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Fig. 1: Example of correct face detection in each image: RGB, depth, thermal.

ABSTRACT
Face detection is a well-known issue in image processing, and nu-
merous studies are present in this field. A prominent part of the
work is devoted to RGB images, leaving depth and thermal data
with less interest. However, in some conditions like low-light areas
where face detection is needed, non-RGB sensors might perform
better. Also, mounting an additional RGB camera could be chal-
lenging or not possible, considering privacy concerns. In this work,
current deep learning methodologies are employed to train depth
and thermal detection models. The training is done using combined
publicly available data that is processed by us for this purpose in
order to create necessary annotations for a learning process. The
resulting models are validated on a new trimodal dataset collected
for this experiments purpose. It contains images captured with RGB,
depth, and thermal sensors. Various scenes with single and multiple
faces appearances can be found. The results show that non-RGB
solutions can be applied in practice with highly robust accuracy
and their efficiency is close to RGB detectors. However, their per-
formance depends on the environment and that circumstances are
described later in this article.

CCS CONCEPTS
• Computing methodologies→ Object detection.

KEYWORDS
image modalities, depth face detection, thermal face detection,
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1 INTRODUCTION
Face detection is one of the fundamental topics in the area of com-
puter vision which has been studied for a long time now. These
techniques have become usual in our life thanks to smartphones
that we use daily. They are implemented in various applications
available on our mobiles. For example, face detection is a part of the
face recognition pipeline[18] where it can be exploited for phone
unlocking. However, most of the algorithms in this field use RGB
data or a combination of RGB and depth images for better efficiency.
Using a single depth sensor or thermal imaging has not been stud-
ied widely in this field. There is no existing comparison between
these three techniques in face detection or any benchmark available
publicly. In practical applications of vision systems, face detection
or face tracking may be needed, but the applied system has only
one type of camera available, which is not RGB type. For example,
systems that are tracking human pose and body. They might be im-
plemented in car interiors as driver assistance like in work of Silva
et al.[23]. Another case is Active and Assisted Living (AAL) tech-
nologies for the elderly who require specific medical care. Depth
or thermal data brings fewer privacy concerns like in Banerjee et
al.[4] study. Is it necessary to extend such a system with an addi-
tional RGB camera, or is available depth or thermal sensor enough
to perform correct face detection? How do the depth and thermal
detections perform in comparison to the RGB data approach? In
this work, to answer these questions, we implement state-of-art
Convolutional Neural Networks (CNN) for face detection tasks on
three different imaging sensor types: depth, thermal and RGB. We
prepare the training data for depth and thermal models from five
publicly available datasets, including annotation creation, and per-
form algorithm learning processes. In the case of the RGB detector,
the model used is already trained. Finally, our models are evaluated
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on a new dataset gathered by us that contains exactly the same
scenes, but captured with three different camera types mounted
together. There are 2808 RGB, depth, and thermal samples includ-
ing both single and multiple faces occurrences. The images vary in
backgrounds, scenes, persons, and lighting conditions. Depending
on the scenery complexity they are divided between easy, medium
and hard subsets.

The main contribution of this paper includes:

• Creation of annotations for faces in already existing public
datasets for training purposes. The annotations are planned
to be publicly released.

• Introduction of a new trimodal dataset named TriModal Face
Detection(TMFD) Dataset for face detection task planned to
be publicly released. The novelty of the dataset is not only
in various modalities but in perfectly aligned images of the
same scene captured by depth, thermal and RGB sensors. The
dataset might be a benchmark in the field of face detection
from depth or thermal data and allows direct comparison
between these modalities.

• Application of CNN for face detection to depth and thermal
images.

• Performance study and comparison between these three
modalities in an example of face detection task.

