

This document was produced within the MONTUS project financed by the European Union in the
framework of Erasmus + Capacity Building 598264-EPP-1-2018-1-FR-EPPKA2-CBHE-JP.

IOT FOR ENVIRONMENTAL MONITORING

45 h – 3 VNC – 6 ECTS

Contacte lecturers:
Korakot Suwannarat, 1School of Engineering and Technology, Walailak University, Thailand
Suthira Thongkao, School of Language and General Education, Walailak University, Thailand

Objectives

- Knowledge:
o Basic embedded system design and microcontroller programming
o How to collect environmental data and the methods to transmit data to

to cloud database with real IoT protocols for communication
o Define the correlation between type and format of environmental data

and widget kinds
o Understand the situation of agricultural production, fertilizer, pesticide,

water supply for irrigation, food chain securities and cleaner production;
- Skills:

o Students will know how to implement the IoT for environmental
monitoring system

- Attitude:
o Participate in discussion group; build case study to apply the knowledge

of IoT to the professional field.

Content of the courses:
- Chapter 1: Introduction to embedded systems and IoT

o Lecture 1:
▪ Basic for Embedded System

o Lecture 2:
▪ Basic for Internet of Things

- Chapter 2: Microcontroller programming, sensors interfacing and data collection

o Lecture 3:
▪ Microcontroller programming

o Lecture 4:
▪ Example of Environmental Sensors

o Lecture 5:
▪ Data collection methods

o Lecture 6:
▪ Practice embedded system programming and sensors

interfacing

- Chapter 3: Cloud Services
o Lecture 7:

▪ Introduction to Cloud Services

This document was produced within the MONTUS project financed by the European Union in the
framework of Erasmus + Capacity Building 598264-EPP-1-2018-1-FR-EPPKA2-CBHE-JP.

o Lecture 8:
▪ Practice cloud storage design and implementation

- Chapter 4: Cloud and IoT Integration

o Lecture 9:
▪ Data Transmission from device to cloud

o Lecture 10-11:
▪ Practice integrating Sensor end device to cloud

o Lecture 12:
▪ Practice Using a HUPI cloud computing

- Chapter 5: Environmental Monitoring System Design

o Lecture 13:
▪ Data visualization
▪ Dashboard monitoring design

o Lecture 14-15:
▪ Practice the deploying the environmental monitoring

Academic Materials

1. E. A. Lee and S. A. Seshia, Introduction to Embedded Systems - A Cyber-
Physical Systems Approach, MIT Press, 2017

2. Steve Heath, Embedded Systems Design, Newnes, 2003
3. Rajkumar B., Amir V.D., Internet of Things: Principles and Paradigms,

Elsevier, 2016
4. Ryan Batts, Architecting for the Internet of Things, O’Reilly, 2016
5. John Soldatos, Building Blocks for IoT Analytics Internet-of-Things Analytic,

River Publishers, 2017

This document was produced within the MONTUS project financed by the European Union in the
framework of Erasmus + Capacity Building 598264-EPP-1-2018-1-FR-EPPKA2-CBHE-JP.

Introduction to embedded systems and IoT
Basic for Embedded System

What is an Embedded System?
An embedded system is a small scale computer system that is part of a machine or a larger
electrical/mechanical system. It is often designed to perform certain dedicated tasks and often a real-
time system. It is called embedded because the computer system is embedded within a hardware
device. Embedded systems are important, as they are getting increasingly used in many daily
appliances, such as digital watches, cameras, microwave ovens, washing machines, boilers, fridges,
smart TVs, and cars. Embedded systems also often need to be small in size, low in cost, and have low
power consumption. Figure 1 shows the schematic diagram of a typical embedded system that includes
a microcontroller, inputs/outputs, and communication interfaces (P.Xiao, 2018).

Figure 1 Schematic diagram of a typical embedded system (P.Xiao, 2018).

Microcontroller
A microcontroller is the brain of an embedded system, which orchestrates all the operations. A
microcontroller is a computer processor with memory and all input/output peripherals on it. More
details about microcontrollers will be illustrated in the Microcontroller programming, sensors interfacing
and data collection section.

