Policy Cloud

Cloud for Data-Driven Policy Management

CLOUD FOR DATA-DRIVEN PoLIcY MANAGEMENT

Project Number: 870675 Start Date of Project: 01/01/2020 Duration: 36 months

D7/.12 DATA MARKETPLACE: SOFTWARE PROTOTYPE

Dissemination Level PU

Due Date of Deliverable 31/10/2022, M34

Actual Submission Date 28/10/2022

Work Package WP7, Communication, Exploitation,

Standardisation, Roadmapping & Business
Development
Task T7.2

Type Demonstrator

Approval Status
Version V1.0
Number of Pages p.1 - p.87

Abstract: The deliverable D7.12 Data Marketplace: Software Prototype describes the final
demonstrator of the PolicyCLOUD Data Marketplace. The latter is a unified web-based platform
consisting of two (2) core services, its front-end and back-end services, offering to its users various

ready-to-use solutions, by supporting different kinds of assets.

The information in this document reflects only the author’s views and the European Community is not liable for any use that may be made
of the information contained therein. The information in this document is provided “as is” without guarantee or warranty of any kind,
express or implied, including but not limited to the fitness of the information for a particular purpose. The user thereof uses the information
at his/ her sole risk and liability. This deliverable is licensed under a Creative Commons Attribution 4.0 International License.

(GO

/

PolicyCloud has received funding from the European Union'’s Horizon 2020 research and
innovation programme under grant agreement No 870675.

Policy Cloud D7.12-Vv.1.0

Versioning and Contribution History

Version Date Reason Author ‘

0.1 12/09/2022 ToC Vasilis Koukos, Argyro
Mavrogiorgou (UPRC)

0.2 16/09/2022 | Contribution in Sections 1, 2, 4 Thanos Kiourtis (UPRC)

0.3 28/09/2022 Updates in Sections 1, 2, 3 Vasilis Koukos (UPRC),
Eleftheria Kouremenou,
Alexandros Raikos (UPRC)

0.4 12/10/2022 | Check and revision of all Sections Argyro Mavrogiorgou, Thanos
Kiourtis (UPRC)

0.5 18/10/2022 Review Giannis Ledakis (UBI),
Panayiotis Michael (ICCS)

0.6 26/10/2022 Changes based on review comments | Vasilis Koukos, Eleftheria
Kouremenou (UPRC)

0.7 27/10/2022 Quality check Argyro Mavrogiorgou (UPRC)

1.0 28/10/2022 Submitted version ATOS

Author List

Organisation Name

UPRC Vasilis Koukos

UPRC Eleftheria Kouremenou

UPRC Alexandros Raikos

UPRC Argyro Mavrogiorgou

UPRC Thanos Kiourtis

Abbreviations and Acronyms

Abbreviation/Acronym Definition

API Application Programming Interface
AJAX Asynchronous JavaScript And XML
CRUD Create Retrieve Update Delete
EOSC European Open Science Cloud
HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

JWT JSON Web Token

REST Representational State Transfer

Ul User Interface

www.policycloud.eu

@ Policy Cloud D7.12 - v.1.0

Contents
Versioning and ContribDULION HIiSTONYoii ittt ettt ettt se et eb e s b e nee s 2
AUUTNOE LIST .ttt ettt ettt e b e bt et e b b et e st e bt s b et et ea e e bt s b e b et eneeb et e b enteneebe st et eneebesbenbentens 2
ADDIreviations @Nd ACIONYIMS ...ttt ettt et b ettt et b e st et et eae e b et et et e bt sbesbe b eneebesbensensenis 2
EXECULIVE SUIMMIATY .ttt sttt ettt st s h et b e s bt st et e b e s bt et et e b e e seeme et e sbeemeensesresneensensens 8
T INEFOAUCTION .ttt ettt a bt et ae s b et et et e bt s b e b et e st e b et et entebe st et et entebesbenbentens 9
1.1 Objective of the DElIVErabIe ..ottt st s s ebe st essenees 9
1.2 Structure of the DeliVErable ...ttt ettt 9
1.3 SUMMAIY OF CRANEES ...viiviieieiriisieteeseste ettt ettt et e s e st e b et esesbesbesseseesesbessensasessensensaneas 9
2 PrOTOTYPE OVEIVIEW...cuiiiiieieeieete et et ettt et esteesbe e bestesbeebe e be e beesbeesbeesseesseeaseeabesnsesnseensesnsessessesssesssanns 10
2.1 MaIN COMPONENTS ..eiiiiitieitteieeteesie et et e st e st esttesrtesseesseesseesaeesstesaeesatesstesstesasesstesssesssesnsesssesnsesnsesnsennes 11
2101 BACK-ENA ittt sttt b et h e bttt b e b et et bt b et et ene b b e bentens 11
2.1.2 0 FIrONE-@N0 ettt sttt b e s bbb bbb n e b b et et ehe bt e e eneebesbesbentens 12
2.2 INEEITACES ettt sttt bttt b e bbbt bbbt h e b et et st b e b et et enesbe st et ens 12
221 BACK-ENA .ttt sttt b et h e b b et b e b et et he b st e e eneebesbesbentens 12
2211 Interfaces related t0 USEIS ..ottt sttt sttt s st 15
2.2.1.2 Interfaces related t0 SOIULIONScoviriirieiiririeee ettt 28
2.2.1.3 Search functionality 0N SOIULIONScceveiiiririeicescreeesesesee et sre e nes 56
2.2.1.4 INterfaces relat@d t0 ASSEEScir ettt ettt sttt ettt et b et 58
2.2.1.5 ROOT & Other INTEITACES ...coueiieiieieee ettt sttt et 63
2.2.2 FIONE-@NG ittt sttt b et e b s b bbb e b et b bt e e ne b b et eneens 64
2.3 Baseline Technologies and TOOIS......cccuiviirinirieninineetesese sttt se et st stess e sestesbesssessessessesssensenes 82
23T BACK-EN0 ..ttt sttt h e b bt a bbb et h e bt e et be b e b eneens 82
2.3.2 FIONE-ENA ittt ettt ettt b et b et e b e bbb b e b et b et b e e bt r et n b s 82
3 SOUICE COE ..ttt ettt ettt b et bt b st e bt b et b et e bt e e b et b et b es e s eb e e e b et sbenenaesenes 85
BuT AVAIIADIIIEY coveveteeeeee ettt sttt b e b et b e st et e st ene et s b e seneene 85
BU10T BACK-ENA ettt bbbttt b et e st e b e n e 85
B.1.2 FrONE-ENA ittt ettt b et h bbbt b bt e bbb bbb e nene 85
3.2 EXPIOIATION ittt et b e bttt b et b b e et e b s b e te st eneebesbenbenene 85
B.2.T BACK-BNA ettt bbb bbbt b et et a e bbb et ene b e e e teneene 85
3.2.2 FPONT-@N0 ottt b bbbt b b et b e b et et bbb et a e bt b et et eneebesbenteneene 85

Policy Cloud D7.12-Vv.1.0

Cloud for Data-Driven Policy

R @] o T 16 £ o TSRO

RETEIEINCES oottt ettt ettt e e e ettt e e s e ba e e ssaateeesaabeessaabaeessastseesssasesssnsaeessasbaeesssntaessssteesssnraeesssnses

www.policycloud.eu

@ Policy Cloud D7.12-v.1.0

Table 1 - Back-end's interfaces related t0 USEIScccvciriirniernieinieeninieeietneeieseste et 15
Table 2 — Register @ NEW USEr INTEITACE ..ottt sttt sae e 16
Table 3 - Check availability of an EMail INterfacecoeoiiriiieieeeeeee e 17
Table 4 - Authorize a User (LOZIN) INTEITACE ...vivviivireeteerereese ettt a et sb et e e e sbessessenea 18
Table 5 = Verify USErS INTEITACEccuviivieieiiirieretctrt sttt ettt s bbb sbe st e se e e e ssasbesseseesassessensannas 18
Table 6 - Resend verification code tO USers INTEIfACte ..ot 19
Table 7 - Get user's iNfOrmation INTEITACE ..ottt sttt 20
Table 8 - Update user's information INTEITACE ...ttt b s e e sessasseseeneas 21
Table 9 - Change user's PASSWOId INTEITACEccviiiiiiieieirireteeee ettt e e se st esbesseseesestessessanens 21
Table 10 - Reset user's password request INtErfateo 22
Table 11 - Reset user's passWOord INTEITACEccoiiiriieirereee ettt ettt sttt e e 23
Table 12 - Delete USer's aCCOUNT INTEITACEc.couiuiririeirieiteerte ettt ettt 23
Table 13 - Change user's @mMail INTEITACE ...ttt sb e s ese e e stessessenens 24
Table 14 - Verify user's New email INtEIrfAteocuviriieiiireee ettt sttt 24
Table 15 - Revert user's @mMail INTEITACEoouiiiiirieee ettt sttt 25
Table 16 - Change user's profile PiCtUre INTEITACE ...t sr e senee 26
Table 17 - Remove user’s profile PICtUre INTEITACE ... renee 26
Table 18 — Get User's StatiStiCS INTEITACEuvi ittt sttt st aenee 27
Table 19 - Get user's acCoUNt data INTEITACE ..cc.oiviriieireee ettt st se e 27
Table 20 - Back-end's interfaces related tO SOIULIONS......coviririeirireeeeeee et 29
Table 21 - Get solutions’ COIleCtioNS INTEITACEccuiueiriiiteere ettt 30
Table 22 - Get a list with all SOIUtIONS INTEITACE........ii ittt 31
Table 23 - Get a list with all solutions from a specific collection INnterfaceccocvevereineneneneieneneniens 32
Table 24 - Get a specific solution (using keyword “all”) INTerfaceccovvvvvereveerininereeseserreree e 32
Table 25 - Get a specific solution (using solution’s “collection”) INTerfacec..ccevvverereverienienereesesesenas 33
Table 26 - Get latest solutions from all collections INTErface ... 34
Table 27 - Get latest solutions from a specific collection INterface ..o 34
Table 28 - Get random solutions from all collections INterface ... 35
Table 29 - Get random solutions from a specific collection Interface.......cccvveveninervenenienceneneseeeeniene 35
Table 30 - Get a list with all solutions provided by a specific user (using keyword “all") Interface 37
Table 31 - Get a list with all solutions provided by a specific user and under a specific collection (using a
“COIRCTION" VAIUER) INTEITACE «.eviieeiieeeeee ettt ettt ettt ettt e e e ettt e st e e s e s sabe e s ssbbeesesabaesssbbbesesbaeessssbaesssnrees 37
Table 32 - Get solutions’ statistics for front-end's homepage INterfacecccceveviveevenenenveneneceeieniens 38
Table 33 - Get solutions' filtering values for front-end’s Discover page Interface.......cccceoevvevnereneenennee. 38
Table 34 - Upload / Create a new solution with random ID INterface.......ccoveevnenneieneennennceneenenee 40
Table 35 - Upload / Create a new solution with given ID INterfaceccccvvveevieveninensenenecreneneseeeeniee 42
Table 36 - Update a specific solution (using keyword “all”) Interface.......cccvverenineevenienienieneneseeeeniene 43
Table 37 - Update a specific solution (using solution’s “collection”) Interfacecccecveevnerncreneenennen. 44
Table 38 - Delete a specific solution (using keyword “all”) INterfacececveevnenneienciennerreeneeeee 44
Table 39 - Delete a specific solution (using solution’s “collection”) Interface........cccocevevninenenninicnenenns 45

@ Policy Cloud D7.12-v.1.0

Table 40 - Delete all SOIULIONS INTEITACEoiuiiiiiieee ettt st 46
Table 41 - Delete all solutions from a specific collection INTErfaceccveverviniinenennneneeese e 46
Table 42 - Make a review for @ SOIULION INTEITACEociviirrerc e 47
Table 43 - Update an existing review for a solution INterface........cooeiineneinininereeeeeeeeeees 47
Table 44 - Delete a review for @ SOIULION INTEITACEcc.ociiiiiieeee et 48
Table 45 - Get a list with the reviews made by a specific user INterfacecococvvvenerevnininenecnenenienns 49
Table 46 - Get a list with the reviews made for a specific solution Interfaceccvevevrienenereinieneniennns 50
Table 47 - Get the cover image of a SOIULION INTEITACEcouivieiieiriee e 50
Table 48 - Change the cover image of a Solution INtErfacecccoeveveirinineceeece s 51
Table 49 - Remove the cover image of a SOlUtioN INTEITACE ...c.ccvvivireieirereeeee e 51
Table 50 - Get a list with all solutions that need permission INTErfaceccvevvvvenererenienenerereseseseenens 52
Table 51 - Get a list with all solutions from a specific collection that need permission Interface 53
Table 52 - Approve or reject a solution that needs permission, using keyword “all” Interface.................. 54
Table 53 - Approve or reject a solution thats needs permission, using solution’s “collection” Interface.54
Table 54 - Approve or reject all solutions that need permission, using keyword “all” Interface................ 55
Table 55 - Approve or reject all solutions that need permission under a specific collection, using a
“CONECLION" VAlUE INTEITACE ...eitiieeetee ettt ettt ettt b et et e e bt st e st et et sb e st e e et ene 55
Table 56 - Back-end’s SEarch OPErators ...ttt ettt st e ste st sbe et esbesbesssessessessesssensenee 57
Table 57 - Back-end's interfaces related t0 ASSELS.. ...ttt 58
Table 58 - Get a list with the stored assets INTerfaCe.... ..ot 59
Table 59 - Get a specific asset USING itS ID INTEITACEcccviriererieeere ettt 59
Table 60 - Upload a new asset with random ID INTEITACE......iviieiririerieisesereeeesese st srenees 60
Table 61 - Upload a new asset with given ID INterfacecccvevievieninienieninenienenese et s e 61
Table 62 - Update a specific asset Using its ID INTErfaceccevveiririnieniiirenereeeereeeee e 61
Table 63 - Delete a specific asset USING itS ID INTEITACE.....cccivirieiriirereetsesereeee e 62
Table 64 - Delete all assets (administrators’ action) INtEIrfaCe......cvivivviiiiiiieiceee e 62
Table 65 = ROOE INTEITACE ..cuiviiieieiereee ettt ettt s b e sttt e b e st be st et e st et e e ebesbesbentenean 63
Figure 1 - Data Marketplace arChit@CtUI. ..o viiierireceee et st s e tesbeesae b e 10
Figure 2 - Data MaRketplace's layers and main functionalities.......ccecvevevininienineneeienene e 11
Figure 3 - Navigation bar for NON-LOGGED N USEISccvirierieiirinienienieisieniesteeeesiessesseessessessessesessessessenees 64
Figure 4 — Navigation bar fOr 0800 IN USEIS ..c..cciviviirieriiiniirieieestsesetee sttt sttt sbe st sae e s sbesbenseneas 64
Figure 5 - Navigation bar from the HOME PAge ..ottt 64
Figure 6 - Discover's sub-items redirect t0 DiSCOVEr PAZEccuivvererereerienieniesiesieseseessessessesssessessessesssessenes 65
FIBUIE 7 = FOOTOI .ttt sttt sttt ettt bttt b e s a et et e s b e s at et et e s heeat et e sbesaeenbesbesbeeabenbebesseenbensessasasensenes 65
FigUre 8 — HOME PAGE: UP PO VIBW..c.uiiiiriirieteniesieetesteste st etesteste st etestessesstestessesstessessessesnsensessesssensensessasssensenes 66
Figure 9 - HOmMeE Page: MidAIE VIEW........cciiieriiriiniieieniesiesteiesie st ssestestestesstessestesssessessessesssensessessssnsensessesssensenes 67
Figure 10 — HOME PAZE: LOWET VIEW ...cuiiiiiieieiiiieetetesie ettt sttt st ee st sttt sne s bt s b e s b aesnesbessaesnene 67
FISUIE 11 — SIS UP PAEE c.eeeeiieieeiieitetteite e esiee st et et e st e bt e s seesseesseesseesatesaeesmeesseesaeesanesmeesneesnsesnsesnsesnsesneesnsennns 68

@ Policy Cloud D7.12 - v.1.0

FIZUIE T2 — SIBN 1N P ittt ettt sttt st sttt bttt b e e bt et e b e s be s st et e besbe e st et e sbesseemeensesbesmeennenne 69
Figure 13 — ACCOUNT PAGE: OVEIVIEW 1D ...c.iiiiriiieiiiriiieietnesteeeee sttt ese st st et e e ssessesseseesassessesseneas 70
Figure 14 — Account page: SOIULIONS LDiiiviiieiiiriiiecrereese ettt s b e s ae e ebasbesbessenees 71
Figure 15 — ACCOUNT PAGE: REVIEWS TAD ..ottt sttt sttt st b e st see e 71
Figure 16 — ACCouNnt Page: Profile tah ..ottt bbb 72
FIGUIE 17 — DiSCOVEI PAZE ..eeveeiieieeieeieeittesitesieesteesteesteesstesseesseesseesseesseesasesaeesasesseesaeesasesssesssesnsesnsesnsennsesseessennes 72
Figure 18 — Discover page: SOMtiNG OPTIONS ..c.eiiiirieriertereententestestestestestesieestesaeesatesaeesaeesaeesneesnsesssesnsesnns 73
Figure 19 - Solution page: View for 08880 IN USEIS......ccoviririiinirerieteere ettt s see e 74
Figure 20 - Solution page: View for solution providers and administrators.......c..coevevevneneneneeeneneneenens 74
Figure 21 - Solution page: View for NON-I0ZEEd IN USEISciveveviriiririerieesesiesieseeesiessesseessessessessesessessessenees 75
Figure 22 - Create page: BasiC iNfOrMatioN......ccccvviiireriiieninierereeesesesseestessesseseesessessessesessessesseseesessessessesees 76
Figure 23 - Create page: Additional iINfOrmMationccccirirereineee et 76
Figure 24 — Create Page: ASSELS SECLION ..iiui ittt sttt ettt s b st e b sbe et et e besseeneensesreennensenes 77
Figure 25 - Create page: View for NON l0ZZEd iN USEIS.....ccciverieiriinirenieesinesieseeesiessessesessessessessesessessessenees 77
Figure 26 — ADOUL PAZE: UPPEI VIBW...ccuivuirieierienieeienteniesieesessesiessessessessesssessessesssensensessasssessessesssessessessasssensense 78
Figure 27 — ADOUL PAge: BOTEOM VIEW ...ttt sttt ettt st sttt eb e sttt ene b sbesseneas 79
Figure 28 — EXample Of @I1r0r MESSAEE.coiiirieieirierierteteerte ettt sttt ettt et st sttt b e s be st et e st b e sbesbeneas 79
Figure 29 - Terms and CONItIONS PAZE ...coveviiriiririiniiniinieiene sttt st etesteste st essestesteessessessesssessensessasssensenes 80
Figure 30 — Privacy POLICY PAgE.....cuiirieriiriieierieniesiteienienie st estestesiessessestesseessessestesssessensessesssensessesssensensessasssensenes 81
FIZUIE 37T — CONTACE PO .. iuuieutetetiriieteiestesitet et steete st e st e sat et et e s bt et e sbe st e s st e st e besbesae e st esbesbeententebesneensensessennnensenes 81
Figure 32 — Front-end access MIidAIEWAIEccueciviririeriiirierieet ettt sttt st sbe e se et es st sbesaeneas 83
Figure 33 - Dashboard add SETHINEScciiieririniiieirecteee sttt sttt st sttt sbe e b esbesbesbsesbesbesbasssensenes 83
Figure 34 - Dashboard admin VIEW SETEINGSccccecieriririiniininieeieniesie st estesie e stesse e sreessessessesssessessessesssensenes 84
Figure 35 — TOKEN DASEA @CHIONSciuiiiiieieiirieietee ettt sttt sttt ettt ettt e b e st et et e st ebesbesbe s enesbesbenseneas 84

@ Policy Cloud D7.12 - v.1.0

Executive Summary

This deliverable (entitled “Data Marketplace: Software Prototype”) describes the final version of the
PolicyCLOUD Data Marketplace demonstrator and is a follow up of the deliverable D7.5 - “Data
Marketplace: Software Prototype” where the initial demonstrator of the Data Marketplace was described.

In essence, the Data Marketplace is a unified web-based platform consisting of two (2) core services, the
front-end and the back-end services, offering its users various ready-to-use solutions. More specifically,
it provides to the wider research and innovation community various assets (i.e., objects/solutions) in
different domains.

Into this context, the current deliverable describes an overview of the Data Marketplace architecture,
detailing the main features of its core components (also described in D7.4 - Data Marketplace: Design
and Open Specification, delivered in August 2021, and its updated version D7.11, delivered in August
2022), whereas all the implemented interfaces are thoroughly described accompanied by indicative
examples. On top of these, the baseline technologies that have been used for the realization of the Data
Marketplace are analyzed, providing detailed information on how an external user can exploit and access
the Data Marketplace.

@ Policy Cloud D7.12-v.1.0

Deliverables D7.4, entitled “Data Marketplace: Design and Open Specification” (delivered in August 2021)
and its updated version, Deliverable D7.11 (delivered in August 2022), were about the design and the
architecture of the PolicyCLOUD Data Marketplace. As described and analysed in these deliverables, the
Data Marketplace is considered as a smart user-based repository of assets that aims to create a
community of users who will be able, through Data Marketplace's platform, to provide and share various
ready-to-use solutions/tools to various subjects and fields of use, related to the areas of interest of
PolicyCLOUD.

1.1 Objective of the Deliverable

This deliverable describes the final version of the implemented prototype of the Data Marketplace, and
it is an extension of the abovementioned deliverables, as well as the deliverable D7.5, where the initial
version of the implemented prototype was described. In summary, the Data Marketplace has been
implemented in order to provide the means for storing, searching and retrieving several types of assets,
which are the outcome of a requirements analysis that was performed during Task 7.2 and described in
D7.4. It consists of a public web-based environment with many different APIs and functionalities, covering
all the different requirements of the project's stakeholders.

1.2 Structure of the Deliverable

The remainder of this deliverable describes an overview of the Data Marketplace architecture in Section
2.1, detailing the main features of its core components that are also described in the abovementioned
deliverables. In Section 2.2, the final version of the implemented interfaces of the Data Marketplace's
components are described, while Section 2.3 describes the baseline technologies that have been used
for the realization of the Data Marketplace. Section 3 provides some access information to the source
code, and finally, Section 4 concludes with a summary of the described prototype.

