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Learning Trajectory Tracking for Underactuated Compliant Arms
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Abstract— Trajectory tracking is a classic control theory topic
that has received in-depth research in the literature. However,
dealing with compliant arms that is underactuated makes
the issue more difficult. Compliant systems frequently exhibit
difficult-to-model dynamics in addition to their underactuation.
To prevent a severe modification of the robot elasticity, the
feedback components should be limited. In this letter, we
use an iterative learning controller to solve the trajectory
tracking problem. The presented control law mixes feedforward
and feedback terms. The feedforward component tracks the
desired trajectory raising the robot to one equilibrium, and
the feedback term stabilizes the equilibrium. We investigate
the closed-loop stiffness variation. Finally, we simulate an
underactuated compliant arm to verify the suggested technique.

I. INTRODUCTION

Underactuated compliant robots include systems with
springs at the joints level, i.e., articulated robots, or con-
tinuum arms [1]. The control problem is still unresolved
despite the extensive work put into designing highly effective
structures. One of the most intriguing robotics issues has
always been trajectory tracking [2].

In the literature, model-based controllers such as partial
feedback linearization [3] or Lyapunov controllers [4] solve
the tracking problem. However, they need dependable model
descriptions, though, as well as high gain feedback terms.
Conversely, learning-based and model-free approaches, i.e.,
reinforcement learning [5], present fresh solutions for the
tracking problem.

Due to the elasticity embedded in their structure, two main
difficulties arise when controlling them. First, their dynamics
are frequently complicated [6], making model descriptions
unreliable. Second, high-gain feedback controllers also im-
pair system compliance [7], [8]. For these reasons, it is not
advised to apply traditional model-based control strategies
with high-gain feedback terms. Learning-based approaches,
on the other hand, appear to be a good alternative since
they may be created to be mostly feedforward [9]. However,
they are time-consuming and exclude a thorough analysis of
the system characteristics, such as stability [2]. Therefore,
trajectory tracking problems can be tackled using Iterative
Learning Control (ILC), which enhances tracking perfor-
mance by making use of the tracking error from previous
iterations without needing precise robot modeling.
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ILC primarily relies on feedforward components, thus
it maintains system elasticity. Additionally, ILC allows to
formally conclude on the stability of any equilibria.

In this paper, assuming a fixed relative degree, we suggest
an ILC law, which combines feedback and feedforward
terms. The former is utilized to follow the desired trajectory,
whilst the latter is an output feedback action. Relying on the
Lyapunov indirect Theorem, we can prove the equilibrium
stability. We provide a criterion that limits the separation
between open and closed-loop stiffness to retain the robot’s
elastic behavior. Finally, we validate the methodology by
simulating a two degrees of freedom robot (DoFs), in which
only the first elastic joint is actuated.

II. PROBLEM DEFINITION

We use both active and passive elastic joints to represent
the underactuated compliant arm with m actuators [9], i.e.,

M(q)i+C(q,4)q+G(q)+Hq+Kqg=Su, (1)

where ¢,q,4 € R", M(q) € R, C(q,q) € R™", and G(q) €
R" with the usual meaning. K, H € R"" are the diagonal
stiffness and damping matrix. u is the torque input, S: R" x
R™ — R" is the underactuation matrix.

Defining the iteration index j € N and the state vector
xXj= [qJT, qﬂ Te R?"; (1) can be written as

{ (1) = fxj (1)) + g (x;(£))u; (1) 2)
Y(t) = h(x;(1)) , 3)

where ¢ € [0,%]. f(-) : R" x [0,] - R", and g(-) : R" x
[0,7] — R™™ are the drift and control vector field, i.e.,
fxj) = [4j,—M'(q;)(C(q),4;)q;+G(q;) +Kq;+Hdg;)].
and g(x;) = [Onxm,M_l(qj)S]

Let us assume what follows for the system (2)-(3).

Assumption 1. The system (2)-(3) has a fixed relative degree
Fyects VX € R? (see, e.g.,[10]), and r=ri =--- = ry,.

Assumption 2. The function f, L;-h,o =0,---,rh,g and D
are Lipschitz with constants fo,60,,ho, g0, and Dy € R.

Finally, given a desired and feasible! trajectory yq4(t) :
[0,#] — R™, the article objective is to design an iterative
controller capable for the system (1)-(2) of precise tracking
of yq(¢) and stabilize the trajectory final point without a
substantial alteration of the system’s stiffness.