Inputs
An embedded system interacts with the outside world through its inputs and outputs. Inputs can be
digital inputs or analog inputs. Inputs are typically used for reading data from sensors (temperature
sensor, light sensor, ultrasound sensor, etc.) or other types of input devices (keys, buttons, etc.).

Outputs
Outputs can also be digital outputs or analog outputs. Outputs are typically used for display, driving
motors, or other devices (actuators).

Communication Interfaces
An embedded system communicates with other devices using communication interfaces, which
includes Ethernet, USB (Universal Serial Bus), CAN (Controller Area Network), Infrared, ZigBee, WiFi
and Bluetooth, for example.

Basic for Internet of Things

This document was produced within the MONTUS project financed by the European Union in the
framework of Erasmus + Capacity Building 598264-EPP-1-2018-1-FR-EPPKA2-CBHE-JP.

What is the Internet of Things (IoT)?
The Internet of Things (IoT) refers to the network of physical objects. It is fast growing and already has
billions of devices connected. This is different from the current Internet, which is largely a network of
computers, including phones and tablets. The “things” in the IoT can be anything from household
appliances, machines, goods, buildings, and vehicles to people, animals, and plants. With the IoT, all
the physical objects are interconnected, capable of exchanging data with each other without human
intervention. They can be accessed and controlled remotely. This is going to completely transform our
lives—it will be truly revolutionary (JP.Xiao,2018).

The Internet of Things (IoT) is commonly understood to mean the connection of various objects
to the Internet and the use of that connection to enable remote monitoring or control of those objects.
This definition of IoT is constrained and only takes into account a portion of its development. It
essentially represents a rebranding of the current Machine to Machine (M2M) business (J.Chase, 2013).

Figure 2. The symbolic view of the Internet of Things (IoT).

(Source: https://pixabay.com/en/network-iot-internet-of-things-782707)

Today, the Internet of Things is largely seen as the next big thing, the future of the Internet. According
to Internet Society, there will be about 100 billion IoT devices and a global market of more than $11
trillion by 2025 (JP.Xiao,2018). The IoT will grow exponentially, just like the Internet did about two
decades ago.

How Does IoT Work?
There are several steps in order to make the Internet of Things (IoT) work.

First, each “thing” on the Internet of Things must have a unique identity. Thanks to the Internet Protocol
Version 6 (IPv6) address, the 128bit next generation Internet Protocol (IP) address can provide 2128
different addresses—that is about 6.7 × 1023 addresses per square meter. We should be able to assign
a unique ID to every physical object on the planet.
Second, each “thing” must be able to communicate. There are a number of modern wireless
technologies which make communications possible, such as WiFi, Bluetooth Low Energy, Near-field
communication (NFC), RFID, as well as ZigBee, Z-Wave, and 6LoWPAN (IPv6 over Low power Wireless
Personal Area Networks), etc.

This document was produced within the MONTUS project financed by the European Union in the
framework of Erasmus + Capacity Building 598264-EPP-1-2018-1-FR-EPPKA2-CBHE-JP.

Third, each “thing” needs to have sensors so that we can get information about it. Sensors can be
temperature, humidity, light, motion, pressure, infrared, ultrasound sen- sors, etc. The new sensors are
increasingly getting smaller, cheaper, and more durable.

Fourth, each “thing” needs to have a microcontroller (or microprocessor) to manage the sensors and
communications, and to perform the tasks. There are many microcontrollers exist that could be used for
IoT.

Finally, we will need cloud services to store, analyze, and display data so that we can see what’s going
on and take action via phone apps. There are already a lot of big companies working on this, such as
IBM’s IBM Watson, Google’s Google Cloud Platform, Microsoft’s Azure, and Oracle’s Oracle Cloud etc.

