
51

Information and controlling system

DEVISING AN

APPROACH TO ANALYZE

THE PARAMETERS

FOR DETERMINING

POTENTIAL PRE-

MODIFIED FIRMWARE OF

USB DEVICES

Y e k a t e r i n a Z u y e v a

Corresponding author

Master of Applied Mathematics, Senior Teacher

Department of Information Systems and Cybersecurity

Almaty University of Power Engineering and

Telecommunications named after Gumarbek Daukeyev

Baitursynov ave., 126/1, Almaty,

Republic of Kazakhstan, 050013

E-mail: poka23@mail.ru

A n n a P y r k o v a

Candidate of Physical and Mathematical Sciences, Professor

Department of Computer Science*

*Al-Farabi Kazakh National University

Al-Farabi ave., 71, Almaty, Republic of Kazakhstan, 050040

A b d i z h a p a r S a p a r b a y e v

Doctor of Economics, Professor

Department of International Relations and World Economy*

A i y m z h a n M a k u l o v a

Doctor of Economics, Professor

School of Digital Technologies

Narxoz University

Jandosova str., 55, Almaty, Republic of Kazakhstan, 050035

G u l z i n a t O r d a b a y e v a

Senior Teacher

Department of Information Systems*

This paper reports the results of experiments
and studies involving different types of devic-
es that can implement a BadUSB scenario, for
example, BadUSB, Rubber Ducky, which, when
connected to a computer, impersonate a device
with a Human Interface Device, emulating other
devices such as a keyboard and mouse.

Given the problem of the lack of manage-
ment tools for detecting preliminary modifica-
tions of USB devices against attacks based on
the seizure of computer control, a software and
hardware system is proposed as an object of
study. It is implemented programmatically in the
Arduino IDE environment, and physically it is
made on the Arduino Mega board with Shield,
which reads the parameters of the devices.
It monitors the startup of USB devices and checks
each device for pre-retrofitting by passing HID
descriptors from the connected hardware.
Having parsed the data using Python, the data
are represented in the appropriate form for
analysis, on the basis of which a decision is made
by the system on the possible preliminary modi-
fication of the USB drive from which these data
came. This is due to the detailed consideration
and thorough analysis of data, data types, tem-
poral characteristics of data transmitted along
different channels. The technical character-
istics and functionality of USB devices were
investigated; the parameters transmitted at the
moment when they are supplied with power were
determined. The system can draw a conclusion
based on the analysis according to its algorithm
and block a suspicious USB device that has been
connected and that can intercept control over
the computer.

The results of the study could be used in the
field of protection of information systems from
attacks based on the seizure of control from
external media. The designed solution increases
the level of security of the system, making it pos-
sible to recognize a possibly pre-modified device
at the connection stage

Keywords: information protection, USB
devices, HID, BadUSB, USB controllers, modifi-
cation of USB devices

UDC 004.326.1
DOI: 10.15587/1729-4061.2022.269031

How to Cite: Zuyeva, Y., Pyrkova, A., Saparbayev, A., Makulova, A., Оrdabayeva, G. (2022). Devising an approach to analyze the

parameters for determining potential pre-modified firmware of USB devices. Eastern-European Journal of Enterprise Technologies,

6 (9 (120)), 51–58. doi: https://doi.org/10.15587/1729-4061.2022.269031

Received date 06.10.2022

Accepted date 16.12.2022

Published date 30.12.2022

1. Introduction

Companies face attacks based on vulnerabilities in USB
devices that reprogram existing devices so that they are per-
ceived by the system as another device. Embedded malicious
code affects the security and stability, correct operation
of computer systems and organizations, turning them into
distributors of malicious code and as a result, economic,
technical, production and reputational losses occur. This
vulnerability is not saved from by any antiviruses, or any

other solutions - they are not able to give an adequate assess-
ment of the actions of information carriers.

The widespread use of USB devices for data storage
and transmission is due to their versatility, reliability, per-
formance, simplicity, and convenience. At the same time,
USB devices are among the most dangerous and actively
used means and channels for the implementation of infor-
mation security threats. There is a problem of the lack of
tools to control the detection of preliminary modifications
of USB devices.

