

PolicyCloud has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 870675.

CLOUD FOR DATA-DRIVEN POLICY MANAGEMENT

Project Number: 870675 Start Date of Project: 01/01/2020 Duration: 36 months

D7.12 DATA MARKETPLACE: SOFTWARE PROTOTYPE

Dissemination Level PU

Due Date of Deliverable 31/10/2022, M34

Actual Submission Date 28/10/2022

Work Package WP7, Communication, Exploitation,

Standardisation, Roadmapping & Business

Development

Task T7.2

Type Demonstrator

Approval Status

Version V1.0

Number of Pages p.1 – p.87

Abstract: The deliverable D7.12 Data Marketplace: Software Prototype describes the final

demonstrator of the PolicyCLOUD Data Marketplace. The latter is a unified web-based platform

consisting of two (2) core services, its front-end and back-end services, offering to its users various

ready-to-use solutions, by supporting different kinds of assets.
The information in this document reflects only the author’s views and the European Community is not liable for any use that may be made
of the information contained therein. The information in this document is provided “as is” without guarantee or warranty of any kind,
express or implied, including but not limited to the fitness of the information for a particular purpose. The user thereof uses the information

at his/ her sole risk and liability. This deliverable is licensed under a Creative Commons Attribution 4.0 International License.

 D7.12 – v.1.0

www.policycloud.eu

2

Versioning and Contribution History

Version Date Reason Author

0.1 12/09/2022 ToC Vasilis Koukos, Argyro

Mavrogiorgou (UPRC)

0.2 16/09/2022 Contribution in Sections 1, 2, 4 Thanos Kiourtis (UPRC)

0.3 28/09/2022 Updates in Sections 1, 2, 3 Vasilis Koukos (UPRC),

Eleftheria Kouremenou,

Alexandros Raikos (UPRC)

0.4 12/10/2022 Check and revision of all Sections Argyro Mavrogiorgou, Thanos

Kiourtis (UPRC)

0.5 18/10/2022 Review Giannis Ledakis (UBI),

Panayiotis Michael (ICCS)

0.6 26/10/2022 Changes based on review comments Vasilis Koukos, Eleftheria

Kouremenou (UPRC)

0.7 27/10/2022 Quality check Argyro Mavrogiorgou (UPRC)

1.0 28/10/2022 Submitted version ATOS

Author List

Organisation Name

UPRC Vasilis Koukos

UPRC Eleftheria Kouremenou

UPRC Alexandros Raikos

UPRC Argyro Mavrogiorgou

UPRC Thanos Kiourtis

Abbreviations and Acronyms

Abbreviation/Acronym Definition

API Application Programming Interface

AJAX Asynchronous JavaScript And XML

CRUD Create Retrieve Update Delete

EOSC European Open Science Cloud

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

JWT JSON Web Token

REST Representational State Transfer

UI User Interface

 D7.12 – v.1.0

www.policycloud.eu

3

Contents

Versioning and Contribution History .. 2

Author List .. 2

Abbreviations and Acronyms .. 2

Executive Summary .. 8

1 Introduction .. 9

1.1 Objective of the Deliverable ... 9

1.2 Structure of the Deliverable ... 9

1.3 Summary of Changes .. 9

2 Prototype Overview ... 10

2.1 Main Components ... 11

2.1.1 Back-end .. 11

2.1.2 Front-end ... 12

2.2 Interfaces .. 12

2.2.1 Back-end .. 12

2.2.1.1 Interfaces related to Users ... 15

2.2.1.2 Interfaces related to Solutions ... 28

2.2.1.3 Search functionality on Solutions .. 56

2.2.1.4 Interfaces related to Assets .. 58

2.2.1.5 Root & Other Interfaces .. 63

2.2.2 Front-end ... 64

2.3 Baseline Technologies and Tools ... 82

2.3.1 Back-end .. 82

2.3.2 Front-end ... 82

3 Source Code ... 85

3.1 Availability ... 85

3.1.1 Back-end .. 85

3.1.2 Front-end ... 85

3.2 Exploitation ... 85

3.2.1 Back-end .. 85

3.2.2 Front-end ... 85

 D7.12 – v.1.0

www.policycloud.eu

4

4 Conclusion .. 86

References ... 87

 D7.12 – v.1.0

www.policycloud.eu

5

List of Tables
Table 1 – Back-end’s interfaces related to Users .. 15

Table 2 – Register a new user Interface ... 16

Table 3 – Check availability of an Email Interface ... 17

Table 4 – Authorize a user (Login) Interface .. 18

Table 5 – Verify users Interface ... 18

Table 6 – Resend verification code to users Interface ... 19

Table 7 – Get user’s information Interface .. 20

Table 8 – Update user’s information Interface .. 21

Table 9 – Change user’s password Interface ... 21

Table 10 – Reset user’s password request Interface .. 22

Table 11 – Reset user’s password Interface .. 23

Table 12 – Delete user’s account Interface .. 23

Table 13 – Change user’s email Interface .. 24

Table 14 – Verify user’s new email Interface ... 24

Table 15 – Revert user’s email Interface .. 25

Table 16 – Change user’s profile picture Interface ... 26

Table 17 – Remove user’s profile picture Interface .. 26

Table 18 – Get user’s statistics Interface .. 27

Table 19 – Get user’s account data Interface .. 27

Table 20 – Back-end’s interfaces related to Solutions .. 29

Table 21 – Get solutions’ collections Interface .. 30

Table 22 – Get a list with all solutions Interface .. 31

Table 23 – Get a list with all solutions from a specific collection Interface ... 32

Table 24 – Get a specific solution (using keyword “all”) Interface .. 32

Table 25 – Get a specific solution (using solution’s “collection”) Interface .. 33

Table 26 – Get latest solutions from all collections Interface ... 34

Table 27 – Get latest solutions from a specific collection Interface ... 34

Table 28 – Get random solutions from all collections Interface ... 35

Table 29 – Get random solutions from a specific collection Interface ... 35

Table 30 – Get a list with all solutions provided by a specific user (using keyword “all”) Interface 37

Table 31 – Get a list with all solutions provided by a specific user and under a specific collection (using a

“collection” value) Interface ... 37

Table 32 – Get solutions’ statistics for front-end’s homepage Interface ... 38

Table 33 – Get solutions’ filtering values for front-end’s Discover page Interface 38

Table 34 – Upload / Create a new solution with random ID Interface ... 40

Table 35 – Upload / Create a new solution with given ID Interface ... 42

Table 36 – Update a specific solution (using keyword “all”) Interface .. 43

Table 37 – Update a specific solution (using solution’s “collection”) Interface ... 44

Table 38 – Delete a specific solution (using keyword “all”) Interface ... 44

Table 39 – Delete a specific solution (using solution’s “collection”) Interface ... 45

 D7.12 – v.1.0

www.policycloud.eu

6

Table 40 – Delete all solutions Interface .. 46

Table 41 – Delete all solutions from a specific collection Interface ... 46

Table 42 – Make a review for a solution Interface .. 47

Table 43 – Update an existing review for a solution Interface .. 47

Table 44 – Delete a review for a solution Interface .. 48

Table 45 – Get a list with the reviews made by a specific user Interface .. 49

Table 46 – Get a list with the reviews made for a specific solution Interface ... 50

Table 47 – Get the cover image of a solution Interface ... 50

Table 48 – Change the cover image of a solution Interface .. 51

Table 49 – Remove the cover image of a solution Interface ... 51

Table 50 – Get a list with all solutions that need permission Interface ... 52

Table 51 – Get a list with all solutions from a specific collection that need permission Interface 53

Table 52 – Approve or reject a solution that needs permission, using keyword “all” Interface 54

Table 53 – Approve or reject a solution thats needs permission, using solution’s “collection” Interface . 54

Table 54 – Approve or reject all solutions that need permission, using keyword “all” Interface 55

Table 55 – Approve or reject all solutions that need permission under a specific collection, using a

“collection” value Interface .. 55

Table 56 – Back-end’s search operators .. 57

Table 57 – Back-end’s interfaces related to Assets ... 58

Table 58 – Get a list with the stored assets Interface... 59

Table 59 – Get a specific asset using its ID Interface .. 59

Table 60 – Upload a new asset with random ID Interface ... 60

Table 61 – Upload a new asset with given ID Interface ... 61

Table 62 – Update a specific asset using its ID Interface ... 61

Table 63 – Delete a specific asset using its ID Interface... 62

Table 64 – Delete all assets (administrators’ action) Interface.. 62

Table 65 – Root Interface ... 63

List of Figures
Figure 1 – Data Marketplace architecture .. 10

Figure 2 – Data MaRketplace's layers and main functionalities .. 11

Figure 3 – Navigation bar for NON-LOGGED in users .. 64

Figure 4 – Navigation bar for logged in users ... 64

Figure 5 – Navigation bar from the Home page ... 64

Figure 6 – Discover’s sub-items redirect to Discover page .. 65

Figure 7 – Footer.. 65

Figure 8 – Home page: Upper view ... 66

Figure 9 – Home page: Middle view .. 67

Figure 10 – Home page: Lower view ... 67

Figure 11 – Sign up page .. 68

 D7.12 – v.1.0

www.policycloud.eu

7

Figure 12 – Sign in page .. 69

Figure 13 – Account page: Overview tab .. 70

Figure 14 – Account page: Solutions tab .. 71

Figure 15 – Account page: Reviews tab .. 71

Figure 16 – Account page: Profile tab ... 72

Figure 17 – Discover page .. 72

Figure 18 – Discover page: Sorting options ... 73

Figure 19 – Solution page: View for logged in users ... 74

Figure 20 – Solution page: View for solution providers and administrators ... 74

Figure 21 – Solution page: View for non-logged in users .. 75

Figure 22 – Create page: Basic information ... 76

Figure 23 – Create page: Additional information .. 76

Figure 24 – Create page: Assets section ... 77

Figure 25 – Create page: View for non logged in users .. 77

Figure 26 – About page: Upper view ... 78

Figure 27 – About page: Bottom view .. 79

Figure 28 – Example of error message ... 79

Figure 29 – Terms and conditions page ... 80

Figure 30 – Privacy policy page .. 81

Figure 31 – Contact page .. 81

Figure 32 – Front-end access Middleware ... 83

Figure 33 – Dashboard add settings ... 83

Figure 34 – Dashboard admin view settings ... 84

Figure 35 – Token based actions ... 84

 D7.12 – v.1.0

www.policycloud.eu

8

Executive Summary

This deliverable (entitled “Data Marketplace: Software Prototype”) describes the final version of the

PolicyCLOUD Data Marketplace demonstrator and is a follow up of the deliverable D7.5 - “Data

Marketplace: Software Prototype” where the initial demonstrator of the Data Marketplace was described.

In essence, the Data Marketplace is a unified web-based platform consisting of two (2) core services, the

front-end and the back-end services, offering its users various ready-to-use solutions. More specifically,

it provides to the wider research and innovation community various assets (i.e., objects/solutions) in

different domains.

Into this context, the current deliverable describes an overview of the Data Marketplace architecture,

detailing the main features of its core components (also described in D7.4 - Data Marketplace: Design

and Open Specification, delivered in August 2021, and its updated version D7.11, delivered in August

2022), whereas all the implemented interfaces are thoroughly described accompanied by indicative

examples. On top of these, the baseline technologies that have been used for the realization of the Data

Marketplace are analyzed, providing detailed information on how an external user can exploit and access

the Data Marketplace.

 D7.12 – v.1.0

www.policycloud.eu

9

1 Introduction

Deliverables D7.4, entitled “Data Marketplace: Design and Open Specification” (delivered in August 2021)

and its updated version, Deliverable D7.11 (delivered in August 2022), were about the design and the

architecture of the PolicyCLOUD Data Marketplace. As described and analysed in these deliverables, the

Data Marketplace is considered as a smart user-based repository of assets that aims to create a

community of users who will be able, through Data Marketplace’s platform, to provide and share various

ready-to-use solutions/tools to various subjects and fields of use, related to the areas of interest of

PolicyCLOUD.

1.1 Objective of the Deliverable

This deliverable describes the final version of the implemented prototype of the Data Marketplace, and

it is an extension of the abovementioned deliverables, as well as the deliverable D7.5, where the initial

version of the implemented prototype was described. In summary, the Data Marketplace has been

implemented in order to provide the means for storing, searching and retrieving several types of assets,

which are the outcome of a requirements analysis that was performed during Task 7.2 and described in

D7.4. It consists of a public web-based environment with many different APIs and functionalities, covering

all the different requirements of the project’s stakeholders.

1.2 Structure of the Deliverable

The remainder of this deliverable describes an overview of the Data Marketplace architecture in Section

2.1, detailing the main features of its core components that are also described in the abovementioned

deliverables. In Section 2.2, the final version of the implemented interfaces of the Data Marketplace’s

components are described, while Section 2.3 describes the baseline technologies that have been used

for the realization of the Data Marketplace. Section 3 provides some access information to the source

code, and finally, Section 4 concludes with a summary of the described prototype.

1.3 Summary of Changes

This Section highlights the updates made to the previous version of this deliverable D7.5 (Data

Marketplace: Software Prototype):

• Included Sub-section 1.3 (Summary of Changes).

• Updated Sub-section 2.1.1 in order to highlight the renaming of the descriptions to “solutions”.

• Updated Sub-sections 2.2.1 and 2.2.2 according to the final updates of the relative components.

• Updated Sub-section 2.3 based on the final baseline technologies (especially for the back-end).

• Updated Section 3 according to the availability and exploitation plans of the components.

 D7.12 – v.1.0

www.policycloud.eu

10

2 Prototype Overview

The PolicyCLOUD Data Marketplace (https://marketplace.policycloud.eu) is a public web-based

environment with various APIs, able to store several types of assets. It has been structured and

developed having two (2) core components. The first and most important component is the back-end,

which contains in a structured way the information, stores the assets offered by the Data Marketplace

and implements the required functionalities. The second component is the front-end, which presents to

the users the offered content (the assets and their information), allowing them to interact with the

platform in an easier way (Figure 1).

FIGURE 1 – DATA MARKETPLACE ARCHITECTURE

Generally, the Data Marketplace provides several functionalities that are mapped to different layers. The

back-end includes three (3) layers (i.e., Assets Storage Layer, Assets Management Layer, and Interaction

Layer), while the front-end includes one (1) layer (i.e., Presentation Layer). Hence, the platform consists

of four (4) different layers (as depicted in Figure 2) that realize its capabilities. These layers of the Data

Marketplace are described below:

• The Assets Storage Layer (part of the back-end) is the layer in which the platform’s offered assets

are stored.

• The Assets Management Layer (part of the back-end) delivers all the needed principles and

techniques for the management of the Data Marketplace’s assets.

• The Interaction Layer (part of the back-end) supports the communication between the platform

and its users (i.e., human users and machine users), by providing discrete APIs for exploiting each

different type of asset.

https://marketplace.policycloud.eu/

 D7.12 – v.1.0

www.policycloud.eu

11

• The Presentation Layer (part of the front-end) provides the User Interface towards the different

types of users that are willing to use the platform.

FIGURE 2 – DATA MARKETPLACE'S LAYERS AND MAIN FUNCTIONALITIES

2.1 Main Components

2.1.1 Back-end

The back-end is the main component of the Data Marketplace. It consists of three (3) different layers and

implements the main functionalities for the successful management of all the existing assets. The three

(3) layers are briefly described below.

The Assets Storage Layer is responsible for storing the assets that will be offered by the Data

Marketplace. An essential component of this layer is the database that can store files in any format as

well as additional information about the files provided. In this context, the type of the database that is

used is a document-oriented NoSQL database, which stores both JSON-like documents (the format of the

descriptions files that are analyzed in the Assets Management Layer) and binary files, using extended

specifications (e.g., file system).

The Assets Management Layer is responsible for the entire life cycle of the assets within the platform

and offers all the needed principles and techniques for their management. Specifically, this layer handles

the assets from the moment they are ingested into the platform through the APIs and then stored in the

database (in the Assets Storage Layer) until their final deletion from the platform. Through this layer, the

Data Marketplace supports the CRUD operations and searching functionality, which are triggered by the

corresponding APIs of the back-end (Assets Interaction Layer). The back-end is a REST API and receives

different HTTP requests in order to either perform an operation or trigger a functionality. Moreover,

there are mandatory description files for all the assets that contain metadata about the described asset

(in JSON format). These description files are mandatory to make the assets searchable and retrievable by

the end-users of the Data Marketplace. At this point, it should be emphasized that in this final version of

the PolicyCLOUD Data Marketplace demonstrator, these description files were renamed to “solutions” in

 D7.12 – v.1.0

www.policycloud.eu

12

order to describe the actual design flow/process of the assets management, as in the Data Marketplace

it is feasible to have one description for more than one asset (i.e., 1 description for many assets - 1:N)

and not only one by one (1:1). Thus, the “description of an asset” is converted into a “description of a

solution” offered by the «N» assets offered by and associated with a solution.

The last layer, the Assets Interaction Layer, is responsible for supporting the communication between

the platform and its end-users. It implements the interfaces (APIs) of the back-end (analyzed in Section

2.2.1) that will handle the back-end’s operations. As described before, these APIs receive HTTP requests

that trigger the CRUD operations for both assets and description files.

2.1.2 Front-end

The front-end is the fourth layer of the platform, represented by the Presentation Layer. It is a web-based

server that presents the offered assets to the users with a friendly UI. In general, the front-end converts

all the interfaces of the back-end (REST API) into user friendly interfaces and provides automated forms

and processes that make it easier for users to interact with the back-end and benefit from its stored

assets. Therefore, it acts as an intermediate among the Data Marketplace users and the back-end,

sending the respective HTTP requests to the latter and presenting its responses.

In short, the front-end allows users to register and sign in to the Data Marketplace, upload their offered

assets by filling out appropriate forms whose fields are the content of the solution files of the assets (as

mentioned in Section 2.1.1); search for assets according to various fields (i.e., title, asset's type, keywords,

text on their description, other metadata, etc.) that can be further filtered or even sorted by the number

of views or the date they were uploaded to the Data Marketplace, etc. Also, there is a page that presents

in detail the information of the solutions (and their assets), and through this page, the users are able to

retrieve the real assets (i.e., the uploaded files). More details about the front-end and its supported

functionalities are described in Section 2.2.2.

2.2 Interfaces

This Section provides the description and the core details of the interfaces for both components (i.e.,

back-end and front-end). The back-end’s subsection describes its interfaces in more technical terms,

while the front-end’s subsection describes the webpages that take advantage of the back-end’s

interfaces, along with their use cases.

2.2.1 Back-end

As described in Section 2.1.1, the back-end is a REST API that receives HTTP requests to trigger its

designed and implemented functionalities. This Section describes the REST API endpoints that are

introduced in the first version of the back-end. These APIs are categorized into three (3) main groups,

namely: (i) APIs related to Users, (ii) APIs related to Solutions (previously named Descriptions), and (iii)

APIs related to Assets.