Microcontroller programming, sensors interfacing
and data collection

Microcontroller programming
THE IDE
When it comes to writing your code, the IDE (integrated development environment) is where you’re
going to have the most choices available to you. As a matter of fact, it’s kind of a dirty little secret among
programmers that you don’t need to use a fancy development environment like Microsoft’s Visual Studio
or Eclipse at all. You can write perfectly good, functional C code with any standard text editor, like
emacs, vim, Sublime Text, or even Windows’ Notepad or Mac’s TextEdit.

Important subjects in microcontroller programming include microcontroller architecture, data types,
if/then/else conditions, loops, GPIO, Interfacing, and interrupts.

Sensors
What are sensors?
Sensors are electrical components that function as input devices. Not all inputs are explicitly sensors,
but almost all inputs use sensors! Consider your computer mouse or trackpad, a keyboard, or even a
webcam; these are not sensors, but they definitely use sensors in their de- sign. More abstractly, you
can frame sensors as a component to measure a stimulus that is external to the system it is in (its
environment). The output data is based on the measurement. For example, when you type at a
keyboard, the letter that appears on your screen (the output) is based on the measurement (which
switch, or key, you pressed on the keyboard). How many letters appear on screen is based on another
measurement (how long you keep the key pressed). Figure 3 illustrates the use of environmental
sensors, such as an infrared sensor and an ultrasonic sensor, to measure distance. A flex sensor can
be used to evaluate an object's curvature. Photoresistors, also known as light dependent resistors
(LDR), are light-sensitive devices that are commonly used to detect the presence or absence of light or
to quantify the intensity of light.

This document was produced within the MONTUS project financed by the European Union in the
framework of Erasmus + Capacity Building 598264-EPP-1-2018-1-FR-EPPKA2-CBHE-JP.

Figure 3. Examples of Sensors

Data collection methods

Aside from traditional communication technologies like Ethernet, WiFi, and Bluetooth, there are several
more technologies that may be utilized for Internet of Things connections. In IoT systems, end devices
are frequently deployed remotely. Furthermore, certain places lack a power source for all end devices.
For today's modern IoT applications, LPWAN communication is prevalent. Table 1 shows the kinds of
wireless communication that are used in the IoT. In short-range communication, LiFi, WiFi, cellular, and
Bluetooth are employed. All of them, however, have the benefit of being able to send data at a high data
rate. Wide Area Network (WAN) networks include Z-bee, Z-wave, and LoRa. LoRa, in particular, can
transfer data up to 15km but has a limited data transmission rate.

Table 1. Wireless technologies in IoT applications (P.Xiao, 2018)].

This document was produced within the MONTUS project financed by the European Union in the
framework of Erasmus + Capacity Building 598264-EPP-1-2018-1-FR-EPPKA2-CBHE-JP.

The Internet of Things networks can be divided into two categories based on the transmission
data rate.

a. Low transmission data rate

The low transmission rate is suitable for Internet of Things applications in which the end
devices upload the message data, such as NB-IoT, LoRa, and Sigfox...

b. High transmission data rate
For some IoT applications to send large amounts of data, like pictures or videos, a high
transmission data rate is required.

Network Protocols in the IoT
Protocols, or communication protocols, are a set of rules that allow devices to communicate with each
other. Protocols define the syntax, semantics, and synchronization of communication. A close analogy
to protocols is human languages. There are many communication protocols available for IoT
applications. The following are commonly used protocols: HTTP, Websocket, and MQTT(P.Xiao,
2018).

HTTP
The Hypertext Transfer Protocol (HTTP) is the communication protocol behind the World Wide Web
(WWW). It is based on client–server architecture, and operates in a request and response fashion.
HTTP uses TCP (transmission control pro-tocol) to provide reliable connections.

WebSocket
WebSocket is a communication protocol designed for web browsers and web servers, but unlike
HTTP, WebSocket provides full-duplex communication over a single TCP connection. WebSocket is
stateful, as the client and server do maintain a connection during the communication. The WebSocket
makes more interaction between a browser and a web server possible, enables real-time data transfer
and streams of messages.

