

Task-oriented programming for industry: a
comparison with robot-oriented programming
Michele Delledonne

University of Brescia

Brescia, Italy

https://orcid.org/0000-0001-5236-2706

Enrico Villagrossi

National Research Council of Italy

Milan, Italy

https://orcid.org/0000-0002-9493-4175

Marco Faroni

National Research Council of Italy

Milan, Italy

https://orcid.org/0000-0001-9633-4301

Manuel Beschi

University of Brescia

Brescia, Italy

https://orcid.org/0000-0002-8845-2313

Nicola Pedrocchi

National Research Council of Italy

Milan, Italy

https://orcid.org/0000-0002-1610-001X

Abstract—The ease of use of robot programming interfaces

represents a barrier to robot adoption in several manufacturing

sectors because of the lack of expertise of the end-users. Current

robot programming methods are mostly the past heritage, with

robot programmers reluctant to adopt new programming

paradigms. This work aims to evaluate the impact on non-expert

users of introducing a new task-oriented programming interface

that hides the complexity of a programming framework based

on ROS. The paper compares the programming performance of

such an interface with a classic robot-oriented programming

method based on a state-of-the-art robot teach pendant. An

experimental campaign involved 22 non-expert users working

on the programming of two industrial tasks demonstrating a

high acceptance level of the task-oriented interface with not

significant difference in the learning time compared to a

standard interface.

Keywords—Intuitive robot programming, Task-oriented

programming, Human-machine interaction, End-user robot

programming, End-user development

I. INTRODUCTION

Despite the increasing complexity of robotic applications,
the approach to robot programming has barely changed over
the years: the robot program remains a rigid list of instructions
coded and saved into the robot memory [1]. The robot
programmers are reluctant to adopt new programming
paradigms; simultaneously, the current robot programming
approach is a barrier for end-users (operators without
programming and robotics experience) to the spread of
industrial robots in SMEs [2]. The penetration of advanced
robot programming techniques, such as visual programming
or programming by demonstration, is facing barriers in the
industrial context [3]. The main obstacles are the robustness
of the advanced programming algorithms, the complexity of
the programming interfaces, and robot programmers' technical
heritage. Improvements to programming interfaces are
required to attract new users unfamiliar with GPL bringing
together the advanced features provided by ROS with the ease
of use of classical robot-oriented programming languages and
a design that enables task-oriented programming.

This work compares the acceptance level, the ease of use
and the effectiveness of programming industrial tasks with the
GUI, developed over the framework described in [4], MFI
hereafter. The comparison was with a classic lead-through
programming approach made with the robot Teach Pendant
(TP). The testers were non-expert robot programmers and
end-users. The goal is to analyze if using a task-oriented
framework, as the MFI (designed to hide the complexity), can
introduce slightly longer learning time but bring several
benefits compared to standard programming techniques when

it is necessary to deal with tasks repetition, robot
reprogramming and collision-free motion planning. An
experimental campaign based on many heterogeneous users
will support the results.

II. MATERIALS AND METHODS

A. Experimental setup

The setup used for the test was a Universal Robot UR10e
with its TP, which is nowadays considered the state-of-the-art
of industrial robot TPs in terms of intuitiveness and ease of
use. The robot gripper is a Robotiq 2F-85. An external PC
controls the robot at a frequency of 500[Hz]. A force-torque
sensor was mounted between the robot flange and the gripper.

B. Programming interface

This work compares a robot-oriented and a task-oriented
programming interface.

Robot-oriented programming focuses on primitive robot
movements that the robot can perform. The user combines
these primitive actions into a sequence to obtain the desired
program. The robot-oriented programming interface used is
the UR10e TP. This one is a highly intuitive programming
interface based on a sequence of move instructions by teaching
the starting and the ending robot configuration to be
interpolated. The teaching of robot position can be done by
lead-through programming moving the robot with the so-
called manual guidance mode. To guarantee collision-free
trajectories, the programmer must add intermediate robot
configurations (also called via-points). The TP provides
specific functions to manage the gripper activation.