 D7.12 – v.1.0

www.policycloud.eu

13

One of the basic requirements set during the design of the Data Marketplace and described in the

deliverable D7.4, was to become a user-based system. There are many reasons for this requirement,

starting from the fact that it is a web system/server that will offer its users various types of objects

(assets), and to the fact that the assets are offered by their providers/owners to all users without special

restrictions. This results in intellectual property rights issues, which are resolved, allowing providers to

manage their assets on their own. In case that an offered asset is not provided by its real author and just

by a Data Marketplace user/provider, the providers can specify who is the real author/owner, by

providing the “legal owner of the asset” information.

Thus, all users of the Data Marketplace should have their personal accounts in the system, which they

will be able to manage themselves. As such requirements are very common on all websites, the Data

Marketplace’s administrators are not only able to audit the accounts and perform actions that will ensure

the platform’s smooth operation, but they are also able to monitor the community that will be created

through the Data Marketplace.

As already described, the Data Marketplace consists of two (2) components, running two (2) different

servers, both however managing the same information and data, with the storage of these data being

done exclusively in the back-end. Specifically, the binaries of the provided assets and their descriptions

(i.e., metadata files) are stored in the back-end, as it is done for the users’ data. In addition, both

components are accessible to users by direct communication, using HTTP requests for the back-end and

through web browsers for the front-end to gain access to the information stored in the back-end.

Therefore, based on all these, in order to restrict the access to the information, it was decided that the

back-end will be the server that will offer the authentication and authorization mechanisms to the users

for the management of its content. It should be noted that the latter was decided based on the fact that

the Data Marketplace will be publicly available to all interested users (either they are partners of the

PolicyCLOUD consortium or third parties). As a result, since all the offered solutions will be immediately

publicly available to these users, the back-end will be independent from the rest of the PolicyCLOUD

components, supporting its own authentication and authorization mechanisms to manage its content.

As authorization standard, the JSON Web Token (JWT) [1] technology is used. JWT is an open standard

that defines a compact and self-contained way for securely transmitting information between parties as

a JSON object in a way that can be verified and trusted because it is digitally signed. The JWT is a simple

token format and because of its relatively small size, a JWT can be sent through a HTTP request either as

a query parameter in the URL or inside the HTTP header, it is transmitted quickly, and it can be used very

easy within the context of the HTTP. A JWT contains all the required information about an entity (e.g.,

information about issuer, subject, expiration time, and any other information) to avoid querying a

database more than once. As described before, it is a secure approach as it is digitally signed for tamper

proof and authenticity, and it can be encrypted to protect the token information using symmetric or

asymmetric approach. It should be noted that by default, a JWT contains the information encoded and

not encrypted (the token can be further encrypted). Some extra benefits of the JWT are that it can be

used as a stateless authentication mechanism (the back-end as REST API is not able to keep users’

sessions) and finally, the fact that its content is a JSON object (as the assets’ solutions/descriptions) is

makes it easier to be used and be parsed by the back-end [2].

 D7.12 – v.1.0

www.policycloud.eu

14

The following token is an example of a JWT for the next JSON Object, signed with a symmetric key “key”:

JSON Object: {“username”: “vkoukos”, “name”: “Vasilis”, “surname”: “Koukos”, “Organization”: “UPRC”, “exp”: 1516239022}

JWT:

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VybmFtZSI6InZrb3Vrb3MiLCJuYW1lIjoiVmFzaWxpcyIsInN1cm5hbWUiOiJLb3Vrb3MiLC

JPcmdhbml6YXRpb24iOiJVUFJDIiwiZXhwIjoxNTE2MjM5MDIyfQ.31osTPhrxNFwN-moZsDFEiQq6HcOEe7svcGCGnjI9lA

The content of a JWT can also be the key “exp” that sets an expiration time for the JWT, thus reducing its

validation time, which is useful for the back-end. However, the fact that the information is not encrypted

(it is simply encoded) it should not contain sensitive personal data.

The usage of the JWT in the Data Marketplace is as follows:

• The Data Marketplace restricts access to its assets and specifically to all interfaces related to its

assets as well as to all HTTP requests, e.g., GET, POST, PUT, DELETE. Regarding the interfaces

related to the solutions, the requests to these interfaces are restricted too, excluding however

the GET HTTP request, since the solutions should be accessible to all the users (with limited

content) because the Data Marketplace promotes its contents to the public.

• The users of the Data Marketplace need to register/create an account (their information will be

stored in the back-end). In order to access the stored (and permitted) information, users should

use an interface so as to authorize themselves using their credentials. Their authorization results

to the retrieval of a JWT, which they can use in their HTTP requests to the Data Marketplace.

• The JWT contains all the necessary information of the users, along with the expiration period. The

JWT is signed from the back-end with a secret key (fake JWTs are addressed from the back-end

through the signature – brute force attacks are not addressed but can be limited).

• The front-end, during users’ login retrieves their JWTs and uses them on their behalf in the

headers of the HTTP requests to the back-end. By decoding the JWTs, the front-end has the most

important information of the users. Also, as long as the JWTs are valid (based on the expiration

field), it should be kept in the users’ sessions. If a JWT expires, the user’s session must end and

therefore, the user must login again in order to get access.

• The back-end, when validating a JWT, decides if a user is actually able to perform an action/access

stored information (based also to other rules/restrictions/access rights).

• The expiration time of a JWT is different when users retrieve it making a request directly to the

back-end instead of a request through the front-end. The reasons for this decision are: (i) the

front-end users will not handle the JWTs by themselves (front-end will do), (ii) they do not have

access to it, and (iii) they should have longer sessions (and more time). Unlike front-end users,

the users/ services that have direct access to the back-end will be able to have a limited expiration

time, as they know and handle JWT (they are also able to share it to third parties as if they were

sharing their credentials).

Except for the usage of the JWT, the Data Marketplace supports authorization through Google accounts

and through the KeyCloak instance of the PolicyCLOUD, for those that have such credentials.

 D7.12 – v.1.0

www.policycloud.eu

15

The interfaces of the back-end are described below.

2.2.1.1 Interfaces related to Users

This group of APIs offers functionalities intended for the management of Data Marketplace’s users. The

most important endpoints are those for the user registration as it is necessary for the usage of the other

endpoints, and the endpoint for their authorization in order to get a JWT. For all users, except for their

personal information, there exists a unique ID (usernames have been removed). The table below

presents the endpoints related to users as they are in the final version of the Data Marketplace’s back-

end.

Action HTTP Method Endpoint

Register a new user (Sign up) POST {HOST}/accounts/users/registration

Check availability of an email GET {HOST}/accounts/email/availability

Authorize a user (Login) POST {HOST}/accounts/users/authorization

Verify users (their email) GET {HOST}/accounts/users/verification/{vc}

Resend verification code to users POST {HOST}/accounts/users/verification/resend

Get user’s information GET {HOST}/accounts/users/information/{uid}

Update user’s information PUT {HOST}/accounts/users/information/{uid}

Change user’s password POST {HOST}/accounts/users/password/change

Reset user’s password request POST {HOST}/accounts/users/password/reset

Reset user’s password POST {HOST}/accounts/users/password/reset/{prc}

Delete user’s account DELETE {HOST}/accounts/users/delete/{uid}

Change user’s email PUT {HOST}/accounts/users/email/{uid}

Verify user’s new email GET {HOST}/accounts/users/email/change/confirm/{vc}

Revert user’s email GET {HOST}/accounts/users/email/change/revert/{vc}

Change user’s profile picture PUT {HOST}/accounts/users/image

Remove user’s profile picture DELETE {HOST}/accounts/users/image/{uid}

Get user’s statistics GET {HOST}/accounts/users/statistics/{uid}

Get user’s account data GET {HOST}/accounts/users/data

TABLE 1 – BACK-END’S INTERFACES RELATED TO USERS

• {HOST} refers to the hosting server: the domain name and the port running the back-end.

• {uid} refers to “user’s ID”.

• {vc} refers to “verification code”.

• {prc} refers to “password reser code”.

• Some of these actions require additional fields in the headers of the HTTP request. Example of a

required field is the JWT.

 D7.12 – v.1.0

www.policycloud.eu

16

Below is a more detailed description of all the developed interfaces and their corresponding actions:

Title: Register a new user (Sign up)

Endpoint: {HOST}/accounts/users/registration

HTTP Method: POST

Description: From this endpoint, Data Marketplace’s user registrations are made. A POST

request should be submitted, and the next JSON schema must be in its body

as raw data. It should be noted that a) the email must be unique and

available, and b) the schema below should be exactly the same, whether

there are values or not (empty strings “”) – the array “social” can be empty.
{

 “account”: {“password”: “…”},

 “info”: {

 “name”: “…”, “surname”: “…”,

 “title”: “…”, “gender”: “…”,

 “organization”: “…”, “phone”: “…”, “email”: “…”,

 “about”: “…”, social”: [“…”,”…”]

 }

}

The headers of the request may contain the key “x-more-time” that is used

only by the front-end in order to get JWTs that are valid for a longer period

(greater expiration value).

Body Data: Raw (JSON) Data – as the above schema (Content-Type: application/json)

Headers: Key Value

x-more-time [Restricted and available only for the

front-end which use an API key]

Front-end’s API key

URL Parameters: None

Query Parameters: None

Restrictions / Special

Features:

None

Successful Response: JSON Object with a successful message and user’s JWT.

The following is an example of the request in cURL:
curl –request POST ‘{HOST}/accounts/users/registration’ \

--header ‘Content-Type: application/json’ –header ‘x-more-time: <API_KEY>’ \

--data-raw ‘{

 “account”: {“password”: “…”},

 “info”: {

 “name”: “…”, “surname”: “…”, title”: “…”, “gender”: “…”,

 “organization”: “…”, “phone”: “…”, “email”: “…”,

 “about”: “…”, social”: [“…”,”…”]

 }

}’
TABLE 2 – REGISTER A NEW USER INTERFACE

After a successful registration, the following JSON document is stored in the database:

{

 “_id”: “…”, // user’s unique ID

 “account”: {

“password”: “…”, // user’s password (hashed)

“password_protected”: “…”, // parameter that determines whether the account is

password protected or not (values 1 or 0)
“connections”: {“google”: “…”, … } // object that determines if the account is

 D7.12 – v.1.0

www.policycloud.eu

17

connected to any of the supported SSO services (e.g. Google, Keycloak, etc.)

“role”: “user”, // user’s role (user or admin)

“verified”: “…”, // value = “1” if user is verified,

otherwise, it has a verification code to use it for user’s email/account verification

“registration_datetime”: “…” // user’s registration date

 },

 “info”: {// info provided during user’s registration

“name”: “…”, “surname”: “…”, “title”:”…”, “gender”: “…”, “organization”: “…”,

“phone”: “…”, “email”: “…”, “about”: “…”, “social”: []

 },

 “profile_parameters”: {

“public_email”:0, // parameter that determines if the email will be public or not

(values 1 or 0)

“public_phone”:0, // parameter that determines if the phone will be public or not

(values 1 or 0)

“profile_image”: “default_image_users” // the ID of the user’s profile image,

a default image is used for all users

 }

}

Title: Check availability of an email

Endpoint: {HOST}/accounts/email/availability

HTTP Method: GET

Description: This endpoint is used in order to check the availability of an email during the

registration of the users. A GET request should be made and the key “x-

email” must be included in the headers of the request.

Body Data: None

Headers: Key Value

x-email The email whose availability will be checked.

URL Parameters: None

Query Parameters: None

Restrictions / Special

Features:

None

Successful Response: Availability status in JSON Object.

The following is an example of the request in cURL:
curl –request GET ‘{HOST}/accounts/email/availability’ –header ‘x-email: <value>’

TABLE 3 – CHECK AVAILABILITY OF AN EMAIL INTERFACE

Title: Authorize a user (Login)

Endpoint: {HOST}/accounts/users/authorization

HTTP Method: POST

Description: Through this endpoint, the users are authorized in order to log in to their

account. The next JSON schema, containing users’ credentials, must be in

the body of the request as raw data.
{ “email”: “…”, “password”: “…” }

A successful response will return the next JSON schema that contains the

JWT in the key “token”: {“_status”: “successful”, “token”: “<JWT>”}

The headers of the request may contain the key “x-more-time” that is used

only by the front-end in order to get JWTs that are valid for a longer period

(greater expiration value).

 D7.12 – v.1.0

www.policycloud.eu

18

Body Data: Raw (JSON) Data – as the above schema (Content-Type: application/json)

Headers: Key Value

x-more-time [Restricted and available only for the front-

end which use an API key]

Front-end’s API key

URL Parameters: None

Query Parameters: None

Restrictions / Special

Features:

None

Successful Response: JSON Object with a successful message and user’s JWT.

The following is an example of the request in cURL:
curl –request POST ‘{HOST}/accounts/users/authorization’ \

--header ‘x-more-time: <API_KEY>’ –header ‘Content-Type: application/json’ \

--data-raw ‘{ “email”: “…”, “password”: “…” }’

TABLE 4 – AUTHORIZE A USER (LOGIN) INTERFACE

Title: Verify users (their email)

Endpoint: {HOST}/accounts/users/verification/{vc}

HTTP Method: GET

Description: Through this endpoint, the users can verify their account using the

verification code {vc} that they received in their email during their

registration. For users’ convenience, the email that they receive contains a

URL that directs to the front-end. It should be noted that this endpoint is

also useful for all the occasions that the users’ account gets locked and

needs verification again (e.g., change email).

The headers of the request may contain the key “x-more-time” that is used

only by the front-end in order to get JWTs that are valid for a longer period

(greater expiration value).

Body Data: None

Headers: Key Value

x-more-time [Restricted and available only for the front-

end which use an API key]

Front-end’s API key

URL Parameters: Parameter Value

vc The verification code that sent to user’s

email.

Query Parameters: None

Restrictions / Special

Features:

Only the accounts’ owners are able to verify their accounts/emails.

Successful Response: JSON Object with a successful message and user’s JWT.

The following is an example of the request in cURL:
curl –request GET ‘{HOST}/accounts/users/verification/{vc}’ –header ‘x-more-time: <API_KEY>’

TABLE 5 – VERIFY USERS INTERFACE

 D7.12 – v.1.0

www.policycloud.eu

19

Title: Resend verification code to users

Endpoint: {HOST}/accounts/users/verification/resend

HTTP Method: POST

Description: This endpoint is connected to the endpoint above. Its scope is to resend

users’ account/email verification codes. It is useful mainly for the back-end’s

users (those who communicate directly with the back-end) and not for those

who use the front-end, because the latter has mechanisms to retrieve users’

verification codes and send them to users’ emails. This request requires

user’s JWT in the headers of the request, under the key “x-access-token”, in

order to authenticate the user.

Body Data: None

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: None

Query Parameters: None

Restrictions / Special

Features:

The endpoint is available only to accounts’ owners.

Successful Response: JSON Object with the verification code.

The following is an example of the request in cURL:
curl –request GET ‘{HOST}/accounts/users/verification/resend’ –header ‘x-access-token: <JWT>’

TABLE 6 – RESEND VERIFICATION CODE TO USERS INTERFACE

Title: Get user’s information

Endpoint: {HOST}/accounts/users/information/{uid}

HTTP Method: GET

Description: This endpoint is used in order to retrieve information about a user. A GET

request should be made and the user’s ID {uid} is required at the end of the

endpoint. Moreover, this endpoint is restricted and thus, the JWT of a

requester must be included in the headers of the request. It should be noted

that the administrators and the accounts’ owners are able to retrieve all

users’ information, while users that retrieve information of other users

retrieve only public information. Private information can be users’ email and

phone, depending on the values of the profile parameters “public_email”

and “public_phone”. Below are illustrated some examples of retrieved users’

information, one by an administrator/account owner (example 1) and one

by a user that retrieves another user’s information (example 2) – the

examples present information retrieval for the same user.

Body Data: None

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: Parameter Value

uid The ID of the user whose information will be

retrieved.

Query Parameters: None

 D7.12 – v.1.0

www.policycloud.eu

20

Restrictions / Special

Features:

The administrators and the accounts’ owners are able to retrieve all users’

information, while users that retrieve information of other users retrieve

only public information.

Successful Response: JSON Object with a user’s information.

The following is an example of the request in cURL:
curl –request GET ‘{HOST}/accounts/users/information/{uid}’ \

--header ‘x-access-token: <JWT>’

TABLE 7 – GET USER’S INFORMATION INTERFACE

Example 1

{“_status”: “successful”, “result”: {

“account”: {“registration_datetime”: “…”, “role”: “user”, “verified”: “1”},

“info”: {“about”: “…”, “email”: “…”, “gender”: “…”, “name”: “…”, “organization”: “…”,

 “phone”: “…”, “social”: [], “surname”: “…”, “title”: “…”

 },

 “profile_parameters”: {

 “profile_image”: “default_image_users”,

 “public_email”: 0, “public_phone”: 0

 }, “id”: “…”

}}

Example 2

{“_status”: “successful”, “result”: {

“account”: {“registration_datetime”: “…”, “role”: “user”, “verified”: “1”},

“info”: {“about”: “…”, “gender”: “…”, “name”: “…”, “organization”: “…”,

 “social”: [], “surname”: “…”, “title”: “…”

 },

 “profile_parameters”: {“profile_image”: “default_image_users”}, “id”: “…”

}}

Title: Update user’s information

Endpoint: {HOST}/accounts/users/information/{uid}

HTTP Method: PUT

Description: This endpoint handles requests for updating users’ information. A PUT

request should be made and the next JSON schema (it is flexible and thus

may contain fewer fields – but without new fields), containing users’ new

information, must be in its body as raw data.
{“info”: { “name”: “…”, “surname”: “…”, “title”: “…”,

 “gender”: “…”, “organization”: “…”, “phone”: “…”,

 “social”: [“…”, “…”], “about”: “…”},

“profile_parameters”: {“public_email”: 1, “public_phone”: 0}}

Moreover, this endpoint is restricted and thus, the JWT of a requester must

be included in the headers of the request. It should be noted that only the

accounts’ owners and the administrators are able to update the information

of a user. The latter are not able to change the profile parameters. Also, the

headers of the request may contain the key “x-more-time” that is used only

by the front-end in order to get JWTs that are valid for a longer period

(greater expiration value).

Body Data: Raw (JSON) Data – as the above schema (Content-Type: application/json)

Headers: Key Value

 D7.12 – v.1.0

www.policycloud.eu

21

x-access-token Requester’s JWT

x-more-time [Restricted and available only for the front-end

which use an API key]

Front-end’s API key

URL Parameters: Parameter Value

uid The ID of the user whose information will be

updated.

Query Parameters: None

Restrictions / Special

Features:

Only the accounts’ owners and the administrators are able to update the

information of a user.

