1 **The first archaeal PET-degrading enzyme belongs to** 2 **the feruloyl-esterase family**

 $\frac{4}{5}$ Pablo Perez-Garcia^{1,2,‡}, Jennifer Chow^{1,‡}, Elisa Costanzi³, Marno F. Gurschke¹ 4 Pablo Perez-Garcia^{1,2,‡}, Jennifer Chow^{1,‡}, Elisa Costanzi³, Marno F. Gurschke¹, Jonas
5 Dittrich⁴, Robert F. Dierkes¹, Violetta Applegate³, Golo Feuerriegel¹, Prince Tete¹, Dominik
6 Danso¹, Julia Sch 5 Dittrich⁴, Robert F. Dierkes¹, Violetta Applegate³, Golo Feuerriegel¹, Prince Tete¹, Dominik
6 Danso¹, Julia Schumacher³, Christopher Pfleger⁴, Holger Gohlke^{4,5}, Sander H. J. Smits^{3,6},
7 Ruth A. Schmi 6 Danso¹, Julia Schumacher³, Christopher Pfleger⁴, Holger Gohlke^{4,5}, Sander H. J. Smits^{3,6},
7 Ruth A. Schmitz^{2,*}, Wolfgang R. Streit^{1,*}
8 Ruth A. Schmitz^{2,*}, Wolfgang R. Streit^{1,*}

- .
8
9
- -
9
0 ¹Department of Microbiology and Biotechnology, University of Hamburg, Ohnhorststrasse 18, 9 ¹Department of Microbiology and Biotechnology, University of Hamburg, Ohnhorststrasse 18,
0 22609 Hamburg, Germany
² Institute for General Microbiology, Christian-Albrechts-Universität zu Kiel, Am Botanischen
- 10 22609 Hamburg, Germany
11 ²Institute for General Micrc
12 Garten 1-9, Kiel, Germany ²Institute for General Microbiology, Christian-Albrechts-Universität zu Kiel, Am Botanischen
12 Garten 1-9, Kiel, Germany
³Center for Structural Studies (CSS), Heinrich Heine University Düsseldorf,
- 12 Garten 1-9, Kiel, Germany
13 ³Center for Structural
14 Universitätsstrasse 1, 4022 3 ³Center for Structural Studies (CSS), Heinrich Heine University Düsseldorf,
14 Universitätsstrasse 1, 40225 Düsseldorf, Germany
15 ⁴Institute-for-Pharmaceutical-and-Medicinal-Chemistry, Heinrich-Heine-University-Düssel
- 14 Universitätsstrasse 1, 40225 Düsseldorf, Germany
15 ⁴Institute for Pharmaceutical and Medicinal Chemis
16 40225 Düsseldorf, Germany 4 ⁴Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf,
16 140225 Düsseldorf, Germany
17 15 Institute for Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich,
- 16 40225 Düsseldorf, Germany
17 ⁵Institute for Bio- and Gec
18 Jülich, Germany 5 ⁹Institute for Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich,
18 Iulich, Germany
19 ⁶Institute for Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1,
- 18 Jülich, Germany
19 ⁶Institute for Bio
20 40225 Düsseldor ⁶Institute for Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1,
20 40225 Düsseldorf, Germany
21 20 40225 Düsseldorf, Germany
-
- $\frac{22}{23}$ 22 <u>Key words:</u> polyethylene terephthalate, archaeal hydrolase, feruloyl esterase, lignin
23 degradation,Bathyarchaeota,metagenome-assembled_genome_(MAG),hydrothermal_vent
24
- 23 degradation, Bathyarchaeota, metagenome-assembled genome (MAG), hydrothermal vent
24
.
-
- 25 25 [‡]These authors contributed equally.
26
- 26
27
- Corresponding authors:
- 27 Corresponding authors:
28 Prof. Dr. Wolfgang R. Str
29 Prof. Dr. Ruth A. Schmitz
- 28 Prof. Dr. Wolfgang R. Streit (<u>wolfgang.streit@uni-hamburg.de</u>)
29 Prof. Dr. Ruth A. Schmitz (<u>rschmitz@ifam.uni-kiel.de</u>)
30 29 Prof. Dr. Ruth A. Schmitz (<u>rschmitz@ifam.uni-kiel.de</u>)
30

31 **ABSTRACT** 33 contaminate marine and terrestrial environments. Today, around 40 bacterial and
34 fungal PET-active enzymes (PETases) are known, originating from four bacterial and 34 **fungal PET-active enzymes (PETases) are known, originating from four bacterial and 35 two fungal phyla. In contrast, no archaeal enzyme has been identified to degrade PET.** 35 two fungal phyla. In contrast, no archaeal enzyme has been identified to degrade PET.
36 Here we report on the structural and biochemical characterization of PET46, an 36 **Here we report on the structural and biochemical characterization of PET46, an
37 archaeal promiscuous feruloyl esterase exhibiting degradation activitiy on PET, bis-,** 37 archaeal promiscuous feruloyl esterase exhibiting degradation activitiy on PET, bis-,
38 and mono-(2-hydroxyethyl) terephthalate (BHET and MHET). The enzyme, found by a 38 and mono-(2-hydroxyethyl) terephthalate (BHET and MHET). The enzyme, found by a
39 sequence-based metagenome search, was derived from a non-cultivated, deep-sea 39 sequence-based metagenome search, was derived from a non-cultivated, deep-sea
40 Candidatus Bathyarchaeota archaeon. Biochemical characterization demonstrated 30 **Candidatus Bathyarchaeota archaeon. Biochemical characterization demonstrated
31 that PET46 is a promiscuous, heat-adapted hydrolase. Its crystal structure was solved** that PET46 is a promiscuous, heat-adapted hydrolase. Its crystal structure was solved
42 at a resolution of 1.71 Å. It shares the core alpha/beta-hydrolase fold with bacterial at a resolution of 1.71 Å. It shares the core alpha/beta-hydrolase fold with bacterial 43 PETases, but contains a unique lid common in feruloyl esterases, which is involved in
44 substrate binding. Thus, our study significantly widens the currently known diversity 44 substrate binding. Thus, our study significantly widens the currently known diversity
45 of PET-hydrolyzing enzymes, by demonstrating PET depolymerization by a lignin-44 **substrate binding. Thus, our study significantly widens the currently known diversity** 45 **of PET-hydrolyzing enzymes, by demonstrating PET depolymerization by a lignin-**46 **degrading esterase.**

18 **INTRODUCTION**
19 The global use of synthetic and fossil fuel-derived polymers on a multi-million-ton scale for 50 over eight decades and the lack of concepts for recycling have led to an unprecedented
51 accumulation of plastics of various sizes and blends in almost all ecological niches including 51 accumulation of plastics of various sizes and blends in almost all ecological niches including
52 the deep-ocean¹⁻⁵. Plastic litter serves as a carrier for many microorganisms that can attach 51 accumulation of plastics of various sizes and blends in almost all ecological niches including
52 the deep-ocean¹⁻⁵. Plastic litter serves as a carrier for many microorganisms that can attach the deep-ocean $^{\rm 1-5}$ the deep-ocean¹⁻⁵. Plastic litter serves as a carrier for many microorganisms that can attach
53 to their surface, constituting the so-called "plastisphere" ⁶⁻⁸. Many studies have described the to their surface, constituting the so-called "plastisphere" $6-8$ to their surface, constituting the so-called "plastisphere" ⁶⁻⁸. Many studies have described the
microbial communities colonizing most commodity polymers such as polyethylene (PE),
polypropylene (PP), or polystyrene (PS) 55 polypropylene (PP), or polystyrene (PS), but also polyethylene terephthalate (PET) or
56 polyamides (PA), through 16S rDNA amplicon or metagenomic sequencing, and less often 56 polyamides (PA), through 16S rDNA amplicon or metagenomic sequencing, and less often
57 by FISH or DGGE analysis⁸⁻¹¹. Most studies focused exclusively on bacterial lineages, while 56 polyamides (PA), through 16S rDNA amplicon or metagenomic sequencing, and less often
57 by FISH or DGGE analysis⁸⁻¹¹. Most studies focused exclusively on bacterial lineages, while by FISH or DGGE analysis⁸⁻¹¹ 57 by FISH or DGGE analysis⁸⁻¹¹. Most studies focused exclusively on bacterial lineages, while
58 only a few identified eukaryotes or archaea in addition (*e.g.* Table 1 in ¹²). While it has been only a few identified eukaryotes or archaea in addition (*e.g.* Table 1 in ¹² only a few identified eukaryotes or archaea in addition (e.g. Table 1 in 12). While it has been
59 speculated that some of these attached microorganisms might potentially be involved in the 50 degradation of the polymers, it is more likely that most of them will simply use the plastics as
51 a biocarrier or metabolize the additives, but are not able to break down the polymers 60 degradation of the polymers, it is more likely that most of them will simply use the plastics as
61 a biocarrier or metabolize the additives, but are not able to break down the polymers 61 a biocarrier or metabolize the additives, but are not able to break down the polymers
62 themselves^{13,14}. themselves $13,14$.

themselves^{13,14}.
63 Nevertheless, in recent years, several studies have identified microbial enzymes that are 64 able to degrade some of these synthetic polymers, including PET, polyurethane (PUR), PA,
65 and a few others from mainly renewable sources^{13,15}. To date, approximately 120 enzymes 64 able to degrade some of these synthetic polymers, including PET, polyurethane (PUR), PA,
65 and a few others from mainly renewable sources^{13,15}. To date, approximately 120 enzymes and a few others from mainly renewable sources 13,15 and a few others from mainly renewable sources^{13,15}. To date, approximately 120 enzymes
66 have been described to act on these polymers (PAZy database¹⁶), most of them being have been described to act on these polymers (PAZy database¹⁶ have been described to act on these polymers (PAZy database¹⁶), most of them being
67 esterases, amidases, and oxygenases. Many of these proteins have relatively low
68 conversion rates, show promiscuous activity or are 68 conversion rates, show promiscuous activity or are only active on oligomers. Even though
69 some euryarchaea (e.g. Thermoplasmatales) and TACK-archaea (e.g. Thaumarchaeota, 69 some euryarchaea (e.g. Thermoplasmatales) and TACK-archaea (e.g. Thaumarchaeota,
70 Crenarchaeota) have been found to colonize plastic particles of various sizes^{17,18}, not a 69 some euryarchaea (*e.g.* Thermoplasmatales) and TACK-archaea (*e.g.* Thaumarchaeota, 70 Crenarchaeota) have been found to colonize plastic particles of various sizes^{17,18}, not a
71 single plastic-active enzyme of archaeal origin has yet been identified to break down a 71 single plastic-active enzyme of archaeal origin has yet been identified to break down a
72 synthetic polymer.

72 synthetic polymer.
73 In the case of PET 73 In the case of PET, the vast majority of degrading enzymes derive from bacteria, including
74 Actinomycetota/Actinobacteria¹⁹⁻²¹, Pseudomonadota/Proteobacteria²²⁻²⁴, Actinomycetota/Actinobacteria¹⁹⁻²¹, Pseudomonadota/Proteobacteria²²⁻²⁴, 74 Actinomycetota/Actinobacteria¹⁹⁻²¹, Pseudomonadota/Proteobacteria²²⁻²⁴,

Bacillota/Firmicutes^{25,26} and recently Bacteroidota/Bacteroidetes²⁷. Few enzymes have been Bacillota/Firmicutes^{25,26} and recently Bacteroidota/Bacteroidetes²⁷. Few enzymes have been
identified in fungi (Eukarya), including *Candida antarctica* CalB, *Humicola insolens* HiC, and
T7 Fusarium solani FsC²⁸. 76 identified in fungi (Eukarya), including *Candida antarctica* CalB, *Humicola insolens* HiC, and *Fusarium solani* FsC²⁸. These enzymes share some common features: They are cutinases or
78 . esterases, their catalytic triad comprises Ser-Asp-His, the active site is fairly exposed to the esterases, their catalytic triad comprises Ser-Asp-His, the active site is fairly exposed to the
solvent, and they are deprived of any lid domain. Furthermore, aromatic (Trp, Phe, Tyr) and
Met residues within the catalytic 59 solvent, and they are deprived of any lid domain. Furthermore, aromatic (Trp, Phe, Tyr) and
1998 Met residues within the catalytic pocket contribute to the binding of PET and the formation of 80 Met residues within the catalytic pocket contribute to the binding of PET and the formation of
81 the oxyanion hole^{13,29,30}. the oxyanion hole 13,29,30 . the oxyanion hole^{13,29,30}.
82 Within this work, we describe and characterize PET46 (NCBI accession RLI42440.1), the

83 first enzyme from archaeal origin reported to hydrolyze PET polymer. The enzyme is
84 encoded in the metagenome-assembled genome (MAG) of the Candidatus Bathvarchaeota 84 encoded in the metagenome-assembled genome (MAG) of the Candidatus Bathyarchaeota
85 archaeon B1 G2, a member of the TACK group that was found at the Guaymas Basin³¹. The 84 encoded in the metagenome-assembled genome (MAG) of the Candidatus Bathyarchaeota
85 archaeon B1_G2, a member of the TACK group that was found at the Guaymas Basin³¹. The archaeon B1_G2, a member of the TACK group that was found at the Guaymas Basin 31 86 experimentally established crystal structure of the protein is similar to bacterial PET-87 degrading enzymes, but reveals several unique features. These include differences in the
88 amino acid composition in and around the active site compared to its bacterial and eukaryotic 88 amino acid composition in and around the active site compared to its bacterial and eukaryotic
89 counterparts. Furthermore, the enzyme's structure shows high homology to feruloyl 88 amino acid composition in and around the active site compared to its bacterial and eukaryotic
89 counterparts. Furthermore, the enzyme's structure shows high homology to feruloyl 89 counterparts. Furthermore, the enzyme's structure shows high homology to feruloyl
90 esterases and a flexible lid domain covers its active site, which was not previously described 90 esterases and a flexible lid domain covers its active site, which was not previously described
91 elsewhere for PETases. These findings demonstrate higher diversity of PET-active enzymes 91 elsewhere for PETases. These findings demonstrate higher diversity of PET-active enzymes
92 and strongly suggest that more enzymes could be able to degrade PET, which possibly have 92 and strongly suggest that more enzymes could be able to degrade PET, which possibly have
93 on to vet been discovered by strict sequence and structural homology searches. 93 not yet been discovered by strict sequence and structural homology searches.