1.3 Summary of Changes

This Section highlights the updates made to the previous version of this deliverable D7.5 (Data
Marketplace: Software Prototype):

¢ Included Sub-section 1.3 (Summary of Changes).

e Updated Sub-section 2.1.1 in order to highlight the renaming of the descriptions to “solutions”.
e Updated Sub-sections 2.2.1 and 2.2.2 according to the final updates of the relative components.
e Updated Sub-section 2.3 based on the final baseline technologies (especially for the back-end).
e Updated Section 3 according to the availability and exploitation plans of the components.

@ Policy Cloud D7.12-v.1.0

2 Prototype Overview

The PolicyCLOUD Data Marketplace (https://marketplace.policycloud.eu) is a public web-based
environment with various APIs, able to store several types of assets. It has been structured and
developed having two (2) core components. The first and most important component is the back-end,
which contains in a structured way the information, stores the assets offered by the Data Marketplace
and implements the required functionalities. The second component is the front-end, which presents to
the users the offered content (the assets and their information), allowing them to interact with the
platform in an easier way (Figure 1).

PolicyCLOUD @ !Human Machine
Platform \Iﬁ - Users QQ Users

K Data Marketplace /

FIGURE 1 - DATA MARKETPLACE ARCHITECTURE

Generally, the Data Marketplace provides several functionalities that are mapped to different layers. The
back-end includes three (3) layers (i.e., Assets Storage Layer, Assets Management Layer, and Interaction
Layer), while the front-end includes one (1) layer (i.e., Presentation Layer). Hence, the platform consists
of four (4) different layers (as depicted in Figure 2) that realize its capabilities. These layers of the Data
Marketplace are described below:

e The Assets Storage Layer (part of the back-end) is the layer in which the platform'’s offered assets
are stored.

e The Assets Management Layer (part of the back-end) delivers all the needed principles and
techniques for the management of the Data Marketplace's assets.

e The Interaction Layer (part of the back-end) supports the communication between the platform
and its users (i.e., human users and machine users), by providing discrete APIs for exploiting each
different type of asset.

10

https://marketplace.policycloud.eu/

Policy CIQHQ D7.12-Vv.1.0

ud for Data-Driven Policy

e The Presentation Layer (part of the front-end) provides the User Interface towards the different
types of users that are willing to use the platform.

A

Presentation Laver) ..
Y Functionalities

. % Assets management
Interaction Layer . _ ,
% User registration

*
o

Third party access

Assets Management Layer

\/
L4

Billing / Negotiation

L 4

% Security/ Privacy check

Assets Storage Layer YV

FIGURE 2 - DATA MARKETPLACE'S LAYERS AND MAIN FUNCTIONALITIES

2.1 Main Components

2.1.1 Back-end

The back-end is the main component of the Data Marketplace. It consists of three (3) different layers and
implements the main functionalities for the successful management of all the existing assets. The three
(3) layers are briefly described below.

The Assets Storage Layer is responsible for storing the assets that will be offered by the Data
Marketplace. An essential component of this layer is the database that can store files in any format as
well as additional information about the files provided. In this context, the type of the database that is
used is a document-oriented NoSQL database, which stores both J[SON-like documents (the format of the
descriptions files that are analyzed in the Assets Management Layer) and binary files, using extended
specifications (e.g., file system).

The Assets Management Layer is responsible for the entire life cycle of the assets within the platform
and offers all the needed principles and techniques for their management. Specifically, this layer handles
the assets from the moment they are ingested into the platform through the APIs and then stored in the
database (in the Assets Storage Layer) until their final deletion from the platform. Through this layer, the
Data Marketplace supports the CRUD operations and searching functionality, which are triggered by the
corresponding APIs of the back-end (Assets Interaction Layer). The back-end is a REST APl and receives
different HTTP requests in order to either perform an operation or trigger a functionality. Moreover,
there are mandatory description files for all the assets that contain metadata about the described asset
(in JSON format). These description files are mandatory to make the assets searchable and retrievable by
the end-users of the Data Marketplace. At this point, it should be emphasized that in this final version of
the PolicyCLOUD Data Marketplace demonstrator, these description files were renamed to “solutions” in

11

@ Policy Cloud D7.12-v.1.0

order to describe the actual design flow/process of the assets management, as in the Data Marketplace
it is feasible to have one description for more than one asset (i.e., 1 description for many assets - 1:N)
and not only one by one (1:1). Thus, the “description of an asset” is converted into a “description of a
solution” offered by the «N» assets offered by and associated with a solution.

The last layer, the Assets Interaction Layer, is responsible for supporting the communication between
the platform and its end-users. It implements the interfaces (APIs) of the back-end (analyzed in Section
2.2.1) that will handle the back-end's operations. As described before, these APIs receive HTTP requests
that trigger the CRUD operations for both assets and description files.

2.1.2 Front-end

The front-end is the fourth layer of the platform, represented by the Presentation Layer. It is a web-based
server that presents the offered assets to the users with a friendly Ul. In general, the front-end converts
all the interfaces of the back-end (REST API) into user friendly interfaces and provides automated forms
and processes that make it easier for users to interact with the back-end and benefit from its stored
assets. Therefore, it acts as an intermediate among the Data Marketplace users and the back-end,
sending the respective HTTP requests to the latter and presenting its responses.

In short, the front-end allows users to register and sign in to the Data Marketplace, upload their offered
assets by filling out appropriate forms whose fields are the content of the solution files of the assets (as
mentioned in Section 2.1.1); search for assets according to various fields (i.e., title, asset's type, keywords,
text on their description, other metadata, etc.) that can be further filtered or even sorted by the number
of views or the date they were uploaded to the Data Marketplace, etc. Also, there is a page that presents
in detail the information of the solutions (and their assets), and through this page, the users are able to
retrieve the real assets (i.e., the uploaded files). More details about the front-end and its supported
functionalities are described in Section 2.2.2.

2.2 Interfaces

This Section provides the description and the core details of the interfaces for both components (i.e.,
back-end and front-end). The back-end's subsection describes its interfaces in more technical terms,
while the front-end’'s subsection describes the webpages that take advantage of the back-end's
interfaces, along with their use cases.

2.2.1 Back-end

As described in Section 2.1.1, the back-end is a REST API that receives HTTP requests to trigger its
designed and implemented functionalities. This Section describes the REST APl endpoints that are
introduced in the first version of the back-end. These APIs are categorized into three (3) main groups,
namely: (i) APIs related to Users, (ii) APIs related to Solutions (previously named Descriptions), and (iii)
APIs related to Assets.

12

@ Policy Cloud D7.12-v.1.0

One of the basic requirements set during the design of the Data Marketplace and described in the
deliverable D7.4, was to become a user-based system. There are many reasons for this requirement,
starting from the fact that it is a web system/server that will offer its users various types of objects
(assets), and to the fact that the assets are offered by their providers/owners to all users without special
restrictions. This results in intellectual property rights issues, which are resolved, allowing providers to
manage their assets on their own. In case that an offered asset is not provided by its real author and just
by a Data Marketplace user/provider, the providers can specify who is the real author/owner, by
providing the “legal owner of the asset” information.

Thus, all users of the Data Marketplace should have their personal accounts in the system, which they
will be able to manage themselves. As such requirements are very common on all websites, the Data
Marketplace’s administrators are not only able to audit the accounts and perform actions that will ensure
the platform’s smooth operation, but they are also able to monitor the community that will be created
through the Data Marketplace.

As already described, the Data Marketplace consists of two (2) components, running two (2) different
servers, both however managing the same information and data, with the storage of these data being
done exclusively in the back-end. Specifically, the binaries of the provided assets and their descriptions
(i.e., metadata files) are stored in the back-end, as it is done for the users’ data. In addition, both
components are accessible to users by direct communication, using HTTP requests for the back-end and
through web browsers for the front-end to gain access to the information stored in the back-end.
Therefore, based on all these, in order to restrict the access to the information, it was decided that the
back-end will be the server that will offer the authentication and authorization mechanisms to the users
for the management of its content. It should be noted that the latter was decided based on the fact that
the Data Marketplace will be publicly available to all interested users (either they are partners of the
PolicyCLOUD consortium or third parties). As a result, since all the offered solutions will be immediately
publicly available to these users, the back-end will be independent from the rest of the PolicyCLOUD
components, supporting its own authentication and authorization mechanisms to manage its content.

As authorization standard, the JSON Web Token (JWT) [1] technology is used. JWT is an open standard
that defines a compact and self-contained way for securely transmitting information between parties as
a JSON object in a way that can be verified and trusted because it is digitally signed. The JWT is a simple
token format and because of its relatively small size, a JWT can be sent through a HTTP request either as
a query parameter in the URL or inside the HTTP header, it is transmitted quickly, and it can be used very
easy within the context of the HTTP. A JWT contains all the required information about an entity (e.g.,
information about issuer, subject, expiration time, and any other information) to avoid querying a
database more than once. As described before, it is a secure approach as it is digitally signed for tamper
proof and authenticity, and it can be encrypted to protect the token information using symmetric or
asymmetric approach. It should be noted that by default, a JWT contains the information encoded and
not encrypted (the token can be further encrypted). Some extra benefits of the JWT are that it can be
used as a stateless authentication mechanism (the back-end as REST API is not able to keep users’
sessions) and finally, the fact that its content is a JSON object (as the assets' solutions/descriptions) is
makes it easier to be used and be parsed by the back-end [2].

13

@ Policy Cloud D7.12-v.1.0

The following token is an example of a JWT for the next JSON Object, signed with a symmetric key “key":
[SON Object: {“username”: “vkoukos’, “name”: “Vasilis’, “surname”: “Koukos’, “Organization”: “UPRC’, “exp”: 1516239022}

IWT:

eylhbGciOiflUzl TNilsinR5cCl6IkpXVC9.ey) 1c2VybmFtZS16InZrb3Vib3MIL GuYW lljoiVmFzaWxpcylsinN 1cm5hbWUIiOifLb3Vrb3MiL C
JPcmdhbml6YXRpb24i0i/VUFIDIiwiZXhwijoxNTE2ZMjM5MDIyfQ.310s TPhrxNFwN-moZsDFEIQq6HcOFe 7svcGCGrjl9IA

The content of a JWT can also be the key “exp” that sets an expiration time for the JWT, thus reducing its
validation time, which is useful for the back-end. However, the fact that the information is not encrypted
(it is simply encoded) it should not contain sensitive personal data.

The usage of the JWT in the Data Marketplace is as follows:

e The Data Marketplace restricts access to its assets and specifically to all interfaces related to its
assets as well as to all HTTP requests, e.g., GET, POST, PUT, DELETE. Regarding the interfaces
related to the solutions, the requests to these interfaces are restricted too, excluding however
the GET HTTP request, since the solutions should be accessible to all the users (with limited
content) because the Data Marketplace promotes its contents to the public.

e The users of the Data Marketplace need to register/create an account (their information will be
stored in the back-end). In order to access the stored (and permitted) information, users should
use an interface so as to authorize themselves using their credentials. Their authorization results
to the retrieval of a JWT, which they can use in their HTTP requests to the Data Marketplace.

e TheJWT contains all the necessary information of the users, along with the expiration period. The
JWT is signed from the back-end with a secret key (fake JWTs are addressed from the back-end
through the signature - brute force attacks are not addressed but can be limited).

e The front-end, during users’ login retrieves their JWTs and uses them on their behalf in the
headers of the HTTP requests to the back-end. By decoding the JWTs, the front-end has the most
important information of the users. Also, as long as the JWTs are valid (based on the expiration
field), it should be kept in the users’ sessions. If a JWT expires, the user's session must end and
therefore, the user must login again in order to get access.

e The back-end, when validating a JWT, decides if a user is actually able to perform an action/access
stored information (based also to other rules/restrictions/access rights).

e The expiration time of a JWT is different when users retrieve it making a request directly to the
back-end instead of a request through the front-end. The reasons for this decision are: (i) the
front-end users will not handle the JWTs by themselves (front-end will do), (ii) they do not have
access to it, and (iii) they should have longer sessions (and more time). Unlike front-end users,
the users/ services that have direct access to the back-end will be able to have a limited expiration
time, as they know and handle JWT (they are also able to share it to third parties as if they were
sharing their credentials).

Except for the usage of the JWT, the Data Marketplace supports authorization through Google accounts
and through the KeyCloak instance of the PolicyCLOUD, for those that have such credentials.

14

Policy Cloud

D7.12-v.1.0

The interfaces of the back-end are described below.

2.2.1.1 Interfaces related to Users

This group of APIs offers functionalities intended for the management of Data Marketplace's users. The
most important endpoints are those for the user registration as it is necessary for the usage of the other
endpoints, and the endpoint for their authorization in order to get a JWT. For all users, except for their
personal information, there exists a unique ID (usernames have been removed). The table below
presents the endpoints related to users as they are in the final version of the Data Marketplace's back-

end.
Action HTTP Method

Register a new user (Sign up) POST
Check availability of an email GET
Authorize a user (Login) POST
Verify users (their email) GET
Resend verification code to users POST
Get user's information GET
Update user’s information PUT
Change user's password POST
Reset user’s password request POST
Reset user’s password POST
Delete user's account DELETE
Change user’'s email PUT
Verify user's new email GET
Revert user's email GET
Change user's profile picture PUT
Remove user’s profile picture DELETE
Get user's statistics GET
Get user's account data GET

Endpoint
{HOST}/accounts/users/registration
{HOST}/accounts/email/availability
{HOST}/accounts/users/authorization
{HOST}/accounts/users/verification/{vc}
{HOST}/accounts/users/verification/resend
{HOST}/accounts/users/information/{uid}
{HOST}/accounts/users/information/{uid}
{HOST}/accounts/users/password/change
{HOST}/accounts/users/password/reset
{HOST}/accounts/users/password/reset/{prc}
{HOST}/accounts/users/delete/{uid}
{HOST}/accounts/users/email/{uid}
{HOST}/accounts/users/email/change/confirm/{vc}
{HOST}/accounts/users/email/change/revert/{vc}
{HOST}/accounts/users/image
{HOST}/accounts/users/image/{uid}
{HOST}/accounts/users/statistics/{uid}
{HOST}/accounts/users/data

TABLE 1 - BACK-END'S INTERFACES RELATED TO USERS

e {HOST}refers to the hosting server: the domain name and the port running the back-end.

e {uid}refers to "user's ID".
e {vc}refers to “verification code”.

e {prc}refers to “password reser code”.

e Some of these actions require additional fields in the headers of the HTTP request. Example of a

required field is the JWT.

15

@ Policy Cloud D7.12-v.1.0

Below is a more detailed description of all the developed interfaces and their corresponding actions:

Title: Register a new user (Sign up)

Endpoint: {HOST}/accounts/users/registration

HTTP Method: POST

Description: From this endpoint, Data Marketplace’s user registrations are made. A POST

request should be submitted, and the next JSON schema must be in its body
as raw data. It should be noted that a) the email must be unique and
available, and b) the schema below should be exactly the same, whether
there are values or not (empty strings “’) - the array “social” can be empty.

{

“account”: {“password”: “..”},
“info”: {
“name”: “..”, “surname”: “..”,
“title”: “..”, “gender”: “.”,
“organization”: “..”, “phone”: “..”, “email”: “..”,
“about”: “..”, social”: [M.”,”."]

}
The headers of the request may contain the key “x-more-time"” that is used

only by the front-end in order to get JWTs that are valid for a longer period
(greater expiration value).

Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json)
Headers: Key Value
X-more-time [Restricted and available only for the

front-end which use an API key]
Front-end’s API key

URL Parameters: None
Query Parameters: None
Restrictions / Special None
Features:

Successful Response: JSON Object with a successful message and user’s JWT.

The following is an example of the request in cURL:
curl -request POST ‘{HOST}/accounts/users/registration’ \
--header ‘Content-Type: application/json’ -header ‘x-more-time: <API_KEY>' \
--data-raw ‘{
“account”: {“password”: “..”},

“info”: {
“name”: “..”, “surname”: “..”, title”: “..”, “gender”: “..”,
“organization”: “..”, “phone”: “..”, “email”: “..”,
“about”: “..”, social”: [“..”,”..”]

} r
TABLE 2 - REGISTER A NEW USER INTERFACE

After a successful registration, the following JSON document is stored in the database:

{
“_id”: “..”, // user’s unique ID
“account”: {
“password”: “..”, // user’s password (hashed)
“password protected”: “..”, // parameter that determines whether the account is
password protected or not (values 1 or 0)
“connections”: {“google”: “..”, ..} // object that determines if the account is

16

Policy Cloud D7.12-Vv.1.0

Cloud for Data-Driven Policy Management

connected to any of the supported SSO services (e.g. Google, Keycloak, etc.)
“role”: “user”, // user’s role (user or admin)
“verified”: “..”, // value = “1” if user is verified,
otherwise, it has a verification code to use it for user’s email/account verification
“registration datetime”: “..” // user’s registration date

}I

“info”: {// info provided during user’s registration
“name”: “..”, “surname”: “..”, “title”:”.”, “gender”: “..”, “organization”: “..”,
“phone”: “..”, “email”: “..”, “about”: “..”, “social”: []

by

“profile parameters”: {
“public_email”:0, // parameter that determines if the email will be public or not
(values 1 or 0)
“public_phone”:0, // parameter that determines if the phone will be public or not
(values 1 or 0)
“profile image”: “default image users” // the ID of the user’s profile image,
a default image is used for all users

Title: Check availability of an email

Endpoint: {HOST}/accounts/email/availability
HTTP Method: GET
Description: This endpoint is used in order to check the availability of an email during the

registration of the users. A GET request should be made and the key “x-
email” must be included in the headers of the request.

Body Data: None
Headers: Key Value
x-email The email whose availability will be checked.
URL Parameters: None
Query Parameters: None
Restrictions / Special None
Features:

Successful Response: Availability status in JSON Object.

The following is an example of the request in cURL:
curl -request GET ‘{HOST}/accounts/email/availability’ -header ‘x-email: <value>’

TABLE 3 - CHECK AVAILABILITY OF AN EMAIL INTERFACE

Title: Authorize a user (Login)

Endpoint: {HOST}/accounts/users/authorization
HTTP Method: POST
Description: Through this endpoint, the users are authorized in order to log in to their

account. The next JSON schema, containing users' credentials, must be in

the body of the request as raw data.
{ “email”: “..”, “password”: “..” }

A successful response will return the next JSON schema that contains the
JVVTir1the key'TOken":{“_status": “successful”, “token”: “<JIWT>"}

The headers of the request may contain the key “x-more-time"” that is used
only by the front-end in order to get JWTs that are valid for a longer period
(greater expiration value).

www.policycloud.eu 17

@ Policy Cloud D7.12-v.1.0

Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json)
Headers: Key Value
X-more-time [Restricted and available only for the front-

end which use an API key]
Front-end’s APl key

URL Parameters: None
Query Parameters: None
Restrictions / Special None
Features:

Successful Response: JSON Object with a successful message and user’s JWT.

The following is an example of the request in cURL:

curl -request POST ‘{HOST}/accounts/users/authorization’ \

--header ‘x-more-time: <API_KEY>’ -header ‘Content-Type: application/json’ \
--data-raw ‘{ “email”: “..”, “password”: “..” }’/

TABLE 4 - AUTHORIZE A USER (LOGIN) INTERFACE

Endpoint: {HOST}/accounts/users/verification/{vc}
HTTP Method: GET
Description: Through this endpoint, the users can verify their account using the

verification code {vc} that they received in their email during their
registration. For users’ convenience, the email that they receive contains a
URL that directs to the front-end. It should be noted that this endpoint is
also useful for all the occasions that the users’ account gets locked and
needs verification again (e.g., change email).

The headers of the request may contain the key “x-more-time"” that is used
only by the front-end in order to get JWTs that are valid for a longer period
(greater expiration value).

Body Data: None
Headers: Key Value
X-more-time [Restricted and available only for the front-
end which use an AP key]
Front-end’s API key
URL Parameters: Parameter Value
VC The verification code that sent to user's
email.
Query Parameters: None
Restrictions / Special Only the accounts’ owners are able to verify their accounts/emails.
Features:

Successful Response: JSON Object with a successful message and user's JWT.

The following is an example of the request in cURL:
curl -request GET ‘{HOST}/accounts/users/verification/{vc}’ -header ‘x-more-time: <API_KEY>’'

TABLE 5 - VERIFY USERS INTERFACE

18

Policy Cloud D7.12-Vv.1.0

Title: Resend verification code to users

Endpoint: {HOST}/accounts/users/verification/resend

HTTP Method: POST

Description: This endpoint is connected to the endpoint above. Its scope is to resend

users' account/email verification codes. It is useful mainly for the back-end'’s
users (those who communicate directly with the back-end) and not for those
who use the front-end, because the latter has mechanisms to retrieve users’
verification codes and send them to users’ emails. This request requires
user's JWT in the headers of the request, under the key “x-access-token”, in
order to authenticate the user.

Body Data: None

Headers: Key Value
x-access-token Requester's JWT

URL Parameters: None

Query Parameters: None

Restrictions / Special The endpoint is available only to accounts’ owners.

Features:

Successful Response: JSON Object with the verification code.

The following is an example of the request in cURL:
curl -request GET ‘{HOST}/accounts/users/verification/resend’ -header ‘x-access-token: <JWT>'

TABLE 6 - RESEND VERIFICATION CODE TO USERS INTERFACE

Title: Get user’s information

Endpoint: {HOST}/accounts/users/information/{uid}
HTTP Method: GET
Description: This endpoint is used in order to retrieve information about a user. A GET

request should be made and the user’s ID {uid} is required at the end of the
endpoint. Moreover, this endpoint is restricted and thus, the JWT of a
requester must be included in the headers of the request. It should be noted
that the administrators and the accounts’ owners are able to retrieve all
users' information, while users that retrieve information of other users
retrieve only public information. Private information can be users’ email and
phone, depending on the values of the profile parameters “public_email”
and “public_phone”. Below are illustrated some examples of retrieved users’
information, one by an administrator/account owner (example 1) and one
by a user that retrieves another user’'s information (example 2) - the
examples present information retrieval for the same user.