Successful Response: A successful response will return the next JSON Object that contains a new

JWT in the key “token”:
{“_status”: “successful”, “message”: “The information of the user with

ID ‘{uid}’ has been updated.”, “token”: “<JWT>”}

The following is an example of the request in cURL:
curl –request PUT ‘{HOST}/accounts/users/information/{uid}’ \

--header ‘x-access-token: <JWT>’ –header ‘x-more-time: <API_KEY>’ \

--header ‘Content-Type: application/json’ \

--data-raw ‘{“info”: { “name”: “…”, “surname”: “…”, …}, … }’

TABLE 8 – UPDATE USER’S INFORMATION INTERFACE

Title: Change user’s password

Endpoint: {HOST}/accounts/users/password/change

HTTP Method: POST

Description: This endpoint is used when the users want to change their account’s

password. A POST request should be made and the next JSON schema,

containing users’ new and old password, must be in its body as raw data.

Also, this endpoint is restricted and thus, the JWT of a requester must be

included in the headers of the request. It should be noted that this action is

only available to accounts’ owners.
{ “old_password”: “…”, “new_password”: “…”, “confirm_new_password”: “…”}

Body Data: Raw (JSON) Data – as the above schema (Content-Type: application/json)

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: None

Query Parameters: None

Restrictions / Special

Features:

Only available to accounts’ owners. The new password must not be the same

with previous password.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl –request POST ‘{HOST}/accounts/users/password/change’ \

--header ‘x-access-token: <JWT>’ –header ‘Content-Type: application/json’ \

--data-raw ‘{ “old_password”: “…”, “new_password”: “…”, “confirm_new_password”: “…”}’

TABLE 9 – CHANGE USER’S PASSWORD INTERFACE

 D7.12 – v.1.0

www.policycloud.eu

22

Title: Reset user’s password request

Endpoint: {HOST}/accounts/users/password/reset

HTTP Method: POST

Description: This endpoint handles the first step of the password reset process. The users

who forgot their password have to make a password reset request first,

sending a POST request to this endpoint with the next JSON schema in its

body. It should be noted that it is not necessary to use both fields – at least

one of the two fields is sufficient/required.
{“uid”: “…”, “email”: “…”}

Another important note is that this endpoint is available only through the

mechanisms of the front-end that sends to the users’ emails a password

reset link that contains a generated password reset code. The generated

password reset codes are valid only for an hour (1 hour). The password reset

link redirects to a front-end’s form from which the users can set their new

password. After the submission of the form, the front-end uses the next

interface in order to change the password of the user. The headers of the

request must contain the front-end’s API key.

Body Data: Raw (JSON) Data – as the above schema (Content-Type: application/json)

Headers: Key Value

x-api-key Front-end’s API key

URL Parameters: None

Query Parameters: None

Restrictions / Special

Features:

Only available to the front-end.

Successful Response: JSON Object with a successful message and the password reset code in its

content.

The following is an example of the request in cURL:
curl –request POST ‘{HOST}/accounts/users/password/reset’ –header ‘x-api-key: <API_KEY>’ \

--header ‘Content-Type: application/json’ –data-raw ‘{“uid”: “…”, “email”: “…”}’

TABLE 10 – RESET USER’S PASSWORD REQUEST INTERFACE

Title: Reset user’s password

Endpoint: {HOST}/accounts/users/password/reset/{prc}

HTTP Method: POST

Description: This endpoint is connected to the above endpoint and handles the second

step of the password reset process. When the users open the password

reset link that they received in their email, they are redirected to a front-

end’s form from which they are able to set their new password. After the

submission of the form, the front-end sends a request to the current

interface to finish the process. The password reset code {prc} that the users

received in their email must be in the request’s URL and the following JSON

schema should be in the body of the request.
{ “new_password”: “…”, “confirm_new_password”: “…”}

Body Data: Raw (JSON) Data – as the above schema (Content-Type: application/json)

Headers: None

URL Parameters: Parameter Value

prc The password reset code that the users’

received in their email.

 D7.12 – v.1.0

www.policycloud.eu

23

Query Parameters: None

Restrictions / Special

Features:

None

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl –request POST ‘{HOST}/accounts/users/password/reset/{prc}’ \

--header ‘Content-Type: application/json’ \

--data-raw ‘{ “new_password”: “…”, “confirm_new_password”: “…”}’
TABLE 11 – RESET USER’S PASSWORD INTERFACE

Title: Delete user’s account

Endpoint: {HOST}/accounts/users/delete/{uid}

HTTP Method: DELETE

Description: In order to delete an account, this endpoint should be used, making a

DELETE request and providing requester’s password in its body, as raw data

(JSON format). The endpoint must contain the user’s ID {uid} at the end of

the URL.
{ “password”: “…” }

The endpoint is restricted and thus, the JWT of a requester must be included

in the headers of the request. This action is available to accounts’ owners

and to administrators who are able to delete users from the Data

Marketplace. If the action is made by an administrator, the value of the field

“password” in the body should be the password of administrator.

An important note is that the deletion of an account has as result the

deletion of all user’s data, offered solutions and assets.

Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json)

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: Parameter Value

uid The ID of the user whose account will be

deleted.

Query Parameters: None

Restrictions / Special

Features:

Only the accounts’ owners and the administrators are able to delete an

account/user.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl --request DELETE '{HOST}/accounts/users/delete/{uid}' \

--header 'x-access-token: <JWT>' --header 'Content-Type: application/json' \

--data-raw '{ "password": "…" }'
TABLE 12 – DELETE USER’S ACCOUNT INTERFACE

Title: Change user’s email

Endpoint: {HOST}/accounts/users/email/{uid}

HTTP Method: PUT

Description: This endpoint is used to update the emails of the users. This action is also

possible through the endpoint for update users’ information, but it is

important to have the current endpoint because the email is an important

field for all accounts. The next JSON schema must be in the request’s body

as raw data:
{ "new_email": "…" }

 D7.12 – v.1.0

www.policycloud.eu

24

The endpoint is restricted and thus, the JWT of a requester must be included

in the headers of the request. This action is available only to accounts

owners and administrators. If the action is made by the accounts’ owners,

their accounts will get locked until they will verify their new email (using the

endpoint for the emails’ verification). In case that this action is made by an

administrator, the account does not get locked. Also, the headers of the

request may contain the key “x-more-time” that is used only by the front-

end to get JWTs that are valid for a longer period (greater expiration value).

Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json)

Headers: Key Value

x-access-token Requester’s JWT

x-more-time [Restricted and available only for the front-

end which use an API key]

Front-end’s API key

URL Parameters: Parameter Value

uid The ID of the user whose email will be

updated.

Query Parameters: None

Restrictions / Special

Features:

Only the accounts’ owners and the administrators are able to update users’

email.

Successful Response: JSON Object with a successful message along with a new JWT. It may contain

a verification code only if the action is made by accounts’ owners.

The following is an example of the request in cURL:
curl --request PUT '{HOST}/accounts/users/email/{uid}' \

--header 'x-access-token: <JWT>' --header 'Content-Type: application/json' \

--data-raw '{ "new_email": "…" }'
TABLE 13 – CHANGE USER’S EMAIL INTERFACE

Title: Verify user’s new email

Endpoint: {HOST}/accounts/users/email/change/confirm/{vc}

HTTP Method: GET

Description: Through this endpoint, the users can verify their new email using the

verification code {vc} that they received in their email after changing it

through the previous interface. For users’ convenience, the email that they

receive contains a URL that directs to the front-end.

Body Data: None

Headers: None

URL Parameters: Parameter Value

vc The verification code that sent to user’s

email.

Query Parameters: None

Restrictions / Special

Features:

Only the accounts’ owners are able to verify their emails.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl --request GET '{HOST}/accounts/users/email/change/confirm/{vc}'

TABLE 14 – VERIFY USER’S NEW EMAIL INTERFACE

 D7.12 – v.1.0

www.policycloud.eu

25

Title: Revert user’s email

Endpoint: {HOST}/accounts/users/email/change/revert/{vc}

HTTP Method: GET

Description: Through this endpoint, the users can revert their old email after an email

change of their account, using the verification (revert) code {vc} that they

received in their email after changing it through the previous interfaces. For

users’ convenience, the email that they receive contains a URL that directs

to the front-end. The account owners have a period of 14 days after

changing their account email address in order to revert to their old email.

Once this period passes, the owners will not be able to revert to their old

email and the change to the new email address will be permanent.

Body Data: None

Headers: None

URL Parameters: Parameter Value

vc The verification (revert) code that sent to

user’s email.

Query Parameters: None

Restrictions / Special

Features:

Only the accounts’ owners are able to revert to their old emails.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl --request GET '{HOST}/accounts/users/email/change/revert/{vc}'

TABLE 15 – REVERT USER’S EMAIL INTERFACE

Title: Change user’s profile picture

Endpoint: {HOST}/accounts/users/image

HTTP Method: PUT

Description: All users have a default profile image from their registration and through

this endpoint are able to change it. The endpoint is restricted and available

only to accounts’ owners and thus, the JWT of a requester must be included

in the headers of the request. Also, the headers of the request may contain

the key “x-more-time” that is used only by the front-end in order to get JWTs

that are valid for a longer period (greater expiration value).

Body Data: Data Type: Form Data

Key Value

asset Binary data / Path to image

Headers: Key Value

x-access-token Requester’s JWT

x-more-time [Restricted and available only for the front-

end which use an API key]

Front-end’s API key

x-mimetype Image’s mimetype (Only JPEG and PNG

images are allowed)

URL Parameters: None

Query Parameters: None

Restrictions / Special

Features:

Available only to accounts’ owners.

 D7.12 – v.1.0

www.policycloud.eu

26

Successful Response: A successful response will return the next JSON Object that contains a new

JWT in the key “token”:
{"_status": "successful", "message": "The profile image of the user with

ID '{uid}' has been changed.", "token": "<JWT>"}

The following is an example of the request in cURL:
curl --request POST '{HOST}/accounts/users/image' --header 'x-access-token: <JWT>' \

--header 'x-more-time: <API_KEY>' --header 'x-mimetype: <image’s mimetype>' \

--form 'asset=@"<full_path_to_image>"'
TABLE 16 – CHANGE USER’S PROFILE PICTURE INTERFACE

Title: Remove user’s profile picture

Endpoint: {HOST}/accounts/users/image/{uid}

HTTP Method: DELETE

Description: This endpoint is used to delete users’ profile images. The ID {uid} of the user

whose profile image will be deleted should be in the URL. This action deletes

users’ images and replaces them with the default image that is used for all

users.

The endpoint is restricted and thus, the JWT of a requester must be included

in the headers of the request. It should be noted that only the accounts’

owners and the administrators are able to delete users’ profile image. Also,

the headers of the request may contain the key “x-more-time” that is used

only by the front-end to get JWTs that are valid for a longer period (greater

expiration value).

Body Data: None

Headers: Key Value

x-access-token Requester’s JWT

x-more-time [Restricted and available only for the front-

end which use an API key]

Front-end’s API key

URL Parameters: Parameter Value

uid ID of user whose profile image will be

deleted.

Query Parameters: None

Restrictions / Special

Features:

Available only to accounts’ owners and administrators.

Successful Response: A successful response will return the next JSON Object that contains a new

JWT in the key “token”:
{"_status": "successful", "message": "The profile image of the user with

ID '{uid}' has been removed.", "token": "<JWT>"}

The following is an example of the request in cURL:

curl --request DELETE '{HOST}/accounts/users/image/{uid}' \

--header 'x-access-token: <JWT>' --header 'x-more-time: <API_KEY>'

TABLE 17 – REMOVE USER’S PROFILE PICTURE INTERFACE

 D7.12 – v.1.0

www.policycloud.eu

27

Title: Get user’s statistics

Endpoint: {HOST}/accounts/users/statistics/{uid}

HTTP Method: GET

Description: This endpoint is used to get some statistics about a user whose ID {uid} is in

the URL of the GET request. It is used in users’ profiles where their

contribution with offerings to the Data Marketplace is presented. The

endpoint is restricted and thus, the JWT of a requester must be included in

the headers of the request.

Body Data: None

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: Parameter Value

uid The ID of the user whose statistics will be

retrieved.

Query Parameters: None

Restrictions / Special

Features:

Available to all authorized users.

Successful Response: JSON Object with a successful message and statistics as follows:
{“_status”: “successful”, “results”: {

 “total_solutions”: 0, “approved_solutions”: 0, “assets_uploaded”: 0,
 “total_links_provided”: 0, “total_downloads”: 0, “total_views”: 0,
 “total_reviews”: 0, “average_rating”: 0

}}

The following is an example of the request in cURL:
curl –request GET ‘{HOST}/accounts/users/statistics/{uid}’ –header ‘x-access-token: <JWT>’

TABLE 18 – GET USER’S STATISTICS INTERFACE

Title: Get user’s account data

Endpoint: {HOST}/accounts/users/data

HTTP Method: GET

Description: This endpoint, which is available only to accounts’ owners, returns all the

personalized data of the requester, returning users’ information, uploaded

solutions, solutions’ reviews and other statistics. The endpoint is restricted

and thus, the JWT of a requester must be included in the headers of the

request.

Body Data: None

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: None

Query Parameters: None

Restrictions / Special

Features:

Available only to accounts’ owners.

Successful Response: A JSON Object with users’ data (as file).

The following is an example of the request in cURL:
curl –request GET ‘{HOST}/accounts/users/data’ –header ‘x-access-token: <JWT>’

TABLE 19 – GET USER’S ACCOUNT DATA INTERFACE

 D7.12 – v.1.0

www.policycloud.eu

28

2.2.1.2 Interfaces related to Solutions

This group of APIs offers functionalities intended for the management of the solutions. They support all

CRUD operations as well as the search functionality. Special emphasis was placed on the APIs for the

solutions’ retrieval, extending them so as to get the latest solutions or even random solutions either from

a specific collection (i.e., database collection) or from all the collections at once, using the keyword “all”.

The collections of the database as well as the Data Marketplace’s offered types of assets, vary. The current

list of the collections can be found at the end of Table 20, which presents the endpoints related to the

Solutions as they were stated in the first version of the back-end.

Action HTTP

Method

Endpoint

Get solutions’ collections GET {HOST}/solutions

Get a list with all solutions GET {HOST}/solutions/all

Get a list with all solutions from a specific

collection

GET {HOST}/solutions/{collection}

Get a specific solution (using keyword “all”) GET {HOST}/solutions/all/{sid}

Get a specific solution (using solution’s

“collection”)

GET {HOST}/solutions/{collection}/{sid}

Get the latest solutions from all collections GET {HOST}/solutions/all/latest

Get the latest solutions from a collection GET {HOST}/solutions/{collection}/latest

Get random solutions from all collections GET {HOST}/solutions/all/random

Get random solutions from a specific collection GET {HOST}/solutions/{collection}/random

Get a list with all solutions provided by a specific

user (using keyword “all”)

GET {HOST}/solutions/provider/{uid}/all

Get a list with all solutions provided by a specific

user and under a specific collection (using a

“collection” value)

GET {HOST}/solutions/provider/{uid}/{colle

ction}

Get solutions’ statistics for front-end’s

homepage

GET {HOST}/solutions/statistics/homepage

Get solutions’ filtering values for front-end’s

Discover page

GET {HOST}/solutions/statistics/filtering

Upload / Create a new solution with random ID POST {HOST}/solutions/{collection}

Upload / Create a new solution with given ID POST {HOST}/solutions/{collection}/{given_i

d}

Update a specific solution (using keyword “all”) PUT {HOST}/solutions/all/{sid}

Update a specific solution (using solution’s

“collection”)

PUT {HOST}/solutions/{collection}/{sid}

Delete a specific solution (using keyword “all”) DELETE {HOST}/solutions/all/{sid}

Delete a specific solution (using solution’s

“collection”)

DELETE {HOST}/solutions/{collection}/{sid}

Delete all solutions (administrators’ action) DELETE {HOST}/solutions/all/all

Delete all solutions from a specific collection

(administrators’ action)

DELETE {HOST}/solutions/{collection}/all

Make a review for a solution POST {HOST}/solutions/review/{sid}

Update an existing review for a solution PUT {HOST}/solutions/review/{sid}

Delete a review for a solution DELETE {HOST}/solutions/review/{sid}

 D7.12 – v.1.0

www.policycloud.eu

29

Get the cover image of a solution GET {HOST}/solutions/image/{sid}

Change the cover image of a solution PUT {HOST}/solutions/image/{sid}/{img_id}

Remove the cover image of a solution DELETE {HOST}/solutions/image/{sid}

Get a list with the reviews made by a specific

user

GET {HOST}/solutions/review/{uid}

Get a list with the reviews made for a specific

solution

GET {HOST}/solutions/reviews/{sid}

Get a list with all solutions that need permission

(administrators’ action)

GET {HOST}/solutions/permit/all

Get a list with all solutions from a specific

collection that need permission (administrators’

action)

GET {HOST}/solutions/permit/{collection}

Approve or reject a solution that needs

permission, using keyword “all” (administrators’

action)

POST {HOST}/solutions/permit/all/{sid}

Approve or reject a solution that needs

permission, using solution’s “collection”

(administrators’ action)

POST {HOST}/solutions/permit/{collection}/{

sid}

Approve or reject all solutions that need

permission, using keyword “all” (administrators’

action)

POST {HOST}/solutions/permit/all/all

Approve or reject all solutions that need

permission under a specific collection, using a

“collection” value (administrators’ action)

POST {HOST}/solutions/permit/{collection}/a

ll

TABLE 20 – BACK-END’S INTERFACES RELATED TO SOLUTIONS

• {HOST} refers to the hosting server: the domain name and the port running the back-end.

• {sid} refers to the ID of a specific solution.

• {given_id} is used in upload solution action, providing new solution’s ID.

• As a {collection} can be one of the following values derived from the current types of offered

assets:

{"tools", "policies", "datasets", "webinars", tutorials", "documents", "other"}

• Some of these actions require additional fields in the headers of the HTTP request. Example of a

required field is the JWT.

Below is a more detailed description of all table’s interfaces/actions:

Title: Get solutions’ collections

Endpoint: {HOST}/solutions

HTTP Method: GET

Description: This endpoint returns a list with the sub-routes of the “solution” endpoint.

More specifically, it returns the values of the {collection} that also refer to

the database’s collections and the types of the offered assets.

Body Data: None

Headers: None

URL Parameters: None

 D7.12 – v.1.0

www.policycloud.eu

30

Query Parameters: None

Restrictions / Special

Features:

None

Successful Response: A text/plain list with the back-end’s collections.

The following is an example of the request in cURL:
curl --request GET '{HOST}/solutions'

TABLE 21 – GET SOLUTIONS’ COLLECTIONS INTERFACE

Title: Get a list with all solutions

Endpoint: {HOST}/solutions/all

HTTP Method: GET

Description: A request to this endpoint will result in the retrieval of the stored solutions

from all the collections. It uses the keyword “all” instead of a specific

collection, which makes the platform to retrieve solutions from all the

collections at once. The solutions that return from this request are in a short

schema (short description), meaning that the retrieved information is

limited. An example of a solution’s description in short schema is the

following JSON schema:
{"collection": "tools", "id": "tools_vlLZWaoQN1Fe ",

 "info": {

 "keywords": ["information"], "owner": "Vasilis Koukos",

 "short_desc": "This is an example", "type": "tools",

 "title": "Example title."},

 "main_image": "default_image_assets",

 "metadata": {"provider": "vkoukos",

 "reviews": {"average_rating": 4.2, "no_reviews": 14},

 "updateDate": "…", "uploadDate": "…", "views": 35

} }

This endpoint can get query parameters to search for solutions that meet

certain conditions. As a query parameter can be any pair of key-value, while

additional search operators can be used for more advanced and enhanced

search. More details about searching can be found in Section 2.2.1.3. Also,

this endpoint offers some standard query parameters, as described below

(Query Parameters).

