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Abstract
Anredera cordifolia (Ten.) Stennis, also known as Binahong (B), is an Indonesian plant used to treat diabetes. The purpose of this 
study was to determine the best extragent for preparing Binahong extract as an antidiabetic agent using different concentrations of 
ethanol (50%, 70%, and 96%), labelled as BE50%, BE70%, and BE96%. An alpha-glucosidase inhibiting assay was used to assess the 
activity. The most active extract was tested in vivo assay using an oral glucose tolerance test (OGTT) and alloxan-high feed diet (al-
loxan-HFD)-induced diabetes in rats, with glucose level and beta cell Langerhans repair as parameters. A molecular assay was also 
performed to look into the expression of homeostasis regulator genes on 3T3-L1 adipose cells. The results showed that 96% ethanol 
extract (BE96%) inhibited alpha-glucosidase the most effectively (IC50 119.78± 11.14 μg/mL). The in vivo assay revealed that the 
treatment BE96% at 250 mg/kg BW for 21 consecutive days significantly reduced plasma glucose levels in Type 2 DM rats compared 
to the control group (p ≤ .05) with improved of Langerhans beta cells. BE96% also significantly reduced postprandial glucose levels. 
At the cellular level, Oil-Red-O staining revealed that differentiated adipocytes treated with BE96% had the highest lipid absorbance 
(p ≤ .05), compared to the control. BE96% significantly increased the expression of Glucose Transporter Isoform 4 (GLUT4) at the 
molecular level. It could be concluded that BE96% exhibited the best antidiabetic properties.
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Introduction

A metabolic condition known as diabetes mellitus (DM) 
is characterized by chronically high blood sugar levels 

(hyperglycemia) and blood insulin levels (hyperinsulin-
emia) (Westman 2021). In the majority of the developed 
and emerging nations, DM is a serious issue. According to 
estimates, there would be approximately 463 million cases 
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of DM worldwide in 2019 and 700 million cases by 2045 
(Shrestha et al. 2022). There are two types of DM: Type 
1 DM (T1DM), which is defined by insulin deficiency 
caused by the destruction of Langerhans beta cells of the 
pancreas, and Type 2 DM (T2DM), which is caused by the 
failure of cells’ response to this hormone. T2DM accounts 
for nearly 90% of all diabetes cases worldwide (Westman 
2021). However, the complexity of T2DM due to the inter-
action of multiple genes and environmental factors makes 
it difficult for researchers worldwide to find the most ef-
fective antidiabetic agent (Felisbino et al. 2021).

One of the additional resources for treating diabetes 
is medicinal plants (Alam et al. 2022). Due to Indonesia’s 
untapped mega-biodiversity wealth, research into possible 
antidiabetic herbs is still a promising subject. One of the 
Indonesian medicinal plants frequently used to treat DM 
as well as other ailments is A. cordifolia (Ten.) Stennis, also 
known as Heartleaf maderavine madevine, or (Binahong), 
belongs to the Basellaceae family. Previous studies report-
ed that ethyl acetate extract of A. cordifolia demonstrat-
ed inhibitory activity toward alpha-glycosidase enzyme 
(IC50 81.23 µg/mL), and an isolated compound, 8-gluco-
sylapigenin, had IC50 20.23 µg/mL (Djamil et al. 2017). In 
addition, other plant-derived substances include vitexin 
(Mulia et al. 2017) and Boussingoside A1 Saponin (Espada 
et al. 1990) also exhibited antidiabetic properties.