This paper is organized as follows. Section 2 reviews related work
in the field of face detection from the depth and thermal images.
Section 3 describes the chosen methodology with justification. The
applied deep learning architecture is presented. The last subsection
is devoted to the data preparation process of training and validation
samples for depth and thermal models. Section 4 is focused on the
experiment. It includes clarification of the test dataset preparation
with a detailed description of the dataset. The metrics used are
provided with an explanation. Finally, results are presented and
discussed. Section 5 summarizes this paper by highlighting the key
observations from the carried study.

2 RELATEDWORK
In the field of face detection, all three data types of color, depth,
and thermal are applicable. Typically, depth data appears in the
context of improving the performance of algorithms based on RGB
images as in works[17][19][20]. Frameworks using only depth or
only thermal samples are less common than these based on RGB
inputs.

2.1 Face detection from depth data
One of the first works in face detection from depth data only is pre-
sented by R. Hg et al.[11]. The authors contribute to the topic with
a new methodology and an RGB-D dataset for face detection and
recognition. The algorithm finds the closest object to the camera
to reduce the search space. Then the curvature analysis technique
searches for face candidates. These measures are used for classifica-
tion to determine the type of surface. Detected surfaces are merged
into triangles of structure eye-eye-nose. Face image is transformed
to become faceness, it is centered, masked, and transformed. Later
on, it is validated using the Principal Component Analysis method.
The face space is built. The testing image is projected into this face

space and then back to the original image space. If the reconstruc-
tion error fits the result threshold, it is considered as a face. More
recently, feature-based studies have been presented. One of these
examples is the work of Li et al.[14]. Depth data is mapped into a
2d image combined with a smooth image processing method to get
depth images. An improved HOG-LBP algorithm using Histograms
of oriented gradient (HOG) and local binary patterns (LBP) is de-
signed to profile the features of a face depth. Classification is done
by Support Vector Machine (SVM). The feature-based methodology
is presented as well in the work of [25]. Authors employ Haar-like
features as a descriptor of images. Then a Bilateral filter is applied,
the foreground is distinguished from the background to obtain a
face mask. They compare their implementation with traditional
2d based frameworks in different lighting conditions. They outper-
form RGB detection in low-light environments where there is not
enough light to reconstruct the scene correctly with an RGB sensor,
and information for algorithm processing is missing.

A similar task to face detection is the head detection issue. The
main difference is in a more considerable range of camera angles ac-
cepted as true candidates than faces, making this a more challenging
problem. In the case of faces, characteristics are eyes, ears, or nose.
In head detection, none of these characteristic points may be visible
for the sensor. For the stated reasons, the topic of head detection
has been researched too as an extended case of face detection.

A head detection solution is presented by Chen et al.[6] using
their own, novel head descriptor. It classifies pixels as head center
or non-head center. A false-positive filter is employed to select
the most probable head centers with clustering to determine final
locations. The algorithm outperforms HOG-based detectors. Depth-
only head detection is also presented by Hacinecipoglu et al.[10].
The framework removes the ground plane from images. Further,
they apply filtering and clustering, which leads to extracting human
bodies from scenes. The final stage is head area extraction and clas-
sification performed by the SVM algorithm. The whole pipeline is
designed to work on a mobile robot. Deep learning (DL) techniques
are equipped for head detection in studies of Diego Ballotta et
al.[3][2]. They present a network that outperforms other solutions
at that time. In the second study, they introduce improvements to
the architecture and overcome the sliding-window approach with
Fully Convolutional Network. They train and validate the model
on two datasets. Their algorithm exceeds state-of-art methods and
is able to run in real-time. However, it is not evaluated on images
that contain multiple heads appearances in one scene.