Task-oriented programming focuses on the task. The user
combines high-level actions by setting the parameters
required by the process operation rather than the robot motion.
The user does not define the primitive action from scratch, as
the framework programmer previously defined the task
structure. The user codes in an intuitive language. The task-
oriented programming interface used is the MFI. Allowing the
programming with high-level actions relieving the
programmer from the management and the execution of single
movement. MFI use a framework that can generates collision-
free trajectories for a given planning scene and a given robotic
system in the planning environment that can dynamically
change, the user must set only the start and goal pose. The
predefined actions are available Pick, Place, and Go To.

C. Method

The study involved a heterogeneous group of people made
by university students of multiple STEM faculties and
machine tool operators as real end-users from a SME. Only a

2022 I-RIM Conference
October 7-9, Rome, Italy
ISBN: 9788894580532
DOI:10.5281/zenodo.7531358

190

few testers have prior experience in robot programming, not a
professional one, but no one has ever seen the MFI and the TP
used for the experiments.

The experiments consist of five phases:

▪ introduction: the user is informed about the
experiment and the test phases.

▪ Teaching: the user watches a video that describes the
interfaces (i.e., the robot TPI or the MFI) and their
usage. Then, an expert operator supports the user in
assisted training, where the goal is to perform a
single pick and place. In this phase, the user is free to
ask questions to the trainer. The training continues
until the user declares he/she can program a task
autonomously. Finally, the expert operator describes
the user's task to program; the programming phase
can start.

▪ Autonomous programming: the user programs the
robot without the help of an expert. This phase ends
when the user declares finished the task
programming. The user can ask questions if he/she
cannot proceed in task programming.

▪ Testing: testing the program developed in the
previous phase. In case the task is correctly
performed, this phase ends. On the contrary, the user
must correct the program and test it until the task is
performed completely. The task's success determines
the end of this phase.

▪ Questionnaire: the user fills in a questionnaire
regarding the intuitiveness and complexity of the
interface.

Two robotics tasks were defined:

▪ Task 1: requires a simple Pick&Place task where 10
objects need to be picked and placed in predefined
boxes, without constraints in the planning
environment. This task represents a frequent
application for robots in the manufacturing sector.

▪ Task 2: requires the manipulation of 2 objects from
a constrained environment characterized by several
obstacles to be picked and placed in a predefined
area. This task simulates a machine tending
application where the robot has to place or withdraw
an object from the working area of a machine tool.

Task 1 was defined to analyze and measure the
programming time of a simple but highly repetitive
Pick&Place task where the adoption of a robot-oriented
programming approach imposes the repetition of the same
instructions multiple times. Task 2 was defined to analyze and
measure the programming time of a complex task where the
presence of obstacles and the use of a robot-oriented
programming approach impose the definition of multiple via-
points to avoid collisions. After the programming of Task 2, it
was asked to the users to reprogram the task by changing the
release position of the object. The testers implemented Task 1
and 2 by programming the robot in two different ways: in the
first case, by writing the robot program through the TP as a
collection of "move to" instructions teaching the trajectories
via-points. In the second case, the testers implemented the
same programs exploiting the MFI.

The following key points were monitored during the
experimental tests of Task 1: the learning time (LeT), the
programming time (PrT), the number of questions made
during the programming (PrQ), the testing time (TeT), the
execution time (ExT), the number of tests executed (TeN), the
number of questions made during the testing (TeQ). In
addition, in Tasks 2 were monitored: the reprogramming time
(ReT), the reprogramming testing time (ReTeT), the
reprogramming execution time (ReExT), the questions made
during the reprogramming (ReQ) and retesting (ReTeQ), and
the number of tests made during the testing (ReTeN). The
training of the users was made by showing videos to avoid
bias between subjects.

