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Abstract—In this paper is presented an approach for fast and
accurate segmentation of Deformable Linear Objects (DLOs)
named FASTDLO. The perception is obtained from the combina-
tion of a deep convolutional neural network for the background
segmentation and a pipeline for the dlo identification. The
pipeline is based on skeletonization algorithm to highlights the
structure of the DLO and a similarity-based network to solve the
intersection. FASTDLOis trained only on synthetically generated
data, leaving real-data only for evaluation purpose. FASTDLO is
experimentally compared against DLO-specific approach achiev-
ing better overall performances and a processing rate higher than
20 FPS.

Index Terms—Deformable Linear Objects, Industrial Manu-
facturing, Computer Vision

I. INTRODUCTION

Deformable Linear Objects (DLOs) are a special subgroup
of materials composed mainly by wires, electrical cable and
ropes. These materials are important for a large variety of
industrial application such as Aerospace or Automotive. Given
the difficulties on the perception and manipulation, they still
strongly rely on human operator for various assembly task.
Furthermore, the development of more intelligent machine
are impeded by the solutions available for the perception of
such materials. In particular, most research only consider a
simplification of a real working environments supposing to
have a controlled background (green or white) from which
is easier to detect the cable using simple threshold based
method [1], [2]. Other research limit the number of DLO
to perceive to just one [1]. In the spirit to overcome such
limitation, previous attempt were made by Ariadne+ [3], an
algorithm based on the segmentation and modeling of DLO
based on its predecessor Ariadne [4]. Differently from the
other approaches, it is capable to achieve better accuracy and
efficiency and it has the ability to consider even more complex
scenarios in which the endpoints of the cables were not present
in the image. Despite being the state of the art of DLO-
sensing, the major drawback of the algorithm was the high
time of execution that was limiting his application for more
complex task such as cable tracking. In this paper, is presented
FASTDLO (FAst SegmenTation of Deformable Linear Objects)
[5], an algorithm for the precise instance segmentation of
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DLO based on no-assumption of the environments with a
faster execution time. The algorithm takes as input an image,
by using a DCNN it generates a binary mask with all the
DLO in the scene and after that it and provides as output the
colored mask associated to the DLOs in the scene (if any)
with distinct color, all the non-dlo pixel are depicted as black.
The DLO instances are modeled by means of a sequence of
key-points to be interpolated as spline. The learning part was
trained using only synthetic dataset, leaving the real dataset
only for validation. As processing speed, FASTDLO achieves
an overall rate higher than 20 Frames-Per-Second (FPS) with
an image size of 640×360 pixels, employing, as hardware,
a workstation with an Intel Core i9-9900K CPU clocked at
3.60GHz and an NVIDIA GeForce GTX 2080 Ti. PyTorch
1.4 is used for the software implementation. To summarize,
the main characteristic of FASTDLO:

• Reliable and efficient method for the instance segmenta-
tion of DLOs

• Fast deployment with the use of synthetic data for all the
data-driven approaches;

• use of appearance-based and topological features for
DLO identification;

• Better performances in terms of speed and accuracy.
The source code implementing FASTDLO and the associated
data is available at https://github.com/lar-unibo/fastdlo.

II. THE FASTDLO ALGORITHM

The FASTDLO pipeline, schematized in Fig. 1, consists
of the following main steps: Background Segmentation,
Skeleton Pixels Classification, Segments Generation, In-
tersections Processing, Informed Merging, Intersections
Layout The aforementioned steps are discussed, a deeper
analysis is available in [5].

A. Background Segmentation

The generic input image Is is processed by means of
a DCNN using a semantic segmentation network using
DeeplabV3+ [6] as architecture, producing as output a binary
mask Mb, with DLOs pixels labeled in white and as black
the remaining pixels. The training of the DCNN were done
by using only synthetic data generated using a Blender based
pipeline [7]. In total, 32, 000 images were rendered with
various DLOs’ color, sizes and lengths, light condition and
backs. An example of the segmentation can be seen in a real
sample in Fig. 2, the shadows and the complex background
doesn’t affect the final result. For clarity, the intersection area
is zoomed.
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Fig. 1: The FASTDLO algorithm.

Fig. 2: Input image with background segmentation, result and
generated skeleton zoomed at the intersections area.

(a) endpoint (b) section (c) intersection

Fig. 3: Local neighbors possibilities of a skeleton pixel given
a 3×3 kernel. To clarify the representation, the skeleton is in
dark while the background is in white.

B. Skeleton Pixels Classification

The segmentation mask Mb is processed with a skele-
tonization algorithm consisting of a thinning iterative approach
which erodes the input mask obtaining a new mask Ms. For
each pixel of the skeleton Ms, is defined a small (3×3) kernel,
three types of local neighbors distintct by the pixel distribution
around the central one, the cases are named as endpoint,
section and intersection (shown in Fig. 3).

C. Segments Generation

The skeleton’s pixels are merged based on their label
forming continuous segment, in this process the intersections’
segments are not considered forming a list of distintc linear
segments. This pixel are introduced later, after the intersection
connection are evaluated.