95

95 **RESULTS** 96 Profile Hidden Markov Model (HMM) search identifies the novel archaeal PETase
97 PET4<mark>6</mark> 97 PET46
98 Previous research identified PET esterases in bacteria and two fungal phyla (Figure 1). Since

99 hitherto no archaeal PETase had been described, we speculated that archaeal esterases
100 might as well be capable to hydrolyze PET. To address this question, we performed global 100 might as well be capable to hydrolyze PET. To address this question, we performed global
101 database searches using publicly available microbial genomes and metagenomes from 100 might as well be capable to hydrolyze PET. To address this question, we performed global
101 database searches using publicly available microbial genomes and metagenomes from 101 database searches using publicly available microbial genomes and metagenomes from 102 NCBI's non-redundant database using a previously published HMM-based search
103 approach^{23,32}. approach 23,32 .

104 We selected PET46 as a putative archaeal PET-degrading esterase (Figure 1). Its sequence 105 originates from a recently identified TACK archaeon found at a deep-sea marine sediment
106 from the Guaymas Basin (Gulf of California, Mexico). The host strain Candidatus 106 from the Guaymas Basin (Gulf of California, Mexico). The host strain Candidatus
107 Bathyarchaeota archaeon B1 G2 has not been cultivated, but is part of a genome 107 Bathyarchaeota archaeon B1_G2 has not been cultivated, but is part of a genome
108 From trainia, Mexico provect^{31,33}. PET46 is encoded on a short 3,316 bp contig (QMYN01000264.1) 107 Bathyarchaeota archaeon B1_G2 has not been cultivated, but is part of a genome
108 reconstruction project^{31,33}. PET46 is encoded on a short 3,316 bp contig (QMYN01000264.1) reconstruction project^{31,33} 109 by a 786 bp ORF coding for an alpha/beta-hydrolase (RLI42440.1) with 262 aa and a
110 Dredicted molecular weight of 29.4 kDa (Supplementary Fig. S1). The other ORFs in the 110 predicted molecular weight of 29.4 kDa (Supplementary Fig. S1). The other ORFs in the
111 contig code for a tRNA-deacylase and two ribosomal proteins (Supplementary Fig. S1). 110 predicted molecular weight of 29.4 kDa (Supplementary Fig. S1). The other ORFs in the
111 contig code for a tRNA-deacylase and two ribosomal proteins (Supplementary Fig. S1). 111 contig code for a tRNA-deacylase and two ribosomal proteins (Supplementary Fig. S1).
112
.

112
113 113 *Amino acid sequence and structural analyses imply that PET46 is a feruloyl esterase*

115 detailed bioinformatics analysis. Thereby, we identified a predicted G-x-S-x-G motif which is
116 a common trait of α /B serine hydrolases³⁴. Amonast others, we identified conserved domains 115 detailed bioinformatics analysis. Thereby, we identified a predicted G-x-S-x-G motif which is
116 a common trait of α/β serine hydrolases³⁴. Amongst others, we identified conserved domains 116 . Amongst others, we identified conserved domains 118 dienelactone hydrolase (DLH) and lysophospholipase (PldB, Supplementary Fig. S1). A
119 BLASTp search against the non-redundant database results in 105 hits (query cov. > 80%. 119 BLASTp search against the non-redundant database results in 105 hits (query cov. > 80%,
120 seg. id > 40%), from which only 26 are archaeal homologs, exclusively from the TACK-group. 120 seq. id > 40%), from which only 26 are archaeal homologs, exclusively from the TACK-group.
121 Most of them derive from Bathyarchaeota, and only three hits are related to the phylum 121 Most of them derive from Bathyarchaeota, and only three hits are related to the phylum
122 Thermoproteota/Crenarchaeota. Interestingly, 79 homologs were found in Bacteria. 121 Most of them derive from Bathyarchaeota, and only three hits are related to the phylum
122 Thermoproteota/Crenarchaeota. Interestingly, 79 homologs were found in Bacteria, 122 Thermoproteota/Crenarchaeota. Interestingly, 79 homologs were found in Bacteria,
123 especially in Firmicutes (Supplementary Fig. S1). especially in Firmicutes (Supplementary Fig. S1).
124 – For further characterization, we produced PET46 wildtype (WT) heterologously in *E. coli*

124 For further characterization, we produced PET46 wildtype (WT) heterologously in *E. coli* 125 BL21 (DE3) carrying an N-terminal 6xHis-tag. The recombinant and purified protein was
126 Uused for crystallization and additional biochemical tests. 126 used for crystallization and additional biochemical tests.

127 Crystals of PET46 were obtained by sitting-drop vapor diffusion after 3-4 weeks. They were
128 harvested, cryoprotected, flash-frozen in liquid nitrogen, and datasets were collected at the
129 ESRF beamline ID23-1 (Gre harvested, cryoprotected, flash-frozen in liquid nitrogen, and datasets were collected at the
129 ESRF beamline ID23-1 (Grenoble, France). The best PET46 crystal grew in space group P 129 ESRF beamline ID23-1 (Grenoble, France). The best PET46 crystal grew in space group P
130 6₁ 2 2 and diffracted to a resolution of 1.71 Å (Supplementary Table 1). We could 130 6₁ 2 2 and diffracted to a resolution of 1.71 Å (Supplementary Table 1). We could
131 unambiguously model the protein chains in the electronic density between residues 1-269.
132 The final model was refined to Rwork 131 unambiguously model the protein chains in the electronic density between residues 1-269.
132 The final model was refined to Rwork/Rfree values of 15.23/17.27, and deposited to the PDB 132 The final model was refined to Rwork/Rfree values of 15.23/17.27, and deposited to the PDB
133 With accession ID 8B4U. All data collection and refinement statistics are reported in 133 with accession ID 8B4U. All data collection and refinement statistics are reported in
134 Supplementary Table 1.

135 One monomer is present in the asymmetric unit (ASU), which shares the common fold of the 136 alpha/beta hydrolase superfamily, with the core of the enzyme being composed by eight β -
137 strands connected by seven α -helixes (Supplementary Fig. S2). In addition, a lid domain 137 atrands connected by seven α-helixes (Supplementary Fig. S2). In addition, a lid domain
138 acomposed by three α-helixes and two anti-parallel β-strands is present (Leu141-Val186). The composed by three α-helixes and two anti-parallel $β$ -strands is present (Leu141-Val186). The 139 active site is composed of the catalytic triad Asp206, His238, and Ser115. Interestingly, an
140 unexpected electron density was present near the active site and it was modelled with a 139 active site is composed of the catalytic triad Asp206, His238, and Ser115. Interestingly, an
140 Unexpected electron density was present near the active site and it was modelled with a 140 unexpected electron density was present near the active site and it was modelled with a
141 phosphate ion and two ethylene glycol molecules (Supplementary Fig. S2), likely coming 141 phosphate ion and two ethylene glycol molecules (Supplementary Fig. S2), likely coming
142 from the protein buffer, crystallization solution and cryoprotectant.

143 Despite the low sequence similarity of only 23%, the structure of PET46 overlays the 144 IsPETase from *Ideonella sakaiensis* (PDB 6EQE) with 1.8 \AA C α -RMSD (Figure 2 and Table 145 1). The largest difference is the medium-sized lid comprising 45 aa in PET46 (Leu141-146 Val186, Figure 2). Further structural differences around the active site are found in the
147 enlarged loop between 64 and α 3 (Loop 1: Asp68-Glu78: deep blue in Figure 2). which folds 147 enlarged loop between β4 and α3 (Loop 1; Asp68-Glu78; deep blue in Figure 2), which folds
148 back to the outside. and the shorter loop between β10 and α10 containing the catalvtic His 148 back to the outside, and the shorter loop between β10 and α10 containing the catalytic His
149 (Loop 2: Arq234-Arq242: magenta in Figure 2), Loop 2 in IsPETase also contains one Cvs (Loop 2; Arg234-Arg242; magenta in Figure 2). Loop 2 in IsPETase also contains one Cys 150 that forms a disulfide bridge, which PET46 lacks. Almost all residues needed to form the
151 oxvanion hole and the aromatic clamp are conserved or have similar properties as in other 151 oxyanion hole and the aromatic clamp are conserved or have similar properties as in other
152 PETases¹³. Nevertheless. the lack of an equivalent to Trp185 in IsPETase suggests that the 151 oxyanion hole and the aromatic clamp are conserved or have similar properties as in other
152 PETases¹³. Nevertheless, the lack of an equivalent to Trp185 in IsPETase suggests that the $\mathsf{PETases}^{13}$ 153 lid domain is involved in substrate binding and formation of the aromatic clamp (Figure 2). To
154 in answer this question, we constructed a chimera named PET46∆lid, where we substituted 153 lid domain is involved in substrate binding and formation of the aromatic clamp (Figure 2). To
154 answer this question, we constructed a chimera named PET46 Δ lid, where we substituted 154 answer this question, we constructed a chimera named PET46Δlid, where we substituted 155 Ala140-Pro187 with the homologous Trp185-Thr189 minimal loop of the IsPETase. By this,
156 we included the Trp185 involved in the formation of the aromatic clamp, which is missing in 156 we included the Trp185 involved in the formation of the aromatic clamp, which is missing in
157 PET46 (Figure 2).

157 PET46 (Figure 2).
158 We further compared the structure of PET46 to all published bacterial and eukaryotic 159 PETases (Table 1). Additionally, we performed searches against all crystal structures in the
160 PDB. From this database, the best hits obtained were the feruloyl esterases GthFAE from 160 PDB. From this database, the best hits obtained were the feruloyl esterases GthFAE from
161 Geobacillus *thermoglucosidasius* (PDB 7WWH) and Est1E from the rumen bacterium 161 Geobacillus thermoglucosidasius (PDB 7WWH) and Est1E from the rumen bacterium
162 Butyrivibrio proteoclasticus (PDB 2WTM) together with the cinnamoyl esterase LJ0536 from 162 *Butyrivibrio proteoclasticus* (PDB 2WTM) together with the cinnamoyl esterase LJ0536 from
163 *Lactobacillus iohnsonii* (PDB 3PF8: Figure 3 and Table 1). All hits derive from Firmicutes. 163 *Lactobacillus johnsonii* (PDB 3PF8; Figure 3 and Table 1). All hits derive from Firmicutes.
164 – Feruloyl esterases are also known as ferulic acid esterases (FAEs). They are involved in 164 Feruloyl esterases are also known as ferulic acid esterases (FAEs). They are involved in
165 Plant biomass degradation and cleave e.g. cinnamic, p-coumaric or ferulic acid, thus 165 plant biomass degradation and cleave e.g. cinnamic, p-coumaric or ferulic acid, thus
166 "decoupling" plant cell wall polysaccharides and lignin³⁵. Using ethyl cinnamate (EC) as a 165 plant biomass degradation and cleave *e.g.* cinnamic, *p*-coumaric or ferulic acid, thus
166 "decoupling" plant cell wall polysaccharides and lignin³⁵. Using ethyl cinnamate (EC) as a "decoupling" plant cell wall polysaccharides and lignin³⁵ 166 . Using ethyl cinnamate (EC) as a model substrate, we could detect enzyme-mediated H⁺ model substrate, we could detect enzyme-mediated H⁺ release derived from ester hydrolysis
168 (Supplementary Fig. S3). These aromatic acids esterified to long polymers may be
169 analogous to MHET units at the end of a P 169 analogous to MHET units at the end of a PET chain (Figure 3 and Supplementary Fig. S3).
170 FAEs are believed to be secreted enzvmes. even if no apparent N-terminal signal peptide is 170 FAEs are believed to be secreted enzymes, even if no apparent N-terminal signal peptide is
171 present³⁶. In the case of PET46, no obvious secretion signal is detected. Since FAEs form a 170 FAEs are believed to be secreted enzymes, even if no apparent N-terminal signal peptide is
171 present³⁶. In the case of PET46, no obvious secretion signal is detected. Since FAEs form a present³⁶ 171 present³⁶. In the case of PET46, no obvious secretion signal is detected. Since FAEs form a
172 protein family with tannases, to which the MHETase from *I. sakaiensis* belongs³⁷, we also protein family with tannases, to which the MHETase from *I. sakaiensis* belongs³⁷, we also
173 included its structure (PDB 6QZ4, Table 1) in our structural analysis. included its structure (PDB 6QZ4, Table 1) in our structural analysis.
174 – PET46 and all three FAEs shared the highest structural similarity. Even Loop 1 and Loop 2