Copyright © 2022, Authors. This is an open access article under the Creative Commons CC BY license

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 6/9 (120) 2022

52

Therefore, research on the development of an analysis
of a possible preliminary modification of USB devices is
relevant.

2. Literature review and problem statement

Every interaction between USB devices and the com-
puter is carried out using a microcontroller and so that it
can carry out operations, control code is stored in its own
service memory, which is triggered as soon as power is
supplied to the device. With this block of memory, the user
under a special mode can work and program it. Most defense
mechanisms come down to the user’s participation in making
a decision about trust and distrust of a particular device.
There is an approach to detecting suspicious USB devices
by analyzing the temporal characteristics of the traffic of
the USB packets they generate. This approach is similar to
intrusion detection methods in network systems [1]. The
software made for the Linux operating system and the ap-
proach are interesting because it does not involve the user
in the decision to trust some USB device. The experimen-
tal implementation of the concept for Linux assesses the
effectiveness and efficiency of the approach to cope with
temporary changes in the characteristics and dynamics of
the set of characteristics of legitimate users. The types of
devices that can implement the BadUSB-scenario are con-
sidered. These are BadUSB, IRON-HID, Rubber Ducky,
BadAndroid, BadBIOS and hacking devices based on the
tiny Teensy dev board (USBdriveby and Teensyterpreter).
When connected to a computer, they impersonate a Human
Interface Device, emulating a keyboard and mouse. When
formulating threat models, they assume that all USB packets
are correctly formed and valid according to the USB proto-
col. No experiments have been conducted in the Windows
operating system. The concept did not accept USB attacks
related to the autorun feature that exploit vulnerabilities in
the USB device drivers of the host operating system caused
by malformed USB packets but this was noted in work [2].
Execution timings from different devices (interrupts) were
detailed and measured, where the speed of keystrokes is ana-
lyzed, tracking the state of the operating system with further
integration into its decision-making logic to block malicious
USB traffic. In addition, the software USBlock developed
in [1] cannot protect against attacks launched at the BIOS
level, as is the case with BadBIOS.

A serious problem may be the attempt to improve the or-
ganizational security of USB devices within the framework
of a security model separately removed from the system, as
was implemented in [3]. In trust management schemes, the
TMSUI software, acting as a firewall, organizes the securi-
ty system, make it possible to connect USB drives only on
separate terminals for a certain time. When analyzing the 6
security properties, TMSUI decides only about temporary
access only to certain secure terminals.

A common type of BADUSB attack often occurs by run-
ning a Powershell script using BadUSB, which activates the
Keylogger [4]. The script is written in the Arduino IDE and
runs on the Pro Micro microprocessor board, which makes
it possible to produce multiple attacks and fix the execution
time on different architectures. But the time required to run
the keylogger is 7.474 seconds and when the computer is con-
nected to the Internet, the results of the malicious script are

sent to the attacker by e-mail. The authors note that there
are no studies to correct the delay in script execution.

Work [5] proposes a strategy for protecting against USB
attacks - non-interference of the user. It is concluded on the
basis of an analysis of what is happening in the user’s session,
the possibility of the origin of events in the operating system
is calculated, for example, if the machine is inactive, then
at this time the connected active devices are recognized as
illegitimate. The proposed approach analyzes the origin of
keystrokes when making automated decisions on security;
and in cases where the architecture of the network configura-
tion changes. It all comes down to determining who gives the
commands – the user himself or the malicious component.
Two attack vectors via USB and vectors of corresponding
protection are written about. In the first case, the use of
drivers (protection is reduced to the use of secure encoding
and amortization of the consequences of execution errors).
The second is user emulation (protection does not make it
possible to bypass errors in the code but masks the device as
another). The key point of protecting the proposed approach is
the use of masks, filtering keys that are considered to be dan-
gerous. The approach is implemented for both the Linux and
Windows operating systems. If one implements long delays in
the sketch, then the proposed system can be circumvented.

