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ABSTRACT
Active and Assisted Leaving (AAL) devices that use cameras and im-
ages raise concerns about the privacy of the monitored individuals.
These devices capture images that include personal and behavioral
data during the day. Most authors decide to switch from RGB to
depth sensors to maintain privacy. Nevertheless, not all available
works agree that depth image is private, which creates an open legal
problem for AAL applications. In this paper, privacy is discussed
in vision-based systems using depth sensors. Various factors of
depth and RGB images that might affect privacy are presented to
define the privacy level of depth devices. One of the main issues
that make an image non-private is that the subjects’ faces are visible
and can be identified. In the experimental part, a state-of-the-art
Face Recognition (FR) model in depth images is developed. It is
used to establish boundary conditions allowing correct recognition
of a person’s face. A comparison between FR in RGB and depth
images is performed, including the ability to learn the model by
training the two modalities from scratch on identical data. This
study answers under which conditions depth cameras protect the
privacy and how much privacy is disclosed by them.
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1 INTRODUCTION
Systems based on cameras in the field of Active and Assisted Living
(AAL) bring controversies with privacy. These devices are used in
hospitals to monitor patients, so the data they collect may be consid-
ered private and sensitive. Privacy is a subjective topic depending
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on every individual. In this work, it is understood as a protection
of their identity or information that may be unwanted to reveal by
them. Researchers in the AAL field investigate the possibility of
switching RGB sensors to depth cameras to increase privacy levels
and define this image modality as privacy-preserving[2, 17, 30].
Despite this, there are articles that claim that depth images reveal
individual privacy, such as [6, 18]. The contrary opinions and un-
clear status of privacy of depth sensors motivate this work and
create a potential legal problem for these systems. This article looks
at privacy-preserving AAL applications and discusses available
biometric features in depth images and necessary scenarios for
privacy enhancement. Our main focus is on Face Recognition (FR)
systems, which are most successful in identifying subjects from
depth data. FR algorithms mainly employ Deep Learning (DL) ar-
chitectures and reach results nearly identical to 100% (See Table 1).
This work answers the questions about the privacy of depth sen-
sors and needed circumstances for its preservation and differences
in automatic recognition using subjects’ faces between RGB and
depth modality, including performance and learning process. In the
experimental part, state-of-the-art FR architecture is implemented.
In depth data, recognition is less accurate than in RGB images, and
training takes longer. Nevertheless, in available datasets, identifi-
cations from depth images are correct, showing their potential to
reveal biometric features.

This paper is organized as follows. Section 2 defines privacy and
its legal aspects. Privacy concerns in depth images andmotivation of
this work are discussed in Section 2.1. Section 2.2 presents available
biometrics in images and circumstances for recognition, including
automatic and manual personal identification. Section 2.3 explains
facial features which permit accurate FR in depth images. Section 2.4
presents related work in FR from depth data. Section 3 introduces
our experiment with results and discussion. Section 4 concludes
this work by highlighting key parts of this paper and its message.

2 PRIVACY IN DEPTH IMAGES
Personal privacy is a subjective matter and depends on a variety of
factors, such as cultural background and origin[15]. The Art. 8 (1)
of the European Convention on Human Rights (ECHR) and Art. 7
of the Charter of Fundamental Rights of the European Union (CFR)
standardize the right to privacy for every individual, their family
lives, homes, correspondence, and its violations. The term privacy
also refers to the protection of personal data as described in Art. 8
of the CFR and Art. 1 of the General Data Protection Regulation
(GDPR), which is oriented toward personal data processing.
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Table 1: Comparison of top results on depth data only in FR, different data sets

Databases No. of Subjects Sensor Resolution Sensor Precision [mm] Accuracy [%]
FRGC v2 466 Vivid 910 60K 0.1 99.6 [28]
BU-3DFE 100 3dMD 8K 0.2 99.3 [24]

Lock3DFace 509 Kinect II 20K ≥2 86 [11]
RGBD-W 2239 RealSense 45K ≥2 64[13]
IIIT-D 106 Kinect I 13K 2-4 26.8[7]

CurtinFaces 52 Kinect I 13K 2-4 89.9[3]
Eurecom 52 Kinect I 13K 2-4 69.7[22]

Fig. 1: Example of the same scene visible in RGB and depth
modality.

2.1 View at privacy in depth sensors
Depth sensors are considered privacy preserving by various authors
who design fall detection or action recognition AAL systems [2, 5,
17, 30]. All of them state the privacy of such sensors as granted,
unquestionable, and indisputable. Planinc and Kampel[27] present
a fall-detection algorithm, and they highlight the depth image as
similar to an anonymized RGB frame. On the other hand, Park et
al.[25] with work about sign language translation, describes depth
images as less intrusive to privacy in comparison to RGB. Kong
et al.[18] implement a privacy-preserving fall detection system
considering depth image as not fully private. Their system is based
on a depth sensor like other publications referenced in this section.
Since depth data is considered not private by them, they encode
input video streams with fast Fourier Transform for additional
security in case of a potential data leak. A similar belief share Chou
et al.[6] who design an activity recognition system for healthcare
usage. They address the problem of privacy preservation in depth
images by downsampling resolution. Their post-processed image
reveals as little information for potential identification as possible
while performing activity recognition.