Body Data: None

Headers: None

URL Parameters: None

Query Parameters: Key Value

sortBy [Optional] Sorts the solutions by a field – the

default is the “newest” key. The value should be

one of the following:

"newest": sort by date in descending order.

"oldest": sort by date in ascending order.

"rating-asc": sort by average rating in ascending

order.

"rating-desc": sort by average rating in

descending order.

"views-asc": sort by the number of views in

ascending order.

 D7.12 – v.1.0

www.policycloud.eu

31

"views-desc": sort by the number of views in

descending order.

"title": sort by title in ascending order.

itemsPerPage [Optional] Returns the results separated in pages

(arrays) of N items. The number N is specified by

the value of this key. The value N must be an

integer number greater or equal to 1. If the key is

not used or has a non-accepted value, the results

are returned on a single page.

page [Optional] This key can only be used if the

“itemsPerPage” key is also used. If it is used, it

returns only the specified (by key’s value) page

instead of all pages created using the key

“itemsPerPage”. The value must be an integer

number greater or equal to 1. The default value is

0, which means that all pages will be returned.

Any key to search

(refer to section

2.2.1.3)

Any value to search (refer to Section 2.2.1.3).

Restrictions / Special

Features:

None

Successful Response: A JSON Object with the results (all solutions from all collections). If the query

parameter “itemsPerPage” is used, then the results contain the total number

of the pages.

The following is an example of the request in cURL:
+ curl --request GET '{HOST}/solutions/all'

+ curl --request GET '{HOST}/solutions/all?sortBy={value}'

+ curl --request GET '{HOST}/solutions/all?itemsPerPage={value}'

+ curl --request GET '{HOST}/solutions/all?itemsPerPage={value}&page={value}'

+ curl --request GET '{HOST}/solutions/all?sortBy={value}&itemsPerPage={value}'

+ curl --request GET '{HOST}/solutions/all?sortBy={value}&itemsPerPage={value}&page={value}'

Example of retrieving the 10 most viewed solutions:

+ curl --request GET '{HOST}/solutions/all?sortBy=views-desc&itemsPerPage=10&page=1'

TABLE 22 – GET A LIST WITH ALL SOLUTIONS INTERFACE

Title: Get a list with all solutions from a specific collection

Endpoint: {HOST}/solutions/{collection}

HTTP Method: GET

Description: This request is similar to the above request. The only difference between the

two (2) actions is that this request retrieves solutions from a specific

collection (instead of using keyword “all”). For more details, refer to the

above endpoint.

Body Data: None

Headers: None

URL Parameters: Parameter Value

collection Valid values:

{"tools", "policies", "datasets", "webinars",

"tutorials", "documents", "other"}

Query Parameters: As in the above request.

 D7.12 – v.1.0

www.policycloud.eu

32

Restrictions / Special

Features:

None

Successful Response: A JSON Object with the results (all solutions in a specific collection).

The following is an example of the request in cURL:
+ curl --request GET '{HOST}/solutions/{collection}'

+ curl --request GET \

 '{HOST}/solutions/{collection}?sortBy={value}&itemsPerPage={value}&page={value}'

TABLE 23 – GET A LIST WITH ALL SOLUTIONS FROM A SPECIFIC COLLECTION INTERFACE

Title: Get a specific solution (using keyword “all”)

Endpoint: {HOST}/solutions/all/{sid}

HTTP Method: GET

Description: With this request, the users are able to retrieve a specific solution. The

retrieval of a specific solution is possible using its unique identification code

(ID), known when uploading it. Also, the retrieval of a specific solution can

be done using both keyword “all” and the name of the collection that the

solution has been stored (next interface). This is feasible because the back-

end ensures that the IDs are unique regardless of the collection that the

solution has been stored. Moreover, the retrieval of a specific solution

requires a JWT to be retrieved in its “full schema”. If requester’s JWT is

missing, then the endpoint returns the short schema of the solution’s

description. Example of a full schema is in the endpoint that handles the

uploading of a solution. This endpoint, except for the full schema, also

returns the reviews of the specified solution.

Body Data: None

Headers: Key Value

x-access-token [Optional, it should be used in order to

retrieve the full schema of a solution’s

description]

Requester’s JWT

URL Parameters: Parameter Value

sid The ID of the solution that will be retrieved.

Query Parameters: None

Restrictions / Special

Features:

The full schema is available only to authorized (and verified) users,

otherwise, the short schema is available to all.

Successful Response: A JSON Object with the solution in the results.

The following is an example of the request in cURL:
+ curl --request GET '{HOST}/solutions/all/{sid}'

+ curl --request GET '{HOST}/solutions/all/{sid}' --header 'x-access-token: <JWT>'

TABLE 24 – GET A SPECIFIC SOLUTION (USING KEYWORD “ALL”) INTERFACE

 D7.12 – v.1.0

www.policycloud.eu

33

Title: Get a specific solution (using solution’s “collection”)

Endpoint: {HOST}/solutions/{collection}/{sid}

HTTP Method: GET

Description: This request is similar to the above request, with the difference that it uses

solution’s collection for the retrieval of a solution (instead of using keyword

“all”). The value of the {collection} must be the collection in which the

solution has been stored. More information about the endpoint can be

found above.

Body Data: None

Headers: Key Value

x-access-token [Optional, it should be used in order to

retrieve the full schema of a solution’s

description]

Requester’s JWT

URL Parameters: Parameter Value

collection Valid values:

{"tools", "policies", "datasets", "webinars",

"tutorials", "documents", "other"}

sid The ID of the solution that will be retrieved.

Query Parameters: None

Restrictions / Special

Features:

The full schema is available only to authorized (and verified) users,

otherwise, the short schema is available to all.

Successful Response: A JSON Object with the solution in the results.

The following is an example of the request in cURL:
+ curl --request GET '{HOST}/solutions/{collection}/{sid}'

+ curl --request GET '{HOST}/solutions/{collection}/{sid}' \

 --header 'x-access-token: <JWT>'

TABLE 25 – GET A SPECIFIC SOLUTION (USING SOLUTION’S “COLLECTION”) INTERFACE

Title: Get latest solutions from all collections

Endpoint: {HOST}/solutions/all/latest

HTTP Method: GET

Description: This request is used to retrieve the most recent uploaded solutions sorted

based on the date that they have been uploaded, with the most recent being

on the top of the list. This request uses the keyword “all” and returns the K

latest solutions from all collections. The value of K can be specified through

the query parameter “max” (the default value is 20). The solutions are

returned in their short schema.

This endpoint can get query parameters to search for solutions that meet

certain conditions. As a query parameter can be any pair of key-value, while

additional search operators can be used for more advanced and enhanced

search. More details about searching can be found in Section 2.2.1.3. Finally,

the endpoint “Get a list with all solutions” can return the same results as the

current, if the example at the end will be followed.

Body Data: None

Headers: None

URL Parameters: None

Query Parameters: Key Value

 D7.12 – v.1.0

www.policycloud.eu

34

max Integer value greater than 0 – Default: 20

Any key to search (refer to

section 2.2.1.3)

Any value to search (refer to section 2.2.1.3).

Restrictions / Special

Features:

None

Successful Response: A JSON Object with the results (latest solutions from all collections).

The following is an example of the request in cURL:
+ curl --request GET '{HOST}/solutions/all/latest'

+ curl --request GET '{HOST}/solutions/all/latest?max=5'

Example of similar response by the endpoint “Get a list with all solutions”:

+ curl --request GET '{HOST}/solutions/all?sortBy=newest&itemsPerPage=20&page=1'

TABLE 26 – GET LATEST SOLUTIONS FROM ALL COLLECTIONS INTERFACE

Title: Get latest solutions from a specific collection

Endpoint: {HOST}/solutions/{collection}/latest

HTTP Method: GET

Description: This request is similar to the above request. It uses the value of a specific

collection and not the keyword “all”, which results to return sorted the K

most recent solutions of the provided collection. The value of K can be

specified through query parameter “max” (the default value is 20). The

solutions are returned in their short schema. This endpoint can get query

parameters to search for solutions that meet certain conditions. As a query

parameter can be any pair of key-value, while additional search operators

can be used for more advanced and enhanced search. More details about

searching can be found in Section 2.2.1.3. Finally, the endpoint “Get a list

with all solutions from a specific collection” can return the same results as

the current, if the example at the end will be followed.

Body Data: None

Headers: None

URL Parameters: Parameter Value

collection Valid values:

{"tools", "policies", "datasets", "webinars",

"tutorials", "documents", "other"}

Query Parameters: Key Value

max Integer value greater than 0 – Default: 20

Any key to search (refer to

section 2.2.1.3)

Any value to search (refer to section 2.2.1.3).

Restrictions / Special

Features:

None

Successful Response: A JSON Object with the results (latest solutions of a collection).

The following is an example of the request in cURL:
+ curl --request GET '{HOST}/solutions/{collection}/latest'

+ curl --request GET '{HOST}/solutions/{collection}/latest?max=5'

Example of similar response by the endpoint “Get a list with all solutions from a specific

collection”:

+ curl --request GET '{HOST}/solutions/{collection}?sortBy=newest&itemsPerPage=20&page=1'

TABLE 27 – GET LATEST SOLUTIONS FROM A SPECIFIC COLLECTION INTERFACE

 D7.12 – v.1.0

www.policycloud.eu

35

Title: Get random solutions from all collections

Endpoint: {HOST}/solutions/all/random

HTTP Method: GET

Description: This endpoint returns a number of random solutions from all collections

(uses keyword “all”). It is useful in order to suggest and promote different

solutions each time. It is also used in the home page of the Data

Marketplace, where random solutions are displayed. Through the query

parameter “max” it can return K solutions, where K can be specified by the

users (the default value is 4). The solutions are returned in their short

schema.

Body Data: None

Headers: None

URL Parameters: None

Query Parameters: Key Value

max Integer value greater than 0 – Default: 20

Restrictions / Special

Features:

None

Successful Response: A JSON Object with the results (random solutions from all collections).

The following is an example of the request in cURL:
+ curl --request GET '{HOST}/solutions/all/random'

+ curl --request GET '{HOST}/solutions/all/random?max=5'

TABLE 28 – GET RANDOM SOLUTIONS FROM ALL COLLECTIONS INTERFACE

Title: Get random solutions from a specific collection

Endpoint: {HOST}/solutions/{collection}/random

HTTP Method: GET

Description: This endpoint is similar to the above endpoint. Instead of keyword “all” it

uses a specific collection and thus it returns a number of K random solutions

of the provided specific collection. The value of K can be specified through

query parameter “max” (the default value is 4). The solutions are returned

in their short schema.

Body Data: None

Headers: None

URL Parameters: Parameter Value

collection Valid values:

{"tools", "policies", "datasets", "webinars",

"tutorials", "documents", "other"}

Query Parameters: Key Value

max Integer value greater than 0 – Default: 20

Restrictions / Special

Features:

None

Successful Response: A JSON Object with the results (random solutions of a collection).

The following is an example of the request in cURL:
+ curl --request GET '{HOST}/solutions/{collection}/random'

+ curl --request GET '{HOST}/solutions/{collection}/random?max=5'

TABLE 29 – GET RANDOM SOLUTIONS FROM A SPECIFIC COLLECTION INTERFACE

Title: Get a list with all solutions provided by a specific user (using keyword “all”)

 D7.12 – v.1.0

www.policycloud.eu

36

Endpoint: {HOST}/solutions/provider/{uid}/all

HTTP Method: GET

Description: This request returns all the solutions that have been provided by the user

whose ID {uid} is part of the request's URL. It uses the keyword “all” instead

of a specific collection, which makes the platform to retrieve its provided

solutions from all the collections at once. The solutions are returned in their

short schema. Also, the endpoint is restricted and thus, the JWT of a

requester must be included in the headers of the request. It should be noted

that the accounts’ owners who use this endpoint to retrieve their uploaded

solutions, except for the retrieval of the approved solutions, are able to also

retrieve “pending” solutions (e.g., the solutions that they uploaded and need

administrators’ approval). Finally, the endpoint offers some standard query

parameters that specify the format of the results and are described below

(Query Parameters).

Body Data: None

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: Parameter Value

uid The ID of the user whose offered solutions will be

retrieved.

Query Parameters: Key Value

sortBy [Optional] Sorts the solutions by a field – the default

is the “newest” key. The value should be one of the

following:

"newest": sort by date in descending order.

"oldest": sort by date in ascending order.

"rating-asc": sort by average rating in ascending

order.

"rating-desc": sort by average rating in descending

order.

"views-asc": sort by the number of views in

ascending order.

"views-desc": sort by the number of views in

descending order.

"title": sort by title in ascending order.

itemsPerPage [Optional] Returns the results separated in pages

(arrays) of N items. The number N is specified by

the value of this key. The value N must be an integer

number greater or equal to 1. If the key is not used

or has a non-accepted value, the results are

returned on a single page.

page [Optional] This key can only be used if the

“itemsPerPage” key is also used. If it is used, it

returns only the specified (by key’s value) page

instead of all pages created using the key

“itemsPerPage”. The value must be an integer

 D7.12 – v.1.0

www.policycloud.eu

37

number greater or equal to 1. The default value is

0, which means that all pages will be returned.

Restrictions / Special

Features:

None

Successful Response: A JSON Object with the results (all solutions provided by a user from all

collections). If the query parameter “itemsPerPage” is used, then the results

contain the total number of the pages.

The following is an example of the request in cURL:
+ curl --request GET '{HOST}/solutions/provider/{uid}/all'

+ curl --request GET '{HOST}/solutions/provider/{uid}/all?sortBy={value}'

+ curl --request GET '{HOST}/solutions/provider/{uid}/all?itemsPerPage={value}'

+ curl --request GET '…?itemsPerPage={value}&page={value}'

+ curl --request GET '…?sortBy={value}&itemsPerPage={value}'

+ curl --request GET '…?sortBy={value}&itemsPerPage={value}&page={value}'

TABLE 30 – GET A LIST WITH ALL SOLUTIONS PROVIDED BY A SPECIFIC USER (USING KEYWORD “ALL”) INTERFACE

Title: Get a list with all solutions provided by a specific user and under a specific

collection (using a “collection” value)

Endpoint: {HOST}/solutions/provider/{uid}/{collection}

HTTP Method: GET

Description: This request is similar to the above request. The only difference between the

two (2) actions is that this request retrieves all the solutions provided by a

specific user and from a single/specific collection (instead of using keyword

“all”). The endpoint is restricted and thus, the JWT of a requester must be

included in the headers of the request. For more details, refer to the above

endpoint.

Body Data: None

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: Parameter Value

uid The ID of the user whose offered solutions will

be retrieved.

collection Valid values:

{"tools", "policies", "datasets", "webinars",

"tutorials", "documents", "other"}

Query Parameters: As in the above request.

Restrictions / Special

Features:

None

Successful Response: A JSON Object with the results (all solutions provided by a user from a

specific collection). If the query parameter “itemsPerPage” is used, then the

results contain the total number of the pages.

The following is an example of the request in cURL:
+ curl --request GET '{HOST}/solutions/provider/{uid}/{collection}'

+ curl --request GET '{HOST}/solutions/provider/{uid}/{collection}?sortBy={value}'

+ curl --request GET '{HOST}/solutions/provider/{uid}/{collection}?itemsPerPage={value}'

+ curl --request GET '…?itemsPerPage={value}&page={value}'

+ curl --request GET '…?sortBy={value}&itemsPerPage={value}'

+ curl --request GET '…?sortBy={value}&itemsPerPage={value}&page={value}'
TABLE 31 – GET A LIST WITH ALL SOLUTIONS PROVIDED BY A SPECIFIC USER AND

UNDER A SPECIFIC COLLECTION (USING A “COLLECTION” VALUE) INTERFACE

 D7.12 – v.1.0

www.policycloud.eu

38

Title: Get solutions’ statistics for front-end’s homepage

Endpoint: {HOST}/solutions/statistics/homepage

HTTP Method: GET

Description: A request to this endpoint has as a result the retrieval of some statistics on

stored (and approved) solutions (and collections). Briefly, the response

contains:

• the total number of solutions,

• the number of solutions per collection, and

• the top 3 collections with the most solutions, as well as their

percentages of the total number.

Body Data: None

Headers: None

URL Parameters: None

Query Parameters: None

Restrictions / Special

Features:

None

Successful Response: A JSON Object with the solutions’ statistics. Example of a response:
{"_status": "successful", "results": {

 "all": {"tools": 15, "datasets": 22, "documents": 5,

 "other": 0, "policies": 20, "tutorials": 4,

 "webinars": 3}, "sum": 69,

 "top": [

 {"collection": "datasets", "solutions": 22, "percentage": 0.32},

 {"collection": "policies", "solutions": 20, "percentage": 0.29},

 {"collection": "tools", "solutions": 15, "percentage": 0.22}] }}

The following is an example of the request in cURL:
curl --request GET '{HOST}/solutions/statistics/homepage'

TABLE 32 – GET SOLUTIONS’ STATISTICS FOR FRONT-END’S HOMEPAGE INTERFACE

Title: Get solutions’ filtering values for front-end’s Discover page

Endpoint: {HOST}/solutions/statistics/filtering

HTTP Method: GET

Description: A request to this endpoint has as a result the retrieval of some filtering

values on stored (and approved) solutions that are used in the Discover page

of the front-end (filtering sidebar).

Body Data: None

Headers: None

URL Parameters: None

Query Parameters: None

Restrictions / Special

Features:

None

Successful Response: A JSON Object with the filtering values.

The following is an example of the request in cURL:
curl --request GET '{HOST}/solutions/statistics/filtering'

TABLE 33 – GET SOLUTIONS’ FILTERING VALUES FOR FRONT-END’S DISCOVER PAGE INTERFACE

 D7.12 – v.1.0

www.policycloud.eu

39

Title: Upload / Create a new solution with random ID

Endpoint: {HOST}/solutions/{collection}

HTTP Method: POST

Description: Through this POST request, the users can upload their solutions. It requires

users/providers to specify the collection in which the solution will be stored.

Also, the providers should include their JWTs in the headers of the request

because the endpoint is available only to authorized (and verified) users. An

important note is that all the new solutions uploaded to the Data

Marketplace must be approved by an administrator before they can be

made available to other users. Moreover, the administrators can upload a

solution on behalf of other users, adding the key “x-provider” in the headers

of the request. The body of the request must contain the description of the

solution as raw data in JSON format. The schema of the solutions’ content

varies, and it is flexible to be extended. The JSON schema below, presents

the required fields of a solution’s description.
{

 “title”: “<title of the solution>”,

 “description “: “<description of the solution and its assets>”,

 “type”: “<type of the solution (same as its collection value)>”,

 “comments”: “<a private field that is shown only when the full schema

 is retrieved (only by authorized users) – useful for

 provider’s private comments>”,

 “keywords”: [“<keyword 1>”, …],

 “owner “: “<organization / author / etc.>”,

}

The front-end has appropriate forms that build such solutions.