175 are highly conserved, but some variations are observed at the lid domain (Figure 3, Table 1
176 and Supplementary Fig. S4). PET46 and GthFAE share the "G-L-S-M-G" motif, very similar 176 and Supplementary Fig. S4). PET46 and GthFAE share the "G-L-S-M-G" motif, very similar
177 to the bacterial PETase's "G-W/H-S-M-G". The other two FAEs have "G-H-S-Q-G", similar to to the bacterial PETase's "G-W/H-S-M-G". The other two FAEs have "G-H-S-Q-G", similar to 178 eukaryotic PETase´s "G-Y-S-Q-G". We analyzed the crystal structures of Est1E and LJ0536
179 co-crystallized with ferulic acid (FA; PDB 2WTN) or ethyl-ferulate (EF; PDB 3QM1) and 179 co-crystallized with ferulic acid (FA; PDB 2WTN) or ethyl-ferulate (EF; PDB 3QM1) and
180 confirmed that up to 5 aa in the lid are involved in substrate binding, including aromatic Tyr or 180 confirmed that up to 5 aa in the lid are involved in substrate binding, including aromatic Tyr or
181 Trp residues^{38,39}, some of which PET46 also possesses (Figure 3, Supplementary Figs. S2 180 confirmed that up to 5 aa in the lid are involved in substrate binding, including aromatic Tyr or
181 Trp residues^{38,39}, some of which PET46 also possesses (Figure 3, Supplementary Figs. S2 181 Trp residues^{38,39}, some of which PET46 also possesses (Figure 3, Supplementary Figs. S2
182 and S4). Overall, PET46 and FAEs build a cluster that is most similar to the cluster formed 182 and S4). Overall, PET46 and FAEs build a cluster that is most similar to the cluster formed

183 by bacterial PETases (Figure 3). The archaeal PETase is structurally most similar to the
184 metagenomic bacterial PETase LipIAF5-2 (PET2²³, Table 1). We then proceeded to 184 metagenomic bacterial PETase LipIAF5-2 (PET2²³, Table 1). We then proceeded to
185 characterize PET46 biochemically to confirm PETase activity. 185 characterize PET46 biochemically to confirm PETase activity.
186

187 187 *PET46 is a promiscuous feruloyl esterase that hydrolyzes MHET, BHET, 3PET and PET*

189 We tested PET46 for its activities on bis-(2-hydroxyethyl) terephthalate (BHET) and mono-(2-190 hydroxyethyl) terephthalate (MHET). Subsequently, we assayed activities on PET trimer
191 (3PET) and polymers, both powder and foil. This clearly demonstrated that PET46 is able to 190 hydroxyethyl) terephthalate (MHET). Subsequently, we assayed activities on PET trimer
191 (3PET) and polymers, both powder and foil. This clearly demonstrated that PET46 is able to 191 (3PET) and polymers, both powder and foil. This clearly demonstrated that PET46 is able to
192 break down plastic PET as well as the not completely hydrolyzed degradation products.
————————————————————————————————— 192 break down plastic PET as well as the not completely hydrolyzed degradation products.
193 PET46 WT can degrade both BHET and MHET. In less than 30 min, all BHET (150 µM in

194 200 µL) was converted to MHET or terephthalic acid (TPA) in a 4:1 ratio. After 1 h of
195 incubation, 51 µM TPA was measured. Incubation with the same amount of MHET for 1 h 195 incubation, 51 µM TPA was measured. Incubation with the same amount of MHET for 1 h
196 bresulted in 52 µM TPA released (Figure 4). This implies that PET46 degrades BHET 196 inculted in 52 µM TPA released (Figure 4). This implies that PET46 degrades BHET
197 incutremely efficiently, while MHET degradation occurred at the maximum rate independent 197 extremely efficiently, while MHET degradation occurred at the maximum rate independent
198 from the starting substrate. PET46Δlid could degrade BHET to MHET. but we did not detect 198 from the starting substrate. PET46∆lid could degrade BHET to MHET, but we did not detect
199 MHET degradation within 1 h incubation (Figure 4). Thus, the lid may be involved in 198 from the starting substrate. PET46Δlid could degrade BHET to MHET, but we did not detect
199 MHET degradation within 1 h incubation (Figure 4). Thus, the lid may be involved in 199 MHET degradation within 1 h incubation (Figure 4). Thus, the lid may be involved in
200 Substrate binding and catalysis. 200 substrate binding and catalysis.

202 in docking experiments with this substrate. Two main clusters of docked poses were
203 obtained covering 83% and 12% of all solutions and two smaller clusters containing 4% and 203 botained, covering 83% and 12% of all solutions, and two smaller clusters containing 4% and
204 1% (Supplementary Fig. S5). For both main clusters. the smallest distance between the 204 1% (Supplementary Fig. S5). For both main clusters, the smallest distance between the
205 substrate's carbonyl carbon and the hydroxyl oxygen from the catalytic serine is below 3.1 Å. substrate's carbonyl carbon and the hydroxyl oxygen from the catalytic serine is below 3.1 \AA . 206 indicating a plausible orientation of the substrate's ester group towards the catalytic
207 nucleophile (Supplementary Fig. S5). Based on the docking results, we identified two amino 207 inucleophile (Supplementary Fig. S5). Based on the docking results, we identified two amino
208 in acids, A46 and A140, nearby both predominant docking poses that might be relevant for the 208 acids, A46 and A140, nearby both predominant docking poses that might be relevant for the
209 substrate accessibility and binding (Supplementary Fig. S5). Introducing the larger 208 acids, A46 and A140, nearby both predominant docking poses that might be relevant for the
209 substrate accessibility and binding (Supplementary Fig. S5). Introducing the larger 209 substrate accessibility and binding (Supplementary Fig. S5). Introducing the larger substitutions A46V and A140I should thus impact the catalytic activity. We further identified
211 K147, which possibly interacts with docked poses from the second-largest cluster. Variant
212 K147A abolishes this interacti K147A abolishes this interaction and widens the binding groove (Supplementary Fig. S5).

213 We then proceeded to incubate PET46 WT and all the constructed variants (including the 214 PET46∆lid) on 3PET at 30, 60 and 70 °C. At the two highest temperatures, we observed a
215 very similar activity pattern, where PET46 WT, K147A, and A46V degraded all the 3PET to 215 very similar activity pattern, where PET46 WT, K147A, and A46V degraded all the 3PET to
216 MHET and TPA within the first 3 h (Figure 4). PET46 A140I performed slightly worse. while 216 MHET and TPA within the first 3 h (Figure 4). PET46 A140I performed slightly worse, while
217 PET46∆lid could only convert half of the 3PET after 72 h incubation (Figure 4). Interestingly, 217 PET46∆lid could only convert half of the 3PET after 72 h incubation (Figure 4). Interestingly,
218 A46V showed twice as much activitv at 30 °C than the WT enzvme. In all experiments. we 218 A46V showed twice as much activity at 30 °C than the WT enzyme. In all experiments, we
219 were not able to detect any BHET. Together with the previously obtained MHET-TPA profiles 219 bere not able to detect any BHET. Together with the previously obtained MHET-TPA profiles
220 ber time, we assume degradation happens at the polymer chain end (exo-activity), where 219 were not able to detect any BHET. Together with the previously obtained MHET-TPA profiles
220 over time, we assume degradation happens at the polymer chain end (exo-activity), where 220 over time, we assume degradation happens at the polymer chain end (exo-activity), where
221 3PET is hydrolyzed to MHET units, which are subsequently converted to TPA and ethylene 221 3PET is hydrolyzed to MHET units, which are subsequently converted to TPA and ethylene
222 glycol (EG).

223 Finally, we assayed all PET variants on PET powder and film. The WT showed the highest 224 Factivity of all enzymes and preferred PET powder over foil (Figure 5). We measured up to
225 F62.38 µM TPA in 200 µL after one day at 70 °C from PET powder. On foil, a maximum of 225 activity of all enable 225 activity of all enable 225 activity of 225 and the 225 activity of 226 and 226 and 25-50%. Activity 226 and 45-50% and 226 and 45-50%. We measured princ 45-50% 226 A.45 µM TPA was released. The variants K147A, A46V, and A140I displayed only 45-50%
227 Dess activity on powder than the WT. releasing 32.19-34.58 µM TPA equivalents from PET 227 Less activity on powder than the WT, releasing 32.19-34.58 µM TPA equivalents from PET
228 Dowder. On foil, they performed comparable to the WT. Finally, the lid-less variant released 227 Less activity on powder than the WT, releasing 32.19-34.58 µM TPA equivalents from PET
228 Lopwder. On foil, they performed comparable to the WT. Finally, the lid-less variant released 228 powder. On foil, they performed comparable to the WT. Finally, the lid-less variant released
229 the lowest concentration of products regardless of the substrate, displaying up to 90% less the lowest concentration of products regardless of the substrate, displaying up to 90% less
230 activity on PET powder compared to the WT. As for the incubation with 3PET, we did not
231 detect any BHET. Interestingly, aft 230 activity on PET powder compared to the WT. As for the incubation with 3PET, we did not
231 detect any BHET. Interestingly, after incubation with PET46 WT and A46V, no MHET was 231 detect any BHET. Interestingly, after incubation with PET46 WT and A46V, no MHET was
232 Emeasured. This suggest that these two enzymes are more effective in its degradation than 232 measured. This suggest that these two enzymes are more effective in its degradation than
233 the other variants.

234 We compared the measured activities of PET46 on PET substrates to literature values of the 235 best-performing PET-active enzymes LCC and IsPETase. PET46 released 0.0052 µmol TPA
236 mg⁻¹ mL⁻¹ h⁻¹. Under optimal conditions, IsPETase⁴⁰ releases 0.26-0.79 µmol TPA mg⁻¹ mL⁻¹ 235 best-performing PET-active enzymes LCC and IsPETase. PET46 released 0.0052 µmol TPA
236 mg⁻¹ mL⁻¹ h⁻¹. Under optimal conditions, IsPETase⁴⁰ releases 0.26-0.79 µmol TPA mg⁻¹ mL⁻¹ mg 1 mL 1 h 1 . Under optimal conditions, IsPETase 40 releases 0.26-0.79 µmol TPA mg 1 mL 1

 $h⁻¹$. This makes PET46 50- to 150-fold less active, respectively, according to the literature 237 $\,$ h⁻¹. This makes PET46 50- to 150-fold less active, respectively, according to the literature
238 values. However, an activity on PET polymer is clearly evident for PET46, which is higher
239 than the one observ 238 values. However, an activity on PET polymer is clearly evident for PET46, which is higher
239 than the one observed *e.g.* for the Bacteroidetes-derived PET30 enzyme²⁷ (0.0003-0.0016 than the one observed e.g. for the Bacteroidetes-derived PET30 enzyme²⁷ 239 than the one observed *e.g.* for the Bacteroidetes-derived PET30 enzyme²⁷ (0.0003-0.0016
240 pmol TPA mg⁻¹ mL⁻¹ h⁻¹). Furthermore, our work is the first report on PET degradation by a 240 µmol TPA mg⁻¹ mL⁻¹ h⁻¹). Furthermore, our work is the first report on PET degradation by a
241 FAE.

241 FAE.
242 <mark>Bath</mark>y 242 Bathyarchaeota are ubiquitous and the predominant archaea at deep-sea environments like
243 the Guaymas Basin^{33,41} and they have been shown to grow on lignin as energy source⁴², for the Guaymas Basin 33,41 and they have been shown to grow on lignin as energy source 42 243 the Guaymas Basin^{33,41} and they have been shown to grow on lignin as energy source⁴², for
244 vuhich enzymes like PET46 need to be secreted. Thus, FAE-mediated promiscuous 244 which enzymes like PET46 need to be secreted. Thus, FAE-mediated promiscuous
245 degradation of PET litter in the deep-sea seems plausible, even if at low rates. 245 degradation of PET litter in the deep-sea seems plausible, even if at low rates.
246

247 247 **PET46 is adapted to the geochemical conditions at the Guaymas Basin**
248 We characterized PET46 in more detail and with respect to its temperature and substrate

248 We characterized PET46 in more detail and with respect to its temperature and substrate
249 profile. Therefore, a substrate spectrum was recorded with pNP-esters, which had an acyl 249 profile. Therefore, a substrate spectrum was recorded with *p*NP-esters, which had an acyl 250 chain length of 4 to 18 C-atoms.
251 The highest activities of PET46 were observed with *p*NP-decanoate (C10). PET46 was only

252 poorly active on short (C4-C6) and long (C12-16) acyl chain lengths (Supplementary Fig. 253 S6). The kinetic parameters for PET46 were determined with *p*NP-C10 at 70 °C and pH 8
254 according to Michaelis-Menten. Thereby, we measured a v_{max} of 2.89*10⁻⁵ mol min⁻¹, a k_{cat} of 253 S6). The kinetic parameters for PET46 were determined with *p*NP-C10 at 70 °C and pH 8
254 according to Michaelis-Menten. Thereby, we measured a v_{max} of 2.89*10⁻⁵ mol min⁻¹, a k_{cat} of according to Michaelis-Menten. Thereby, we measured a *v_{max}* of 2.89*10⁻⁵ mol min⁻¹, a *k_{cat}* of
255 110.99 min⁻¹, a *K*_m of 0.4 mM and a *k_{cat}/K*_m value of 277,475 M⁻¹ min⁻¹. 110.99 min⁻¹, a K_m of 0.4 mM and a k_{cal}/K_m value of 277,475 M⁻¹ min⁻¹. 255 . 110.99 min⁻¹, a K_m of 0.4 mM and a k_{cat}/K_m value of 277,475 M⁻¹ min⁻¹.
256 . Using 1 mM *p*NP-decanoate as substrate, the recombinant enzyme PET46 revealed a

257 in relatively broad temperature spectrum. The highest activity was observed at 70 °C, while at
258 in 90 °C only 10% residual activity was detectable. The enzyme remained active at a 258 90 °C only 10% residual activity was detectable. The enzyme remained active at a
259 temperature below 40 °C. but only had low activities (Figure 6). To further assess 259 temperature below 40 °C, but only had low activities (Figure 6). To further assess
260 thermostability, the recombinant PET46 was incubated at 60 °C and 70 °C for two weeks. At 260 thermostability, the recombinant PET46 was incubated at 60 °C and 70 °C for two weeks. At
261 60 °C, the enzyme kept more than 60% of its activity for up to 8 days. At 70 °C, 80% of the 60 °C, the enzyme kept more than 60% of its activity for up to 8 days. At 70 °C, 80% of the 261 60 °C, the enzyme kept more than 60% of its activity for up to 8 days. At 70 °C, 80% of the
262 activity was lost after 2 days, with only 10% remaining after 3 days (Figure 6). The original 262 activity was lost after 2 days, with only 10% remaining after 3 days (Figure 6). The original 263 metagenomic sample was collected at a temperature of 48 °C³¹, at which PET46 shows 52%
264 Frelative activity under laboratory conditions.

