
 
 

 
 
 

Project 951732 EuroCC Technical Report  Page 1 of 12 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

EUROCC - National Competence Centres in 
the framework of EuroHPC 
 
EuroHPC-04-2019: HPC Competence Centres 

 
 
 
 
Hybrid parallel 
programming with 
tasks 
J. Mark Bull and Jiehong Yu 
EPCC, University of Edinburgh 



 
 

 
 
 

Project 951732 EuroCC Technical Report  Page 2 of 12 
 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant 
agreement No 951732. The JU receives support from the European Union’s Horizon 2020 research and innovation 
programme and Germany, Bulgaria, Austria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Greece, 
Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal, Romania, Slovenia, Spain, Sweden, United Kingdom, 
France, Netherlands, Belgium, Luxembourg, Slovakia, Norway, Switzerland, Turkey, Republic of North Macedonia, 
Iceland, Montenegro 

Co-funded by the Horizon 2020 programme 
of the European Union



 
 

 
 
 

Project 951732 EuroCC Technical Report  Page 3 of 12 
 
 

 
 
 

Table of Contents 
1 Introduction ..................................................................................................................................... 4 

1.1 Motivation ........................................................................................................................... 4 
1.2 Programming with tasks and dependencies ........................................................................ 5 

2 Combining tasks with MPI – problems and solutions .................................................................... 5 
2.1 The TAMPI library ............................................................................................................. 6 

2.1.1 Blocking mode ................................................................................................................. 6 
2.1.2 Non-blocking mode ......................................................................................................... 7 

3 Experiences with MPI + tasks ........................................................................................................ 8 
3.1 Porting code to the MPI + tasks model ............................................................................... 8 

3.1.1 Refactoring ...................................................................................................................... 8 
3.1.2 Debugging ....................................................................................................................... 9 

3.2 Optimisation ........................................................................................................................ 9 
3.2.1 Understanding performance ............................................................................................ 9 
3.2.2 Task granularity ............................................................................................................. 10 
3.2.3 Anti-dependencies ......................................................................................................... 10 
3.2.4 Task locality .................................................................................................................. 11 

4 Resources ...................................................................................................................................... 11 
5 Conclusions ................................................................................................................................... 11 
6 Acknowledgements ....................................................................................................................... 12 
7 References ..................................................................................................................................... 12 
 
 
 

  



 
 

 
 
 

Project 951732 EuroCC Technical Report  Page 4 of 12 
 
 

1 Introduction  
This technical report is intended to provide an introduction to the hybrid HPC programming model 
developed at Barcelona Supercomputer Center (BSC) which combines MPI [1] between nodes with 
dependent tasks within each node, and is supported by TAMPI [7][8], a task-aware version of the MPI 
library. In the rest of this section, we motivate this model, and give a brief introduction to dependent 
tasks. In Section 2, we explain why using dependent tasks with a normal MPI library can cause 
problems, and how these are solved by TAMPI. Section 0 reports some practical experiences with this 
model, offers some advice and hints to programmers, and points out some potential problems. Section 
4 provides some pointers to resources for anyone interested in trying out the model in practice, and 
Section Error! Reference source not found. provides a brief summary.  

1.1 Motivation 
 
Traditional HPC programming models, such as (two-sided) MPI, or hybrid MPI and OpenMP [5], 
encourage the programmer to over-specify both the ordering of computational tasks, and the 
synchronisation between them. In task-based programming models, the programmer specifies 
computational tasks with their input and output parameters and lets the runtime system figure out the 
data dependences between them. This approach gives extensive freedom to the runtime to schedule 
tasks, offers the opportunity to reduce the ordering and synchronisation constraints to (or close to) the 
minimum required by the underlying algorithm.  
 
Many current HPC applications make implicit assumptions about performance homogeneity: they 
assume that the same sequence of instructions executed concurrently on multiple hardware units will 
complete in approximately the same time and, similarly, that transfers of data from the same source to 
the same destination (for example, memory to CPU core, or node to node across the network) will also 
take approximately the same time. As hardware design evolves towards systems capable of Exascale 
performance, there are signs that the performance predictability of hardware will get worse, as architects 
start to try to exploit fine-grained power saving features and possibly introduce more heterogeneous 
compute resources. This means that the assumptions described above may start to become invalid, and 
so applications will fail to scale adequately to the very high numbers of execution threads required for 
Exascale performance. In any case, traditional parallel application designs that rely on a bulk-
synchronous approach are likely to fail to scale to very high core counts, as the cost of global 
synchronisation, and the related load imbalance, will start to limit performance gains. 
 
