

Project 951732 EuroCC Technical Report Page 1 of 12

EUROCC - National Competence Centres in
the framework of EuroHPC

EuroHPC-04-2019: HPC Competence Centres

Hybrid parallel
programming with
tasks
J. Mark Bull and Jiehong Yu
EPCC, University of Edinburgh

Project 951732 EuroCC Technical Report Page 2 of 12

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant
agreement No 951732. The JU receives support from the European Union’s Horizon 2020 research and innovation
programme and Germany, Bulgaria, Austria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Greece,
Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal, Romania, Slovenia, Spain, Sweden, United Kingdom,
France, Netherlands, Belgium, Luxembourg, Slovakia, Norway, Switzerland, Turkey, Republic of North Macedonia,
Iceland, Montenegro

Co-funded by the Horizon 2020 programme
of the European Union

Project 951732 EuroCC Technical Report Page 3 of 12

Table of Contents
1 Introduction ... 4

1.1 Motivation ... 4
1.2 Programming with tasks and dependencies .. 5

2 Combining tasks with MPI – problems and solutions .. 5
2.1 The TAMPI library ... 6

2.1.1 Blocking mode ... 6
2.1.2 Non-blocking mode ... 7

3 Experiences with MPI + tasks .. 8
3.1 Porting code to the MPI + tasks model ... 8

3.1.1 Refactoring .. 8
3.1.2 Debugging ... 9

3.2 Optimisation .. 9
3.2.1 Understanding performance .. 9
3.2.2 Task granularity ... 10
3.2.3 Anti-dependencies ... 10
3.2.4 Task locality .. 11

4 Resources .. 11
5 Conclusions ... 11
6 Acknowledgements ... 12
7 References ... 12

Project 951732 EuroCC Technical Report Page 4 of 12

1 Introduction
This technical report is intended to provide an introduction to the hybrid HPC programming model
developed at Barcelona Supercomputer Center (BSC) which combines MPI [1] between nodes with
dependent tasks within each node, and is supported by TAMPI [7][8], a task-aware version of the MPI
library. In the rest of this section, we motivate this model, and give a brief introduction to dependent
tasks. In Section 2, we explain why using dependent tasks with a normal MPI library can cause
problems, and how these are solved by TAMPI. Section 0 reports some practical experiences with this
model, offers some advice and hints to programmers, and points out some potential problems. Section
4 provides some pointers to resources for anyone interested in trying out the model in practice, and
Section Error! Reference source not found. provides a brief summary.

1.1 Motivation

Traditional HPC programming models, such as (two-sided) MPI, or hybrid MPI and OpenMP [5],
encourage the programmer to over-specify both the ordering of computational tasks, and the
synchronisation between them. In task-based programming models, the programmer specifies
computational tasks with their input and output parameters and lets the runtime system figure out the
data dependences between them. This approach gives extensive freedom to the runtime to schedule
tasks, offers the opportunity to reduce the ordering and synchronisation constraints to (or close to) the
minimum required by the underlying algorithm.

Many current HPC applications make implicit assumptions about performance homogeneity: they
assume that the same sequence of instructions executed concurrently on multiple hardware units will
complete in approximately the same time and, similarly, that transfers of data from the same source to
the same destination (for example, memory to CPU core, or node to node across the network) will also
take approximately the same time. As hardware design evolves towards systems capable of Exascale
performance, there are signs that the performance predictability of hardware will get worse, as architects
start to try to exploit fine-grained power saving features and possibly introduce more heterogeneous
compute resources. This means that the assumptions described above may start to become invalid, and
so applications will fail to scale adequately to the very high numbers of execution threads required for
Exascale performance. In any case, traditional parallel application designs that rely on a bulk-
synchronous approach are likely to fail to scale to very high core counts, as the cost of global
synchronisation, and the related load imbalance, will start to limit performance gains.