Paper [6] considered Spyduino – a board programmable
using the Arduino IDE and recognized in the operating
system as a HID device with great potential. On its basis,
attackers can implement scripts, in turn, embedding it in any
devices that will further create a BadUSB vulnerability. The
board is built into the USB keyboard and sends confidential
information to the FTP server without the user’s permission,
because Spyduino is an Arduino Uno with special libraries
(expanding its capabilities) that can significantly damage
everyone and everything. The article discusses various
countermeasures and presents possible extensions but the
policy of applying whitelists is not always applicable since
the device may be clean at one point in time, and in another
case modified, and since it is already on the whitelist, the
system will be attacked by this USB device.

Since BadUSB modifies the USB firmware and can
attack all systems to which an infected USB is connected,
a good approach is considered to be the applicable solution
against this generation of malicious software - to apply a
whitelist [7]. A detailed approach to fingerprinting based
on USB functions is proposed, which facilitates the creation
of a list of trusted USB devices. The solution prevents and
detects BadUSB and similar attacks, generating fingerprints
based on the functions of trusted USB devices and their pri-
mary use. The information was tested for the uniqueness of
the fingerprints generated by the authors. The analysis data
was collected from USB drives of academic laboratories for
1 year based on functions with a whitelist participant recog-
nition accuracy of 98.5 %. According to statistics, 7–13 % of
all erroneous results are explained by equipment malfunc-
tions or incorrect identification of samples in the laboratory.
Therefore, laboratory data obtained in [7] objectively have
an error.

There are cases when it is proposed to pre-filter data
from USB devices [8] and the vast majority of these filters
are implemented at the operating system level, leaving one
of its parts and the firmware of the USB host controllers
unprotected. Therefore, the authors offer flexible, universal
USB filtering policies. They explore the differences between

53

Information and controlling system

environment in order to be able to listen to the temporary
transmitted characteristics of the devices, the detailed pa-
rameters of the description of the devices. At the same time,
we believe that some intermediate environment is created,
and all devices are connected to it. Further measurements
are carried out precisely inside the software and hardware
system.

Experiments and studies have been conducted with
different types of devices that can implement BadUSB sce-
narios: BadUSB, Rubber Ducky. These were pre-modified
devices. And when they turned on the power, connecting to
the system, they pretended to be various other devices, for
example, a keyboard and a mouse.

To be able to read the incoming characteristics of devices
and respond, a software and hardware system was imple-
mented. The software was created using the Arduino IDE.
Since the system is physically implemented on the Arduino
Mega board with Shield, which reads the parameters of the
devices, it is possible to track and transfer HID descriptors
from the connected equipment (Fig. 1).

Fig. 1. Arduino Mega board with Shield card reader to protect

against BadUSB vulnerability: a – top view; b ‒ side view

The connection to the computer of the board is made
using a separate adapter UART-USB. A device is insert-
ed into the USB port to check if it is pre-modified. The
program is written in the Arduino IDE in the C/C++ pro-
gramming language with the inclusion of many libraries,
including the USB host libraries. In the process of work, a
port is created (emulated) and descriptors of the connected
device are read through it. Having parsed the data using
Python, it is represented in the necessary form for analysis.
The program checks the data of the descriptors from the
interface and device sections (that is, it looks for changes
and unnecessary descriptions in the descriptors, primarily in
the product identifier, the manufacturer ID, and the device
class code), on the basis of which a conclusion is made about
a possible preliminary modification of the USB drive from
which this data came.

We investigated the technical characteristics and func-
tionality of USB devices, determined the parameters trans-
mitted to the system when power is supplied, and the port is
emulated; the identifiers of the pre-modified devices differed
in most cases from the original ones by one character or it
was impossible to identify or find a match.

To compare the original devices with the modified ones,
several multi-chip USB devices were purchased with their
further flashing in the Duckuino language. After a prelimi-
nary modification, these devices began to broadcast, creat-
ing a WI-FI channel. In the course of experiments, it turned
out that these devices created a channel in both Linux and
Windows with normal, stable broadcast quality. Further,
the stitched sketches were launched through an organized

USB data exchange filtering at the level of operating system
and at the USB packet transfer level. This could be used in
the early stages of device recognition and security assess-
ment of packet filtering policies.