Combining MPI and OpenMP in the same application is now quite a common technique to try to 
overcome scalability problems experienced by pure MPI codes. The simplest approach to this keeps the 
two layers of parallelism separate, by only making calls to the MPI library from the main thread, outside 
of any OpenMP parallel regions. This is the so-call master-only or fork-join style of hybrid 
programming. While this makes the implementation straightforward, it has performance disadvantages: 
there may be frequent barrier synchronisation points, which are quite expensive and can expose load 
imbalance between threads, and the threads other than the main thread are necessarily idle while MPI 
communication is taking place.  
 
Another problem with MPI applications is that, despite the support in MPI for non-blocking 
communication (both for point-to-point and collectives), realising overlapping of computation with 
communication is difficult in practice. This is because the MPI library is in many cases unable to recruit 
the required CPU resources to make background progress on handling communications at the same time 
as the CPU is being used for user-level computation. The result is that the completion of the 
communication is delayed until a blocking MPI call (for example MPI_Wait) is made. The master-only 



 
 

 
 
 

Project 951732 EuroCC Technical Report  Page 5 of 12 
 
 

style of hybrid program also suffers from this as, since MPI is called outside of parallel regions, there 
are (logically, at least) no threads available to explicitly compute while communication is in flight.  
 
Efficiently implementing full tasking model on top of distributed memory is an especially hard problem. 
A compromise solution is to use tasks with dependencies within a node, and a conventional message-
passing API such as MPI between nodes, but with the MPI calls contained inside tasks. This still allows 
the program to be written in such a way as to specify only (or nearly only) the orderings and 
synchronisation that are necessary for correctness, and permit as much dynamic asynchrony as possible, 
and therefore minimise the overheads that arise from cores being idle.  

1.2 Programming with tasks and dependencies 
 
Both OpenMP and OmpSs-2 [6] provide similar mechanisms for creating computational tasks and 
expressing data dependencies between them. In OmpSs-2, this coarse-grained dataflow approach is the 
main computational model: there is a single thread of execution which can create tasks, and there is a 
thread pool that is available to execute them. Dependencies are expressed by annotating the tasks with 
the way that they use data items in the program: at the simplest level an in dependency on an address 
means that this task must execute after any previously generated tasks with an out dependency on the 
same address. The runtime is responsible for building the task dependency graph and executing tasks 
in some order that respects the dependencies.  
 
OpenMP is a much richer API but supports a similar mechanism (which was originally inspired by 
OmpSs-2). The same coarse-grained dataflow approach can be implemented by creating a parallel 
region around the entire program (which provides the thread pool) and then choosing one thread to 
generate tasks with dependencies, while the other threads are available to execute them.  
 
For more details of the programming models, see Section 4 for pointers to resources.    

2 Combining tasks with MPI – problems and solutions 
To avoid any unnecessary barrier synchronisation, we would like to include the MPI calls in a hybrid 
program inside tasks, so that they can execute sends as soon as the data to be communicated is ready, 
and permit tasks that use received data to run as soon as this data has arrived. However, by including 
blocking MPI calls inside tasks, it is easy to generate situations where deadlock can occur.  The main 
issue is that tasks are not aware of the synchronous MPI primitives, which might block not only the task 
but also the underlying software and hardware thread that runs it. With the current specification of MPI, 
it is the responsibility of the application developer to avoid this situation.  
 
An example is shown in Figure 1: Process 1 wants to send four messages with different tags to Process 
2. If no dependencies are specified between the tasks, they may execute in any order, and we could 
arrive at the situation shown, where there are two CPUs in Process 1 which are currently executing two 
tasks, containing MPI_Sends for messages with tag 0 and tag 1. Meanwhile there are two CPUs in 
Process 2, which are executing tasks including MPI_Recvs for messages with tag 2 and tag 3. In this 
case, deadlock would happen between these two processes since none of the MPI calls can be finished.  
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Figure 1: Potential deadlock in taskified MPI (Credit: BSC) 

 
This type of problem can be avoided by adding dependencies between tasks that call MPI, for example 
by making all communication tasks have an in and out dependency on the same address, which means 
that no MPI calls can be reordered. However, achieving correctness without sacrificing performance 
turns out to be difficult. A better solution is to integrate the MPI library with the task-based runtime. 
The TAMPI (Task Aware MPI) library has been developed to do just this. The essential idea here is 
that whenever a task would block in an MPI call, the hardware resources can be released to run other 
tasks until all the events necessary for the blocked call to complete have occurred.   