264 Frelative activity under laboratory conditions.
265 FPET46 revealed activity for the broad pH range of 5-8. It had its optimum at pH 7-8 when 266 tested on 1 mM *p*NP-C10 at 70 °C. However, it also retained relatively high activities (50%)
267 at pH 5. The pH at the Guaymas Basin is recorded to be approximately 5.9⁴³, at which 266 tested on 1 mM *p*NP-C10 at 70 °C. However, it also retained relatively high activities (50%)
267 at pH 5. The pH at the Guaymas Basin is recorded to be approximately 5.9⁴³, at which at pH 5. The pH at the Guaymas Basin is recorded to be approximately 5.9⁴³, at which
268 PET46 would exhibit up to 77% of its activity under laboratory conditions. 268 PET46 would exhibit up to 77% of its activity under laboratory conditions.
269 To further characterize the effects of various metal ions, PET46 was incubated for 1 h with 1

269 To further characterize the effects of various metal ions, PET46 was incubated for 1 h with 1
270 or 10 mM Ca²⁺, Co²⁺, Cu²⁺, Fe³⁺, Mg²⁺, Mn²⁺, Ni²⁺ or Zn²⁺. The activity was assayed under or 10 mM Ca²⁺, Co²⁺, Cu²⁺, Fe³⁺, Mg²⁺, Mn²⁺, Ni²⁺ or Zn²⁺ 270 or 10 mM Ca²⁺, Co²⁺, Cu²⁺, Fe³⁺, Mg²⁺, Mn²⁺, Ni²⁺ or Zn²⁺. The activity was assayed under
271 optimal conditions and compared to a metal-free control. The activity of PET46 significantly
272 increased 271 optimal conditions and compared to a metal-free control. The activity of PET46 significantly
272 increased in the presence of most of these ions. In contrast, Cu²⁺ reduced the activity by increased in the presence of most of these ions. In contrast, Cu^{2+} 272 increased in the presence of most of these ions. In contrast, Cu^{2+} reduced the activity by
273 50%. Especially the addition of Zn^{2+} resulted in almost two-fold activity increase 50%. Especially the addition of Zn^{2+} 273 50%. Especially the addition of Zn²⁺ resulted in almost two-fold activity increase
274 (Supplementary Fig. S6). Some of these ions are present at significant concentrations in the 274 (Supplementary Fig. S6). Some of these ions are present at significant concentrations in the
275 Guaymas Basin⁴⁴. Thus, metal binding to the protein seems plausible. Guaymas Basin⁴⁴. Thus, metal binding to the protein seems plausible. 275 Guaymas Basin⁴⁴. Thus, metal binding to the protein seems plausible.
276 Further, we tested the sensitivity of PET46 towards detergents and the reducing agent DTT.

277 Further, 277 Further, and the set of the detergents and the Standard DTT strongly affected the reducing and the detergents determined and the reducitor and the reducitor of Paragental and the reducitor of PTS and reduc 277 A concentration of 1 and 5% of the detergents Triton X-100 and DTT strongly affected the
278 enzyme activities (Supplementary Fig. S6). Interestingly, 1% DTT stimulated esterase activity 278 enzyme activities (Supplementary Fig. S6). Interestingly, 1% DTT stimulated esterase activity 279 by a factor of two.
280 Finally, we assaved the solvent tolerance of PET46. In general, the enzyme was remarkably

281 Stable in the presence of acetone, DMF, isopropanol, and DMSO. Notably, 10% acetone and
282 5% DMSO and DMF increased the enzyme's activities by a factor of 2 (Supplementary Fig. 282 5% DMSO and DMF increased the enzyme's activities by a factor of 2 (Supplementary Fig.
283 S6). This is a noteworthy solvent tolerance, which makes it an ideal candidate for future 283 S6). This is a noteworthy solvent tolerance, which makes it an ideal candidate for future
284 biotechnological applications (e.g. in a multi-enzyme PET degradation approach²⁸). 283 S6). This is a noteworthy solvent tolerance, which makes it an ideal candidate for future
284 biotechnological applications (e.*g.* in a multi-enzyme PET degradation approach²⁸). biotechnological applications (*e.g.* in a multi-enzyme PET degradation approach 28

285 Overall, PET46 is a well-adapted and very stable enzyme in its natural environment. 286 Together with our results on PET poly- oligo- and monomers hydrolysis, we conclude that
287 enzymes associated with lignin degradation, and especially FAEs from Bathyarchaeota and 287 enzymes associated with lignin degradation, and especially FAEs from Bathyarchaeota and
288 other prokaryotes, may have a global impact in promiscuity-driven degradation of PET litter 287 enzymes associated with lignin degradation, and especially FAEs from Bathyarchaeota and
288 other prokaryotes, may have a global impact in promiscuity-driven degradation of PET litter 288 other prokaryotes, may have a global impact in promiscuity-driven degradation of PET litter
289 in the deep-ocean. 289 in the deep-ocean.

290

291

291 **DISCUSSION**
292 Plastic pollution is now considered one of the world's greatest threats to the environment and 293 global health. Among different plastics, PET is discharged in large quantities into the
294 environment where it accumulates. Our knowledge of microbial degradation processes in 294 environment where it accumulates. Our knowledge of microbial degradation processes in
295 bloature is vervisparse. Since PET is composed of ester bonds that can be hydrolyzed by 295 anature is very sparse. Since PET is composed of ester bonds that can be hydrolyzed by
296 anzymes, a significant number of bacterial and a few fungal genes encoding those have 295 nature is very sparse. Since PET is composed of ester bonds that can be hydrolyzed by
296 enzymes, a significant number of bacterial and a few fungal genes encoding those have 296 enzymes, a significant number of bacterial and a few fungal genes encoding those have
297 been identified in previous research. 297 been identified in previous research.
298 PET-degrading enzymes belong to the classes of cutinases [EC (enzyme category)

299 3.1.1.74], lipases (EC 3.1.1.3), or carboxylesterases (EC 3.1.1.1), and these can only
300 bydrolyze amorphous and low-crystalline PET. The PET-active enzymes hydrolyze the ester 299 3.1.1.74], lipases (EC 3.1.1.3), or carboxylesterases (EC 3.1.1.1), and these can only
300 hydrolyze amorphous and low-crystalline PET. The PET-active enzymes hydrolyze the ester 300 hydrolyze amorphous and low-crystalline PET. The PET-active enzymes hydrolyze the ester 301 bond to produce either BHET, MHET, or TPA and EG.
302 Many of the PET-active enzymes are thermostable and perform best at temperatures

303 between 55 and 65 °C. This temperature is close to the glass transition temperature of PET
304 (65-71 °C) and favors the formation of softer. more flexible domains with better accessibility 304 (65-71 °C) and favors the formation of softer, more flexible domains with better accessibility
305 betwerature for the grands. However, all known native PET-active hydrolases have a rather low 305 for the enzymes. However, all known native PET-active hydrolases have a rather low
306 catalytic activity towards high molecular weight PET and all are promiscuous enzymes. 306 eatalytic activity towards high molecular weight PET and all are promiscuous enzymes,
307 implying that PET is not the native substrate. Notably, esterases are well known to be 307 implying that PET is not the native substrate. Notably, esterases are well known to be
308 promiscuous enzymes. Some of these enzymes are known to turn over more than 70 307 implying that PET is not the native substrate. Notably, esterases are well known to be
308 promiscuous enzymes. Some of these enzymes are known to turn over more than 70 308 promiscuous enzymes. Some of these enzymes are known to turn over more than 70
309 different chemical substrates^{45,46}.

309 different chemical substrates^{45,46}.
310 Current research on this topic 310 Current research on this topic mainly follows two major goals. First, much research is
311 directed to the design and evolution of efficient catalysts for recycling of PET. The second
312 focus lies in mining biodivers focus lies in mining biodiversity to better understand their roles in nature, global distribution 313 patterns and obtain novel enzymes with improved traits that can be used as backbones for
314 better catalysts. Our study aimed to unravel novel structural and phylogenetic biodiversity of 313 patterns and obtain novel enzymes with improved traits that can be used as backbones for
314 better catalysts. Our study aimed to unravel novel structural and phylogenetic biodiversity of 314 better catalysts. Our study aimed to unravel novel structural and phylogenetic biodiversity of
315 PET-degrading enzymes. 315 PET-degrading enzymes.

316 Within this setting, we provide strong evidence that the Candidatus Bathyarchaeota
317 archaeon MAG hosts the promiscuous esterase PET46 that can act on amorphous and low-
318 crystalline PET. Our data imply that PET46 317 archaeon MAG hosts the promiscuous esterase PET46 that can act on amorphous and low-
318 crystalline PET. Our data imply that PET46 has PETase activity when incubated with PET 318 crystalline PET. Our data imply that PET46 has PETase activity when incubated with PET
319 powder. Besides, PET46 hydrolyzes BHET and MHET with significant rates, confirming that 319 powder. Besides, PET46 hydrolyzes BHET and MHET with significant rates, confirming that
320 it can handle both the polymer and the intermediates (Figures 4 and 5).

321 Based on its structural analysis, PET46 is a feruloyl esterase. Feruloyl esterases (FAE; EC 322 3.1.1.73) release-ferulic acid and other hydroxycinnamic acids from plant-based
323 hemicellulose and lignin, which has a large biotechnological application⁴⁷. They are 322 3.1.1.73) release-ferulic acid and other hydroxycinnamic acids from plant-based
323 hemicellulose and lignin, which has a large biotechnological application⁴⁷. They are hemicellulose and lignin, which has a large biotechnological application⁴⁷ 324 videspread in nature and have been found in bacteria, plants, and fungi. Notably, this is the
325 . first report on an active and functionally verified archaeal FAE. Their 3D structure usually 325 first report on an active and functionally verified archaeal FAE. Their 3D structure usually
326 Freveals a canonical eight-strand α/β-fold of lipases and esterases. In addition, a lid domain is 326 Freveals a canonical eight-strand α/β-fold of lipases and esterases. In addition, a lid domain is
327 Fobserved, which, analogous to lipases, confines the active site with a loop that confers 126 reveals a canonical eight-strand α/β-fold of lipases and esterases. In addition, a lid domain is
327 observed, which, analogous to lipases, confines the active site with a loop that confers 327 observed, which, analogous to lipases, confines the active site with a loop that confers
328 plasticity to the substrate-binding site⁴⁸. plasticity to the substrate-binding site⁴⁸. 328 plasticity to the substrate-binding site⁴⁸.
329 With respect to the degradation of PET. none of the currently known PETases is a FAE. A

330 recent study described a metagenomic FAE with phthalate-degrading activity, but no PET
331 degradation was assayed⁴⁹. PETases are assumed not to have a lid domain. However, some 330 recent study described a metagenomic FAE with phthalate-degrading activity, but no PET
331 degradation was assayed⁴⁹. PETases are assumed not to have a lid domain. However, some degradation was assayed⁴⁹ 331 . PETases are assumed not to have a lid domain. However, some 333 family with FAEs, and they bear a lid domain of varying length. They hydrolyze MHET into
334 TPA and EG. One of the best-studied examples is the MHETase derived from the gram-334 FPA and EG. One of the best-studied examples is the MHETase derived from the gram-
335 Faegative bacterium *Ideonella sakaiensis*. This enzyme acts on MHET, but recently an exo-335 negative bacterium *Ideonella sakaiensis*. This enzyme acts on MHET, but recently an exo-
336 b function on PET pentamers was described⁵⁰. It also hydrolyzed BHET in a concentration-335 negative bacterium *Ideonella sakaiensis*. This enzyme acts on MHET, but recently an exo-
336 function on PET pentamers was described⁵⁰. It also hydrolyzed BHET in a concentrationfunction on PET pentamers was described 50 337 dependent manner, and its three-dimensional structure shows a much larger lid domain
338 involving more than 200 aa (Supplementary Fig. S4). This marked structural difference may 337 dependent manner, and its three-dimensional structure shows a much larger lid domain
338 involving more than 200 aa (Supplementary Fig. S4). This marked structural difference may 338 involving more than 200 aa (Supplementary Fig. S4). This marked structural difference may
339 possibly explain the difference in the substrate specificities. 339 possibly explain the difference in the substrate specificities.
340 PET46 is encoded in a marine Bathvarcheota MAG. Microorganisms affiliated with the

341 Bathyarchaeota are globally occurring and widespread in marine and terrestrial anoxic
342 sediments⁵¹. They can use a wide range of polymers as carbon and energy source, and they 341 Bathyarchaeota are globally occurring and widespread in marine and terrestrial anoxic
342 sediments⁵¹. They can use a wide range of polymers as carbon and energy source, and they sediments⁵¹. They can use a wide range of polymers as carbon and energy source, and they

sediments⁵¹. are well known to be very versatile with respect to the metabolic capabilities. They are further
344 known to be relatively abundant in some marine sediments. Because of their huge metabolic
345 potential, it is further as 345 potential, it is further assumed that they may play a significant role in global carbon
346 biogeochemical cycling⁵¹⁻⁵⁴. Interestingly, Bathyarcheota have been associated with the 345 potential, it is further assumed that they may play a significant role in global carbon
346 biogeochemical cycling⁵¹⁻⁵⁴. Interestingly, Bathyarcheota have been associated with the biogeochemical cycling⁵¹⁻⁵⁴ 346 biogeochemical cycling⁵¹⁻⁵⁴. Interestingly, Bathyarcheota have been associated with the
347 degradation of the biopolymer lignocellulose previously⁴². Therefore, the observation here degradation of the biopolymer lignocellulose previously⁴². Therefore, the observation here
348 that not only their genomes code for FAEs, but also the demonstration that they are 348 that not only their genomes code for FAEs, but also the demonstration that they are
349 tunctionally active underscores this observation.

