutical substance. These studies are appropriate to be conducted in a planned way following the guidelines issued by ICH, WHO and or other agencies. Importance of different technologies followed for stability testing of pharmaceutical substances, guidelines issued for stability testing and other aspects.

RESULTS AND DISCUSSION:

ORGANOLEPTIC CHARACTERS:

Table No 2: showing results of organoleptic characters

	or organization of the contraction of the contracti
Properties	Results
•	
Description	crystalline powder
2 compared	power
Taste	bitter taste
Tuste	orter taste
Odour	mild, characteristic odor
Odour	illid, characteristic odor
Colour	White
Colour	wille

SOLUBILITY STUDIES

Table No 3: Solubility of the Simvastatin in various solvents

Solvent	Solubility properties of drug
Water	Slightly Soluble
Alcohol	Soluble
chloroform	Soluble
acetone	soluble

CALIBRATION CURVE OF THE SIMVASTATIN IN PH 6.8 BUFFER

Table No 4: showing calibration values of Simvastatin

Concentration	Absorbance
(μg/ml)	in pH 6.8 buffer
0	0
1	0.177
2	0.392
3	0.563
4	0.741
5	0.921

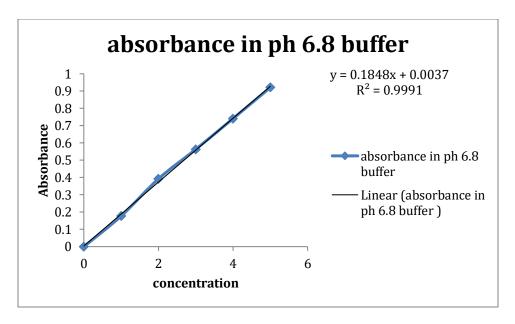


Fig. No1: showing picture of the calibration plot in 6.8 buffer

CALIBRATION CURVE OF THE SIMVASTATIN IN METHANOL

Table. No 5: showing calibration values in methanol

Concentration	Absorbance
(μg/ml)	in methanol
0	0
1	0.14
2	0.29
3	0.45
4	0.63
5	0.78

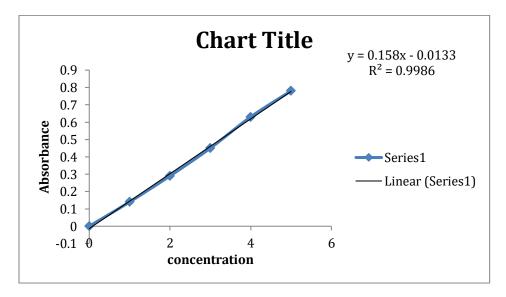


Fig. No 2: showing calibration plot in methanol

FTIR STUDIES:

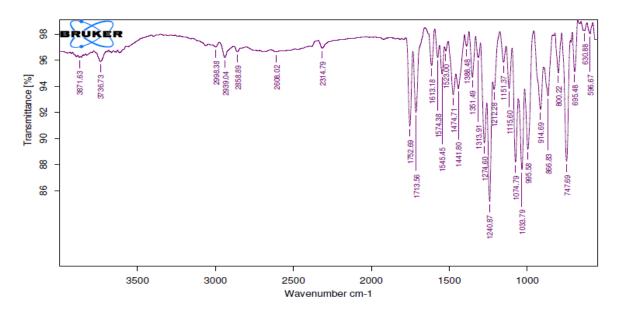


Fig. No 3: pure spectra of the Simvastatin

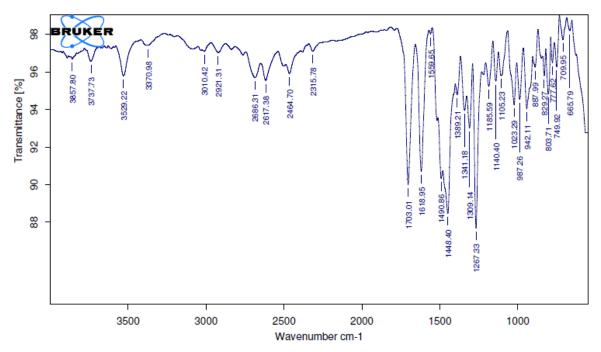


Fig. No 4: The fig shows the FTIR spectra of the drug and polymer blend

PRE-COMPRESSION PARAMETERS

Table. No 6: showing values of the pre compression parameters

Formulation	Angle of repose (θ)	Bulk density (gm/ml)	Tapped density (gm/ml)	Carr's index (%)	Hausner's ratio
F1	25.38±0.13	0.40±0.02	0.50.02	20±0.13	1.25±0.01
F2	22.52±0.28	0.44 ± 0.02	0.56±0.04	20±0.04 1.	1.27±0.01
F3	27.19±0.19	0.44 ± 0.00	0.54±0.01	18.61±0.11	1.22±0.02
F4	28.51±0.16	0.45±0.01	0.55±0.01	18.33±0.15	1.22±0.01
F5	23.60.21	0.41±0.01	0.50±0.00	18±0.05	1.21±0.02

Discussion: The all the F1-F5 formulations pre compression parameters such as the angle of repose, bulk density,tap density,husners ratio,compressability index all comes under the within range of limits. All the formulations fallow the good flow.

Table. No 7: showing values of the pre compression parameters

Formulation	Angle of repose (θ)	Bulk density (gm/ml)	Tapped density (gm/ml)	Carr's index (%)	Hausner's ratio
F6	24.38±0.13	0.38±0.02	0.48.02	20.83±0.13	1.26±0.01
F7	23.52±0.28	0.39 ± 0.02	0.47±0.04	17.02±0.04 1.	1.20±0.01
F8	24.19±0.19	0.39±0.00	0.45±0.01	13.33±0.11	1.15±0.02
F9	22.51±0.16	0.40±0.01	0.44±0.01	9.09±0.15	1.1±0.01
F10	23.60.21	0.40±0.01	0.46±0.00	13.04±0.05	1.15±0.02

Discussion: The all the F6-F10 formulations pre compression parameters such as the angle of repose, bulk density, tap density, husners ratio, compressability index all comes under the within range of limits. All the formulations fallow the good flow.

POST COMPRESSION PARAMETERS FOR F1-F5 FORMULATIONS

Table. No 8: showing post compression parameters of F1-F5

Formulatio n	Weight variation	Thickness (mm)	Hardness (Kg/cm ²)	Friability (%)	Drug content (%)	Disintigratio n (mins)
F1	299±1.02	2.50±0.01	3.2±0.06	0.232	87.24±0.22	35
F2	298±0.08	2.6±0.00	3.8±0.06	0.246	89.57±0.42	38
F3	298.002	2.5±0.01	3.71±0.00	0.386	90.43±0.13	30
F4	299±0.003	2.00±0.01	3.65±0.06	0.326	92.83±0.42	28
F5	299±0.08	2.10±0.01	3.65±0.10	0.446	92.86±0.32	28

POST COMPRESSION PARAMETERS FOR F6-F10 FORMULATIONS

Table. No 9: showing post compression parameters of F1-F5

Formulatio n	Weight variation	Thickness (mm)	Hardness (Kg/cm²)	Friability (%)	Drug content (%)	Disintigratio n (mins)
F6	299±1.02	2.40±0.01	3.4±0.06	0.232	93.24±0.22	25
F7	298±0.08	2.2±0.00	3.1±0.06	0.256	94.57±0.42	26
F8	301.002	2.3±0.01	3.2±0.00	0.226	96.43±0.13	25
F9	300±0.003	2.00±0.01	3.0±0.06	0.226	99.83±0.42	24
F10	300±0.08	2.50±0.01	3.1±0.10	0.256	96.86±0.32	25