2.1 The TAMPI library 
 
TAMPI extends the functionality of standard MPI libraries and makes it suitable for task-based 
programming. By using TAMPI, MPI calls inside asynchronous tasks can be executed by threads in a 
safe and efficient way. TAMPI sits on top of conventional MPI libraries, and only minimally extends 
the standard MPI interface. TAMPI has two different mechanisms to achieve such secure 
communication: a blocking mode and a non-blocking mode.  TAMPI works with both OmpSs-2 and 
OpenMP, but while both OmpSs-2 and OpenMP support the non-blocking mode of TAMPI, only 
OmpSs-2 can support the TAMPI blocking mode.  
 

2.1.1 Blocking mode 
This mode uses the blocking communications in MPI library such as MPI_Send and MPI_Recv, and 
some of the more commonly used collectives. Just as for computational tasks, tasks with MPI 
communications are first instanced, then wait in the ready queue for scheduling and execution on a 
thread. As shown in the Figure 3.2, when. a task is being executed by a thread and the communication 
inside it is pending, this task will be sent to a paused queue, where it will wait for the MPI blocking 
communication to be finished. During this process, the thread, which initially execute this task, is 
allowed to run any other ready tasks instead. Once the MPI communication is done, the paused task 
will then be sent back to the ready task pool and waits to be reschedule and execute its remaining 
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computations. Once all the computations inside this task are finished, the task will be regarded as 
complete and its output dependencies on other tasks will then be released. 
 

 
Figure 2: Blocking communication in TAMPI (Credit: BSC) 

 

2.1.2 Non-blocking mode 
The non-blocking mode of TAMPI supports non-blocking MPI primitives such as MPI_Isend and 
MPI_Irecv. It also extends the MPI specification to add non-blocking versions of MPI_Wait and 
MPI_Waitall (which may at first seem a bit strange at first!)  The difference of executing non-blocking 
computation tasks compared with blocking communication tasks happens when the MPI 
communication is pending. In non-blocking mode, if an MPI communication is pending, the thread is 
allowed to continue executing the rest of the computations inside the task or to execute other ready 
tasks. Therefore, in such a task, the non-blocking communication inside it may be unfinished when all 
computations of it are done. As shown in Figure 3.3, when all computations inside this task are 
completed, the task will be regarded as a finished task, which means that all the statements inside the 
task have been executed, but its non-blocking communication has not completed yet. Once the non-
blocking MPI communication inside this task is done, then this task will finally be regarded as complete 
and its output dependencies for other tasks will then be released.   

 
Figure 3: Non-blocking communication in TAMPI (Credit: BSC) 
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3 Experiences with MPI + tasks  
There are a number of published studies [2][9][10] which describe this programming model, its use in 
a variety of mini-apps, and the performance benefits attained. In this section we summarise less formally 
some experiences with porting applications to the MPI + tasks model and optimising them, highlighting 
some of the difficulties encountered and techniques used to solve them.   

3.1 Porting code to the MPI + tasks model 

3.1.1 Refactoring 
In practice, the starting point for an MPI + tasks version of an application code with normally be an 
existing pure MPI, or master-only style MPI + OpenMP version. This is not necessarily ideal, as there 
are some design decisions which could be better made with tasks in mind from the beginning.  
 
Converting OpenMP parallel loops to tasks without dependencies and task barriers (using taskwait) 
is a useful first step in the process. This is relatively straightforward, and give us the opportunity to 
correctly implement the data-attribute scoping of variables (i.e. determining whether variables accessed 
inside a task should be shared, private or firstprivate with respect to a task) without yet 
worrying about getting the dependencies correct. At this stage, reduction patterns may need to be 
refactored to use atomic updates, since task reductions have limited support in OpenMP and OmpSs-2. 
After this intermediate stage, the taskwaits can be incrementally removed as we introduce the task 
dependencies.  
 