Body Data: None
Headers: Key Value
x-access-token Requester's JWT
URL Parameters: Parameter Value
uid The ID of the user whose information will be
retrieved.
Query Parameters: None

19

PQlicy _Cloud D7.12-v.1.0

Restrictions / Special The administrators and the accounts’ owners are able to retrieve all users’

Features: information, while users that retrieve information of other users retrieve
only public information.

Successful Response: JSON Object with a user’s information.

The following is an example of the request in cURL:
curl -request GET ‘{HOST}/accounts/users/information/{uid}’ \
--header ‘x-access-token: <JWT>’

TABLE 7 - GET USER'S INFORMATION INTERFACE

Example 1
{“ _status”: “successful”, “result”: {
“account”: {“registration_datetime”: “..”, “role”: “user”, “verified”: “1”},
“info”: {“about”: “..”, “email”: “..”, “gender”: “..”, “name”: “..”, “organization”: “..”,
“phone”: “..”, “social”: [], “surname”: “..”, “title”: “..”
}l
“profile parameters”: ({
“profile image”: “default image users”,
“public_email”: 0, “public_phone”: 0
}, Nid7: N
}}
Example 2
{“ status”: “successful”, “result”: {
“account”: {“registration datetime”: “..”, “role”: “user”, “verified”: “1”},
“info”: {“about”: “..”, “gender”: “..”, “name”: “..”, “organization”: “..”,
“social”: [], “surname”: “..”, “title”: “..”
}l
“profile parameters”: {“profile image”: “default image users”}, “id”: “..”

Title: Update user’s information

Endpoint: {HOST}/accounts/users/information/{uid}
HTTP Method: PUT
Description: This endpoint handles requests for updating users' information. A PUT

request should be made and the next JSON schema (it is flexible and thus
may contain fewer fields - but without new fields), containing users’ new
information, must be in its body as raw data.

{“info”: { “name”: “..”, “surname”: “..”, “title”: “..”,
“gender”: “..”, “organization”: “..”, “phone”: “..”,
“social”: [“.”, “.”1, “about”: “.”},

“profile parameters”: {“public email”: 1, “public phone”: 0}}

Moreover, this endpoint is restricted and thus, the JWT of a requester must
be included in the headers of the request. It should be noted that only the
accounts’ owners and the administrators are able to update the information
of a user. The latter are not able to change the profile parameters. Also, the
headers of the request may contain the key “x-more-time” that is used only
by the front-end in order to get JWTs that are valid for a longer period
(greater expiration value).

Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json)
Headers: Key Value

20

@ Policy Cloud D7.12-v.1.0

x-access-token Requester's JWT

X-more-time [Restricted and available only for the front-end
which use an API key]
Front-end’s APl key

URL Parameters: Parameter Value
uid The ID of the user whose information will be
updated.
Query Parameters: None
Restrictions / Special Only the accounts’ owners and the administrators are able to update the
Features: information of a user.
Successful Response: A successful response will return the next JSON Object that contains a new
JWT in the key “token™:
{“ status”: “successful”, “message”: “The information of the user with
ID ‘{uid}’ has been updated.”, “token”: “<JWT>"}

The following is an example of the request in cURL:
curl -request PUT ‘{HOST}/accounts/users/information/{uid}’ \
--header ‘x-access-token: <JWT>' -header ‘x-more-time: <API_KEY>’ \

--header ‘Content-Type: application/json’ \
--data-raw ‘{“info”: { “name”: “..”, “surname”: “.”, ..}, ..}’

TABLE 8 - UPDATE USER'S INFORMATION INTERFACE

Endpoint: {HOST}/accounts/users/password/change
HTTP Method: POST
Description: This endpoint is used when the users want to change their account's

password. A POST request should be made and the next JSON schema,
containing users’ new and old password, must be in its body as raw data.
Also, this endpoint is restricted and thus, the JWT of a requester must be
included in the headers of the request. It should be noted that this action is
only available to accounts' owners.

{ “old password”: “..”, “new password”: “..”, “confirm new password”: “..”}
Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json)
Headers: Key Value

x-access-token Requester's JWT
URL Parameters: None
Query Parameters: None
Restrictions / Special Only available to accounts’ owners. The new password must not be the same
Features: with previous password.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl -request POST ‘{HOST}/accounts/users/password/change’ \
--header ‘x-access-token: <JWT>’' -header ‘Content-Type: application/json’ \

--data-raw ‘{ “old password”: “..”, “new_password”: "“..”, “confirm new password”: “..”}’

TABLE 9 - CHANGE USER'S PASSWORD INTERFACE

21

Policy Cloud D7.12-Vv.1.0

Title: Reset user's password request

Endpoint: {HOST}/accounts/users/password/reset

HTTP Method: POST

Description: This endpoint handles the first step of the password reset process. The users

who forgot their password have to make a password reset request first,
sending a POST request to this endpoint with the next JSON schema in its
body. It should be noted that it is not necessary to use both fields - at least

one of the two fields is sufficient/required.
(Nuid”: N7, Nemail”: N

Another important note is that this endpoint is available only through the
mechanisms of the front-end that sends to the users’ emails a password
reset link that contains a generated password reset code. The generated
password reset codes are valid only for an hour (1 hour). The password reset
link redirects to a front-end’s form from which the users can set their new
password. After the submission of the form, the front-end uses the next
interface in order to change the password of the user. The headers of the
request must contain the front-end’s API key.

Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json)

Headers: Key Value
x-api-key Front-end’s APl key

URL Parameters: None

Query Parameters: None

Restrictions / Special Only available to the front-end.

Features:

Successful Response: JSON Object with a successful message and the password reset code in its
content.

The following is an example of the request in cURL:
curl -request POST ‘{HOST}/accounts/users/password/reset’ -header ‘x-api-key: <API_KEY>' \
--header ‘Content-Type: application/json’ -data-raw ‘{“uid”: “..”, “email”: “..”}'

TABLE 10 - RESET USER'S PASSWORD REQUEST INTERFACE

Tite: Resetuserspassword |

Endpoint: {HOST}/accounts/users/password/reset/{prc}
HTTP Method: POST
Description: This endpoint is connected to the above endpoint and handles the second

step of the password reset process. When the users open the password
reset link that they received in their email, they are redirected to a front-
end's form from which they are able to set their new password. After the
submission of the form, the front-end sends a request to the current
interface to finish the process. The password reset code {prc} that the users
received in their email must be in the request’s URL and the following JSON
schema should be in the body of the request.

{ “new password”: “..”, “confirm new password”: “..”}
Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json)
Headers: None
URL Parameters: Parameter Value

prc The password reset code that the users'

received in their email.

22

Policy Clg‘)&!d D7.12-Vv.1.0

ud for Data-Driven Policy

Query Parameters: None
Restrictions / Special None
Features:

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:

curl -request POST ‘'{HOST}/accounts/users/password/reset/{prc}’ \
--header ‘Content-Type: application/json’ \

--data-raw ‘{ “new_password”: “..”, “confirm new password”: “..”}’

TABLE 11 - RESET USER'S PASSWORD INTERFACE

Title: Delete user's account

Endpoint: {HOST}/accounts/users/delete/{uid}

HTTP Method: DELETE

Description: In order to delete an account, this endpoint should be used, making a

DELETE request and providing requester's password in its body, as raw data
(JSON format). The endpoint must contain the user's ID {uid} at the end of
the URL.

{ “password”:

The endpoint is restricted and thus, the JWT of a requester must be included
in the headers of the request. This action is available to accounts' owners
and to administrators who are able to delete users from the Data
Marketplace. If the action is made by an administrator, the value of the field
“password” in the body should be the password of administrator.
An_important note is that the deletion of an account has as result the
deletion of all user's data, offered solutions and assets.

LA

Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json)
Headers: Key Value

x-access-token Requester's JWT
URL Parameters: Parameter Value

uid The ID of the user whose account will be

deleted.

Query Parameters: None
Restrictions / Special Only the accounts’ owners and the administrators are able to delete an
Features: account/user.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:

curl --request DELETE '{HOST}/accounts/users/delete/{uid}' \

--header 'x-access-token: <JWT>' --header 'Content-Type: application/json' \
--data-raw '{ "password": "." }'

TABLE 12 - DELETE USER'S ACCOUNT INTERFACE

Title: Change user’s email

Endpoint: {HOST}/accounts/users/email/{uid}
HTTP Method: PUT
Description: This endpoint is used to update the emails of the users. This action is also

possible through the endpoint for update users’' information, but it is
important to have the current endpoint because the email is an important
field for all accounts. The next JSON schema must be in the request's body
as raw data:

{ "new email": ".." }

23

@ Policy Cloud

Body Data:
Headers:

URL Parameters:

Query Parameters:
Restrictions / Special
Features:

Successful Response:

D7.12-v.1.0

The endpoint is restricted and thus, the JWT of a requester must be included
in the headers of the request. This action is available only to accounts
owners and administrators. If the action is made by the accounts’ owners,
their accounts will get locked until they will verify their new email (using the
endpoint for the emails’ verification). In case that this action is made by an
administrator, the account does not get locked. Also, the headers of the
request may contain the key “x-more-time” that is used only by the front-
end to get JWTs that are valid for a longer period (greater expiration value).
Raw (JSON) Data - as the above schema (Content-Type: application/json)

Key Value
x-access-token Requester's JWT
X-more-time [Restricted and available only for the front-

end which use an API key]
Front-end's API key

Parameter Value

uid The ID of the user whose email will be
updated.

None

Only the accounts’ owners and the administrators are able to update users’
email.

JSON Object with a successful message along with a new JWT. It may contain
a verification code only if the action is made by accounts’ owners.

The following is an example of the request in cURL:
curl --request PUT '{HOST}/accounts/users/email/{uid}' \

--header 'x-access-token:

<JWT>' --header 'Content-Type: application/json' \

--data-raw '{ "new_email": ".." }'

Endpoint:
HTTP Method:
Description:

Body Data:
Headers:
URL Parameters:

Query Parameters:
Restrictions / Special
Features:

Successful Response:

TABLE 13 - CHANGE USER'S EMAIL INTERFACE

{HOST}/accounts/users/email/change/confirm/{vc}

GET

Through this endpoint, the users can verify their new email using the
verification code {vc} that they received in their email after changing it
through the previous interface. For users’' convenience, the email that they
receive contains a URL that directs to the front-end.

None

None

Parameter Value

VC The verification code that sent to user's
email.

None

Only the accounts’ owners are able to verify their emails.

JSON Object with a successful message.

The following is an example of the request in cURL:
curl --request GET '{HOST}/accounts/users/email/change/confirm/{vc}’

TABLE 14 - VERIFY USER'S NEW EMAIL INTERFACE

24

Policy Cloud D7.12-Vv.1.0

Title: Revert user's email

Endpoint: {HOST}/accounts/users/email/change/revert/{vc}

HTTP Method: GET

Description: Through this endpoint, the users can revert their old email after an email

change of their account, using the verification (revert) code {vc} that they
received in their email after changing it through the previous interfaces. For
users’ convenience, the email that they receive contains a URL that directs
to the front-end. The account owners have a period of 14 days after
changing their account email address in order to revert to their old email.
Once this period passes, the owners will not be able to revert to their old
email and the change to the new email address will be permanent.

Body Data: None
Headers: None
URL Parameters: Parameter Value
VC The verification (revert) code that sent to
user's email.
Query Parameters: None
Restrictions / Special Only the accounts’ owners are able to revert to their old emails.
Features:

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl --request GET '{HOST}/accounts/users/email/change/revert/{vc}'

TABLE 15 - REVERT USER'S EMAIL INTERFACE

Endpoint: {HOST}/accounts/users/image
HTTP Method: PUT
Description: All users have a default profile image from their registration and through

this endpoint are able to change it. The endpoint is restricted and available
only to accounts’ owners and thus, the JWT of a requester must be included
in the headers of the request. Also, the headers of the request may contain
the key “x-more-time” that is used only by the front-end in order to get JWTs
that are valid for a longer period (greater expiration value).

Body Data: Data Type: Form Data
Key Value
asset Binary data / Path to image
Headers: Key Value
x-access-token Requester’s JWT
X-more-time [Restricted and available only for the front-

end which use an API key]
Front-end's API key

X-mimetype Image’s mimetype (Only JPEG and PNG
images are allowed)

URL Parameters: None

Query Parameters: None

Restrictions / Special Available only to accounts’ owners.
Features:

25

PQUW..QQHQ D7.12 -v.1.0

Successful Response: A successful response will return the next JSON Object that contains a new
JWT in the key “token”:
{" status": "successful", "message": "The profile image of the user with
ID '{uid}' has been changed.", "token": "<JWT>"}

The following is an example of the request in cURL:

curl --request POST '{HOST}/accounts/users/image' --header 'x-access-token: <JWT>' \

--header 'x-more-time: <API_KEY>' --header 'x-mimetype: <image’s mimetype>' \

--form 'asset=@"<full path_ to_image>"'
TABLE 16 - CHANGE USER'S PROFILE PICTURE INTERFACE

Title: Remove user’s profile picture

Endpoint: {HOST}/accounts/users/image/{uid}

HTTP Method: DELETE

Description: This endpoint is used to delete users’ profile images. The ID {uid} of the user

whose profile image will be deleted should be in the URL. This action deletes
users’ images and replaces them with the default image that is used for all
users.

The endpoint is restricted and thus, the JWT of a requester must be included
in the headers of the request. It should be noted that only the accounts’
owners and the administrators are able to delete users' profile image. Also,
the headers of the request may contain the key “x-more-time” that is used
only by the front-end to get JWTs that are valid for a longer period (greater
expiration value).

Body Data: None
Headers: Key Value
x-access-token Requester's JWT
X-more-time [Restricted and available only for the front-
end which use an API key]
Front-end’s APl key
URL Parameters: Parameter Value
uid ID of user whose profile image will be
deleted.
Query Parameters: None
Restrictions / Special Available only to accounts’ owners and administrators.
Features:
Successful Response: A successful response will return the next JSON Object that contains a new
JWT in the key “token™:
{"_status": "successful", "message": "The profile image of the user with
ID '{uid}' has been removed.", "token": "<JWT>"}

The following is an example of the request in cURL:

curl --request DELETE '{HOST}/accounts/users/image/{uid}' \
--header 'x-access-token: <JWT>' --header 'x-more-time: <API_KEY>'

TABLE 17 - REMOVE USER'S PROFILE PICTURE INTERFACE

26

Policy Cloud D7.12-v.1.0

Title: Get user’s statistics

Endpoint: {HOST}/accounts/users/statistics/{uid}

HTTP Method: GET

Description: This endpoint is used to get some statistics about a user whose ID {uid} is in

the URL of the GET request. It is used in users' profiles where their
contribution with offerings to the Data Marketplace is presented. The
endpoint is restricted and thus, the JWT of a requester must be included in
the headers of the request.

Body Data: None
Headers: Key Value
x-access-token Requester’s JWT
URL Parameters: Parameter Value
uid The ID of the user whose statistics will be
retrieved.
Query Parameters: None
Restrictions / Special Available to all authorized users.
Features:

Successful Response: JSON Object with a successful message and statistics as follows:
{“ status”: “successful”, “results”: {
B “total solutions”: 0, “approved solutions”: 0, “assets uploaded”: O,
“total links provided”: 0, “total downloads”: 0, “total views”: 0,
“total reviews”: 0, “average rating”: 0
)}
The following is an example of the request in cURL:
curl -request GET ‘{HOST}/accounts/users/statistics/{uid}’ -header ‘x-access-token: <JWT>'

TABLE 18 - GET USER'S STATISTICS INTERFACE

Title: Get user’s account data

Endpoint: {HOST}/accounts/users/data
HTTP Method: GET
Description: This endpoint, which is available only to accounts’ owners, returns all the

personalized data of the requester, returning users' information, uploaded
solutions, solutions' reviews and other statistics. The endpoint is restricted
and thus, the JWT of a requester must be included in the headers of the

request.

Body Data: None

Headers: Key Value
x-access-token Requester's JWT

URL Parameters: None

Query Parameters: None

Restrictions / Special Available only to accounts’ owners.

Features:

Successful Response: A JSON Object with users’ data (as file).

The following is an example of the request in cURL:
curl -request GET ‘{HOST}/accounts/users/data’ -header ‘x-access-token: <JWT>'
TABLE 19 - GET USER'S ACCOUNT DATA INTERFACE

27

Eolicy Clg‘)&!q

ud for Data-Driven Policy

D7.12-v.1.0

2.2.1.2 Interfaces related to Solutions

This group of APIs offers functionalities intended for the management of the solutions. They support all
CRUD operations as well as the search functionality. Special emphasis was placed on the APIs for the
solutions' retrieval, extending them so as to get the latest solutions or even random solutions either from
a specific collection (i.e., database collection) or from all the collections at once, using the keyword “all”.
The collections of the database as well as the Data Marketplace’s offered types of assets, vary. The current
list of the collections can be found at the end of Table 20, which presents the endpoints related to the
Solutions as they were stated in the first version of the back-end.

Action

Get solutions' collections

Get a list with all solutions

Get a list with all solutions from a specific
collection

Get a specific solution (using keyword “all”)

Get a specific solution (using solution’s
“collection”)

Get the latest solutions from all collections

Get the latest solutions from a collection

Get random solutions from all collections

Get random solutions from a specific collection
Get a list with all solutions provided by a specific
user (using keyword “all”)

Get a list with all solutions provided by a specific
user and under a specific collection (using a
“collection” value)
Get solutions’
homepage

Get solutions' filtering values for front-end's
Discover page

Upload / Create a new solution with random ID
Upload / Create a new solution with given ID

statistics for front-end'’s

Update a specific solution (using keyword “all”)
Update a specific solution (using solution’s
“collection”)

Delete a specific solution (using keyword “all”)
Delete a specific solution (using solution’s
“collection”)

Delete all solutions (administrators’ action)
Delete all solutions from a specific collection
(administrators’ action)

Make a review for a solution

Update an existing review for a solution

Delete a review for a solution

HTTP

Method

GET
GET
GET

GET
GET

GET
GET
GET
GET
GET

GET

GET

GET

POST
POST

PUT
PUT

DELETE
DELETE

DELETE
DELETE

POST
PUT
DELETE

Endpoint

{HOST}/solutions
{HOST}/solutions/all
{HOST}/solutions/{collection}

{HOST}/solutions/all/{sid}
{HOST}/solutions/{collection}/{sid}

{HOST}/solutions/all/latest
{HOST}/solutions/{collection}/latest
{HOST}/solutions/all/random
{HOST}/solutions/{collection}/random
{HOST}/solutions/provider/{uid}/all

{HOST}/solutions/provider/{uid}/{colle
ction}

{HOST}/solutions/statistics’/homepage
{HOST}/solutions/statistics/filtering

{HOST}/solutions/{collection}
{HOST}/solutions/{collection}/{given_i
d}

{HOST}/solutions/all/{sid}
{HOST}/solutions/{collection}/{sid}

{HOST}/solutions/all/{sid}
{HOST}/solutions/{collection}/{sid}

{HOST}/solutions/all/all
{HOST}/solutions/{collection}/all

{HOST}/solutions/review/{sid}
{HOST}/solutions/review/{sid}
{HOST}/solutions/review/{sid}

28

PQUW..QQHQ D7.12 -v.1.0

Get the cover image of a solution GET {HOST}/solutions/image/{sid}
Change the cover image of a solution PUT {HOST}/solutions/image/{sid}/{img_id}
Remove the cover image of a solution DELETE {HOST}/solutions/image/{sid}

Get a list with the reviews made by a specific GET {HOST}/solutions/review/{uid}
user

Get a list with the reviews made for a specific GET {HOST}/solutions/reviews/{sid}
solution

Get a list with all solutions that need permission GET {HOST}/solutions/permit/all
(administrators’ action)

Get a list with all solutions from a specific GET {HOST}/solutions/permit/{collection}
collection that need permission (administrators’

action)

Approve or reject a solution that needs POST {HOST}/solutions/permit/all/{sid}
permission, using keyword “all” (administrators'

action)
Approve or reject a solution that needs POST {HOST}/solutions/permit/{collection}/{
permission, using solution’'s “collection” sid}

(administrators’ action)
Approve or reject all solutions that need POST {HOST}/solutions/permit/all/all
permission, using keyword “all” (administrators’
action)
Approve or reject all solutions that need POST {HOST}/solutions/permit/{collection}/a
permission under a specific collection, using a Il
“collection” value (administrators’ action)
TABLE 20 - BACK-END'S INTERFACES RELATED TO SOLUTIONS

e {HOST}refers to the hosting server: the domain name and the port running the back-end.

o {sid}refers to the ID of a specific solution.

e {given id}is used in upload solution action, providing new solution’s ID.

e As a {collection} can be one of the following values derived from the current types of offered
assets:

{"tools", "policies’, "datasets", "webinars', tutorials’, "documents", "other"}

e Some of these actions require additional fields in the headers of the HTTP request. Example of a

required field is the JWT.

Below is a more detailed description of all table's interfaces/actions:

Title: Get solutions’ collections

Endpoint: {HOST}/solutions
HTTP Method: GET
Description: This endpoint returns a list with the sub-routes of the “solution” endpoint.

More specifically, it returns the values of the {collection} that also refer to
the database’s collections and the types of the offered assets.

Body Data: None
Headers: None
URL Parameters: None

29

Policy Cloud D7.12-v.1.0
Query Parameters: None
Restrictions / Special None
Features:
Successful Response: A text/plain list with the back-end’s collections.
The following is an example of the request in cURL:
curl --request GET '{HOST}/solutions'
TABLE 21 - GET SOLUTIONS’ COLLECTIONS INTERFACE
Title: Get a list with all solutions
Endpoint: {HOST}/solutions/all
HTTP Method: GET
Description: A request to this endpoint will result in the retrieval of the stored solutions

from all the collections.
collection, which makes

It uses the keyword “all” instead of a specific
the platform to retrieve solutions from all the

collections at once. The solutions that return from this request are in a short
schema (short description), meaning that the retrieved information is
limited. An example of a solution’s description in short schema is the

following JSON schema:

{"collection": "tools", "id": "tools v1LZWaoQNlFe ",

"info": {
"keywords": ["information"], "owner": "Vasilis Koukos",
"short desc": "This is an example", "type": "tools",

"title": "Example title."},

"main image": "default image assets",

"metadata": {"provider": "vkoukos",
"reviews": {"average rating": 4.2, "no reviews": 14},
"updateDate": "..", "uploadDate": "..", "views": 35

bl

This endpoint can get query parameters to search for solutions that meet
certain conditions. As a query parameter can be any pair of key-value, while
additional search operators can be used for more advanced and enhanced
search. More details about searching can be found in Section 2.2.1.3. Also,
this endpoint offers some standard query parameters, as described below

(Query Parameters).