Combining MPI and OpenMP in the same application is now quite a common technique to try to
overcome scalability problems experienced by pure MPI codes. The simplest approach to this keeps the
two layers of parallelism separate, by only making calls to the MPI library from the main thread, outside
of any OpenMP parallel regions. This is the so-call master-only or fork-join style of hybrid
programming. While this makes the implementation straightforward, it has performance disadvantages:
there may be frequent barrier synchronisation points, which are quite expensive and can expose load
imbalance between threads, and the threads other than the main thread are necessarily idle while MPI
communication is taking place.

Another problem with MPI applications is that, despite the support in MPI for non-blocking
communication (both for point-to-point and collectives), realising overlapping of computation with
communication is difficult in practice. This is because the MPI library is in many cases unable to recruit
the required CPU resources to make background progress on handling communications at the same time
as the CPU is being used for user-level computation. The result is that the completion of the
communication is delayed until a blocking MPI call (for example MPI_Wait) is made. The master-only

Project 951732 EuroCC Technical Report Page 5 of 12

style of hybrid program also suffers from this as, since MPI is called outside of parallel regions, there
are (logically, at least) no threads available to explicitly compute while communication is in flight.

Efficiently implementing full tasking model on top of distributed memory is an especially hard problem.
A compromise solution is to use tasks with dependencies within a node, and a conventional message-
passing API such as MPI between nodes, but with the MPI calls contained inside tasks. This still allows
the program to be written in such a way as to specify only (or nearly only) the orderings and
synchronisation that are necessary for correctness, and permit as much dynamic asynchrony as possible,
and therefore minimise the overheads that arise from cores being idle.

1.2 Programming with tasks and dependencies

Both OpenMP and OmpSs-2 [6] provide similar mechanisms for creating computational tasks and
expressing data dependencies between them. In OmpSs-2, this coarse-grained dataflow approach is the
main computational model: there is a single thread of execution which can create tasks, and there is a
thread pool that is available to execute them. Dependencies are expressed by annotating the tasks with
the way that they use data items in the program: at the simplest level an in dependency on an address
means that this task must execute after any previously generated tasks with an out dependency on the
same address. The runtime is responsible for building the task dependency graph and executing tasks
in some order that respects the dependencies.

OpenMP is a much richer API but supports a similar mechanism (which was originally inspired by
OmpSs-2). The same coarse-grained dataflow approach can be implemented by creating a parallel
region around the entire program (which provides the thread pool) and then choosing one thread to
generate tasks with dependencies, while the other threads are available to execute them.

For more details of the programming models, see Section 4 for pointers to resources.

2 Combining tasks with MPI – problems and solutions
To avoid any unnecessary barrier synchronisation, we would like to include the MPI calls in a hybrid
program inside tasks, so that they can execute sends as soon as the data to be communicated is ready,
and permit tasks that use received data to run as soon as this data has arrived. However, by including
blocking MPI calls inside tasks, it is easy to generate situations where deadlock can occur. The main
issue is that tasks are not aware of the synchronous MPI primitives, which might block not only the task
but also the underlying software and hardware thread that runs it. With the current specification of MPI,
it is the responsibility of the application developer to avoid this situation.

An example is shown in Figure 1: Process 1 wants to send four messages with different tags to Process
2. If no dependencies are specified between the tasks, they may execute in any order, and we could
arrive at the situation shown, where there are two CPUs in Process 1 which are currently executing two
tasks, containing MPI_Sends for messages with tag 0 and tag 1. Meanwhile there are two CPUs in
Process 2, which are executing tasks including MPI_Recvs for messages with tag 2 and tag 3. In this
case, deadlock would happen between these two processes since none of the MPI calls can be finished.