IN -VITRO DRUG RELEASE STUDIES FOR ALL FORMULATIONS

Table No 10: showing in vitro drug release studies

Time in hrs	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10
0	0	0	0	0	0	0	0	0	0	0
1	10.23	12.65	15.89	18.56	20.56	22.32	22.52	21.65	22.15	23.21
3	18.35	25.65	28.36	30.56	35.62	40.53	41.53	42.62	45.15	48.65
4	75.35	50.36	55.68	56.12	57.65	57.65	56.72	58.56	59.12	58.52
6	89.35	60.78	64.65	68.42	70.56	70.55	71.62	72.62	78.32	79.22
8	100.33	80.41	70.42	74.74	79.56	80.18	81.43	82.65	92.63	89.23
10	105.65	85.96	80.75	82.23	85.65	89.83	89.53	89.65	98.65	96.23

ALL COMPARATIVE GRAPH

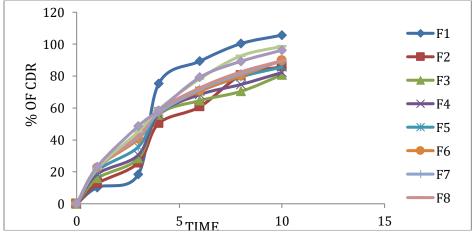


Fig. No 5: showing picture of in vitro drug release studies comparative graph

COMPARATIVE GRAPHS FOR F1-F5:

Time in hrs	F1	F2	F3	F4	F5
0	0	0	0	0	0
1	10.23	12.65	15.89	18.56	20.56
3	18.35	25.65	28.36	30.56	35.62
4	75.35	50.36	55.68	56.12	57.65
6	89.35	60.78	64.65	68.42	70.56
8	100.33	80.41	70.42	74.74	79.56
10	105.65	85.96	80.75	82.23	85.65

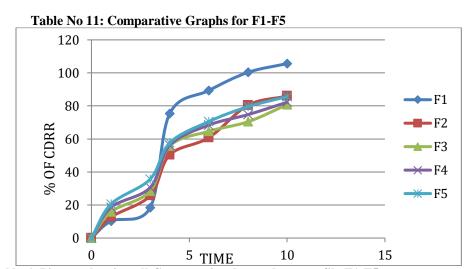


Fig. No 6: Picture showing all Comparative drug release profile F1-F5

COMPARATIVE GRAPHS FOR F6-F10:

Time in hrs	F6	F7	F8	F9	F10
0	0	0	0	0	0
1	22.32	22.52	21.65	22.15	23.21
3	40.53	41.53	42.62	45.15	48.65
4	57.65	56.72	58.56	59.12	58.52
6	70.55	71.62	72.62	78.32	79.22
8	80.18	81.43	82.65	92.63	89.23
10	89.83	89.53	89.65	98.65	96.23

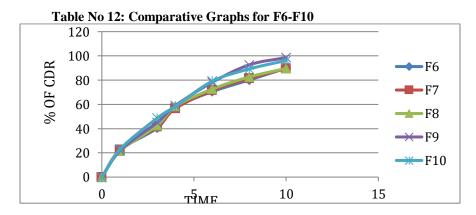


Fig. No 7: Picture showing all Comparative drug release profile for F6-F10Kinetic profile data:

KINETIC STUDIES

Time	%cdr	Log T	$\sqrt{\mathbf{T}}$	Log%cdr	ARA	Log%ARA
0	0	1	0	0	100	2
1	22.15	0	1	1.34537373	77.85	1.89125862
3	45.15	0.47712125	1.73205081	1.65465775	54.85	1.73917663
4	59.12	0.60205999	2	1.77173443	40.88	1.61151089
6	78.32	0.77815125	2.44948974	1.89387268	21.68	1.33605928
8	92.63	0.90308999	2.82842712	1.96675166	7.37	0.86746749
10	98.65	1	3.16227766	1.99409709	1.35	0.13033377

