
Efficient 2D LIDAR-Based Map Updating For
Long-Term Operations in Dynamic Environments

Elisa Stefanini1,2, Enrico Ciancolini3, Alessandro Settimi3 and Lucia Pallottino1

Abstract—Long-time operations of autonomous vehicles and
mobile robots in logistics and service applications are still
a challenge. To avoid a continuous re-mapping, the map
can be updated to obtain a consistent representation of the
current environment. In this paper, we propose a novel LIDAR-
based occupancy grid map updating algorithm for dynamic
environments. The proposed approach allows robust long-term
operations as it can detect changes in the working area even
in presence of moving elements. Results highlighting map
quality and localisation performance, both in simulation and
experiments, are reported.

I. INTRODUCTION

Today, companies of all sizes use Autonomous Mobile
Robots (AMR) to improve their productivity, and robotics
is becoming increasingly important for future developments
in the sector. An AMR employs Simultaneous Localisation
and Mapping (SLAM) techniques where the robot maps the
environment, navigates, and locates itself by simply “looking”
at this environment, without the need of installing further
hardware in the work place. Conventional SLAM is used
to create an initial image of an unknown environment, and
it is not intended to be used as a system for repeatedly
updating the same area of the map. This approach could lead
to task failure in complex production environments where
changes in the map can occur. Industrial environments are
usually characterized by a slow rate of change over time
since semi-static objects could change their position when
the same task is performed at another time, be it a day or
two months later. During AMRs operations, small changes
in the environment are well handled by localisation and
local obstacle avoidance algorithms; however, as the robot’s
static map diverges from the current working area, becoming
obsolete, navigation performance degrades [1].
In this work, as also described with more details in [2],
we propose a system based on 2D LIDAR measurements
capable of detecting changes in the environment over time and
updating an existing map with a memory-limited algorithm
taking into account localisation and measurement errors while
neglecting highly dynamic obstacles as humans. Our system
is fully developed through the Robot Operating System, using
a 2D occupancy grid map representation. We are interested
in taking as input such map type built at any moment with
any available SLAM algorithm and producing a geometrically
and temporally consistent representation of the environment

1Centro di Ricerca “E. Piaggio” e DII, Università di Pisa, Largo L.
Lazzarino 1, Pisa, Italy.

2SoftBots, IIT, via Morego, 30, Genova, Italy
3Proxima Robotics s.r.l., Via Olbia 20, Cascina, Pisa, Italy
This work was supported in part by the European Union’s Horizon 2020

Research and Innovation Program under Grant Agreement Number 101017274
(DARKO), and in part by the Italian Ministry of Education and Research
(MIUR) through the CrossLab Project (Departments of Excellence).

suitable for any continued localisation algorithm based on
occupancy grid maps.

II. MAP UPDATED METHOD

Referring to the system overview in Fig.1, given an initial
occupancy grid map M and the robot pose X(k), the basic
idea is to update the state of the cells according to the
relevant changes in the environment detected by the laser
measurements Z(k). The system is built to detect both
the removal or addition of static objects while neglecting
the presence of dynamic obstacles, that can be sources of
disturbances. Measurements are processed in two steps. First,
the Beams Classifier analyses the sensor readings zi(k) and
classifies them as “detected change measurement” or “non-
detected change measurement” according to their discrepancy
w.r.t. the initial map M . Then the Changed Cells Evaluator
and the Unchanged Cells Evaluator evaluate cells associated
to measurements zi(k) w.r.t. those in the initial map M
to confirm the type of detection. To avoid false changes
or undetected ones, we don’t change the state of the cells
based only on one measurement. Indeed, for each cell cj , a
rolling buffer, Bcj , of a fixed dimension, Nb, is created and
filled with the outcomes of the evaluator blocks at different
time instant. The Changed Cells Evaluator takes as input
only measurements zi(k) for which the Beams Classifier
has “detected” a change and fills the buffer Bcj for each
associated cell, cj , with a “changed” flag only if the change is
confirmed. Instead, the Unchanged Cells Evaluator analyses
only measurements zi(k) for which the Beams Classifier
provides a “non-detected” outcome and fills the buffer Bcj
for each associated cell, cj , with an “unchanged” flag only
if the evaluation is confirmed. Finally, the state of evaluated
cells cj is changed from free to occupied (or vice versa) only
if a sufficiently high number of “changed” flags can be found
in the associated buffer, Bcj .

III. EXPERIMENTS

In this section, we present the results of our approach
both in simulation and on real-world data. To provide
a quantitative performance evaluation of the system, we
compared our updated maps with ground-truth ones using
the Cross-correlation (CC), the Map Score (MS), and the
Occupied Picture-Distance-Function (OPDF) metrics [3], [4].
Moreover, we analysed the localisation errors with and without
our updated maps using the Evo Python Package1 in the
simulation experiments.
A. Simulation experiments

We built four different versions of an industrial warehouse
of 290 m2 by increasing the environment changes to simulate
how the placement of goods within a warehouse can change

1https://github.com/MichaelGrupp/evo

2022 I-RIM Conference
October 7-9, Rome, Italy
ISBN: 9788894580532
DOI:10.5281/zenodo.7531326

146

https://github.com/MichaelGrupp/evo


Fig. 1: System Overview: Measurements are classified as “detected change” or “non-detected change” w.r.t. the initial map by
the Beam Classifier. Based on this classification, a rolling buffer Bcj of each cell cj is filled by the Changed Cells Evaluator
and the Unchanged Cells Evaluator respectively through “changed” and “unchanged” flags. Finally, the state of the cells is
updated if the number of “changed” flags in the buffer is higher than a given threshold.

over time. In the first environment W1, a Summit-XL-Steel
platform, was tele-operated to build an adequate initial map
M1. In the other environments Wi, the robot autonomously
performed the same predefined trajectory. In each scenario
Wi, the robot used the map Mi−1 as the initial map to localise
itself, and generated the updated map Mi with the proposed
updating method. To evaluate the quality of the method a
ground-truth maps Gi for each runi has been obtained with
Slam Toolbox. Adaptive Monte Carlo Localisation (AMCL)
from ROS have been used for robot localisation.