MQTT
MQ Telemetry Transport (MQTT) is a lightweight, machine-to-machine communication protocol
designed for IoT devices by IBM. MQTT is based on a publisher–subscriber model, where the publisher
publishes data to a server (also called broker), and the subscriber subscribes to the server and receives
data from the server. The MQTT broker is responsible for distributing messages and can be somewhere
in the Clouds.

CoAP
The Constrained Application Protocol (CoAP) is a specialized application layer proto-col for constrained
IoT devices, i.e., devices with limited computing power, power consumption, and network connectivity,
etc. It is based on request and response messages, similar to HTTP, but it uses UDP (user datagram
protocol)rather than TCP (transmission control protocol). Although UDP does not provide reliable
transmissions, it is much simpler, has much smaller overhead, and hence it is much faster. CoAP is
designed for machine-to-machine (M2M) applications such as smart energy and home / building
automation.

XMPP
Extensible Messaging and Presence Protocol (XMPP) is an open standard, real-time communication
protocol based on XML (Extensible Markup Language). It can provide a wide range of services including
instant messaging, presence and collaboration. It is decentralized and has security features. It is also
extensible, which means it is designed to grow and accommodate changes. XMPP software includes
servers, clients, and libraries.

This document was produced within the MONTUS project financed by the European Union in the
framework of Erasmus + Capacity Building 598264-EPP-1-2018-1-FR-EPPKA2-CBHE-JP.

Cloud Services
Understanding Serverless Computing

Serverless architecture encompasses many things, and before jumping into creating serverless
applications, it is important to understand exactly what serverless computing is, how it works, and the
benefits and use cases for serverless computing. Generally, when people think of serverless computing,
they tend to think of applications with back-ends that run on third-party services, also described as code
running on ephemeral containers. Many businesses and people who are new to serverless computing
will consider serverless applications to be simply “in the cloud.” While most serverless applications are
hosted in the cloud, it’s a misperception that these applications are entirely serverless. The applications
still run on servers that are simply managed by another party. Two of the most popular examples of this
are AWS Lambda and Azure functions. We will explore these later with hands-on examples and will also
look into Google’s Cloud functions[9].

1. What Is Serverless Computing?
Serverless computing is a technology, also known as function as a service (FaaS), that gives

the cloud provider complete control over the container the functions run on as necessary to serve
requests. By doing so, these architectures remove the need for continuously running systems and serve
as event-driven computations. The feasibility of creating scalable applications within this architecture is
huge. Imagine having the ability to simply write code, upload it, and run it, without having to worry about
any of the underlying infrastructure, setup, or environment maintenance. The possibilities are endless,
and the speed of development increases rapidly. By utilizing the serverless architecture, you can push
out fully functional and scalable applications in half the time it takes you to build them from the ground
up[9].

Cloud Services
Cloud services can be classified into three categories: Infrastructure-as-a-Service (IaaS), Platform-as-
a-Service (PaaS), and Software-as-a-Service (SaaS)[10].

Figure 4. Cloud services models[9].

• IaaS provides customers with the capability to rent hardware components such as CPUs,
storage, and networks. The customers are allowed to run their selected OS and applications on the

This document was produced within the MONTUS project financed by the European Union in the
framework of Erasmus + Capacity Building 598264-EPP-1-2018-1-FR-EPPKA2-CBHE-JP.

hardware components. The customers pay for hardware components usage, such as CPU usage,
storage usage, and network usage. Amazon EC2 is an example of IaaS[10].
• PaaS allows customers to use cloud-provided programming tools to develop their applications
and deploy them on the PaaS platform. Elasticity and scalability of the application are guaranteed by
the PaaS platform. The customers cannot control the underlying hardware components. Customers pay
only for the platform software components, such as databases, OS, and middleware, which include its
associated hardware costs. Microsoft Azure and Google App Engine are examples of PaaS.
• In the SaaS model, an application, such as email and office software, is offered as a service by the
cloud provider. Customers can access the service by using various devices through a thin client interface
such as a web browser. The cloud provider hosts and manages the required software and hardware to
support the service. The customers pay a subscription fee for the usage of the service. SaaS reduces
the need to deploy on-premise applications, which are usually expensive. It also reduces the need for
manual updates because the SaaS pro- viders can perform those tasks automatically. Microsoft Outlook
365 and Google Docs are examples of SaaS[10].