Study [9] shows the work of the software Firm USB
ware analysis framework, which uses scripts and knowledge
of the USB protocol to determine and correlate the images
of embedded programs on the device and determine the
activity that they can produce. FirmUSB checks the firm-
ware of the device to determine its ability to generate po-
tentially malicious behavior. Determining whether a device
is secure is challenging because of the many different device
architectures and operating systems. The authors performed
experiments to measure the time of obtaining target instruc-
tions related to USB for only two firmware Phison 2251-03
and Cypress EZ-USB. And now these are not the most
popular controllers.

The optimal solution should combine a mixture of several
strategies [1–9], and not only meet the requirements in any
one approach, as described above, but also meet the require-
ments in the field of safety. With the increase in the number
of USB devices implemented on different controllers, vul-
nerable points in the system, the ability of intruders to hack,
steal, and compromise information increases, it means that it
is necessary to create a software package for determining the
parameters of transmission from USB devices, implemented
in hardware as part of an external board with a separate
microcontroller.

A detailed, expanded analysis of the parameters of USB
devices when they are connected is needed, as well as a tool for
deciding on the possible pre-modification of devices through
the analysis of descriptors and data structures issued by them.
In this method, it is necessary to analyze the parameters is-
sued by the devices at all stages of the survey by the operating
environment and detail in justifying the conclusion.

3. The aim and objectives of the study

The purpose of this study is to develop an approach to
the analysis of the parameters for determining the possible
pre-modified firmware of USB devices. This will create an
adequate tool for making a decision on the pre-modification
of USB devices based on high-quality data analysis.

To accomplish the aim, the following tasks have been set:
− to obtain descriptors from USB devices of the test site;
− to synthesize the structure of the representation of data

descriptors from devices;
− to parse the modes of operation of USB-devices.

4. The study materials and methods

The object of our study is the transmitted characteristics
of USB devices. During all the studies, about 40 devices
were analyzed.

Research methods: the technical characteristics and
functionality of USB devices were investigated, the parame-
ters transmitted to the system when power is supplied were
determined.

The hypothesis of the study is to implement a system on
an external board in the software and hardware environ-
ment in order to isolate the USB drive from the operating

a b

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 6/9 (120) 2022

54

channel either using the button control menu or by launch-
ing sketches [10−12].

Not multifunction devices (e. g., MFD: scanner-copi-
er-printer) but devices that perform only 1 function should
have a single interface descriptor. For example, in one exper-
iment, a situation arose when in a single-function modified
USB device the interface descriptor (Fig. 2, a) was repre-
sented by two interface descriptors (Intf number 0 and Intf
number 1) simultaneously.

When the operating system identifies a device as the type
of USB device to be connected, the system was given a descrip-
tor that had an Intf number of 1 and another descriptor with
a value of 0 was not read. In addition, the Intf Class interface
descriptor had a value of 3, which means that the class of this
device is a HID device. In fact, the Intf Class device has a value
of 8, and this is Mass Storage. The factory settings of USB
devices have the correct values in the Intf Class field (Fig. 2, b).

Thus, all devices were checked. With the help of the
developed software and hardware system, all flashed USB
devices were detected. A system of pre-modified USB
devices identified everything and issued an appropriate
warning. This fact means that the created system detects
the BadUSB vulnerability in USB devices. So, its use will
increase security for both production stations and personal
computers.

5. Results of data acquisition and analysis

5. 1. Retrieving descriptors from test polygon devices
In the task of recognizing which device is physically in-

serted into the computer, the USB is designed in such a way
that the host controller recognizes the action of inserting
and removing the connector plug. When a plug event occurs,
the host controller informs its device driver, which scans the
bus and asks the device to identify itself. USB devices con-
tain descriptors, a set of information about the device.