350 Within this setting, our observations that PET46 was catalytically active on PET powder is in 350 Within this setting, our observations that PET46 was catalytically active on PET powder is in
351 Thine with the known wide metabolic diversity of the Bathycharchaeota⁵⁵. Nevertheless, when line with the known wide metabolic diversity of the Bathycharchaeota 55 351 line with the known wide metabolic diversity of the Bathycharchaeota⁵⁵. Nevertheless, when
352 we benchmarked our enzyme with the well-characterized enzyme IsPETase, our data
353 implied that the overall PETase activ 353 implied that the overall PETase activities observed for PET46 are significantly lower, but
354 were higher than those published for the Bacteroidetes-derived enzyme PET30. were higher than those published for the Bacteroidetes-derived enzyme PET30. 355 Nevertheless, it is noteworthy that PET-activities can hardly be compared between studies
356 from different laboratories, as many influencing factors like sample preparation and purity, 355 Nevertheless, it is noteworthy that PET-activities can hardly be compared between studies
356 From different laboratories, as many influencing factors like sample preparation and purity, 356 from different laboratories, as many influencing factors like sample preparation and purity,
357 assay conditions, and measurement methods strongly vary. 357 assay conditions, and measurement methods strongly vary.
358 While PET esterases are not highly conserved among each other, few structural traits and

359 sequence homologies appear to be common in most of the known enzymes (Figure 3).
360 Based on our data analyses and others³⁰, it becomes evident that none of the current 359 sequence homologies appear to be common in most of the known enzymes (Figure 3).
360 Based on our data analyses and others³⁰, it becomes evident that none of the current Based on our data analyses and others 30 360 , it becomes evident that none of the current 362 published active enzymes are secreted proteins, that carry at least an N-terminal signal
363 peptide and some even a PorC-like type 9 secretion system (T9SS) -affiliated signal²⁷. The 362 published active enzymes are secreted proteins, that carry at least an N-terminal signal
363 peptide and some even a PorC-like type 9 secretion system (T9SS) -affiliated signal²⁷. The peptide and some even a PorC-like type 9 secretion system (T9SS) -affiliated signal²⁷ 364 region involved in substrate binding contains in general the amino acids Tyr/Phe-Met-
365 Trp/Tyr, and the catalytic triad is composed of Asp-His-Ser. Further, active enzymes carry 1-364 Fregion involved in substrate binding contains in general the amino acids Tyr/Phe-Met-
365 Frp/Tyr, and the catalytic triad is composed of Asp-His-Ser. Further, active enzymes carry 1-365 Trp/Tyr, and the catalytic triad is composed of Asp-His-Ser. Further, active enzymes carry 1-
366 2 disulfide bonds and of these, one is close to the active site. The active site is well 2 disulfide bonds and of these, one is close to the active site. The active site is well
367 accessible for the bulky substrates and is located in a rather large cavity. For more detailed 367 accessible for the bulky substrates and is located in a rather large cavity. For more detailed
368 analyses of common PETase features, we refer to other studies^{13,30}. analyses of common PETase features, we refer to other studies^{13,30}.

_{star} analyses of common PETase features, we refer to other studies^{13,30}.

169 In summary, our biochemical results significantly extend the knowledge of PETase enzymes
370 and their biodiversity. Our study further enables the development of an expanded
371 phylogenetic framework for identifying t 370 and their biodiversity. Our study further enables the development of an expanded
371 phylogenetic framework for identifying the diversity of putative PETases in marine microbial 371 phylogenetic framework for identifying the diversity of putative PETases in marine microbial
372 groups throughout the global ocean. Finally, the data presented here will help to advance our 372 groups throughout the global ocean. Finally, the data presented here will help to advance our
373 knowledge on the ecological role of the Bathyarchaeota and with respect to the possible 373 knowledge on the ecological role of the Bathyarchaeota and with respect to the possible
374 decomposition of marine PET litter. 374 decomposition of marine PET litter.
375

375

376 **METHODS**
377 *Profile Hidden-Markov Model (HMM) searches identify putative archaeal PETases*

377 **Profile Hidden-Markov Model (HMM) searches identify putative archaeal PETases**
378 An HMM constructed from all PET-degrading enzymes listed in the PAZy database¹⁶ was
379 used to search against NCBI's non-redundant 379 used to search against NCBI's non-redundant protein database
380 (ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nr.gz) filtered for sequences of archaeal origin (tax ID: 380 (ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nr.gz) filtered for sequences of archaeal origin (tax ID:
381 2157) as described previously^{13,23,32}. 381 2157) as described previously^{13,23,32}.
382

382

383 *Primers, constructs and bacterial strains used*
384 The gene coding for PET46 was codon-optimized and synthesized in pET21a(+) (Novogene, 384 The gene coding for PET46 was codon-optimized and synthesized in pET21a(+) (Novogene,
385 Cambridge, UK) by Biomatik (Ontario, Canada) and transformed in *Escherichia coli* BL21 385 Cambridge, UK) by Biomatik (Ontario, Canada) and transformed in *Escherichia coli* BL21 386 (DE3) (Novagen/Merck, Darmstadt, Germany) for protein production. The primers used to
387 generate all PET46 mutants by site directed mutagenesis were synthesized by Eurofins
388 Genomics (Ebersberg, Germany), and are 387 generate all PET46 mutants by site directed mutagenesis were synthesized by Eurofins
388 Genomics (Ebersberg, Germany), and are listed in Supplementary Table S2. Sequencing of 388 Genomics (Ebersberg, Germany), and are listed in Supplementary Table S2. Sequencing of 389 all constructs was conducted by Mycrosynth Seqlab GmbH (Göttingen, Germany).

390

391

391 **Protein production**
392 PET46 WT and its mutant derivatives were produced heterologously by growing *E. coli* BL21 392 PET46 WT and its mutant derivatives were produced heterologously by growing *E. coli* BL21
393 (DE3) cells carrying the respective pET21a(+) construct at 37 °C in Luria-Bertani (LB) 393 (DE3) cells carrying the respective pET21a(+) construct at 37 °C in Luria-Bertani (LB)

medium containing 100 µg mL⁻¹ ampicillin. When $OD₆₀₀$ reached 0.7, 1 mM IPTG was added 394 medium containing 100 μ g mL⁻¹ ampicillin. When OD₆₀₀ reached 0.7, 1 mM IPTG was added
395 to induce expression of the genes and cultures were incubated overnight at 22 °C to facilitate
396 protein production. C 396 protein production. Cells were centrifuged and lysis was carried out via French Press three
397 times (1,250 psi). The proteins were purified from the cleared lysate with Ni-NTA agarose times (1.250 psi). The proteins were purified from the cleared lysate with Ni-NTA agarose 397 times (1,250 psi). The proteins were purified from the cleared lysate with Ni-NTA agarose
398 (Macherey-Nagel, Düren, Germany) following concentration and dialysis against 0.1 M 398 (Macherey-Nagel, Düren, Germany) following concentration and dialysis against 0.1 M
399 potassium phosphate buffer pH 7. 399 potassium phosphate buffer pH 7.

401 401 *Crystallization data collection, data reduction, structure determination, refinement and*

403 PET46 was crystallized by sitting-drop vapor-diffusion at 12ⁿ°C at a concentration of 403 PET46 was crystallized by sitting-drop vapor-diffusion at 12□°C at a concentration of
404 10 mg mL⁻¹ in 100 mM potassium phosphate buffer pH 7. 1.5 μL of PET46 were mixed with 10 mg m L^{-1} 10 mg mL⁻¹ in 100 mM potassium phosphate buffer pH 7. 1.5 µL of PET46 were mixed with
405 1.5 µL of reservoir solution consisting of 325 mM (NH₄)H₂PO₄. Crystals formed after 3-4
406 weeks, were harvested and cryo-406 weeks, were harvested and cryo-protected with 35% ethylene glycol followed by flash-
407 freezing in liquid nitrogen. Diffraction data were collected at -173 °C (100 K) at beamline 407 freezing in liquid nitrogen. Diffraction data were collected at -173 °C (100 K) at beamline
408 ID23-1 (ESRF, Grenoble, France) using a 0.9793 Å wavelength. Data reduction was 408 ID23-1 (ESRF, Grenoble, France) using a 0.9793 Å wavelength. Data reduction was
409 performed using XDS⁵⁶ and Aimless⁵⁷ from the CCP4 Suite⁵⁸. The structure was solved via 408 ID23-1 (ESRF, Grenoble, France) using a 0.9793 A wavelength. Data reduction was
409 performed using XDS⁵⁶ and Aimless⁵⁷ from the CCP4 Suite⁵⁸. The structure was solved via performed using XDS⁵⁶ and Aimless⁵⁷ from the CCP4 Suite⁵⁸ performed using XDS⁵⁶ and Aimless⁵⁷ from the CCP4 Suite⁵⁸. The structure was solved via
410 . molecular replacement with Phaser⁵⁹ using an AlphaFold⁶⁰ model as search model. The molecular replacement with Phaser 59 using an AlphaFold 60 410 molecular replacement with Phaser⁵⁹ using an AlphaFold⁶⁰ model as search model. The
411 initial model was refined alternating cycles of manual model building in COOT^{61,62} and initial model was refined alternating cycles of manual model building in $COOT^{61,62}$ 411 initial model was refined alternating cycles of manual model building in COOT^{61,62} and
412 automatic refinement using Phenix⁶³ v.1.19.2_4158. Data collection and refinement statistics automatic refinement using Phenix⁶³ automatic refinement using Phenix^{os} v.1.19.2_4158. Data collection and refinement statistics
413 are reported in Supplementary Table S1. The structure assembly was analyzed using 413 are reported in Supplementary Table S1. The structure assembly was analyzed using
414 PISA⁶⁴. $PISA⁶⁴$. 414 PISA⁶⁴.
415

415
416

416 **Sequence and structure analysis**
417 Local alignments were performed with BLASTp⁶⁵ or DIAMOND⁶⁶ 417 Local alignments were performed with BLASTp⁶⁵ or DIAMOND⁶⁶ v.2.0.15, and network
418 analysis was carried out in Cytoscape⁶⁷ v.3.9.1. Conserved domains at the sequence level analysis was carried out in Cytoscape⁶⁷ analysis was carried out in Cytoscape^s' v.3.9.1. Conserved domains at the sequence level
419 vere inferred from the Conserved Domain Database⁶⁸ (CDD). Heuristic structural searches were inferred from the Conserved Domain Database⁶⁸ (CDD). Heuristic structural searches

Alter Searches

Alter Searches

against the Protein Databank (PDB) were performed on the Dali server⁶⁹. Structural 420 against the Protein Databank (PDB) were performed on the Dali server^{ss}. Structural
421 visualization and alignments were performed with PyMOL⁷⁰ v.2.0 and USFC Chimera⁷¹ visualization and alignments were performed with PyMOL⁷⁰ v.2.0 and USFC Chimera⁷¹ 421
422 422 v.1.16.