2.2 Face detection from thermal data
One of the first face detection applications from thermal data is
presented by Cheong et al.[7]. It is based on Otsu’s thresholding
method for converting thermal images to binary form. The hori-
zontal projection is calculated for the image to identify the global
minimum. It helps to identify the height and width of the head
region. They also present their custom database for final verifica-
tion. The research of Kopaczka et al.[13] is focused on adapting
machine learning (ML) algorithms used for RGB data to the thermal
datasets. ML approaches are described as proven to outperform
traditional detections based on thermal information. Comparison
is made between several image descriptors. The best performance
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is achieved with the Deformable parts model (DPM), HOG, and
LBP extractors. The conclusion is that a proper dataset is needed
to perform training correctly. In the work of Silva et al.[23] the
authors explore the usage of a thermal camera to detect faces of
persons in a car interior. They use DL with a YOLOv3 detector for
RGB images. They apply transfer learning with a model pre-trained
on RGB images and consider full retraining in feature work. The
biggest constraint is in the sensors range, which is only available
to perform up to 60 cm. Another study with a similar approach
is presented by Vukovicet al. l[24]. This time, the model used is
named Region-based Convolutional Neural Network (R-CNN), and
transfer learning is applied. It performs face detection from thermal
images only. Authors evaluate it on the dataset collected by them.
What is unique, it consists of multiple faces occurring in single
scenes. However, computational time does not allow to perform
this application in real-time. The authors suggest using the Faster
R-CNN or YOLO algorithm.

3 METHODOLOGY
Considering the works cited in the previous section, we apply a
solution based on deep learning. The work of Ballotta et al.[2] in the
head detection field uses a CNN network where VGG-19 network
is used as a feature extractor. This shows that feature extractors
designed for RGB data can adapt to depth samples if trained from
scratch. Similar conclusions are coming from the analysis of thermal
studies. In experiments referenced in [23] and [24] it is proven that
CNN are able to perform face detection on thermal images. However,
in both works, feature extraction parts of the model are pre-trained
on RGB data. Due to this fact, we decide to retrain the existing
state-of-art model for face detection on depth and thermal data.
Nevertheless, due to the lack of existing datasets, we create our
training image sequence from existing sets available in public.

3.1 Face detection model
In this work the scrfd_1g model is implemented. It belongs to a fam-
ily of SCRFD DL architectures for face detection presented by Guo
et al.[9]. They achieve top performance on WIDER face[26] bench-
mark with scrfd_34g having one of the best AP results. However,
analysing the results and performance of the whole family of mod-
els, the scrfd_1g is chosen as a compromise between computational
speed and achieved scores.

The scrfd_1g is built from three common parts in the field of
object detection algorithms, a backbone, a head, and a neck. The
first part is made out of MobileNetV1[12], a network designed for
embedded and mobile devices. It is responsible for learning and ex-
tracting features from images. For the neck part Path Aggregation
Feature Pyramid Network (PAFPN)[16] is used. This network runs
instance segmentation and forms features from a previous network
part by pooling them from all levels. It shorten the distance among
lower and topmost feature levels for robust information transfer.
Extracted features are passed to the head stage, and outputs are
calculated. The head consists of stacked 3 × 3 convolutional lay-
ers. In this part of network classification loss is retrieved using
Generalised Focal Loss (GFL)[15] and regression branches loss for
bounding boxes with DIoU loss[27].

For both depth and thermal models, identical parameters during
their learning process are used. The parameters are learning rate
equal 0.01, momentum equal 0.9, and weight decay is 0.0005. Each
sample is appropriately normalized to have a mean value equal to
127.5 and a standard deviation equal to 128. Further, images are
randomly cropped, resized, and flipped. The training is run for 640
epochs with a batch size equal to 8.

3.2 Dataset preparation
There are fewer datasets available for face detection from depth
images than in the RGB field. In the existing ones, images are
usually taken in laboratory conditions, where a single person sits
in front of a wall. This differs from popular RGB face detection
benchmarks like WIDER face[26] where in some cases, hundreds of
people are observed on one captured scene in real-world conditions.
The goal is to evaluate a presented algorithm on data closer to real-
world conditions with multiple appearances of faces, as opposed to
available studies. Our depth dataset is created from four different
sets publicly available. Images from BIWI[8] which contain seg-
mented depth masks of single persons in the scene are selected.
Another sequence is taken from Pandora[5] where the scene is
similar to BIWI[8], but without background segmentation. To dif-
ferentiate data, images containing real-world environment with
multiple face occurrences from AAU VAP Trimodal People[21] and
Hallway RGBDT[1] datasets are added too. All of the used datasets
are captured as image sequences. Because of this, repeated or simi-
lar samples are deleted. In the end, our training set consist of 1294
samples and validation of 354 samples.