Body Data: None
Headers: None
URL Parameters: None
Query Parameters: Key
sortBy

Value

[Optional] Sorts the solutions by a field - the
default is the “newest” key. The value should be
one of the following:

"newest": sort by date in descending order.
"oldest": sort by date in ascending order.
"rating-asc": sort by average rating in ascending
order.

"rating-desc™: sort by average rating in
descending order.

"views-asc": sort by the number of views in
ascending order.

30

@ Policy Cloud

Restrictions / Special
Features:
Successful Response:

D7.12 -v.1.0

"views-desc": sort by the number of views in
descending order.
"title": sort by title in ascending order.

itemsPerPage [Optional] Returns the results separated in pages
(arrays) of N items. The number N is specified by
the value of this key. The value N must be an
integer number greater or equal to 1. If the key is
not used or has a non-accepted value, the results
are returned on a single page.

page [Optional] This key can only be used if the
“itemsPerPage” key is also used. If it is used, it
returns only the specified (by key's value) page
instead of all pages created using the key
“itemsPerPage”. The value must be an integer
number greater or equal to 1. The default value is
0, which means that all pages will be returned.

Any key to search Any value to search (refer to Section 2.2.1.3).

(refer to section

2.2.1.3)

None

A JSON Object with the results (all solutions from all collections). If the query
parameter “itemsPerPage” is used, then the results contain the total number
of the pages.

The following is an example of the request in cURL:

+ 4+ + ++ +

curl --request GET '{HOST}/solutions/all'

curl --request GET '{HOST}/solutions/all?sortBy={value}'

curl --request GET '{HOST}/solutions/all?itemsPerPage={value}'

curl --request GET '{HOST}/solutions/all?itemsPerPage={value}é&page={value}'

curl --request GET '{HOST}/solutions/all?sortBy={value}&itemsPerPage={value}'

curl --request GET '{HOST}/solutions/all?sortBy={value}&itemsPerPage={value}&page={value}'

Example of retrieving the 10 most viewed solutions:

+ curl --request GET '{HOST}/solutions/all?sortBy=views-descé&itemsPerPage=10&page=1"

Endpoint:
HTTP Method:
Description:

Body Data:
Headers:
URL Parameters:

Query Parameters:

TABLE 22 - GET A LIST WITH ALL SOLUTIONS INTERFACE

{HOST}/solutions/{collection}

GET

This request is similar to the above request. The only difference between the
two (2) actions is that this request retrieves solutions from a specific
collection (instead of using keyword “all”). For more details, refer to the
above endpoint.

None

None

Parameter Value
collection Valid values:

{"tools", "policies", "datasets", "webinars",
"tutorials", "documents", "other"}
As in the above request.

31

@ Policy Cloud

Restrictions / Special
Features:

Successful Response:

D7.12 -v.1.0

None

A JSON Object with the results (all solutions in a specific collection).

The following is an example of the request in cURL:
+ curl --request GET '{HOST}/solutions/{collection}'

+ curl --request GET \

' {HOST}/solutions/{collection}?sortBy={value}&itemsPerPage={value} &page={value}'

TABLE 23 - GET A LIST WITH ALL SOLUTIONS FROM A SPECIFIC COLLECTION INTERFACE

Endpoint:
HTTP Method:
Description:

Body Data:
Headers:

URL Parameters:

Query Parameters:
Restrictions / Special
Features:

Successful Response:

{HOST}/solutions/all/{sid}

GET

With this request, the users are able to retrieve a specific solution. The
retrieval of a specific solution is possible using its unique identification code
(ID), known when uploading it. Also, the retrieval of a specific solution can
be done using both keyword “all” and the name of the collection that the
solution has been stored (next interface). This is feasible because the back-
end ensures that the IDs are unique regardless of the collection that the
solution has been stored. Moreover, the retrieval of a specific solution
requires a JWT to be retrieved in its “full schema”. If requester's JWT is
missing, then the endpoint returns the short schema of the solution’s
description. Example of a full schema is in the endpoint that handles the
uploading of a solution. This endpoint, except for the full schema, also
returns the reviews of the specified solution.

None

Key Value

x-access-token [Optional, it should be used in order to
retrieve the full schema of a solution's
description]
Requester's JWT

Parameter Value

sid The ID of the solution that will be retrieved.

None

The full schema is available only to authorized (and verified) users,
otherwise, the short schema is available to all.
A JSON Object with the solution in the results.

The following is an example of the request in cURL:
+ curl --request GET '{HOST}/solutions/all/{sid}"'
+ curl --request GET '{HOST}/solutions/all/{sid}' --header 'x-access-token: <JWT>'

TABLE 24 - GET A SPECIFIC SOLUTION (USING KEYWORD “ALL") INTERFACE

32

Policy Cloud D7.12-Vv.1.0

Get a specific solution (using solution's “collection"”)

Endpoint: {HOST}/solutions/{collection}/{sid}
HTTP Method: GET
Description: This request is similar to the above request, with the difference that it uses

solution’s collection for the retrieval of a solution (instead of using keyword
“all). The value of the {collection} must be the collection in which the
solution has been stored. More information about the endpoint can be
found above.

Body Data: None
Headers: Key Value
x-access-token [Optional, it should be used in order to
retrieve the full schema of a solution’s
description]
Requester’s JWT
URL Parameters: Parameter Value
collection Valid values:
{"tools", "policies", "datasets", "webinars",
"tutorials", "documents", "other"}
sid The ID of the solution that will be retrieved.
Query Parameters: None
Restrictions / Special The full schema is available only to authorized (and verified) users,
Features: otherwise, the short schema is available to all.
Successful Response: A JSON Object with the solution in the results.

The following is an example of the request in cURL:

+ curl --request GET '{HOST}/solutions/{collection}/{sid}'

+ curl --request GET '{HOST}/solutions/{collection}/{sid}"' \
--header 'x-access-token: <JWT>'

TABLE 25 - GET A SPECIFIC SOLUTION (USING SOLUTION’S “COLLECTION") INTERFACE

Title: Get latest solutions from all collections

Endpoint: {HOST}/solutions/all/latest
HTTP Method: GET
Description: This request is used to retrieve the most recent uploaded solutions sorted

based on the date that they have been uploaded, with the most recent being
on the top of the list. This request uses the keyword “all” and returns the K
latest solutions from all collections. The value of K can be specified through
the query parameter “max” (the default value is 20). The solutions are
returned in their short schema.

This endpoint can get query parameters to search for solutions that meet
certain conditions. As a query parameter can be any pair of key-value, while
additional search operators can be used for more advanced and enhanced
search. More details about searching can be found in Section 2.2.1.3. Finally,
the endpoint “Get a list with all solutions” can return the same results as the
current, if the example at the end will be followed.

Body Data: None
Headers: None
URL Parameters: None
Query Parameters: Key Value

33

@ Policy Cloud D7.12-v.1.0

max Integer value greater than 0 - Default: 20
Any key to search (referto Any value to search (refer to section 2.2.1.3).
section 2.2.1.3)

Restrictions / Special None
Features:
Successful Response: A JSON Object with the results (latest solutions from all collections).

The following is an example of the request in cURL:
+ curl --request GET '{HOST}/solutions/all/latest’
+ curl --request GET '{HOST}/solutions/all/latest?max=5"

Example of similar response by the endpoint “Get a list with all solutions”:
+ curl --request GET '{HOST}/solutions/all?sortBy=newesté&itemsPerPage=20&page=1"

TABLE 26 - GET LATEST SOLUTIONS FROM ALL COLLECTIONS INTERFACE

Endpoint: {HOST}/solutions/{collection}/latest
HTTP Method: GET
Description: This request is similar to the above request. It uses the value of a specific

collection and not the keyword “all”, which results to return sorted the K
most recent solutions of the provided collection. The value of K can be
specified through query parameter “max” (the default value is 20). The
solutions are returned in their short schema. This endpoint can get query
parameters to search for solutions that meet certain conditions. As a query
parameter can be any pair of key-value, while additional search operators
can be used for more advanced and enhanced search. More details about
searching can be found in Section 2.2.1.3. Finally, the endpoint “Get a list
with all solutions from a specific collection” can return the same results as
the current, if the example at the end will be followed.

Body Data: None
Headers: None
URL Parameters: Parameter Value
collection Valid values:
{"tools", "policies", "datasets", "webinars",
"tutorials", "documents", "other"}
Query Parameters: Key Value
max Integer value greater than 0 - Default: 20

Any key to search (refer to = Any value to search (refer to section 2.2.1.3).
section 2.2.1.3)

Restrictions / Special None
Features:
Successful Response: A JSON Object with the results (latest solutions of a collection).

The following is an example of the request in cURL:
+ curl --request GET '{HOST}/solutions/{collection}/latest'
+ curl --request GET '{HOST}/solutions/{collection}/latest?max=5"

Example of similar response by the endpoint “Get a list with all solutions from a specific
collection”:
+ curl --request GET '{HOST}/solutions/{collection}?sortBy=newesté&itemsPerPage=20&page=1"

TABLE 27 - GET LATEST SOLUTIONS FROM A SPECIFIC COLLECTION INTERFACE

34

Policy Clouq D7.12-Vv.1.0

Cloud for Data-Driven Policy Managemen

Title: Get random solutions from all collections

Endpoint: {HOST}/solutions/all/random

HTTP Method: GET

Description: This endpoint returns a number of random solutions from all collections

(uses keyword “all”). It is useful in order to suggest and promote different
solutions each time. It is also used in the home page of the Data
Marketplace, where random solutions are displayed. Through the query
parameter “max” it can return K solutions, where K can be specified by the
users (the default value is 4). The solutions are returned in their short

schema.
Body Data: None
Headers: None
URL Parameters: None
Query Parameters: Key Value
max Integer value greater than 0 - Default: 20
Restrictions / Special None
Features:
Successful Response: A JSON Object with the results (random solutions from all collections).

The following is an example of the request in cURL:
+ curl --request GET '{HOST}/solutions/all/random'
+ curl --request GET '{HOST}/solutions/all/random?max=5"

TABLE 28 - GET RANDOM SOLUTIONS FROM ALL COLLECTIONS INTERFACE

Title: Get random solutions from a specific collection

Endpoint: {HOST}/solutions/{collection}/random
HTTP Method: GET
Description: This endpoint is similar to the above endpoint. Instead of keyword “all” it

uses a specific collection and thus it returns a number of K random solutions
of the provided specific collection. The value of K can be specified through
query parameter “max” (the default value is 4). The solutions are returned
in their short schema.

Body Data: None
Headers: None
URL Parameters: Parameter Value
collection Valid values:
{"tools", "policies", "datasets", "webinars",
"tutorials", "documents", "other"}
Query Parameters: Key Value
max Integer value greater than 0 - Default: 20
Restrictions / Special None
Features:
Successful Response: A JSON Object with the results (random solutions of a collection).

The following is an example of the request in cURL:
+ curl --request GET '{HOST}/solutions/{collection}/random'
+ curl --request GET '{HOST}/solutions/{collection}/random?max=5"

TABLE 29 - GET RANDOM SOLUTIONS FROM A SPECIFIC COLLECTION INTERFACE

Get a list with all solutions provided by a specific user (using keyword “all")

35

@ Policy Cloud

Endpoint:
HTTP Method:
Description:

Body Data:
Headers:

URL Parameters:

Query Parameters:

D7.12-v.1.0

{HOST}/solutions/provider/{uid}/all

GET

This request returns all the solutions that have been provided by the user
whose ID {uid} is part of the request's URL. It uses the keyword “all” instead
of a specific collection, which makes the platform to retrieve its provided
solutions from all the collections at once. The solutions are returned in their
short schema. Also, the endpoint is restricted and thus, the JWT of a
requester must be included in the headers of the request. It should be noted
that the accounts’ owners who use this endpoint to retrieve their uploaded
solutions, except for the retrieval of the approved solutions, are able to also
retrieve “pending” solutions (e.g., the solutions that they uploaded and need
administrators' approval). Finally, the endpoint offers some standard query
parameters that specify the format of the results and are described below
(Query Parameters).

None

Key Value

x-access-token Requester’s JWT

Parameter Value

uid The ID of the user whose offered solutions will be
retrieved.

Key Value

sortBy [Optional] Sorts the solutions by a field - the default
is the “newest” key. The value should be one of the
following;:

"newest": sort by date in descending order.
"oldest": sort by date in ascending order.
"rating-asc": sort by average rating in ascending
order.
"rating-desc": sort by average rating in descending
order.
"views-asc": sort by the number of views in
ascending order.
"views-desc": sort by the number of views in
descending order.
"title": sort by title in ascending order.
itemsPerPage [Optional] Returns the results separated in pages
(arrays) of N items. The number N is specified by
the value of this key. The value N must be an integer
number greater or equal to 1. If the key is not used
or has a non-accepted value, the results are
returned on a single page.
page [Optional] This key can only be used if the
“itemsPerPage” key is also used. If it is used, it
returns only the specified (by key's value) page
instead of all pages created using the key
“itemsPerPage”. The value must be an integer

36

Pgl!cngpu.d D7.12 -v.1.0

number greater or equal to 1. The default value is
0, which means that all pages will be returned.

Restrictions / Special None
Features:
Successful Response: A JSON Object with the results (all solutions provided by a user from all

collections). If the query parameter “itemsPerPage” is used, then the results
contain the total number of the pages.

The following is an example of the request in cURL:

curl --request GET '{HOST}/solutions/provider/{uid}/all'

curl --request GET '{HOST}/solutions/provider/{uid}/all?sortBy={value}'

curl --request GET '{HOST}/solutions/provider/{uid}/all?itemsPerPage={value}'
curl --request GET '..?itemsPerPage={value}é&page={value}'

curl --request GET '..?sortBy={value}é&itemsPerPage={value}'

curl --request GET '..?sortBy={value}&itemsPerPage={value}&page={value}'

TABLE 30 - GET A LIST WITH ALL SOLUTIONS PROVIDED BY A SPECIFIC USER (USING KEYWORD “ALL") INTERFACE

+ 4+ +

Get a list with all solutions provided by a specific user and under a specific

collection (using a “collection” value)

Endpoint: {HOST}/solutions/provider/{uid}/{collection}
HTTP Method: GET
Description: This request is similar to the above request. The only difference between the

two (2) actions is that this request retrieves all the solutions provided by a
specific user and from a single/specific collection (instead of using keyword
“all”). The endpoint is restricted and thus, the JWT of a requester must be
included in the headers of the request. For more details, refer to the above

endpoint.
Body Data: None
Headers: Key Value
x-access-token Requester’s JWT
URL Parameters: Parameter Value
uid The ID of the user whose offered solutions will
be retrieved.
collection Valid values:
{"tools", "policies", "datasets", "webinars",
"tutorials", "documents", "other"}
Query Parameters: As in the above request.
Restrictions / Special None
Features:
Successful Response: A JSON Object with the results (all solutions provided by a user from a

specific collection). If the query parameter “itemsPerPage” is used, then the
results contain the total number of the pages.

The following is an example of the request in cURL:

curl --request GET '{HOST}/solutions/provider/{uid}/{collection}"'

curl --request GET '{HOST}/solutions/provider/{uid}/{collection}?sortBy={value}'

curl --request GET '{HOST}/solutions/provider/{uid}/{collection}?itemsPerPage={value}'
curl --request GET '..?itemsPerPage={value}é&page={value}'

curl --request GET '..?sortBy={value}é&itemsPerPage={value}'

curl --request GET '..?sortBy={value}é&itemsPerPage={value}é&page={value}'

TABLE 31 - GET A LIST WITH ALL SOLUTIONS PROVIDED BY A SPECIFIC USER AND
UNDER A SPECIFIC COLLECTION (USING A “COLLECTION” VALUE) INTERFACE

+ 4+ +++

37

PQlicy Cloud D7.12-v.1.0

Title:

Endpoint: {HOST}/solutions/statistics/homepage

HTTP Method: GET

Description: A request to this endpoint has as a result the retrieval of some statistics on
stored (and approved) solutions (and collections). Briefly, the response
contains:

e the total number of solutions,

e the number of solutions per collection, and

e the top 3 collections with the most solutions, as well as their
percentages of the total number.

Body Data: None
Headers: None
URL Parameters: None
Query Parameters: None
Restrictions / Special None
Features:
Successful Response: A JSON Object with the solutions’ statistics. Example of a response:
{"_status": "successful", "results": {
"all": {"tools": 15, "datasets": 22, "documents": 5,
"other": 0, "policies": 20, "tutorials": 4,
"webinars": 3}, "sum": 69,
" topll : [
{"collection": "datasets", "solutions": 22, "percentage": 0.32},
{"collection": "policies", "solutions": 20, "percentage": 0.29},
{"collection": "tools", "solutions": 15, "percentage": 0.22}] }}

The following is an example of the request in cURL:
curl --request GET '{HOST}/solutions/statistics/homepage’

TABLE 32 - GET SOLUTIONS’ STATISTICS FOR FRONT-END’S HOMEPAGE INTERFACE

Get solutions' filtering values for front-end’s Discover page

Endpoint: {HOST}/solutions/statistics/filtering
HTTP Method: GET
Description: A request to this endpoint has as a result the retrieval of some filtering

values on stored (and approved) solutions that are used in the Discover page
of the front-end (filtering sidebar).

Body Data: None
Headers: None
URL Parameters: None
Query Parameters: None
Restrictions / Special None
Features:

Successful Response: A JSON Object with the filtering values.

The following is an example of the request in cURL:
curl --request GET '{HOST}/solutions/statistics/filtering’

TABLE 33 - GET SOLUTIONS' FILTERING VALUES FOR FRONT-END'S DISCOVER PAGE INTERFACE

38

@ Policy Cloud

Endpoint:
HTTP Method:
Description:

Body Data:

Headers:

URL Parameters:

Query Parameters:
Restrictions / Special
Features:

Successful Response:

D7.12 -v.1.0

{HOST}/solutions/{collection}

POST

Through this POST request, the users can upload their solutions. It requires
users/providers to specify the collection in which the solution will be stored.
Also, the providers should include their JWTs in the headers of the request
because the endpoint is available only to authorized (and verified) users. An
important note is that all the new solutions uploaded to the Data
Marketplace must be approved by an administrator before they can be
made available to other users. Moreover, the administrators can upload a
solution on behalf of other users, adding the key “x-provider” in the headers
of the request. The body of the request must contain the description of the
solution as raw data in JSON format. The schema of the solutions’ content
varies, and it is flexible to be extended. The JSON schema below, presents
the required fields of a solution’s description.

{
“title”: “<title of the solution>”,

w

“description “: “<description of the solution and its assets>”,

“type”: “<type of the solution (same as its collection wvalue)>",

“comments”: “<a private field that is shown only when the full schema
is retrieved (only by authorized users) - useful for
provider’s private comments>”,

“keywords”: [“<keyword 1>", ..],

“owner “: “<organization / author / etc.>”,

}
The front-end has appropriate forms that build such solutions.

Raw (JSON) Data - as the above schema (Content-Type: application/json).
It should be noted that the solutions can also be uploaded from binary files
that contain the above JSON schema (a curl example can be found below).

Key Value
x-access-token Requester’s JWT
x-provider [Optional & only for administrators] The ID of

the provider user in case that the solution is
uploaded by an administrator and not by the

provider.
Parameter Value
collection Valid values:
{"tools”, “policies”, “datasets”, “webinars”,

“tutorials”, “documents”, “other"}
None
Available to all authorized (and verified) users. The administrators can
upload a solution on behalf of other users.
JSON Object with the new solution’s ID in its content.