Body Data: Raw (JSON) Data – as the above schema (Content-Type: application/json).

It should be noted that the solutions can also be uploaded from binary files

that contain the above JSON schema (a curl example can be found below).

Headers: Key Value

x-access-token Requester’s JWT

x-provider [Optional & only for administrators] The ID of

the provider user in case that the solution is

uploaded by an administrator and not by the

provider.

URL Parameters: Parameter Value

collection Valid values:

{“tools”, “policies”, “datasets”, “webinars”,

“tutorials”, “documents”, “other”}

Query Parameters: None

Restrictions / Special

Features:

Available to all authorized (and verified) users. The administrators can

upload a solution on behalf of other users.

Successful Response: JSON Object with the new solution’s ID in its content.

The following is an example of the request in cURL:
curl –request POST ‘{HOST}/solutions/{collection}’ \

--header ‘x-access-token: <JWT>’ –header ‘Content-Type: application/json’ \

--data-raw ‘{

 “title”: “<title of the solution>”,

 “description“: “<description of the solution and its assets>”,

 “type”: “<type of the solution (same as its collection value)>”,

 D7.12 – v.1.0

www.policycloud.eu

40

 “comments”: “<a private field that is shown only when the full schema is retrieved

 (only by authorized users) – useful for private comments>”,

 “keywords”: [“<keyword 1>”, …], “owner “: “<organization / author / etc.>”,

}’

Example of uploading a solution through binary data/file:

curl –request POST ‘{HOST}/solutions/{collection}’ –header ‘x-access-token: <JWT>’ \

--header ‘Content-Type: application/json’ –data-binary ‘@<path_to_json_file>’

TABLE 34 – UPLOAD / CREATE A NEW SOLUTION WITH RANDOM ID INTERFACE

Below are some examples of the stored solutions’ schema:

Example 1 – Newly uploaded solution with no assets

{

 “id”: “others_P8fYOAX67HkK-8fpe1TlB-KuR4-Zsck”,

 “info”: {“comments”: “Private comment.”, “contact”: “Vasilis Koukos, email”,

 “description”: “This is an example of description.”,

 “keywords”: [“testing”, “documentation”]”], “owner”: “UPRC”,

 “title”: “Example.”, “type”: “others”},

 “main_image”: “default_image_assets”,

 “metadata”: {“approved”: 1, //0 for pending / 1 for approved

 “last_updated_by”: “vkoukos”, “md5”: “<md5 hash of the solution’s data>”,

 “provider”: “vkoukos”, “reviews”: {“average_rating”: 3.2, “no_reviews”: 5},

 “updateDate”: “2021-10-11 13:50:48.420Z”, “uploadDate”: “2021-10-11 13:50:48.420Z”,

 “version”: 1, //the version of the solution – increases when updating

 “views”: 8},

 “assets”: {“files”: [], //list with the uploaded files for this solution

 “images”: [], //list with the uploaded images for this solution

 “videos”: [] //list with the uploaded videos for this solution

 },

 “links”: [], //list with the external links added to this solution

}

Example 2 – Solution with uploaded file

{

 “id”: “others_P8fYOAX67HkK-8fpe1TlB-KuR4-Zsck”,

 …

 “assets”: {

 “files”: [{

 “verified”: 0, //0 for pending / 1 for approved

 “downloads”: 3, //number of downloads of the file

 “filename”: “kmeans.py”, “id”: “80F7MjRTIxvb-7qIKRAjv-IJ3p-b3vL”, //file’s ID

 “md5”: “…”, “size”: “7.92 KB”, “updateDate”: “Thu, 14 Oct 2021 13:56:52 GMT”,

 “version”: 1 //the version of the file – increases when updating

 }],

 “images”: [], videos”: []

 }, “links”: []

}

 D7.12 – v.1.0

www.policycloud.eu

41

Example 3 – Retrieved solution (full schema)

{

 “id”: “others_P8fYOAX67HkK-8fpe1TlB-KuR4-Zsck”,

 “info”: {“comments”: “Private comment.”, “contact”: “Vasilis Koukos, email”,

 “description”: “This is an example of description.”,

 “keywords”: [“testing”, “documentation”]”], “owner”: “UPRC”,

 “title”: “Example.”, “type”: “others”},

 “main_image”: “default_image_assets”,

 “metadata”: {“approved”: 1, last_updated_by”: “vkoukos”, “md5”: “<md5 hash of solution’s data>”,

 “provider”: “vkoukos”, “reviews”: {“average_rating”: 3.2, “no_reviews”: 5},

 “updateDate”: “2021-10-11 13:50:48.420Z”, “uploadDate”: “2021-10-11 13:50:48.420Z”,

 “version”: 1, “views”: 8},

 “assets”: {

 “files”: [{

 “verified”: 0, “downloads”: 3, filename”: “kmeans.py”,

 “id”: “80F7MjRTIxvb-7qIKRAjv-IJ3p-b3vL”, “md5”: “…”, “size”: “7.92 KB”,

 “updateDate”: “Thu, 14 Oct 2021 13:56:52 GMT”, “version”: 1

 }], “images”: [],videos”: []

 },

 links”: [],

 “reviews”: [

 {

 “comment”: “Very good!”, “solution_version”: 1, “rating”: 4, “uid”: “user_1”,

 “review_version”: 1, “updated_review_date”: “2021-10-14 16:02:05.484Z”,

 }, {

 “comment”: “Needs improvement…”, “solution_version”: 1, “rating”: 2, “uid”: “user_2”,

 “review_version”: 2, “updated_review_date”: “2021-10-15 11:06:03.334Z”,

 }, {

 “comment”: “Not bad.”, “solution_version”: 1, “rating”: 3, “uid”: “user_3”,

 “review_version”: 1, “updated_review_date”: “2021-10-15 13:30:00.209Z”,

 }, {

 “comment”: “Thank you for this!!”, “solution_version”: 1, “rating”: 5, “uid”: “user_4”,

 “review_version”: 1, “updated_review_date”: “2021-10-18 10:12:49.956Z”,

 }, {

 “comment”: “Good idea but does not perform well for big data.”,

 “solution_version”: 1, “rating”: 2, “review_version”: 1,

 “updated_review_date”: “2021-10-18 14:53:13.410Z”, “uid”: “user_5”

 }

}

Title: Upload / Create a new solution with given ID

Endpoint: {HOST}/solutions/{collection}/{given_id}

HTTP Method: POST

Description: This endpoint is similar to the above. The only difference is that through the

current endpoint, the users are able to specify the ID of the new solution,

providing it at the end of the endpoint {given_id}. Currently, this endpoint

can be used only by the administrators.

Body Data: Raw (JSON) Data – as the schema of the previous endpoint (Content-Type:

application/json).

It should be noted that the solutions can also be uploaded from binary files

that contain the JSON schema of the previous endpoint (example in curl can

be found at the end of the interface).

Headers: Key Value

x-access-token Requester’s JWT

 D7.12 – v.1.0

www.policycloud.eu

42

x-provider [Optional & only for administrators] The ID of the

provider in case that the solution is uploaded by

an administrator and not by the provider.

URL Parameters: Parameter Value

collection Valid values:

{“tools”, “policies”, “datasets”, “webinars”,

“tutorials”, “documents”, “other”}

given_id The ID to be given to the new solution.

Query Parameters: None

Restrictions / Special

Features:

Available only to administrators. The administrators are able to upload a

solution on behalf of other users.

Successful Response: JSON Object with the new solution’s ID in its content.

The following is an example of the request in cURL:
curl –request POST ‘{HOST}/solutions/{collection}/{given_id}’ \

--header ‘x-access-token: <JWT>’ –header ‘Content-Type: application/json’ \

--data-raw ‘{

 “title”: “<title of the solution>”,

 “description “: “<description of the solution and its assets>”,

 “type”: “<type of the solution (same as its collection value)>”,

 “comments”: “<a private field that is shown only when the full schema is retrieved

 (only by authorized users) – useful for private comments>”,

 “keywords”: [“<keyword 1>”, …], “owner “: “<organization / author / etc.>”,

}’

Example of uploading a solution through binary data/file:

curl –request POST ‘{HOST}/solutions/{collection}/{given_id}’ \

--header ‘x-access-token: <JWT>’ –header ‘Content-Type: application/json’ \

--data-binary ‘@<path_to_json_file>’

TABLE 35 – UPLOAD / CREATE A NEW SOLUTION WITH GIVEN ID INTERFACE

Title: Update a specific solution (using keyword “all”)

Endpoint: {HOST}/solutions/all/{sid}

HTTP Method: PUT

Description: With this endpoint, the providers of the solutions can update the solutions’

contents. It requires the ID of the solution at the end of the endpoint and

the body of the request should contain the next JSON schema as raw data.
{

 “title”: “<title of the solution>”,

 “description “: “<description of the solution ans its assets>”,

 “type”: “<type of the solution (same as its collection value)>”,

 “comments”: “<a private field that is shown only when the full schema

 is retrieved (only by authorized users) – useful for

 provider’s private comments>”,

 “keywords”: [“<keyword 1>”, …],

 “owner “: “<organization / author / etc.>”,

}

It should be noted that this endpoint uses the keyword “all” (the solutions

are already stored in the Data Marketplace, thus the platform knows the

collections in which they have been stored). Also, this action is only available

to the creators /providers of the solutions and to administrators who can

update any solution. Thus, the JWT of a requester should be included in the

headers of the request. An important note is that all updated solutions get

 D7.12 – v.1.0

www.policycloud.eu

43

locked and must be approved again by an administrator to be available

again to other users.

Body Data: Raw (JSON) Data – as the above schema (Content-Type: application/json).

The solutions can also be updated from binary files that contain the above

JSON schema (curl example can be found at the end of the interface).

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: Parameter Value

sid The ID of the solution that will be updated.

Query Parameters: None

Restrictions / Special

Features:

Available only for the providers/creators of the solutions and for the

administrators who can update any solution.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl –request PUT ‘{HOST}/solutions/all/{sid}’ \

--header ‘x-access-token: <JWT>’ –header ‘Content-Type: application/json’ \

--data-raw ‘{ “title”: “<title of the solution>”,

 “description “: “<description of the solution and its assets>”,

 “type”: “<type of the solution (same as its collection value)>”,

 “comments”: “<a private field that is shown only when the full schema is retrieved

 (only by authorized users) – useful for private comments>”,

 “keywords”: [“<keyword 1>”, …], “owner “: “<organization / author / etc.>”,

}’

Example of uploading a solution through binary data/file:

curl –request POST ‘{HOST}/solutions/all/{sid}’ \

--header ‘x-access-token: <JWT>’ –header ‘Content-Type: application/json’ \

--data-binary ‘@<path_to_json_file>’
TABLE 36 – UPDATE A SPECIFIC SOLUTION (USING KEYWORD “ALL”) INTERFACE

Title: Update a specific solution (using solution’s “collection”)

Endpoint: {HOST}/solutions/{collection}/{sid}

HTTP Method: PUT

Description: This PUT request is similar to the previous. The only difference is that instead

of using keyword “all” it uses the collection in which the solution has been

stored during its creation. The endpoint is restricted and available only to

solutions’ providers/creators and to administrators who can update any

solution. Thus, the JWT of a requester must be included in the headers of

the request. More information about the endpoint can be found on the

above endpoint.

Body Data: Raw (JSON) Data – as the schema of the previous endpoint (Content-Type:

application/json).

It should be noted that the solutions can also be uploaded from binary files

that contain the JSON schema of the previous endpoint (example in curl can

be found at the end of the interface).

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: Parameter Value

collection Valid values:

{“tools”, “policies”, “datasets”, “webinars”,

“tutorials”, “documents”, “other”}

sid The ID of the solution that will be updated.

 D7.12 – v.1.0

www.policycloud.eu

44

Query Parameters: None

Restrictions / Special

Features:

Available only for the providers/creators of the solutions and for the

administrators who can update any solution.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl –request PUT ‘{HOST}/solutions/{collection}/{sid}’ \

--header ‘x-access-token: <JWT>’ –header ‘Content-Type: application/json’ \

--data-raw ‘{

 “title”: “<title of the solution>”,

 “description “: “<description of the solution and its assets>”,

 “type”: “<type of the solution (same as collection’s value)>”,

 “comments”: “<a private field that is shown only when the full schema is retrieved

 (only by authorized users) – useful for private comments>”,

 “keywords”: [“<keyword 1>”, …], “owner “: “<organization / author / etc.>”,

}’

Example of uploading a solution through binary data/file:

curl –request POST ‘{HOST}/solutions/{collection}/{sid}’ \

--header ‘x-access-token: <JWT>’ –header ‘Content-Type: application/json’ \

--data-binary ‘@<path_to_json_file>’

TABLE 37 – UPDATE A SPECIFIC SOLUTION (USING SOLUTION’S “COLLECTION”) INTERFACE

Title: Delete a specific solution (using keyword “all”)

Endpoint: {HOST}/solutions/all/{sid}

HTTP Method: DELETE

Description: A DELETE request to this endpoint has as a result the deletion of a specific

solution, using its ID. The endpoint is restricted and available only to

solutions’ providers/creators and to administrators who can delete any

solution. Thus, the JWT of a requester must be included in the headers of

the request. It should be noted that this endpoint uses the keyword “all”

instead of solution’s collection (the solutions are already stored in the Data

Marketplace, thus the platform knows the collections in which have been

stored). For security reasons, the requesters should provide their password

in the body of their request, as raw data (JSON schema):
{ “password”: “…” }

If the action is made by an administrator, the field “password” should be the

password of the administrator.

Body Data: Raw (JSON) Data – as the above schema (Content-Type: application/json).

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: Parameter Value

sid The ID of the solution that will be deleted.

Query Parameters: None

Restrictions / Special

Features:

Available only for the providers/creators of the solutions and for the

administrators who can delete any solution.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl –request DELETE ‘{HOST}/solutions/all/{sid}’ \

--header ‘x-access-token: <JWT>’ –header ‘Content-Type: application/json’ \

--data-raw ‘{ “password”: “…” }’
TABLE 38 – DELETE A SPECIFIC SOLUTION (USING KEYWORD “ALL”) INTERFACE

 D7.12 – v.1.0

www.policycloud.eu

45

Title: Delete a specific solution (using solution’s “collection”)

Endpoint: {HOST}/solutions/{collection}/{sid}

HTTP Method: DELETE

Description: This request is similar to the previous. The only difference is that instead of

using keyword “all” it uses the collection in which the solution has been

stored during its creation. The endpoint is restricted and available only to

solutions’ providers/creators and to administrators who can delete any

solution. Thus, the JWT of a requester must be included in the headers of

the request. More information about the endpoint can be found on the

above endpoint.

Body Data: Raw (JSON) Data – as the schema of the previous endpoint (Content-Type:

application/json).

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: Parameter Value

collection Valid values:

{“tools”, “policies”, “datasets”, “webinars”,

“tutorials”, “documents”, “other”}

sid The ID of the solution that will be deleted.

Query Parameters: None

Restrictions / Special

Features:

Available only for the providers/creators of the solutions and for the

administrators who can delete any solution.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl –request DELETE ‘{HOST}/solutions/{collection}/{sid}’ \

--header ‘x-access-token: <JWT>’ –header ‘Content-Type: application/json’ \
--data-raw ‘{ “password”: “…” }’

TABLE 39 – DELETE A SPECIFIC SOLUTION (USING SOLUTION’S “COLLECTION”) INTERFACE

Title: Delete all solutions (administrators’ action)

Endpoint: {HOST}/solutions/all/all

HTTP Method: DELETE

Description: This endpoint is available only to the administrators, who can delete all the

existing solutions from all the collections (the keyword “all” is used instead

of a specific collection). The endpoint is restricted and thus, the JWT of a

requester must be included in the headers of the request. For security

reasons, the requesters should provide their password in the body of their

request, as raw data (JSON schema):
{ “password”: “…” }

Body Data: Raw (JSON) Data – as the above schema (Content-Type: application/json).

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: None

Query Parameters: None

Restrictions / Special

Features:

Currently, it is available only to the “superuser” (master admin) of the Data

Marketplace.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:

 D7.12 – v.1.0

www.policycloud.eu

46

curl –request DELETE ‘{HOST}/solutions/all/all’ –header ‘x-access-token: <JWT>’ \

--header ‘Content-Type: application/json’ –data-raw ‘{ “password”: “…” }’

TABLE 40 – DELETE ALL SOLUTIONS INTERFACE

Title: Delete all solutions from a specific collection (administrators’ action)

Endpoint: {HOST}/solutions/{collection}/all

HTTP Method: DELETE

Description: This endpoint is similar to the above. It is available only to the administrators

who can delete all the solutions from a specific collection. The endpoint is

restricted and thus, the JWT of a requester must be included in the headers

of the request. For security reasons, the requesters should provide their

password in the body of their request, as raw data (JSON schema):
{ “password”: “…” }

Body Data: Raw (JSON) Data – as the above schema (Content-Type: application/json).

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: Parameter Value

collection Valid values:

{“tools”, “policies”, “datasets”, “webinars”,

“tutorials”, “documents”, “other”}

Query Parameters: None

Restrictions / Special

Features:

Currently, it is available only to the “superuser” (master admin) of the Data

Marketplace.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl –request DELETE ‘{HOST}/solutions/{collection}/all’ –header ‘x-access-token: <JWT>’ \

--header ‘Content-Type: application/json’ –data-raw ‘{ “password”: “…” }’
TABLE 41 – DELETE ALL SOLUTIONS FROM A SPECIFIC COLLECTION INTERFACE

Title: Make a review for a solution

Endpoint: {HOST}/solutions/review/{sid}

HTTP Method: POST

Description: This endpoint is used to make a review for a solution, whose ID is included

in the request’s URL. The endpoint is available to all registered and verified

users whose JWT is required in the headers of the request. A review consists

of a rating (integer value between 1 and 5) and a comment (free text). The

users can make a review for a specific solution only once, but they can

update it via the next endpoint, whilst the providers/creators of solution

cannot make a review on their solutions. The next JSON schema must be in

request’s body, as raw data:
{“rating”: <value>, “comment”: “…”}

After the successful submission of a review, the average rating of the

reviewed solution is recalculated.

Body Data: Raw (JSON) Data – as the above schema (Content-Type: application/json).

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: Parameter Value

sid The ID of the solution for which the review

of a user will be made.