Table No 13: table showing kinetic studies

ZERO ORDER REACTION

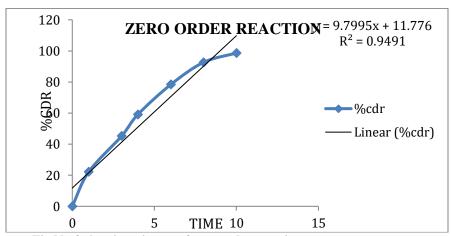


Fig.No:8 showing picture of zero order reaction

FIRST ORDER REACTION

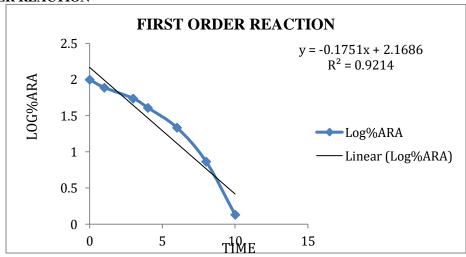


Fig.No: 9 showing picture of First order Reaction

HIGUCHI EQUATION

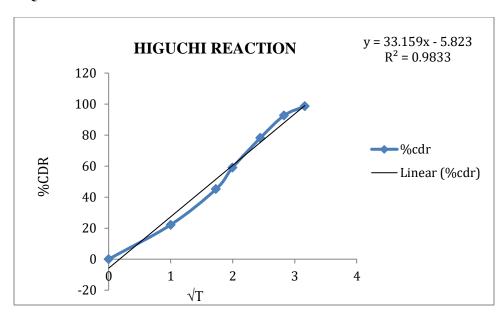


Fig.No:10 showing picture of higuchi

KROSS MAYER PEPPAS

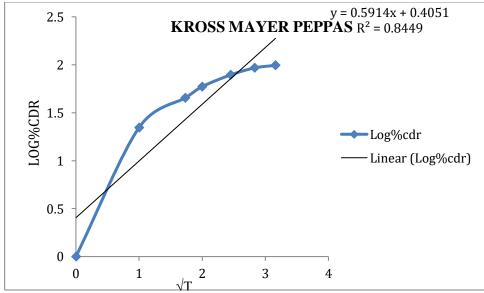


Fig.No:11 showing picture of krossmayer peppas

STABILITY RESULTS: STABILITY SAMPLES ARE STORED AT

Accelerated: 40±2⁰C/75±5% RH
 Intermediate: 30±2⁰C/65±5% RH
 Long term: 25±2⁰C/60±5% RH

TESTING INTERVALS

Accelerated: Initial, 3 months.

85 %

2nd 1st 3rd **Formulation** Limits as per Initial month month month **Parameters** Code **Specifications** 25°C/60%RH 99.7 97.56 99.53 Not less than F-9 98.65

Table No 14: Results of stability studies of optimized formulation F-9

Discussion: It was concluded that stability studies of the optimized F9was carried out using the samples at temperatures $40^{\circ}\text{C} \pm 2^{\circ}\text{C}/75\% \pm 5\%\text{RH}$ for a period 3 month the Simvastatin tablets are observed and there is no significant change in the release characteristics and physicochemical properties.

% Release

SUMMARY

Formulation and evaluation of the sustained release tablets of the Simvastatin. For development of the tablets different excipients are used. The used various excipients are the HPMC K4M, Xanthin gum, pvpk30, Mg.sterate, Talc, MCC used as the diluents, Mg.sterate used as the lubricants. Talc is used as Glidant.

For formulation design the literature review is carried out. The drugs selection and the polymer selection is based on the collection of review literature. The polymers choosing also carried out by the review literature.

Before going to development the pre formulation studies are done such as the color ,odor, taste, solubility studies .The drug and the excipient compatability studies are done by using the FTIR studies.

The formulation is developed by the using direct compression method. The formulation is prepared by using different excipients. The excipients are hpmc and xanthin gum in various compositions for drug to release in 10hrs. The pre compression parameters are done such as the bulk density, tap density, compressability index, Hauners ratio, Angle of repose. The all parameters are come under within range good flow. The post compression parameters are done such as the harness, thickness, weight variation, friability, disintegration.