Project 951732 EuroCC Technical Report Page 6 of 12

Figure 1: Potential deadlock in taskified MPI (Credit: BSC)

This type of problem can be avoided by adding dependencies between tasks that call MPI, for example
by making all communication tasks have an in and out dependency on the same address, which means
that no MPI calls can be reordered. However, achieving correctness without sacrificing performance
turns out to be difficult. A better solution is to integrate the MPI library with the task-based runtime.
The TAMPI (Task Aware MPI) library has been developed to do just this. The essential idea here is
that whenever a task would block in an MPI call, the hardware resources can be released to run other
tasks until all the events necessary for the blocked call to complete have occurred.

2.1 The TAMPI library

TAMPI extends the functionality of standard MPI libraries and makes it suitable for task-based
programming. By using TAMPI, MPI calls inside asynchronous tasks can be executed by threads in a
safe and efficient way. TAMPI sits on top of conventional MPI libraries, and only minimally extends
the standard MPI interface. TAMPI has two different mechanisms to achieve such secure
communication: a blocking mode and a non-blocking mode. TAMPI works with both OmpSs-2 and
OpenMP, but while both OmpSs-2 and OpenMP support the non-blocking mode of TAMPI, only
OmpSs-2 can support the TAMPI blocking mode.

2.1.1 Blocking mode
This mode uses the blocking communications in MPI library such as MPI_Send and MPI_Recv, and
some of the more commonly used collectives. Just as for computational tasks, tasks with MPI
communications are first instanced, then wait in the ready queue for scheduling and execution on a
thread. As shown in the Figure 3.2, when. a task is being executed by a thread and the communication
inside it is pending, this task will be sent to a paused queue, where it will wait for the MPI blocking
communication to be finished. During this process, the thread, which initially execute this task, is
allowed to run any other ready tasks instead. Once the MPI communication is done, the paused task
will then be sent back to the ready task pool and waits to be reschedule and execute its remaining

Project 951732 EuroCC Technical Report Page 7 of 12

computations. Once all the computations inside this task are finished, the task will be regarded as
complete and its output dependencies on other tasks will then be released.

Figure 2: Blocking communication in TAMPI (Credit: BSC)

2.1.2 Non-blocking mode
The non-blocking mode of TAMPI supports non-blocking MPI primitives such as MPI_Isend and
MPI_Irecv. It also extends the MPI specification to add non-blocking versions of MPI_Wait and
MPI_Waitall (which may at first seem a bit strange at first!) The difference of executing non-blocking
computation tasks compared with blocking communication tasks happens when the MPI
communication is pending. In non-blocking mode, if an MPI communication is pending, the thread is
allowed to continue executing the rest of the computations inside the task or to execute other ready
tasks. Therefore, in such a task, the non-blocking communication inside it may be unfinished when all
computations of it are done. As shown in Figure 3.3, when all computations inside this task are
completed, the task will be regarded as a finished task, which means that all the statements inside the
task have been executed, but its non-blocking communication has not completed yet. Once the non-
blocking MPI communication inside this task is done, then this task will finally be regarded as complete
and its output dependencies for other tasks will then be released.

Figure 3: Non-blocking communication in TAMPI (Credit: BSC)

Project 951732 EuroCC Technical Report Page 8 of 12

3 Experiences with MPI + tasks
There are a number of published studies [2][9][10] which describe this programming model, its use in
a variety of mini-apps, and the performance benefits attained. In this section we summarise less formally
some experiences with porting applications to the MPI + tasks model and optimising them, highlighting
some of the difficulties encountered and techniques used to solve them.

3.1 Porting code to the MPI + tasks model

3.1.1 Refactoring
In practice, the starting point for an MPI + tasks version of an application code with normally be an
existing pure MPI, or master-only style MPI + OpenMP version. This is not necessarily ideal, as there
are some design decisions which could be better made with tasks in mind from the beginning.

Converting OpenMP parallel loops to tasks without dependencies and task barriers (using taskwait)
is a useful first step in the process. This is relatively straightforward, and give us the opportunity to
correctly implement the data-attribute scoping of variables (i.e. determining whether variables accessed
inside a task should be shared, private or firstprivate with respect to a task) without yet
worrying about getting the dependencies correct. At this stage, reduction patterns may need to be
refactored to use atomic updates, since task reductions have limited support in OpenMP and OmpSs-2.
After this intermediate stage, the taskwaits can be incrementally removed as we introduce the task
dependencies.