 D7.12 – v.1.0

www.policycloud.eu

47

Query Parameters: None

Restrictions / Special

Features:

Available to all registered and verified users. The providers/creators are not

able to make a review for their solutions.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl –request POST ‘{HOST}/solutions/review/{sid}’ \

--header ‘x-access-token: <JWT>’ –header ‘Content-Type: application/json’ \

--data-raw ‘{“rating”: <value>, “comment”: “…”}’
TABLE 42 – MAKE A REVIEW FOR A SOLUTION INTERFACE

After the successful submission of a review, the following JSON document is stored in the database:
{

 “_id”: “<review’s ID>”, “rating”: <integer value between 1 and 5>,

 “comment”: “…”, “title”: “<solution’s title>”, “sid”: “<solution’s ID>”,

 “collection”: “<solution’s collection>”,

 “uid”: “<the ID of the user who made the review>”,

 “reviewer”: <the fullname of the user who made the review>,

 “initial_review_date”: “<the date of the initial review>”,

 “updated_review_date”: “<date of the last review>”,

 “solution_version”: <solution’s version when the review made>,

 “review_version”: <version of the current review>,

 “provider”: <solution’s provider ID>

}

Title: Update an existing review for a solution

Endpoint: {HOST}/solutions/review/{sid}

HTTP Method: PUT

Description: This endpoint is used in order to update a review that made for a specific

solution. The ID of the solution should be included in the URL of the request.

The endpoint is available to all registered and verified users whose JWT is

required in the headers of the request. A prerequisite for this action is that

users have already made a review for the specific solution.

A review consists of a rating (integer value between 1 and 5) and a comment.

The next JSON schema should be in the body of the request, as raw data:
{“rating”: <value>, “comment”: “…”}

After the successful submission of an updated review, the average rating of

the reviewed solution is recalculated.

Body Data: Raw (JSON) Data – as the above schema (Content-Type: application/json).

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: Parameter Value

sid The ID of the solution for which the review of

a user will be updated.

Query Parameters: None

Restrictions / Special

Features:

Available to all registered and verified users. A prerequisite for this action is

that users have already made a review for the specific solution.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl –request PUT ‘{HOST}/solutions/review/{sid}’ \

--header ‘x-access-token: <JWT>’ –header ‘Content-Type: application/json’ \

--data-raw ‘{“rating”: <value>, “comment”: “…”}’
TABLE 43 – UPDATE AN EXISTING REVIEW FOR A SOLUTION INTERFACE

 D7.12 – v.1.0

www.policycloud.eu

48

Title: Delete a review for a solution

Endpoint: {HOST}/solutions/review/{sid}

HTTP Method: DELETE

Description: This endpoint is used to delete a review that made for a specific solution.

The ID of the solution should be included in the URL of the request. The

endpoint is available to all registered and verified users whose JWT is

required in the headers of the request. A prerequisite for this action is that

users have already made a review for the specific solution. It should be

noted that the administrators are able to delete reviews that made from

other users, providing the ID of the reviewer in the headers of the request.

After the successful deletion of a review, the average rating of the solution

is recalculated.

Body Data: None

Headers: Key Value

x-access-token Requester’s JWT

x-uid [Optional & only for administrators] The ID of the

user whose review on the specified solution will be

deleted. It is used by administrators in order to

specify the reviewer.

URL Parameters: Parameter Value

sid The ID of the solution for which the review of a user

will be deleted.

Query Parameters: None

Restrictions / Special

Features:

Available to all registered and verified users. A prerequisite for this action is

that users have already made a review for the specific solution. The

administrators are able to delete reviews that made from other users.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
+ curl –request DELETE ‘{HOST}/solutions/review/{sid}’ --header ‘x-access-token: <JWT>’

+ curl –request DELETE ‘{HOST}/solutions/review/{sid}’ \

 --header ‘x-access-token: <JWT>’ –header ‘x-uid: <value>’

TABLE 44 – DELETE A REVIEW FOR A SOLUTION INTERFACE

Title: Get a list with the reviews made by a specific user

Endpoint: {HOST}/solutions/review/{uid}

HTTP Method: GET

Description: This request returns all the reviews made by a specific user whose ID {uid}

is part of the request’s URL (the schema of the reviews can be found in the

“Make a review for a solution” interface). The endpoint is restricted and thus,

the JWT of a requester must be included in the headers of the request.

Finally, the endpoint offers some standard query parameters that specify

the format of the results and are described below (Query Parameters).

Body Data: None

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: Parameter Value

uid The ID of the user whose reviews will be retrieved.

Query Parameters: Key Value

 D7.12 – v.1.0

www.policycloud.eu

49

sortBy [Optional] Sorts the reviews by a field – the default is the

“newest” key. The value should be one of the following:

“newest”: sort by review date in descending order.

“oldest”: sort by review date in ascending order.

“rating-asc”: sort by user’s rating in ascending order.

“rating-desc”: sort by user’s rating in descending order.

“title”: sort by solution’s title in ascending order.

itemsPerPage [Optional] Returns the results separated in pages

(arrays) of N items. The number N is specified by the

value of this key. The value N must be an integer

number greater or equal to 1. If the key is not used or

has a non-accepted value, the results are returned on a

single page.

Page [Optional] This key can only be used if the

“itemsPerPage” key is also used. If it is used, it returns

only the specified (by key’s value) page instead of all

pages created using the key “itemsPerPage”. The value

must be an integer number greater or equal to 1. The

default value is 0, which means that all pages will be

returned.

Restrictions / Special

Features:

Available to all registered and verified users.

Successful Response: JSON Object with the reviews made by a specific user.

The following is an example of the request in cURL:
+ curl –request GET ‘{HOST}/solutions/review/{uid}’ –header ‘x-access-token: <JWT>’

+ curl –request GET ‘…?sortBy={value}’ …

+ curl –request GET ‘…?itemsPerPage={value}’ …

+ curl –request GET ‘…?itemsPerPage={value}&page={value}’ …

+ curl –request GET ‘…?sortBy={value}&itemsPerPage={value}’ …

+ curl –request GET ‘…?sortBy={value}&itemsPerPage={value}&page={value}’ …

TABLE 45 – GET A LIST WITH THE REVIEWS MADE BY A SPECIFIC USER INTERFACE

Title: Get a list with the reviews made for a specific solution

Endpoint: {HOST}/solutions/reviews/{sid}

HTTP Method: GET

Description: This request returns all the reviews made for a specific solution whose ID

{sid} is part of the request’s URL (the schema of the reviews can be found in

the “Make a review for a solution” interface). The endpoint is restricted and

thus, the JWT of a requester must be included in the headers of the request.

Finally, the endpoint offers some standard query parameters that specify

the format of the results and are described below (Query Parameters).

Body Data: None

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: Parameter Value

sid The ID of the solution whose reviews will be retrieved.

Query Parameters: Key Value

sortBy [Optional] Sorts the reviews by a field – the default is the

“newest” key. The value should be one of the following:

 D7.12 – v.1.0

www.policycloud.eu

50

“newest”: sort by review date in descending order.

“oldest”: sort by review date in ascending order.

“rating-asc”: sort by user’s rating in ascending order.

“rating-desc”: sort by user’s rating in descending order.

“title”: sort by solution’s title in ascending order.

itemsPerPage [Optional] Returns the results separated in pages

(arrays) of N items. The number N is specified by the

value of this key. The value N must be an integer

number greater or equal to 1. If the key is not used or

has a non-accepted value, the results are returned on a

single page.

Page [Optional] This key can only be used if the

“itemsPerPage” key is also used. If it is used, it returns

only the specified (by key’s value) page instead of all

pages created using the key “itemsPerPage”. The value

must be an integer number greater or equal to 1. The

default value is 0, which means that all pages will be

returned.

Restrictions / Special

Features:

Available to all registered and verified users.

Successful Response: JSON Object with the reviews made by a specific user.

The following is an example of the request in cURL:
+ curl –request GET ‘{HOST}/solutions/reviews/{sid}’ –header ‘x-access-token: <JWT>’

+ curl –request GET ‘…?sortBy={value}’ …

+ curl –request GET ‘…?itemsPerPage={value}’ …

+ curl –request GET ‘…?itemsPerPage={value}&page={value}’ …

+ curl –request GET ‘…?sortBy={value}&itemsPerPage={value}’ …

+ curl –request GET ‘…?sortBy={value}&itemsPerPage={value}&page={value}’ …

TABLE 46 – GET A LIST WITH THE REVIEWS MADE FOR A SPECIFIC SOLUTION INTERFACE

Title: Get the cover image of a solution

Endpoint: {HOST}/solutions/image/{sid}

HTTP Method: GET

Description: This interface can be used in order to retrieve the cover image of a specific

solution, using its ID {sid}, which is part of the request’s URL.

Body Data: None

Headers: None

URL Parameters: Parameter Value

sid The ID of the solution whose cover image

will be retrieved.

Query Parameters: None

Restrictions / Special

Features:

None

Successful Response: The cover image of the solution (returned as image).

The following is an example of the request in cURL:
curl --request GET '{HOST}/solutions/image/{sid}'

TABLE 47 – GET THE COVER IMAGE OF A SOLUTION INTERFACE

 D7.12 – v.1.0

www.policycloud.eu

51

Title: Change the cover image of a solution

Endpoint: {HOST}/solutions/image/{sid}/{img_id}

HTTP Method: PUT

Description: This interface can be used in order to change the cover image of a specific

solution, using the ID of the solution {sid}, which is part of the request’s URL

and the ID of the image {img_id} that will replace the current cover image of

the specified solution. It should be noted that the image should be uploaded

as ‘image’ asset type for the specified solution in order to be used as the

cover image, whose ID is the {img_id} value that is part of the request’s URL.

Body Data: None

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: Parameter Value

sid The ID of the solution whose cover image

will be retrieved.

img_id The ID of the image that will replace the

current cover image – the image must be an

asset of the specified solution.

Query Parameters: None

Restrictions / Special

Features:

Available only for the providers/creators of the solutions and for the

administrators who can update any solution.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl --request PUT '{HOST}/solutions/image/{sid}/{img_id}' --header 'x-access-token: {JWT}'

TABLE 48 – CHANGE THE COVER IMAGE OF A SOLUTION INTERFACE

Title: Remove the cover image of a solution

Endpoint: {HOST}/solutions/image/{sid}

HTTP Method: DELETE

Description: This interface can be used to remove the cover image of a specific solution,

using the ID of the solution {sid} that is part of the request’s URL. This action

removes the current cover image which is replaced by the default cover

image of all solutions. Though, this action will not delete the image from the

assets lists.

Body Data: None

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: Parameter Value

sid The ID of the solution whose cover image

will be removed.

Query Parameters: None

Restrictions / Special

Features:

Available only for the providers/creators of the solutions and for the

administrators who can update any solution.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl --request DELETE '{HOST}/solutions/image/{sid}' --header 'x-access-token: {JWT}'

TABLE 49 – REMOVE THE COVER IMAGE OF A SOLUTION INTERFACE

 D7.12 – v.1.0

www.policycloud.eu

52

Title: Get a list with all solutions that need permission (administrators’ action)

Endpoint: {HOST}/solutions/permit/all

HTTP Method: GET

Description: This endpoint returns the solutions from all the collections (since the

keyword “all” is used) that need permission before they become available to

the Data Marketplace’s users. A solution needs permission either when it is

uploaded or after it has been updated by the users. Moreover, the endpoint

is only available to administrators and thus, the JWT of a requester is

required in the headers of the request. Finally, the endpoint offers some

standard query parameters that specify the format of the results and are

described below (Query Parameters).

Body Data: None

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: None

Query Parameters: Key Value

sortBy [Optional] Sorts the solutions by a field – the default is

the “newest” key. The value should be one of the

following:

“newest”: sort by date in descending order.

“oldest”: sort by date in ascending order.

“title”: sort by title in ascending order.

itemsPerPage [Optional] Returns the results separated in pages

(arrays) of N items. The number N is specified by the

value of this key. The value N must be an integer

number greater or equal to 1. If the key is not used or

has a non-accepted value, the results are returned on

a single page.

Page [Optional] This key can only be used if the

“itemsPerPage” key is also used. If it is used, it returns

the specified (by key’s value) page instead of all pages

created using the key “itemsPerPage”. The value must

be an integer greater or equal to 1. The default value

is 0, meaning that all pages will be returned.

Restrictions / Special

Features:

Available only to the administrators.

Successful Response: JSON Object with the solutions (from all collections) that need permission in

its content.

The following is an example of the request in cURL:
+ curl –request GET ‘{HOST}/solutions/permit/all’ –header ‘x-access-token: <JWT>’

+ curl –request GET ‘…?sortBy={value}’ …

+ curl –request GET ‘…?itemsPerPage={value}’ …

+ curl –request GET ‘…?itemsPerPage={value}&page={value}’ …

+ curl –request GET ‘…?sortBy={value}&itemsPerPage={value}’ …

+ curl –request GET ‘…?sortBy={value}&itemsPerPage={value}&page={value}’ …
TABLE 50 – GET A LIST WITH ALL SOLUTIONS THAT NEED PERMISSION INTERFACE

Title: Get a list with all solutions from a specific collection that need permission

(administrators’ action)

 D7.12 – v.1.0

www.policycloud.eu

53

Endpoint: {HOST}/solutions/permit/{collection}

HTTP Method: GET

Description: This request is similar to the above request. The only difference between the

two (2) actions is that the current request retrieves the solutions that need

permission from a specific collection (uses specific {collection} value instead

of the keyword “all”). For more details, refer to the above endpoint.

Body Data: None

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: Parameter Value

collection Valid values:

{“tools”, “policies”, “datasets”, “webinars”,

“tutorials”, “documents”, “other”}

Query Parameters: As in the above request.

Restrictions / Special

Features:

Available only to the administrators.

Successful Response: JSON Object with the solutions (from a specific collection) that need

permission in its content.

The following is an example of the request in cURL:
+ curl –request GET ‘{HOST}/solutions/permit/{collection}’ –header ‘x-access-token: <JWT>’

+ curl –request GET ‘…?sortBy={value}’ …

+ curl –request GET ‘…?itemsPerPage={value}’ …

+ curl –request GET ‘…?itemsPerPage={value}&page={value}’ …

+ curl –request GET ‘…?sortBy={value}&itemsPerPage={value}’ …

+ curl –request GET ‘…?sortBy={value}&itemsPerPage={value}&page={value}’ …
TABLE 51 – GET A LIST WITH ALL SOLUTIONS FROM A SPECIFIC COLLECTION THAT NEED PERMISSION INTERFACE

Title: Approve or reject a specific solution that need permission, using keyword

“all” (administrators’ action)

Endpoint: {HOST}/solutions/permit/all/{sid}

HTTP Method: POST

Description: This endpoint is used by administrators to approve or reject a specific

solution (using its ID) that needs administrators’ permission. The endpoint

is restricted and available only to administrators and thus, the requesters

must provide their JWTs in the headers of the request. Also, this endpoint

uses the keyword “all” and not the collection in which a specific solution is

stored, as the next endpoint does. An important parameter/key that must

be included in the request’s headers is the “x-permission” key that should

contain the text “approve” for the solution’s approval, otherwise the text

“disapprove” for its rejection. A rejection/ disapproval of a solution results to

the deletion of the solution and all its assets.

Body Data: None

Headers: Key Value

x-access-token Requester’s JWT

x-permission Valid values:

{“approve”, “disapprove”}

URL Parameters: Parameter Value

sid The ID of the solution that will be approved or

rejected.

 D7.12 – v.1.0

www.policycloud.eu

54

Query Parameters: None

Restrictions / Special

Features:

Available only to the administrators.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl –request POST ‘{HOST}/solutions/permit/all/{sid}’ \

--header ‘x-access-token: <JWT>’ –header ‘x-permission: <value>’
TABLE 52 – APPROVE OR REJECT A SOLUTION THAT NEEDS PERMISSION, USING KEYWORD “ALL” INTERFACE

Title: Approve or reject a specific solution that need permission, using solution’s

“collection” (administrators’ action)

Endpoint: {HOST}/solutions/permit/{collection}/{sid}

HTTP Method: POST

Description: This request is similar to the above request. The only difference between the

two (2) actions is that the current request uses the value of the {collection}

in which a specific solution is stored. For more details, refer to the above

endpoint.

Body Data: None

Headers: Key Value

x-access-token Requester’s JWT

x-permission Valid values:

{“approve”, “disapprove”}

URL Parameters: Parameter Value

collection Valid values:

{“tools”, “policies”, “datasets”, “webinars”,

“tutorials”, “documents”, “other”}

sid The ID of the solution that will be approved or

rejected.

Query Parameters: None

Restrictions / Special

Features:

Available only to the administrators.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl –request POST ‘{HOST}/solutions/permit/{collection}/{sid}’ \

--header ‘x-access-token: <JWT>’ –header ‘x-permission: <value>’
TABLE 53 – APPROVE OR REJECT A SOLUTION THATS NEEDS PERMISSION, USING SOLUTION’S “COLLECTION” INTERFACE

Title: Approve or reject all solutions that need permission, using keyword “all”

(administrators’ action)

Endpoint: {HOST}/solutions/permit/all/all

HTTP Method: POST

Description: This endpoint is used by the administrators to approve or reject all the

stored solutions (from all the collections, since keyword “all” is used) that

need administrators’ permission. The endpoint is restricted and available

only to administrators and thus, the requesters’ must provide their JWTs in

the headers of the request. An important parameter/key that must be

included in the headers of the request is the “x-permission” key that should

have as a value the text “approve” for the solutions to be approved,

 D7.12 – v.1.0

www.policycloud.eu

55

otherwise the text “disapprove” to be rejected. A rejection/disapproval of the

solutions has as a result the deletion of the solutions and all of their assets.

Body Data: None

Headers: Key Value

x-access-token Requester’s JWT

x-permission Valid values:

{“approve”, “disapprove”}

URL Parameters: None

Query Parameters: None

Restrictions / Special

Features:

Currently, it is available only to the “superuser” (master admin) of the Data

Marketplace.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl –request POST ‘{HOST}/solutions/permit/all/all ‘ \

--header ‘x-access-token: <JWT>’ –header ‘x-permission: <value>’
TABLE 54 – APPROVE OR REJECT ALL SOLUTIONS THAT NEED PERMISSION, USING KEYWORD “ALL” INTERFACE

Title: Approve or reject all solutions that need permission under a specific

collection, using a “collection” value (administrators’ action)

Endpoint: {HOST}/solutions/permit/{collection}/all

HTTP Method: POST

Description: This request is similar to the above request. The only difference is that the

administrators, using the current endpoint, are able to approve or reject all

the solutions of a specific {collection}. The endpoint is restricted and

available only to administrators and thus, the requesters’ must provide their

JWTs in the headers of the request. An important parameter/key that must

be included in the headers of the request is the “x-permission” key that

should have as a value the text “approve” for the solutions to be approved,

otherwise the text “disapprove” to be rejected. A rejection/disapproval of the

solutions has as a result the deletion of the solutions and all of their assets.