Regarding personal data revealed with camera monitoring, the
depth sensor, contrary to RGB cameras, does not preserve texture
information. Lack of texture hides potentially unwanted informa-
tion in captured images, e.g., what a person is wearing, reading, or
watching. This increases privacy level even when personal identity
is revealed, but it is not possible to correlate sensitive data with a
recognized person, e.g., what a subject is watching on TV (See Fig.
1).

2.2 Recognition scenarios in depth images
Recognition of subjects is possible by reading their biometric fea-
tures. Using camera-based systems, features that can be analyzed
are a face, height, scars, and gait[29]. Depth sensors do not prevail
texture information, which hides skin color data, scars, and tattoos.
During the design of the AAL system with privacy preservation, it
is essential to define circumstances on the environment and what
personal information is revealed. In small facilities, for instance
with a number of patients restricted to 30, persons with unique char-
acteristics, e.g., significantly taller or smaller than others or those
who use a wheelchair or a walking frame, are identifiable. From
an algorithmic point of view using depth images, some authors
propose gait recognition systems like Dubois et al.[9]. Nevertheless,
the presented tests are too narrow to compare with a real-world
scenario. FR shows more promising results, which is discussed in
Section 2.4 where in tested datasets, the accuracy of systems is
reaching close to 100%. The conclusion coming from the analysis
of best results in available datasets (Table 1) is that FR performance
relies on sensor precision, resolution, and a number of subjects. In
the wild, the first two translate to the face size range, which makes
it identifiable.

Jacquet et al. [14] point out forensic FR becomes a universal tool
to guide court investigations. These systems currently lack method-
ological standardization and empirical validation, making them
less reliable than fingerprints or DNA. From a legal aspect, such
technologies might be employed by courts. There is no legal limit
on the admissibility of scientific evidence in continental Europe.
Judges assess the applicability of the proof on their own according
to the state of available scientific knowledge. In the USA, accord-
ing to the Federal Rule of Evidence 702, proof has to be accepted
by the scientific community, and the employed technique has to
have understood error rates and be available for peer review and
publication.

2.3 Face features for depth FR
Humans recognize people’s faces by their high-level features like
eyes, shapes, or skin tone. With DL algorithms, it is not clear what
data is exactly extracted for predictions, but regarding the study
of Abudarham et al. [1] models are using similar landmarks as
we humans do. Authors point out eye-shape, eyebrows, and lips
as the most impactful features for DL networks performing FR.
Depth image contains fewer features visible to our eyes because
of missing texture data. However, basic shapes of hair, nose, lips,
or eyes are noticeable (See Fig. 2). Studies in the field of facial
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Fig. 2: Face example in depth and RGB modality.

landmark detection from depth data of Kendrick et al.[16] show
the availability of DL networks to detect shapes of mouth, nose tip,
nostrils, eyes, and forehead. Nevertheless, depth modality performs
worse than RGB by achieving the largest error in their position
estimation. Further uncertainty is in test data employed in this
study because it is captured in laboratory conditions.

2.4 Face recognition in depth images
One of the first FR methods based on depth images is the work of
Rui Min et al.[21]. However, the solution presented in this paper is
using Viola-Jones face detection exploited on RGB inputs. Detected
faces are used for cropping the depth image. Point cloud from
each face region is obtained. Further, the surface is segmented into
smaller regions, each of them having an assigned weight. Regions
that are potentially unstable features, e.g., hair are filtered out. In
the conducted experiment with faces of 20 people, the accuracy is
97.7%.

FR from only depth data is presented by Feng et al.[11]. They
propose a novel method to normalize facial images to frontal pose
and neutral expression for recognition enhancement. The frame-
work consists of two Convolutional Neural Networks (CNNs). The
first one converts and reconstructs 3d image as a 3DMM model.
The generated model is normalized to reduce noise and reconstruct
missing regions. Further, a second CNN performs feature extraction
and recognition task. The mean accuracy is 86% on the Lock3DFace
database, and it is a top score during the release of this paper.

A comparison between performing FR from depth and infrared
(IR) data is presented in the work of Soon-kak Kwon[19]. In this
work, the author proposes a fusion of depth and IR images. The
process starts with a face detector based on depth data only. The
algorithm locates the nose position from the image and subtracts
the background. From the separated image of the face, features
are extracted. It is done by applying the 3D-LBP descriptor. The
first four layers are used to obtain histograms describing features.
Later those histograms are used for an identification process. In the
experiment, there are 20 participants, and each of them is pictured
from different perspectives and light conditions. With IR images,
recognition accuracy reaches 98%, and with the depth data, it is
93% due to the noises. The constraints are the accuracy drop when
faces are tilted and poor face detection depending on nose position.

