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Abstract. Image-based assistive solutions raise concerns about the pri-
vacy of the individuals being monitored. The issue involves the situation
when such technology is used in medical institutions to protect patients’
health and support the personnel. These devices are installed in facilities
and process images that include personal and behavioral data during the
day. Other types of images than RGB are used to maintain privacy in
this type of application, like depth images. Usage of depth cameras in
the majority of publications is considered private protective. This paper
discusses the issue of privacy in vision-based applications using depth
modality. The factors affecting privacy in depth images are presented.
The main problem that makes an image non-private is that the sub-
jects’ faces allow identiőcation. This paper compares the Face Recogni-
tion (FR) technique between RGB and depth images. In the experimental
part, a state-of-the-art model for FR in depth images is developed, which
is used to establish boundary conditions when a person is recognized.
The performance of FR between these two modalities is compared on
two existing datasets containing images in both versions, including the
training process. The study aims to determine under which conditions
depth cameras preserve privacy and how much privacy they reveal.

Keywords: Privacy· Depth sensors· Multimodal vision· Face recogni-
tion· AAL

1 Introduction

Camera-based systems are used in assistive devices such as Active Assisted Liv-
ing (AAL) solutions. They are installed in all kinds of medical facilities and by
observing patients, reveal their private data which is questionable and may be
unacceptable. It creates a demand for privacy-preserving solutions. A recurring
method to face this is to replace the RGB camera with a depth sensor. This
work is motivated by conŕicting assumptions about privacy in depth-based ap-
plications. Some papers consider depth imaging to be privacy-preserving[2], and
some do not[7]. Biometric features available in depth image are studied to deter-
mine how private it is. Various situations of revealing privacy are discussed. The
main focus is put on Face Recognition (FR) from depth data which allows auto-
matic recognition of subjects. In related work, the FR task is dominated by Deep
Learning (DL) algorithms that replace traditional feature extraction methods.
Their accuracy reaches almost 100% and depends on the image resolution. This
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Fig. 1. Example of same scenes visible in RGB and depth modality.

study answers whether depth camera-based systems preserve subjects’ privacy,
under what circumstances, and what are the performance differences between
RGB and depth FR. The experimental part aims to őnd the border conditions
of correct identiőcation by seeking minimal face resolution that allows this pro-
cess. Further, it compares FR performance between these two modalities. The
depth FR is less robust than RGB, and the learning process is slower. However,
identiőcation from depth data is correct under speciőc factors, showing that this
modality does not fully preserve a person’s identity. FR is correct even when
faces are downsized to 40% of the original dimensions.

This paper is organized as follows. Section 2 describes privacy concerns in
depth images, conditions for subjects recognition, facial features which permit
FR in depth images, legal aspects of FR and personal privacy, and related work
in FR from depth data. Section 3 introduces our experiment with results. Section
4 highlights key parts of this paper and its message.

2 Privacy in depth images

There is no single deőnition of privacy existing. This work takes deeper dive
into this topic from a legal aspect. We consider data private when it does not
reveal a person’s identity or sensitive information. This statement is expanded
more in Section 2.3. In contrast to RGB-based techniques in which subjects are
monitored, depth sensors have an opinion of being privacy-protecting devices
[2]. In this publication, the authors choose depth images to create a privacy-
preserving fall detection system, and the sensor’s privacy is taken for granted.
Fall detection system [22] considers depth data as private but to additionally
ensure, the system does not store any depth data during monitoring. On the
contrary, Chou et al.[7] who design an Activity Recognition (AR) system for
healthcare usage, address depth sensors as not privacy-preserving due to existing
works performing FR form depth images. They employ their system for hand
hygiene analysis where sensor captures faces. The image resolution is downsized
to remove privacy-relevant information, and the activity recognition utility is
retained. There are more such contradictory examples of publications.

Depth sensors do not preserve texture information, which protects against
disclosing information related to colors. Only shapes are preserved in this type
of image. Fig. 1(a) depict same scene in RGB and depth modality. The lack of
available colors hides what is visible on a computer screen. In a real-life scenario,
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depth image protects the AAL device users’ privacy, e.g., by not revealing in-
formation about what people are watching on TV. Certain shows or channels
indicate their preferences, which they may consider private.

A distinguish problem is an acceptance of video-based AAL systems. Banerjee
et al. [4] acknowledge this problem and present depth imaging technologies to
their patients with an explanation. During the test of fall detection application in
a hospital environment, depth data is presented to hospital staff and patients who
consider it more private and acceptable than RGB. Ballester et al.[3] introduce
a toileting assistance system for people with dementia. The concept is discussed
with healthcare professionals from a facility for dementia patients. The outcome
shows acceptance and trust for privacy in depth sensors, even in such an intimate
environment as a toilet. The monitoring with depth image is fully accepted by
8 out of 13 people, where all participants reject RGB based system.