IFeasible means that for any y4 there exists xq and uq that verify (2)-(3).
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III. PROBLEM SOLUTION

We here design an iterative control law which relies
on both feedback and feedforward actions. We propose a
suitable choice of the learning gains, and we ensure a not-
drastic modification of the robot elasticity. Finally, we study
the equilibrium stability.

A. Iterative Learning Controller

We introduce an ILC controller [2]. Thanks to the rep-
etition of the desired task, the iterative framework boosts
tracking efficiency while balancing out model uncertainty.

Recalling (2)-(3), we present the control law, which com-
bines feedback and feedforward terms [2], i.e.,

uj+1(t) = uj(t)+Affj(t)rej(t) +Afbj+1(t)rej+l(t)a (4)

where App;,,At; € R™™ are the learning gains, while the
tracking error "e;(r) € R™ is
i) 2 YT (3 (0 - 1)) 5)

i=0
where X', i =0,---,r are the control gains [9]?. Note that
YOU(t) = Xio YL h(x) + YD (x)ul(t).

In the following, we remove the time-dependency to save
space. The following Theorem presents the paper main result.

Theorem 1. Let us consider the system (2)-(3) with assump-
tions AI1-A2, and let (4) be the iterative controller. If the gains

App;, s Aty € R™ ™ are chosen equal to

App. , = D! (Xj+1>771 Affj —eD! (xj)'T*l (6)

where D(x;) = dh(x;)/dgM~"(¢;)S, and € € (0,1) Vj € Ny
then lim;_, 1« || "e;(1)|| ;, = 0.

Furthermore, the feedback component does not modify the
robot elasticity more than k > 0, meaning that the distance
open-closed loop stiffness is such as ||K — Kp|| < k.

Sketch Proof. Recalling (4), (5), defining Au £ ug —u, Ax=
xg—x, and ®(x,xq) =¥, Y (L;h(xd) —L’fh(x)) lead to

Jj+1

Auj+1 +Aﬂ)]+l rYD(.ijrl)AujJrl = <Im —Aff/. rYD(xﬂ) Auj
7Afbj+] <®(xj+1 7)Cd) — ’“I‘ (D(xd) 7D(x.,'+1 )) Md)
— A, (O(xj,xa) =Y (D(xq) = D(x;)) ua) -

Applying the triangular inequality to (7), and recalling (6);
one can write

18] < G (s ([t ||+ ||Ax [[) + (1 —8>\|Auj|!)8a

@)

where G, = 1/||I + "Y|| and p € R. Given assumptions
Al and A2, applying the Gronwall’s Lemma, and com-
puting the A—norm lead to ||Auj+1||/l < gfbV’ AuH]HA +
S ((e+v)|[Auj],). where v £ puby(1 —elb2=2ir) /(2 —
ba), bi,by € R, by = sup, fo+gol|ua||. Defining g =
Cv/(1—Epv) and €2 (e + V) yield to

[[8uj1]]; < Sl [Auj]], -

€))

2The initial guess ug(-) is arbitrarily selected.

Note that Vj, Vb, > 0, 31 > 0 such that £y < 1 and
€ < 1. Eq. (9) is a control contraction, which leads to
limj o || At =0 = Timjs o || e[ = 0.

More details of the proof first part can be found [2] as well
as the proof of the second statement, Theorem 2-C3. O

Remark 1. The feedback controller leads to the presence
of a Zero Dynamics (see, e.g., [10]). Note that Theorem 1
states 1im_, o [|Ax;j|[; = 0.

B. Equilibrium Stability

Leveraging the Lyapunov indirect theorem, one can study
the stability. Let us consider an equilibrium point such as
- - T . L L . .

X = [qT, 0;&1] , i, and its linear approximation, i.e., Z =

A7+ PBw, G =Cz, where 22 x—F, wRu—i, c2y—€x

s On In 0n><m _

= |:_%1 _%2:|Z+|:%2:|wa§—[%l Oan]Za (10)
where b = M7(q)(9G(q)/dq+K)|, A =
MY GH, % = M '(§)S, and 6 = Jh(q)/dql; -

Inspecting (10), if 2% > 0 the eigenvalues of the overall
matrix </ have a negative real part, therefore the equilibrium
is stable, i.e., Lyapunov indirect Theorem.