Device descriptors are retrieved from all devices using a
sketch written in the Arduino IDE (Fig. 3).

The data at this point allow the device driver for the
USB bus itself to efficiently request a new connected de-
vice and wait for a response. As a test site for this study, a
total of 12 devices with different characteristics were taken
from 40 devices: iPhone, joystick, keyboard, mouse, game
mouse, LilyPad Arduino, USBmodem, web-camera, USB
3G modem, Android-device, doc-station, Mega Arduino.
Part of these 8 devices: iPhone, joystick, keyboard, mouse,
game mouse, LilyPad Arduino, USBmodem, web-camera
are shown in Fig. 3. In the first step, some of the descriptors
are used. The algorithm defines device classes to connect a
system driver for each class (which is sufficient to treat any
devices in that class).

a b

Fig. 2. Devices settings: a – modified; b – original settings

55

Information and controlling system

The HID class has several
subclasses, each processed in
its own way. The VID and PID
product IDs must be unique for
the released product. An import-
ant descriptor is also the serial
number of the device, it can be
recognized and processed the
same when reconnecting, even if
a different physical USB port is
used. It is important for storage
devices to be assigned the same
drive letter; for devices such as
serial port adapters and modems,
to be assigned the same COM
port designation.

5. 2. Data structuring
Not all devices are recog-

nized in the same way both in
structure and in data content
when read from different micro-
controllers, which is confirmed
by the data in Fig. 4.

12 devices have a diverse data
structure, for example, the iPhone
issues 301 descriptors, joystick –
43, keyboard – 62, mouse – 43,
game mouse – 81, LilyPad Ar-
duino – 99, USBmodem – 63,
web–camera – 192, USB 3G mo-
dem – 45, Android-device 0, doc–
station – 39, Mega Arduino – 45,
different devices – different num-
ber of descriptors and different
structural completeness, which
is reflected in their quantitative
analysis in Fig. 5.

Parametrs
iphone joystick keyboard mouse game

mouse
LilyPad
Arduino

USB
WIFI

modem

web
camera

Device descriptor:
Descriptor Length: 12 12 12 12 12 12 12 12
Descriptor type: 1 1 1 1 1 1 1 1
USB version: 200 110 110 110 110 200 200 110
Device class: 0 0 0 0 0 EF 0 FF
Device Subclass: 0 0 0 0 0 2 0 0
Device Protocol: 0 0 0 0 0 1 0 0
Max.packet size: 40 8 8 8 8 40 40 8
Vendor ID: 05AC 1345 046D 093A 09DA 1B4F 148F 0AC8
Product ID: 1297 1000 C24B 2510 7479 9208 5572 303B
Revision ID: 310 100 7320 100 9900 100 101 100
Mfg.string index: 1 0 1 1 1 1 1 1
Prod.string index: 2 2 2 2 2 2 2 2
Serial number index: 3 0 0 0 0 3 3 0
Number of conf.: 4 1 1 1 1 1 1 1

Configuration descriptor:
Total length: 27 22 003B 22 54 64 35 00C1
Num.intf: 1 1 2 1 3 3 1 1
Conf.value: 1 1 1 1 1 1 1 1
Conf.string: 5 0 4 0 0 0 0 0
Attr.: C0 80 A0 A0 A0 A0 80 80
Max.pwr: FA FA 31 32 32 FA E1 50

Interface descriptor:
Intf.number: 0 0 0 0 0 0 0 0
Alt.: 0 0 0 0 0 0 0 0
Endpoints: 3 1 1 1 1 1 5 2
Intf. Class: 6 3 3 3 3 2 FF FF
Intf. Subclass: 1 0 1 1 1 2 FF FF
Intf. Protocol: 1 0 1 2 1 0 FF FF
Intf.string: 0 0 0 0 0 0 5 0

Fig. 3. Part of the descriptors of some devices under test

Fig. 4. Different data structure of USB devices under test

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 6/9 (120) 2022

56

Fig. 5 displays the names of USB devices along the ver-
tical axis, and the number of received descriptors from the
corresponding device along the horizontal axis. The USB
standard defines a number of descrip-
tors that are common to all classes of
devices, and they are read by a request
Get_Descriptor that uses the descriptor
code. And although device, configura-
tion, interface, endpoint descriptors are
required, devices do not always issue
even them.