423

424 **Substrate docking**
425 The BHET substrate was docked into the catalytic site of PET46 utilizing a combination of 425 The BHET substrate was docked into the catalytic site of PET46 utilizing a combination of
426 AutoDock3⁷² as a docking engine and DrugScore2018^{73,74} as an objective function. Following AutoDock3⁷² as a docking engine and DrugScore2018^{73,74} 426 AutoDock3⁷² as a docking engine and DrugScore2018^{73,74} as an objective function. Following
427 an established procedure^{73,75}, the docking protocol considered 100 independent runs for an established procedure^{73,75} 427 an established procedure^{73,75}, the docking protocol considered 100 independent runs for
428 BHET using an initial population size of 150 individuals, a maximum number of 50.0 x 10³ BHET using an initial population size of 150 individuals, a maximum number of 50.0 \times 10³ 428
429
430 generations, a maximum number of 1.0 \times 10⁶ energy evaluations, a mutation rate of 0.02, a crossover rate of 0.8, and an elitism value of 1. The Lamarckian genetic algorithm was
431 chosen for sampling in all approaches. The distance between the carbonyl carbon from the 431 chosen for sampling in all approaches. The distance between the carbonyl carbon from the
432 docked BHET and the hydroxyl oxygen from the catalytic serine was measured using the chosen for sampling in all approaches. The distance between the carbonyl carbon from the
432 docked BHET and the hydroxyl oxygen from the catalytic serine was measured using the 432 docked BHET and the hydroxyl oxygen from the catalytic serine was measured using the
433 PyMOL Molecular Graphics System⁷⁰ v.2.3.0. 433 PyMOL Molecular Graphics System⁷⁰ v.2.3.0.
434

435

435 *PET degradation assays* Respectively, 0.1 mg mL-1 Respectively, 0.1 mg mL⁻¹ PET46 WT and the generated variants were incubated with 50 µM

437 ethylene terephthalate linear trimer (3PET, Toronto Research Chemicals, Ontario, Canada),

438 150 µM bis-(2-hvdroxvethvl) tere 150 µM bis-(2-hydroxyethyl) terephthalate (BHET), 150 µM mono-(2-hydroxyethyl) 438 150 μM bis-(2-hydroxyethyl) terephthalate (BHET), 150 μM mono-(2-hydroxyethyl)
439 terephthalate(MHET; Merck, Darmstadt, Germany). Alternatively, 0.5 mg mL⁻¹ enzyme were terephthalate (MHET; Merck, Darmstadt, Germany). Alternatively, 0.5 mg mL⁻¹ 439 terephthalate (MHET; Merck, Darmstadt, Germany). Alternatively, 0.5 mg mL⁻¹ enzyme were
440 incubated with 7 mg PET foil platelet (a=5 mm², 33.6 µmol or 168 mM TPA eq.), or 2 mg au incubated with 7 mg PET foil platelet (a=5 mm², 33.6 μmol or 168 mM TPA eq.), or 2 mg
441 semi-crystalline PET powder (9.6 μmol or 48 mM TPA eq.; GoodFellow GmbH, Hamburg, semi-crystalline PET powder (9.6 µmol or 48 mM TPA eq.; GoodFellow GmbH, Hamburg,
442 Germany). The reaction took place in 200 µL with 0.1 M potassium-phosphate buffer pH 8 at
443 30, 60, or 70 °C for a maximum of 5 days. 442 Germany). The reaction took place in 200 µL with 0.1 M potassium-phosphate buffer pH 8 at
443 30, 60, or 70 °C for a maximum of 5 days. For end point analysis, samples were prepared in 443 30, 60, or 70 °C for a maximum of 5 days. For end point analysis, samples were prepared in
444 96 well microtiter plates by adding 12.5 µL reaction supernatant to 50 µL acetonitrile with 1% 444 96 well microtiter plates by adding 12.5 µL reaction supernatant to 50 µL acetonitrile with 1%
445 v/v trifluoroacetic acid (TFA) followed by centrifugation (2,204 *g*, 30 min; A-2-DWP rotor, 445 v/v trifluoroacetic acid (TFA) followed by centrifugation (2,204 *g*, 30 min; A-2-DWP rotor, 446 Eppendorf AG, Hamburg, Germany) and transferring of 50 μL centrifugation supernatant into
447 150 μL MilliQ H₂O. Samples were sealed using ZoneFree™ sealing film (Excel Scientific,
448 Victorville, CA, USA) and st 448 Victorville, CA, USA) and stored at -20 °C until analysis. Samples were analyzed via RP-
449 UPLC as described previously²⁷. Standards of the expected degradation products TPA. 448 Victorville, CA, USA) and stored at -20 °C until analysis. Samples were analyzed via RP-
449 UPLC as described previously²⁷. Standards of the expected degradation products TPA, UPLC as described previously 27 449 UPLC as described previously²⁷. Standards of the expected degradation products TPA,
450 MHET, and BHET were analyzed to obtain the respective elution times. All assays were 450 MHET, and BHET were analyzed to obtain the respective elution times. All assays were
451 performed in triplicates and compared to an enzyme-free control. 451 performed in triplicates and compared to an enzyme-free control.
452

452

453 **Biochemical characterization**
454 Initial biochemical characterization aimed to identify the WT enzyme's optimal temperature, 455 pH, and substrate chain length and was performed with *para*-nitrophenyl (pNP) esters as
456 described previously^{23,27}. To test the thermostability of the enzyme, it was incubated at 60 455 pH, and substrate chain length and was performed with *para*-nitrophenyl (*p*NP) esters as
456 described previously^{23,27}. To test the thermostability of the enzyme, it was incubated at 60 described previously^{23,27} 457 and 70 °C for up to two weeks prior to a pNP assay under optimal conditions to quantify
458 residual activity. Furthermore, the effect of metal ions, detergents, and organic solvents was residual activity. Furthermore, the effect of metal ions, detergents, and organic solvents was 458 residual activity. Furthermore, the effect of metal ions, detergents, and organic solvents was
459 assayed. The enzyme was either pre-incubated for one hour with 1 or 10 mM Ca²⁺, Co²⁺, assayed. The enzyme was either pre-incubated for one hour with 1 or 10 mM Ca²⁺, Co²⁺ assayed. The enzyme was either pre-incubated for one hour with 1 or 10 mM Ca²⁺, Co²⁺,
460 Cu²⁺, Fe³⁺, Mg²⁺, Mn²⁺, Ni²⁺ or Zn²⁺ (chloride salts) or different detergents and organic 460 Cu²⁺, Fe³⁺, Mg²⁺, Mn²⁺, Ni²⁺ or Zn²⁺ (chloride salts) or different detergents and organic
461 solvents were added to the standard reaction mixture (Supplementary Fig. S5). 461 solvents were added to the standard reaction mixture (Supplementary Fig. S5).

462 To test for general ferulic acid esterase activity, a colorimetric pH-shift-based assay with the
463 Tondel substrate ethyl cinnamate (EC), and was performed as described previously⁴⁶. In model substrate ethyl cinnamate (EC), and was performed as described previously⁴⁶ model substrate ethyl cinnamate (EC), and was performed as described previously⁴⁶. In
short, the reactions took place in 5 mM EPPS buffer with 0.45 mM phenol red. The release of
protons due to enzymatic cleavage of the 464 short, the reactions took place in 5 mM EPPS buffer with 0.45 mM phenol red. The release of
465 protons due to enzymatic cleavage of the ester results in a decrease in absorbance at 550 465 protons due to enzymatic cleavage of the ester results in a decrease in absorbance at 550
466 nm, which is measured photometrically.

466 nm, which is measured photometrically.
467 All assays were performed in triplicates : 467 All assays were performed in triplicates and compared to an enzyme- or additive-free control.
468
.

468
469

469 **REFERENCES**
470 1 Chiba, S. *et al.* Human footprint in the abyss: 30 year records of deep-sea plastic debris.
471 Marine Policy **96**, 204-212 (2018). 470 1 Chiba, S. et al. Human footprint in the abyss. 30 year records of deep-sea plastic debris.
471 *Marine Policy* 96, 204-212 (2018). $M = 100$ Marine Policy 96, 204-212 (2018).

678 80 Kitadokoro, K. et al. Structural insights into the unique polylactate degrading incendinism of
679 Thermobifida alba cutinase. FEBS J 286, 2087-2098 (2019).
681 81 Austin, H. P. *et al.* Characterization and enginee

680 https://doi.org:10.1111/febs.14781
681 81 Austin, H. P. et al. Characterization and engineering of a pla
682 polyesterase. Proc Natl Acad Sci U S A 115, E4350-E4357 (2 681 81 Austin, H. P. *et al.* Characterization a
682 polyesterase. *Proc Natl Acad Sci U S*
683 https://doi.org:10.1073/pnas.17188 681 81 Austin, H. P. *et al.* Characterization and engineering of a plastic-degrading aromatic
682 polyesterase. *Proc Natl Acad Sci U S A* 115, E4350-E4357 (2018).
683 https://doi.org:10.1073/pnas.1718804115
684 82 Meyer

682 polyesterase. Proc Natl Acad Scr 0 3 A 113, E4330-E4337 (2016).
683 https://doi.org:10.1073/pnas.1718804115
684 82 Meyer Cifuentes, I. E. *et al.* Molecular and Biochemical Differenc
685 Adapted PET Hydrolases Ple628 a 684 bttps://doi.org/2012.com/intervention-
685 https://doi.org/2012.com/intervention-
686 *Front Bioeng Biotechnol* 10, 930140 (2022). 684 622 Meyer Criteries, I. E. et al. Molecular and Biochemical Differences of the Tandem and Cold-
685 Adapted PET Hydrolases Ple628 and Ple629, Isolated From a Marine Microbial Consortium.
687 83 Sagong, H.-Y. *et al.* I

- Franch Bioeng Biotechnol 10, 930140 (2022). https://doi.org:10.3389/fbioe.2022.930140
687 83 Sagong, H.-Y. *et al.* Implications for the PET decomposition mechanism through similarity are dissimilarity between PETases from 687 83 Sagong, H.-Y. *et al.* Implications for the PET decomposition mechanism through similarit
688 Sagong, H.-Y. *et al.* Implications for the PET decomposition mechanism through similarit
689 Journal of Hazardous Materi 687 637 Sagong, H.-T. et al. Implications for the PET decomposition mechanism through similarity and
688 dissimilarity between PET ases from Rhizobacter gummiphilus and Ideonella sakaiensis.
690 84 Ronkvist, Å. M., Xie, W.
- 689 *Journal of Hazardous Materials* **416**, 126075 (2021).
690 84 Ronkvist, Å. M., Xie, W., Lu, W. & Gross, R. A. Cutinase-catalyzed hydrolysis of poly (eth
691 tereph 689 Journal of Hazardous Materials 416, 126075 (2021).
690 84 Ronkvist, Å. M., Xie, W., Lu, W. & Gross, R. A. Cutinas
691 terephthalate). *Macromolecules* 42, 5128-5138 (200 691 between the manner, $\frac{1}{2}$, $\frac{1}{2}$ 691 terephthalate). Macromolecules 42, 5128-5138 (2009).
692
693
- 692
693

693

694 **ACKNOWLEDGEMENTS**
695 X-ray diffraction measurements were performed on beamline ID23-1-3 at the European 696 Synchrotron Radiation Facility (ESRF), Grenoble, France. This work was in part supported 697 by the European Commission (Horizon2020 project FuturEnzyme; grant agreement ID
698 101000327) and the Federal Ministry of Education and Research (BMBF) within the 697 by the European Commission (Horizon2020 project FuturEnzyme; grant agreement ID
698 101000327) and the Federal Ministry of Education and Research (BMBF) within the 698 101000327) and the Federal Ministry of Education and Research (BMBF) within the
699 programs MarBiotech (031B0562A), MetagenLig (031B0571A and 031B0571B), LipoBiocat 699 programs MarBiotech (031B0562A), MetagenLig (031B0571A and 031B0571B), LipoBiocat
700 (031B0837B) and PlastiSea (031B867B and 031B867F) at the Universities of Hamburg and
701 Kiel and LipoBiocat (031B0837A) at the HHU 701 Kiel and LipoBiocat (031B0837A) at the HHU Düsseldorf. The Center for Structural Studies is
702 Funded by the Deutsche Forschungsgemeinschaft (DFG Grant number 417919780 and INST 702 funded by the Deutsche Forschungsgemeinschaft (DFG Grant number 417919780 and INST
703 208/740-1 FUGG). HG is grateful for computational support and infrastructure provided bv 702 funded by the Deutsche Forschungsgemeinschaft (DFG Grant number 417919780 and INST 704 the "Zentrum für Informations- und Medientechnologie" (ZIM) at the Heinrich Heine
705 University Düsseldorf and the computing time provided by the John von Neumann Institute 705 University Düsseldorf and the computing time provided by the John von Neumann Institute
706 tor Computing (NIC) on the supercomputer JUWELS at Jülich Supercomputing Centre (JSC) 705 University Düsseldorf and the computing time provided by the John von Neumann Institute
706 for Computing (NIC) on the supercomputer JUWELS at Jülich Supercomputing Centre (JSC) 706 for Computing (NIC) on the supercomputer JUWELS at Jülich Supercomputing Centre (JSC)
707 (user ID: HKF7, VSK33, lipases). 707 (user ID: HKF7, VSK33, lipases).
708

708 709 **AUTHOR CONTRIBUTIONS**

-
- P.P.G., J.C., R.A.S. and W.R.S designed the study. P.P.G., M.F.G., G.F. and P.T. were
711 involved in enzyme production, mutation experiments and biochemical assays. M.F.G. and
712 R.F.D. executed UPLC analysis. D.D. perfo
- 711 involved in enzyme production, mutation experiments and biochemical assays. M.F.G. and
712 R.F.D. executed UPLC analysis. D.D. performed HMM searches. V.A., E.C., J.S. and S.H.S.
- 712 R.F.D. executed UPLC analysis. D.D. performed HMM searches. V.A., E.C., J.S. and S.H.S.
713 Performed crystallization experiments and structure solving. P.P.G. performed structural
- performed crystallization experiments and structure solving. P.P.G. performed structural

214 analysis. C.P., J.D. and H.G. were involved in ligand docking. W.R.S., R.A.S., S.H.S. and

215 H.G. received funding. P.P.G., J.
- 714 analysis. C.P., J.D. and H.G. were involved in ligand docking. W.R.S., R.A.S., S.H.S. and
715 H.G. received funding. P.P.G., J.C. and W.R.S. wrote the first draft of the manuscript with 715 H.G. received funding. P.P.G., J.C. and W.R.S. wrote the first draft of the manuscript with
716 input from all authors.
- 716 input from all authors.
717

718

- 718 **COMPETING INTERESTS** 719 The authors declare no competing interests.
720
20
-

721

721 FIGURE LEGENDS
722 Figure 1: The "third domain" of PET degradation. The amino acid sequence of the first
723 Archaeal PET-degrading enzyme PET46 (coral orange, circle) was included in a sequence 722 **Figure 1: The "third domain" of PET degradation.** The amino acid sequence of the first archaeal PET-degrading enzyme PET46 (coral orange, circle) was included in a sequence 724 network analysis with all other known PE 723 archaeal PET-degrading enzyme PET46 (coral orange, circle) was included in a sequence
724 network analysis with all other known PETases from Bacteria (triangles) and Eukarya
725 (squares) collected in PAZy¹⁶. The edg 724 network analysis with all other known PETases from Bacteria (triangles) and Eukarya
725 (squares) collected in PAZy¹⁶. The edge length between two nodes is inversely proportional
726 to the BLASTp bitscore of both no (squares) collected in PAZy¹⁶ (squares) collected in PAZy¹⁶. The edge length between two nodes is inversely proportional

726 to the BLASTp bitscore of both nodes (e-value < 0.05).