In the case of thermal images, circumstances are similar. Most of
the available images are already processed for face recognition or
are not challenging enough for the object detection task. Thermal
data for face detection has the same problem with a availability like
in the field of depth images. There are only a few existing datasets
for this task, and it makes training preparation more difficult. In
this study, images from the already mentioned AAU VAP Trimodal
People[21] dataset that includes thermal images as well and The
Tufts Face Database[22] are merged. As a result, the proportion
between validation and training samples for learning the thermal
model equals 660 to 1814 samples.

All of the mentioned and used data does not have available
annotations for the face detection task. Due to this fact, labels
are created manually by applying the scrfd_34g model, which is
the most effective from the whole SCRFD family. Every generated
ground truth is checked, and the annotations are added or corrected.
Created annotations are planned to be released publicly for further
use.

4 EXPERIMENT AND RESULTS
4.1 Experiment
We evaluate the performance of three models on our test data.
Images are captured by a depth sensor Orbbec Astra and Flir Lep-
ton 3.5 thermal camera. The first device is responsible for gather-
ing samples in RGB color space and 16bit depth data. The second
one collects 16bit thermal data. Both cameras have been mounted
together on a tripod to produce exactly the same frame. Images
contain scenes with single and multiple visible faces.
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Fig. 2: Examples from our easy,medium, hard subsets

4.2 TMFD Dataset introduction
Due to the lack of available benchmarks in the field of depth and
thermal face detection, the creation of our own dataset is needed.
However, there are no existing trimodal datasets for this task, in-
cluding depth, thermal and RGB images. Because of these circum-
stances, a new dataset is collected in this study to perform a valid
comparison, which is planned to be made publicly available. Each
RGB image in this dataset has corresponding frames of depth and
thermal data. An example of three aligned frames from different
sensors is presented in Fig. 1. This dataset contains images with
different variations. The samples vary in the number of persons
present in the scene, the individual persons, the type of background,
the measurement distance, the wearable accessories used as obsta-
cles (hoodies, headphones, hats, glasses, face masks), and the type
of illumination in the scene. The images are categorized into three
separate groups based on their complexity and difficulty level in the
context of face detection. All samples presented in this paper are
blurred only for the purpose of this document for privacy concerns.

The first subset contains the easiest detection conditions. This
category covers images in which a single person is placed against
a simple background. The sensor is positioned at a close range
from the target. An example image is shown in Fig. 2(1). Further
diversity is in the variation of lighting conditions in the captured
scene, presented in Fig. 2(3). This subset contains 781 images of
each modality.

The second batch incorporates medium detection conditions.
In this group, the sensor placement remains the same as in the
easier subgroup, but additional variety is introduced. Individuals
are captured with wearable accessories as obstacles to make the
correct detection harder (Fig. 2(2)). These accessories are hood-
ies, headphones, hats, and glasses. The second group includes the
appearance of multiple persons in the scene to test the multiple
detection performance presented in Fig. 2(4). In this section, there
are 965 images of each modality.

The last group takes the most difficult images that remain. This
time, the sensor is placed further away from the target. The scene
features various obstacles, including computer screens, plants, desks,
and chairs. The persons in the scene interact with them (Fig. 2(5)).
Their occurrence is both singular and plural in the scene. Some of
the samples include false-positive faces projected on a computer
screen like the one presented in Fig. 2(6). A distinct subset in this
collection are images from a previous, easier scene, but with a face

Table 1: Comparison of a performance in the presented
dataset for each modality.