In some applications, removing all barrier synchronisation can be difficult, as the dependencies are a 
function of the values of data. As an example, consider a typical pattern found in N-body simulations, 
where forces between bodies are calculated using neighbour lists, and once this is complete, the new 
velocities and positions of the particles can be updated. In pseudocode this can be represented as:  
 
for each body  
    for each neighbour 
       calculate pairwise force 
       update total force on this body and neighbour 
    end for 
end for 
 
for each body 
    update velocity and position 
end for  
   
In a parallel loop implementation, a barrier is required between the two outer loops, since any iteration 
of the first loop might update the total force on any other body, and it is not possible to start any 
iterations of the second outer loop until the first loop is completely finished.  
 
To overcome this, one option is to use standard domain decomposition methods (with halo regions) 
within an MPI rank as well as across MPI ranks. Computations in different sub-domains can be assigned 
to different tasks and exchanging data between sub-domains in the same MPI ranks can be implemented 
as memory copies.  Using this technique, tasks will only depend on other tasks computing on 
neighbouring sub-domains, allowing the removal of task barriers. The approach has been termed 
Hierarchical Decomposition Over Tasks (HDOT) and is discussed in more detail in [2].  
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3.1.2 Debugging 
Difficulty in effective debugging is perhaps the biggest current drawback of the MPI + tasks model. 
Errors in task dependencies can cause race conditions, and it also possible to introduce race conditions 
between accesses to shared variables in tasks and in the generating thread. As with many race 
conditions, these may occur rarely, be difficult to reproduce, and may appear or disappear when any 
debugging code is added or removed. Using dependencies gives the runtime a lot of freedom to choose 
an ordering of tasks, so there can be many possible pairs of tasks being executed concurrently which 
need to be checked for races.  
 
Reintroducing task barriers can be helpful in narrowing down the source of race conditions, but the 
inherent non-reproducibility of races is still a problem. Unfortunately, the dependent tasks model is not 
supported by any of the widely available race-condition detection tools such as Intel Inspector, TSan, 
or Helgrind/DRD. In difficult cases, progress may only be made with careful code analysis and/or heavy 
use of assertion checking. Trace visualisation (see Section 3.2.1 below) can also be helpful to spot where 
tasks are not executing in the expected order.   

3.2 Optimisation 

3.2.1 Understanding performance 
 
Once we move away from loop-based (fork/join) parallelism, conventional profiling tools become less 
useful for diagnosing performance problems, since code from several different tasks may be executing 
concurrently. Often, what we are really looking for is to identify if and when cores are idle or executing 
inside the runtime, rather than executing tasks. To do this, timeline trace visualisation is much more 
helpful. For OmpSs-2, this can be enabled by using the Extrae tracing library and the Paraver 
visualisation tool (see Section 4). An example trace from a run on two nodes each with 48 cores is 
shown in Figure 4. Time runs from left to right, colours correspond to tasks generated from different 
sites in the code, and black areas indicate time where cores are not executing user tasks, which in this 
case is significant enough to warrant further investigation.  
 

 
 

Figure 4: Example Extrae/Paraver trace (Credit: BSC) 
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Such traces clearly show when cores are idle but diagnosing why can still be difficult.  Some additional 
information about the status of the runtime would be helpful: tasks could be waiting for dependencies 
to be satisfied, or there could be no tasks available because the generating thread is overloaded, or else 
the runtime is busy scheduling tasks, or waiting for MPI messages to arrive. 

3.2.2 Task granularity 
As with any task-based programming, task granularity is a key factor that determines performance. If 
we have a smaller number of large tasks, then there may be insufficient parallelism available to keep 
all the cores busy. On the other hand, if we have too many small tasks, then the overheads of task 
generation and scheduling may be too large and dominate the execution time. In the typical “one thread 
generates” pattern supported by OmpSs-2, the generating thread can become the bottleneck: tasks 
cannot be generated fast enough to keep all the other threads busy (this is clearly visible on a trace, 
shown by the generating thread being always in a busy state).  
 
The best performance is often to be found at some intermediate granularity, but this will depend on the 
number of threads executing as well as the input data, so designing parameterised granularity into the 
application is an important consideration. A simple example of this is loop blocking: where it might be 
straightforward to implement each loop iteration as a task, we can have better control by making a set 
of contiguous iterations into a task and making the number of iterations per task a tuneable parameter.    
 