Cloud and IoT Integration
Wireless Sensor Networks (WSN)
A WSN can be defined as a network of devices, denoted as nodes, which can sense the environment
and communicate the information gathered from the monitored field (e.g., an area or volume) through
wireless link. The data is forwarded, possibly via multiple hops, to a sink (sometimes denoted as
controller or monitor) that can use it locally or is connected to other networks (e.g., the internet) through
a gateway. The nodes can be stationary or moving. They can be aware of their location or not and they
can be homogeneous or not.

Figure 5 Left part: single-sink WSN. Right part: milti-sink scenario

This is a traditional single-sink WSN (see Figure 5, left part). Almost all scientific papers in the literature
deal with such a definition. This single-sink scenario suffers from the lack of scalability: by increasing
the number of nodes, the amount of data gathered by the sink increases, and once its capacity is

This document was produced within the MONTUS project financed by the European Union in the
framework of Erasmus + Capacity Building 598264-EPP-1-2018-1-FR-EPPKA2-CBHE-JP.

reached, the network size cannot be augmented. Moreover, for reasons related to MAC and routing
aspects, network performance cannot be considered independent of the network size.

A more general scenario includes multiple sinks in the network (see Figure 5, right part). Given a level
of node density, a larger number of sinks will decrease the probability of isolated clusters of nodes that
cannot deliver their data owing to unfortunate signal propagation conditions. In principle, a multiple-sink
WSN can be scalable (i.e., the same performance can be achieved even by increasing the number of
nodes), while this is clearly not true for a single-sink network.

However, a multi-sink WSN does not represent a trivial extension of a single- sink case for the network
engineer. In many cases, nodes send the data collected to one of the sinks, selected among many,
which forwards the data to the gateway, toward the final user (see Figure 5, right part). From the protocol
viewpoint, this means that a selection can be done, based on a suitable criteria that could be, for
example, minimum delay, maximum throughput, minimum number of hops, etc. Therefore, the presence
of multiple sinks ensures better network performance with respect to the single-sink case (assuming the
same number of nodes is deployed over the same area), but the communication protocols must be more
complex and should be designed according to suitable criteria.

Data Transmission from device to cloud
IoT platforms connect the sensors and data network to one another, integrating with backend

applications to provide insights using backend applications to make sense of the plethora of data
generated by hundreds of sensors. With IoT platforms, you can connect and monitor your devices and
sensors, display and analyze sensor data, control your devices, and develop software applications for
your devices. The following is a list of commonly used IoT platforms

AWS IoT
Amazon’s AWS IoT platform provides secure communications between IoT devices and AWS. AWS
IoT supports HTTP, WebSockets, and MQTT. Figure 6 shows the schematic diagram of Amazon’s
AWS IoT platform from the Amazon website. Its Rules Engine can route messages to AWS endpoints,
including AWS Lambda, Amazon Kinesis, Amazon S3, Amazon Machine Learning, Amazon
DynamoDB, Amazon CloudWatch, and Amazon Elasticsearch Service with built-in Kibana integration.
It can also create a persistent, virtual version, or “shadow,” of each device that includes the device’s
latest state, so that users can interact with devices even when they are offline. Additional AWS IoT
information is available at https://aws.amazon.com/iot/.

This document was produced within the MONTUS project financed by the European Union in the
framework of Erasmus + Capacity Building 598264-EPP-1-2018-1-FR-EPPKA2-CBHE-JP.