The following is an example of the request in cURL:
curl -request POST ‘{HOST}/solutions/{collection}’ \
--header ‘x-access-token: <JWT>’' -header ‘Content-Type: application/json’ \

--data-raw ‘{

“title”: “<title of the solution>”,
“description": “<description of the solution and its assets>”,

“type”: “<type of the solution (same as its collection wvalue)>”,

39

@ Policy Cloud D7.12 - v.1.0

“comments”: “<a private field that is shown only when the full schema is retrieved
(only by authorized users) - useful for private comments>”,

“keywords”: [“<keyword 1>”, ..], “owner “<organization / author / etc.>”,

}r

Example of uploading a solution through binary data/file:
curl -request POST ‘{HOST}/solutions/{collection}’ -header ‘x-access-token: <JWT>’ \
--header ‘Content-Type: application/json’ -data-binary ‘@<path to json file>’

TABLE 34 - UPLOAD / CREATE A NEW SOLUTION WITH RANDOM ID INTERFACE

Below are some examples of the stored solutions’ schema:

Example 1 - Newly uploaded solution with no assets

“id”: “others P8fYOAX67HkK-8fpelTl1B-KuR4-Zsck”,

“info”: {“comments”: “Private comment.”, “contact”: “Vasilis Koukos, email”,
“description”: “This is an example of description.”,
“keywords”: [“testing”, “documentation”]”], “owner”: “UPRC”,
“title”: “Example.”, “type”: “others”},

“main_image”: “default image assets”,

“metadata”: {“approved”: 1, //0 for pending / 1 for approved
“last updated by”: “vkoukos”, “md5”: “<md5 hash of the solution’s data>",

“provider”: “vkoukos”, “reviews”: {“average rating”: 3.2, “no_reviews”: 5},
“updateDate”: “2021-10-11 13:50:48.420zZ”, “uploadDate”: “2021-10-11 13:50:48.420z",
“version”: 1, //the version of the solution - increases when updating
“wviews”: 8},

“assets”: {“files”: [], //list with the uploaded files for this solution
“images”: [], //list with the uploaded images for this solution
“videos”: [] //list with the uploaded videos for this solution

}I

“links”: [], //list with the external links added to this solution

Example 2 - Solution with uploaded file

“id”: “others P8fYOAX67HkK-8fpelT1B-KuR4-Zsck”,

“assets”: {

“files”: [{
“verified”: 0, //0 for pending / 1 for approved
“downloads”: 3, //number of downloads of the file
“filename”: “kmeans.py”, “id”: “80F7MjRTIxvb-7qIKRAjv-IJ3p-b3vL”, //file’s ID
“md5”: “.”, “size”: “7.92 KB”, “updateDate”: “Thu, 14 Oct 2021 13:56:52 GMT”,
“version”: 1 //the version of the file - increases when updating

11,

“images”: [], videos”: []

}, “links”: []

40

Policy Cloud D7.12-Vv.1.0

Cloud for Data-Driven Policy Management

Example 3 - Retrieved solution (full schema)

“id”: “others P8fYOAX67HkK-8fpelTlB-KuR4-Zsck”,

“info”: {“comments”: “Private comment.”, “contact”: “Vasilis Koukos, email”,
“description”: “This is an example of description.”,
“keywords”: [“testing”, “documentation”]”], “owner”: “UPRC”,
“title”: “Example.”, “type”: “others”},

“main image”: “default image assets”,

“metadata”: {“approved”: 1, last updated by”: “vkoukos”, “md5”: “<md5 hash of solution’s data>”",
“provider”: “vkoukos”, “reviews”: {“average rating”: 3.2, “no reviews”: 5},
“updateDate”: “2021-10-11 13:50:48.420z”, “uploadDate”: “2021-10-11 13:50:48.420z",
“version”: 1, “wviews”: 8},

“assets”: {
“files”: [{
“verified”: 0, “downloads”: 3, filename”: “kmeans.py”,
“id”: “80FTMJjRTIxvb-7qIKRAjv-IJ3p-b3vL”, “md5”: “..”, “size”: “7.92 KB”,
“updateDate”: “Thu, 14 Oct 2021 13:56:52 GMT”, “version”: 1
}1, “images”: [],videos”: []
}l
links”: [1,
“reviews”: [
{
“comment”: “Very good!”, “solution version”: 1, “rating”: 4, “uid”: “user 17,
“review version”: 1, “updated review date”: “2021-10-14 16:02:05.484z",
oo A
“comment”: “Needs improvement..”, “solution version”: 1, “rating”: 2, “uid”: “user 27",
“review version”: 2, “updated review date”: “2021-10-15 11:06:03.3342",
oo A
“comment”: “Not bad.”, “solution version”: 1, “rating”: 3, “uid”: “user_ 3",
“review version”: 1, “updated review date”: “2021-10-15 13:30:00.209z2",
oo A
“comment”: “Thank you for this!!”, “solution version”: 1, “rating”: 5, “uid”: “user 4",
“review version”: 1, “updated review date”: “2021-10-18 10:12:49.9562",
oo A
“comment”: “Good idea but does not perform well for big data.”,
“solution version”: 1, “rating”: 2, “review version”: 1,
“updated review date”: “2021-10-18 14:53:13.410z2”, “uid”: “user 5”

Title: Upload / Create a new solution with given ID

Endpoint: {HOST}/solutions/{collection}/{given_id}
HTTP Method: POST
Description: This endpoint is similar to the above. The only difference is that through the

current endpoint, the users are able to specify the ID of the new solution,
providing it at the end of the endpoint {given_id}. Currently, this endpoint
can be used only by the administrators.

Body Data: Raw (JSON) Data - as the schema of the previous endpoint (Content-Type:
application/json).
It should be noted that the solutions can also be uploaded from binary files
that contain the JSON schema of the previous endpoint (example in curl can
be found at the end of the interface).

Headers: Key Value
x-access-token Requester's JWT

41

w Policy Cloud D7.12-v.1.0

x-provider [Optional & only for administrators] The ID of the
provider in case that the solution is uploaded by
an administrator and not by the provider.

URL Parameters: Parameter Value
collection Valid values:
{"tools”, “policies”, “datasets”, “webinars”,
“tutorials”, “documents”, “other"}
given_id The ID to be given to the new solution.
Query Parameters: None
Restrictions / Special Available only to administrators. The administrators are able to upload a
Features: solution on behalf of other users.

Successful Response: JSON Object with the new solution’s ID in its content.

The following is an example of the request in cURL:
curl -request POST ‘{HOST}/solutions/{collection}/{given id}’ \
--header ‘x-access-token: <JWT>’' -header ‘Content-Type: application/json’ \
--data-raw ‘{
“title”: “<title of the solution>”,
“description “: “<description of the solution and its assets>”,
“type”: “<type of the solution (same as its collection value)>”,
“comments”: “<a private field that is shown only when the full schema is retrieved
(only by authorized users) - useful for private comments>”,
“keywords”: [“<keyword 1>”, ..], “owner “: “<organization / author / etc.>”,

}l

Example of uploading a solution through binary data/file:
curl -request POST ‘{HOST}/solutions/{collection}/{given_id}’ \
--header ‘x-access-token: <JWT>’ -header ‘Content-Type: application/json’ \

--data-binary ‘@<path_to json file>’
TABLE 35 - UPLOAD / CREATE A NEW SOLUTION WITH GIVEN ID INTERFACE

Endpoint: {HOST}/solutions/all/{sid}
HTTP Method: PUT
Description: With this endpoint, the providers of the solutions can update the solutions’

contents. It requires the ID of the solution at the end of the endpoint and

the body of the request should contain the next JSON schema as raw data.

{
“title”: “<title of the solution>”,

“description “: “<description of the solution ans its assets>",

“type”: “<type of the solution (same as its collection wvalue)>”,

“comments”: “<a private field that is shown only when the full schema
is retrieved (only by authorized users) - useful for
provider’s private comments>”,

“keywords”: [“<keyword 1>", ..],

“owner “: “<organization / author / etc.>”,

}
It should be noted that this endpoint uses the keyword “all” (the solutions

are already stored in the Data Marketplace, thus the platform knows the
collections in which they have been stored). Also, this action is only available
to the creators /providers of the solutions and to administrators who can
update any solution. Thus, the JWT of a requester should be included in the
headers of the request. An important note is that all updated solutions get

42

@ Policy Cloud D7.12-v.1.0

locked and must be approved again by an administrator to be available
again to other users.

Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json).
The solutions can also be updated from binary files that contain the above
JSON schema (curl example can be found at the end of the interface).

Headers: Key Value

x-access-token Requester's JWT
URL Parameters: Parameter Value

sid The ID of the solution that will be updated.
Query Parameters: None
Restrictions / Special Available only for the providers/creators of the solutions and for the
Features: administrators who can update any solution.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl -request PUT ‘{HOST}/solutions/all/{sid}’ \
--header ‘x-access-token: <JWT>’ -header ‘Content-Type: application/json’ \

--data-raw ‘{ “title”: “<title of the solution>”,
“description “: “<description of the solution and its assets>”,
“type”: “<type of the solution (same as its collection value)>”,
“comments”: “<a private field that is shown only when the full schema is retrieved
(only by authorized users) - useful for private comments>”,
“keywords”: [“<keyword 1>”, ..], “owner “: “<organization / author / etc.>”,

}r

Example of uploading a solution through binary data/file:
curl -request POST ‘{HOST}/solutions/all/{sid}’ \
--header ‘x-access-token: <JWT>’' -header ‘Content-Type: application/json’ \
--data-binary ‘@<path_to_json_file>’
TABLE 36 - UPDATE A SPECIFIC SOLUTION (USING KEYWORD “ALL") INTERFACE

Endpoint: {HOST}/solutions/{collection}/{sid}
HTTP Method: PUT
Description: This PUT request is similar to the previous. The only difference is that instead

of using keyword “all” it uses the collection in which the solution has been
stored during its creation. The endpoint is restricted and available only to
solutions’ providers/creators and to administrators who can update any
solution. Thus, the JWT of a requester must be included in the headers of
the request. More information about the endpoint can be found on the
above endpoint.

Body Data: Raw (JSON) Data - as the schema of the previous endpoint (Content-Type:
application/json).
It should be noted that the solutions can also be uploaded from binary files
that contain the JSON schema of the previous endpoint (example in curl can
be found at the end of the interface).

Headers: Key Value
x-access-token Requester's JWT
URL Parameters: Parameter Value
collection Valid values:

{"tools”, “policies”, “datasets”, “webinars”,
“tutorials”, “documents”, “other"}
sid The ID of the solution that will be updated.

43

@ Policy Cloud D7.12-v.1.0

Query Parameters: None
Restrictions / Special Available only for the providers/creators of the solutions and for the
Features: administrators who can update any solution.

Successful Response: JSON Object with a successful message.
The following is an example of the request in cURL:

curl -request

PUT ‘{HOST}/solutions/{collection}/{sid}’ \

--header ‘x-access-token: <JWT>’ -header ‘Content-Type: application/json’ \

--data-raw ‘{

“title”: “<title of the solution>”,
“description “: “<description of the solution and its assets>”,
“type”: “<type of the solution (same as collection’s value)>”,

“comments” :

“keywords” :
}l

“<a private field that is shown only when the full schema is retrieved
(only by authorized users) - useful for private comments>”,
[“<keyword 1>”, ..], “owner “: “<organization / author / etc.>”,

Example of uploading a solution through binary data/file:

curl -request

POST ‘{HOST}/solutions/{collection}/{sid}’ \

--header ‘x-access-token: <JWT>’ -header ‘Content-Type: application/json’ \

--data-binary

‘@<path_to_json_ file>’

TABLE 37 - UPDATE A SPECIFIC SOLUTION (USING SOLUTION'S “COLLECTION") INTERFACE

Endpoint: {HOST}/solutions/all/{sid}

HTTP Method: DELETE

Description: A DELETE request to this endpoint has as a result the deletion of a specific
solution, using its ID. The endpoint is restricted and available only to
solutions’ providers/creators and to administrators who can delete any
solution. Thus, the JWT of a requester must be included in the headers of
the request. It should be noted that this endpoint uses the keyword “all”
instead of solution’s collection (the solutions are already stored in the Data
Marketplace, thus the platform knows the collections in which have been
stored). For security reasons, the requesters should provide their password
in the body of their request, as raw data (JSON schema):
{ “password”: “..” }
If the action is made by an administrator, the field “password” should be the
password of the administrator.

Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json).

Headers: Key Value
x-access-token Requester's JWT

URL Parameters: Parameter Value
sid The ID of the solution that will be deleted.

Query Parameters: None

Restrictions / Special Available only for the providers/creators of the solutions and for the

Features: administrators who can delete any solution.

Successful Response: JSON Object with a successful message.
The following is an example of the request in cURL:

curl -request

DELETE ‘{HOST}/solutions/all/{sid}’ \

--header ‘x-access-token: <JWT>’ -header ‘Content-Type: application/json’ \

--data-raw ‘{

“password”: “..” }’
TABLE 38 - DELETE A SPECIFIC SOLUTION (USING KEYWORD “ALL") INTERFACE

44

Policy Cloud D7.12-Vv.1.0

Delete a specific solution (using solution’s “collection”)

Endpoint: {HOST}/solutions/{collection}/{sid}
HTTP Method: DELETE
Description: This request is similar to the previous. The only difference is that instead of

using keyword “all” it uses the collection in which the solution has been
stored during its creation. The endpoint is restricted and available only to
solutions' providers/creators and to administrators who can delete any
solution. Thus, the JWT of a requester must be included in the headers of
the request. More information about the endpoint can be found on the
above endpoint.

Body Data: Raw (JSON) Data - as the schema of the previous endpoint (Content-Type:
application/json).

Headers: Key Value
x-access-token Requester's JWT

URL Parameters: Parameter Value
collection Valid values:

{"tools”, “policies”, “datasets”, “webinars”,
“tutorials”, “documents”, “other”}

sid The ID of the solution that will be deleted.
Query Parameters: None
Restrictions / Special Available only for the providers/creators of the solutions and for the
Features: administrators who can delete any solution.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:

curl -request DELETE ‘{HOST}/solutions/{collection}/{sid}’ \

--header ‘x-access-token: <JWT>’ -header ‘Content-Type: application/json’ \
--data-raw ‘{ “password”: “..” }’

TABLE 39 - DELETE A SPECIFIC SOLUTION (USING SOLUTION'S “COLLECTION") INTERFACE

Title: Delete all solutions (administrators’ action)

Endpoint: {HOST}/solutions/all/all
HTTP Method: DELETE
Description: This endpoint is available only to the administrators, who can delete all the

existing solutions from all the collections (the keyword “all” is used instead
of a specific collection). The endpoint is restricted and thus, the JWT of a
requester must be included in the headers of the request. For security
reasons, the requesters should provide their password in the body of their
request, as raw data (JSON schema):

{ “password”: “..” }
Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json).
Headers: Key Value

x-access-token Requester's JWT
URL Parameters: None
Query Parameters: None
Restrictions / Special Currently, it is available only to the “superuser” (master admin) of the Data
Features: Marketplace.

Successful Response: JSON Object with a successful message.
The following is an example of the request in cURL:

45

PQlicy _Cloud D7.12-v.1.0

curl -request DELETE ‘{HOST}/solutions/all/all’ -header ‘x-access-token: <JWT>' \
--header ‘Content-Type: application/json’ -data-raw ‘{ “password”: “..” }'

TABLE 40 - DELETE ALL SOLUTIONS INTERFACE

Title:

Endpoint: {HOST}/solutions/{collection}/all

HTTP Method: DELETE

Description: This endpoint is similar to the above. It is available only to the administrators

who can delete all the solutions from a specific collection. The endpoint is
restricted and thus, the JWT of a requester must be included in the headers
of the request. For security reasons, the requesters should provide their
password in the body of their request, as raw data (JSON schema):

{ “password”: “.” }
Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json).
Headers: Key Value
x-access-token Requester's JWT
URL Parameters: Parameter Value
collection Valid values:
{"tools”, “policies”, “datasets”, “webinars”,
“tutorials”, “documents”, “other”}
Query Parameters: None
Restrictions / Special Currently, it is available only to the “superuser” (master admin) of the Data
Features: Marketplace.
Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl -request DELETE ‘{HOST}/solutions/{collection}/all’ -header ‘x-access-token: <JWT>’' \
--header ‘Content-Type: application/json’ -data-raw ‘{ “password”: “..” }'

TABLE 41 - DELETE ALL SOLUTIONS FROM A SPECIFIC COLLECTION INTERFACE

Title: Make a review for a solution

Endpoint: {HOST}/solutions/review/{sid}
HTTP Method: POST
Description: This endpoint is used to make a review for a solution, whose ID is included

in the request’s URL. The endpoint is available to all registered and verified
users whose JWT is required in the headers of the request. A review consists
of a rating (integer value between 1 and 5) and a comment (free text). The
users can make a review for a specific solution only once, but they can
update it via the next endpoint, whilst the providers/creators of solution
cannot make a review on their solutions. The next JSON schema must be in

request’s body, as raw data:
{“rating”: <value>, “comment”: “..”}

After the successful submission of a review, the average rating of the
reviewed solution is recalculated.

Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json).
Headers: Key Value

x-access-token Requester's JWT
URL Parameters: Parameter Value

sid The ID of the solution for which the review

of a user will be made.

46

v Policy Cloud

Query Parameters:
Restrictions / Special
Features:

Successful Response:

D7.12-v.1.0

None

Available to all registered and verified users. The providers/creators are not
able to make a review for their solutions.

JSON Object with a successful message.

The following is an example of the request in cURL:

curl -request POST ‘{HOST}/solutions/review/{sid}’ \

--header ‘x-access-token: <JWT>’ -header ‘Content-Type: application/json’ \
--data-raw ‘{“rating”: <value>, “comment”: “..”}’

TABLE 42 - MAKE A REVIEW FOR A SOLUTION INTERFACE

After the successful submission of a review, the following JSON document is stored in the database:

{

N 1d”: “<review’s ID>”, “rating”: <integer value between 1 and 5>,

“comment”: “.”, “title”:

“<solution’s title>”, “sid”: “<solution’s ID>",

“collection”: “<solution’s collection>”,

“uid”: “<the ID of the user who made the review>”,

“reviewer”: <the fullname of the user who made the review>,
“initial review date”: “<the date of the initial review>”,
“updated review date”: “<date of the last review>”,

“solution version”: <solution’s version when the review made>,

“review version”: <version of the current review>,
“provider”: <solution’s provider ID>

Endpoint:
HTTP Method:
Description:

Body Data:
Headers:

URL Parameters:

Query Parameters:
Restrictions / Special
Features:

Successful Response:

{HOST}/solutions/review/{sid}

PUT

This endpoint is used in order to update a review that made for a specific
solution. The ID of the solution should be included in the URL of the request.
The endpoint is available to all registered and verified users whose JWT is
required in the headers of the request. A prerequisite for this action is that
users have already made a review for the specific solution.

A review consists of a rating (integer value between 1 and 5) and a comment.
The next JSON schema should be in the body of the request, as raw data:

{“rating”: <value>, “comment”: “..”}

After the successful submission of an updated review, the average rating of
the reviewed solution is recalculated.

Raw (JSON) Data - as the above schema (Content-Type: application/json).

Key Value

x-access-token Requester’s JWT

Parameter Value

sid The ID of the solution for which the review of

a user will be updated.
None
Available to all registered and verified users. A prerequisite for this action is
that users have already made a review for the specific solution.
JSON Object with a successful message.

The following is an example of the request in cURL:

curl -request PUT ‘{HOST}/solutions/review/{sid}’ \

--header ‘x-access-token: <JWT>’ -header ‘Content-Type: application/json’ \
--data-raw ‘{“rating”: <value>, “comment”: “..”}’

TABLE 43 - UPDATE AN EXISTING REVIEW FOR A SOLUTION INTERFACE

47

Policy Cloud D7.12-Vv.1.0

Title: Delete a review for a solution

Endpoint: {HOST}/solutions/review/{sid}

HTTP Method: DELETE

Description: This endpoint is used to delete a review that made for a specific solution.

The ID of the solution should be included in the URL of the request. The
endpoint is available to all registered and verified users whose JWT is
required in the headers of the request. A prerequisite for this action is that
users have already made a review for the specific solution. It should be
noted that the administrators are able to delete reviews that made from
other users, providing the ID of the reviewer in the headers of the request.
After the successful deletion of a review, the average rating of the solution
is recalculated.

Body Data: None
Headers: Key Value
x-access-token Requester’s JWT
x-uid [Optional & only for administrators] The ID of the
user whose review on the specified solution will be
deleted. It is used by administrators in order to
specify the reviewer.
URL Parameters: Parameter Value
sid The ID of the solution for which the review of a user
will be deleted.
Query Parameters: None
Restrictions / Special Available to all registered and verified users. A prerequisite for this action is
Features: that users have already made a review for the specific solution. The

administrators are able to delete reviews that made from other users.
Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
+ curl -request DELETE ‘{HOST}/solutions/review/{sid}’ --header ‘x-access-token: <JWT>’
+ curl -request DELETE ‘{HOST}/solutions/review/{sid}’ \

--header ‘x-access-token: <JWT>’ -header ‘x-uid: <value>’

TABLE 44 - DELETE A REVIEW FOR A SOLUTION INTERFACE

Title: Get a list with the reviews made by a specific user

Endpoint: {HOST}/solutions/review/{uid}
HTTP Method: GET
Description: This request returns all the reviews made by a specific user whose ID {uid}

is part of the request’s URL (the schema of the reviews can be found in the
“Make a review for a solution” interface). The endpoint is restricted and thus,
the JWT of a requester must be included in the headers of the request.
Finally, the endpoint offers some standard query parameters that specify
the format of the results and are described below (Query Parameters).

Body Data: None
Headers: Key Value
x-access-token Requester's JWT
URL Parameters: Parameter Value
uid The ID of the user whose reviews will be retrieved.
Query Parameters: Key Value

48

@ Policy Cloud D7.12-v.1.0

Restrictions / Special

Features:
Successful Response:

The following is an example of the request in cURL:
‘{HOST}/solutions/review/{uid}’ -header ‘x-access-token: <JWT>'

curl
curl
curl
curl
curl
curl

+ 4+ +

—-request
-request
-request
—-request
—-request
-request

Endpoint:
HTTP Method:
Description:

Body Data:
Headers:

GET

GET ‘.

GET
GET
GET
GET

\

\

\

\

sortBy [Optional] Sorts the reviews by a field - the default is the
“newest” key. The value should be one of the following:
“newest": sort by review date in descending order.
“oldest”: sort by review date in ascending order.
“rating-asc”: sort by user’s rating in ascending order.
“rating-desc”: sort by user’s rating in descending order.
“title”: sort by solution’s title in ascending order.

itemsPerPage [Optional] Returns the results separated in pages
(arrays) of N items. The number N is specified by the
value of this key. The value N must be an integer
number greater or equal to 1. If the key is not used or
has a non-accepted value, the results are returned on a
single page.

Page [Optional] This key can only be wused if the
“itemsPerPage” key is also used. If it is used, it returns
only the specified (by key's value) page instead of all
pages created using the key “itemsPerPage”. The value
must be an integer number greater or equal to 1. The
default value is 0, which means that all pages will be
returned.

Available to all registered and verified users.

JSON Object with the reviews made by a specific user.

?sortBy={value}’ ..

..?itemsPerPage={value}’ ..

..?itemsPerPage={value} &page={value}’ ..
..?sortBy={value}&itemsPerPage={value}’ ..
..?sortBy={value}&itemsPerPage={value}&page={value}’ ..