Numerous studies have been conducted to identify an 
active sugar-lowering candidate agent in A. cordifolia. In 
general, the antidiabetic effect of a new compound is usu-
ally evaluated in vivo on a diabetogenic-compound-in-
duced DM animal model using alloxan or streptozoto-
cin (Kottaisamy et al. 2021), or with a combination of a 
high-fat diet (HFD) (Tang et al. 2006; Murakami et al. 
2021). Alloxan, also known as 5,5-dihydroxyl pyrimi-
dine-2,4,6-trione, is an organic compound derived from 
urea and a glucose analogue. This diabetogenic agent is 
frequently used in the development of animal models for 
the screening of novel antidiabetic compounds. Alloxan 
causes diabetes by causing the formation of reactive oxy-
gen species (ROS), which causes pancreatic B cell necro-
sis and selective inhibition of insulin secretion (Ighodaro 
et al. 2017). On the other hand, Oral Glucose Tolerance 
Test (OGTT) is another appropriate method to measure 
the capacity of a new drug in lowering postprandial glu-
cose (Hamza et al. 2015; Yusoff et al. 2015). This test is 
a widely used to evaluate the secretion function of beta 
pancreas and the sensitivity of tissues to insulin (Stum-
voll et al. 2000). The glucose area under the curve (AUC), 
which is an indicator of total glucose excursion following 
glucose loading, also has been widely used for computing 
the glycemic index to evaluate the efficacy of medications 
for postprandial hyperglycemia (Sakaguchi et al. 2016). 
Furthermore, the in vitro evaluation of enzyme activity of 
alpha-glucosidase and alpha-amylase activity, which con-
tribute to the metabolism of carbohydrates in the digestive 
tract are additional tests that could be performed to in-
vestigate a new antidiabetic agent (Mechchate et al. 2021).

However, evaluation at molecular levels is also critical 
to support the pharmacodynamic of A. cardifolia. One 

gene that critically regulates T2DM is GLUT4, which is 
expressed mainly in insulin-sensitive tissues, such as the 
adipose tissue, liver tissue, and skeletal muscle tissue. In-
creased GLUT4 expression has been shown to reduce blood 
glucose and improve glucose transport at a cellular level 
(Jitrangsri et al. 2020). Previous studies demonstrated that 
several compounds that increased GLUT4 expression could 
potentially be used in treating diabetes (Lv et al. 2021).

In this study, we determined the best ethanol concen-
tration for preparing A. cordifolia extract to be used as an 
antidiabetic agent. A. cordifolia extracts with 50, 70, and 
96% ethanol (BE50%, BE70%, and BE96%) were evalu-
ated for in vitro and in vivo activity, as well as their ca-
pability to regulate GLUT4 expression. To begin, all ex-
tracts (BE50%, BE70%, and BE96%) were tested in vitro 
to determine which extract was the most active using an 
alpha-glucosidase enzyme inhibition assay. The selected 
A. cordifolia extract was then tested for hypoglycemic ac-
tivity using the OGTT and long-term treatment with al-
loxan-HFD-induced diabetic rats. The extracts were also 
administered during 3T3-L1 adipose cell differentiation 
to investigate the effect of plant on GLUT4 expression. 
The choice of solvent type in this study became one of the 
most critical points in extraction to obtain an appropriate 
extract containing the desired metabolites and suitable for 
the intended purpose. The application of solvents in the 
industrial-scale extraction process is regulated by the In-
donesian Food and Drug Administration (BPOM). Due 
to safety concerns, ethanol or a mixture of ethanol and 
water is preferred over other organic solvents (BPOM RI 
2017). Choosing the right solvent combination affects po-
larity, including the solubility of bioactive compounds and 
the bioactivities of the extract (Jitrangsri et al. 2020).

Materials and methods
Plant extraction

Plant collection and authentication

Fresh A. cordifolia leaves were collected from Yogyakarta, 
Indonesia, and authenticated by Biology Research Centre, 
LIPI (Indonesian Institute of Science) (No. B-104/ IV/ 
DI.01/I/2021).

Preparation of extracts
A. cordifolia leaves were cleaned, washed, and dried in a 
50 °C oven before being milled into coarse powder. One 
hundred grams of powder were extracted with 1 L 96% 
food grade ethanol in a shaking incubator at room tem-
perature for 24 hours. The extraction process was repeated 
twice after filtering. Furthermore, the filtrate was collected 
and evaporated using a rotary evaporator at 50 °C. The 
obtained semisolid mass then stored in an amber bottle 
at -80 °C for future experiments. The same extraction was 
carried out with 50% and 70% ethanol. Finally, the ex-
tracts were labelled with the percentages BE96%, BE70%, 
and BE50%. The yield of each extract was 11,72%, 10,54%, 
and 9.77%, respectively.
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In vitro assays