727
 Figure 2: The crystal structure of PET46 resembles the crysta

ISPETase - with unique features. Both proteins present the α/β -hydrolase fold and the same catalytic triad, but PET46 (coral orange; PDB 8B4U) presents a lid domain (bright 728
729
730
731 Figure 2: The crystal structure of PET46 resembles the crystal structure of the 729 IsPETase - with unique features. Both proteins present the α/β -hydrolase fold and the 730 same catalytic triad, but PET46 (coral o **ISPETase - with unique features.** Both proteins present the α/β-hydrolase fold and the same catalytic triad, but PET46 (coral orange; PDB 8B4U) presents a lid domain (bright green) that is not present in the IsPETase (sk 730 same catalytic triad, but PET46 (coral orange; PDB 8B4U) presents a lid domain (bright
731 green) that is not present in the IsPETase (sky blue; PDB 6EQE). Other structural
732 differences are present in Loop 1 (deep b 731 green) that is not present in the IsPETase (sky blue; PDB 6EQE). Other structural
732 differences are present in Loop 1 (deep blue) and Loop 2 (magenta) containing the active
733 site His (a). The bacterial and the arc 732 differences are present in Loop 1 (deep blue) and Loop 2 (magenta) containing the active
733 site His (a). The bacterial and the archaeal enzymes present the typical residues of Ser-
734 hydrolases at the catalytically 733 site His (a). The bacterial and the archaeal enzymes present the typical residues of Ser-
734 hydrolases at the catalytically active positions (Ser, His and Asp), but PET46 lacks a Trp
735 associated with PET binding a 734 hydrolases at the catalytically active positions (Ser, His and Asp), but PET46 lacks a Trp
735 associated with PET binding and formation of the aromatic clamp in the IsPETase.
736 Furthermore, PET46 also lacks a disulf 735 associated with PET binding and formation of the aromatic clamp in the IsPETase.
736 Furthermore, PET46 also lacks a disulfide bridge in Loop 2 (b).
737 **Figure 3: The protein structure of archaeal PETase PET46 and fer**

736 Furthermore, PET46 also lacks a disulfide bridge in Loop 2 (**b**).
737 **Figure 3: The protein structure of archaeal PETase PET46
739 (FAEs) is closely related to bacterial PETases.** A heatmap 739
740
741 738 **Figure 3: The protein structure of archaeal PETase PET46 and ferulic acid esterases**
739 **(FAEs) is closely related to bacterial PETases.** A heatmap represents structure similarity
740 (Z-Score⁶⁹) and reveals struct 739 **(FAEs) is closely related to bacterial PETases.** A heatmap represents structure similarity
740 (Z-Score⁶⁹) and reveals structural clusters. The FAE cluster, to which PET46 belongs, shows
741 the highest similarity t (Z-Score⁶⁹ The highest similarity to the cluster of bacterial PETases. PET 46 is the FAE with the highest

742 structural similarity to the bacterial PETases (a). PET46 shares most of its structure with

743 FAEs (b). The structure o 741 the highest similarity to the cluster of bacterial PETases. PET 46 is the FAE with the highest
742 structural similarity to the bacterial PETases (a). PET46 shares most of its structure with
743 FAEs (b). The structure 742 structural similarity to the bacterial PETases (**a**). PET46 shares most of its structure with
743 FAEs (**b**). The structure of the archaeal PETase (coral orange) is overlaid to the crystal
744 structure of the cinnamoy 743 FAEs (b). The structure of the archaeal PETase (coral orange) is overlaid to the crystal
744 structure of the cinnamoyl esterase LJ0536 S106A mutant from *Lactobacillus johnsonii* (dark
745 grey, PDB 3QM1) in complex w 745 grey, PDB 3QM1) in complex with ethylferulate (EF, cyan). Loop 1 (deep blue) and Loop 2
746 (magenta) are highly conserved, but there are some variations in the lid domain (bright
747 green). A Tyr in the loop of LJ053 745 grey, PDB 3QM1) in complex with ethylferulate (EF, cyan). Loop 1 (deep blue) and Loop 2
746 (magenta) are highly conserved, but there are some variations in the lid domain (bright
747 green). A Tyr in the loop of LJ053 746 (magenta) are highly conserved, but there are some variations in the lid domain (bright
747 green). A Tyr in the loop of LJ0536 involved in substrate binding has a homologous Phe in
748 PET46 (brilliant green). For str 747 green). A Tyr in the loop of LJ0536 involved in substrate binding has a homologous Phe in
748 PET46 (brilliant green). For structural alignments with other two FAEs and the tannase
749 IsMHETase, see Supplementary Fig. 748 PET46 (brilliant green). For structural alignments with other two FAEs and the tannase
749 SIMHETase, see Supplementary Fig. S4. *No obvious phylogenetic affiliation.
1999 SIMHETase, see Supplementary Fig. S4. *No obvi 749 IsMHETase, see Supplementary Fig. S4. *No obvious phylogenetic affiliation.

750

751
752
753 Figure 4: PET46 uses the lid domain to effectively degrade MHET, BHET and 3PET.
752 PET46 WT can degrade both BHET and MHET to TPA and EG at 70 °C, but the lid-less
753 variant PET46∆lid can only convert BHET to MHET (a) 752 PET46 WT can degrade both BHET and MHET to TPA and EG at 70 °C, but the lid-less
753 variant PET46∆lid can only convert BHET to MHET (a). PET46 and the produced variants
754 degrade 3PET at 30, 60 and 70 °C (b). All e 1753 variant PET46∆lid can only convert BHET to MHET (**a**). PET46 and the produced variants
1754 degrade 3PET at 30, 60 and 70 °C (**b**). All experiments contain a total of 0.1 mg mL⁻¹ PET46
1755 and 150 μM TPA equivale degrade 3PET at 30, 60 and 70 °C (**b**). All experiments contain a total of 0.1 mg mL $^{-1}$ degrade 3PET at 30, 60 and 70 °C (b). All experiments contain a total of 0.1 mg mL PET46
755 and 150 µM TPA equivalents in 200 µL potassium phosphate buffer pH 8. Error bars indicate
756 the standard deviation of at least 755 and 150 µM TPA equivalents in 200 µL potassium phosphate buffer pH 8. Error bars indicate
756 the standard deviation of at least three replicates. *t₀=0 h; t₁=3 h; t₂=6 h; t₃=24 h; t₄=48 h;
757 t₅=72 h. 756 the standard deviation of at least three replicates. $*_{0}$ =0 h; t₁=3 h; t₂=6 h; t₃=24 h; t₄=48 h;
757 t₅=72 h.
758 **Eigure 5: BET46 degrades BET polymer**, UBLC obtempters reveal a TBA pook (1.7) t 5

757 t₅=72 h.
758 **Figure 5: PET46 degrades PET polymer.** UPLC chromatograms reveal a TPA peak (1.7
760 min) when incubating both PET powder and foil with PET46 WT for 24 h at 70 °C (**a**). 0.5 mg 759
760
761 **Figure 5: PET46 degrades PET polymer.** UPLC chromatograms reveal a TPA peak (1.7
760 min) when incubating both PET powder and foil with PET46 WT for 24 h at 70 °C (**a**). 0.5 mg
761 mL¹ PET46 release up to 62 μM TPA out 760 min) when incubating both PET powder and foil with PET46 WT for 24 h at 70 °C (**a**). 0.5 mg
761 mL¹ PET46 release up to 62 μM TPA out of PET powder and 4.5 μM out of PET foil after 24
762 h at 70 °C (**b**). No BHET c mL⁻¹ PET46 release up to 62 μM TPA out of PET powder and 4.5 μM out of PET foil after 24
762 h at 70 °C (b). No BHET could be measured. Data represent mean results from at least 3
763 replicates (3<n<5). Error bars indi 762 h at 70 °C (**b**). No BHET could be measured. Data represent mean results from at least 3
763 hreplicates (3<n<5). Error bars indicate standard deviation.
764 hrepli**cates 6: PET46 is a thermostable hydrolase adapted to**

763 replicates (3<n<5). Error bars indicate standard deviation.
764 **Figure 6: PET46 is a thermostable hydrolase ad
766 Conditions.** The enzyme's optimal temperature and pH \ 764
765
766
767 Figure 6: PET46 is a thermostable hydrolase adapted to the Guaymas Basin
766 conditions. The enzyme's optimal temperature and pH were determined by incubation with
767 pNP-ester substrates (decanoate, C10) (a). The enzyme conditions. The enzyme's optimal temperature and pH were determined by incubation with
767 pNP-ester substrates (decanoate, C10) (a). The enzyme conserved most of its activity after
768 8-day incubation at 60 °C (b). Error pNP-ester substrates (decanoate, C10) (**a**). The enzyme conserved most of its activity after
768 B-day incubation at 60 °C (**b**). Error bars indicate the standard deviation of at least three
769 replicates. Standard deviat 768 8-day incubation at 60 °C (**b**). Error bars indicate the standard deviation of at least three
769 replicates. Standard deviation in (a) was below 6 % for all conditions assayed.
770 769 replicates. Standard deviation in (a) was below 6 % for all conditions assayed.
770
771 **SUPPLEMENTARY FIGURE LEGENDS**

771
772 771 **SUPPLEMENTARY FIGURE LEGENDS Supplementary Fig. S1: The gene coding for PET46 is inserted between genes related

with translation and has bacterial homologs. PET46 is located in a small contig between

174 genes coding for translation-associated prot** with translation and has bacterial homologs. PET46 is located in a small contig between

774 genes coding for translation-associated proteins. It contains conserved sequence domains

775 from dipeptidyl aminopeptidase/acyl 775 from dipeptidyl aminopeptidase/acylaminoacyl peptidase (DAP2), acetyl xylan esterase
776 (AXE1), dienelactone hydrolase (DLH) or lysophospholipase (PldB, **a**). Archaeal homologs
777 from PET46 derive mainly from other 775 from dipeptidyl aminopeptidase/acylaminoacyl peptidase (DAP2), acetyl xylan esterase
776 (AXE1), dienelactone hydrolase (DLH) or lysophospholipase (PldB, **a**). Archaeal homologs
777 from PET46 derive mainly from other 776 (AXE1), dienelactone hydrolase (DLH) or lysophospholipase (PldB, **a**). Archaeal homologs
777 from PET46 derive mainly from other Bathyarchaeota, but there are more bacterial homologs
778 (query cov. > 80%, seq. id > 40 (query cov. > 80%, seq. id > 40 %) (b). A sequence network analysis displaying sequence

779 similarity (bit score) reveals that PET46 and its archaeal homologs share high homology to

780 the Firmicutes and Planctomycetes 778 (query cov. > 80%, seq. id > 40 %) (**b**). A sequence network analysis displaying sequence
779 similarity (bit score) reveals that PET46 and its archaeal homologs share high homology to
780 the Firmicutes and Planctomyc 779 similarity (bit score) reveals that PET46 and its archaeal homologs share high homology to
780 the Firmicutes and Planctomycetes sequences (c). Archaeal sequences are displayed as
781 circles and bacterial as triangles 780 the Firmicutes and Planctomycetes sequences (c). Archaeal sequences are displayed as
781 circles and bacterial as triangles. PET46 is highlighted with a yellow border. Color legend is
782 shared with "b". The most abun 781 circles and bacterial as triangles. PET46 is highlighted with a yellow border. Color legend is
782 shared with "b". The most abundant phylum within a group is showed in parenthesis.
783 **Supplementary Fig. S2: The cry**

Sall shared with "b". The most abundant phylum within a group is showed in parenthesis.