W2 W3
M1/G2 M2/G2 M1/G3 M3/G3

CC (%) 45.05 69.26 31.78 60.61
MS (%) 48.35 70.66 36.66 61.70

OPDF (%) 66.08 95.64 53.25 91.32

TABLE I: Quantitative maps evaluation.

1) Updating Performance: The Table I shows the
quantitative results obtained by comparing both the initial map
M1 and our updated maps Mi, i ∈ {2, 3} w.r.t. the ground-
truth ones Gi where a 100% score is a full correspondence
of the two maps. A map comparison between Mi−1 and
Gi is performed to quantify differences between current and
previous environment (first column for each Wi). According
to each metric, the updated map Mi is always better than the
initial map Mi−1 of the run when compared with the ground-
truth.

2) Localisation Performance: To evaluate improvements in
localisation performance thanks to the use of our maps, we
compared the AMCL pose estimate based on both the initial
map M1 and the last available updated map with the reference
ground truth obtained from the simulator. Quantitative results
of the localisation performance obtained in W3 are reported
in Tab. II where is shown that the localisation is drastically
improved thanks to the use of the updated map M2.

Max Mean Median Min RMSE SSS Std

W3
M1 1.05 0.31 0.08 0.03 0.50 113.90 0.35
M2 0.12 0.05 0.05 0.03 0.05 1.57 0.01

TABLE II: Localisation Performance comparison in W3 using
both the initial map M1 and the last updated map M2.

3) Hardware Resource Consumption: The computation of
the CPU percentage and memory MB usage obtained through
the ROS package “cpu monitor” in the map updating and
localisation phase reported a mean of 15% for CPU and 55-
53 Mb for the memory. Thus, the proposed memory-limited
solution is suitable for life-long operation scenarios.

B. Real Experiments
To demonstrate the real-world applicability of the

proposed method, we repeated the same procedure of the
simulated experiments in the CrossLab lab of the Pisa
Information Engineering Department, with a Summit-XL-Steel
platform. Performance on map update and hardware resource
consumption have been quantified as in the simulations. For
the localisation performance, since no ground-truth external
tracking system was available, it was not possible to provide
valid and scientifically acceptable performance results.

1) Updating Performance: The quantitative results are
shown in Table III. Considerations in Sub-section III-A1
regarding the metrics results are still valid here.

W2 W3
M1/G2 M2/G2 M1/G3 M3/G3

CC (%) 69.69 75.98 63.77 68.80
MS (%) 54.63 64.53 51.44 57.36

OPDF (%) 84.61 95.05 78.92 90.77

TABLE III: Quantitative maps evaluation.

2) Hardware Resource Consumption: The CPU and
memory usage are lower respectively from 15% to 5% and
from 55-58Mb to 51-54Mb w.r.t. the simulated environments
because of the decrease in no. of updated cells since the real
environment is smaller than the simulated one.

IV. CONCLUSIONS

We have shown how our method is able to update the
map robustly, reflecting the environment configuration w.r.t.
localisation and measurement errors, neglecting humans, and
limiting memory storage both in simulation and with real-
world experiments. As future work, we plan to validate
the localization performance in a real environment with an
external tracking system.

REFERENCES

[1] M. Dymczyk, et al., “Map summarization for tractable lifelong mapping,”
in RSS Workshop, 2016.

[2] E. Stefanini, et al., “Efficient 2d lidar-based map updating for
long-term operations in dynamic environments,” in 2022 IEEE/RSJ Int.
Conf. Intell. Robots Syst. (IROS). IEEE, 2022. [Online]. Available:
https://www.dropbox.com/s/2o8mqbkza5tqwya/IROS Efficient 2D
LIDAR Based Map Updating For Long Term Operations in

Dynamic Environments.pdf?dl=0
[3] O. Sullivan, “An empirical evaluation of map building methodologies in

mobile robotics using the feature prediction sonar noise filter and metric
grid map benchmarking suite,” Master’s thesis, University of Limerick,
2003.

[4] K. Baizid, et al., “Vector maps: A lightweight and accurate map format
for multi-robot systems,” in Int. Conf. Intell. Robots Syst. Springer, 2016,
pp. 418–429.

147

https://www.dropbox.com/s/2o8mqbkza5tqwya/IROS_Efficient__2D__LIDAR__Based_Map_Updating__For_Long_Term_Operations_in_Dynamic__Environments.pdf?dl=0
https://www.dropbox.com/s/2o8mqbkza5tqwya/IROS_Efficient__2D__LIDAR__Based_Map_Updating__For_Long_Term_Operations_in_Dynamic__Environments.pdf?dl=0
https://www.dropbox.com/s/2o8mqbkza5tqwya/IROS_Efficient__2D__LIDAR__Based_Map_Updating__For_Long_Term_Operations_in_Dynamic__Environments.pdf?dl=0