5. 3. Consistency of device modes
of operation

All descriptors share a common for-
mat. The first byte indicates the length
of the descriptor in bytes, the second
byte indicates the type of descriptor.
The device descriptor specifies some
information about the device. For ex-
ample, the supported USB version, the
maximum package size, vendor, and
product IDs (VID and PID), and the
number of possible configurations that
the device can have. Most devices are simple and have only
one configuration. The configuration descriptor indicates
how the device is powered, what its maximum power con-
sumption is, and the number of interfaces that the device
has. Therefore, it is possible to have 2 configurations for
the device – one for bus power, the other for power from an
external source. Since this is the header to the interface de-
scriptors, it is also possible to have different configurations
for different transfer modes.

There are many descriptor settings. In order for the work
on the recognition of the device to proceed adequately, one
needs to most fully learn information about the device. To
do this, a Python script was written and loaded onto the
Arduino Mega board, since through it the interaction of the
operating system kernel and the USB device was carried out.
Knowing the entire list of combinations of descriptor param-
eters, data for all tested devices were obtained.

According to the specification of USB devic-
es, three modes of operation are regulated: Low-Speed
(10-1500 Kbps); Full-Speed (0.5–12 Mbps) High-Speed
(25–480 Mbps). Distribution of test devices by operating

modes (iPhone – High-Speed, joystick – Low-Speed,
keyboard – Low-Speed, mouse – Low-Speed, game
mouse – Low-Speed, LilyPad Arduino – High-Speed,
USBmodem – High-Speed, web-camera – Full-Speed,
USB 3G modem – High-Speed, Android-device –
High-Speed, doc-station – High-Speed, Mega Ardui-
no – High-Speed) is shown in Fig. 6.

The next step is to analyze the type and amount of
data that the device transmits to the operating system.
For example, if coordinates are transmitted from a
device, then most likely the USB device is a mouse. In
Fig. 6, the horizontal axis displays the names of USB
devices, and the vertical axis – the speed of operation
and mode of the corresponding device.

As a result of our work, different devices were
analyzed by class, according to the parameters and
speeds of work, it is possible to identify the basis for
creating a conclusion on the group of parameters about
the possible attribution characteristically of the device

with any class. However, the system does not always work
correctly with the hardware and all device descriptors can
be represented in a single form.

6. Discussion of the work of the software and hardware
system

The research was conducted through a software package
implemented in the Arduino IDE environment. Physically,
it is implemented on the Arduino Mega board with Shield,
which reads the parameters of the devices (Fig. 1). With it
one can track the launch of pre-modified devices and transfer
HID descriptors from the connected hardware. The results
could be used in deciding whether there is a pre-modification
and serve as a mechanism (tool) to limit the functioning of
possible malicious software from a connected USB device
and install protection of information systems from attacks
such as BADUSB. This measure increases the level of securi-
ty of work with peripherals, cutting off attempts by external
devices to take control of the entire system.

The described approach of comparing parameters and
isolating multiple interface descriptors in single-function
USB devices (Fig. 2) has been used more than once in ex-
periments; that has made it possible to qualitatively analyze
quantitative data sets.

Fig. 5. Quantitative analysis of USB device descriptors read

 Fig. 6. Operating modes of the USB devices under test

57

Information and controlling system

To work with the data coming from the software and
hardware system, the methods and algorithms for the func-
tioning of USB devices were investigated. The obtained re-
sults (Fig. 3, 4) showed the presence of different structuring
of data and the functioning of the devices themselves under
different modes of operation (Fig. 6).