TABLE 45 - GET A LIST WITH THE REVIEWS MADE BY A SPECIFIC USER INTERFACE

URL Parameters:

Query Parameters:

{HOST}/solutions/reviews/{sid}

GET

This request returns all the reviews made for a specific solution whose ID
{sid} is part of the request’s URL (the schema of the reviews can be found in
the “Make a review for a solution” interface). The endpoint is restricted and
thus, the JWT of a requester must be included in the headers of the request.
Finally, the endpoint offers some standard query parameters that specify
the format of the results and are described below (Query Parameters).
None

Key Value

x-access-token Requester's JWT

Parameter Value

sid The ID of the solution whose reviews will be retrieved.
Key Value

sortBy [Optional] Sorts the reviews by a field - the default is the

“newest” key. The value should be one of the following:

49

@ Policy Cloud

Restrictions / Special

Features:

Successful Response:

curl
curl
curl
curl
curl
curl

+ 4+ + o+

-request
—-request
—-request
-request
-request
—-request

Endpoint:
HTTP Method:
Description:

Body Data:
Headers:
URL Parameters:

GET
GET
GET
GET
GET
GET

Query Parameters:

Restrictions / Special

Features:

Successful Response:

D7.12 -v.1.0

itemsPerPage

Page

“newest": sort by review date in descending order.
“oldest”: sort by review date in ascending order.
“rating-asc”: sort by user’s rating in ascending order.
“rating-desc”: sort by user’s rating in descending order.
“title”: sort by solution’s title in ascending order.
[Optional] Returns the results separated in pages
(arrays) of N items. The number N is specified by the
value of this key. The value N must be an integer
number greater or equal to 1. If the key is not used or
has a non-accepted value, the results are returned on a
single page.

[Optional] This key can only be wused if the
“itemsPerPage” key is also used. If it is used, it returns
only the specified (by key's value) page instead of all
pages created using the key “itemsPerPage”. The value
must be an integer number greater or equal to 1. The
default value is 0, which means that all pages will be
returned.

Available to all registered and verified users.

JSON Object with the reviews made by a specific user.

The following is an example of the request in cURL:
‘{HOST}/solutions/reviews/{sid}’ -header ‘x-access-token: <JWT>’

‘..?sortBy={value}’ ..

‘..?itemsPerPage={value}’ ..

‘..?itemsPerPage={value} &page={value}’ ..
‘..?sortBy={value} &itemsPerPage={value}’ ..
‘..?sortBy={value} &itemsPerPage={value} &page={value}’ ..

TABLE 46 - GET A LIST WITH THE REVIEWS MADE FOR A SPECIFIC SOLUTION INTERFACE

{HOST}/solutions/image/{sid}

GET

This interface can be used in order to retrieve the cover image of a specific
solution, using its ID {sid}, which is part of the request’'s URL.

None
None
Parameter
sid

None
None

Value
The ID of the solution whose cover image
will be retrieved.

The cover image of the solution (returned as image).

The following is an example of the request in cURL:
curl --request GET '{HOST}/solutions/image/{sid}"'

TABLE 47 - GET THE COVER IMAGE OF A SOLUTION INTERFACE

50

Policy Cloud D7.12-Vv.1.0

Title: Change the cover image of a solution

Endpoint: {HOST}/solutions/image/{sid}/{img_id}

HTTP Method: PUT

Description: This interface can be used in order to change the cover image of a specific

solution, using the ID of the solution {sid}, which is part of the request's URL
and the ID of the image {img_id} that will replace the current cover image of
the specified solution. It should be noted that the image should be uploaded
as ‘image’ asset type for the specified solution in order to be used as the
cover image, whose ID is the {img_id} value that is part of the request’s URL.

Body Data: None
Headers: Key Value
x-access-token Requester's JWT
URL Parameters: Parameter Value
sid The ID of the solution whose cover image
will be retrieved.
img_id The ID of the image that will replace the
current cover image - the image must be an
asset of the specified solution.
Query Parameters: None
Restrictions / Special Available only for the providers/creators of the solutions and for the
Features: administrators who can update any solution.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl --request PUT '{HOST}/solutions/image/{sid}/{img_id}' --header 'x-access-token: {JWT}'

TABLE 48 - CHANGE THE COVER IMAGE OF A SOLUTION INTERFACE

Title: Remove the cover image of a solution

Endpoint: {HOST}/solutions/image/{sid}
HTTP Method: DELETE
Description: This interface can be used to remove the cover image of a specific solution,

using the ID of the solution {sid} that is part of the request's URL. This action
removes the current cover image which is replaced by the default cover
image of all solutions. Though, this action will not delete the image from the

assets lists.
Body Data: None
Headers: Key Value
x-access-token Requester's JWT
URL Parameters: Parameter Value
sid The ID of the solution whose cover image
will be removed.
Query Parameters: None
Restrictions / Special Available only for the providers/creators of the solutions and for the
Features: administrators who can update any solution.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl --request DELETE '{HOST}/solutions/image/{sid}' --header 'x-access-token: {JWT}'

TABLE 49 - REMOVE THE COVER IMAGE OF A SOLUTION INTERFACE

51

PQlicy Cloud D7.12-v.1.0

4fﬁié?44444444444444444444444444T444T4444444444T4444444444444444444T4T4444444‘?‘74444444444474444447
Endpoint: {HOST}/solutions/permit/all

HTTP Method: GET

Description: This endpoint returns the solutions from all the collections (since the

keyword “all” is used) that need permission before they become available to
the Data Marketplace's users. A solution needs permission either when it is
uploaded or after it has been updated by the users. Moreover, the endpoint
is only available to administrators and thus, the JWT of a requester is
required in the headers of the request. Finally, the endpoint offers some
standard query parameters that specify the format of the results and are
described below (Query Parameters).

Body Data: None
Headers: Key Value
x-access-token Requester’s JWT
URL Parameters: None
Query Parameters: Key Value
sortBy [Optional] Sorts the solutions by a field - the default is
the “newest” key. The value should be one of the
following:

“newest"; sort by date in descending order.
“oldest”: sort by date in ascending order.
“title”: sort by title in ascending order.

itemsPerPage [Optional] Returns the results separated in pages
(arrays) of N items. The number N is specified by the
value of this key. The value N must be an integer
number greater or equal to 1. If the key is not used or
has a non-accepted value, the results are returned on
a single page.

Page [Optional] This key can only be used if the
“itemsPerPage” key is also used. If it is used, it returns
the specified (by key's value) page instead of all pages
created using the key “itemsPerPage”. The value must
be an integer greater or equal to 1. The default value
is 0, meaning that all pages will be returned.

Restrictions / Special Available only to the administrators.

Features:

Successful Response: JSON Object with the solutions (from all collections) that need permission in
its content.

The following is an example of the request in cURL:

curl -request GET ‘{HOST}/solutions/permit/all’ -header ‘x-access-token: <JWT>'
curl -request GET ‘..?sortBy={value}’ ..

curl -request GET ‘'..?itemsPerPage={value}’ ..

curl -request GET ‘'..?itemsPerPage={value}é&page={value}’ ..

curl -request GET ‘'..?sortBy={value}é&itemsPerPage={value}’ ..

curl -request GET ‘..?sortBy={value}é&itemsPerPage={value}é&page={value}’ ..

TABLE 50 - GET A LIST WITH ALL SOLUTIONS THAT NEED PERMISSION INTERFACE

+ 4+ + +++

Get a list with all solutions from a specific collection that need permission

52

PQlicy _Cloud D7.12-v.1.0

Endpoint:
HTTP Method:
Description:

Body Data:
Headers:

URL Parameters:

Query Parameters:
Restrictions / Special
Features:

Successful Response:

{HOST}/solutions/permit/{collection}

GET

This request is similar to the above request. The only difference between the
two (2) actions is that the current request retrieves the solutions that need
permission from a specific collection (uses specific {collection} value instead
of the keyword “all”). For more details, refer to the above endpoint.

None

Key Value
x-access-token Requester's JWT
Parameter Value
collection Valid values:

"o,

{"tools”, “policies”, “datasets”, “webinars”,
“tutorials”, “documents”, “other”}

As in the above request.

Available only to the administrators.

JSON Object with the solutions (from a specific collection) that need
permission in its content.

The following is an example of the request in cURL:

curl -request GET
curl -request GET

+ 4+ + 4+ +

curl -request GET
curl -request GET

curl -request GET ‘{HOST}/solutions/permit/{collection}’ -header ‘x-access-token: <JWT>’
‘..?sortBy={value}’ ..
‘..?itemsPerPage={value}’ ..

curl -request GET ‘..
‘..?sortBy={value}&itemsPerPage={value}’ ..
‘..?sortBy={value}&itemsPerPage={value}&page={value}’ ..

?itemsPerPage={value}é&page={value}’ ..

TABLE 51 - GET A LIST WITH ALL SOLUTIONS FROM A SPECIFIC COLLECTION THAT NEED PERMISSION INTERFACE

Approve or reject a specific solution that need permission, using keyword

Endpoint:
HTTP Method:
Description:

Body Data:
Headers:

URL Parameters:

“all"” (administrators’ action)

{HOST}/solutions/permit/all/{sid}

POST

This endpoint is used by administrators to approve or reject a specific
solution (using its ID) that needs administrators’ permission. The endpoint
is restricted and available only to administrators and thus, the requesters
must provide their JWTs in the headers of the request. Also, this endpoint
uses the keyword “all” and not the collection in which a specific solution is
stored, as the next endpoint does. An important parameter/key that must
be included in the request's headers is the “x-permission” key that should
contain the text “approve” for the solution’s approval, otherwise the text
“disapprove” for its rejection. A rejection/ disapproval of a solution results to
the deletion of the solution and all its assets.

None

Key Value

x-access-token Requester’s JWT

X-permission Valid values:
{"approve”, “disapprove”}

Parameter Value

sid The ID of the solution that will be approved or
rejected.

53

Policy Cloud D7.12-Vv.1.0

Cloud for Data-Driven Palicy Management

Query Parameters: None
Restrictions / Special Available only to the administrators.
Features:

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl -request POST ‘{HOST}/solutions/permit/all/{sid}’ \
--header ‘x-access-token: <JWT>' -header ‘x-permission: <value>’

TABLE 52 - APPROVE OR REJECT A SOLUTION THAT NEEDS PERMISSION, USING KEYWORD “ALL" INTERFACE

Approve or reject a specific solution that need permission, using solution’s

“collection” (administrators’ action)

Endpoint: {HOST}/solutions/permit/{collection}/{sid}
HTTP Method: POST
Description: This request is similar to the above request. The only difference between the

two (2) actions is that the current request uses the value of the {collection}
in which a specific solution is stored. For more details, refer to the above

endpoint.
Body Data: None
Headers: Key Value
x-access-token Requester’s JWT
X-permission Valid values:
{"approve”, “disapprove”}
URL Parameters: Parameter Value
collection Valid values:
{"tools”, “policies”, “datasets”, “webinars”,
“tutorials”, “documents”, “other”}
sid The ID of the solution that will be approved or
rejected.
Query Parameters: None
Restrictions / Special Available only to the administrators.

Features:
Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl -request POST ‘'{HOST}/solutions/permit/{collection}/{sid}’ \
--header ‘x-access-token: <JWT>' -header ‘x-permission: <value>’

TABLE 53 - APPROVE OR REJECT A SOLUTION THATS NEEDS PERMISSION, USING SOLUTION'S “COLLECTION” INTERFACE

Approve or reject all solutions that need permission, using keyword “all”

(administrators’ action)

Endpoint: {HOST}/solutions/permit/all/all
HTTP Method: POST
Description: This endpoint is used by the administrators to approve or reject all the

stored solutions (from all the collections, since keyword “all” is used) that
need administrators' permission. The endpoint is restricted and available
only to administrators and thus, the requesters’ must provide their JWTs in
the headers of the request. An important parameter/key that must be
included in the headers of the request is the “x-permission” key that should
have as a value the text “approve” for the solutions to be approved,

www.policycloud.eu 54

Egrlic_\/qglgg!d D7.12 -v.1.0

otherwise the text “disapprove” to be rejected. A rejection/disapproval of the
solutions has as a result the deletion of the solutions and all of their assets.

Body Data: None
Headers: Key Value

x-access-token Requester’s JWT

X-permission Valid values:

{"approve”, “disapprove”}

URL Parameters: None
Query Parameters: None
Restrictions / Special Currently, it is available only to the “superuser” (master admin) of the Data
Features: Marketplace.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl -request POST ‘{HOST}/solutions/permit/all/all ‘' \
--header ‘x-access-token: <JWT>’ -header ‘x-permission: <value>’

TABLE 54 - APPROVE OR REJECT ALL SOLUTIONS THAT NEED PERMISSION, USING KEYWORD “ALL” INTERFACE

Approve or reject all solutions that need permission under a specific

collection, using a “collection” value (administrators’ action)

Endpoint: {HOST}/solutions/permit/{collection}/all
HTTP Method: POST
Description: This request is similar to the above request. The only difference is that the

administrators, using the current endpoint, are able to approve or reject all
the solutions of a specific {collection}. The endpoint is restricted and
available only to administrators and thus, the requesters’ must provide their
JWTs in the headers of the request. An important parameter/key that must
be included in the headers of the request is the “x-permission” key that
should have as a value the text “approve” for the solutions to be approved,
otherwise the text “disapprove” to be rejected. A rejection/disapproval of the
solutions has as a result the deletion of the solutions and all of their assets.

Body Data: None
Headers: Key Value
x-access-token Requester’s JWT
X-permission Valid values:
{"approve”, “disapprove”}
URL Parameters: Parameter Value
collection Valid values:
{"tools”, “policies”, “datasets”, “webinars”,
“tutorials”, “documents”, “other"}
Query Parameters: None
Restrictions / Special Currently it is available only to the “superuser” (master admin) of the Data
Features: Marketplace

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl -request POST ‘{HOST}/solutions/permit/{collections}/all " \
--header ‘x-access-token: <JWT>’ -header ‘x-permission: <value>’

TABLE 55 - APPROVE OR REJECT ALL SOLUTIONS THAT NEED PERMISSION UNDER A
SPECIFIC COLLECTION, USING A “COLLECTION" VALUE INTERFACE

55

@ Policy Cloud D7.12-v.1.0

2.2.1.3 Search functionality on Solutions

The search functionality is a vital requirement for most services in order to reduce the number of objects
returned by a query. Thus, the back-end’s endpoints that retrieve multiple solutions simultaneously,
support some relative query filters. These filters enable the users of the Data Marketplace to search for
assets, based on various parameters from the content of the stored solutions.

More specifically, the interfaces of the back-end that return lists of assets, support additional query
parameters with any key-value pair. Query parameters are a defined set of parameters attached to the
end of a URL and are used in order to help search specific content or actions based on the data being
passed. In order to append query parameters to the end of a URL, a question mark “?” is added to the
end of the URL, followed immediately by a pair of a key and a value, separated by an equal symbol “=".
Moreover, a URL can have multiple parameters, by adding an ampersand symbol “&”" between each pair
of key-value.

In the context of the Data Marketplace and the solutions, the keys added to the URLs as query parameters
must be valid, in the sense that they exist as fields in the solutions and their search has a real value.
Below are some valid syntaxes for advanced search with additional query parameters. The examples use
the “Get a list with all solutions” interface.

Single key: ‘{HOST}/solutions/all?<key name>=<value>’
Multiple keys: ‘{HOST}/solutions/all?<key l>=<value>é&<key 2>=<value>&..’

Moreover, the Python programming language that is used by the back-end (as described in Section 2.3.1),
enables access to nested fields of dictionary/JSON object using a dot “.” between a key at the first level of
the hierarchy and a key at the second level (this applies to all levels, up to the lowest level). Thus, the next
example is also a valid schema of a query:

For keys in lower hierarchical level:

‘{HOST}/solutions/all?<key level 1>.<key level 2>.<.>.<key level n>=<value>’

To sum up, given the above syntaxes of a valid query and the JSON Object/solution of “Example 1" in the
interface of “Table 34 - Upload / Create a new solution with random ID Interface”, the following search
example request in cURL returns the solutions that in their title contain the value “machine learning” and
their provider is the user with ID “vkoukos”:

curl -request GET
‘{HOST}/solutions/all?info.title=machine%20learning&metadata.provider=vkoukos’

It should be noted that the value “%20" is the ASCII Encoding Reference of the space character.

Except for these, the back-end supports advanced searching using some operators that extend the keys
of the query parameters, using a dot “." between the keys and the operators. Below are the supported
operators along with a description for their usage.

56

Operator

eq

ne

gt

gte

It

fte

n

nin

Policy Cloud

D7.12-v.1.0

Usage
Full title: equal
This operator performs an equality search and has exactly
the same use with the equality symbol “=". It applies to both
texts (strings) and numbers.
Full title: not equal
This operator performs a non-equality search. It applies to
both texts (strings) and numbers.
Full title: greater than
This operator performs searching for a key with a value
greater than the provided. It applies to both texts (strings)
and numbers.
Full title: greater than or equal
This operator performs searching for a key with a value
greater than or equal to the provided. It applies to both
texts (strings) and numbers.
Full title: less than
This operator performs searching for a key with a value less
than to the provided. It applies to both texts (strings) and
numbers.
Full title: less than or equal
This operator performs searching for a key with a value less
than or equal to the provided. It applies to both texts
(strings) and numbers.
Full title: in (equal to one of the values)
This operator performs searching for a key with a value
equal to one of the provided values. The <value> may have
multiple values separated by a comma “". It applies to both
texts (strings) and numbers.
Full title: not in (not equal to any of the value)
This operator performs searching for a key with a value not
equal to any of the provided values. The <value> may have
multiple values separated by a comma “,". It applies to both

texts (strings) and numbers.
TABLE 56 - BACK-END'S SEARCH OPERATORS

Below are some examples of the operators' use.

eq: ‘{HOST}/solutions/all?metadata.provider.eqg=vkoukos’

ne: ‘{HOST}/solutions/all?metadata.version.ne=1’

gt: ‘{HOST}/solutions/all?metadata.views.gt=100"’

gte: “{HOST}/solutions/all?info.type.gte=datasets’
lt: “{HOST}/solutions/all?metadata.uploadDate.1lt=2021-10-15"’

Example
<key>.eq=<value>

<key>.ne=<value>

<key>.gt=<value>

<key>.gte=<value>

<key>.lt=<value>

<key>.lte=<value>

<key>.in=<value_1>,
<value_2>

<key>.nin=<value_1>,
<value_2>

lte: “{HOST}/solutions/all?metadata.reviews.no_reviews.lte=20’

in: ‘{HOST}/solutions/all?info.title.in=machine,learning,algorithm’

nin: ‘{HOST}/solutions/all?info.keywords.nin=poverty,crime’

57

PohcyCloud D7.12 -v.1.0

Furthermore, the back-end’s search mechanism uses a ranking system for the results. More specifically,
for each solution in the results, it maintains a score resulting from the points it receives for each search
argument.

In an equality search (using “=" symbol or “eq” operator) for a specific key, the points that a solution
receives can be one of the following:

e 5:if the values are exactly equal (same) and case sensitive.

e 4:if the values are equal (same) but not case sensitive.

e 3:if the values are similar (e.g., the first value contains the second value but are not the same)

and case sensitive.
e 2:if the values are similar but not case sensitive.
e 0:if the values do not match.

The other operators just receive 1 if the conditions match (“true”). The operator “in” uses the operator
“eq" (or the symbol “=") for each value in its “array” and thus, it has the same score system.

Finally, the operator “nin” uses the operator “ne” for each value in its “array”.

2.2.1.4 Interfaces related to Assets

This group of APIs offers functionalities intended for the management of the assets. They support all
CRUD operations for the assets that are stored in the back-end. Table 57 presents the endpoints related
to Assets as they are in the first version of the Data Marketplace's back-end.

Action HTTP Method Endpoint
Get a list with the stored assets GET {HOST}/assets
Get a specific asset, using its ID GET {HOST}/assets/{asset_id}
Upload a new asset with random ID, linked POST {HOST}/assets/{sid}
to a specific solution
Upload a new asset with given ID, linked to POST {HOST}/assets/{sid}/{given_asset_id}
a specific solution
Update a specific asset, using its ID PUT {HOST}/assets/{asset_id}
Delete a specific asset, using its ID DELETE {HOST}/assets/{asset_id}
Delete all assets (administrators’ action) DELETE {HOST}/assets/all

TABLE 57 - BACK-END'S INTERFACES RELATED TO ASSETS

e {HOST}refers to the hosting server: the domain name and the port running the back-end.

o {asset id}refers to the ID of a specific asset.

e {given_asset id}is used in the upload asset action, providing the new asset’s ID.

e {sid}refers to the ID of the solution with which the new asset will be linked to.

e Most of these actions require additional fields in the headers of the HTTP request. Example of a
required field is the JWT.

58

Policy Clouﬂ D7.12-Vv.1.0

Cloud for Data-Driven Policy Management

Below is a more detailed description of all the provided interfaces and their corresponding actions:

Title: Get a list with the stored assets

Endpoint: {HOST}/assets

HTTP Method: GET

Description: A request to this endpoint will result in the retrieval of a list with the stored
assets and some additional information of them.

Body Data: None

Headers: Key Value
x-access-token Requester’s JWT

URL Parameters: None

Query Parameters: None

Restrictions / Special Available only to administrators.

Features:

Successful Response: Results in JSON Object

The following is an example of the request in cURL:
curl -request GET ‘{HOST}/assets’ -header ‘x-access-token: <JWT>'
TABLE 58 - GET A LIST WITH THE STORED ASSETS INTERFACE

Title: Get a specific asset, using its ID

Endpoint: {HOST}/assets/{asset_id}
HTTP Method: GET
Description: This endpoint is used to retrieve a specific stored asset. For its retrieval, the

usage of the asset’s ID is necessary. Also, this endpoint is restricted and thus,
the JWT of a requester must be included in the headers of the request.

Body Data: None
Headers: Key Value
x-access-token Requester's JWT
URL Parameters: Parameter Value
asset_id The ID of the asset that will be
retrieved.
Query Parameters: None
Restrictions / Special Available to all authorized (and verified) users.
Features:
Successful Response: Binary data

The following is an example of the request in cURL:
curl -request GET ‘'{HOST}/assets/{asset id}’ -header ‘x-access-token: <JWT>'
TABLE 59 - GET A SPECIFIC ASSET USING ITS ID INTERFACE

Title: Upload a new asset with random ID, linked to a specific solution

Endpoint: {HOST}/assets/{sid}
HTTP Method: POST
Description: Via this endpoint the users can upload their assets. It requires to add at the

end of the endpoint the solution’s ID with which is going to be linked. It is
also needed to add to the headers of the request the JWT of the provider
and the asset's filename., whilst the assets must be uploaded as form-data
with the key “asset”.

www.policycloud.eu 59

@ Policy Cloud

Body Data:

Headers:

URL Parameters:

Query Parameters:
Restrictions / Special
Features:

Successful Response:

D7.12-v.1.0
Data Type: Form Data
Key Value
asset Binary data / Path to file
Key Value
x-access-token Requester’s JWT
x-filename New asset's filename.
x-provider [Optional & only for administrators] The ID of

the provider user in case that the asset is
uploaded by an administrator and not by the

provider.
Parameter Value
sid The ID of the solution with which the new asset

is going to be linked.
None
Available for the solutions’ providers with which the assets will be
connected, and also for the administrators who can upload assets on behalf
of the providers.
JSON Obiject with the new asset’s ID in its content.