Alpha-glucosidase inhibitory assay
The inhibitory activity of alpha-glucosidase was conducted 
based on a previous study (Assefa et al. 2020). Ten milli-
grams of each sample were dissolved in 1 mL of 5% DMSO, 
sonicated at room temperature for 15 minutes, and centri-
fuged at 5000 rpm for 5 minutes. The supernatant was as 
the stock solution. By diluting the stock with 0.5% DMSO, 
a range concentration of each sample was prepared (40, 
80, 160, 320, 640 ppm, as final concentrations). Enzyme 
solution was made by combining 10 mg of rat intestinal 
acetone powder alpha-glucosidase (Sigma-Aldrich, USA) 
with 50 mL 0.1 M phosphate buffer (pH 7), which was then 
sonicated in an ice water batch for 10 minutes before being 
centrifugated at 5000 rpm for 5 minutes at 4 °C to separate 
the supernatant. One hundred microliters of each sample 
concentration were mixed with 250 µL 0.02 M p-nitrophe-
nyl-α-D-glucopyranoside (pNPG) (Sigma-Aldrich, USA) 
and 50 µL of phosphate buffer, then incubated at 37 °C for 
5 minutes. After incubation, the solution was reacted with 
150 µL enzyme solution, followed by 15 minutes of incu-
bation. The reaction was stopped by adding 1000 µL of 0.2 
M Na2CO3 solution (Merck, Germany), and the absor-
bance was read at 405 nm. As positive control, Acarbose 
(Sigma-Aldrich, USA) was diluted in 5% DMSO for the 
final concentration of 1, 2, 4, and 8 ppm, then it was used 
to replace the administration of samples. All experiment 
was conducted in triplicate. Furthermore, the enzyme in-
hibition rate was determined as a percentage of inhibition 
using the equation below:

%
( ) ( )

(
Inhibition=

Abs control  blank Abs sample  blank

Abs conntrol  blank
100

)
%

The IC50 value was derived from a linear regression 
equation of the curve that plotted each concentration to-
ward the % inhibition value using Microsoft Excel. The 
sample that demonstrated the lowest IC50 was then chosen 
for further experiments.

In vivo assays

Animals

The experiment was conducted at the animal laboratory of 
the National Research and Innovation Agency (BRIN), In-
donesia. 31 male Sprague Dawley rats (10–12 weeks of age, 
150–200 BW) were used for efficacy test. 15 male and 15 fe-
male rats (6–8 weeks, 80–100 BW) were used for toxicity test. 
All animals were procured from the Central Animal House 
of BPOM. The animals were placed in polycarbonate cages 
(32×24×16 cm) with husk as bedding material and kept at 
a controlled temperature (21–25 °C), humidity (55±5%), 
and a 12-light/dark circle. Animals were regularly fed and 
watered ad libitum. All animals were acclimatized for sev-
en days before the experiment. The Health Research Ethical 
Committee, Faculty of Medicine, the University of Indone-
sia had approved all these in vivo experiments (Ethical ap-
proval: No. KET- 411/UN2.F1/ETIK/PPM.00.02/2021).

Acute toxicity test

The acute toxicity test of selected A. cordifolia extract 
followed WHO protocol guideline (WHO 2000). The 15 
male and 15 female rats were distributed into three groups, 
namely, namely Group 1 (BE96% 1.00 g/kg BW), Group 2 
(BE96% 4.25 g/kg BW), and Control Group (vehicle car-
boxymethyl cellulose 0.5%), consisting of five pairs each. 
The chosen doses were following the guidelines of BPOM 
(Indonesian FDA) (BPOM RI 2014). After overnight fast-
ing, rats were treated p.o. (2 mL/200 g BW). Observations 
for the appearance of toxic effects such as sedation, con-
vulsion, tremor, diarrheal, constipation, and abnormal 
urination were performed at 0.5, 1, 2, and 3 h after gavage 
and then continued once every day for the next 14 days at 
the same time. In addition, the body weight of rats was re-
corded before and twice a week after the treatment. Dead 
rats during the experiment were autopsied immediately. 
At the end of the study, the number of mortalities was in-
vestigated to observe the toxicity category of the sample.