Body Data: None

Headers: Key Value

x-access-token Requester’s JWT

x-permission Valid values:

{“approve”, “disapprove”}

URL Parameters: Parameter Value

collection Valid values:

{“tools”, “policies”, “datasets”, “webinars”,

“tutorials”, “documents”, “other”}

Query Parameters: None

Restrictions / Special

Features:

Currently it is available only to the “superuser” (master admin) of the Data

Marketplace

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl –request POST ‘{HOST}/solutions/permit/{collections}/all ‘ \

--header ‘x-access-token: <JWT>’ –header ‘x-permission: <value>’
TABLE 55 – APPROVE OR REJECT ALL SOLUTIONS THAT NEED PERMISSION UNDER A

SPECIFIC COLLECTION, USING A “COLLECTION” VALUE INTERFACE

 D7.12 – v.1.0

www.policycloud.eu

56

2.2.1.3 Search functionality on Solutions

The search functionality is a vital requirement for most services in order to reduce the number of objects

returned by a query. Thus, the back-end’s endpoints that retrieve multiple solutions simultaneously,

support some relative query filters. These filters enable the users of the Data Marketplace to search for

assets, based on various parameters from the content of the stored solutions.

More specifically, the interfaces of the back-end that return lists of assets, support additional query

parameters with any key-value pair. Query parameters are a defined set of parameters attached to the

end of a URL and are used in order to help search specific content or actions based on the data being

passed. In order to append query parameters to the end of a URL, a question mark “?” is added to the

end of the URL, followed immediately by a pair of a key and a value, separated by an equal symbol “=”.

Moreover, a URL can have multiple parameters, by adding an ampersand symbol “&” between each pair

of key-value.

In the context of the Data Marketplace and the solutions, the keys added to the URLs as query parameters

must be valid, in the sense that they exist as fields in the solutions and their search has a real value.

Below are some valid syntaxes for advanced search with additional query parameters. The examples use

the “Get a list with all solutions” interface.

Single key: ‘{HOST}/solutions/all?<key_name>=<value>’

Multiple keys: ‘{HOST}/solutions/all?<key_1>=<value>&<key_2>=<value>&…’

Moreover, the Python programming language that is used by the back-end (as described in Section 2.3.1),

enables access to nested fields of dictionary/JSON object using a dot “.” between a key at the first level of

the hierarchy and a key at the second level (this applies to all levels, up to the lowest level). Thus, the next

example is also a valid schema of a query:

For keys in lower hierarchical level:

‘{HOST}/solutions/all?<key_level_1>.<key_level_2>.<…>.<key_level_n>=<value>’

To sum up, given the above syntaxes of a valid query and the JSON Object/solution of “Example 1” in the

interface of “Table 34 – Upload / Create a new solution with random ID Interface”, the following search

example request in cURL returns the solutions that in their title contain the value “machine learning” and

their provider is the user with ID “vkoukos”:

curl –request GET

‘{HOST}/solutions/all?info.title=machine%20learning&metadata.provider=vkoukos’

It should be noted that the value “%20” is the ASCII Encoding Reference of the space character.

Except for these, the back-end supports advanced searching using some operators that extend the keys

of the query parameters, using a dot “.” between the keys and the operators. Below are the supported

operators along with a description for their usage.

 D7.12 – v.1.0

www.policycloud.eu

57

Operator Usage Example

eq

Full title: equal

This operator performs an equality search and has exactly

the same use with the equality symbol “=”. It applies to both

texts (strings) and numbers.

<key>.eq=<value>

ne

Full title: not equal

This operator performs a non-equality search. It applies to

both texts (strings) and numbers.

<key>.ne=<value>

gt

Full title: greater than

This operator performs searching for a key with a value

greater than the provided. It applies to both texts (strings)

and numbers.

<key>.gt=<value>

gte

Full title: greater than or equal

This operator performs searching for a key with a value

greater than or equal to the provided. It applies to both

texts (strings) and numbers.

<key>.gte=<value>

lt

Full title: less than

This operator performs searching for a key with a value less

than to the provided. It applies to both texts (strings) and

numbers.

<key>.lt=<value>

lte

Full title: less than or equal

This operator performs searching for a key with a value less

than or equal to the provided. It applies to both texts

(strings) and numbers.

<key>.lte=<value>

in

Full title: in (equal to one of the values)

This operator performs searching for a key with a value

equal to one of the provided values. The <value> may have

multiple values separated by a comma “,”. It applies to both

texts (strings) and numbers.

<key>.in=<value_1>,

<value_2>

nin

Full title: not in (not equal to any of the value)

This operator performs searching for a key with a value not

equal to any of the provided values. The <value> may have

multiple values separated by a comma “,”. It applies to both

texts (strings) and numbers.

<key>.nin=<value_1>,

<value_2>

TABLE 56 – BACK-END’S SEARCH OPERATORS

Below are some examples of the operators’ use.

eq: ‘{HOST}/solutions/all?metadata.provider.eq=vkoukos’

ne: ‘{HOST}/solutions/all?metadata.version.ne=1’

gt: ‘{HOST}/solutions/all?metadata.views.gt=100’

gte: ‘{HOST}/solutions/all?info.type.gte=datasets’

lt: ‘{HOST}/solutions/all?metadata.uploadDate.lt=2021-10-15’

lte: ‘{HOST}/solutions/all?metadata.reviews.no_reviews.lte=20’

in: ‘{HOST}/solutions/all?info.title.in=machine,learning,algorithm’

nin: ‘{HOST}/solutions/all?info.keywords.nin=poverty,crime’

 D7.12 – v.1.0

www.policycloud.eu

58

Furthermore, the back-end’s search mechanism uses a ranking system for the results. More specifically,

for each solution in the results, it maintains a score resulting from the points it receives for each search

argument.

In an equality search (using “=” symbol or “eq” operator) for a specific key, the points that a solution

receives can be one of the following:

• 5: if the values are exactly equal (same) and case sensitive.

• 4: if the values are equal (same) but not case sensitive.

• 3: if the values are similar (e.g., the first value contains the second value but are not the same)

and case sensitive.

• 2: if the values are similar but not case sensitive.

• 0: if the values do not match.

The other operators just receive 1 if the conditions match (“true”). The operator “in” uses the operator

“eq” (or the symbol “=”) for each value in its “array” and thus, it has the same score system.

Finally, the operator “nin” uses the operator “ne” for each value in its “array”.

2.2.1.4 Interfaces related to Assets

This group of APIs offers functionalities intended for the management of the assets. They support all

CRUD operations for the assets that are stored in the back-end. Table 57 presents the endpoints related

to Assets as they are in the first version of the Data Marketplace’s back-end.

Action HTTP Method Endpoint

Get a list with the stored assets GET {HOST}/assets

Get a specific asset, using its ID GET {HOST}/assets/{asset_id}

Upload a new asset with random ID, linked

to a specific solution

POST {HOST}/assets/{sid}

Upload a new asset with given ID, linked to

a specific solution

POST {HOST}/assets/{sid}/{given_asset_id}

Update a specific asset, using its ID PUT {HOST}/assets/{asset_id}

Delete a specific asset, using its ID DELETE {HOST}/assets/{asset_id}

Delete all assets (administrators’ action) DELETE {HOST}/assets/all
TABLE 57 – BACK-END’S INTERFACES RELATED TO ASSETS

• {HOST} refers to the hosting server: the domain name and the port running the back-end.

• {asset_id} refers to the ID of a specific asset.

• {given_asset_id} is used in the upload asset action, providing the new asset’s ID.

• {sid} refers to the ID of the solution with which the new asset will be linked to.

• Most of these actions require additional fields in the headers of the HTTP request. Example of a

required field is the JWT.

 D7.12 – v.1.0

www.policycloud.eu

59

Below is a more detailed description of all the provided interfaces and their corresponding actions:

Title: Get a list with the stored assets

Endpoint: {HOST}/assets

HTTP Method: GET

Description: A request to this endpoint will result in the retrieval of a list with the stored

assets and some additional information of them.

Body Data: None

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: None

Query Parameters: None

Restrictions / Special

Features:

Available only to administrators.

Successful Response: Results in JSON Object

The following is an example of the request in cURL:
curl –request GET ‘{HOST}/assets’ –header ‘x-access-token: <JWT>’

TABLE 58 – GET A LIST WITH THE STORED ASSETS INTERFACE

Title: Get a specific asset, using its ID

Endpoint: {HOST}/assets/{asset_id}

HTTP Method: GET

Description: This endpoint is used to retrieve a specific stored asset. For its retrieval, the

usage of the asset’s ID is necessary. Also, this endpoint is restricted and thus,

the JWT of a requester must be included in the headers of the request.

Body Data: None

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: Parameter Value

asset_id The ID of the asset that will be

retrieved.

Query Parameters: None

Restrictions / Special

Features:

Available to all authorized (and verified) users.

Successful Response: Binary data

The following is an example of the request in cURL:
curl –request GET ‘{HOST}/assets/{asset_id}’ –header ‘x-access-token: <JWT>’

TABLE 59 – GET A SPECIFIC ASSET USING ITS ID INTERFACE

Title: Upload a new asset with random ID, linked to a specific solution

Endpoint: {HOST}/assets/{sid}

HTTP Method: POST

Description: Via this endpoint the users can upload their assets. It requires to add at the

end of the endpoint the solution’s ID with which is going to be linked. It is

also needed to add to the headers of the request the JWT of the provider

and the asset’s filename., whilst the assets must be uploaded as form-data

with the key “asset”.

 D7.12 – v.1.0

www.policycloud.eu

60

Body Data: Data Type: Form Data

Key Value

asset Binary data / Path to file

Headers: Key Value

x-access-token Requester’s JWT

x-filename New asset’s filename.

x-provider [Optional & only for administrators] The ID of

the provider user in case that the asset is

uploaded by an administrator and not by the

provider.

URL Parameters: Parameter Value

sid The ID of the solution with which the new asset

is going to be linked.

Query Parameters: None

Restrictions / Special

Features:

Available for the solutions’ providers with which the assets will be

connected, and also for the administrators who can upload assets on behalf

of the providers.

Successful Response: JSON Object with the new asset’s ID in its content.

The following is an example of the request in cURL:
curl –request POST ‘{HOST}/assets/{sid}’ \

--header ‘x-access-token: <JWT>’ –header ‘x-filename: <value>’ \

--form ‘asset=@”<full_path_to_asset>”’
TABLE 60 – UPLOAD A NEW ASSET WITH RANDOM ID INTERFACE

Title: Upload a new asset with given ID, linked to a specific solution

Endpoint: {HOST}/assets/{sid}/{given_asset_id}

HTTP Method: POST

Description: This endpoint is similar to the previous. The difference is that with the

current endpoint it is possible to specify the ID of the new asset, providing it

at the end of the endpoint {given_asset_id}.

Body Data: Data Type: Form Data

Key Value

asset Binary data / Path to file

Headers: Key Value

x-access-token Requester’s JWT

x-filename New asset’s filename.

x-provider [Optional & only for administrators] The

ID of the provider user in case that the

asset is uploaded by an administrator and

not by the provider.

URL Parameters: Parameter Value

sid The ID of the solution with which the new

asset is going to be linked.

Given_asset_id The ID to be given to the new asset.

Query Parameters: None

Restrictions / Special

Features:

Available only for administrators whether they upload an asset for their

solutions or upload an asset on behalf of the providers.

Successful Response: JSON Object with the new asset’s ID in its content.

 D7.12 – v.1.0

www.policycloud.eu

61

The following is an example of the request in cURL:
curl –request POST ‘{HOST}/assets/{sid}/{given_asset_id}’ \

--header ‘x-access-token: <JWT>’ –header ‘x-filename: <value>’ \

--form ‘asset=@”<full_path_to_asset>”’
TABLE 61 – UPLOAD A NEW ASSET WITH GIVEN ID INTERFACE

Title: Update a specific asset, using its ID

Endpoint: {HOST}/assets/{asset_id}

HTTP Method: PUT

Description: With this PUT request, it is possible to update an already stored asset. The

asset’s ID that should be at the end of the endpoint, determines which asset

should be replaced by the new asset. As in the uploading, the asset should

be uploaded as form-data with the key “asset” and the headers of the

request should contain provider’s JWT. It should be noted that the users can

only update the assets provided by themselves (except for administrators).

Body Data: Data Type: Form Data

Key Value

asset Binary data / Path to file

Headers: Key Value

x-access-token Requester’s JWT

x-filename [Optional]

Asset’s new filename.

URL Parameters: Parameter Value

asset_id The ID of the asset that will be updated.

Query Parameters: None

Restrictions / Special

Features:

Available only for the providers of the solutions / assets and for the

administrators who can update stored assets on behalf of the providers.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl –request PUT ‘{HOST}/assets/{asset_id}’ \

--header ‘x-access-token: <JWT>’ –header ‘x-filename: <value>’ \

--form ‘asset=@”<full_path_to_asset>”’

TABLE 62 – UPDATE A SPECIFIC ASSET USING ITS ID INTERFACE

Title: Delete a specific asset, using its ID

Endpoint: {HOST}/assets/{asset_id}

HTTP Method: DELETE

Description: A request to this endpoint has as a result the deletion of a specific asset, by

using its ID to find it. This endpoint is restricted and thus, the JWT of a

requester must be included in the headers of the request. Note that an asset

can be deleted only by its provider and the administrators. For security

reasons, the requesters should provide their password in the body of their

request, as raw data (JSON schema):
{ “password”: “…” }

If the action is made by an administrator, the field “password” should be the

password of the administrator.

Body Data: Raw (JSON) Data – as the above schema (Content-Type: application/json).

Headers: Key Value

x-access-token Requester’s JWT

 D7.12 – v.1.0

www.policycloud.eu

62

URL Parameters: Parameter Value

asset_id The ID of the asset that will be deleted.

Query Parameters: None

Restrictions / Special

Features:

Available only for the providers of the solutions / assets and for the

administrators who can delete any stored assets.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl –request DELETE ‘{HOST}/assets/{asset_id}’ –header ‘x-access-token: <JWT>’ \

--header ‘Content-Type: application/json’ –data-raw ‘{ “password”: “…” }’

TABLE 63 – DELETE A SPECIFIC ASSET USING ITS ID INTERFACE

Title: Delete all assets (administrators’ action)

Endpoint: {HOST}/assets/all

HTTP Method: DELETE

Description: This request is similar to the above request, with the difference that it

deletes all the assets, as it uses the keyword “all”. Again, it is necessary the

usage of the requester’s JWT, and it is only available to administrators. For

security reasons, the requesters should provide their password in the body

of their request, as raw data (JSON schema):
{ “password”: “…” }

Body Data: Raw (JSON) Data – as the above schema (Content-Type: application/json).

Headers: Key Value

x-access-token Requester’s JWT

URL Parameters: None

Query Parameters: None

Restrictions / Special

Features:

Currently, it is available only to the “superuser” (master admin) of the Data

Marketplace.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl --request DELETE '{HOST}/assets/all' --header 'x-access-token: <JWT>' \

--header 'Content-Type: application/json' --data-raw '{ "password": "…" }'
TABLE 64 – DELETE ALL ASSETS (ADMINISTRATORS’ ACTION) INTERFACE

 D7.12 – v.1.0

www.policycloud.eu

63

2.2.1.5 Root & Other Interfaces

One endpoint that was not mentioned is that of the back-end’s root interface, which presents a roadmap

of the main back-end’s interfaces. The latter is described below:

Title: Root interface

Endpoint: {HOST}

HTTP Method: GET

Description: This endpoint returns a list with the back-end’s interfaces that are available

to be used by all users. It acts as a roadmap, providing the interfaces along

with short information about the functionalities that they trigger. The

structure of the information follows a tree approach.

Body Data: None

Headers: None

URL Parameters: None

Query Parameters: None

Restrictions / Special

Features:

None

Successful Response: Back-end’s roadmap in text/plain.

The following is an example of the request in cURL:
curl –request GET ‘{HOST}’

TABLE 65 – ROOT INTERFACE

Except for the already described interfaces, the back-end provides the following restricted interfaces that

will not be described, since they are mostly related only with the platform’s administrators. In short, the

interfaces’ titles are:

• Get a list of the administrators,

• Add a new administrator,

• Remove an administrator,

• Get system’s backup,

• Restore a backup,

• Get a list of all users,

• Get a list with system metrics / report,

• Get the manual of the front-end.

 D7.12 – v.1.0

www.policycloud.eu

64

2.2.2 Front-end

In this Section, the most important pages of the Data Marketplace’s front-end are presented and analyzed

in detail. For each page, there is a relevant description of the displayed content as well as related images

(screenshots) from their final view. At this point, it should be noted that through the front-end and back-

end, a detailed manual about the front-end pages and the actions that can be performed on them is

offered to the users who can refer to it to resolve any issues (the manual is offered through the website

of the Data Marketplace – link: https://mdb.policycloud.eu/manual). Finally, all the pages of the front-end

that exploit the multiple benefits of WordPress, have a responsive web design for all devices as they can

adjust accordingly to the users’ screens.

Navigation bar: The Navigation bar is common to all the pages, being located at the top of each page and

contains the appropriate items that redirect to the core pages of the front-end. Depending on whether a

user is logged in or not, the users can see different items/pages on the bar (also called “menu”). Figures

3 and 4 illustrate the navigation bar that is displayed to non-logged in and logged in users, respectively.

FIGURE 3 – NAVIGATION BAR FOR NON-LOGGED IN USERS

FIGURE 4 – NAVIGATION BAR FOR LOGGED IN USERS

The “Discover” item in the navigation bar is a drop-down list that contains a variety of sub-items that are

displayed on mouse over, and redirect the user to the Discover page, applying filtering based on the type

of the Data Marketplace’s offered solutions. Figure 5 presents the navigation bar along with the Discover’s

drop-down list from the Data Marketplace’s Home page.

FIGURE 5 – NAVIGATION BAR FROM THE HOME PAGE

https://mdb.policycloud.eu/manual

 D7.12 – v.1.0

www.policycloud.eu

65

In the following example, a user searches for solutions categorized as “Tools”. By hovering the mouse on

the “Discover” drop-down list, the main solutions’ types are displayed and with a click on the “Tools” item,

the user is redirected to the Discover page that presents the stored solutions categorized as “Tools”,

applying the respective filtering (Figure 6).

FIGURE 6 – DISCOVER’S SUB-ITEMS REDIRECT TO DISCOVER PAGE

Footer: Except for the navigation bar, another common section to all the pages is the footer, which is

located at the bottom of each page and contains information about the project’s main site, social media,

copyrights issues (i.e., copyright warning, reference to project’s funding by EC, etc.), as well as references

to terms and conditions for the website’s usage along with the privacy policies (Figure 7).

FIGURE 7 – FOOTER

 D7.12 – v.1.0

www.policycloud.eu

66

Home page: The Home page illustrates some of the most popular and latest solutions provided into the

Data Marketplace, along with some random suggested solutions, which are differentiating every time

that a user reloads the Home page (Figure 9). What is more, the Home page depicts some relevant

statistics about the supported collections and the offered assets. If a user tries to log in, the front-end

sends an AJAX request to the corresponding interface of the back-end to get a valid token (JWT). If the

response does not contain a successful message, the front-end presents to the user a corresponding

error. In the case of a successful log in, the user is redirected to his/her account page. There is also a

button that when it is pressed by the users, it redirects them to the Discover page. It should be noted

that the basic assets’ categories are shown in circles in the beginning of the Home page, where every

circle category is interactive and if a user clicks on in, he/she is redirected in the Discover page, which

illustrates the existing solutions of the corresponding chosen category. Also, the Home page contains a

background image from the main PolicyCLOUD website, being designed in such a way to be consistent

with it (Figure 8). Finally, in the final bottom section of the Home page, there exists an image with a link

that redirects the suer to the Create page, encourage the user to sign in and create a new solution to the

Data Marketplace (Figure 10).