The sign of %, depends on the stiffness and the gravity
force. Thus, both design solutions [2] or feedback controller
[11] may stabilize any system feasible equilibrium.

Proposition 1. Let us consider the linear system (10).
If the number of unstable eigenvalues is less or equal

to rm, then (4) and its linear counterpart ug, = — (I +
)T Yi o YE€ o'z, can stabilize the equilibrium.
Proof. See [2]. O

Note that, after applying (4), a-posteriori linear analysis
needs to be carried out to ensure the equilibrium stability.

IV. VALIDATION

We test the iterative law simulating a two DoFs underactu-
ated compliant arm. This robot is a single-input single-output
system (m = 1), where only the first elastic joint is actuated.

The selected output function (3) is the robot tip ori-
entation, namely, y = [1,1,---,1]¢g, and the decoupling
matrix is a scalar function equal to D(x) = L¢Lsh(x) =
[1,1,--+, 1M~ (q)S, which is L,Lh(x) # 0, Vx € R*" thanks
to assumption Al. Note that the relative degree is 2.

The desired trajectory to track is a minimum jerk [2],
which starts from the origin,i.e.,y(0) = 0 up to yf in #s.In
each simulations, the robot is set in the origin x;(0) = 02,1
and ug = 0. This is an asymptotically stable point, thus the
initial guess is up(r) = 0. The performance are evaluated
using the Root Mean Square (RMS) of the error.

The learning gains are reported in (6) with € =0.9; while
the control gains ‘Y are selected depending on the task, Tab.
I. It is worth nothing that the gains choice affects both the
convergence velocity and the stability of any equilibrium.

We select kK =2 to ensure that the difference between the
open and closed-loop elasticity is limited from a factor of 2.
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(a) Error evolution over iteration.

Fig. 1.

(b) Final output tracking.

TABLE 1
CONTROL GAINS [T, 1T, 2Y]
[ Feedback[20, 10, 1] | Feedforward [10,1,1] |

A. Simulation Results

The physical parameters of the two DoFs robot: mass m; =
0.55kg, inertia J; ; = 0.0lkgmz, length /; = 0.089m, center of
mass distance a; = 0.085m, damping H;; = 0.1Nms/rad, and
stiffness K;; = 0.5Nm/rad for i =1 and 2, [2].

We perform a minimum jerk with # = 3s and yf =
m/2. Then at 7 = 6s, we perturb the system with an
external impulse of 0.8rad. The final equilibrium of the
trajectory is ¥ = [2.72,—1.14,0,0]", i = 4.76, and re-
calling (10), whose open-loop eigenvalues are equal to
—{2.33+£2.88i 12.02 —2.5}. Leveraging the Lyapunov
indirect Theorem, the equilibrium is unstable, since one
eigenvalue belongs to the real and positive plane. However
1 < rm =2 then the control law and its linear counterpart
can stabilize the equilibrium point. Applying Theorem 1,
choosing the control gains as in Tab. I, the closed-loop
cigenvalues are — {1.98 72.19 5.75+2.67i}, i.e., asymp-
totically stable equilibrium.

Fig.1 displays the results. Fig. 1(a) depicts the RMS error
evolution w.r.t. iteration domain, Fig.1(b) shows tracking
performance at the last iteration, Fig. 1(c) displays the joints
evolution, and Fig. 1(d) reports the learned control actions
at j=10.

Discussion: The presented algorithm can track the
desired trajectory with acceptable performances without the
need of a precise model of the underactuated compliant arm.

The feedback component stabilizes the system in the final
configuration, Fig. 1(b). Since only one eigenvalue is unsta-
ble, the feedback controller can stabilize it. Additionally, the
closed-loop stiffness variation is minimal.

Finally, final RMS error is =~ 0.002rad Fig. 1(a).

V. CONCLUSION

In this work, an introduced an Iterative Learning Con-
troller for trajectory tracking dealing with compliant un-
deractuated arms is presented. Without requiring a precise
robot model, thanks to the feedforward action, the robot
successfully tracks the desired trajectory; while the feedback
term ensures equilibrium stability without a drastic modifi-
cation of the overall compliance. Through simulations, the
effectiveness of the suggested technique is evaluated.
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(c) Joints evolution. (d) Final control u;g.

Results for the minimum jerk trajectory lasting 7y = 3s reaching yf = /2. An external disturbance occurs at 7 = 6s.

The focus of next research will be data-driven learning
controllers, e.g., reinforcement learning.
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