Average precision
for three

image types
AP[%]

Easy
(781 samples)

Medium
(965 samples)

Hard
(1062 samples)

RGB 99.99 99.99 92.95
Depth 97.91 96.55 77.04
Thermal 98.98 94.07 83.98

mask usage to increase the difficulty of the prediction task. This
particular group contains 1062 images of each modality.

4.3 Metrics
To evaluate the models, we employ standard metrics in the field of
object detection. These are precision, recall, and average precision
(AP).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓 𝑝
(1)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 + 𝑓 𝑛
(2)

Where:
• 𝑡𝑝: is the number of correct face detections
• 𝑓 𝑝: is the number of correct face rejections
• 𝑓 𝑛: is the number of incorrect face rejections

AP is measured over various threshold values of prediction con-
fidence score for each bounding box. The Intersection over Union
(IoU) is fixed. There are 1000 threshold values between 0 and 1 in
our calculations. The final value of AP is calculated as an area under
the precision-recall curve of each plot presented.

4.4 Results
All of the three models are able to perform face detection on our
dataset. The difference between performance is visible between
three subsets of the test data. The results are shown in a Table 1.

In the easy subset, all three models perform on a similar level
where RGB model leads scores with AP of 99.99%, followed by
thermal solution with AP of 98.98%. The depth model presents the

Fig. 3: Precision-recall curves for modalities in the easy (left)
andmedium (right) data subsets.



Depth and Thermal Images in Face Detection - A Detailed Comparison Between Image Modalities ICMVA 2022, February 18–20, 2022, Singapore, Singapore

Fig. 4: Precision-recall curves for modalities in the hard data
subset with false positive faces (left) and without (right).

Fig. 5: From the top examples of failed detection: in depth and
thermal data due to the existing obstacle, in depth data due
to the face mask occurrence, in RGB model with a projected
face on the computer screen.

worst performance with an AP of 97.91%. However, the minor varia-
tions between these results make all three techniques applicable in
real-world environments similar to the conditions from easy image
set. The precision-recall curve is visible in Fig. 3(1), showing more
details about the performance.

In the medium-difficulty scenario, a similar tendency in perfor-
mance is observed. Again, the top result is achieved by the RGB
approach. The thermal and depth image follows with a drop in
performance. The depth model obtains 96.55% and the thermal one
a result of 94.07%. The results show that even with some obstacles
around the face area, correct detection can still be performed. The
occurrence of multiple persons in the image is also not a constrain.
Detailed comparison of models’ performance is presented in a Fig.
3(2) with the precision-recall curve.

In the hardest scenario the precision-recall curve on Fig. 4(1)
shows anomaly in RGB values. This difference is due to the false-
positive faces occurrence in some images. In that case, the models
which are not based on color information outperform RGB predic-
tors. Overall, the RGB model leads again with a 92.95% result of
AP. The thermal model follows with 83.90%. The depth algorithm
achieves the worst result with 77.04%. To see the impact of false-
positive faces, the performance study is also executed without them.

All of the images with projected faces are skipped. The result is a
significant improvement of RGB predictor with AP of 99.96%, and
the detailed curves of precision and recall are presented in Fig. 4(2)
where the anomalies from a Fig. 4(1) are gone.

From our analysis of detection, a tendency to failure of none-RGB
based approaches is observed more often. This happens when faces
are partially hidden by external obstacles like in a Fig. 5(1). Images
with face masks are challenging for depth model which tends to fail
with detection like in Fig. 5(2). Except that, performance of thermal
images is restricted by low resolution of images in comparison
to other cameras. The small resolution affects range of use. In
depth images the main constraint likewise in thermal camera is the
range of used sensor. In field of acquisition distance, RGB cameras
outperforms mentioned modalities. The downside of RGB models
is in poor ability of rejecting false face candidates like in Fig. 5(3).
Such models can be fooled by mirrors or face images. The 3D based
models and thermal detectors are capable of correct predictions in
such situations. In general, a major limitation in field of depth and
thermal detection is in publicly available data for training purposes.
Because of this, our models are trained on notably smaller amount
of samples then existing ones for RGB detection. It is very likely that
with increase of learning samples the performance will improve
and non-RGB models will perform even closer to the RGB images.