Oral glucose tolerance test (OGTT)
Oral glucose tolerance activity of BE96% was determined 
based on a previous study (Nagy and Einwallner 2018). 
After overnight fasting (water was given), 15 male rats 
were divided into three groups, consisting of five rats 
each: Group 1 (BE96% 250 mg/kg BW + 3 g/kg BW Glu-
cose), Group 2 (carboxymethyl cellulose 0.5% + 3 g/kg 
BW Glucose) and Control Group (carboxymethyl cellu-
lose 0.5%  +  water). The used doses of extracts were se-
lected based on our previous study. Extract or vehicle was 
gavage p.o. (1 mL/200 g BW). Groups 1 and 2 received 
1 mL/200  g BW of glucose 30 minutes after sample ad-
ministration. Blood was collected at 30, 90, and 150 min-
utes after glucose loading from sinus orbitalis, and blood 
glucose postprandial was determined using GOD-PAP 
commercial reagent kit diagnostic (Diasys, Germany). 
The postprandial blood glucose (PBG) level was served as 
a glucose-time graphic. The blood glucose was calculated 
using the equation below:

 Glucose  toward M
 Glucose level M

 Glucose level M0 
0%

i
100%

In addition, as other lowering glucose parameter, Area 
Under the Curve (AUC) was calculated from the glu-
cose-time graphic using a trapezoidal mathematic equa-
tion (Sakaguchi et al. 2016).

Hypoglycemic test on an alloxan-HFD-in-
duced Type 2 diabetic rat
The hypoglycemic activity of the selected extract was eval-
uated in alloxan-HFD-induced Type 2 diabetic rat was 
based on the method of Tang et al. (2006). Briefly, rats were 
treated with an HFD (consisted of standard laboratory 
chow (Indofeed, Bogor, Indonesia) 1000 g, tallow 500 mL, 
skimmed milk 250 g, dry powder of cassava 40 g) for 30 
days. After fasting overnight, rats were intraperitoneal-
ly injected with 100 mg/kg BW alloxan (Sigma-Aldrich, 
USA) solution in cold saline. Four days after induction, 
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all rats were fasted overnight (water provided ad libitum), 
and blood was collected from sinus orbitalis. FBGL (fast-
ing blood glucose level) of the plasma EDTA was mea-
sured using GOD-PAP commercial diagnostic reagent 
kit (Diasys, Germany). Rats with FBGL above 200 mg/
dL were considered diabetic and randomly divided into 
three groups, namely, Group 1 (HFD + BE96% 250 mg/
kg BW), Group 2 (HFD + glibenclamide 0.18 g/kg BW), 
Group 3 (HFD + carboxymethyl cellulose 0.5%), Control 
group (Normal diet + carboxymethyl cellulose 0.5%), four 
rats each. The selected doses of the extract were referred 
to the OGTT. Samples were gavage p.o. (1 ml/200 g BW) 
for 21 consecutive days. After overnight fasting (10–12 h), 
blood was collected from sinus orbitalis after 14 and 21 
days of sample treatments, and FBGL was measured using 
a GOD-PAP reagent kit. Animals were kept on HFD for 
the experiment. On day 21, all animals were euthanized, 
and the pancreases were taken. Pancreas histological 
slides were prepared by hematoxylin-eosin staining using 
standard procedures (Bancroft and Cook 1994), and the 
number of beta cells of Langerhans islet was counted us-
ing a confocal microscope (Carl ZEISS Axio).

Molecular assays

3T3-L1 differentiation and sample treatment

The 3T3-L1 pre-adipocyte cells were obtained from the 
collection of LAPTIAB National Research and Innova-
tion Agency (BRIN), Indonesia. The cells were main-
tained in DMEM High Glucose (Sigma-Aldrich, USA), 
supplemented with 10% Fetal Bovine Serum (FBS) (Gib-
co, USA), 100 U/mL penicillin (Gibco, USA), 100 g/mL 
streptomycin (Sigma-Aldrich, USA), 0.5 percent ampho-
tericin (Sigma-Aldrich, USA) (DMEM Hg + FBS Com-
plete) and incubated at 37 °C in a humidified incubator 
with 5% CO2. The adipocyte differentiation procedure fol-
lowed a previous protocol (Zebisch et al. 2012). The media 
was replaced with DMEM +10% FBS on the seventh day, 
and the cells serum-starved for three hours before being 
treated with all A. cordifolia extracts in DMSO 1 M at IC25 
concentrations (1500 ppm; 188 ppm; and 500 ppm for 
BE50%, BE70%, and BE96%, respectively). The selection 
of IC25 was based on preliminary study which showed the 
effectiveness of the samples on cells without causing cell 
death (data did not published). The cells were incubat-
ed for 24 hours after the sample was given. The cell was 
rinsed with PBS 1×, and RNA was ready to be extracted. 
All the experiments were carried out in triplicate.