Figure 6. AWS IoT platform (Source: https://aws.amazon.com/iot/)

Microsoft Azure IoT Suite
Microsoft Azure IoT Suite can be easily integrated with your systems and applications, including
Salesforce, SAP, Oracle Database, and Microsoft Dynamics. It packages together Azure IoT services
with preconfigured solutions. The Azure IoT Suite supports HTTP, Advanced Message Queuing Protocol
(AMQP), and MQTT. A set of device SDKs for .NET, JavaScript, Java, C and Python are available.
Figure 7 shows the schematic diagram of the Microsoft Azure IoT solution architecture. Additional
Microsoft Azure IoT Suit information is available at https://azure.microsoft.com/en-us/suites/ iot-suite/

This document was produced within the MONTUS project financed by the European Union in the
framework of Erasmus + Capacity Building 598264-EPP-1-2018-1-FR-EPPKA2-CBHE-JP.

Figure 7. Microsoft Azure IoT architecture. (Source:https://azure.microsoft.com/en-us/suites/ iot-suite/)

Google Cloud IoT
Google Cloud IoT takes advantage of Google’s heritage of web scale processing, analytics, and
machine intelligence. It utilizes Google’s global fiber network (70 points of presence across 33 countries)
for ultra low latency. Software libraries are available for Go, Java (Android), .NET, JavaScript,
ObjectiveC (iOS), PHP, Python, and Ruby. Figure8 shows the schematic diagram of the Google Cloud
IoT platform. Additional Google Cloud IoT information is available at
https://cloud.google.com/solutions/iot/

Figure 8. Google Cloud IoT Platform. (Source: https://cloud.google.com/solutions/iot)

This document was produced within the MONTUS project financed by the European Union in the
framework of Erasmus + Capacity Building 598264-EPP-1-2018-1-FR-EPPKA2-CBHE-JP.

Environmental Monitoring System Design

Data visualization
When it comes to gaining valuable insight in a company setting, the use of data visualization is critical.
Companies are desperate to view and learn from their Big Data. Data visualization, however, is a
growing field with a critical shortage of true experts(M.Yuk and S.Diamond, 2014).

Big Data refers to the voluminous amounts of infor- mation that can be collected from social media
data as well as internal company data. Analyzing and extracting insights from it is the goal.

Here’s a simple definition of data visualization: It’s the study of how to represent data by using a visual
or artistic approach rather than the traditional reporting method.

Two of the most popular types of data visualization are dashboards and infographics, both of which
use a combination of charts, text, and images to communicate the message of the data. The practice
of transforming data into meaningful and useful information via some form of visualization or report is
called Business Intelligence (BI)(M.Yuk and S.Diamond, 2014).

Data visualizations (you can call them data viz for short) are widely used in companies of all sizes to
communicate their data stories. This practice, known as BI, is a multibillion-dollar industry. It continues
to grow exponen- tially as more companies seek ways to use their big data to gain valuable insight into
past, current, and future events.

Dashboard monitoring design

Choosing simple and effective charts
Although you have many chart types to choose among, we recommend starting with some of the
simple and most commonly used charts for the most chance for success: bar and column charts, line
charts, and pie charts. No doubt you’re familiar with them and have seen many examples. In the
following sections, we discuss these chart types and show you when to
use them(M.Yuk and S.Diamond, 2014).

Bar and column charts
Some people use the term bar chart when speaking about a chart that shows the data horizontally or
vertically; others call a chart that displays the data vertically a column chart. Whatever you call them,
these charts are best used for comparison (M.Yuk and S.Diamond, 2014).

Figure 9. An example of a bar chart(M.Yuk and S.Diamond, 2014).

This document was produced within the MONTUS project financed by the European Union in the
framework of Erasmus + Capacity Building 598264-EPP-1-2018-1-FR-EPPKA2-CBHE-JP.

When you use a column chart, be sure to shorten or use smaller labels on your x-axis below each bar
to ensure they display horizontally. Utilizing longer labels will result in the need to display the title
vertically, which is hard for the user to read.

Line charts
A line chart (Figure 10) connects data points over a period of time. Line charts are best used for
something like a trend to show movement. These charts are easy to read and fairly easy to create.
This type of chart should be one of your staples.