It is well worth profiling the application code early in the porting process to understand the number of 
tasks that will be generated by different possible designs and their expected execution times. It is also 
likely that different types of tasks in the same application will have different execution times, so we can 
end up with several different parameters that control granularity and face a complex tuning scenario to 
find their optimal values [4].  However, a useful rule of thumb is that, in the absence of large load 
imbalances, the number of tasks generated from a loop should be a small multiple (say 2-4) of the 
number of threads available for task execution.  
 
The number and granularity of communication tasks is also important for performance. TAMPI requires 
MPI_THREAD_MULTIPLE support from the underlying MPI library so that it is safe for multiple tasks 
(and therefore threads) to be making concurrent MPI calls. However, to implement this thread-safety, 
the MPI library will typically use locks which sequentialise communications. With many tasks all 
sending or receiving messages at the same time, this can become a serious bottleneck. There is scope 
for better MPI implementations in this regard, but progress is in the hands of the MPI library 
implementors. Some experiments with the GASPI one-sided communication library [3], which has 
much finer-grained internal synchronisation, and its task-aware version TAGASPI [10] show that it is 
possible in principle to overcome this problem. If using TAMPI, however, combining the messages 
from different tasks, and thus sending and receiving fewer, larger messages can be beneficial, even if 
this reduces parallelism by introducing some additional dependencies.    

3.2.3 Anti-dependencies  
Some of the required dependencies between tasks may be anti-dependencies, i.e. the ordering of tasks 
is required to ensure that an old value of a variable is read before it is written by another task. This 
pattern may arise with MPI buffers: we must ensure that the message has actually been sent before 
refilling the buffer with new values. In some cases, for example neighbourwise halo exchanges, these 
dependencies can be removed by double buffering. Double buffering consists of creating two of more 
copies of the buffer and using them alternately: in the more general case we can create more copies and 
cycle through them.  
 
For halo exchange patterns double buffering may be sufficient, as there may be an implicit dependency 
on the relevant task from a previous iteration, via an exchange of messages. For other patterns, multiple 
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buffering can be useful: we may still need an explicit dependency on the previous use of each copy, but 
with enough copies, this may never cause tasks to be blocked.   

3.2.4 Task locality  
A potential problem with any task-based programming model is that the programmer has little or no 
control over which threads, and therefore on which cores, tasks will be executed. This makes it difficult 
to exploit caches effectively by ensuring data reuse between tasks (if there is sufficient reuse within 
tasks, there is no such problem). The runtime’s task scheduling strategy can help (for example by 
preferring to execute recently generated tasks) but this is often not sufficient, especially for patterns 
where loop parallelism naturally exploits locality. This is true for example where arrays are directly 
indexed by parallel loop iterators, so always mapping the same subset of loop iterations to the same 
threads results in good data affinity. When using tasks, the ability to ensure this kind of mapping is lost. 
The effect is most pronounced in strong scaling scenarios when sufficient cores are used such that the 
working set may fit into some level of cache.   
 
The taskfor construct in OmpSs-2 is designed to overcome this to some extent. This construct 
identifies a whole loop as a single task, with in and out dependencies, but allows the loop iterations 
to be distributed across multiple threads (though exactly how many threads is still determined by the 
runtime. This also helps to reduce some of the overheads of scheduling tasks with dependencies.   

4 Resources 
• The TAMPI library, and a short user guide, can be found at https://github.com/bsc-pm/tampi. 
• The latest OmpSs-2 distribution can be downloaded from https://github.com/bsc-pm/ompss-2-

releases and there are detailed installation instructions at https://pm.bsc.es/ftp/ompss-2/doc/user-
guide/. 

• The LLVM version that supports OpenMP task integration with TAMPI is available from 
https://github.com/bsc-pm/llvm. 

• The Extrae tracing tool and Paraver visualisation tool are available from 
https://tools.bsc.es/downloads. 

• The TAGASPI library can be found at https://github.com/bsc-pm/tagaspi. 
• The OpenMP specification can be downloaded from  https://www.openmp.org/specifications/ 
 

5 Conclusions 
This hybrid programming model offers some interesting possibilities to overcome performance 
problems which result from the unnecessary synchronisation and ordering constraints imposed by the 
most commonly used hybrid model in HPC (MPI + OpenMP loops). However, using the model is not 
without its difficulties: it requires a change of mindset from the developer. The high degree of 
asynchrony makes reasoning about correctness and performance more difficult, and there is at present 
a lack of suitable tool support for developers which will take time and effort to address.  Nevertheless, 
this is a promising direction for maximising application performance on future HPC platforms.  
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