Authors[12] are boosting recognition form low-quality data us-
ing high-quality samples. There are three different techniques pro-
posed where the model is enhanced during training by higher

Fig. 3: Examples of occluded faces from Pandora dataset.

resolution images. The main obstacle is the lack of available data
sets, including both low and high-resolution images.

In [26] normalization impact is studied for FR task. Models
like VGG or ResNet are validated with different variants of pre-
processing like filtering, hole filling, and equalization. The summary
is that all of those techniques in combination with CNNs decrease
overall accuracy because applying them reduces the 3D content
available for the model. Such models are also less capable of gener-
alizing and transferring to other conditions.

3 THE EXPERIMENT
A state-of-the-art DL model is implemented and trained for depth
FR in this study. In the literature, such architectures are proven to
perform well for FR in depth images. The learning process is per-
formed on combined BIWI [10], Pandora[4], and UMBDB[8] datasets.
In order to compare the result of our process with other existing
works, it is tested with external data. In order to perform cross-
dataset validation, a subset of HRRFaceD Database[20] is used as a
benchmark. There is predicted an embedding vector for every im-
age in test data. Using the predictions, image pairs are derived, and
their vector distances are calculated. Predicted labels are associated
with the image class of the pair with minimum distance obtained.
The accuracy of our model is 97.95%, just behind Borghi et al.[3],
who achieve 98.90%.

3.1 Recognition performance in relation to the
face size

FR’s correctness in real-world conditions depends on several factors.
The pipeline starts with a face detector which in depth images tend
to perform less accurately than in RGB image[23] and is a first
constrain. Secondly, the distance from the sensor to the subject and
the sensor’s resolution is substantial, which transfers to the face
size in pixels. The objective of this study is to identify the minimal
resolution of the face that allows correct identification. Accuracy
is calculated for multiple scales of original images from HRRFaceD.
The results are presented in Fig. 4(a) with accuracy on the vertical
axis and percentage of original image size on the horizontal axis. A
significant drop appears for faces smaller than 40% of the original
dimensions. In HRRFaceD every sample differs in its resolution.
Due to this, the mean values are given. The original size is 118x153
pixels, and for 40%, it is 47x61 pixels. The worst FR results are seen
below 10% (11x14 pixels).



PETRA ’22, June 29-July 1, 2022, Corfu, Greece Wiktor Mucha and Martin Kampel

(a)

(b)

Fig. 4: Accuracy of depth FR depending on image size (a) and
on epochs with RGB and depth FR (b).

3.2 Performance of FR in RGB and depth image
modalities

Our research compares RGB and depth modalities in its second part.
It is first determined how best available models perform. Pandora,
UMBDB and HRRFaceD are employed as learning data and for test
2000 images are randomly chosen from BIWI where every depth
image has a corresponding RGB frame. RGB FR uses vggface2 model
which is additionally fine-tuned on Pandora for better results. A ran-
dom factor caused by choosing test images from a more extensive
set is reduced by calculating the accuracy five times on a separate
subset and then taking the average. The result is 98.79% accuracy for
RGB and 80.50% for depth modality. A process is repeated with tests
on Pandora. This scenario presents a better overview of probable
FR accuracy in a real-world environment because images include
diverse occlusions, contrary to earlier tested BIWI which does not
contain any. For training UMBDB, HRRFaceD and BIWI are used.
RGB performs with 85.15% accuracy and depth scores 53.23%.

To see the difference in training and performance in equal con-
ditions, both models are trained from scratch on the same data
with similar parameters. The learning process is performed using
BIWI. Comparison is done with Pandora and results with 84.60%
(RGB) and 48.74% (depth) accuracy. For depth images, the learning
process is observed to be longer, and the validation of RGB reaches

≈100% before the 10th epoch. In depth modality, 100 epochs are not
enough to get close to RGB performance (Fig. 4(b)).

4 CONCLUSION
There is no consistent information about the privacy of depth im-
ages in existing publications, which creates a potential legal prob-
lem for AAL applications employing this type of camera. Regarding
legal regulations, everyone has a right to privacy, private data, and
data protection during its processing. Using depth sensors offers
the advantage of protecting information that can be considered
personal and visible in RGB images during monitoring processes.
Concerning identity reveal, FR in depth is based on similar facial
features to FR in RGB, and a comparison between these modalities
has a significant advantage for RGB over depth. After examining
its learning process, a deeper study revealed a more challenging
feature extraction for our model. Moreover, a high depth FR ac-
curacy was observed in datasets with low numbers of subjects.
This is not comparable to situations within health facilities and in
real-world scenarios when additional environmental factors, sensor
range, or depth estimation errors are present. In contrast, present
DL methods improved FR accuracy even for small faces resolutions.
Because of these circumstances, depth data is more private than
RGB. Yet, it is necessary to consider the possibility of revealing
subjects’ identities when designing solutions based on depth mon-
itoring, especially when a small number of individuals is present
(less than 100) and data is gathered with high-precision sensors.
In addition, the environment in which the system is used and to
whom it is addressed, what activities are monitored, and what data
can be recognized determine privacy preservation.
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