Figure 10. An example of a line chart

Pie charts
The use of pie charts is controversial, and the debate is more than a decade old. Just type the words
avoid pie chart in a search engine, and you’ll literally find more than 1 million entries. One of the best-
known data design experts, Edward Tufte, refers to pie charts as “dumb” in his book The Visual Display
of Quantitative Information (Graphics Press). Tufte argues that pie charts are dumb because they fail to
show comparisons and trends as well as bar or line charts do. Many experts argue that the eyes are not
good at estimating areas, which you must do when viewing a pie chart.

This document was produced within the MONTUS project financed by the European Union in the
framework of Erasmus + Capacity Building 598264-EPP-1-2018-1-FR-EPPKA2-CBHE-JP.

Figure 11. An example of a pie chart

Using gauges and scorecards to monitor

In data visualizations, gauges are often used to monitor the status of key per- formance
indicators or something with known data parameters. If you know the lowest and highest measurements,
you can use tick marks to display them and use a pointer to show where the data is at the present time.

Figure 12. An example of a gauge chart

Finding online tools for chart making
When you’re creating your first chart, you’ll probably use Microsoft Excel. But you can use many online
tools to accomplish the same task. Here are a few that you may want to consider:
✓ Rich Chart Live (www.richchartlive.com/RichChartLive): Available in both free and fee-based
versions

✓ ChartGo (www.chartgo.com/index.jsp): Free

✓ ChartGizmo (http://chartgizmo.com): Free

✓ Online Chart Tool (www.onlinecharttool.com): Free

An Example of an Environmental Dashboard

This document was produced within the MONTUS project financed by the European Union in the
framework of Erasmus + Capacity Building 598264-EPP-1-2018-1-FR-EPPKA2-CBHE-JP.

The first example is the air quality monitoring system that used LabVIEW to create the system. It is not
a cloud monitoring system. The dashboard show in Figure 13, the creators used gage with a color to
present the level of temperature and used line graphs to compare 2 sources of temperature[8].

Figure13. The real-time monitoring dashboard created with LabVIEW[8]

The second is that the SensCity platform was produced by the startup company in
Australia. Figure 14 (a) shows the line graph and location of the sensor station and
figure 14 (b) provides the air parameter in the table and shows the location of the
sensor that was installed.

This document was produced within the MONTUS project financed by the European Union in the
framework of Erasmus + Capacity Building 598264-EPP-1-2018-1-FR-EPPKA2-CBHE-JP.

(a)

(b)

Figure 14. The example dashboard on SensCity
(Source:https://senscity.com.au)

REFERENCE

1. E. A. Lee and S. A. Seshia. (2017), Introduction to Embedded Systems - A Cyber-Physical

Systems Approach, MIT Press.
2. S.Heath (2013), Embedded Systems Design, Newnes.

This document was produced within the MONTUS project financed by the European Union in the
framework of Erasmus + Capacity Building 598264-EPP-1-2018-1-FR-EPPKA2-CBHE-JP.

3. Rajkumar B., Amir V.D. (2016), Internet of Things: Principles and Paradigms, Elsevier.
4. R.Batts. (2016), Architecting for the Internet of Things, O’Reilly.
5. J.Soldatos (2017), Building Blocks for IoT Analytics Internet-of-Things Analytic, River Publisher.
6. M.Yuk and S.Diamond. (2014), Data Visualization For Dummies, John Wiley & Sons, Inc.
7. J.Chase. (2013), The Evolution of the Internet of Things, Texas Instruments.
8. B. Palczynska and D. Rabczuk. (2018). Low-Cost Embedded Control System for Environmental

Monitoring. 2018 IEEE International Conference on Environment and Electrical Engineering and
2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe),1-5, doi:
10.1109/EEEIC.2018.8493727.

9. M.Strigler. (2018), Beginning Serverless Computing, Apress.
10. R.Fox and W.Hao. (2018). Internet Infrastructure Networking, Web Services, and Cloud

Computing, CRC Press.
11. P.Xiao. (2018). Designing Embedded Systems and the Internet of Things (IoT) with the ARM Mbed,

WILEY.

(JP.Xiao,2018)