The following is an example of the request in cURL:

curl -request POST ‘'{HOST}/assets/{sid}’ \

--header ‘x-access-token: <JWT>’ -header ‘x-filename: <value>’ \
--form ‘asset=@”<full path to asset>"’

Endpoint:
HTTP Method:
Description:

Body Data:

Headers:

URL Parameters:

Query Parameters:
Restrictions / Special
Features:

Successful Response:

TABLE 60 - UPLOAD A NEW ASSET WITH RANDOM ID INTERFACE

{HOST}/assets/{sid}/{given_asset_id}

POST

This endpoint is similar to the previous. The difference is that with the
current endpoint it is possible to specify the ID of the new asset, providing it
at the end of the endpoint {given_asset_id}.

Data Type: Form Data

Key Value

asset Binary data / Path to file

Key Value

x-access-token Requester's JWT

x-filename New asset's filename.

x-provider [Optional & only for administrators] The

ID of the provider user in case that the
asset is uploaded by an administrator and
not by the provider.

Parameter Value

sid The ID of the solution with which the new
asset is going to be linked.

Given_asset_id The ID to be given to the new asset.

None

Available only for administrators whether they upload an asset for their
solutions or upload an asset on behalf of the providers.
JSON Object with the new asset’s ID in its content.

60

Policy Clg‘)&!d D7.12-Vv.1.0

ud for Data-Driven Policy

The following is an example of the request in cURL:

curl -request POST ‘{HOST}/assets/{sid}/{given_asset id}’ \
--header ‘x-access-token: <JWT>’ -header ‘x-filename: <value>’ \
--form ‘asset=@”<full path_ to_asset>"’

TABLE 61 - UPLOAD A NEW ASSET WITH GIVEN ID INTERFACE

Title: Update a specific asset, using its ID

Endpoint: {HOST}/assets/{asset_id}

HTTP Method: PUT

Description: With this PUT request, it is possible to update an already stored asset. The

asset's ID that should be at the end of the endpoint, determines which asset
should be replaced by the new asset. As in the uploading, the asset should
be uploaded as form-data with the key “asset” and the headers of the
request should contain provider's JWT. It should be noted that the users can
only update the assets provided by themselves (except for administrators).

Body Data: Data Type: Form Data

Key Value

asset Binary data / Path to file
Headers: Key Value

x-access-token Requester’s JWT

x-filename [Optional]

Asset's new filename.

URL Parameters: Parameter Value

asset_id The ID of the asset that will be updated.
Query Parameters: None
Restrictions / Special Available only for the providers of the solutions / assets and for the
Features: administrators who can update stored assets on behalf of the providers.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:

curl -request PUT ‘'{HOST}/assets/{asset_id}’ \

--header ‘x-access-token: <JWT>’' -header ‘x-filename: <value>’ \
--form ‘asset=@”<full_path_to_asset>"’

TABLE 62 - UPDATE A SPECIFIC ASSET USING ITS ID INTERFACE

Title: Delete a specific asset, using its ID

Endpoint: {HOST}/assets/{asset_id}
HTTP Method: DELETE
Description: A request to this endpoint has as a result the deletion of a specific asset, by

using its ID to find it. This endpoint is restricted and thus, the JWT of a
requester must be included in the headers of the request. Note that an asset
can be deleted only by its provider and the administrators. For security
reasons, the requesters should provide their password in the body of their

request, as raw data (JSON schema):
{ “password”: “..” }

If the action is made by an administrator, the field “password” should be the
password of the administrator.

Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json).
Headers: Key Value
x-access-token Requester's JWT

61

PohcyCloud D7.12 -v.1.0

URL Parameters: Parameter Value

asset_id The ID of the asset that will be deleted.
Query Parameters: None
Restrictions / Special Available only for the providers of the solutions / assets and for the
Features: administrators who can delete any stored assets.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl -request DELETE ‘{HOST}/assets/{asset_id}’ -header ‘x-access-token: <JWT>’' \
--header ‘Content-Type: application/json’ -data-raw ‘{ “password”: “..” }’

TABLE 63 - DELETE A SPECIFIC ASSET USING ITS ID INTERFACE

Title: Delete all assets (administrators’ action)

Endpoint: {HOST}/assets/all

HTTP Method: DELETE

Description: This request is similar to the above request, with the difference that it

deletes all the assets, as it uses the keyword “all”. Again, it is necessary the
usage of the requester’s JWT, and it is only available to administrators. For
security reasons, the requesters should provide their password in the body
of their request, as raw data (JSON schema):

{ “password”: “..” }
Body Data: Raw (JSON) Data - as the above schema (Content-Type: application/json).
Headers: Key Value

x-access-token Requester's JWT
URL Parameters: None
Query Parameters: None
Restrictions / Special Currently, it is available only to the “superuser” (master admin) of the Data
Features: Marketplace.

Successful Response: JSON Object with a successful message.

The following is an example of the request in cURL:
curl --request DELETE '{HOST}/assets/all' --header 'x-access-token: <JWT>' \
--header 'Content-Type: application/json' --data-raw '{ "password": "." }'

TABLE 64 - DELETE ALL ASSETS (ADMINISTRATORS' ACTION) INTERFACE

62

Policy _Cloud D7.12-v.1.0

2.2.1.5 Root & Other Interfaces

One endpoint that was not mentioned is that of the back-end's root interface, which presents a roadmap
of the main back-end’s interfaces. The latter is described below:

Title: Root interface

Endpoint: {HOST}

HTTP Method: GET

Description: This endpoint returns a list with the back-end’s interfaces that are available

to be used by all users. It acts as a roadmap, providing the interfaces along
with short information about the functionalities that they trigger. The
structure of the information follows a tree approach.

Body Data: None

Headers: None

URL Parameters: None

Query Parameters: None

Restrictions / Special None

Features:

Successful Response: Back-end’s roadmap in text/plain.

The following is an example of the request in cURL:
curl -request GET ‘{HOST}’

TABLE 65 - ROOT INTERFACE

Except for the already described interfaces, the back-end provides the following restricted interfaces that
will not be described, since they are mostly related only with the platform’s administrators. In short, the
interfaces' titles are:

e Get a list of the administrators,

e Add a new administrator,

e Remove an administrator,

e Get system'’s backup,

e Restore a backup,

e Geta list of all users,

e Get a list with system metrics / report,
e Get the manual of the front-end.

63

@ Policy Cloud D7.12-v.1.0

2.2.2 Front-end

In this Section, the most important pages of the Data Marketplace's front-end are presented and analyzed
in detail. For each page, there is a relevant description of the displayed content as well as related images
(screenshots) from their final view. At this point, it should be noted that through the front-end and back-
end, a detailed manual about the front-end pages and the actions that can be performed on them is
offered to the users who can refer to it to resolve any issues (the manual is offered through the website
of the Data Marketplace - link: https://mdb.policycloud.eu/manual). Finally, all the pages of the front-end
that exploit the multiple benefits of WordPress, have a responsive web design for all devices as they can
adjust accordingly to the users' screens.

Navigation bar: The Navigation bar is common to all the pages, being located at the top of each page and
contains the appropriate items that redirect to the core pages of the front-end. Depending on whether a
user is logged in or not, the users can see different items/pages on the bar (also called “menu”). Figures
3 and 4 illustrate the navigation bar that is displayed to non-logged in and logged in users, respectively.

Data Markctolace Discover - Create About Contact Signin Signup Q

@ Policy Cloud

FIGURE 3 - NAVIGATION BAR FOR NON-LOGGED IN USERS

Data Market € > Discover v Create About Contact MyAccount SignOut Q
-~

FIGURE 4 - NAVIGATION BAR FOR LOGGED IN USERS

The “Discover” item in the navigation bar is a drop-down list that contains a variety of sub-items that are
displayed on mouse over, and redirect the user to the Discover page, applying filtering based on the type
of the Data Marketplace’s offered solutions. Figure 5 presents the navigation bar along with the Discover's
drop-down list from the Data Marketplace's Home page.

Datm\«ﬂarke.IPbCC 10 Create About Contact Signin SignUp Q
Tools
Policies
Datasets

Webinars Policies Webinars

Policy Cloud) &

< Documents

Other

Tools

Discover our Assets @'— 3 @- 2\ .

FIGURE 5 - NAVIGATION BAR FROM THE HOME PAGE

64

https://mdb.policycloud.eu/manual

D7.12-v.1.0

Policy Cloud

In the following example, a user searches for solutions categorized as “Tools". By hovering the mouse on
the “Discover” drop-down list, the main solutions’ types are displayed and with a click on the “Tools” item,
the user is redirected to the Discover page that presents the stored solutions categorized as “Tools”,
applying the respective filtering (Figure 6).

Data Market p lace Create About Contact MyAccount SignOut Q
-

Policies

Sortby Mostrecent ¥ tems per page 12 ¥

Filters

Datasets
Select the options below to narrow Webinars
your search.
Tutorials
Documents
Types T other
p— Entity 5
Al (Tools) olicies
- Aragon's Wine Ontology PolicyCloud TA (Trend PolicyCLOUD SA (Sentiment
Datasets Webinars Analysis) Tool Analysis) Tool
An ontology that identifies the wines
Tutorials Documents / S
from the various Aragonese Tool to perform trend analysis used Code contianing the sentiment
) designations of origin. Query to the in PolicyCLOUD. This tool is still under analysis carried out in the
ontology: PREFIX rdf: PREFIX owl development, newer versions will be PolicyCLOUD project. Several
PREFIX rdlfs: PREFIX xsd: PREFIX wn: uploaded as the tool approaches are included (sentiment
" SELECT ?DO ?winery ?wine implementation advances. by Vader, sentiment by Textblob and
Views
Aspect-based sentiment analysis)
s) @7 views 0 (Oreviells) @ 7 views 0 (Orevpws) @5 views
2months ogo Yool - Updatef] 2 months ago Tool -Upadled 2 months ago
Date e
From To
nn/pp/2022 O nn/pp/2022

PolicyCLOUD TSF (Timeseries
Forecasting) Tool

PolicyCLOUD EDA
(Exploratory Data Analysis)

PolicyCLOUD Privacy
Enforcement Mechanism

FIGURE 6 - DISCOVER'S SUB-ITEMS REDIRECT TO DISCOVER PAGE

Footer: Except for the navigation bar, another common section to all the pages is the footer, which is
located at the bottom of each page and contains information about the project’'s main site, social media,
copyrights issues (i.e., copyright warning, reference to project’s funding by EC, etc.), as well as references
to terms and conditions for the website’s usage along with the privacy policies (Figure 7).

Join the & in L []

Policy Cloud Community Policycloud.eu PolicyCloudEU @PolicyCloudEU PolicyCloud EU

The development and the maintenance of the Policy Cloud Data Marketpiace is done by the Data and Cloud Computing (DAC) research team of the University of Piraeus. |

© Copyright 2022 - PolicyCLOUD has received funding from the European Union’s Horizon 2022 research and innovation programme under grant
agreement No. 870675. |

FIGURE 7 - FOOTER

65

@ Policy Cloud D7.12-v.1.0

Home page: The Home page illustrates some of the most popular and latest solutions provided into the
Data Marketplace, along with some random suggested solutions, which are differentiating every time
that a user reloads the Home page (Figure 9). What is more, the Home page depicts some relevant
statistics about the supported collections and the offered assets. If a user tries to log in, the front-end
sends an AJAX request to the corresponding interface of the back-end to get a valid token (JWT). If the
response does not contain a successful message, the front-end presents to the user a corresponding
error. In the case of a successful log in, the user is redirected to his/her account page. There is also a
button that when it is pressed by the users, it redirects them to the Discover page. It should be noted
that the basic assets’ categories are shown in circles in the beginning of the Home page, where every
circle category is interactive and if a user clicks on in, he/she is redirected in the Discover page, which
illustrates the existing solutions of the corresponding chosen category. Also, the Home page contains a
background image from the main PolicyCLOUD website, being designed in such a way to be consistent
with it (Figure 8). Finally, in the final bottom section of the Home page, there exists an image with a link
that redirects the suer to the Create page, encourage the user to sign in and create a new solution to the
Data Marketplace (Figure 10).

Data Marketplace Discoverv Create About Contact Signin SignUp Q

Datasets Policies Webinars

Policy Cloud © &

Tools Tutorials

Discover our Assets @L - @- 2 .

Be part of our community

Register Now

58 21 19 10

Total solutions Documents Datasets Tools

FIGURE 8 - HOME PAGE: UPPER VIEW

66

D7.12-v.1.0

Top rated solutions

Data Marketplace

PolicyCLOUD Data Marketplace -
Website Manual

This is the manual of the Policy Cloud Data
Marketplace. The manual contains all essential
information for the users to make full use of the
platform. It includes descriptions of the platform's
fun..

W 425 (2reviews) @ 52 views

Document - Updated 2 months ago

Most viewed solutions

Data Marketplace

PolicyCLOUD Data Marketplace -
Website Manual

This is the manual of the Policy Cloud Data
Marketplace. The manual contains all essential
information for the users to make full use of the
platform. It includes descriptions of the platform's
fun,

@ Policy Cloud

PolicyCloud Platform - User Manual

This short guide will introduce the user to the
PolicyCloud platform and includes a description of
all services available so far.

W 388 (Ireviews) @ 40 views

Document - Updated 2 months ago

@ Policy Cloud

PolicyCloud Platform - User Manual

This short guide will introduce the user to the
PolicyCloud platform and includes a description of
all services available so far.

i dddd
phdin Al

PolicyCLOUD Data Cleaning Component

This is the Data Cleaning component of the
PolicyCLOUD platform, offering all the appropriate
algorithms and techniques for detecting and
correcting (or removing) corrupt or inaccurate
records from..

* 0 (0reviews) @13 views

Tool -Updated 2 months ago

Customer Complaints Database

Open data set of consumer data,

FIGURE 9 - HOME PAGE: MIDDLE VIEW

Join the

Policy Cloud Community

Upload your own assets!

Click here

(V) in

Policycloud.eu PolicyCloud EU

funding frorr

L >]

@PolicyCloudEU PolicyCloud EU

mme under

FIGURE 10 - HOME PAGE: LOWER VIEW

67

PQUcy(]oud D7.12-v.1.0

Sign up page: The Sign up page contains a form that a user must fill in and submit in order to register
and access all the Data Marketplace’s content. As depicted in Figure 11, there are three (3) different ways
for the users to sign up: 1) through their Google account, 2) through their credentials provided in the
context of KeyCloak that is integrated into the overall PolicyCLOUD platform, and 3) by filling in the form
of the Sign up page with their basic information. Specifically, the users must fill in their first and last
name, their e-mail address, and a password for their account.

Sign up
Welcome! (7]

Create an account and start working with policy materials today.

Sign in with Google

First name *
Last name *

E-mail address *

T
!
[1+]

w
T
a
!

o

']

]
T
n

| have read and | agree to the Terms of Service.

FIGURE 11 - SIGN UP PAGE

At the bottom of the Sign up page there is also a switch button that determines whether the users have
read and accept the Terms and Conditions for the usage of the PolicyCLOUD Data Marketplace platform.
By clicking the “Terms of Service” text/link, the users are redirected to the corresponding page, in order
to be informed about the Data Marketplace terms of use before their registration.

68

&S Polcy Cloud D7.12- 10

Sign in page: The Sign in page consists of a simple form in which the users must insert their credentials
and depending on whether the users are indeed registered users of the Data Marketplace or not, they
are redirected to the Account page or they get an error message, respectively. To this context, there are
supported three (3) different ways for the users to sign in (similarly with the Sign up process), where the
first refers to the usage of their Google accounts, the second one refers to their credentials for the
PolicyCLOUD instance of KeyCloak, and the third one refers to the provided form of the Sign in page with
their Data Marketplace credentials.

Signin
Welcome back!

Please enter your details or sign in using one of the services below.

G Sign in with Google

@ sign in with PolicyCLOUD

E-mail address *

Password *

Don't have an account yet? You can sign up for free now. If you have
forgotten your credentials, you can reset your password.

FIGURE 12 - SIGN IN PAGE

Account Page: In the Account page, the logged in users are able to see the various details of their profiles.
More specifically, the Overview tab displays the overview of the users along with some statistics for their
contributions to the Data Marketplace. The Solutions tab presents the solutions offered/created by the
users, while the Reviews tab displays the reviews made by the users. Finally, there is the Profile tab that
presents the personal and the account details of the users.

Regarding the Overview tab, the statistics that the page illustrates refer to the following: (i) the total
number of solutions offered by the users, (ii) the number of the approved solutions, (iii) the number of
total assets that users’ solutions contain along with the total number of their downloads, (iv) the total

69

PQlicy _Cloud D7.12-v.1.0

number of views and reviews that the users’ solutions have, and (v) the average rating of all user's
solutions (Figure 13).

Marketplace Admin

BAPolicy Cloud

Overview

About

The main administrator of the Policy Cloud Data Marketplace.

Statistics
Overview
=1 v'1
Solutions 1 Total solutions Approved solutions
Reviews 0
[} 6
Profile Assets uploaded Total links provided
@52 &7
Total views Total downloads
o2 *5
Total received reviews Average rating

FIGURE 13 - ACCOUNT PAGE: OVERVIEW TAB

As for the Solutions tab, it displays the offered solutions of the users (Figure 14). If the Solutions tab is
accessed by a visitor/other logged in user and not the account owner or an administrator, it displays only
the approved solutions. Moreover, the Solutions tab supports both filtering and sorting options as in the
Discover page, in order to present the solutions based on the users’ preferences.

70

PQ,“C\/,.,QP.H(J D7.12 -v.1.0

Marketplace Admin

B Policy Cloud

Solutions

Sort by Most recent v ltemns per page 12 ¥

Filter:
m Tools Policies Datasets Webinars Tutorials Documents Other

Overview
Solutions 1 PolicyCLOUD Data Marketplace - Website Manual

R This is the manual of the Policy Cloud Data Marketplace. The manual contains all essential information for the users to make full use of the
Reviews o platform. It includes descriptions of the platform’s fun..

Profile Document PolicyCLOUD, Data Marketplace | W 425 (2reviews) | @ 52views | Last updated 3 monthsago | + Approved

FIGURE 14 - ACCOUNT PAGE: SOLUTIONS TAB

Similarly to the Solutions tab, the Reviews tab displays the reviews made by the user, indicating the rating
as well as the comment that the user has provided to the chosen solutions (Figure 15). This tab contains
the same filtering and sorting options with the Solutions tab, having however the difference that the
Reviews tab presents the same content whether the user is in visitor's mode or not.

Vasilis Koukos

BAuniversity of Piraeus (UPRC)

Reviews

Sortby Mostrecent v ltems perpage 12 ¥

5 Posted 7 months ago
Ovenziew Policy Cloud Data Marketplace - Website Manual
solutions o ‘For any questions, please contact the administration team!:)"

Reviews 1

Profile

FIGURE 15 - ACCOUNT PAGE: REVIEWS TAB

Regarding the Profile tab, the users can see the personal and the account information/details of the
displayed user (most of the presented information was provided by the users during their registration)
(Figure 16). Moreover, this tab enables the users to edit/update their personal information (e.g., Full
name, Gender, Organization, Phone number, etc.), request a copy of their data, as well as handle their
account details (e.g., change their password or email, delete their account, etc.) and the connections to
other services (e.g., Google account).

71

Policy Cloud D7.12-Vv.1.0

Cloud for Data-Driven Policy Management

Marketplace Admin
BAPolicy Cloud
. p—
Information £ Edit
Summary The main administrator of the Palicy Cloud Data Marketplace.
Related links None
Role Administrator
Overview
Full name Marketplace Admin
Solutions 1
Gender Prefer not to say
Reviews 0 . ’
‘Organization Policy Cloud
Profile . o "
E-mail policycloud.data.marketplace@gmail.com
Phone number Not provided
Member since olfo1/70

FIGURE 16 - ACCOUNT PAGE: PROFILE TAB

Discover page: In this page all the approved solutions are displayed, illustrating the main image of each
solution and its basic information, including its title, short description, last updated date, number of views
and reviews, average ratings and solution type (Figure 17). On the left side of the page, through the
provided sidebar, the users can search for solutions based on their title by filling in the search bar. They
can also filter the results based on a specific solution type, as well as the number of views and the
creation/update dates of the solutions. On the upper-right side of the page, there is a button for sorting
the results and selecting the desired number of the items (i.e., solutions) that will be presented per page.

Sortby Mostrecent ¥ Itemsperpage 12

Filters

Select the options below to narrow
your search.

Types
Tools Policies
France Transport Traffic Belgium Air Quality Dataset Madrid Air Quality Dataset
Datasets Webinars Dataset
This dataset contains information of This dataset contains air quality
Tutorials Hoctments This dataset gives lot of information the air pollution in Belgium, consisted data for the city of Madrid,
about trains and transports network of the exact location and the containing in a practical format 18
Clhex in France. pollutant with its units, with data years (2001-2018) of hourly data in
captured from 2017 to 2020. just a single file, which makes this
- dataset a great playgroun...
Views
W 0 (0 reviews) @ 4 views W 0 (0 reviews) @ 4 views W 0 (0 reviews) @ 5 views
5 Dataset - Updated 6 days ago Dataset - Updated 6 days ago Dataset - Updated 6 days ago
Date o ¥ —
Entity 2 Ent'tys%mya
From To " Entity 3 entitys
| Entity 3 ‘l Entlty 2
nn/pp/2022 B /20220 [Entity 4 1]
a
[Entitvs B
@ Apply Aragon’s Wines Opinions and Aragon'’s Wine Ontology PolicyCloud TA (Trend
Prices Dataset Analysis) Tool

FIGURE 17 - DISCOVER PAGE

72

PQUW..QQHQ D7.12 -v.1.0

As for the sorting options, the users can sort the results by their average rating, their number of views,
their creation/update date, alphabetically based on their title and (after a search) based on the most
relevant results.