In some applications, removing all barrier synchronisation can be difficult, as the dependencies are a
function of the values of data. As an example, consider a typical pattern found in N-body simulations,
where forces between bodies are calculated using neighbour lists, and once this is complete, the new
velocities and positions of the particles can be updated. In pseudocode this can be represented as:

for each body
 for each neighbour
 calculate pairwise force
 update total force on this body and neighbour
 end for
end for

for each body
 update velocity and position
end for

In a parallel loop implementation, a barrier is required between the two outer loops, since any iteration
of the first loop might update the total force on any other body, and it is not possible to start any
iterations of the second outer loop until the first loop is completely finished.

To overcome this, one option is to use standard domain decomposition methods (with halo regions)
within an MPI rank as well as across MPI ranks. Computations in different sub-domains can be assigned
to different tasks and exchanging data between sub-domains in the same MPI ranks can be implemented
as memory copies. Using this technique, tasks will only depend on other tasks computing on
neighbouring sub-domains, allowing the removal of task barriers. The approach has been termed
Hierarchical Decomposition Over Tasks (HDOT) and is discussed in more detail in [2].

Project 951732 EuroCC Technical Report Page 9 of 12

3.1.2 Debugging
Difficulty in effective debugging is perhaps the biggest current drawback of the MPI + tasks model.
Errors in task dependencies can cause race conditions, and it also possible to introduce race conditions
between accesses to shared variables in tasks and in the generating thread. As with many race
conditions, these may occur rarely, be difficult to reproduce, and may appear or disappear when any
debugging code is added or removed. Using dependencies gives the runtime a lot of freedom to choose
an ordering of tasks, so there can be many possible pairs of tasks being executed concurrently which
need to be checked for races.

Reintroducing task barriers can be helpful in narrowing down the source of race conditions, but the
inherent non-reproducibility of races is still a problem. Unfortunately, the dependent tasks model is not
supported by any of the widely available race-condition detection tools such as Intel Inspector, TSan,
or Helgrind/DRD. In difficult cases, progress may only be made with careful code analysis and/or heavy
use of assertion checking. Trace visualisation (see Section 3.2.1 below) can also be helpful to spot where
tasks are not executing in the expected order.

3.2 Optimisation

3.2.1 Understanding performance

Once we move away from loop-based (fork/join) parallelism, conventional profiling tools become less
useful for diagnosing performance problems, since code from several different tasks may be executing
concurrently. Often, what we are really looking for is to identify if and when cores are idle or executing
inside the runtime, rather than executing tasks. To do this, timeline trace visualisation is much more
helpful. For OmpSs-2, this can be enabled by using the Extrae tracing library and the Paraver
visualisation tool (see Section 4). An example trace from a run on two nodes each with 48 cores is
shown in Figure 4. Time runs from left to right, colours correspond to tasks generated from different
sites in the code, and black areas indicate time where cores are not executing user tasks, which in this
case is significant enough to warrant further investigation.

Figure 4: Example Extrae/Paraver trace (Credit: BSC)

Project 951732 EuroCC Technical Report Page 10 of 12

Such traces clearly show when cores are idle but diagnosing why can still be difficult. Some additional
information about the status of the runtime would be helpful: tasks could be waiting for dependencies
to be satisfied, or there could be no tasks available because the generating thread is overloaded, or else
the runtime is busy scheduling tasks, or waiting for MPI messages to arrive.

3.2.2 Task granularity
As with any task-based programming, task granularity is a key factor that determines performance. If
we have a smaller number of large tasks, then there may be insufficient parallelism available to keep
all the cores busy. On the other hand, if we have too many small tasks, then the overheads of task
generation and scheduling may be too large and dominate the execution time. In the typical “one thread
generates” pattern supported by OmpSs-2, the generating thread can become the bottleneck: tasks
cannot be generated fast enough to keep all the other threads busy (this is clearly visible on a trace,
shown by the generating thread being always in a busy state).