III. RESULTS AND DISCUSSION

The experiments of Task 1 enlisted two groups of students:
Group A composed of 8 people, they programmed the
application using the UR10e TP. Group B composed by 9
people, they programmed the same application using the MFI.
Task 2 was tested in a real shop floor of a SME with machine
tool operators. In total 5 people made the experiments, due to
the limited number of people, they used both the UR10e TP
and the MFI.

 Task 1: The average learning time LeT for the MFI is
44.9% higher than the TPI. This result was expected as the
MFI has more complex concepts than the TPI and the learning
time tends to be higher. The average programming time PrT
for the MFI is 51.7% lower than the TPI. High values of PrT
for the TPI are directly related to the number of objects
involved in the task because the operator needs to teach
multiple positions to perform collision-free trajectories. On

Figure 1. Setup used for Task 1. Figure 2. Setup used for Task 2.

191

(c) Programming Questions (PrQs)

(i) Interface intuitiveness (l) Interface learning speed

(g) Execution Time (ExT) (h) Reprogramming Time (ReT)

Figure 3. Task 1 experiments' results.
TP: UR10e teach pendant interface.

MF: manipulation framework interface interfacequestions

the contrary, the MFI allows to define a Pick&Place Task
using a few positions. The average number of programming
questions PrQs and test TeQs is low for both the interfaces.
These low values represent a good operator learning rate that
reflects comparable ease of use for both the interfaces. The
number of tests TeNs and the test time TeT are low. Most of
the experiments do not present mistakes during the
programming. The low presence of mistakes avoids
corrections in many experiments; when required, the

correction time is short, strengthening the result already given
by PrT values. The low number of mistakes leads to
overlapping the TeTs and the ExTs. The average execution
time ExT is 13.5% lower for the TPI. The robot motion

Figure 4. Task 2 experiments' results.
TP: UR10e teach pendant interface.

MF: manipulation framework interface interfacequestions

planner interpolates the trajectory via-points taught through
the TPI. The time to compute the trajectories is short, and the
via-points are linearly interpolated. Instead, the MFI
interpolates the starting and the goal position with optimal
collision-free trajectories. The computational time to evaluate
the planning scene and generates the collision-free trajectories
can vary. This difference explains the differences in the
execution times. Despite this, the difference between the
results is insignificant; furthermore, TPI ExT present a larger
standard deviation than the MFI. The large standard deviation
of the ExT of TPI highlights a high dependency on the user's
skills. The MFI presents a small ExT standard deviation
because the execution is independent of the operator capacity.
At the end a questionnaire was proposed to the users. There
are identical results between the MFI and the TPI regarding
ease of use, intuitiveness and learning speed.

Task 2: The average learning time LeT is 43.7% higher for
MFI. The result is similar to the LeT of Task 1 experiments.
The average programming time PrT is 15.2% lower for the
MFI. The PrT is similar for both the interfaces because Task
2 is composed of only two objects, the number of repetitive
Actions is reduced tending to provide similar results. The
programming questions PrQs is higher for the MFI. The users

(a) Learning Time (LeT) (b) Programminf Time (PrT)

(d) Test Time (TeT)

(e) Test Numbers (TeNs) (f) Test Questions (TeQs)

(g) Execution Time (ExT) (h) Interface ease of use

(a) Learning Time (LeT) (b) Programming Time (PrT)

(c) Programming Questions (PrQs) (d) Test Time (TeT)

(e) Test Numbers (TeNs) (f) Test Questions (TeQs)

192

(g) Interface intuitiveness (h) Interface learning speed

Figure 5. Task 2 experiments' results.
TP: UR10e teach pendant interface.