2.1 Recognition scenarios in depth images

Privacy of depth data differs between circumstances, and each application should
be judged differently based on the environment. In health facilities, the personal
identity is revealed from a human perspective when people vary in geometry.
In the case of a group of 30 people, one of them is recognizable when it is a
disabled person in a wheelchair, is taller or shorter than the others, or is using
a walking support device like a walking frame. Viewing a situation when there
are only images or videos available without any additional data, what allows
automatically recognize people are biometric features, e.g., face, height, gait, skin
color, tattoos, and scars [19]. Depth images do not contain the last three of them,
enhancing privacy by reducing the number of information allowing identiőcation.
In the literature, there are publications presenting gait recognition. Dubois et
al.[10] use depth images to extract gait pattern using Hidden Markov Model
(HMM) to recognize people inside the house. In their experiment, they detect
correctly 17 individuals out of 20. However, such tests are too narrow to compare
with real-world conditions. Publications referenced in Section 2.4 show FR allows
correct identiőcation in available depth datasets. However, most test data has
a low number of subjects (around 20). Complete FR pipeline for identiőcation
from a depth camera includes face detection at an early stage. These detectors
tend to perform with lower accuracy than RGB, directly impacting FR systems’
performance which favors RGB-based models at the very őrst step[18].

2.2 Face features for depth FR

FR is based on facial features which DL models extract. Abudarham et al. [1]
shows that the most impactful features for FR are landmarks, e.g., eye shape, eye-
brows, and lips. They hypothesize that Convolutional Neural Networks (CNN)
employ similar features for FR as human beings. Looking at the depth image,
there are fewer features visible from a human perspective than in the RGB
modality. However, their visibility is linked with the resolution of the sensor.
What can be seen by humans are basic shapes of hair, nose, lips, or eyes, but
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it lacks texture information (Fig. 1(b)). In studies of Kendrick et al.[15] authors
detect shapes of mouth, nose tip, nostrils, eyes, and forehead using DL networks
in depth images. Nevertheless, depth modality performs worse than RGB by
achieving the largest error in their position estimation, and models are tested in
laboratory conditions, which does not answer how accurate it works in the wild.

2.3 Legal aspects of privacy and FR

The concept of privacy is not explicitly normalized. The right to it is centrally
standardized in Art. 8 (1) European Convention on Human Rights (ECHR),
according to which everyone has the right to respect for his private and family
life, his home, and his correspondence. Further standards are in Art. 7 of the
Charter of Fundamental Rights of the European Union (CFR), which regulates
violations of privacy and certain professional secrets. The right to data protection
is also understood as a facet of privacy. Art. 8 of the CFR standardizes the right
to the protection of personal data for every person. Art. 1 of the General Data
Protection Regulation (GDPR) speciőes the protection when personal data is
processed. The GDPR can be understood as a substantive concretization of Art.
8 of the CFR and as a formulation of it in Union law.

Except reviling personal information, identity identiőcation invades privacy.
Regarding the study[14], forensic FR becomes a ubiquitous tool to guide court
investigations. Automatic FR systems lack methodological standardization and
empirical validation, placing FR below őngerprints or DNA in terms of trust. In
continental Europe, there is no legal limit on the admissibility of scientiőc evi-
dence. Judges evaluate the relevance of the evidence on their own according to
the state of available scientiőc knowledge. In the USA, according to the Federal
Rule of Evidence 702, the evidence has to be accepted by the scientiőc commu-
nity, and the employed method has to have known error rates and be available
for peer review and publication.

2.4 Face Recognition in depth images

Face recognition is the task of identifying people by their faces. First, the face
has to be detected and cropped. Further image is processed to extract features
describing the face. RGB is not employed in depth recognition, and features
are extracted from 3d data. In the literature, there are works performing FR
from depth data using feature extractors like Soon-kak Kwon[16] who starts the
framework with a face detector based on depth data only. Further, features are
extracted by applying the 3D-LBP descriptor. DL models overtake traditional
descriptors. Feng et al.[12] presents a system with an additional DL network for
normalizing facial images into the frontal pose and neutral expression, reduc-
ing noise and reconstructing missing regions. A second CNN performs feature
extraction and recognition task. Another DL approach is presented by Hu et
al.[13] who boost recognition from low-quality data employing high-quality sam-
ples. This method is restricted by the low availability of datasets, including low
and high-resolution images. In [21] normalization impact is studied for FR task.
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Table 1. Comparison of FR top results on depth datasets, which differ in image quality
and a number of subjects.

Databases No. of Subjects Sensor Resolution Sensor Precision [mm] Accuracy [%]

BU-3DFE 100 3dMD 8K 0.2 99.3 [20]
Lock3DFace 509 Kinect II 20K ≥2 86 [12]
IIIT-D 106 Kinect I 13K 2-4 26.8[8]
CurtinFaces 52 Kinect I 13K 2-4 89.9[5]

Models are validated with different variants of pre-processing. According to this
study, these techniques combined with CNN decrease recognition accuracy be-
cause applying them reduces the 3D content available for the model.