The experiments were conducted on Linux and Win-
dows operating systems with 40 devices. The data allow the
device driver for the USB bus itself to efficiently request a
new connected device and wait for a response. The study
was limited to 12 different classes of devices with different
characteristics and, as a promising direction of development,
it is possible to expand the fleet of tested devices. When
one connects devices to the USB bus, each device signals
its existence and reports the manufacturer ID and device
ID without fail. These identifiers are the determining infor-
mation when selecting a loadable driver, information about
which is searched in the registry. The descriptors of 12
devices were described, their quantitative state is shown in
Fig. 5, which means that a different number of USB device
descriptors were readable. Figures showed parts of the data;
we discussed the modes of operation of USB devices.

The resulting solution functions under the circumstanc-
es that the choice of components for the creation of the
module was based on the technical characteristics of the
boards, in order to check the operability of the hardware and
software module, USB devices with modified firmware were
implemented.

The developed software and hardware system receives
data from USB-drives, determining the number of parame-
ters and the parameters themselves in each case. A distinc-
tive feature of the study is the implementation of the system
on an external device with additional memory expansion
on the Arduino Mega board with Shield. And unlike the
Pro Micro board in [4], the system is implemented through
libraries with increased data processing time. In the future,
the strategy of introducing white lists is considered, as
stipulated in [7]. One of the features is the large set of data
obtained from 12 commonly used devices. Thus, the results
are clearly presented in tabular form in Fig. 3, 4.

The results of our study could be used as a tool to limit
the activities of USB data sources and install protection of
information systems from BADUSB attacks. This measure
increases the level of security of operating systems as a
whole, cutting off attempts from external devices to work
and execute unauthorized requests for programs, starting
and stopping other programs, entering and output data, al-
locating and releasing additional memory, loading programs
into RAM and their execution. And this is what makes it
possible to maintain a decent level of security and recognize
a possibly pre-modified device at the stage of connecting to
the system.

These studies could be used as part of the protection
against possible threats of BADUSB both in the lives of us-
ers within the home, and as a separate protection module in
the office, as well as where there is a need to connect many
USB devices and guarantee the safety of their functioning.
At the same time, it is necessary to connect the devices in
turn and wait for the final decision on each of the devices
from the system.

The direction of further development may be the expan-
sion of the polygon of tested devices, as well as the study of
the possibility of creating independently functioning soft-
ware in Linux and Windows operating systems.

7. Conclusions

1. At the first stage, when extracting descriptors from the
devices of the test range, the information was represented
in a selective form according to the data on 8 devices: iP-
hone, joystick, keyboard, mouse, game mouse, LilyPad Arduino,
USBWiFimodem, web-camera. Information on device descrip-
tors is presented on different interfaces, each interface consists
of one or more alternative parameters, and each alternative pa-
rameter consists of a set of endpoints. A configuration descriptor
describes the entire configuration (device capabilities), including
its interfaces, alternate settings, and endpoints. Each of these
entities is also described in their descriptor format. A configu-
ration descriptor sometimes includes custom descriptors defined
by the device manufacturer. However, regardless of the devices,
the total length of the device descriptor is 12 bytes. Some devic-
es, such as the iPhone, LilyPad Arduino, USB WiFi modem in
the USB version parameter showed that they work according
to the USB 2.0 standard. The rest work with the 1.1 standard.
This is due to the different release times of the devices, which
makes it possible to use different data transfer technologies.

2. The completeness (structuring) of the data of certain
devices showed heterogeneity both in the length of the main
descriptors and in their content. The information provided
for configuring devices was generated at the request of the
device polling module: device information, information on
device descriptors, configuration descriptors and interfaces.

According to the data obtained, all devices are represented
by a different number of descriptors and the best described in
this regard is the Apple device (301), and the worst – Android
device (0). This is due to the imprudence of the manufacturer in
providing the characteristics of the equipment provided. This
allows for and gives a large field of opportunities for an attacker
to substitute any identifiers as native in practical application.

3. In our studies, different devices were analyzed by class
and, according to their modes (parameters and speeds of oper-
ation), it is possible to synthesize patterns of work on a group
of output parameters about the possible correlation of devices
with any class and restrictive capabilities. The peculiarity
is that it is impossible to classify all devices in the same way
for various reasons (different manufacturers and different ap-
proaches to systematization, descriptive content of descriptors,
etc.). The number of possible configurations that the device can
have is determined; most devices are single-functional and have
1 configuration but it is also possible to have different configu-
rations for different data transfer modes.