The best performance is often to be found at some intermediate granularity, but this will depend on the
number of threads executing as well as the input data, so designing parameterised granularity into the
application is an important consideration. A simple example of this is loop blocking: where it might be
straightforward to implement each loop iteration as a task, we can have better control by making a set
of contiguous iterations into a task and making the number of iterations per task a tuneable parameter.

It is well worth profiling the application code early in the porting process to understand the number of
tasks that will be generated by different possible designs and their expected execution times. It is also
likely that different types of tasks in the same application will have different execution times, so we can
end up with several different parameters that control granularity and face a complex tuning scenario to
find their optimal values [4]. However, a useful rule of thumb is that, in the absence of large load
imbalances, the number of tasks generated from a loop should be a small multiple (say 2-4) of the
number of threads available for task execution.

The number and granularity of communication tasks is also important for performance. TAMPI requires
MPI_THREAD_MULTIPLE support from the underlying MPI library so that it is safe for multiple tasks
(and therefore threads) to be making concurrent MPI calls. However, to implement this thread-safety,
the MPI library will typically use locks which sequentialise communications. With many tasks all
sending or receiving messages at the same time, this can become a serious bottleneck. There is scope
for better MPI implementations in this regard, but progress is in the hands of the MPI library
implementors. Some experiments with the GASPI one-sided communication library [3], which has
much finer-grained internal synchronisation, and its task-aware version TAGASPI [10] show that it is
possible in principle to overcome this problem. If using TAMPI, however, combining the messages
from different tasks, and thus sending and receiving fewer, larger messages can be beneficial, even if
this reduces parallelism by introducing some additional dependencies.

3.2.3 Anti-dependencies
Some of the required dependencies between tasks may be anti-dependencies, i.e. the ordering of tasks
is required to ensure that an old value of a variable is read before it is written by another task. This
pattern may arise with MPI buffers: we must ensure that the message has actually been sent before
refilling the buffer with new values. In some cases, for example neighbourwise halo exchanges, these
dependencies can be removed by double buffering. Double buffering consists of creating two of more
copies of the buffer and using them alternately: in the more general case we can create more copies and
cycle through them.

For halo exchange patterns double buffering may be sufficient, as there may be an implicit dependency
on the relevant task from a previous iteration, via an exchange of messages. For other patterns, multiple

Project 951732 EuroCC Technical Report Page 11 of 12

buffering can be useful: we may still need an explicit dependency on the previous use of each copy, but
with enough copies, this may never cause tasks to be blocked.

3.2.4 Task locality
A potential problem with any task-based programming model is that the programmer has little or no
control over which threads, and therefore on which cores, tasks will be executed. This makes it difficult
to exploit caches effectively by ensuring data reuse between tasks (if there is sufficient reuse within
tasks, there is no such problem). The runtime’s task scheduling strategy can help (for example by
preferring to execute recently generated tasks) but this is often not sufficient, especially for patterns
where loop parallelism naturally exploits locality. This is true for example where arrays are directly
indexed by parallel loop iterators, so always mapping the same subset of loop iterations to the same
threads results in good data affinity. When using tasks, the ability to ensure this kind of mapping is lost.
The effect is most pronounced in strong scaling scenarios when sufficient cores are used such that the
working set may fit into some level of cache.

The taskfor construct in OmpSs-2 is designed to overcome this to some extent. This construct
identifies a whole loop as a single task, with in and out dependencies, but allows the loop iterations
to be distributed across multiple threads (though exactly how many threads is still determined by the
runtime. This also helps to reduce some of the overheads of scheduling tasks with dependencies.

