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Abstract—The dynamic uncertainties and disturbances char-
acterizing continuum soft robots call for the derivation of simple
and possibly information-free controllers. We propose an iterative
learning control law for shape regulation of continuum soft robots
consisting of a PD action and a feedforward term, updated to
learn the potential forces at the target configuration. We prove
that the regulator achieves global asymptotic stabilization of the
closed-loop system to the desired set-point. Simulation results
validate the proposed control law.

Index Terms—Soft Robotics, Iterative Learning Control, Mo-
tion Control.

I. INTRODUCTION

Continuum soft robots are robotic systems with continu-
ously deformable bodies [1], which have potential applications
ranging from maintenance of hostile or even inaccessible
environments [2], [3] to human rehabilitation [4], [5].

Meeting these scenarios requires providing soft robots with
the ability to perform, at the very least, elementary tasks, such
as shape regulation. Unfortunately, the infinite dimensionality
of these systems makes it non-trivial to achieve even such a
primary skill. To overcome this issue, researchers proposed
finite-dimensional models specifically designed for control
purposes [6], [7]. These formulations allowed applying, with
little effort, many control laws designed for other mechanical
systems, e.g., rigid and flexible robots, also to soft robots [8].

We further explore this direction by extending to continuum
soft robots the iterative learning regulator of [9]. The con-
troller, which consists of a PD action and a feedforward term,
guarantees asymptotic regulation of the configuration variables
provided that the proportional gain is large enough.

II. DYNAMIC MODEL

Consider a continuum soft robot modeled as

M(q)q̈ +C(q, q̇)q̇ +G(q) +Kq +Dq̇ = τ , (1)

where q ∈ Rn denotes the configuration vector, M(q) > 0
is the n × n robot inertia matrix, C(q, q̇)q̇ collects Coriolis
and centrifugal terms, and G(q) = ∇q Ug(q) is the gravity
vector, with Ug(q) the robot gravitational potential energy. Fi-
nally, Kq and Dq̇ model, respectively, elastic and dissipative
effects, and τ is the control input.

The above model verifies the following property inherited
from rigid robots with revolute joints [10].

Property 1. For all q ∈ Rn, there exist constants
αUg , αG, α∇2(Ug) > 0 such that

∥Ug(q)∥ ≤ αUg , ∥G(q)∥ ≤ αG,
∥∥∇2

q Ug(q)
∥∥ ≤ α∇2(Ug).
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The last inequality also implies that G(q) is globally Lipschitz.

III. CONTROL LAW

In this section, we present our main result, i.e., a learning-
based regulator that iteratively steers the robot configuration
to any desired target.

Consider the control law

τ = γKP (qd − q)−KDq̇ + υi−1, (2)

where i ∈ N>0 denotes the iteration index, qd is a desired
configuration, γ > 2 is the learning gain, KP > 0, KD ≥ 0
are symmetric (diagonal) n× n gain matrices, and υi−1 is a
feedforward action to be learned. The first iteration (i = 1) is
executed with υ0 = 0. As soon as the closed-loop system (1)–
(2) reaches a new equilibrium configuration qi, the term
υi−1 ∈ Rn is updated as

υi = γKP (qd − qi) + υi−1. (3)

Theorem 1. Suppose that

KP > (λmax(K) + α∇2(Ug))In, (4)

then, for all i ∈ N>0, the closed-loop system (1)–(2) has
a globally asymptotically stable equilibrium at qi. In addi-
tion, (3) guarantees

lim
i→∞

qd − qi = 0.

Proof. Arguments similar to those of [11] show that, for all i ∈
N>0 and initial conditions, under (4) the trajectories of (1)–
(2) are bounded and converge asymptotically to the unique
solution of

G(q) +Kq = γKP (qd − q) + υi−1. (5)

Let ei := qd − qi denote the steady state tracking error of
the i-th iteration, being qi the solution of (5). Combining (3)
with (5) results in υi = G(qi) + Kqi, which implies by
prop. 1 and after some computations,

∥υi − υi−1∥ ≤
(
α∇2(Ug) + λmax(K)

)
(∥ei∥+ ∥ei−1∥) .

(6)
Now, (3) and (4) yield

∥υi − υi−1∥ > γ
(
λmax(K) + α∇2(Ug)

)
∥ei∥. (7)

Thus, from (6)–(7) we have ∥ei∥ + ∥ei−1∥ > γ∥ei∥, which
for γ > 2 guarantees contraction of the tracking error as the
iteration index i tends to ∞.

Remark 1. At the expense of degrading performance, the
control law does not require velocity measures, i.e., KD can
be set to zero. In addition, only upper bounds associated with
the potential field are needed.

Remark 2. The above result can be easily extended to soft
robots with nonlinear elastic and dissipative forces, i.e., K(q)
and D(q, q̇).
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Figure 1. Simulation results. Time evolution of the configuration variables (a), control inputs (b) and learned feedforward terms (c).

(a) t ∈ [0; 15) [s] (b) t ∈ [15; 30) [s] (c) t ∈ [30; 45] [s]

Figure 2. Simulation results. Stroboscopic view of the robot motion in its workspace in the three time windows defined by the reference trajectory in eq. (8).
Initial and final configurations are depicted in dark gray and blue, respectively. A red line illustrates the trajectory traced by the robot tip.

IV. SIMULATION RESULTS

Consider a soft robot with two actuated segments moving
in a vertical plane, i.e., under gravity, oriented so that its tip
points upward in the straight configuration. Under the piece-
wise constant curvature (PCC) assumption [8], each segment
has only one degree of freedom, i.e., its curvature qj , j = 1, 2,
so that q = (q1 q2)

T ∈ R2. Each segment has mass mj =
0.335 [kg] and length lj = 0.06 [m]. Stiffness and damping are
uniformly distributed and equal to K = 0.05 · I2 [Nm/rad]
and D = 0.008 · I2 [Nms/rad], respectively. The control
gains are taken as γ = 4, KP = 0.2 · I2[Nm/rad]
and KD = 0.001 · I2 [Nms/rad]. The robot starts at rest in
the straight configuration, and the simulation runs for 45 [s].
The piece-wise constant commanded reference is (in [rad])

qd(t) =

 (π/2; π/2)T ; t ∈ [0; 15) [s]
(−π/4; π/4)T ; t ∈ [15; 30) [s]
(π/3; −π/8)T ; t ∈ [30; 45] [s]

. (8)

Figure 1(a) shows the closed-loop evolution of the configura-
tion variables for reference (8). For all the three commanded
targets, the controller, whose output is shown in Fig. 1(b),
quickly regulates the curvatures to the desired value. The
small derivative action leads to poor transient performance.
Nonetheless, the closed system remains always stable, as
expected. In addition, the control law learns the potential
forces at the desired configuration in very few iterations,
as illustrated by the evolution of the feedforward term in
Fig. 1(c). Finally, Figure 2 shows a stroboscopic plot of the
robot motion in its workspace, see also the accompanying
video.

V. CONCLUSIONS AND FUTURE WORKS

In this work, we proposed an iterative learning regulator
for continuum soft robots. The control law requires minimal

system knowledge for implementation and achieves global
asymptotic stabilization of the closed-loop system if the
proportional gain is sufficiently large. Future works will be
devoted to the extension of the control law to underactuated
soft robots and its experimental validation.
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