Sortby = Mostrecent ¥ | Itemsperpage 12 w

Most recent

Oldest
Lowest rating
Highest rating
Least viewed
Most viewed
Most relevant
AZ

ality Dataset Madrid Air Quality Dataset

FIGURE 18 - DISCOVER PAGE: SORTING OPTIONS

When the users click on a solution, they are redirected to the specific Solution page. To this pointit should
be noted that the Discover page has the same view for both logged in and non-logged in users. It
communicates with the back-end via the REST APl and loads the information dynamically. In addition,
through its responsive mode and in relation to the type of the device that the user possesses, the display
is adapted accordingly, while the side bar appears only as a drop-down menu.

Solution page: The Solution page displays the main information of a solution, where a logged in user has
different views than a non-logged in user. All the users can view the title of the solution, the owner, the
type of the solution, the solution keywords, the average ratings, the number of reviews and the number
of views. In the case of logged in users, the latter have access to the full description of the solution, the
gallery with images and videos of the solution, whilst they are also able to download all the offered
assets/files that are part of the solution. In case of non-logged in/unauthorized users, the latter do not
have access to the assets and the gallery, whereas they can only see a short description of the solution.
If the users are the providers or administrators, they can update the information that is displayed, while
all the provided solutions need a permission from an administrator in order to be publicly displayed to
all the users. Based on this, if a solution is approved, an indication “approved” is displayed, otherwise, an
indication “pending” is displayed.

Logged in User View: A logged in user sees the entire content of a solution, the image gallery, and has
access to the assets, as depicted in Figure 19.

73

Eolicy Clg‘)&!q

ud for Data-Driven Policy

D7.12-v.1.0

PolicyCLOUD Data Cleaning Component

Argyro Mavrogiorgou

Assets

Files

» Data_Cleaning_Architecture.pdf
NE °

381 K8 - 3 months ag

Imuges

B Architecture.png
cover.png

N ©
.

Reviews

(]

© UPRC Radicalization, Winery, Smartcity ¥ 0 (0 reviews)

@ 17views Last updated 3 months ago Tool

Description

This is the Data Cleaning component of the PolicyCLOUD platform, offering all the appropriate algorithms and techniques for
detecting and correcting (or removing) corrupt or inaccurate records from all the collected data, correspondingly.

Gallery
= N FTTTITE
-:l-.i."— ki dddd
Y "f‘-‘-..l m_ 8
— T

-

No reviews yet.

FIGURE 19 - SOLUTION PAGE: VIEW FOR LOGGED IN USERS

Owner View: If the user is the provider, both an edit and a delete button appear in the page, which enable
the editing of the information, and the management of the solutions’ assets (i.e., upload, update, delete).
Every change made to the information of the solution has to be approved by an administrator in order
to be displayed. If the change has been approved, a green button “approved” appears in the page that is

only visible to the owner (Figure 20).

PolicyCLOUD Data Cleaning Component

Argyro Mavrogiorgou

Assets

Files

i Data_Cleaning_Architecture.pdf o

vl - 35381 K8 -3 months ago

Images
Architecture.png
L) SRR °
cover.png
B s s °
Reviews
o

© UPRC Radicalization, Winery, Smartcity ¥ 0 (0 reviews)

v Approved

@17views Lastupdated 3 months ago Tool

Description

This is the Data Cleaning component of the PolicyCLOUD platform, offering all the appropriate algorithms and techniques for
detecting and correcting (or removing) corrupt or inaccurate records from all the collected data, correspondingly.

Gallery
S . -
=S A T
e A b —
mi_ [1] ddidd
= ; 1] i
. -
— O l _—
Sondedong
Moty -
| - .
=]
No reviews yet.

FIGURE 20 - SOLUTION PAGE: VIEW FOR SOLUTION PROVIDERS AND ADMINISTRATORS

74

D7.12-v.1.0

&) Policy Clowd

Non-logged in User View: A non-logged in user is able to see only the basic information of a solution,
which contains a short description and metadata such as the solution’s owner, number of views and
reviews, average rating, and others (Figure 21).

PolicyCLOUD Data Cleaning Component

© UPRC Data ing, Data p ing,

ion, Winery, Smartcity ¥ 0(Oreviews) @ 17views Lastupdated 3 months ago Tool

Assets

You need to be logged in in order to view
this content.

Reviews

Description

This is the Data Cleaning component of the PolicyCLOUD platform, offering all the appropriate algorithms and
techniques for detecting and correcting (or removing) corrupt or inaccurate records from...

Gallery

You need to be logged in in order to view this content.

You need to be logged in in order to view this content.

FIGURE 21 - SOLUTION PAGE: VIEW FOR NON-LOGGED IN USERS

Create page: The Create page can be only accessed by all registered and logged in users who can create
a new solution to the Data Marketplace by filling in the form that the page contains. This page is only
available to registered users who can find it either from the navigation bar or from their account page
(i.e., in the Solution tab by pressing the Create button). More specifically, this page contains a form that
is divided into three (3) discrete parts. The first part (Figure 22) includes several basic information about
the new offered solution such as the solution’s title, category/type, detailed description about the offered
content, owner of the solution, some optional related links for external information or assets, and some
optional keywords that can distinguish the solution from other solutions and can enhance the search

functionality.

75

@ Policy Cloud D7.12 - v.1.0

Create a new Solution

Basic information (>

To create a new solution, the following fields represent basic information that will be visible to others.
Title *
Category *
Tool -
Owner *

Description *

You can assign up to 5 keywords.

Related links

+ Add link

FIGURE 22 - CREATE PAGE: BASIC INFORMATION

The second part of the form (Figure 23) has one (1) additional field, the “Comments” field, which is not
mandatory and can be used by the provider/creator of the solution in order to add comments that are
displayed only to logged in users. This field can be useful in case of sensitive information (e.g., contact
details, promotional/discount codes).

Additional information
You can include additional comments for authorized visitors. This field is optional.

Comments

FIGURE 23 - CREATE PAGE: ADDITIONAL INFORMATION

The third part of the form (Figure 24) refers to the Assets’ section, where the first assets of the solution
can be uploaded. More specifically, from this area, the provider of the solution can upload files, images,
or videos for the solution. It is noted that this form is used only for the creation of a solution, since the
users are able to update their solutions and add, update or delete the assets through the Solution page,
at a later stage.

76

PQUC‘/,,QPU,(,J D7.12 -v.1.0

Assets

Manage your content and upload new files, images and videos up to 100MB in size.

Files
| ¢
Select files to upload
(or drag and drop them here)
Images (Gallery)

[¢
Select files to upload

(or drag and drop them here)
Supported file types: jpeg, .png

Videos (Gallery)

Uploaded gallery videos are publicly accessible. Please do not include sensitive or protected information.

[
Select files to upload

(or drag and drop them here)
Supported file types: mp4, .ogg, .webm

(!] Please note that after submitting, an administrator needs to approve of the content before other users can view it.

Create solution

FIGURE 24 - CREATE PAGE: ASSETS SECTION

Finally, when non logged in users try to access the Create page, a warning message that encourages them
to sign in is displayed in their screen (Figure 25).

Create a new Solution

a You need to be logged in to create a solution.

FIGURE 25 - CREATE PAGE: VIEW FOR NON LOGGED IN USERS

77

&S Polcy Cloud D7.12- 10

About page: The About page is a public page that provides information about the PolicyCLOUD Data
Marketplace, including its structure, scope, and offerings. The scope of this page is to guide users’
navigation to the website. In addition, at the top of the page, there is a prompt button to “Register” to the
Data Marketplace that links to the sign-up page. Moreover, the page displays the PolicyCLOUD Data
Marketplace’s basic flow, as well as describes the purpose of the PolicyCLOUD project in general, and
specific scope of the PolicyCLOUD Data Marketplace (Figure 26).

Making data-driven policy management a reality across Europe

Register now

The basic flow of the Policy Cloud Data Marketplace:

Access Find Assets Community
Policy Cloud Data on Policy Cloud engagement via

Data Marketplace the Policy Cloud
Wt pace g Data Marketplace

FIGURE 26 - ABOUT PAGE: UPPER VIEW

Furthermore, the About page includes a description for the types of solutions that the PolicyCLOUD Data
Marketplace supports, assisting the users in determining which category to search, in accordance with

their specific needs. Finally, the About page has a list of frequently asked questions for answering to
users' potential concerns (Figure 27).

78

Policy Cloud

Cloud for Data-Driven Policy Management

D7.12-v.1.0

TOOLS

Tools such as analytic and management tools, different
technologies, frameworks, libraries, algorithms for ML & DL,
algerithms of general scope and others.

WEBINARS

Webinars held by Policy Cloud or by external users and are
related with topics that are of interest of the project.

POLICIES

Ready-to-use policies in various fields of use for businesses,

public administrations and researchers.

DATASETS

Different dotasets from different sources and pools of data.

DOCUMENTS

Detailed documentations, academic research papers and
project’s presentations

TUTORIALS

Informative videos about Policy Cloud's relevant solutions.

QI0I0

When we have all data online it will be great for humanity. It is a prerequisite to solving many problems that hurmankind faces.

- Robert Cailliou, pioneering developer, with Tim Berners-Lee, of the World Wide Web.

Frequently Asked Questions (FAQ)

What is available through the Policy Cloud Data Marketplace? v
How can a user be familiarized with the Policy Cloud Data Marketplace? ~
What user gualifications are required? ~
How can | register to the Data Marketplace? v

Hew e | eraota o new eoliition to tha Data Morkatnlaca cond onloodd mw Aceete? ~

FIGURE 27 - ABOUT PAGE: BOTTOM VIEW

Error Messages: In case of an error, a red bar appears with the appropriate message.

FIGURE 28 - EXAMPLE OF ERROR MESSAGE

Terms and Condition page: The “Terms and Conditions” agreement governs the contractual relationship
between a service provider and its users. Towards this direction, this page is intended to provide this
agreement to the PolicyCLOUD Data Marketplace users (Figure 29).

www.policycloud.eu 79

Policy Cloud D7.12-Vv.1.0

Cloud for Data-Driven Policy Management

Terms and Conditions

By indicating your acceptance of the PolicyCLOUD Data Marketplace Terms and Conditions (when creating a registered account), you
accept that your use of the Service must abide by all of the terms and conditions laid down below ("T&Cs").

If you do not agree to the T&Cs, you may not use the Service.

The T&Cs are enforceable like any written agreement signed by you.

~ 1. DEFINITIONS

v 2. AGREEMENT

v 3. MODIFICATIONS TO THE AGREEMENT
~ 4.SERVICE DESCRIPTION

5. ACCESS TO THE SERVICE

5.1 The Authorised Users may access and use the Service in accordance with the T&Cs and the Documentation.

5.2 Without prejudice to Section 6 (Contractors and Affiliates), use of and access to the Service are permitted only to the User.

v 6.CONTRACTORS AND AFFILIATES

FIGURE 29 - TERMS AND CONDITIONS PAGE

Privacy Policy page: In privacy legislation, a privacy policy is a declaration or legal document that reveals
the ways that a party collects, uses, discloses, and maintains a customer’s or a client's personal data. This
page provides information for such issues in the context of the PolicyCLOUD Data Marketplace (Figure
30).

www.policycloud.eu 80

Policy Cloud D7.12-Vv.1.0

Cloud for Data-Driven Policy Management

Privacy Policy

The Policycloud project consortium (“PolicyCLOUD"), according to the provisions of Regulation EU No. 2016/679 (“General Data Protection
Regulation” — “GDPR"), provides the following information on the processing of the personal data (the “Data”) of the end users of the
PolicyCLOUD Data Marketplace platform (the “Platform”).

v Who we are and what Data we process?

— Why do we process the Data and on which legal basis?

PolicyCLOUD uses the Data for the following purposes:

= Creation and management of the end user account and operation of the Platform. The use of the Data is necessary to allow the
creation and management of the account of the end user and to allow their use of the Platform. The legal basis of the processing
is the provision of the services related to the Platform, according with art. 6, par. 1, let. b) GDPR.

- Ensuring the security and the proper use of the Platform. PolicyCLOUD processes the Data of the end user to the extent
necessary to guarantee the security of the Platform, as required also by relevant legal provisions on information security. The
legal basis of this processing is both compliance with legal requirements, according with art. 6, par. 1, let. ¢) GDPR, and the
legitimate interest of PolicyCLOUD and the organization using the Platform to protect the Platform and the information included in
the same Platform, according with art. 6, par.], let. f) GDPR.

FIGURE 30 - PRIVACY POLICY PAGE

Contact page: The Contact page contains a form through which the users can communicate with the
administrators of the PolicyCLOUD Data Marketplace (Figure 31).

Contact us

Whether you have a question about the content of Data Marketplace or the team of EU experts behind Policy Cloud, our team is

ready to answer all your questions.

First Name *

First Name

Last Name *

Message *

Privacy Policies & Cookies *

Ol Accept

FIGURE 31 - CONTACT PAGE

www.policycloud.eu 81

@ Policy Cloud D7.12-v.1.0

2.3 Baseline Technologies and Tools

The following sub-sections are describing the baseline technologies that both the back-end and the front-
end of the Data Marketplace exploit in order to implement its capabilities and functionalities.

2.3.1 Back-end

The back-end is the core base of the Data Marketplace and it has been developed using a variety of
technologies/tools. First of all, its components are containerized in Docker images [3] that, among others,
offer more efficient management and maintenance, enabling continuous updates and integration.
Python [4] is used as the programming language along with the Flask framework [5], which is a Web
Server Gateway Interface (WSGI) developed in Python, and implements RESTful APIs to handle the
respective HTTP requests.

The offered assets are stored in a MongoDB No-SQL database [6] that is used in combination with the
hosting operating system (OS) for storing and retrieving large files/objects, of any format. Moreover,
Gunicorn [7], a Python WSGI HTTP Server for UNIX, is utilized with NGINX [8], an open-source high-
performance HTTP web server and reverse proxy, since Flask is not optimum for production mode, and
thus, both tools extend the Flask framework in order to enable access to multiple users at the same time.

2.3.2 Front-end

The front-end has been implemented using various web technologies (HTML, CSS, Bootstrap, PHP,
JavaScript, jQuery) and it is functional using PHP and JavaScript technologies. It also exploits WordPress
[9] and various plugins of it, in order to manage the content that is presented. More specifically, for the
implementation of the front-end, the following tools were used:

e WordPress: A major part of the platform was designed with customized code based on the
architecture logic of WordPress. A minor part was introduced manually, by utilizing the Elementor
editor of WordPress [10].

e Elementor:; Utilized at various stages of design, mainly for the header.

Except for these, a custom-made plugin with the name “PolicyMS Plugin” was implemented, for the
connection between the front-end and the back-end, as well as for the correct display of the assets’
information. The main methods of the plugin are called from WordPress with hooks, and by placing short
code names of methods on each page, for each interaction with the back-end.

The plugin contains authentication methods, checks if the user is valid, connects to the back-end with
post request, creates the user’s token and returns the JSON response to the WordPress page. To be more
specific, when a user tries to log in, after filling in the login form, the information from the browser is sent
by AJAX request to the WordPress custom-made functions, checking if the values are empty. The login
information is then sent, by post request, to the back-end API for verification. The back-end API returns
the JSON response with user's information and the user's token or error, while a WordPress's encrypted
security token (nonce) is created. If the token is valid, the information from the database (the dynamic

82

@ Policy Cloud D7.12-v.1.0

content) is displayed with HTML, jQuery, PHP in the browser and the encrypted token is temporarily
stored in the browser storage. The aforementioned process is also depicted in Figure 32.

Front-end access middleware ([T—

Log in sequence diagram . AJAX request / response

- POST request / response
“ WordPress Browser

Local storage operation
Shortcode
+ Localise
script
Serve page
Log In Information $
<&
<
i Log In Information e
Token / Error
>
>
Encrypt Token (Encrypted) / Error
3
Token (Encrypted) Cookie Browser
Storage
Success
redirect
Server Client

FIGURE 32 - FRONT-END ACCESS MIDDLEWARE

The admin class is responsible for the extensions that are added to the WordPress dashboard, to which
administrators have access (Figure 33).

Dashboard

Paolicy Cloud Admin

add_settings_page()

register_settings()

FIGURE 33 - DASHBOARD ADD SETTINGS

With the add_admin_settings () method, the administrator adds a field to their menu to save the key with
which the system will communicate with the back-end. The key is valid until it expires, after one month,
for security reasons.

83

Pgligy_Clqul D7.12-v.1.0

A Posts POIleMS Settings

7 Media This settings page will help you connect to your PolicyMS API instance and integrate PolicyMS functionality with the rest of your WordPress website.
|H Pages API Settings

¥ Comments Insert your credentials for the API.

® Elementor

API Host

Templates The API server address endpoint.

Appearance

¢ Plugins
The API server secret key.
GDPR Cookie
Consent
Maximum Material Upload 100
Users Size

The maximum allowed file size (MB) upload for users.
& Tools

Mavimiim Matarial Hinlaad 1nnn

FIGURE 34 - DASHBOARD ADMIN VIEW SETTINGS

When a user tries to an Access Display Asset's information’s page, such as the Discover page, the
WordPress functions browser sends a post request to the back-end API that returns the response with
JSON assets information or an error message. If the assets information is valid, it is displayed to the
browser through dynamic content with HTML, jQuery and PHP. If the token exists, it is stored in a cookie
in the browser storage. The aforementioned process is also depicted in Figure 35.

Read description objects

Authenticated (token-based) actions

Decrypt and
R—— Token (Encrypted) Cookie Browser
Request content Storage
Response
>
‘Shortcode
Serve page
- Dynamic web server
. AJAX request / response
. POST request / response
Local storage operation
Server Client

FIGURE 35 - TOKEN BASED ACTIONS

84

@ Policy Cloud D7.12 - v.1.0

3 Source Code

3.1 Availability

This Section provides information with regards to the actual code repositories of the Data Marketplace.

3.1.1 Back-end

The software prototype of the Data Marketplace's back-end is provided in PolicyCLOUD's GitLab
repository, but it will remain private for the consortium partners who have participated in the
development process.

3.1.2 Front-end

The software prototype of the Data Marketplace’'s front-end is provided in PolicyCLOUD's GitLab
repository, but it will remain private for the consortium partners who have participated in the
development process.

3.2 Exploitation

This Section provides information about where the components of the Data Marketplace are deployed
and how they can be accessed and run.

3.2.1 Back-end

As described in Section 3.1.1, the source code of the Data Marketplace's back-end is currently in a private
GitLab repository, being exploited for private use and reuse in external research projects, as well as for
private education purposes (e.g., MSc programmes, student hackathons).

3.2.2 Front-end

As described in Section 3.1.2, the source code of the Data Marketplace's front-end is currently in a private
GitLab repository, being exploited for private use and reuse in external research projects, as well as for
private education purposes (e.g., MSc programmes, student hackathons).

85

@ Policy Cloud D7.12-v.1.0

This deliverable described and analysed the final version of the implemented prototype of the Data
Marketplace based on the design and the architecture specifications described in Section 2.1 in short,
and in deliverables D7.4 and D7.11 in deeper detail.

Moreover, the interfaces of the components have been updated respectively using examples of HTTP
requests that trigger specific actions of the Data Marketplace. In terms of the front-end, the final version
of Data Marketplace's web pages was presented along with some descriptions about them.

Finally, the baseline technologies and tools that are used in the Data Marketplace’s components were
reported, specifying the status of both the availability and the potential for exploitation of the
implemented source codes.

As for the next steps of the development of the PolicyCLOUD Data Marketplace, the latter will be
enhanced with additional features and functionalities (e.g., automated updates with latest versions of
domain-specific data assets, plagiarism and copyrights’ detection tools for data assets that already exist
in other platforms), and these will be offered with public access capabilities. The public access additions
will be able to be efficiently integrated with other marketplace platforms upon specific guidelines with
proper documentation. However, it should be noted that this will be an upcoming enhancement that is
not planned to be provided within the context of the PolicyCLOUD project.

86

Policy Cloud D7.12-Vv.1.0

Cloud for Data-Driven Policy

References

[1] JSON Web Tokens (JWT), Homepage, https://jwt.io

[2] AuthO, JISON Web Tokens, https://auth0.com/docs/security/tokens/json-web-tokens

[3] Docker, Homepage, https://www.docker.com

[4] Python, Homepage, https://www.python.org

[5] The Pallets Projects, Flask, https://palletsprojects.com/p/flask

[6] MongoDB, Homepage, https://www.mongodb.com

[7] Gunicorn, Homepage, https://gunicorn.org

[8] NGINX, Homepage, https://www.nginx.com

[9] WordPress, Homepage, https://wordpress.com

[10] Elementor, Homepage, https://elementor.com

[11] cURL, Homepage, https://curl.se

www.policycloud.eu

87

https://jwt.io/
https://auth0.com/docs/security/tokens/json-web-tokens
https://www.docker.com/
https://www.python.org/
https://palletsprojects.com/p/flask
https://www.mongodb.com/
https://gunicorn.org/
https://www.nginx.com/
https://wordpress.com/
https://elementor.com/
https://curl.se/

	Versioning and Contribution History
	Author List
	Abbreviations and Acronyms
	Executive Summary
	1 Introduction
	1.1 Objective of the Deliverable
	1.2 Structure of the Deliverable
	1.3 Summary of Changes

	2 Prototype Overview
	2.1 Main Components
	2.1.1 Back-end
	2.1.2 Front-end

	2.2 Interfaces
	2.2.1 Back-end
	2.2.1.1 Interfaces related to Users
	2.2.1.2 Interfaces related to Solutions
	2.2.1.3 Search functionality on Solutions
	2.2.1.4 Interfaces related to Assets
	2.2.1.5 Root & Other Interfaces

	2.2.2 Front-end

	2.3 Baseline Technologies and Tools
	2.3.1 Back-end
	2.3.2 Front-end

	3 Source Code
	3.1 Availability
	3.1.1 Back-end
	3.1.2 Front-end

	3.2 Exploitation
	3.2.1 Back-end
	3.2.2 Front-end

	4 Conclusion
	References