GLUT4 expression assay
Total RNA of adipocytes treated was isolated using Genezol 
(Geneaid, Taiwan) reagent and quantified using a Na-
no-Drop UV-vis spectrophotometer (SensiFAST SYBR No-
ROX). One-Step Kit (Bioline, USA) was used to perform a 
direct quantitative real-time PCR according to the manu-
facturer’s instructions. The primer sequences were seen on 
Table 1. The expression values for GLUT4 and Beta-actin 

expression are shown as Ct (threshold cycle). Furthermore, 
the mean of Beta-actin expression values was utilized to 
standardize the relative expression levels of GLUT4 using 
the “Delta-Delta Ct” formula (2-ΔΔCT) as follows:

ΔCT: CT (target gene) – CT (house keeping gene)
ΔΔCT: ΔCT (target gene) – Δct (reference gene)

Statistical analysis

Statistical analysis was performed by GraphPad Prism 8.0. 
The difference between groups was compared using a One-
way analysis of variance (ANOVA), followed by Tukey’s 
Multiple Comparison Test post hoc. Statistical significance 
was defined as a p value of less than 0.05 (p ≤ .05).

Results
Effect of A. cordifolia extracts on the al-
pha-glucosidase inhibition assay

As a preliminary study, A. cordifolia extracts were as-
sessed for their activity by alpha-glucosidase inhibitory 
assay. Our experiment showed that among three extracts, 
BE96% demonstrated the highest inhibitory activity (IC50 
119.78 ± 11.14 μg/mL). Thus, this extract (BE96%) was 
selected as sample for in vivo experiments. However, its 
activity was lower than that of acarbose (IC50 3.34 ± 0.95 
μg/mL) (Table 2).

Activity of BE96% on in vivo studies

The acute toxicity test of BE96% showed no mortality in 
both sexes until the dose of 4.25 g/kg BW. Additionally, 
no symptoms such as drowsiness, convulsion, tremor, 
diarrheal, constipation, or polyuria were observed in all 
groups. A closer examination of the animal body weights 
revealed that all rats gained weight during the research.

Based on OGTT (Fig. 1), the ingestion of glucose (3 g/
kg BW) p.o. was able to raise the proportion of postprandial 

Table 1. Primer sequences for Glucose Transporter Isoform 4 
(GLUT4) and Beta-actin genes.

No Gene Primer Sequences
1 GLUT4 Forward: 5’ -GATTCTGCTGCCCTTC TGTC-3’

Reverse: 5’-ATTGGACGCTCTCTCTCCAA-3’
2 Beta-actin Forward: 5’-CTCTGGCTCCTAGCACCATGAAGA-3’

Reverse: 5’-GTAAAACGCAGCTC AGTAACAGTCCG-3’

Table 2. The alpha-glucosidase inhibitory activity of A. cordifolia 
extracts.

Samples Binahong 50% 
(BE50%)

Binahong 70% 
(BE70%)

Binahong 96% 
(BE96%)

Acarbose

IC50 (x±SD) 
(μg/mL)

271.17 ± 1.97* 253.52 ± 1.57* 119.78 ± 11.14* 3.34 ± 0.95

Data are presented as mean ± SD, triplicate. *Significantly different from acarbose 
(p ≤ .05).
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blood glucose (PBG) levels in normal rats. The group 
treated with 250 mg/kg of BE96% and loaded with glucose 
had lower PBG after 30 minutes of glucose consumption, 
which was significantly different from the negative group 
(p ≤ .05). Until the completion of the study, the PBG levels 
in the treatment group did not differ significantly from the 
normal group (p > .05). The PBG levels each group were 
delivered as the area under curve (AUC), state as relation 
between glucose levels toward the time from each mea-
surement. The AUC values of BE96% group was signifi-
cantly lower than the negative group (p ≤ .05) (Fig. 1).