The evaluation parameters of the optimised formulation F9 tablets values:

The weight variation of matrix tablets, 300mg
The hardness of the matrix tablets, 3.1(**Kg/cm²**)
Thickness of the matrix tablets, 2.50mm
Disintegration of the matrix tablets, 25 mins
Friability of the matrix tablets, 0.256 %
In-vitro drug dissolution studies of the oral dispersible tablets, 98.65%

The all parameters come under acceptable criteria within range of limts. The In-vitro drug release studies are done by USP-II apparatus paddle method. The optimised formulation F9gives the prolong release upto 10hrs the drug release

CONCLUSION:

Formulation and evaluation of the sustained release tablets of the Simvastatin. The before going to formulate the tablets the Preformulation studies are carried out such as FTIR, calibration, organoleptic characters. The formulation is developed by using different types of the super disintegrates such as the hpmc and xanthin gum in different trails. The pre compression parameters such as angle of repose, bulk density, true density, compressibility index, these are found to be within the limits. The oral dispersible tablets of Nizatidine tablets are prepared by the direct compression method. The talc used as glidant and lactose used as lubricant mcc used as filler. The after development of oral dispersible tablets are undergo for evaluation parameters. Such as weight variation, thickness, friability, drug content, disintegration, and In vitro dissolution studies. They all are found in within range of limits. The in vitro drug release studies carried out by USP-II apparatus. The buffer medium 6.8. The optimised formulation undergo for stability studies for 3 months. In stability studies the drug content and drug release studies carried out. These no degradation takes place in the drug content and drug release studies.

REFERENCES:

- Jain Swati, Kumar N. Mehra, Kumar A. S. and Kant G. S., Development and evaluation of sustained release matrix tablet of lamivudine. International Journal of Pharmaceutical Sciences and Research, 2(1): 454-461, 2011.
- Singh R. R. Design, Formulation and In Vitro Evaluation of Lamivudine HCl Sustained-Release Tablets. International Journal of Research in Pharmaceutical and Nano Sciences, 3(2): 113 – 121, 2014.
- 3. Ansel HC and Loyyd VA. Pharmaceutical dosage forms and Drug Delivery System. Lippincott's

- Williams and Wilking, Hong Kon, 8:275-280, 1999.
- 4. Khullar P, Khar RK, and Agarwal SP., Guar Gum as a hydrophilic matrix for preparation of Theophylline Controlled Release dosage form, Ind. J. Pharm. Sc., 61(6): 342-345, 1999.
- 5. Verhoeven J et al., Controlled-release formulations, a hydrophilic matrix containing furosemide, Int. J. Pharm, 45: 65, 1988.
- Kumar R. G., Kumar J. N. S., Babu A., and Anjaneyulu M. V., Formulation Development and Evaluation of Lamotrigine Sustained-Release Tablets Using 32 Factorial Design, International Journal of Pharmaceutical Sciences and Research, 6(4): 1746-1752. 2015.
- Sujja A. J., Munday D. L., and Khan K. A., Development and evaluation of a multiple-unit oral sustained release dosage form for S (+)-Ibuprofen: preparation and release kinetics. Int. J. Pharm, 193(1):73-84, 1999.
- 8. Martindale: The Complete Drug Reference, 34th ed. Simvastatin, Pharmaceutical Press, London. 997-1000, 2005.
- 9. WHO Model List of Essential Medicines (19th List)" World Health Organization. April 2015 from the original on 13 December 2016.
- Pande A. V., Vaidya P. D., Arora A., Dhoka M. V., Int J Pharm Biomedicine Research; : 122-128.
 .2010
- 11. Jimenez-Caste lanos M. R., Zia H, Rhodes C. T., Drug Dev Ind Pharm. 19, (143), 1993.
- 12 Aulton M. E., Pharmaceutics the science of dosage form design. 2nd ed. New York: Churchil Livingstone, pp.397-421, 2002.
- 13 Mathiow E, Donald E. C., Claus-Michael L., Bioadhesive drug Delivery System: Fundamental s, Novel Approaches and developments, Marcel Dekker. 1999.