FIGURE 8 – HOME PAGE: UPPER VIEW

 D7.12 – v.1.0

www.policycloud.eu

67

FIGURE 9 – HOME PAGE: MIDDLE VIEW

FIGURE 10 – HOME PAGE: LOWER VIEW

 D7.12 – v.1.0

www.policycloud.eu

68

Sign up page: The Sign up page contains a form that a user must fill in and submit in order to register

and access all the Data Marketplace’s content. As depicted in Figure 11, there are three (3) different ways

for the users to sign up: 1) through their Google account, 2) through their credentials provided in the

context of KeyCloak that is integrated into the overall PolicyCLOUD platform, and 3) by filling in the form

of the Sign up page with their basic information. Specifically, the users must fill in their first and last

name, their e-mail address, and a password for their account.

FIGURE 11 – SIGN UP PAGE

At the bottom of the Sign up page there is also a switch button that determines whether the users have

read and accept the Terms and Conditions for the usage of the PolicyCLOUD Data Marketplace platform.

By clicking the “Terms of Service” text/link, the users are redirected to the corresponding page, in order

to be informed about the Data Marketplace terms of use before their registration.

 D7.12 – v.1.0

www.policycloud.eu

69

Sign in page: The Sign in page consists of a simple form in which the users must insert their credentials

and depending on whether the users are indeed registered users of the Data Marketplace or not, they

are redirected to the Account page or they get an error message, respectively. To this context, there are

supported three (3) different ways for the users to sign in (similarly with the Sign up process), where the

first refers to the usage of their Google accounts, the second one refers to their credentials for the

PolicyCLOUD instance of KeyCloak, and the third one refers to the provided form of the Sign in page with

their Data Marketplace credentials.

FIGURE 12 – SIGN IN PAGE

Account Page: In the Account page, the logged in users are able to see the various details of their profiles.

More specifically, the Overview tab displays the overview of the users along with some statistics for their

contributions to the Data Marketplace. The Solutions tab presents the solutions offered/created by the

users, while the Reviews tab displays the reviews made by the users. Finally, there is the Profile tab that

presents the personal and the account details of the users.

Regarding the Overview tab, the statistics that the page illustrates refer to the following: (i) the total

number of solutions offered by the users, (ii) the number of the approved solutions, (iii) the number of

total assets that users’ solutions contain along with the total number of their downloads, (iv) the total

 D7.12 – v.1.0

www.policycloud.eu

70

number of views and reviews that the users’ solutions have, and (v) the average rating of all user’s

solutions (Figure 13).

FIGURE 13 – ACCOUNT PAGE: OVERVIEW TAB

As for the Solutions tab, it displays the offered solutions of the users (Figure 14). If the Solutions tab is

accessed by a visitor/other logged in user and not the account owner or an administrator, it displays only

the approved solutions. Moreover, the Solutions tab supports both filtering and sorting options as in the

Discover page, in order to present the solutions based on the users’ preferences.

 D7.12 – v.1.0

www.policycloud.eu

71

FIGURE 14 – ACCOUNT PAGE: SOLUTIONS TAB

Similarly to the Solutions tab, the Reviews tab displays the reviews made by the user, indicating the rating

as well as the comment that the user has provided to the chosen solutions (Figure 15). This tab contains

the same filtering and sorting options with the Solutions tab, having however the difference that the

Reviews tab presents the same content whether the user is in visitor’s mode or not.

FIGURE 15 – ACCOUNT PAGE: REVIEWS TAB

Regarding the Profile tab, the users can see the personal and the account information/details of the

displayed user (most of the presented information was provided by the users during their registration)

(Figure 16). Moreover, this tab enables the users to edit/update their personal information (e.g., Full

name, Gender, Organization, Phone number, etc.), request a copy of their data, as well as handle their

account details (e.g., change their password or email, delete their account, etc.) and the connections to

other services (e.g., Google account).

 D7.12 – v.1.0

www.policycloud.eu

72

 FIGURE 16 – ACCOUNT PAGE: PROFILE TAB

Discover page: In this page all the approved solutions are displayed, illustrating the main image of each

solution and its basic information, including its title, short description, last updated date, number of views

and reviews, average ratings and solution type (Figure 17). On the left side of the page, through the

provided sidebar, the users can search for solutions based on their title by filling in the search bar. They

can also filter the results based on a specific solution type, as well as the number of views and the

creation/update dates of the solutions. On the upper-right side of the page, there is a button for sorting

the results and selecting the desired number of the items (i.e., solutions) that will be presented per page.

FIGURE 17 – DISCOVER PAGE

 D7.12 – v.1.0

www.policycloud.eu

73

As for the sorting options, the users can sort the results by their average rating, their number of views,

their creation/update date, alphabetically based on their title and (after a search) based on the most

relevant results.

FIGURE 18 – DISCOVER PAGE: SORTING OPTIONS

When the users click on a solution, they are redirected to the specific Solution page. To this point it should

be noted that the Discover page has the same view for both logged in and non-logged in users. It

communicates with the back-end via the REST API and loads the information dynamically. In addition,

through its responsive mode and in relation to the type of the device that the user possesses, the display

is adapted accordingly, while the side bar appears only as a drop-down menu.

Solution page: The Solution page displays the main information of a solution, where a logged in user has

different views than a non-logged in user. All the users can view the title of the solution, the owner, the

type of the solution, the solution keywords, the average ratings, the number of reviews and the number

of views. In the case of logged in users, the latter have access to the full description of the solution, the

gallery with images and videos of the solution, whilst they are also able to download all the offered

assets/files that are part of the solution. In case of non-logged in/unauthorized users, the latter do not

have access to the assets and the gallery, whereas they can only see a short description of the solution.

If the users are the providers or administrators, they can update the information that is displayed, while

all the provided solutions need a permission from an administrator in order to be publicly displayed to

all the users. Based on this, if a solution is approved, an indication “approved” is displayed, otherwise, an

indication “pending” is displayed.

Logged in User View: A logged in user sees the entire content of a solution, the image gallery, and has

access to the assets, as depicted in Figure 19.

 D7.12 – v.1.0

www.policycloud.eu

74

FIGURE 19 – SOLUTION PAGE: VIEW FOR LOGGED IN USERS

Owner View: If the user is the provider, both an edit and a delete button appear in the page, which enable

the editing of the information, and the management of the solutions’ assets (i.e., upload, update, delete).

Every change made to the information of the solution has to be approved by an administrator in order

to be displayed. If the change has been approved, a green button “approved” appears in the page that is

only visible to the owner (Figure 20).

FIGURE 20 – SOLUTION PAGE: VIEW FOR SOLUTION PROVIDERS AND ADMINISTRATORS

 D7.12 – v.1.0

www.policycloud.eu

75

Non-logged in User View: A non-logged in user is able to see only the basic information of a solution,

which contains a short description and metadata such as the solution’s owner, number of views and

reviews, average rating, and others (Figure 21).

FIGURE 21 – SOLUTION PAGE: VIEW FOR NON-LOGGED IN USERS

Create page: The Create page can be only accessed by all registered and logged in users who can create

a new solution to the Data Marketplace by filling in the form that the page contains. This page is only

available to registered users who can find it either from the navigation bar or from their account page

(i.e., in the Solution tab by pressing the Create button). More specifically, this page contains a form that

is divided into three (3) discrete parts. The first part (Figure 22) includes several basic information about

the new offered solution such as the solution’s title, category/type, detailed description about the offered

content, owner of the solution, some optional related links for external information or assets, and some

optional keywords that can distinguish the solution from other solutions and can enhance the search

functionality.

 D7.12 – v.1.0

www.policycloud.eu

76

FIGURE 22 – CREATE PAGE: BASIC INFORMATION

The second part of the form (Figure 23) has one (1) additional field, the “Comments” field, which is not

mandatory and can be used by the provider/creator of the solution in order to add comments that are

displayed only to logged in users. This field can be useful in case of sensitive information (e.g., contact

details, promotional/discount codes).

FIGURE 23 – CREATE PAGE: ADDITIONAL INFORMATION

The third part of the form (Figure 24) refers to the Assets’ section, where the first assets of the solution

can be uploaded. More specifically, from this area, the provider of the solution can upload files, images,

or videos for the solution. It is noted that this form is used only for the creation of a solution, since the

users are able to update their solutions and add, update or delete the assets through the Solution page,

at a later stage.

 D7.12 – v.1.0

www.policycloud.eu

77

FIGURE 24 – CREATE PAGE: ASSETS SECTION

Finally, when non logged in users try to access the Create page, a warning message that encourages them

to sign in is displayed in their screen (Figure 25).

FIGURE 25 – CREATE PAGE: VIEW FOR NON LOGGED IN USERS

 D7.12 – v.1.0

www.policycloud.eu

78

About page: The About page is a public page that provides information about the PolicyCLOUD Data

Marketplace, including its structure, scope, and offerings. The scope of this page is to guide users’

navigation to the website. In addition, at the top of the page, there is a prompt button to “Register” to the

Data Marketplace that links to the sign-up page. Moreover, the page displays the PolicyCLOUD Data

Marketplace’s basic flow, as well as describes the purpose of the PolicyCLOUD project in general, and

specific scope of the PolicyCLOUD Data Marketplace (Figure 26).

FIGURE 26 – ABOUT PAGE: UPPER VIEW

Furthermore, the About page includes a description for the types of solutions that the PolicyCLOUD Data

Marketplace supports, assisting the users in determining which category to search, in accordance with

their specific needs. Finally, the About page has a list of frequently asked questions for answering to

users’ potential concerns (Figure 27).

 D7.12 – v.1.0

www.policycloud.eu

79

FIGURE 27 – ABOUT PAGE: BOTTOM VIEW

Error Messages: In case of an error, a red bar appears with the appropriate message.

FIGURE 28 – EXAMPLE OF ERROR MESSAGE

Terms and Condition page: The “Terms and Conditions” agreement governs the contractual relationship

between a service provider and its users. Towards this direction, this page is intended to provide this

agreement to the PolicyCLOUD Data Marketplace users (Figure 29).

 D7.12 – v.1.0

www.policycloud.eu

80

FIGURE 29 – TERMS AND CONDITIONS PAGE

Privacy Policy page: In privacy legislation, a privacy policy is a declaration or legal document that reveals

the ways that a party collects, uses, discloses, and maintains a customer’s or a client’s personal data. This

page provides information for such issues in the context of the PolicyCLOUD Data Marketplace (Figure

30).

 D7.12 – v.1.0

www.policycloud.eu

81

FIGURE 30 – PRIVACY POLICY PAGE

Contact page: The Contact page contains a form through which the users can communicate with the

administrators of the PolicyCLOUD Data Marketplace (Figure 31).

FIGURE 31 – CONTACT PAGE

 D7.12 – v.1.0

www.policycloud.eu

82

2.3 Baseline Technologies and Tools

The following sub-sections are describing the baseline technologies that both the back-end and the front-

end of the Data Marketplace exploit in order to implement its capabilities and functionalities.

2.3.1 Back-end

The back-end is the core base of the Data Marketplace and it has been developed using a variety of

technologies/tools. First of all, its components are containerized in Docker images [3] that, among others,

offer more efficient management and maintenance, enabling continuous updates and integration.

Python [4] is used as the programming language along with the Flask framework [5], which is a Web

Server Gateway Interface (WSGI) developed in Python, and implements RESTful APIs to handle the

respective HTTP requests.

The offered assets are stored in a MongoDB No-SQL database [6] that is used in combination with the

hosting operating system (OS) for storing and retrieving large files/objects, of any format. Moreover,

Gunicorn [7], a Python WSGI HTTP Server for UNIX, is utilized with NGINX [8], an open-source high-

performance HTTP web server and reverse proxy, since Flask is not optimum for production mode, and

thus, both tools extend the Flask framework in order to enable access to multiple users at the same time.

2.3.2 Front-end

The front-end has been implemented using various web technologies (HTML, CSS, Bootstrap, PHP,

JavaScript, jQuery) and it is functional using PHP and JavaScript technologies. It also exploits WordPress

[9] and various plugins of it, in order to manage the content that is presented. More specifically, for the

implementation of the front-end, the following tools were used:

• WordPress: A major part of the platform was designed with customized code based on the

architecture logic of WordPress. A minor part was introduced manually, by utilizing the Elementor

editor of WordPress [10].

• Elementor: Utilized at various stages of design, mainly for the header.

Except for these, a custom-made plugin with the name “PolicyMS Plugin” was implemented, for the

connection between the front-end and the back-end, as well as for the correct display of the assets’

information. The main methods of the plugin are called from WordPress with hooks, and by placing short

code names of methods on each page, for each interaction with the back-end.

The plugin contains authentication methods, checks if the user is valid, connects to the back-end with

post request, creates the user’s token and returns the JSON response to the WordPress page. To be more

specific, when a user tries to log in, after filling in the login form, the information from the browser is sent

by AJAX request to the WordPress custom-made functions, checking if the values are empty. The login

information is then sent, by post request, to the back-end API for verification. The back-end API returns

the JSON response with user’s information and the user’s token or error, while a WordPress's encrypted

security token (nonce) is created. If the token is valid, the information from the database (the dynamic

 D7.12 – v.1.0

www.policycloud.eu

83

content) is displayed with HTML, jQuery, PHP in the browser and the encrypted token is temporarily

stored in the browser storage. The aforementioned process is also depicted in Figure 32.

FIGURE 32 – FRONT-END ACCESS MIDDLEWARE

The admin class is responsible for the extensions that are added to the WordPress dashboard, to which

administrators have access (Figure 33).

FIGURE 33 – DASHBOARD ADD SETTINGS

With the add_admin_settings () method, the administrator adds a field to their menu to save the key with

which the system will communicate with the back-end. The key is valid until it expires, after one month,

for security reasons.

 D7.12 – v.1.0

www.policycloud.eu

84

FIGURE 34 – DASHBOARD ADMIN VIEW SETTINGS

When a user tries to an Access Display Asset’s information’s page, such as the Discover page, the

WordPress functions browser sends a post request to the back-end API that returns the response with

JSON assets information or an error message. If the assets information is valid, it is displayed to the

browser through dynamic content with HTML, jQuery and PHP. If the token exists, it is stored in a cookie

in the browser storage. The aforementioned process is also depicted in Figure 35.

 FIGURE 35 – TOKEN BASED ACTIONS

 D7.12 – v.1.0

www.policycloud.eu

85

3 Source Code

3.1 Availability

This Section provides information with regards to the actual code repositories of the Data Marketplace.

3.1.1 Back-end

The software prototype of the Data Marketplace’s back-end is provided in PolicyCLOUD’s GitLab

repository, but it will remain private for the consortium partners who have participated in the

development process.

3.1.2 Front-end

The software prototype of the Data Marketplace’s front-end is provided in PolicyCLOUD’s GitLab

repository, but it will remain private for the consortium partners who have participated in the

development process.

3.2 Exploitation

This Section provides information about where the components of the Data Marketplace are deployed

and how they can be accessed and run.

3.2.1 Back-end

As described in Section 3.1.1, the source code of the Data Marketplace’s back-end is currently in a private

GitLab repository, being exploited for private use and reuse in external research projects, as well as for

private education purposes (e.g., MSc programmes, student hackathons).

3.2.2 Front-end

As described in Section 3.1.2, the source code of the Data Marketplace’s front-end is currently in a private

GitLab repository, being exploited for private use and reuse in external research projects, as well as for

private education purposes (e.g., MSc programmes, student hackathons).

 D7.12 – v.1.0

www.policycloud.eu

86

4 Conclusion

This deliverable described and analysed the final version of the implemented prototype of the Data

Marketplace based on the design and the architecture specifications described in Section 2.1 in short,

and in deliverables D7.4 and D7.11 in deeper detail.

Moreover, the interfaces of the components have been updated respectively using examples of HTTP

requests that trigger specific actions of the Data Marketplace. In terms of the front-end, the final version

of Data Marketplace’s web pages was presented along with some descriptions about them.

Finally, the baseline technologies and tools that are used in the Data Marketplace’s components were

reported, specifying the status of both the availability and the potential for exploitation of the

implemented source codes.

As for the next steps of the development of the PolicyCLOUD Data Marketplace, the latter will be

enhanced with additional features and functionalities (e.g., automated updates with latest versions of

domain-specific data assets, plagiarism and copyrights’ detection tools for data assets that already exist

in other platforms), and these will be offered with public access capabilities. The public access additions

will be able to be efficiently integrated with other marketplace platforms upon specific guidelines with

proper documentation. However, it should be noted that this will be an upcoming enhancement that is

not planned to be provided within the context of the PolicyCLOUD project.

 D7.12 – v.1.0

www.policycloud.eu

87

References

[1] JSON Web Tokens (JWT), Homepage, https://jwt.io

[2] Auth0, JSON Web Tokens, https://auth0.com/docs/security/tokens/json-web-tokens

[3] Docker, Homepage, https://www.docker.com

[4] Python, Homepage, https://www.python.org

[5] The Pallets Projects, Flask, https://palletsprojects.com/p/flask

[6] MongoDB, Homepage, https://www.mongodb.com

[7] Gunicorn, Homepage, https://gunicorn.org

[8] NGINX, Homepage, https://www.nginx.com

[9] WordPress, Homepage, https://wordpress.com

[10] Elementor, Homepage, https://elementor.com

[11] cURL, Homepage, https://curl.se

https://jwt.io/
https://auth0.com/docs/security/tokens/json-web-tokens
https://www.docker.com/
https://www.python.org/
https://palletsprojects.com/p/flask
https://www.mongodb.com/
https://gunicorn.org/
https://www.nginx.com/
https://wordpress.com/
https://elementor.com/
https://curl.se/

	Versioning and Contribution History
	Author List
	Abbreviations and Acronyms
	Executive Summary
	1 Introduction
	1.1 Objective of the Deliverable
	1.2 Structure of the Deliverable
	1.3 Summary of Changes

	2 Prototype Overview
	2.1 Main Components
	2.1.1 Back-end
	2.1.2 Front-end

	2.2 Interfaces
	2.2.1 Back-end
	2.2.1.1 Interfaces related to Users
	2.2.1.2 Interfaces related to Solutions
	2.2.1.3 Search functionality on Solutions
	2.2.1.4 Interfaces related to Assets
	2.2.1.5 Root & Other Interfaces

	2.2.2 Front-end

	2.3 Baseline Technologies and Tools
	2.3.1 Back-end
	2.3.2 Front-end

	3 Source Code
	3.1 Availability
	3.1.1 Back-end
	3.1.2 Front-end

	3.2 Exploitation
	3.2.1 Back-end
	3.2.2 Front-end

	4 Conclusion
	References