Direct positioning of outcomes from this experiment is not possi-
ble due to the lack of available benchmarks in the field of depth and
thermal face detection. In some studies like [11][13][25] algorithms
are evaluated on samples which are captured in laboratory condi-
tions and are far from real-world environment. Faces appear one at
a time in the central part of the image. Also, there is a difference in
metrics used among publications, where average precision is not
calculated in all of them like in [11][25].

In the field of depth data, the first referenced work[11] has the
accuracy of correct prediction equal to 93.62%. Similar performance
is observed in [25] where depending on light conditions, accuracy
varies between 90% and 97%. Chen et al.[6] achieves accuracy of 90%
with their descriptor. In the deep learning framework[2] authors
present 88.3% value of true-positive and 7.7% false positive detection.
Nevertheless, the dataset from this experiment is not available in
public anymore.

In the thermal field, for the study of Silva et al.[23] the YOLO
AP50 metric of 99.75% and AP 78.25% is obtained. However, it is
limited by a range of sensors and a single occurrence of faces in
samples. In the article from [13] the best model results in a precision
of 100% and recall of 98%, but the images are already cropped and
do not look challenging for the object detection task. The work of
Vukovic et al.[24] appears to be the most similar to ours. They are
collecting their test data with multiple faces. Their best result is the
precision of 94.33% and the recall of 90.59%.

Considering referenced work and results, the solution presented
in this article shows high robustness. A decrease of results appears
only in the case of the hard dataset. Nevertheless, related works
are tested on datasets with the environment in the scenes, which is
closer to the laboratory conditions, like presented in this article easy
dataset. The work described in this paper shows, that applying CNN
for depth or thermal face detection is very effective. The introduced
dataset creates new comparison possibilities of different techniques
in this field.
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5 CONCLUSION
In this study, face detection with three different image sensors: RGB,
depth, and thermal are explored. Orbbec Astra with Flir Lepton 3.5
cameras are used to collect a new dataset named TMFD Dataset
containing RGB, depth, and thermal images, which are captured
from the precisely same perspective. Obtained samples include
static and non-static scenes with occurrences of single and multiple
persons in a scene. All samples are split between easy, medium,
and hard scenarios for the detection task. Depending on difficulty,
persons are captured in front of different backgrounds, or sensors
are placed in a diverse range. A part of samples includes persons
wearing accessories like scarfs, hats, glasses, headphones, or face
masks to increase the complexity and variety in scenes. In contrast,
the referenced publications are evaluated in closer conditions to
the laboratory environment with only single face appearances. To
perform the detection task, a state-of-art CNN is exploited. Because
of the lack of appropriate existing datasets, our models are trained
on datasets prepared by us from publicly available images. The
pre-trained RGB model outscores other solutions in all three image
subsets with AP of 99.99% for easy and medium. In the hard its
result is 92.95%. The thermal model performed with AP of 98.98%
for easy, 94.07 for medium and 83.98 for hard. The depth one has
placed behind them with 97.91%, 96.55%, and 77.04%, respectively.
It is impossible to closely compare and place these results among
other works due to the lack of publicly available benchmarks. As it
was expected, two models do not achieve the average precision of
a pre-trained RGB detector, but the scores are high enough to be
used in practice. Strengths of non-RGB-based detection have been
visible in low-light environments and in rejecting false candidates
from mirrors or posters which are rather flat or do not vary in
temperature or in low-light environments. This research proves that
face detection can be performed with a depth or thermal camera,
and an RGB sensor might not be necessary. However, there are some
circumstances where these cameras are capable of this task. Their
range and low resolution restrict their functionality. In conditions
where the sensor is close to the targets, the detection is highly
robust. This might simplify the devices used in practice or lower
their costs by reducing the number of used cameras. The removal of
RGB cameras can also benefit in some cases where personal privacy
protection is important.
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