Conflicts of interest

The authors declare that they have no conflicts of in-
terest in relation to the current study, including financial,
personal, authorship, or any other, that could affect the study
and the results reported in this paper.

Funding

The study was performed without financial support.

Data availability

The data will be provided upon reasonable request.

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 6/9 (120) 2022

58

References

1. Neuner, S., Voyiatzis, A. G., Fotopoulos, S., Mulliner, C., Weippl, E. R. (2018). USBlock: Blocking USB-Based Keypress Injection

Attacks. Lecture Notes in Computer Science, 278–295. doi: https://doi.org/10.1007/978-3-319-95729-6_18

2. Yang, B., Qin, Y., Zhang, Y., Wang, W., Feng, D. (2016). TMSUI: A Trust Management Scheme of USB Storage Devices for

Industrial Control Systems. Lecture Notes in Computer Science, 152–168. doi: https://doi.org/10.1007/978-3-319-29814-6_13

3. Johnson, P. C., Bratus, S., Smith, S. W. (2017). Protecting Against Malicious Bits On the Wire. Proceedings of the 33rd Annual

Computer Security Applications Conference. doi: https://doi.org/10.1145/3134600.3134630

4. Ramadhanty, A. D., Budiono, A., Almaarif, A. (2020). Implementation and Analysis of Keyboard Injection Attack using USB

Devices in Windows Operating System. 2020 3rd International Conference on Computer and Informatics Engineering (IC2IE).

doi: https://doi.org/10.1109/ic2ie50715.2020.9274631

5. Mueller, T., Zimmer, E., de Nittis, L. (2019). Using Context and Provenance to defend against USB-borne attacks. Proceedings of

the 14th International Conference on Availability, Reliability and Security. doi: https://doi.org/10.1145/3339252.3339268

6. Karystinos, E., Andreatos, A., Douligeris, C. (2019). Spyduino: Arduino as a HID Exploiting the BadUSB Vulnerability. 2019 15th

International Conference on Distributed Computing in Sensor Systems (DCOSS). doi: https://doi.org/10.1109/dcoss.2019.00066

7. Mohammadmoradi, H., Gnawali, O. (2018). Making Whitelisting-Based Defense Work Against BadUSB. ICSDE'18: Proceedings

of the 2nd International Conference on Smart Digital Environment. Available at: http://www2.cs.uh.edu/~gnawali/papers/badusb-

icsde2018.pdf

8. Ji, X., Le Guernic, G., Cuppens-Boulahia, N., Cuppens, F. (2018). USB Packets Filtering Policies and an Associated Low-Cost

Simulation Framework. Lecture Notes in Computer Science, 732–742. doi: https://doi.org/10.1007/978-3-030-01950-1_44

9. Hernandez, G., Fowze, F., Tian, D. (Jing), Yavuz, T., Butler, K. R. B. (2017). FirmUSB. Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security. doi: https://doi.org/10.1145/3133956.3134050

10. Pyrkova, А., Zuyeva, Ye. (2019). Creating BADUSB devices and system safety analysis. Vestnik KazNITU, 5, 466–470. Available

at: https://official.satbayev.university/download/document/12327/%D0%92%D0%95%D0%A1%D0%A2%D0%9D%D0%98%D0

%9A-2019%20%E2%84%965.pdf

11. Zueva, E. A., Pyrkova, A. Yu. (2019). Nvestigation of USB devices using ducky script. Vestnik AUES, 3, 53–57. Available at: https://

vestnik-aues.kz/frontend/web/uploads/magazine/pdf/1591966671_nFx8A8.pdf#page=55

12. Zueva Ye. (2020). Analysis of work of devices with BADUSB vulnerability. Vestnik KBTU, 17 (1), 141–146. Available at: https://

kbtu.edu.kz/images/vesnik_1_2020.pdf