Table 1 lists examples of datasets with a different number of subjects, cap-
tured with various sensors distinct in resolution and precision. Higher accuracy
is achieved in works using higher precision sensors and datasets with fewer sub-
jects, which does not answer how accurate FR is in the wild.

3 The experiment

In this study, the DL model[23] is implemented and trained for depth FR to
achieve state-of-the-art performance. Such architectures are proved by literature
in Section 2.4 to perform robustly on depth images for FR. The learning process
is performed on combined BIWI [11], Pandora[6], and UMBDB [9] datasets. They
all include depth images of people’s faces taken in laboratory conditions. The
resulting model of our process is compared with existing works by tests on a
separate set of data. The test subset of HRRFaceD Database[17] is taken to
perform cross-dataset validation. Every image in test data has a predicted vector
of embeddings. From predictions, image pairs are composed, and the distance is
calculated between their vectors. The predicted label of input images is the class
of the image with which the minimum pair is obtained. Our model is placing
second in accuracy with 97.95% after Borghi et al.[5] who achieve 98.90%.

In real-world conditions, the correctness of FR depends on the distance be-
tween the subject and the sensor, which comes down to the face size in pixels.
When the subject’s face is near, its size is close to sensor maximum resolution.
With the distance increasing, the face dimension reduces. A larger resolution of
the face provides higher quality descriptions of facial landmarks, which results
in better performance. Analysis of Table 1 conőrms this thesis. To őnd the bor-
der conditions of correct identiőcation, minimal resolution of the face allowing
this process is searched. Faces from HRRFaceD are scaled-down, and the FR
accuracy is calculated for each subset created.

A decrease occurs when the face is smaller than 40% of the original size (Fig.
2(a)). Since the test faces vary in dimensions, their average values are computed.
The original size is 118x153 pixels, and for 40% it is 47x61 pixels. The worst FR
results are seen below 10% (11x14 pixels).
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Fig. 2. Accuracy of depth FR depending on image size (a) and on epochs with RGB
and depth FR trained form scratch on Pandora(b) and BIWI (c).

The second part of our experiment compares RGB and depth modalities.
Firstly, the best possible models are viewed. The training is performed on Pan-

dora, UMBDB and HRRFaceD and test data is randomly chosen 2000 images
from BIWI where every depth image has a corresponding RGB frame. For RGB
modality vggface2 model is őne-tuned on Pandora. The accuracy is calculated
őve times, every iteration on a different subset, and the average value is given
to reduce a random factor. The result is 98.79% accuracy for RGB and 80.50%
for depth modality. A similar process is performed with tests on Pandora. This
scenario gives a better overview of potential FR accuracy in real-world condi-
tions due to the various occlusions in images, where previously tested BIWI does
not include any. Learning is done on UMBDB, HRRFaceD and BIWI. RGB per-
forms with 85.15% accuracy and depth scores 53.23%. Secondly, both models are
trained from scratch on the same data with similar parameters. The experiment
is carried out twice. Pandora used for training and BIWI as a test results in
98.39% (RGB) and 79.38% (depth). Replacement of subsets with tests on Pan-

dora gives 84.60% (RGB) and 48.74% (depth) accuracy. For depth images, the
learning process is observed to be longer (Fig. 2(b)). When trained on BIWI,
the validation of RGB reaches ≈100% before the 10th epoch. In depth modality,
100 epochs are not enough to get close to RGB performance (Fig. 2(c)).

4 Conclusion

Under the law, everyone has a right to privacy. The available publications are
not consistent with the privacy of depth images which is problematic with re-
spect to legal regulations. The main advantage of them is the protection of data
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that can be considered personal by subjects of visual monitoring and are visible
in RGB images. Regarding the identity reveal, FR in depth is based on similar
face features like in RGB. A comparison between these modalities favored RGB
over depth with a signiőcant accuracy difference. An examination of the learning
process of our model with its performance conőrmed more challenging feature
extraction for a depth study. Whatmore, the high accuracy in depth FR was
achieved in datasets with a low number of subjects that were not comparable
with conditions in health facilities and real-world scenarios with additional envi-
ronmental distortions, a decrease of depth face detection accuracy, and sensor’s
range. On the other hand, DL methods showed improvement in the accuracy of
FR, even on small face resolutions. These circumstances make depth data more
private than RGB, but when designing depth-based monitoring solutions, it is
necessary to consider the possible disclosure of subjects’ identities, when the
number of individuals in the facility is small (less than 100), data is gathered
with high precision sensors. Privacy preservation is also determined by the envi-
ronment in which the system is used and to whom it is addressed, what activities
are monitored, and what data can be recognized.
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