4 Resources
• The TAMPI library, and a short user guide, can be found at https://github.com/bsc-pm/tampi.
• The latest OmpSs-2 distribution can be downloaded from https://github.com/bsc-pm/ompss-2-

releases and there are detailed installation instructions at https://pm.bsc.es/ftp/ompss-2/doc/user-
guide/.

• The LLVM version that supports OpenMP task integration with TAMPI is available from
https://github.com/bsc-pm/llvm.

• The Extrae tracing tool and Paraver visualisation tool are available from
https://tools.bsc.es/downloads.

• The TAGASPI library can be found at https://github.com/bsc-pm/tagaspi.
• The OpenMP specification can be downloaded from https://www.openmp.org/specifications/

5 Conclusions
This hybrid programming model offers some interesting possibilities to overcome performance
problems which result from the unnecessary synchronisation and ordering constraints imposed by the
most commonly used hybrid model in HPC (MPI + OpenMP loops). However, using the model is not
without its difficulties: it requires a change of mindset from the developer. The high degree of
asynchrony makes reasoning about correctness and performance more difficult, and there is at present
a lack of suitable tool support for developers which will take time and effort to address. Nevertheless,
this is a promising direction for maximising application performance on future HPC platforms.

Project 951732 EuroCC Technical Report Page 12 of 12

6 Acknowledgements
The authors would like to acknowledge the support from, and very helpful interactions with, colleagues
at BSC, in particular Vicenç Beltran, Rodrigo Arias, Marcos Maroñas and Kevin Sala, as well as at
EPCC, including Caoimhín Laoide-Kemp and Dominic Sloan-Murphy.

7 References
[1] Borchers, B. and Crawford, D., (1993) Message-Passing Interface. The International Journal of

Supercomputing Applications, 7(2), pp.179-179.

[2] Ciesko, J., Martínez-Ferrer, P. J., Veigas, R. P., Teruel, X., & Beltran, V. (2020). HDOT—An
approach towards productive programming of hybrid applications. Journal of Parallel and
Distributed Computing, 137, 104-118.

[3] Grünewald, D. & Simmendinger, C. (2013) The GASPI API specification and its implementation
GPI 2.0. In Proceedings of 7th International Conference on PGAS Programming Models.

[4] Maroñas, M., Teruel, X., Bull, J. M., Ayguadé, E., & Beltran, V. (2020). Evaluating Worksharing
Tasks on Distributed Environments. In 2020 IEEE International Conference on Cluster Computing
(CLUSTER) (pp. 69-80). IEEE.

[5] openmp.org (2022) OpenMP Application Programming Interface. [online] Available at:
<https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf> [Accessed
15 Dec 2022].

[6] pm.bsc.es (2022) OmpSs-2 Specification. [online] Available at: <https://pm.bsc.es/ftp/ompss-
2/doc/spec/OmpSs-2-Specification.pdf> [Accessed 15 Dec 2022].

[7] Sala, K., Bellón, J., Farré, P., Teruel, X., Perez, J. M., Peña, A. J., Holmes, D., Beltran. V., &
Labarta, J. (2018). Improving the interoperability between MPI and task-based programming
models. In Proceedings of the 25th European MPI Users' Group Meeting (p. 6).

[8] Sala, K., Teruel, X., Perez, J. M., Peña, A. J., Beltran, V., & Labarta, J. (2019). Integrating blocking
and non-blocking MPI primitives with task-based programming models. Parallel Computing, 85,
153-166.

[9] Sala, K., Rico, A., & Beltran, V. (2020). Towards Data-Flow Parallelization for Adaptive Mesh
Refinement Applications. In 2020 IEEE International Conference on Cluster Computing
(CLUSTER) (pp. 314-325). IEEE.

[10] Sala, K., Macia, S., & Beltran, V. (2021). Combining One-Sided Communications with Task-
Based Programming Models. In 2021 IEEE International Conference on Cluster Computing
(CLUSTER) (pp. 528-541). IEEE.