Following that, the potency of BE96% was also ex-
amined in an alloxan-HFD-induced diabetic rats (Ta-
ble 3). Our study found that induction of the combined 
alloxan i.p. and long-term HFD p.o. raised the FBGL 
more than 200 mg/dL and kept persistent until the end 
of the experiment. After 14- and 21-days treatment, 
both groups treated with BE96% and glibenclamide 
demonstrated significantly lower FBGL than the nega-
tive group (p ≤ .05). The study on beta-cell Langerhans 
showed that BE96% improved the damaged pancreatic 
beta cells caused by alloxan induction (Fig.  2). It was 
demonstrated that the induction of the combined allox-
an i.p. and long-term HFD p.o. caused destroyed beta 
cells. BE96% at the dose of 250 mg/kg BW for 21 con-
secutive days restored the damaged pancreatic beta cells 
caused by alloxan induction, significantly compared to 
the negative group (p ≤ .05). On the other hand, the 
diabetic rats given glibenclamide did not show the im-
provement of the b-cells damage compared to the neg-
ative group (p > .05).

Activity of A. cordifolia extracts on the 
cellular levels and the expression of glu-
cose homeostasis gene markers

Based on the cellular study, A. cordifolia expedited the 
differentiation of 3T3-L1 fibroblast cells into an adipo-
cyte-like phenotype. It can be seen microscopically by 
changes in pre-adipocyte cell shape, clonal growth, and 
an increase in the storage of lipids (Abozed et al. 2014; 
Hamza et al. 2015) (Fig. 3). In addition, evaluation with 
Oil-Red-O staining displayed those adipocytes treated 
with BE96% had the highest lipid absorption in all group 
significant different to the control (p ≤ .05), followed by 
BE70% and BE50%. Both these last extracts were not 
different to the control (p > .05) (Fig. 4A). By further as-
sessment the molecular activity of A. cordifolia on glucose 
uptake, we observed the level of mRNA GLUT4 (Fig. 4B) 
showed that during the differentiation stage, adipocytes 
treated with BE96% could upregulate GLUT4 as well as 
BE70% and BE50% but not significantly different com-
pared to the control (p > .05).

Table 3. FGBL on the Alloxan-HFD-induced diabetic rat assay.

Groups FBGL (mg/dL) at day of measurement
D0 D14 D21

Normal 122.93±9.84a 119.54±6.95c 92.05±4.83e

BE96% 277.65±23.41b 135.94±7.29c 104.20±6.51e

Glibenclamide 266.15±29.66 a 113.61±24.09c 85.56±11.98e

Negative 233.98±27.11 a 245.89±16.48d 221.18±27.56f

FBGL before (D0), after 14- (D14), and 21-day (D21) treatment. The different let-
ters (a, b, c) indicated significant differences at the point of measurement (p ≤ .05).

Figure 1. Percent of plasma glucose level (left) and AUC value of each group (right) during Oral glucose tolerance test (OGTT). *: 
Significantly different from Normal (p ≤ .05). Different letters (a, b) indicated significant differences (p ≤ .05). Glucose (% toward M0) 
= (glucose level Mi/glucose level M0) × 100%.

Figure 2. The average number of Langerhans beta cells on the Al-
loxan-HFD-induced diabetic rat assay. Different letters (a, b, c) in-
dicated significant differences at the point of measurement (p ≤ .05).
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Discussions
The ability of A. cordifolia extract to inhibit alpha-glucosidase 
enzyme was demonstrated in vitro. It was seen by the highest 
inhibition of BE96% compared to the two other A. cordifo-
lia extracts. It was shown by the IC50 value of BE96% which 
was the lowest among the other extracts. Theoretically, the 
lower the level of IC50 demonstrated, the higher the quality 
of enzymatic inhibition (Hamza et al. 2015). However, when 
comparing this extract to acarbose as the positive control, 
the level of IC50 of BE96% was relatively high than acarbose. 
It is because acarbose is a single compound, while BE96% 
was a crude extract which consisted of complex compounds.