783
 **Supplementary Fig. S2: The crystal structure of PET46 consists of 7 a-helixes and 8 β-

Strands forming the canonical** α/β **-h** 786
787 **Supplementary Fig. S2: The crystal structure of PET46 consists of 7 α-helixes and 8 β-

785 Strands forming the canonical α/β-hydrolase fold and 3 α-helixes and 2 anti-parallel β-

786 Strands making the lid. Together wi strands forming the canonical α/β-hydrolase fold and 3 α-helixes and 2 anti-parallel β-

786 Strands making the lid. Together with the lid domain (bright green), Loop 1 and Loop 2

787 (deep blue and magenta) are the mai strands making the lid.** Together with the lid domain (bright green), Loop 1 and Loop 2
787 (deep blue and magenta) are the main structural variations with the IsPETase (a). These
788 loops are conserved in all ferulic ac 788 loops are conserved in all ferulic acid esterases (FAEs) analyzed. Displayed are the catalytic
789 triad and homologous residues involved in substrate binding in PETases or FAEs. The lid
790 domain contains at least tw 788 loops are conserved in all ferulic acid esterases (FAEs) analyzed. Displayed are the catalytic
789 triad and homologous residues involved in substrate binding in PETases or FAEs. The lid
790 domain contains at least tw The riad and homologous residues involved in substrate binding in PETases or FAEs. The lid

790 domain contains at least two aromatic residues (Phe148 and Trp172; bright green). 2Fo-Fc

791 map contoured at one sigma is s 790 domain contains at least two aromatic residues (Phe148 and Trp172; bright green). 2Fo-Fc
791 map contoured at one sigma is shown as blue mesh around the PO₄ and ethylene glycol
792 (EG) moieties modelled near the ac 791 map contoured at one sigma is shown as blue mesh around the PO₄ and ethylene glycol
792 (EG) moieties modelled near the active site (**b**). Stereo image of the density of the active site
793 residues (**c**). The catal 792 (EG) moieties modelled near the active site (**b**). Stereo image of the density of the active site
793 residues (**c**). The catalytic triad residues are shown as sticks.
795 **Supplementary Fig. S3: Hydroxycinnamic**

793 residues (**c**). The catalytic triad residues are shown as sticks.
794 **Supplementary Fig. S3: Hydroxycinnamic acid-esters, the acid esterases, are similar to the terminus of a PET pol** 794
795
796
797 **acid esterases, are similar to the terminus of a PET polymer.** A feruloyl-polysaccharide (1977) (left) and a p-coumaryl-polysaccharide (right) are two examples of hydroxycinnamic acid-
198 polysaccharide esters (a). The s acid esterases, are similar to the terminus of a PET polymer. A feruloyl-polysaccharide

797 (left) and a *p*-coumaryl-polysaccharide (right) are two examples of hydroxycinnamic acid-

798 a substrate in this study (b). Th 797 (left) and a *p*-coumaryl-polysaccharide (right) are two examples of hydroxycinnamic acid-
798 polysaccharide esters (a). The synthetic ethylene terephthalate linear trimer (3PET) used as
799 a substrate in this study 798 polysaccharide esters (**a**). The synthetic ethylene terephthalate linear trimer (3PET) used as
799 a substrate in this study (**b**). The attacked oxygen during an exo-reaction is highlighted with
800 an arrow. PET46 deg 799 a substrate in this study (**b**). The attacked oxygen during an exo-reaction is highlighted with
800 an arrow. PET46 degrades ethyl cinnamate (EC), a model substrate for FAE activity (c). A 800 an arrow. PET46 degrades ethyl cinnamate (EC), a model substrate for FAE activity (**c**). A 801 pH-shift assay (phenol red) with ethyl cinnamate (EC) and PET46 at two concentrations
802 results in the release of H ៎upon ester hydrolysis.
803 **Supplementary Fig. S4: The archaeal PETase PET46 is structurally ho** results in the release of H^T upon ester hydrolysis.

802 results in the release of H² upon ester hydrolysis.
803 **Supplementary Fig. S4: The archaeal PETase**
805 **acid esterases (FAEs).** The crystal structure o 803
804
805
806
807 **acid esterases (FAEs).** The crystal structure of PET46 (coral orange) is compared to the crystal structures of GthFAE from *Geobacillus thermoglucosidasius* (lime green; PDB 807 7WWH; **a**), the Est1E FAE from *Butyrivibri* acid esterases (FAEs). The crystal structure of PET46 (coral orange) is compared to the
806 crystal structures of GthFAE from *Geobacillus thermoglucosidasius* (lime green; PDB
807 7WWH; a), the Est1E FAE from *Butyrivibri* 806 crystal structures of GthFAE from *Geobacillus thermoglucosidasius* (lime green; PDB
807 7WWH; **a**), the Est1E FAE from *Butyrivibrio proteoclasticus* (cream white; PDB 2WTN)
808 bound to ferulic acid (FA; cyan; **b**), 807 7WWH; **a**), the Est1E FAE from *Butyrivibrio proteoclasticus* (cream white; PDB 2WTN)
808 bound to ferulic acid (FA; cyan; **b**), and the tannase ISMHETase from *I. sakaiensis* (petrol
809 green; PDB 6QZ4; **c**). The lid 808 bound to ferulic acid (FA; cyan; **b**), and the tannase IsMHETase from *I. sakaiensis* (petrol
809 green; PDB 6QZ4; **c**). The lid domains of PET46 and IsMHETase have been omitted in "c"
810 for better visualization (bri 909 green; PDB 6QZ4; **c**). The lid domains of PET46 and IsMHETase have been omitted in "c"
810 for better visualization (bright green).
811 **Supplementary Fig. S5: Docking of BHET into PET46**. Docking of BHET yielded four

813 possible binding poses (clusters CL1-CL4) in PET46 (a). Docked poses of the two largest 814 clusters within PET46 with the box depicting the search space (b). Distributions of the 812
813
814
815 clusters within PET46 with the box depicting the search space (b). Distributions of the smallest distances between the docked substrate's carbonyl carbon and the hydroxyl oxygen from the catalytic serine for the two larges 813 possible binding poses (clusters CL1-CL4) in PET46 (a). Docked poses of the two largest
814 clusters within PET46 with the box depicting the search space (b). Distributions of the
815 smallest distances between the doc 814 clusters within PET46 with the box depicting the search space (b). Distributions of the
815 smallest distances between the docked substrate's carbonyl carbon and the hydroxyl oxygen
816 from the catalytic serine for th smallest distances between the docked substrate's carbonyl carbon and the hydroxyl oxygen
816 from the catalytic serine for the two largest clusters (c, d). Location of the substituted amino
817 acids in the A46V variant (816 from the catalytic serine for the two largest clusters (c, d). Location of the substituted amino
817 acids in the A46V variant (blue sticks, e), the A140I variant (blue sticks, f), and the K147
818 variant (white stick 817 acids in the A46V variant (blue sticks, **e**), the A140I variant (blue sticks, **f**), and the K147
818 variant (white sticks, **g**) of PET46. The comparison of the substrate binding sites for the (H)
819 WT (white surface 818 variant (white sticks, **g**) of PET46. The comparison of the substrate binding sites for the (H)
819 WT (white surface, **h**) and the K147A variant (gray surface, **i**) shows an extended substrate
820 binding site in the 819 WT (white surface, **h**) and the K147A variant (gray surface, **i**) shows an extended substrate
820 binding site in the variant. The same orientation is used as for "g".
821 binding site in the variant. The same orientation is used as for "g".
821
822 Supplementary Fig. S6: Biochemical characterization of PET46. Optimal pNP-ester acyl

822
823
824 **Supplementary Fig. S6: Biochemical characterization of PET46.** Optimal pNP-ester acyl

823 chain length was determined (a). The effect of metal ions (b), detergents (c) and organic

824 solvents (d) on the activity of PET 823 chain length was determined (**a**). The effect of metal ions (**b**), detergents (**c**) and organic
824 solvents (**d**) on the activity of PET46 was studied compared to an additive-free control (Ctrl.).
825 Error bars indic 824 solvents (**d**) on the activity of PET46 was studied compared to an additive-free control (Ctrl.).
825 Error bars indicate the standard deviation of at least three replicates. Standard deviation in
826 "a" was below 6 % 825 Error bars indicate the standard deviation of at least three replicates. Standard deviation in
826 "a" was below 6 %.
827 826 "a" was below 6 %.

828

TABLES
829 Table 1: PET46 has structural similarities to feruloyl esterases and bacterial PETases.
830 Crystal structures included in the analysis in Figure 3 are sorted according to their Z-Score⁶⁹ 829 **Table 1: PET46 has structural similarities to feruloyl esterases and bacterial PETases.**
830 Crystal structures included in the analysis in Figure 3 are sorted according to their Z-Score⁶⁹ compared to PET46. FAE: Fe Crystal structures included in the analysis in Figure 3 are sorted according to their Z-Score⁶⁹ 831
832 compared to PET46. FAE: Ferulic Acid Esterase/Feruloyl-Esterase. *Phylogeny could not be inferred.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. bioRxiv preprint doi: [https://doi.org/10.1101/2022.10.14.512230;](https://doi.org/10.1101/2022.10.14.512230) this version posted October 14, 2022. The copyright holder for this preprint

833
834

835

SUPPLEMENTARY TABLE LEGENDS
836 **Supplementary Table S1: Data collection and refinement statistics.** Values in
837 parenthesis refer to the highest resolution shell.

838 **Supplementary Table S2: Primers used in this study.** Lid deletion and point mutations
839 were introduced by site-directed mutagenesis. pET primers were used for Sanger 837 parenthesis refer to the highest resolution shell.
838 **Supplementary Table S2: Primers used in t**
839 were introduced by site-directed mutagenes 838 **Supplementary Table S2: Primers used in this study.** Lid deletion and point mutations
839 were introduced by site-directed mutagenesis. pET primers were used for Sanger
840 sequencing to verify the correctness of the 839 were introduced by site-directed mutagenesis. pET primers were used for Sanger
840 sequencing to verify the correctness of the produced variants prior to expression. 840 sequencing to verify the correctness of the produced variants prior to expression.

Figure 1: The "third domain" of PET degradation. The amino acid sequence of the first archaeal PET-degrading enzyme PET46 (coral orange, circle) was included in a sequence network analysis with all other known PETases from Bacteria (triangles) and Eukarya (squares) collected in PAZy (Buchholz et al., 2022). The edge length between two nodes is inversely proportional to the BLASTp bitscore of both nodes (evalue < 0.05).

Figure 2: The crystal structure of PET46 resembles the crystal structure of the IsPETase - with unique features. Both proteins present the α/β-hydrolase fold and the same catalytic triad, but PET46 (coral orange; PDB 8B4U) presents a lid domain (bright green) that is not present in the IsPETase (sky blue; PDB 6EQE). Other structural differences are present in Loop 1 (deep blue) and Loop 2 (magenta) containing the active site His (**a**). The bacterial and the archaeal enzymes present the typical residues of Ser-hydrolases at the catalytically active positions (Ser, His and Asp), but PET46 lacks a Trp associated with PET binding and formation of the aromatic clamp in the IsPETase. Furthermore, PET46 also lacks a disulfide bridge in Loop 2 (**b**).

Figure 3: The protein structure of archaeal PETase PET46 and ferulic acid esterases (FAEs) is closely related to bacterial PETases. A heatmap represents structure similarity (Z-Score; Holm, 2022) and reveals structural clusters. The FAE cluster, to which PET46 belongs, shows the highest similarity to the cluster of bacterial PETases. PET 46 is the FAE with the highest structural similarity to the bacterial PETases (**a**). PET46 shares most of its structure with FAEs (**b**). The structure of the archaeal PETase (coral orange) is overlaid to the crystal structure of the cinnamoyl esterase LJ0536 S106A mutant from *Lactobacillus johnsonii* (dark grey, PDB 3QM1) in complex with ethylferulate (EF, cyan). Loop 1 (deep blue) and Loop 2 (magenta) are highly conserved, but there are some variations in the Lid Domain (bright green). A Tyr in the loop of LJ0536 involved in substrate binding has a homologous Phe in PET46 (brilliant green). For structural alignments with other two FAEs and the tannase IsMHETase, see Supplementary Fig. S4. *No obvious phylogenetic affiliation.

Figure 4: PET46 uses the lid domain to effectively degrade MHET, BHET and 3PET. PET46 WT can degrade both BHET and MHET to TPA and EG at 70 °C, but the lid-less variant PET46Δlid can only convert BHET to MHET (**a**). PET46 and the produced variants degrade 3PET at 30, 60 and 70 °C (**b**). All experiments contain a total of 0.1 mg mL-1 PET46 and 150 µM TPA equivalents in 200 µL potassium phosphate buffer pH 8. Error bars indicate the standard deviation of at least three replicates. *t₀=0 h; t₁=3 h; t₂=6 h; t₃=24 h; t₄=48 h; t₅=72 h.

Figure 5: PET46 degrades PET polymer. UPLC chromatograms reveal a TPA peak (1.7 min) when incubating both PET powder and foil with PET46 WT for 24 h at 70 °C (a). 0.5 mg mL⁻¹ PET46 release up to 62 µM TPA out of PET powder and 4.5 µM out of PET foil after 24 h at 70 °C (**b**). No BHET could be measured. Data represent mean results from at least 3 replicates (3<n<5). Error bars indicate standard deviation.

Figure 6: PET46 is a thermostable hydrolase adapted to the Guaymas Basin conditions. The enzyme's optimal temperature and pH were determined by incubation with *p*NP-ester substrates (decanoate, C10) (**a**). The enzyme conserved most of its activity after 8-day incubation at 60 °C (**b**). Error bars indicate the standard deviation of at least three replicates. Standard deviation in (a) was below 6 % for all conditions assayed.