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Abstract—sEMG signals are exploited for unsupervised es-
timation of the co-contraction level of forearm’s muscles. In
this way, by also exploiting a feedback based on a vibrotactile
bracelet, the ability of operators in stiffening their hand was
evaluated during kinesthetic teaching, in order to regulate the
estimated co-contraction level to (i) match reference levels and
(ii) activate the opening/closing of a gripper, i.e. in using their
myoelectric signals enhance robot kinesthetic teaching operations.
Experiments were carried out. The results provide positive
outcomes on the intuitiveness and effectiveness of the proposed
system and approach.

Index Terms—Human-Centered Automation.

I. INTRODUCTION

In this work an enhanced kinesthetic teaching system that
uses information obtained from sEMG signals is proposed.
The sEMG signals are exploited to estimate the operator’s
hand muscles co-contraction during physical guidance of the
robot trajectory. In particular, the estimation is based on
an unsupervised calibration, that requires a small amount
of sEMG data without labelling operation. Furthermore, we
give to the operator a vibrotactile bio-feedback modulated
in accordance to the actual modulated level of muscle co-
contraction.

II. METHODS AND EXPERIMENTS

A. Generative Model of Antagonistic Muscle Activations
We are interested in exploiting the sEMG measurements

from a gForcePRO armband (Fig. 1) in order to estimate the
level of hand muscles co-contraction. Let us consider the RMS
value of the online 8-channel sEMG acquisition E(t) ∈ R8×1.
This multidimensional biological signal can be seen, at each
time instant, as the product of a muscular synergy matrix M ∈
R8×n and the neural drives U(t) ∈ Rn×1 [1], where n = 2
denotes the number of muscular antagonistic activations that
generate the hand stiffening. Then, the sEMG activity E(t)
can be expressed as:

E(t) = MU(t), (1)
in which M and U(t) are unknown, whereas E(t) is available
from the gForcePRO sEMG armband.
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Fig. 1. (a) The augmented kinesthetic teaching setup of the present work. (b)
gForcePRO sEMG armband. (c) Groove vibration motor. (d) ATI 6-axis force
sensor. (e) SCHUNK parallel gripper. (f) Franka Emika Panda collaborative
robot.

B. Offline Muscular Synergy Matrix Estimation

Recalling eq. (1), Eoffline can be considered as given by the
expression

Eoffline = MUoffline, (2)
where, M and Uoffline are computed by applying to Eoffline
the unsupervised factorization algorithm Non-negative Matrix
Factorization (NMF)1. In this way, M is now available for
being used during the online co-contraction estimation as
explained in the next subsection. Note that the usage of NMF
allows to weight the sEMG channels without the necessity
of a precise positioning of the sensors on the forearm, and
to avoid empirical procedures. Differently, Uoffline is used only
offline in order to compute the scaling parameters kext and kflex
for the online neural drives uext(t) and uflex(t), respectively,
according to

kext =

∑
i∈S uexti

dS
, kflex =

∑
i∈S uflexi

dS
, (3)

where uexti and uflexi are the i-th sample of uext and uflex, and
S is the set denoting the dS samples only related to a hand
opening/closing calibration motion executed by stiffening the
hand.

C. Cable Routing and Connection Baseline Task

The experimental protocol was designed exploiting a spe-
cific cable routing and connection task. The subjects were
required to: (i) pick up the first cable extremity from the cable

1Given a nonnegative matrix A ∈ Rm×n (a matrix whose elements are all
non negative), the product WH is called nonnegative matrix factorization of A
if nonnegative matrices W ∈ Rm×k and H ∈ Rk×n, with k < min(m,n),
are found such that the functional f(W,H) = 1

2
∥A−WH∥2F is minimized

[2].
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Fig. 2. Robot trajectories for the reference band experiment.
Fig. 3. Co-contraction modulation for the subject S1 during the reference bands experiment.

Fig. 4. Robot trajectories for the gripper activation experi-
ment. Fig. 5. Co-contraction modulation for the subject S1 during the gripper activation experiment.

storage location T1; (ii) carry the cable in order to insert the
cable connector into the connection T2; (iii) move to T3 in
order to pick up the second cable extremity; (iv) carry the
cable realizing a routing through the cable channel situated
between the locations T4 and T5; and, finally, (v) move to T6
in order to perform the final insertion of the connector into
the switchgear component.

On this basis, each subject was asked to perform specific
co-contraction modulations with vibrotactile bio-feedback.
This was performed according to two different sessions of
augmented kinesthetic teaching evaluation (each one per-
formed one time by each subjects): (i) modulation of the
co-contraction according to target reference bands, receiving
a continuous bio-feeedback, and (ii) modulation of the co-
contraction in order to activate the gripper opening, receiv-
ing a threshold-enabled bio-feedback. During the augmented
kinesthetic teaching, the subjects were specifically instructed
to use the hand with sEMG sensors for guiding the robot (they
were also allowed to use both hands.) After that the calibration
phase was completed and before of each experimental session,
the subjects performed a practice session of 10 minutes in
order to freely familiarize with the system, without instructions
provided by the experimenter.

D. Results
1) Reference Band Co-Contraction Modulation: First of

all, we report in Fig. 2 the end-effector trajectories taught to
the robot by the different subjects, projected in the x − y
plane for clarity of visualization. In particular, in Fig. 2, the
task locations T1—T6 previously introduced are highlighted
with red circles. As expected, it is possible to observe that
all subjects performed similar trajectory teachings. We then
report the results specifically concerning the modulation of
the co-contraction level according to the reference bands. In

particular, the results for a single subjects are reported in Fig.
3. It is possible to observe that the subject successfully mod-
ulated the co-contraction level during the kinesthetic teaching
of the robot.

2) Gripper Activation Co-Contraction Modulation: Fig. 5
reports the single subject results for this evaluation session
(subject S1.) In detail, the co-contraction level was brought
over the gripper activation threshold (red dashed lines in Fig.
5) in the gray-coloured zones related to the task locations
T1, T2, T3 and T6. This successfully allowed to teach to the
robot the required cable grasping and releasing actions. At the
same time, during gray-coloured zones in Fig. 5 related to the
movements between the task locations T1-to-T2, T2-to-T3 and
T3-to-T4-to-T5-to-T6, the co-contraction level was correctly
maintained under the gripper activation threshold (at possible
minimum level) preserving the cable from falling during the
routing and transportation phases.

III. CONCLUSIONS

In this work, a human-robot interaction system has been
presented, with the aim of realizing an augmented kinesthetic
teaching for robot programming. In particular, the proposed
approach was based on an estimation of the forearm muscles
co-contraction using sEMG measurements, and a vibrotactile
bio-feedback.
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