Furthermore, the polarity of solvent that used in ex-
traction process influenced the chemical compounds in 

the extract. The polarity of solvent is inversely propor-
tional to ethanol content, the higher the concentration of 
ethanol, the lower the polarity of the solvent. Our results 
showed that extract produced using the higher percentage 
ethanol solvent demonstrated a more potent inhibitory ac-
tivity of the alpha-glucosidase enzyme. It was most likely 
due to the higher ethanol content of the solvent, increas-
ing the active compounds concentration of inhibitor al-
pha-glucosidase enzyme, although it remained to be mea-
sured. Martinez-Gonzalez et al. (2017) reported that the 
content of phenolic compounds in the Limnophila aromat-
ica extract decreased in the following order: 100 percent 
ethanol > 75 percent ethanol > 50 percent ethanol > water 
and correlated with the strength of biological properties.

It was reported that several compounds in A. cordi-
folia that be claimed to play a role in antidiabetic activi-
ty were Boussingoside A1 Saponin (Espada et al. 1990), 
and flavonoid such as 8-glucosylapigenin (orientoside) 
(Djamil et al. 2017), and vitexin (Mulia et al. 2017). The 
structure and substitution pattern of flavonoid hydroxyl 
groups determined the degree of pharmacological activity 
(Abozed et al. 2014). It was studied that the total number 
and configuration of hydroxyl groups on flavonoid com-
pounds increased flavonoids’ antioxidant and antidiabetic 
properties. A pair of the hydroxyl group at the position of 
C3’ and C4’ enhanced the radical scavenging, alpha-glu-
cosidase, and DPP4 inhibitory activities. Conversely, the 
methyl and acetate groups decreased flavonoid antioxi-
dant and antidiabetic effects. The absence of the C2–C3 
double bond and the ketonic group at the C4 in ring C 
reduced the alpha-glucosidase and DPP-4 inhibitory ac-
tivities (Sarian et al. 2017).

Further evaluation on BE96% also was carried out by in 
vivo assay. The acute toxicity assay was firstly performed 
to investigate the extract safety profile used in the effica-
cy trials. According to the results, the BE96% was catego-
rized as practically non-toxic. It was indicated that until 
the dose of 4.25 g/kg BW, there was no mortality in both 
sexes, and no acute symptoms were observed in all groups. 
Additionally, all rats gained weight during the research, 
indicating that the dose bellowed of the LD50 threshold 
was safe to be used in further in vivo research.

The efficacy study indicated that BE96% (250 mg/kg 
BW) reduced glucose levels in both glucose-loaded rats and 
alloxan-HFD-induced diabetic animals. Activity BE96% 
reducing the postprandial glucose (PBG) after exposure to 
glucose solution supported the in vitro experiment on the 
alpha-glucosidase inhibitory assay. The potency BE96% as 
a hypoglycemic agent was also demonstrated in an allox-
an-HFD-induced diabetic rats. The lowering FBGL after 
BE96% treatment was due to its ability to repair the dam-
aged pancreatic beta cells generated by alloxan induction. 
Previous research have shown that A. cordifolia extract 
and its isolated compounds have hypoglycemic activity. 
The 96% ethanolic extract of A. cordifolia at the dose of 
25–100 mg/kg BW lowered BGL in HFD-induced diabet-
ic rats after 21 days of treatment compared to the negative 
group significantly (p ≤ .05) (Dwitiyanti et al. 2021). The 
8-glucosylapigenin, also known as orientoside, inhibited 

Figure 3. Stained fat droplet by Red-Oil O-Staining after differen-
tiation. A Negative control with only dimethyl sulfoxide (DMSO) 
treatment; B Control positive with rosiglitazone treatment; adi-
pocyte treatment with C BE50%; D BE70%; and E BE96%.

Figure 4. A The level of 3T3-L1 adipocyte differentiation; 
B mRNA GLUT4 expression after A. cordifolia extracts treatment. 
Different letters (a, b) indicated significant differences (p ≤ .05).
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the alpha-glucosidase enzyme in vitro (IC50 20.23 ug/mL) 
and reduced blood glucose in alloxan-induced DM rats 
(Djamil et al. 2017).