MF: manipulation framework interface interfacequestions

involved in Task 2 (i.e., shop floor machine tools operators
and technicians) had less familiarity with the use of robots
and, in general, less inclination to technologies compared to
the users of Task 1 (i.e., STEM faculties students). This aspect
is the possible cause why Task 2 PrQs values are higher than
Task 1 in particular for the MFI. The more complex structure
of MFI has amplified this phenomenon. Despite this problem,
the PrQs values do not represent a real problem. The training
of non-expert operator for the MFI is less than one hour
(considering the video watching). The test time TeT shows
similar TeT for both interfaces apart from the spike of user one
that is anyway present for both interfaces; in particular, the
time to correct the errors is comparable. The test numbers
TeNs shows a not relevant number of trials, so the reduced
number of errors made during the programming demonstrate
that reduced knowledge does not affect the operator
performance. The test questions TeQs shows a high autonomy
of the user to correct the errors. The execution time ExT shows
that the TPI ExT present lower values than the MFI. In this
case, the computation time necessary for the MF to generate

collision-free trajectories is higher than Task 1 because the
robot workspace presents constrained spaces and more
obstacles. The higher ExTs is reflected in the benefit of a
collision-free trajectory guaranteed by the MF motion
planners. On the contrary, with the TPI, the collision
avoidance of the robot is in charge of the programmer. The
average reprogramming time ReT shows that usually, the MFI
ReT values are lower than the TPI. The MFI ReT average
value is 26.1% lower than TPI. With the MFI the user has to
modify the program to teach only two new positions. Instead,
the TPI requires to add new via-points to the trajectories
already defined. The reprogramming number of questions
ReQs shows the low values; most of the users did not need any
help during the reprogramming. The reprogramming test
times ReTeTs, the reprogramming tests numbers ReTeN, the
test questions ReTeQs, and the execution time ReExT show
results similar to those obtained in the first testing phase and
no significant differences emerged between the interfaces. As
for Task 1, at the end of Task 2, the questionnaire was
proposed to the users. There are similar results for both
interfaces. The parameters have high values demonstrating a
good appreciation by the machine tools operators highlighting
the usability of the interfaces in the industrial world.

CONCLUSIONS

This work presents a comparison between two robot

programming interfaces. The first is the UR10e TP interface

that represents the state-of-the-art for intuitiveness and ease

of use for industrial robots, the second is the MFI that

provides advanced features such as task-oriented

programming, state-of-the-art motion planners, collision-free

motion planning, avoiding the use of textual programming.

The results demonstrated that the use of an intuitive GUI that

hides a complex framework can bring short learning times,

anyway higher than the TP, but with the possibility of training

an end-user in very little time. At the same time this

instrument brings to reduced programming time and ease of

use even for users without preliminary programming

knowledge neither robotics expertise.

ACKNOWLEDGEMENT

This work is supported by the ShareWork project (H2020,
European Commission – G.A. 820807). Special thanks to
Cembre S.p.A. for providing the opportunity to make tests on
their shop floor with machine tool operators.

REFERENCES

[1] Valeria Villani, Fabio Pini, Francesco Leali, Cristian Secchi, "Survey
on human-robot collaboration in industrial settings: Safety, intuitive
interfaces and applications", Mechatronics, Volume 55, 2018, Pages
248-266, ISSN 0957-4158.

[2] Gopika Ajaykumar, Maureen Steele, and Chien-Ming Huang. "A
Survey on End-User Robot Programming", ACM Comput. Surv., 2021,
54, 8, Article 164 (November 2022), 36 pages.

[3] Panagiota Tsarouchi, Sotiris Makris and George Chryssolouris,
"Human–robot interaction review and challenges on task planning and
programming", International Journal of Computer Integrated

Manufacturing, 2016, 29:8, 916-931.

[4] E. Villagrossi, N. Pedrocchi and M. Beschi, "Simplify the robot
programming through an action-and-skill manipulation framework,"
2021 26th IEEE International Conference on Emerging Technologies

and Factory Automation (ETFA), 2021, pp. 1-6.

(a) Reprog. Questions (ReQs). (b) Reprog. Test Time (ReTeT)

(d) Rep. Test Questions (ReTeQ) (c) Rep. Test Numbers (ReTeN)

(e) Rep. Execution Time (ReExT) (f) Interface ease of use

193