D. Intersections Processing

The intersections among the DLOs are solved by comparing
the feature vectors of the endpoints of two candidate segments
via a shallow neural network, i.e. similarity network, predict-
ing the probability of their connection. As features embedded
are used the RGB color of the endpoints, the thickness of the
mask and the direction of the nodes. The loss is computed
between an anchor, a positive and a negative sample. The
distance in the embedding space between anchor and positive
is minimized, while the one between anchor and negative
is maximized.The prediction is based on the distance of the
embedding vectors. To obtain a probability-like value in the
[0, 1] range describing the likelihood of the connection is used
a Gaussian activation function.

[16][32][7]
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Fig. 4: Endpoint-pair probability computation with a similarity
network using the node features embedding vector.

(a) different segments

a

b c

d

a c
b d

d a
b a

d
c b
c

0.987
0.928
0.290

0.249
0.185

0.160

predictions

(b) intersection processing with
predictions of the endpoints pairs

4.99

13.6

(c) example 1

3.46

24.4

(d) example 2

14.5

40.1

(e) example 3

Fig. 5: (a) segments generated; (b) example of intersection
processing of the region highlighted area in (a). Example of
the intersection layout estimation with DLOs having identical
colors, in (c) and (d), and different colors (e)

E. Informed Merging

Exploiting the endpoint-pairs connection probabilities com-
puted in Sec. II-D it is possible to concatenate segments
obtaining the full description of each DLO in the image. This
concatenation process is addressed as informed merging. The
probability scores are sorted in descending sorted. For each
probability, the relative segments obtained in II-C are merged
together into new segments with a new pair of endpoints.
Consequently, the endpoint-pairs having lower scores and with
one of the two endpoint elements already associated are not
considered and their merging avoided.

F. Intersections Layout

As final step, the DLOs are ordered by obtaining the one
at the top of each intersection by comparing the standard
deviation of the RGB colors along the line connecting the
endpoint-pair previously solved. This solution work with both
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Fig. 6: Qualitative evaluation of FASTDLO and the best
performing baseline using a sample for each category.

Method Backbone Key-points FPS Time [ms] IoU [%]

Ariadne+ ResNet-50 ✓ 3 354 73.96
Ariadne+ ResNet-101 ✓ 3 360 76.87

FASTDLO ResNet-50 ✓ 23 44 73.89
FASTDLO ResNet-101 ✓ 22 46 77.77

TABLE I: Comparison of FASTDLO with Ariadne+ [3]. Other
method test (Not shown in the table) involved [8], [9], [10].

colored and b/w images, in the first case because it is helped
by the different color, while in the latter since it exploit the
shadow produced by the DLO at the top. In Fig. 5 some
example intersections are displayed with the computed values.

III. EXPERIMENTAL VALIDATION

The evaluation of FASTDLO is performed on real data, a
test set of 135 manually labeled real images of electrical wires
organized in categories based on the background characteristic
and the numbers of intersections in the scene.
C1: Plain background with high contrast.
C2: Highly featured background (e.g. Pollock).
C3: Real-case scenario (e.g. Electrical Switchgear).

FASTDLO achieves better overall scores, showing a large
advantage over the general purpose approaches and performing
slightly better compared to Ariadne+, where both methods
employ the same weights in the segmentation network. From
the processing time perspective, FASTDLO is competitive with
respect to the general purpose methods while being almost
one order of magnitude faster than Ariande+. In Fig. 6
some samples for each test set category are shown with the
corresponding output predictions obtained with FASTDLO and
with Ariande+.

The prediction performances of the intersections layouts, i.e.
Sec. II-F, are also evaluated on the test set. Considering only
the correct endpoint-pairs predictions, the approach discussed
in Sec. II-F is able to provide a correct result in 226 of the
totals of 232 intersections, achieving an overall accuracy of
97.4% compared to 78.3% (177/226) of Ariadne+. Thus, it
is clear the validity of the proposed method that is executed
without noticeable overhead in terms of processing time. In

Procedure ResNet-101 ResNet-50
1 2 3 1 2 3

Binary Segmentation 19.72 19.49 19.49 15.73 15.67 15.67
Skeleton Generation 12.27 13.26 14.25 12.86 14.33 14.78
Endpoint-pairs Predictions 0.80 1.04 1.21 0.86 1.01 1.16
Informed Merging 15.13 17.09 18.81 15.93 18.57 19.58

Total 41.91 45.62 50.53 39.26 45.43 49.07

TABLE II: Average execution times of FASTDLO with respect
to the number of intersections in the image, i.e. 1, 2, and 3,
and the backbone. Values expressed in milliseconds

Tab. II a characterization of the average timing for the different
stages of the method is provided by analyzing the effects
of the ResNet backbones and the number of intersections in
the image. As the number of intersections increases, both
the segmentation and endpoint-pairs predictions times stay
relatively constant batch-inference. The skeleton generation
time increases of about 15% from 1 to 3 intersections. Also,
the additional processing time, mostly due to the informed
merging approach, increases with the number of intersections,
as expected. Overall, the total processing time is in the range of
40 to 50 ms in all the conditions. FASTDLO can be extended
to work with a large variety of DLOs, in particular it was
tested on semi-transparent plastic medical hoses. For other
DLOs such as ropes or string, it may be required to re-train
the segmentation with a more specific dataset.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, a DLOs instance segmentation algorithm is
presented capable to reach processing rate higher than 20
FPS with reliable and accurate prediction. As future work,
FASTDLO will be integrated into application where the infor-
mation provides by the algorithm may be required, for instance
the cable-tracking.
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