Induction of the combined alloxan i.p. and long-term 
HFD p.o. raised FBGL. The combination of HFD and 
alloxan could likely hinder the occurrence of auto-re-
version to normal circumstances, as described if alloxan 
was administered in the ranges of 90–140 mg/kg BW, i.p., 
without HFD (Jain and Arya 2011). Overeating HFD on a 
regular basis causes meta-inflammation, altering periph-
eral insulin receptor-associated signalling and decreasing 
sensitivity to insulin-mediated glucose clearance. It result-
ed in higher fasting glucose and insulin levels, as well as 
worse glucose tolerance, both of which are essential indi-
cations of insulin resistance (Mosa et al. 2015). The com-
bination of HFD and Alloxan causes abnormalities of lipid 
metabolism, characterized by increased triglyceride, total 
cholesterol, and LDL cholesterol, followed by decreased 
HDL cholesterol. This condition is like Type 2 diabetes in 
humans (Zhang et al. 2018).

Further research showed that the bioactive ingredient 
in A. cordifolia engaged in controlling the balance of lipid 
and glucose in the 3T3-L1 adipocyte cell culture. Treat-
ment with three different A. cordifolia extracts (BE50%, 
BE70%, and BE96%) on 3T3-L1 cells showed that A. cor-
difolia enhanced the differentiation of 3T3-L1 fibroblast 
cells into an adipocyte-like phenotype. It can be seen 
microscopically by changes in pre-adipocyte cell shape, 
clonal growth, and an increase in the storage of lipids 
(Ruiz-Ojeda et al. 2016). Oil-Red-O staining revealed 
that adipocytes treated with BE96% had the most excel-
lent lipid absorbance, followed by BE70% and BE50%. 
These studies could enlighten the effect of this plant on 
improved insulin sensitivity through regulation of glucose 
uptake GLUT4, a facilitative diffusion which has been 
found a majority in skeletal muscle, heart, and adipocytes. 
This protein is translocated from intracellular storage ves-
icles to the plasma membrane in adipocytes and muscle in 
response to increased insulin secretion after eating. In ad-
ipocytes of both humans and rodents with obesity or T2D, 
the GLUT4 is downregulated. This condition is one of the 
earliest events in the pathogenesis of insulin resistance 
and T2D (Moraes-Vieira et al. 2016; Cignarelli et al. 2019). 
At the molecular level, all A. cordifolia extracts increased 
the level of mRNA GLUT4 compared to cells treated with 
Rosiglitazone as the positive control and cells not treated.

A. cordifolia functioned as an insulin mimic, con-
trolling the anabolic response in adipose tissue by increas-
ing glucose uptake. As a result, fatty acid synthesis from 
glucose was generated in adipocytes. This activity is most 
likely due to bioactive compounds in A. cordifolia, such as 
flavonoids, which can stimulate glucose uptake. The other 
study showed that flavonoids influence peripheral insu-
lin sensitivity (Semaan et al. 2018). Insulin resistance is 
triggered by the presence of radical compounds caused by 
hyperglycemia. It was proven that both extract and com-
pounds A. cordifolia (3,5,3’,4’-tetrahydroxyflavone and 
the flavonoid 8-glucopyranosyl-4’,5,7-trihydroxyflavone 
(vitexin)) exhibited antioxidant activity (Alba et al. 2020). 

Being a radical scavenger, A. cordifolia can effectively pre-
vent and manage diabetes mellitus. According to our find-
ings, A. cordifolia extracts are anti-diabetic on multiple 
levels, including in vitro, in vivo, and molecular.

Conclusions

To summarize, the results of this study demonstrated that 
the higher the ethanol content of the solvent in A. cordifolia 
extracts, the greater the efficacy of plant extract as an an-
ti-diabetic agent. It was demonstrated by in vitro, in vivo, 
and molecular studies that A. cordifolia has a promising 
inhibitory activity against alpha-glucosidase enzyme, sig-
nificantly reduced postprandial hyperglycemia (p ≤  .05), 
reduced fasting blood glucose level (p ≤ .05), and poten-
tially promote the improvement of damaged beta cells, and 
finally regulated glucose level in cell and molecular level by 
upregulating the GLUT4 mRNA level. However, further 
studies needed to be conducted to elaborate on the com-
pound in BE96% that played in lowering blood glucose.
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